input
stringlengths
33
5k
output
stringlengths
32
5k
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest from pydantic import parse_obj_as from docarray.base_doc.doc import BaseDoc from docarray.documents import Mesh3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' pytestmark = [pytest.mark.mesh] @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url: str): mesh = Mesh3D(url=file_url) mesh.tensors = mesh.url.load() assert isinstance(mesh.tensors.vertices, np.ndarray) assert isinstance(mesh.tensors.faces, np.ndarray) def test_str_init(): t = parse_obj_as(Mesh3D, 'http://hello.ply') assert t.url == 'http://hello.ply' def test_doc(): class MyDoc(BaseDoc): mesh1: Mesh3D mesh2: Mesh3D doc = MyDoc(mesh1='http://hello.ply', mesh2=Mesh3D(url='http://hello.ply')) assert doc.mesh1.url == 'http://hello.ply' assert doc.mesh2.url == 'http://hello.ply'
import numpy as np import pytest from pydantic import parse_obj_as from docarray.base_doc.doc import BaseDoc from docarray.documents import Mesh3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' pytestmark = [pytest.mark.mesh] @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url: str): mesh = Mesh3D(url=file_url) mesh.tensors = mesh.url.load() assert isinstance(mesh.tensors.vertices, np.ndarray) assert isinstance(mesh.tensors.faces, np.ndarray) def test_str_init(): t = parse_obj_as(Mesh3D, 'http://hello.ply') assert t.url == 'http://hello.ply' def test_doc(): class MyDoc(BaseDoc): mesh1: Mesh3D mesh2: Mesh3D doc = MyDoc(mesh1='http://hello.ply', mesh2=Mesh3D(url='http://hello.ply')) assert doc.mesh1.url == 'http://hello.ply' assert doc.mesh2.url == 'http://hello.ply'
from __future__ import annotations from typing import Literal from sentence_transformers.losses.GISTEmbedLoss import GISTEmbedLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseGISTEmbedLoss(GISTEmbedLoss): def __init__( self, model: SparseEncoder, guide: SparseEncoder, temperature: float = 0.1, margin_strategy: Literal["absolute", "relative"] = "absolute", margin: float = 0.0, ) -> None: """ This loss is used to train a SparseEncoder model using the GISTEmbed algorithm. It takes a model and a guide model as input, and uses the guide model to guide the in-batch negative sample selection. The cosine similarity is used to compute the loss and the temperature parameter is used to scale the cosine similarities. You can apply different false-negative filtering strategies to discard hard negatives that are too similar to the positive. Two strategies are supported: - "absolute": Discards negatives whose similarity score is greater than or equal to ``positive_score - margin``. - "relative": Discards negatives whose similarity score is greater than or equal to ``positive_score * (1 - margin)``. Args: model: SparseEncoder model based on a `transformers` model. guide: SparseEncoder model to guide the in-batch negative sample selection. temperature: Temperature parameter to scale the cosine similarities, default is 0.1 here adapted for Sparse embeddings, might need some adaptations. margin_strategy: Strategy used for false negative filtering. One of {"absolute", "relative"}. margin: The margin value for filtering negatives. Defaults to 0.0, together with the "absolute" strategy, this only removes negatives that are more similar to the query than the positive is to the query. References: - For further details, see: https://arxiv.org/abs/2402.16829 Requirements: 1. (anchor, positive, negative) triplets 2. (anchor, positive) pairs Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseMultipleNegativesRankingLoss` is similar to this loss, but it does not use a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses # Initialize the SPLADE model model = SparseEncoder("distilbert/distilbert-base-uncased") guide = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseGISTEmbedLoss(model, guide=guide) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__( model, guide=guide, temperature=temperature, margin_strategy=margin_strategy, margin=margin )
from __future__ import annotations from sentence_transformers.losses.GISTEmbedLoss import GISTEmbedLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseGISTEmbedLoss(GISTEmbedLoss): def __init__( self, model: SparseEncoder, guide: SparseEncoder, temperature: float = 0.1, ) -> None: """ This loss is used to train a SparseEncoder model using the GISTEmbed algorithm. It takes a model and a guide model as input, and uses the guide model to guide the in-batch negative sample selection. The cosine similarity is used to compute the loss and the temperature parameter is used to scale the cosine similarities. You can apply different false-negative filtering strategies to discard hard negatives that are too similar to the positive. Two strategies are supported: - "absolute": Discards negatives whose similarity score is greater than or equal to ``positive_score - margin``. - "relative": Discards negatives whose similarity score is greater than or equal to ``positive_score * (1 - margin)``. Args: model: SparseEncoder model based on a `transformers` model. guide: SparseEncoder model to guide the in-batch negative sample selection. temperature: Temperature parameter to scale the cosine similarities, default is 0.1 here adapted for Sparse embeddings, might need some adaptations. margin_strategy: Strategy used for false negative filtering. One of {"absolute", "relative"}. margin: The margin value for filtering negatives. Defaults to 0.0, together with the "absolute" strategy, this only removes negatives that are more similar to the query than the positive is to the query. References: - For further details, see: https://arxiv.org/abs/2402.16829 Requirements: 1. (anchor, positive, negative) triplets 2. (anchor, positive) pairs Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseMultipleNegativesRankingLoss` is similar to this loss, but it does not use a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses # Initialize the SPLADE model model = SparseEncoder("distilbert/distilbert-base-uncased") guide = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseGISTEmbedLoss(model, guide=guide) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, guide=guide, temperature=temperature)
from PIL import Image from sentence_transformers import SentenceTransformer, models, util ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPModel, CLIPProcessor model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(texts=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
from sentence_transformers import SentenceTransformer, util, models from PIL import Image ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(texts=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
from collections import Counter import pytest from datasets import Dataset from sentence_transformers.sampler import GroupByLabelBatchSampler @pytest.fixture def dummy_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ..., 99], "label_a": [0, 1, 0, 1, ..., 0, 1], "label_b": [0, 1, 2, 3, 4, 0, ..., 4] } """ data = {"data": list(range(100)), "label_a": [i % 2 for i in range(100)], "label_b": [i % 5 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_uneven_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17, } """ data = {"data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17} return Dataset.from_dict(data) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label_a", "label_b"] ) batches = list(iter(sampler)) assert all(len(batch) == batch_size for batch in batches) # Check if all labels within each batch are identical # In this case, label_a has 50 0's and 50 1's, so with a batch size of 10 we expect each batch to # have only 0's or only 1's. for batch in batches: labels = [dummy_dataset[int(idx)]["label_a"] for idx in batch] assert len(set(labels)) == 1, f"Batch {batch} does not have identical labels: {labels}" def test_group_by_label_batch_sampler_label_b(dummy_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label_b"] ) # drop_last=True, so each batch should be the same length and the last batch is dropped. batches = list(iter(sampler)) assert all( len(batch) == batch_size for batch in batches ), "Not all batches are the same size, while drop_last was True." # Assert that we have the expected number of total samples in the batches. assert sum(len(batch) for batch in batches) == 100 // batch_size * batch_size # Since we have 20 occurrences each of label_b values 0, 1, 2, 3 and 4 and a batch_size of 8, we expect each batch # to have either 4 or 8 samples with the same label. (The first two batches are 16 samples of the first label, # leaving 4 for the third batch. There 4 of the next label are added, leaving 16 for the next two batches, and so on.) for batch in batches: labels = [dummy_dataset[int(idx)]["label_b"] for idx in batch] counts = list(Counter(labels).values()) assert counts == [8] or counts == [4, 4] def test_group_by_label_batch_sampler_uneven_dataset(dummy_uneven_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_uneven_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label"] ) # With a batch_size of 8 and 17 samples per label; verify that every label in a batch occurs at least twice. # We accept some tiny data loss (1 sample per label) due to the uneven number of samples per label. batches = list(iter(sampler)) for batch in batches: labels = [dummy_uneven_dataset[int(idx)]["label"] for idx in batch] counts = list(Counter(labels).values()) assert [count > 1 for count in counts]
import pytest from datasets import Dataset from sentence_transformers.sampler import GroupByLabelBatchSampler from collections import Counter @pytest.fixture def dummy_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ..., 99], "label_a": [0, 1, 0, 1, ..., 0, 1], "label_b": [0, 1, 2, 3, 4, 0, ..., 4] } """ data = {"data": list(range(100)), "label_a": [i % 2 for i in range(100)], "label_b": [i % 5 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_uneven_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17, } """ data = {"data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17} return Dataset.from_dict(data) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label_a", "label_b"] ) batches = list(iter(sampler)) assert all(len(batch) == batch_size for batch in batches) # Check if all labels within each batch are identical # In this case, label_a has 50 0's and 50 1's, so with a batch size of 10 we expect each batch to # have only 0's or only 1's. for batch in batches: labels = [dummy_dataset[int(idx)]["label_a"] for idx in batch] assert len(set(labels)) == 1, f"Batch {batch} does not have identical labels: {labels}" def test_group_by_label_batch_sampler_label_b(dummy_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label_b"] ) # drop_last=True, so each batch should be the same length and the last batch is dropped. batches = list(iter(sampler)) assert all( len(batch) == batch_size for batch in batches ), "Not all batches are the same size, while drop_last was True." # Assert that we have the expected number of total samples in the batches. assert sum(len(batch) for batch in batches) == 100 // batch_size * batch_size # Since we have 20 occurrences each of label_b values 0, 1, 2, 3 and 4 and a batch_size of 8, we expect each batch # to have either 4 or 8 samples with the same label. (The first two batches are 16 samples of the first label, # leaving 4 for the third batch. There 4 of the next label are added, leaving 16 for the next two batches, and so on.) for batch in batches: labels = [dummy_dataset[int(idx)]["label_b"] for idx in batch] counts = list(Counter(labels).values()) assert counts == [8] or counts == [4, 4] def test_group_by_label_batch_sampler_uneven_dataset(dummy_uneven_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_uneven_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label"] ) # With a batch_size of 8 and 17 samples per label; verify that every label in a batch occurs at least twice. # We accept some tiny data loss (1 sample per label) due to the uneven number of samples per label. batches = list(iter(sampler)) for batch in batches: labels = [dummy_uneven_dataset[int(idx)]["label"] for idx in batch] counts = list(Counter(labels).values()) assert [count > 1 for count in counts]
from langchain_core.callbacks.base import BaseCallbackHandler, BaseCallbackManager def test_remove_handler() -> None: """Test removing handler does not raise an error on removal. An handler can be inheritable or not. This test checks that removing a handler does not raise an error if the handler is not inheritable. """ handler1 = BaseCallbackHandler() handler2 = BaseCallbackHandler() manager = BaseCallbackManager([handler1], inheritable_handlers=[handler2]) manager.remove_handler(handler1) manager.remove_handler(handler2)
from langchain_core.callbacks.base import BaseCallbackHandler from langchain_core.callbacks.manager import BaseCallbackManager def test_remove_handler() -> None: """Test removing handler does not raise an error on removal. An handler can be inheritable or not. This test checks that removing a handler does not raise an error if the handler is not inheritable. """ handler1 = BaseCallbackHandler() handler2 = BaseCallbackHandler() manager = BaseCallbackManager([handler1], inheritable_handlers=[handler2]) manager.remove_handler(handler1) manager.remove_handler(handler2)
from collections.abc import Generator import pytest from langchain_core.vectorstores import VectorStore from langchain_tests.integration_tests.vectorstores import VectorStoreIntegrationTests from langchain_chroma import Chroma class TestChromaStandard(VectorStoreIntegrationTests): @pytest.fixture() def vectorstore(self) -> Generator[VectorStore, None, None]: # type: ignore[override] """Get an empty vectorstore for unit tests.""" store = Chroma(embedding_function=self.get_embeddings()) try: yield store finally: store.delete_collection()
from collections.abc import Generator import pytest from langchain_core.vectorstores import VectorStore from langchain_tests.integration_tests.vectorstores import VectorStoreIntegrationTests from langchain_chroma import Chroma class TestChromaStandard(VectorStoreIntegrationTests): @pytest.fixture() def vectorstore(self) -> Generator[VectorStore, None, None]: # type: ignore """Get an empty vectorstore for unit tests.""" store = Chroma(embedding_function=self.get_embeddings()) try: yield store finally: store.delete_collection() pass
from typing import Any, Optional, Sequence, List, cast from llama_index.core.llms import ChatMessage, ImageBlock, TextBlock from llama_index.core.base.llms.types import ContentBlock from llama_index.core.base.llms.generic_utils import image_node_to_image_block from llama_index.core.schema import ImageDocument, ImageNode def generate_gemini_multi_modal_chat_message( prompt: str, role: str, image_documents: Optional[Sequence[ImageDocument]] = None, **kwargs: Any, ) -> ChatMessage: # if image_documents is empty, return text only chat message if image_documents is None or len(image_documents) == 0: return ChatMessage(role=role, content=prompt) blocks: List[ContentBlock] = [TextBlock(text=prompt)] if all(isinstance(doc, ImageNode) for doc in image_documents): image_docs: List[ImageBlock] = [ image_node_to_image_block(doc) for doc in image_documents ] else: image_docs = cast(List[ImageBlock], image_documents) blocks.extend(image_docs) return ChatMessage(role=role, blocks=blocks)
from typing import Any, Optional, Sequence from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.schema import ImageDocument def generate_gemini_multi_modal_chat_message( prompt: str, role: str, image_documents: Optional[Sequence[ImageDocument]] = None, **kwargs: Any, ) -> ChatMessage: # if image_documents is empty, return text only chat message if image_documents is None or len(image_documents) == 0: return ChatMessage(role=role, content=prompt) additional_kwargs = { "images": image_documents, } return ChatMessage(role=role, content=prompt, additional_kwargs=additional_kwargs)
_base_ = '../faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py' model = dict( rpn_head=dict( _delete_=True, type='GARPNHead', in_channels=256, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=8, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[8], strides=[4, 8, 16, 32, 64]), anchor_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.14, 0.14]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.11, 0.11]), loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), roi_head=dict( bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))), # model training and testing settings train_cfg=dict( rpn=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, center_ratio=0.2, ignore_ratio=0.5), rpn_proposal=dict(nms_post=1000, max_per_img=300), rcnn=dict( assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6), sampler=dict(type='RandomSampler', num=256))), test_cfg=dict( rpn=dict(nms_post=1000, max_per_img=300), rcnn=dict(score_thr=1e-3))) optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
_base_ = '../faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py' model = dict( rpn_head=dict( _delete_=True, type='GARPNHead', in_channels=256, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=8, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[8], strides=[4, 8, 16, 32, 64]), anchor_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.14, 0.14]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.11, 0.11]), loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), roi_head=dict( bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))), # model training and testing settings train_cfg=dict( rpn=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, center_ratio=0.2, ignore_ratio=0.5), rpn_proposal=dict(nms_post=1000, max_per_img=300), rcnn=dict( assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6), sampler=dict(type='RandomSampler', num=256))), test_cfg=dict( rpn=dict(nms_post=1000, max_per_img=300), rcnn=dict(score_thr=1e-3))) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock from mmengine.hooks import RuntimeInfoHook from mmengine.logging import MessageHub class TestRuntimeInfoHook(TestCase): def test_before_run(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_run') runner = Mock() runner.epoch = 3 runner.iter = 30 runner.max_epochs = 4 runner.max_iters = 40 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_run(runner) self.assertEqual(message_hub.get_info('epoch'), 3) self.assertEqual(message_hub.get_info('iter'), 30) self.assertEqual(message_hub.get_info('max_epochs'), 4) self.assertEqual(message_hub.get_info('max_iters'), 40) def test_before_train(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train') runner = Mock() runner.epoch = 7 runner.iter = 71 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train(runner) self.assertEqual(message_hub.get_info('epoch'), 7) self.assertEqual(message_hub.get_info('iter'), 71) def test_before_train_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_epoch') runner = Mock() runner.epoch = 9 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_epoch(runner) self.assertEqual(message_hub.get_info('epoch'), 9) def test_before_train_iter(self): # single optimizer message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_iter') runner = Mock() runner.iter = 9 runner.optimizer.param_groups = [{'lr': 0.01}] runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(message_hub.get_info('iter'), 9) self.assertEqual(message_hub.get_scalar('train/lr').current(), 0.01) # multiple optimizers message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_iter') runner = Mock() runner.iter = 9 optimizer1 = Mock() optimizer1.param_groups = [{'lr': 0.01}] optimizer2 = Mock() optimizer2.param_groups = [{'lr': 0.02}] runner.optimizer = dict(key1=optimizer1, key2=optimizer2) runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(message_hub.get_info('iter'), 9) self.assertEqual( message_hub.get_scalar('train/key1.lr').current(), 0.01) self.assertEqual( message_hub.get_scalar('train/key2.lr').current(), 0.02) def test_after_train_iter(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_train_iter') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_train_iter( runner, batch_idx=2, data_batch=None, outputs={'log_vars': { 'loss_cls': 1.111 }}) self.assertEqual( message_hub.get_scalar('train/loss_cls').current(), 1.111) def test_after_val_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_val_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_val_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('val/acc').current(), 0.8) def test_after_test_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_test_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_test_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('test/acc').current(), 0.8)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock from mmengine.hooks import RuntimeInfoHook from mmengine.logging import MessageHub class TestRuntimeInfoHook(TestCase): def test_before_run(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_run') runner = Mock() runner.epoch = 3 runner.iter = 30 runner.max_epochs = 4 runner.max_iters = 40 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_run(runner) self.assertEqual(message_hub.get_info('epoch'), 3) self.assertEqual(message_hub.get_info('iter'), 30) self.assertEqual(message_hub.get_info('max_epochs'), 4) self.assertEqual(message_hub.get_info('max_iters'), 40) def test_before_train(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train') runner = Mock() runner.epoch = 7 runner.iter = 71 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train(runner) self.assertEqual(message_hub.get_info('epoch'), 7) self.assertEqual(message_hub.get_info('iter'), 71) def test_before_train_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_epoch') runner = Mock() runner.epoch = 9 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_epoch(runner) self.assertEqual(message_hub.get_info('epoch'), 9) def test_before_train_iter(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_iter') runner = Mock() runner.iter = 9 runner.optimizer.param_groups = [{'lr': 0.01}] runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(message_hub.get_info('iter'), 9) self.assertEqual(message_hub.get_scalar('train/lr').current(), 0.01) def test_after_train_iter(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_train_iter') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_train_iter( runner, batch_idx=2, data_batch=None, outputs={'log_vars': { 'loss_cls': 1.111 }}) self.assertEqual( message_hub.get_scalar('train/loss_cls').current(), 1.111) def test_after_val_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_val_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_val_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('val/acc').current(), 0.8) def test_after_test_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_test_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_test_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('test/acc').current(), 0.8)
from torch.fx import Graph, GraphModule, Node from torch.fx._compatibility import compatibility from .matcher_utils import InternalMatch, SubgraphMatcher __all__ = ["SubgraphMatcherWithNameNodeMap"] def _split_to_graph_and_name_node_map( gm: GraphModule, ) -> tuple[GraphModule, dict[str, Node]]: from torch.fx.graph import _PyTreeInfo from torch.utils._pytree import tree_flatten, tree_unflatten name_node_map = {} for n in gm.graph.nodes: if n.op == "output": assert gm._out_spec is not None output = tree_unflatten(n.args[0], gm._out_spec) assert isinstance(output, tuple), ( "Expecting the pattern graph to return a tuple" ) assert len(output) >= 2, ( "Expecting the pattern graph to have at least two outputs" ) *out, name_node_map = output flattened, out_spec = tree_flatten(out) assert isinstance(name_node_map, dict), ( "Expecting the input graph to have a dict output as the last element" ) n.args = (flattened,) orig_pytree_info = gm._graph._codegen.pytree_info # type: ignore[attr-defined] gm._graph._codegen.pytree_info = _PyTreeInfo( # type: ignore[attr-defined] orig_pytree_info.orig_args, orig_pytree_info.in_spec, out_spec ) gm.recompile() return gm, name_node_map @compatibility(is_backward_compatible=False) class SubgraphMatcherWithNameNodeMap(SubgraphMatcher): """Extends SubgraphMatcher to support querying the matched subgraph nodes through node name, this requires pattern to have specific format (returning and additional dictionary at the output, that has node name as key, and the node in the pattern graph as value, see Example for more details) Difference with SubgraphMatcher is that it takes a `pattern_gm` GraphModule as input during initialization since we need to modify the graph (which requires `recompile` the GraphModule) Example:: def pattern(x, weight): conv = F.conv2d(x, weight) relu = F.relu(conv) return relu, {"conv": conv, "relu": relu} def target_graph(x, weight): conv = F.conv2d(x, weight) relu = F.relu(conv) relu *= 2 return relu pattern_gm = export_for_training(pattern, example_inputs).module() target_gm = export_for_training(target_graph, example_inputs).module() matcher = SubgraphMatcherWithNameNodeMap(pattern_gm) matches = matcher.match(target_gm) for match in matches: match.name_node_map["conv"].meta["annotation"] = ... """ def __init__( self, pattern_gm: GraphModule, match_output: bool = False, match_placeholder: bool = False, remove_overlapping_matches: bool = True, ignore_literals: bool = False, ) -> None: pattern_gm, name_node_map = _split_to_graph_and_name_node_map(pattern_gm) self.name_node_map = name_node_map super().__init__( pattern_gm.graph, match_output, match_placeholder, remove_overlapping_matches, ignore_literals, ) def match(self, graph: Graph, node_name_match: str = "") -> list[InternalMatch]: """The returned InternalMatch will have name_node_map populated with a map from node name (str) to the target node, e.g. {"conv": target_conv_ndoe, "relu": target_relu_node} this requires the pattern graph returns an additional output of node name to node, e.g. instead of: ``` def pattern(...): ... return relu ``` we should do: ``` def pattern(...): ... return relu, {"conv": conv, "relu": relu} ``` instead """ internal_matches = super().match(graph, node_name_match) for internal_match in internal_matches: for k, n in self.name_node_map.items(): internal_match.name_node_map[k] = internal_match.nodes_map[n] return internal_matches
from torch.fx import Graph, GraphModule, Node from torch.fx._compatibility import compatibility from .matcher_utils import InternalMatch, SubgraphMatcher __all__ = ["SubgraphMatcherWithNameNodeMap"] def _split_to_graph_and_name_node_map( gm: GraphModule, ) -> tuple[GraphModule, dict[str, Node]]: from torch.fx.graph import _PyTreeInfo from torch.utils._pytree import tree_flatten, tree_unflatten name_node_map = {} for n in gm.graph.nodes: if n.op == "output": assert gm._out_spec is not None output = tree_unflatten(n.args[0], gm._out_spec) assert isinstance(output, tuple), ( "Expecting the pattern graph to return a tuple" ) assert len(output) >= 2, ( "Expecting the pattern graph to have at least two outputs" ) *out, name_node_map = output flattened, out_spec = tree_flatten(out) assert isinstance(name_node_map, dict), ( "Expecting the input graph to have a dict output as the last element" ) n.args = (flattened,) orig_pytree_info = gm._graph._codegen.pytree_info # type: ignore[attr-defined] gm._graph._codegen.pytree_info = _PyTreeInfo( # type: ignore[attr-defined] orig_pytree_info.orig_args, orig_pytree_info.in_spec, out_spec ) gm.recompile() return gm, name_node_map @compatibility(is_backward_compatible=False) class SubgraphMatcherWithNameNodeMap(SubgraphMatcher): """Extends SubgraphMatcher to support querying the matched subgraph nodes through node name, this requires pattern to have specific format (returning and additional dictionary at the output, that has node name as key, and the node in the pattern graph as value, see Example for more details) Difference with SubgraphMatcher is that it takes a `pattern_gm` GraphModule as input during initialization since we need to modify the graph (which requires `recompile` the GraphModule) Example:: def pattern(x, weight): conv = F.conv2d(x, weight) relu = F.relu(conv) return relu, {"conv": conv, "relu": relu} def target_graph(x, weight): conv = F.conv2d(x, weight) relu = F.relu(conv) relu *= 2 return relu pattern_gm = export_for_training(pattern, example_inputs).module() target_gm = export_for_training(target_graph, example_inputs).module() matcher = SubgraphMatcherWithNameNodeMap(pattern_gm) matches = matcher.match(target_gm) for match in matches: match.name_node_map["conv"].meta["annotation"] = ... """ def __init__( self, pattern_gm: GraphModule, match_output: bool = False, match_placeholder: bool = False, remove_overlapping_matches: bool = True, ignore_literals: bool = False, ) -> None: pattern_gm, name_node_map = _split_to_graph_and_name_node_map(pattern_gm) self.name_node_map = name_node_map super().__init__( pattern_gm.graph, match_output, match_placeholder, remove_overlapping_matches, ignore_literals, ) def match(self, graph: Graph) -> list[InternalMatch]: """The returned InternalMatch will have name_node_map populated with a map from node name (str) to the target node, e.g. {"conv": target_conv_ndoe, "relu": target_relu_node} this requires the pattern graph returns an additional output of node name to node, e.g. instead of: ``` def pattern(...): ... return relu ``` we should do: ``` def pattern(...): ... return relu, {"conv": conv, "relu": relu} ``` instead """ internal_matches = super().match(graph) for internal_match in internal_matches: for k, n in self.name_node_map.items(): internal_match.name_node_map[k] = internal_match.nodes_map[n] return internal_matches
# TODO: Add _log_api_usage_once() in all mid-level kernels. If they remain not jit-scriptable we can use decorators from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_simple_tensor # usort: skip from ._meta import ( clamp_bounding_box, convert_format_bounding_box, convert_dtype_image_tensor, convert_dtype, convert_dtype_video, convert_image_dtype, get_dimensions_image_tensor, get_dimensions_image_pil, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image_tensor, get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_spatial_size_bounding_box, get_spatial_size_image_tensor, get_spatial_size_image_pil, get_spatial_size_mask, get_spatial_size_video, get_spatial_size, ) # usort: skip from ._augment import erase, erase_image_pil, erase_image_tensor, erase_video from ._color import ( adjust_brightness, adjust_brightness_image_pil, adjust_brightness_image_tensor, adjust_brightness_video, adjust_contrast, adjust_contrast_image_pil, adjust_contrast_image_tensor, adjust_contrast_video, adjust_gamma, adjust_gamma_image_pil, adjust_gamma_image_tensor, adjust_gamma_video, adjust_hue, adjust_hue_image_pil, adjust_hue_image_tensor, adjust_hue_video, adjust_saturation, adjust_saturation_image_pil, adjust_saturation_image_tensor, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image_pil, adjust_sharpness_image_tensor, adjust_sharpness_video, autocontrast, autocontrast_image_pil, autocontrast_image_tensor, autocontrast_video, equalize, equalize_image_pil, equalize_image_tensor, equalize_video, invert, invert_image_pil, invert_image_tensor, invert_video, posterize, posterize_image_pil, posterize_image_tensor, posterize_video, solarize, solarize_image_pil, solarize_image_tensor, solarize_video, ) from ._geometry import ( affine, affine_bounding_box, affine_image_pil, affine_image_tensor, affine_mask, affine_video, center_crop, center_crop_bounding_box, center_crop_image_pil, center_crop_image_tensor, center_crop_mask, center_crop_video, crop, crop_bounding_box, crop_image_pil, crop_image_tensor, crop_mask, crop_video, elastic, elastic_bounding_box, elastic_image_pil, elastic_image_tensor, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image_pil, five_crop_image_tensor, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_box, horizontal_flip_image_pil, horizontal_flip_image_tensor, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_box, pad_image_pil, pad_image_tensor, pad_mask, pad_video, perspective, perspective_bounding_box, perspective_image_pil, perspective_image_tensor, perspective_mask, perspective_video, resize, resize_bounding_box, resize_image_pil, resize_image_tensor, resize_mask, resize_video, resized_crop, resized_crop_bounding_box, resized_crop_image_pil, resized_crop_image_tensor, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_box, rotate_image_pil, rotate_image_tensor, rotate_mask, rotate_video, ten_crop, ten_crop_image_pil, ten_crop_image_tensor, ten_crop_video, vertical_flip, vertical_flip_bounding_box, vertical_flip_image_pil, vertical_flip_image_tensor, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( gaussian_blur, gaussian_blur_image_pil, gaussian_blur_image_tensor, gaussian_blur_video, normalize, normalize_image_tensor, normalize_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image_pil, to_image_tensor, to_pil_image from ._deprecated import get_image_size, rgb_to_grayscale, to_grayscale, to_tensor # usort: skip
# TODO: Add _log_api_usage_once() in all mid-level kernels. If they remain not jit-scriptable we can use decorators from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_simple_tensor # usort: skip from ._meta import ( clamp_bounding_box, convert_format_bounding_box, convert_color_space_image_tensor, convert_color_space_image_pil, convert_color_space_video, convert_color_space, convert_dtype_image_tensor, convert_dtype, convert_dtype_video, convert_image_dtype, get_dimensions_image_tensor, get_dimensions_image_pil, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image_tensor, get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_spatial_size_bounding_box, get_spatial_size_image_tensor, get_spatial_size_image_pil, get_spatial_size_mask, get_spatial_size_video, get_spatial_size, ) # usort: skip from ._augment import erase, erase_image_pil, erase_image_tensor, erase_video from ._color import ( adjust_brightness, adjust_brightness_image_pil, adjust_brightness_image_tensor, adjust_brightness_video, adjust_contrast, adjust_contrast_image_pil, adjust_contrast_image_tensor, adjust_contrast_video, adjust_gamma, adjust_gamma_image_pil, adjust_gamma_image_tensor, adjust_gamma_video, adjust_hue, adjust_hue_image_pil, adjust_hue_image_tensor, adjust_hue_video, adjust_saturation, adjust_saturation_image_pil, adjust_saturation_image_tensor, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image_pil, adjust_sharpness_image_tensor, adjust_sharpness_video, autocontrast, autocontrast_image_pil, autocontrast_image_tensor, autocontrast_video, equalize, equalize_image_pil, equalize_image_tensor, equalize_video, invert, invert_image_pil, invert_image_tensor, invert_video, posterize, posterize_image_pil, posterize_image_tensor, posterize_video, solarize, solarize_image_pil, solarize_image_tensor, solarize_video, ) from ._geometry import ( affine, affine_bounding_box, affine_image_pil, affine_image_tensor, affine_mask, affine_video, center_crop, center_crop_bounding_box, center_crop_image_pil, center_crop_image_tensor, center_crop_mask, center_crop_video, crop, crop_bounding_box, crop_image_pil, crop_image_tensor, crop_mask, crop_video, elastic, elastic_bounding_box, elastic_image_pil, elastic_image_tensor, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image_pil, five_crop_image_tensor, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_box, horizontal_flip_image_pil, horizontal_flip_image_tensor, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_box, pad_image_pil, pad_image_tensor, pad_mask, pad_video, perspective, perspective_bounding_box, perspective_image_pil, perspective_image_tensor, perspective_mask, perspective_video, resize, resize_bounding_box, resize_image_pil, resize_image_tensor, resize_mask, resize_video, resized_crop, resized_crop_bounding_box, resized_crop_image_pil, resized_crop_image_tensor, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_box, rotate_image_pil, rotate_image_tensor, rotate_mask, rotate_video, ten_crop, ten_crop_image_pil, ten_crop_image_tensor, ten_crop_video, vertical_flip, vertical_flip_bounding_box, vertical_flip_image_pil, vertical_flip_image_tensor, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( gaussian_blur, gaussian_blur_image_pil, gaussian_blur_image_tensor, gaussian_blur_video, normalize, normalize_image_tensor, normalize_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image_pil, to_image_tensor, to_pil_image from ._deprecated import get_image_size, rgb_to_grayscale, to_grayscale, to_tensor # usort: skip
import numpy as np import pytest from absl.testing import parameterized from keras.src import layers from keras.src import models from keras.src import ops from keras.src import testing from keras.src.utils import summary_utils class SummaryUtilsTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters([("adam",), (None,)]) @pytest.mark.requires_trainable_backend def test_print_model_summary(self, optimizer): inputs = layers.Input((2,)) outputs = layers.Dense(3)(inputs) model = models.Model(inputs, outputs) model.compile(optimizer=optimizer, loss="mse", metrics=["mse"]) if optimizer: # Trigger the optimizer weights creation model.fit(x=np.zeros([4, 2]), y=np.zeros([4, 3])) summary_content = [] def print_to_variable(text, line_break=False): summary_content.append(text) try: summary_utils.print_summary(model, print_fn=print_to_variable) summary_content = "\n".join(summary_content) if optimizer: self.assertIn("Total params: 29", summary_content) self.assertIn("Trainable params: 9", summary_content) self.assertIn("Non-trainable params: 0", summary_content) self.assertIn("Optimizer params: 20", summary_content) else: self.assertIn("Total params: 9", summary_content) self.assertIn("Trainable params: 9", summary_content) self.assertIn("Non-trainable params: 0", summary_content) self.assertNotIn("Optimizer params", summary_content) except ImportError: pass def test_print_model_summary_custom_build(self): class MyModel(models.Model): def __init__(self): super().__init__() self.dense1 = layers.Dense(4, activation="relu") self.dense2 = layers.Dense(2, activation="softmax") self.unbuilt_dense = layers.Dense(1) def build(self, input_shape): self.dense1.build(input_shape) input_shape = self.dense1.compute_output_shape(input_shape) self.dense2.build(input_shape) def call(self, inputs): x = self.dense1(inputs) return self.dense2(x) model = MyModel() model.build((None, 2)) summary_content = [] def print_to_variable(text, line_break=False): summary_content.append(text) summary_utils.print_summary(model, print_fn=print_to_variable) summary_content = "\n".join(summary_content) self.assertIn("(None, 4)", summary_content) # dense1 self.assertIn("(None, 2)", summary_content) # dense2 self.assertIn("?", summary_content) # unbuilt_dense self.assertIn("Total params: 22", summary_content) self.assertIn("Trainable params: 22", summary_content) self.assertIn("Non-trainable params: 0", summary_content) def test_print_model_summary_op_as_layer(self): inputs = layers.Input((2,)) x = layers.Dense(4)(inputs) outputs = ops.mean(x) model = models.Model(inputs, outputs) summary_content = [] def print_to_variable(text, line_break=False): summary_content.append(text) summary_utils.print_summary( model, print_fn=print_to_variable, show_trainable=True ) summary_content = "\n".join(summary_content) self.assertIn("(None, 4)", summary_content) # dense self.assertIn("Y", summary_content) # dense self.assertIn("()", summary_content) # mean self.assertIn("-", summary_content) # mean self.assertIn("Total params: 12", summary_content) self.assertIn("Trainable params: 12", summary_content) self.assertIn("Non-trainable params: 0", summary_content)
import numpy as np import pytest from absl.testing import parameterized from keras.src import layers from keras.src import models from keras.src import testing from keras.src.utils import summary_utils class SummaryUtilsTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters([("adam",), (None,)]) @pytest.mark.requires_trainable_backend def test_print_model_summary(self, optimizer): inputs = layers.Input((2,)) outputs = layers.Dense(3)(inputs) model = models.Model(inputs, outputs) model.compile(optimizer=optimizer, loss="mse", metrics=["mse"]) if optimizer: # Trigger the optimizer weights creation model.fit(x=np.zeros([4, 2]), y=np.zeros([4, 3])) summary_content = [] def print_to_variable(text, line_break=False): summary_content.append(text) try: summary_utils.print_summary(model, print_fn=print_to_variable) summary_content = "\n".join(summary_content) if optimizer: self.assertIn("Total params: 29", summary_content) self.assertIn("Trainable params: 9", summary_content) self.assertIn("Non-trainable params: 0", summary_content) self.assertIn("Optimizer params: 20", summary_content) else: self.assertIn("Total params: 9", summary_content) self.assertIn("Trainable params: 9", summary_content) self.assertIn("Non-trainable params: 0", summary_content) self.assertNotIn("Optimizer params", summary_content) except ImportError: pass def test_print_model_summary_custom_build(self): class MyModel(models.Model): def __init__(self): super().__init__() self.dense1 = layers.Dense(4, activation="relu") self.dense2 = layers.Dense(2, activation="softmax") self.unbuilt_dense = layers.Dense(1) def build(self, input_shape): self.dense1.build(input_shape) input_shape = self.dense1.compute_output_shape(input_shape) self.dense2.build(input_shape) def call(self, inputs): x = self.dense1(inputs) return self.dense2(x) model = MyModel() model.build((None, 2)) summary_content = [] def print_to_variable(text, line_break=False): summary_content.append(text) summary_utils.print_summary(model, print_fn=print_to_variable) summary_content = "\n".join(summary_content) self.assertIn("(None, 4)", summary_content) # dense1 self.assertIn("(None, 2)", summary_content) # dense2 self.assertIn("?", summary_content) # unbuilt_dense self.assertIn("Total params: 22", summary_content) self.assertIn("Trainable params: 22", summary_content) self.assertIn("Non-trainable params: 0", summary_content)
import textwrap import pyarrow as pa import pytest from datasets import Features, Value from datasets.packaged_modules.json.json import Json @pytest.fixture def jsonl_file(tmp_path): filename = tmp_path / "file.jsonl" data = textwrap.dedent( """\ {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts(tmp_path): filename = tmp_path / "file_with_list_of_dicts.json" data = textwrap.dedent( """\ [ {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts_field(tmp_path): filename = tmp_path / "file_with_list_of_dicts_field.json" data = textwrap.dedent( """\ { "field1": 1, "field2": "aabb", "field3": [ {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] } """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ("jsonl_file", {}), ("json_file_with_list_of_dicts", {}), ("json_file_with_list_of_dicts_field", {"field": "field3"}), ], ) def test_json_generate_tables(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [1, 10], "col_2": [2, 20]} @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ( "jsonl_file", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts_field", { "field": "field3", "features": Features( {"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")} ), }, ), ], ) def test_json_generate_tables_with_missing_features(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [1, 10], "col_2": [2, 20], "missing_col": [None, None]}
import textwrap import pyarrow as pa import pytest from datasets.packaged_modules.json.json import Json @pytest.fixture def jsonl_file(tmp_path): filename = tmp_path / "file.jsonl" data = textwrap.dedent( """\ {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts(tmp_path): filename = tmp_path / "file_with_list_of_dicts.json" data = textwrap.dedent( """\ [ {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts_field(tmp_path): filename = tmp_path / "file_with_list_of_dicts_field.json" data = textwrap.dedent( """\ { "field1": 1, "field2": "aabb", "field3": [ {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] } """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ("jsonl_file", {}), ("json_file_with_list_of_dicts", {}), ("json_file_with_list_of_dicts_field", {"field": "field3"}), ], ) def test_json_generate_tables(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [1, 10], "col_2": [2, 20]}
import pytest from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.mrkl.output_parser import ( MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, MRKLOutputParser, ) mrkl_output_parser = MRKLOutputParser() def test_valid_action_and_action_input_parse() -> None: llm_output = """I can use the `foo` tool to achieve the goal. Action: foo Action Input: bar""" agent_action: AgentAction = mrkl_output_parser.parse(llm_output) # type: ignore[assignment] assert agent_action.tool == "foo" assert agent_action.tool_input == "bar" def test_valid_final_answer_parse() -> None: llm_output = """Final Answer: The best pizza to eat is margaritta """ agent_finish: AgentFinish = mrkl_output_parser.parse(llm_output) # type: ignore[assignment] assert ( agent_finish.return_values.get("output") == "The best pizza to eat is margaritta" ) def test_missing_action() -> None: llm_output = """I can use the `foo` tool to achieve the goal.""" with pytest.raises(OutputParserException) as exception_info: mrkl_output_parser.parse(llm_output) assert ( exception_info.value.observation == MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE ) def test_missing_action_input() -> None: llm_output = """I can use the `foo` tool to achieve the goal. Action: foo""" with pytest.raises(OutputParserException) as exception_info: mrkl_output_parser.parse(llm_output) assert ( exception_info.value.observation == MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE ) def test_final_answer_before_parsable_action() -> None: llm_output = """Final Answer: The best pizza to eat is margaritta Action: foo Action Input: bar """ agent_finish: AgentFinish = mrkl_output_parser.parse(llm_output) # type: ignore[assignment] assert ( agent_finish.return_values.get("output") == "The best pizza to eat is margaritta" ) def test_final_answer_after_parsable_action() -> None: llm_output = """ Observation: I can use the `foo` tool to achieve the goal. Action: foo Action Input: bar Final Answer: The best pizza to eat is margaritta """ with pytest.raises(OutputParserException) as exception_info: mrkl_output_parser.parse(llm_output) assert ( "Parsing LLM output produced both a final answer and a parse-able action" in exception_info.value.args[0] )
import pytest from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.mrkl.output_parser import ( MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, MRKLOutputParser, ) mrkl_output_parser = MRKLOutputParser() def test_valid_action_and_action_input_parse() -> None: llm_output = """I can use the `foo` tool to achieve the goal. Action: foo Action Input: bar""" agent_action: AgentAction = mrkl_output_parser.parse(llm_output) # type: ignore[assignment] assert agent_action.tool == "foo" assert agent_action.tool_input == "bar" def test_valid_final_answer_parse() -> None: llm_output = """Final Answer: The best pizza to eat is margaritta """ agent_finish: AgentFinish = mrkl_output_parser.parse(llm_output) # type: ignore[assignment] assert ( agent_finish.return_values.get("output") == "The best pizza to eat is margaritta" ) def test_missing_action() -> None: llm_output = """I can use the `foo` tool to achieve the goal.""" with pytest.raises(OutputParserException) as exception_info: mrkl_output_parser.parse(llm_output) assert ( exception_info.value.observation == MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE ) def test_missing_action_input() -> None: llm_output = """I can use the `foo` tool to achieve the goal. Action: foo""" with pytest.raises(OutputParserException) as exception_info: mrkl_output_parser.parse(llm_output) assert ( exception_info.value.observation == MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE ) def test_final_answer_before_parsable_action() -> None: llm_output = """Final Answer: The best pizza to eat is margaritta Action: foo Action Input: bar """ agent_finish: AgentFinish = mrkl_output_parser.parse(llm_output) # type: ignore[assignment] assert ( agent_finish.return_values.get("output") == "The best pizza to eat is margaritta" ) def test_final_answer_after_parsable_action() -> None: llm_output = """ Observation: I can use the `foo` tool to achieve the goal. Action: foo Action Input: bar Final Answer: The best pizza to eat is margaritta """ with pytest.raises(OutputParserException) as exception_info: mrkl_output_parser.parse(llm_output) assert ( "Parsing LLM output produced both a final answer and a parse-able action" in exception_info.value.args[0] )
import pathlib from argparse import ArgumentParser from lightning import ConformerRNNTModule from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DDPPlugin from transforms import get_data_module def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, ) model = ConformerRNNTModule(str(args.sp_model_path)) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
import pathlib from argparse import ArgumentParser from lightning import ConformerRNNTModule, get_data_module from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DDPPlugin def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, ) model = ConformerRNNTModule(str(args.sp_model_path)) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='DocArray team', author_email='[email protected]', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.24.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'grpcio>=1.46.0,<1.48.1', 'grpcio-reflection>=1.46.0,<1.48.1', 'grpcio-health-checking>=1.46.0,<1.48.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.10.3', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.9.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'milvus': [ 'pymilvus~=2.1.0', ], 'benchmark': [ 'pandas', 'matplotlib', 'seaborn', 'h5py', ], 'test': [ 'protobuf>=3.13.0,<=3.20.0', # pip dependency resolution does not respect this restriction from paddle 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.9.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'pymilvus==2.1.3', 'jina', 'pytest-mock', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='DocArray team', author_email='[email protected]', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.24.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'grpcio>=1.46.0,<1.48.1', 'grpcio-reflection>=1.46.0,<1.48.1', 'grpcio-health-checking>=1.46.0,<1.48.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.10.3', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.9.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'milvus': [ 'pymilvus>=2.1.0', ], 'benchmark': [ 'pandas', 'matplotlib', 'seaborn', 'h5py', ], 'test': [ 'protobuf>=3.13.0,<=3.20.0', # pip dependency resolution does not respect this restriction from paddle 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.9.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'pymilvus>=2.1.0', 'jina', 'pytest-mock', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
"""Google PaLM embeddings file.""" import deprecated from typing import Any, List, Optional from llama_index.core.base.embeddings.base import ( DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding, ) from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.callbacks.base import CallbackManager import google.generativeai as palm @deprecated.deprecated( reason=( "Should use `llama-index-embeddings-google-genai` instead, using Google's latest unified SDK. " "See: https://docs.llamaindex.ai/en/stable/examples/embeddings/google_genai/" ) ) class GooglePaLMEmbedding(BaseEmbedding): """ Class for Google PaLM embeddings. Args: model_name (str): Model for embedding. Defaults to "models/embedding-gecko-001". api_key (Optional[str]): API key to access the model. Defaults to None. """ _model: Any = PrivateAttr() def __init__( self, model_name: str = "models/embedding-gecko-001", api_key: Optional[str] = None, embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ): super().__init__( model_name=model_name, embed_batch_size=embed_batch_size, callback_manager=callback_manager, **kwargs, ) palm.configure(api_key=api_key) self._model = palm @classmethod def class_name(cls) -> str: return "PaLMEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._model.generate_embeddings(model=self.model_name, text=query)[ "embedding" ] async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return await self._model.aget_embedding(query) def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._model.generate_embeddings(model=self.model_name, text=text)[ "embedding" ] async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" return self._model._get_text_embedding(text) def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" return self._model.generate_embeddings(model=self.model_name, text=texts)[ "embedding" ] async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" return await self._model._get_embeddings(texts)
"""Google PaLM embeddings file.""" import deprecated from typing import Any, List, Optional from llama_index.core.base.embeddings.base import ( DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding, ) from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.callbacks.base import CallbackManager import google.generativeai as palm @deprecated.deprecated( reason=( "Should use `llama-index-embeddings-google-genai` instead, using Google's latest unified SDK. " "See: https://docs.llamaindex.ai/en/stable/examples/embeddings/google_genai/" ) ) class GooglePaLMEmbedding(BaseEmbedding): """Class for Google PaLM embeddings. Args: model_name (str): Model for embedding. Defaults to "models/embedding-gecko-001". api_key (Optional[str]): API key to access the model. Defaults to None. """ _model: Any = PrivateAttr() def __init__( self, model_name: str = "models/embedding-gecko-001", api_key: Optional[str] = None, embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ): super().__init__( model_name=model_name, embed_batch_size=embed_batch_size, callback_manager=callback_manager, **kwargs, ) palm.configure(api_key=api_key) self._model = palm @classmethod def class_name(cls) -> str: return "PaLMEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._model.generate_embeddings(model=self.model_name, text=query)[ "embedding" ] async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return await self._model.aget_embedding(query) def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._model.generate_embeddings(model=self.model_name, text=text)[ "embedding" ] async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" return self._model._get_text_embedding(text) def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" return self._model.generate_embeddings(model=self.model_name, text=texts)[ "embedding" ] async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" return await self._model._get_embeddings(texts)
import pytest from llama_index.core.workflow.context import Context from llama_index.core.workflow.decorators import step from llama_index.core.workflow.events import Event, StartEvent, StopEvent from llama_index.core.workflow.retry_policy import ConstantDelayRetryPolicy from llama_index.core.workflow.workflow import Workflow @pytest.mark.asyncio async def test_retry_e2e(): class CountEvent(Event): """Empty event to signal a step to increment a counter in the Context.""" class DummyWorkflow(Workflow): # Set a small delay to avoid impacting the CI speed too much @step(retry_policy=ConstantDelayRetryPolicy(delay=0.2)) async def flaky_step(self, ctx: Context, ev: StartEvent) -> StopEvent: count = await ctx.get("counter", default=0) ctx.send_event(CountEvent()) if count < 3: raise ValueError("Something bad happened!") return StopEvent(result="All good!") @step async def counter(self, ctx: Context, ev: CountEvent) -> None: count = await ctx.get("counter", default=0) await ctx.set("counter", count + 1) workflow = DummyWorkflow(disable_validation=True) assert await workflow.run() == "All good!" def test_ConstantDelayRetryPolicy_init(): p = ConstantDelayRetryPolicy() assert p.maximum_attempts == 3 assert p.delay == 5 def test_ConstantDelayRetryPolicy_next(): delay = 4.2 p = ConstantDelayRetryPolicy(maximum_attempts=5, delay=delay) assert p.next(elapsed_time=0.0, attempts=4, error=Exception()) == delay assert p.next(elapsed_time=0.0, attempts=5, error=Exception()) is None # This should never happen but ensure the code is resilient assert p.next(elapsed_time=0.0, attempts=999, error=Exception()) is None
import pytest from llama_index.core.workflow.context import Context from llama_index.core.workflow.decorators import step from llama_index.core.workflow.events import Event, StartEvent, StopEvent from llama_index.core.workflow.retry_policy import ConstantDelayRetryPolicy from llama_index.core.workflow.workflow import Workflow @pytest.mark.asyncio() async def test_retry_e2e(): class CountEvent(Event): """Empty event to signal a step to increment a counter in the Context.""" class DummyWorkflow(Workflow): # Set a small delay to avoid impacting the CI speed too much @step(retry_policy=ConstantDelayRetryPolicy(delay=0.2)) async def flaky_step(self, ctx: Context, ev: StartEvent) -> StopEvent: count = await ctx.get("counter", default=0) ctx.send_event(CountEvent()) if count < 3: raise ValueError("Something bad happened!") return StopEvent(result="All good!") @step async def counter(self, ctx: Context, ev: CountEvent) -> None: count = await ctx.get("counter", default=0) await ctx.set("counter", count + 1) workflow = DummyWorkflow(disable_validation=True) assert await workflow.run() == "All good!" def test_ConstantDelayRetryPolicy_init(): p = ConstantDelayRetryPolicy() assert p.maximum_attempts == 3 assert p.delay == 5 def test_ConstantDelayRetryPolicy_next(): delay = 4.2 p = ConstantDelayRetryPolicy(maximum_attempts=5, delay=delay) assert p.next(elapsed_time=0.0, attempts=4, error=Exception()) == delay assert p.next(elapsed_time=0.0, attempts=5, error=Exception()) is None # This should never happen but ensure the code is resilient assert p.next(elapsed_time=0.0, attempts=999, error=Exception()) is None
#!/usr/bin/env python3 import logging import pathlib from argparse import ArgumentParser, RawTextHelpFormatter import torch import torchaudio from torchaudio.prototype.pipelines import EMFORMER_RNNT_BASE_TEDLIUM3 logger = logging.getLogger(__name__) def compute_word_level_distance(seq1, seq2): return torchaudio.functional.edit_distance(seq1.lower().split(), seq2.lower().split()) def _eval_subset(tedlium_path, subset, feature_extractor, decoder, token_processor, use_cuda): total_edit_distance = 0 total_length = 0 if subset == "dev": dataset = torchaudio.datasets.TEDLIUM(tedlium_path, release="release3", subset="dev") elif subset == "test": dataset = torchaudio.datasets.TEDLIUM(tedlium_path, release="release3", subset="test") with torch.no_grad(): for idx in range(len(dataset)): sample = dataset[idx] waveform = sample[0].squeeze() if use_cuda: waveform = waveform.to(device="cuda") actual = sample[2].replace("\n", "") if actual == "ignore_time_segment_in_scoring": continue features, length = feature_extractor(waveform) hypos = decoder(features, length, 20) hypothesis = hypos[0] hypothesis = token_processor(hypothesis[0]) total_edit_distance += compute_word_level_distance(actual, hypothesis) total_length += len(actual.split()) if idx % 100 == 0: print(f"Processed elem {idx}; WER: {total_edit_distance / total_length}") print(f"Final WER for {subset} set: {total_edit_distance / total_length}") def run_eval_pipeline(args): decoder = EMFORMER_RNNT_BASE_TEDLIUM3.get_decoder() token_processor = EMFORMER_RNNT_BASE_TEDLIUM3.get_token_processor() feature_extractor = EMFORMER_RNNT_BASE_TEDLIUM3.get_feature_extractor() if args.use_cuda: feature_extractor = feature_extractor.to(device="cuda").eval() decoder = decoder.to(device="cuda") _eval_subset(args.tedlium_path, "dev", feature_extractor, decoder, token_processor, args.use_cuda) _eval_subset(args.tedlium_path, "test", feature_extractor, decoder, token_processor, args.use_cuda) def _parse_args(): parser = ArgumentParser( description=__doc__, formatter_class=RawTextHelpFormatter, ) parser.add_argument( "--tedlium-path", type=pathlib.Path, help="Path to TED-LIUM release 3 dataset.", ) parser.add_argument( "--use-cuda", action="store_true", default=False, help="Run using CUDA.", ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def _init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = _parse_args() _init_logger(args.debug) run_eval_pipeline(args) if __name__ == "__main__": cli_main()
#!/usr/bin/env python3 import logging import pathlib from argparse import ArgumentParser, RawTextHelpFormatter import torch import torchaudio from torchaudio.prototype.pipelines import EMFORMER_RNNT_BASE_TEDLIUM3 logger = logging.getLogger(__name__) def compute_word_level_distance(seq1, seq2): return torchaudio.functional.edit_distance(seq1.lower().split(), seq2.lower().split()) def _eval_subset(tedlium_path, subset, feature_extractor, decoder, token_processor, use_cuda): total_edit_distance = 0 total_length = 0 if subset == "dev": dataset = torchaudio.datasets.TEDLIUM(tedlium_path, release="release3", subset="dev") elif subset == "test": dataset = torchaudio.datasets.TEDLIUM(tedlium_path, release="release3", subset="test") with torch.no_grad(): for idx in range(len(dataset)): sample = dataset[idx] waveform = sample[0].squeeze() if use_cuda: waveform = waveform.to(device="cuda") actual = sample[2].replace("\n", "") if actual == "ignore_time_segment_in_scoring": continue features, length = feature_extractor(waveform) hypos = decoder(features, length, 20) hypothesis = hypos[0] hypothesis = token_processor(hypothesis.tokens) total_edit_distance += compute_word_level_distance(actual, hypothesis) total_length += len(actual.split()) if idx % 100 == 0: print(f"Processed elem {idx}; WER: {total_edit_distance / total_length}") print(f"Final WER for {subset} set: {total_edit_distance / total_length}") def run_eval_pipeline(args): decoder = EMFORMER_RNNT_BASE_TEDLIUM3.get_decoder() token_processor = EMFORMER_RNNT_BASE_TEDLIUM3.get_token_processor() feature_extractor = EMFORMER_RNNT_BASE_TEDLIUM3.get_feature_extractor() if args.use_cuda: feature_extractor = feature_extractor.to(device="cuda").eval() decoder = decoder.to(device="cuda") _eval_subset(args.tedlium_path, "dev", feature_extractor, decoder, token_processor, args.use_cuda) _eval_subset(args.tedlium_path, "test", feature_extractor, decoder, token_processor, args.use_cuda) def _parse_args(): parser = ArgumentParser( description=__doc__, formatter_class=RawTextHelpFormatter, ) parser.add_argument( "--tedlium-path", type=pathlib.Path, help="Path to TED-LIUM release 3 dataset.", ) parser.add_argument( "--use-cuda", action="store_true", default=False, help="Run using CUDA.", ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def _init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = _parse_args() _init_logger(args.debug) run_eval_pipeline(args) if __name__ == "__main__": cli_main()
"""AgentQL Web Reader.""" import httpx from typing import Optional, List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document import logging logging.getLogger("root").setLevel(logging.INFO) QUERY_DATA_ENDPOINT = "https://api.agentql.com/v1/query-data" API_TIMEOUT_SECONDS = 900 REQUEST_ORIGIN = "llamaindex" class AgentQLWebReader(BasePydanticReader): """ Scrape a URL with or without a agentql query and returns document in json format. Args: api_key (str): The AgentQL API key, get one at https://dev.agentql.com params (dict): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. """ api_key: str params: Optional[dict] def __init__( self, api_key: str, params: Optional[dict] = None, ) -> None: super().__init__(api_key=api_key, params=params) def load_data( self, url: str, query: Optional[str] = None, prompt: Optional[str] = None ) -> List[Document]: """ Load data from the input directory. Args: url (str): URL to scrape or crawl. query (Optional[str]): AgentQL query used to specify the scraped data. prompt (Optional[str]): Natural language description of the data you want to scrape. Either query or prompt must be provided. params (Optional[dict]): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. Returns: List[Document]: List of documents. """ payload = {"url": url, "query": query, "prompt": prompt, "params": self.params} headers = { "X-API-Key": f"{self.api_key}", "Content-Type": "application/json", "X-TF-Request-Origin": REQUEST_ORIGIN, } try: response = httpx.post( QUERY_DATA_ENDPOINT, headers=headers, json=payload, timeout=API_TIMEOUT_SECONDS, ) response.raise_for_status() except httpx.HTTPStatusError as e: response = e.response if response.status_code in [401, 403]: raise ValueError( "Please, provide a valid API Key. You can create one at https://dev.agentql.com." ) from e else: try: error_json = response.json() msg = ( error_json["error_info"] if "error_info" in error_json else error_json["detail"] ) except (ValueError, TypeError): msg = f"HTTP {e}." raise ValueError(msg) from e else: json = response.json() return [Document(text=str(json["data"]), metadata=json["metadata"])]
"""AgentQL Web Reader.""" import httpx from typing import Optional, List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document import logging logging.getLogger("root").setLevel(logging.INFO) QUERY_DATA_ENDPOINT = "https://api.agentql.com/v1/query-data" API_TIMEOUT_SECONDS = 900 REQUEST_ORIGIN = "llamaindex" class AgentQLWebReader(BasePydanticReader): """ Scrape a URL with or without a agentql query and returns document in json format. Args: api_key (str): The AgentQL API key, get one at https://dev.agentql.com params (dict): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. """ api_key: str params: Optional[dict] def __init__( self, api_key: str, params: Optional[dict] = None, ) -> None: super().__init__(api_key=api_key, params=params) def load_data( self, url: str, query: Optional[str] = None, prompt: Optional[str] = None ) -> List[Document]: """ Load data from the input directory. Args: url (str): URL to scrape or crawl. query (Optional[str]): AgentQL query used to specify the scraped data. prompt (Optional[str]): Natural language description of the data you want to scrape. Either query or prompt must be provided. params (Optional[dict]): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. Returns: List[Document]: List of documents. """ payload = {"url": url, "query": query, "prompt": prompt, "params": self.params} headers = { "X-API-Key": f"{self.api_key}", "Content-Type": "application/json", "X-TF-Request-Origin": REQUEST_ORIGIN, } try: response = httpx.post( QUERY_DATA_ENDPOINT, headers=headers, json=payload, timeout=API_TIMEOUT_SECONDS, ) response.raise_for_status() except httpx.HTTPStatusError as e: response = e.response if response.status_code in [401, 403]: raise ValueError( "Please, provide a valid API Key. You can create one at https://dev.agentql.com." ) from e else: try: error_json = response.json() msg = ( error_json["error_info"] if "error_info" in error_json else error_json["detail"] ) except (ValueError, TypeError): msg = f"HTTP {e}." raise ValueError(msg) from e else: json = response.json() return [Document(text=str(json["data"]), metadata=json["metadata"])]
import numpy as np import pytest from docarray import DocumentArray from docarray.document.generators import from_ndarray from jina import Client, Flow from jina.excepts import BadClientCallback def validate(x): raise NotImplementedError @pytest.mark.skip( reason='something wrong with parametrize in the following, setting either False or True work, but combining them does not. see discussion in https://jinaai.slack.com/archives/C018F60RBL5/p1613984424012700?thread_ts=1613954151.005100&cid=C018F60RBL5' ) @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_error(protocol): # In this particular test, when you write two tests in a row, you are testing the following case: # # You are testing exception in client's callback, not error in client's request generator # 1. The exception breaks the `async for req in stub.Call(req_iter)` on the client # 2. Server probably has something hold in the stream # 3. Restart the client, keep server untouched. # 4. Now, server stucks (because it considers the last connection wasn't end yet) def validate(x): raise NotImplementedError with Flow(protocol=protocol).add() as f: t = 0 try: f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=False, ) except BadClientCallback: # bad client callback will break the `async for req in stub.Call(req_iter)` t = 1 # now query the gateway again, make sure gateway's channel is still usable f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=True, ) assert t == 1 @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_error_call(protocol): with pytest.raises(ConnectionError): Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), ) @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_error_raise_exception(protocol): with pytest.raises(ConnectionError): Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), )
from typing import Optional import aiohttp import numpy as np import pytest from docarray import DocumentArray from docarray.document.generators import from_ndarray from jina import Client, Flow from jina.excepts import BadClientCallback def validate(x): raise NotImplementedError @pytest.mark.skip( reason='something wrong with parametrize in the following, setting either False or True work, but combining them does not. see discussion in https://jinaai.slack.com/archives/C018F60RBL5/p1613984424012700?thread_ts=1613954151.005100&cid=C018F60RBL5' ) @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_error(protocol): # In this particular test, when you write two tests in a row, you are testing the following case: # # You are testing exception in client's callback, not error in client's request generator # 1. The exception breaks the `async for req in stub.Call(req_iter)` on the client # 2. Server probably has something hold in the stream # 3. Restart the client, keep server untouched. # 4. Now, server stucks (because it considers the last connection wasn't end yet) def validate(x): raise NotImplementedError with Flow(protocol=protocol).add() as f: t = 0 try: f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=False, ) except BadClientCallback: # bad client callback will break the `async for req in stub.Call(req_iter)` t = 1 # now query the gateway again, make sure gateway's channel is still usable f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=True, ) assert t == 1 @pytest.mark.parametrize( 'protocol,exception', [ ('websocket', aiohttp.ClientError), ('grpc', ConnectionError), ('http', aiohttp.ClientError), ], ) def test_client_on_error_call(protocol, exception): with pytest.raises(exception): Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), ) @pytest.mark.parametrize( 'protocol,exception', [ ('websocket', aiohttp.client_exceptions.ClientConnectorError), ('grpc', ConnectionError), ('http', aiohttp.client_exceptions.ClientConnectorError), ], ) def test_client_on_error_raise_exception(protocol, exception): with pytest.raises(exception): Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), )
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
# dataset settings dataset_type = 'Objects365V1Dataset' data_root = 'data/Objects365/Obj365_v1/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/objects365_train.json', data_prefix=dict(img='train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/objects365_val.json', data_prefix=dict(img='val/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/objects365_val.json', metric='bbox', sort_categories=True, format_only=False, backend_args=backend_args) test_evaluator = val_evaluator
# dataset settings dataset_type = 'Objects365V1Dataset' data_root = 'data/Objects365/Obj365_v1/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/objects365_train.json', data_prefix=dict(img='train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/objects365_val.json', data_prefix=dict(img='val/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/objects365_val.json', metric='bbox', sort_categories=True, format_only=False) test_evaluator = val_evaluator
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Literal from sentence_transformers.evaluation import TripletEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTripletEvaluator(TripletEvaluator): def __init__( self, anchors: list[str], positives: list[str], negatives: list[str], main_similarity_function: str | SimilarityFunction | None = None, margin: float | dict[str, float] | None = None, name: str = "", batch_size: int = 16, show_progress_bar: bool = False, write_csv: bool = True, truncate_dim: int | None = None, similarity_fn_names: list[Literal["cosine", "dot", "euclidean", "manhattan"]] | None = None, main_distance_function: str | SimilarityFunction | None = "deprecated", ): return super().__init__( anchors=anchors, positives=positives, negatives=negatives, main_similarity_function=main_similarity_function, margin=margin, name=name, batch_size=batch_size, show_progress_bar=show_progress_bar, write_csv=write_csv, truncate_dim=truncate_dim, similarity_fn_names=similarity_fn_names, main_distance_function=main_distance_function, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Literal from sentence_transformers.evaluation import TripletEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTripletEvaluator(TripletEvaluator): def __init__( self, anchors: list[str], positives: list[str], negatives: list[str], main_similarity_function: str | SimilarityFunction | None = None, margin: float | dict[str, float] | None = None, name: str = "", batch_size: int = 16, show_progress_bar: bool = False, write_csv: bool = True, truncate_dim: int | None = None, similarity_fn_names: list[Literal["cosine", "dot", "euclidean", "manhattan"]] | None = None, main_distance_function: str | SimilarityFunction | None = "deprecated", ): return super().__init__( anchors=anchors, positives=positives, negatives=negatives, main_similarity_function=main_similarity_function, margin=margin, name=name, batch_size=batch_size, show_progress_bar=show_progress_bar, write_csv=write_csv, truncate_dim=truncate_dim, similarity_fn_names=similarity_fn_names, main_distance_function=main_distance_function, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class YOLACT(SingleStageDetector): """Implementation of `YOLACT <https://arxiv.org/abs/1904.02689>`_""" def __init__(self, backbone, neck, bbox_head, segm_head, mask_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) self.segm_head = MODELS.build(segm_head) self.mask_head = MODELS.build(mask_head) def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ feat = self.extract_feat(img) bbox_outs = self.bbox_head(feat) prototypes = self.mask_head.forward_dummy(feat[0]) return (bbox_outs, prototypes) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None): """ Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ # convert Bitmap mask or Polygon Mask to Tensor here gt_masks = [ gt_mask.to_tensor(dtype=torch.uint8, device=img.device) for gt_mask in gt_masks ] x = self.extract_feat(img) cls_score, bbox_pred, coeff_pred = self.bbox_head(x) bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels, img_metas) losses, sampling_results = self.bbox_head.loss( *bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) segm_head_outs = self.segm_head(x[0]) loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels) losses.update(loss_segm) mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas, sampling_results) loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes, img_metas, sampling_results) losses.update(loss_mask) # check NaN and Inf for loss_name in losses.keys(): assert torch.isfinite(torch.stack(losses[loss_name]))\ .all().item(), '{} becomes infinite or NaN!'\ .format(loss_name) return losses def simple_test(self, img, img_metas, rescale=False): """Test function without test-time augmentation.""" feat = self.extract_feat(img) det_bboxes, det_labels, det_coeffs = self.bbox_head.simple_test( feat, img_metas, rescale=rescale) bbox_results = [ bbox2result(det_bbox, det_label, self.bbox_head.num_classes) for det_bbox, det_label in zip(det_bboxes, det_labels) ] segm_results = self.mask_head.simple_test( feat, det_bboxes, det_labels, det_coeffs, img_metas, rescale=rescale) return list(zip(bbox_results, segm_results)) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations.""" raise NotImplementedError( 'YOLACT does not support test-time augmentation')
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result from ..builder import DETECTORS, build_head from .single_stage import SingleStageDetector @DETECTORS.register_module() class YOLACT(SingleStageDetector): """Implementation of `YOLACT <https://arxiv.org/abs/1904.02689>`_""" def __init__(self, backbone, neck, bbox_head, segm_head, mask_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) self.segm_head = build_head(segm_head) self.mask_head = build_head(mask_head) def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ feat = self.extract_feat(img) bbox_outs = self.bbox_head(feat) prototypes = self.mask_head.forward_dummy(feat[0]) return (bbox_outs, prototypes) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None): """ Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ # convert Bitmap mask or Polygon Mask to Tensor here gt_masks = [ gt_mask.to_tensor(dtype=torch.uint8, device=img.device) for gt_mask in gt_masks ] x = self.extract_feat(img) cls_score, bbox_pred, coeff_pred = self.bbox_head(x) bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels, img_metas) losses, sampling_results = self.bbox_head.loss( *bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) segm_head_outs = self.segm_head(x[0]) loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels) losses.update(loss_segm) mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas, sampling_results) loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes, img_metas, sampling_results) losses.update(loss_mask) # check NaN and Inf for loss_name in losses.keys(): assert torch.isfinite(torch.stack(losses[loss_name]))\ .all().item(), '{} becomes infinite or NaN!'\ .format(loss_name) return losses def simple_test(self, img, img_metas, rescale=False): """Test function without test-time augmentation.""" feat = self.extract_feat(img) det_bboxes, det_labels, det_coeffs = self.bbox_head.simple_test( feat, img_metas, rescale=rescale) bbox_results = [ bbox2result(det_bbox, det_label, self.bbox_head.num_classes) for det_bbox, det_label in zip(det_bboxes, det_labels) ] segm_results = self.mask_head.simple_test( feat, det_bboxes, det_labels, det_coeffs, img_metas, rescale=rescale) return list(zip(bbox_results, segm_results)) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations.""" raise NotImplementedError( 'YOLACT does not support test-time augmentation')
import time from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # 2. Come up with some queries queries = [ "How do I become a good programmer?", "How do I become a good data scientist?", ] # 3. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 4. Choose a target precision for the corpus embeddings corpus_precision = "binary" # Valid options are: "float32", "uint8", "int8", "ubinary", and "binary" # But usearch only supports "float32", "int8", and "binary" # 5. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # Initially, we don't have a usearch index yet, we can use semantic_search_usearch to create it corpus_index = None while True: # 7. Encode the queries using the full precision start_time = time.time() query_embeddings = model.encode(queries, normalize_embeddings=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 8. Perform semantic search using usearch results, search_time, corpus_index = semantic_search_usearch( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=4, exact=True, output_index=True, ) # This is a helper function to showcase how usearch can be used with quantized embeddings. # You must either provide the `corpus_embeddings` or the `corpus_index` usearch index, but not both. # In the first call we'll provide the `corpus_embeddings` and get the `corpus_index` back, which # we'll use in the next call. In practice, the index is stored in RAM or saved to disk, and not # recalculated for every query. # This function will 1) quantize the query embeddings to the same precision as the corpus embeddings, # 2) perform the semantic search using usearch, 3) rescore the results using the full precision embeddings, # and 4) return the results and the search time (and perhaps the usearch index). # `corpus_precision` must be the same as the precision used to quantize the corpus embeddings. # It is used to convert the query embeddings to the same precision as the corpus embeddings. # `top_k` determines how many results are returned for each query. # `rescore_multiplier` is a parameter for the rescoring step. Rather than searching for the top_k results, # we search for top_k * rescore_multiplier results and rescore the top_k results using the full precision embeddings. # So, higher values of rescore_multiplier will give better results, but will be slower. # `calibration_embeddings` is a set of embeddings used to calibrate the quantization of the query embeddings. # This is important only if you are using uint8 or int8 precision. In practice, this is used to calculate # the minimum and maximum values of each of the embedding dimensions, which are then used to determine the # quantization thresholds. # `rescore` determines whether to rescore the results using the full precision embeddings, if False & the # corpus is quantized, the results will be very poor. `exact` determines whether to use the exact search # or the approximate search method in usearch. # 9. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
import time from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch from datasets import load_dataset # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # 2. Come up with some queries queries = [ "How do I become a good programmer?", "How do I become a good data scientist?", ] # 3. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 4. Choose a target precision for the corpus embeddings corpus_precision = "binary" # Valid options are: "float32", "uint8", "int8", "ubinary", and "binary" # But usearch only supports "float32", "int8", and "binary" # 5. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # Initially, we don't have a usearch index yet, we can use semantic_search_usearch to create it corpus_index = None while True: # 7. Encode the queries using the full precision start_time = time.time() query_embeddings = model.encode(queries, normalize_embeddings=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 8. Perform semantic search using usearch results, search_time, corpus_index = semantic_search_usearch( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=4, exact=True, output_index=True, ) # This is a helper function to showcase how usearch can be used with quantized embeddings. # You must either provide the `corpus_embeddings` or the `corpus_index` usearch index, but not both. # In the first call we'll provide the `corpus_embeddings` and get the `corpus_index` back, which # we'll use in the next call. In practice, the index is stored in RAM or saved to disk, and not # recalculated for every query. # This function will 1) quantize the query embeddings to the same precision as the corpus embeddings, # 2) perform the semantic search using usearch, 3) rescore the results using the full precision embeddings, # and 4) return the results and the search time (and perhaps the usearch index). # `corpus_precision` must be the same as the precision used to quantize the corpus embeddings. # It is used to convert the query embeddings to the same precision as the corpus embeddings. # `top_k` determines how many results are returned for each query. # `rescore_multiplier` is a parameter for the rescoring step. Rather than searching for the top_k results, # we search for top_k * rescore_multiplier results and rescore the top_k results using the full precision embeddings. # So, higher values of rescore_multiplier will give better results, but will be slower. # `calibration_embeddings` is a set of embeddings used to calibrate the quantization of the query embeddings. # This is important only if you are using uint8 or int8 precision. In practice, this is used to calculate # the minimum and maximum values of each of the embedding dimensions, which are then used to determine the # quantization thresholds. # `rescore` determines whether to rescore the results using the full precision embeddings, if False & the # corpus is quantized, the results will be very poor. `exact` determines whether to use the exact search # or the approximate search method in usearch. # 9. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
from fastapi.testclient import TestClient from docs_src.configure_swagger_ui.tutorial001 import app client = TestClient(app) def test_swagger_ui(): response = client.get("/docs") assert response.status_code == 200, response.text assert '"syntaxHighlight": false' in response.text, ( "syntaxHighlight should be included and converted to JSON" ) assert '"dom_id": "#swagger-ui"' in response.text, ( "default configs should be preserved" ) assert "presets: [" in response.text, "default configs should be preserved" assert "SwaggerUIBundle.presets.apis," in response.text, ( "default configs should be preserved" ) assert "SwaggerUIBundle.SwaggerUIStandalonePreset" in response.text, ( "default configs should be preserved" ) assert '"layout": "BaseLayout",' in response.text, ( "default configs should be preserved" ) assert '"deepLinking": true,' in response.text, ( "default configs should be preserved" ) assert '"showExtensions": true,' in response.text, ( "default configs should be preserved" ) assert '"showCommonExtensions": true,' in response.text, ( "default configs should be preserved" ) def test_get_users(): response = client.get("/users/foo") assert response.status_code == 200, response.text assert response.json() == {"message": "Hello foo"}
from fastapi.testclient import TestClient from docs_src.configure_swagger_ui.tutorial001 import app client = TestClient(app) def test_swagger_ui(): response = client.get("/docs") assert response.status_code == 200, response.text assert ( '"syntaxHighlight": false' in response.text ), "syntaxHighlight should be included and converted to JSON" assert ( '"dom_id": "#swagger-ui"' in response.text ), "default configs should be preserved" assert "presets: [" in response.text, "default configs should be preserved" assert ( "SwaggerUIBundle.presets.apis," in response.text ), "default configs should be preserved" assert ( "SwaggerUIBundle.SwaggerUIStandalonePreset" in response.text ), "default configs should be preserved" assert ( '"layout": "BaseLayout",' in response.text ), "default configs should be preserved" assert ( '"deepLinking": true,' in response.text ), "default configs should be preserved" assert ( '"showExtensions": true,' in response.text ), "default configs should be preserved" assert ( '"showCommonExtensions": true,' in response.text ), "default configs should be preserved" def test_get_users(): response = client.get("/users/foo") assert response.status_code == 200, response.text assert response.json() == {"message": "Hello foo"}
import os import pytest from jina import Client, Document, Executor, Flow, requests from jina.helper import random_port class MyExec(Executor): def __init__(self, bar: str, bar2: int = 3, **kwargs): super().__init__(**kwargs) self.bar = bar self.bar2 = bar2 @requests(on=['/foo', '/foo2']) def foo(self, docs, **kwargs): for d in docs: d.text = '/foo' @requests def bar(self, docs, **kwargs): for d in docs: d.text = '/bar' def random(self, docs, **kwargs): for d in docs: d.text = '/random' y = """ jtype: MyExec with: bar: hello bar2: 1 metas: name: my-awesomeness description: this is an awesome executor requests: /foo_endpoint: foo /random_endpoint: random """ def test_load_save_yml(tmp_path): m = Executor.load_config(y) m.save_config(os.path.join(tmp_path, 'a.yml')) assert m.bar == 'hello' assert m.bar2 == 1 assert m.metas.name == 'my-awesomeness' for k in ('/default', '/foo_endpoint', '/random_endpoint'): assert k in m.requests @pytest.mark.parametrize( 'req_endpoint, doc_text', [ ('/foo', '/foo'), ('/foo2', '/bar'), ('/foo3', '/bar'), ('/foo_endpoint', '/foo'), ('/random_endpoint', '/random'), ('/bar', '/bar'), ], ) def test_load_yaml_route(req_endpoint, doc_text): port = random_port() f = Flow(port=port).add(uses=y) c = Client(port=f.port) with f: results = c.post(req_endpoint, Document(), return_responses=True) assert results[0].docs[0].text == doc_text
import os import pytest from jina import Executor, Client, requests, Flow, Document exposed_port = 12345 class MyExec(Executor): def __init__(self, bar: str, bar2: int = 3, **kwargs): super().__init__(**kwargs) self.bar = bar self.bar2 = bar2 @requests(on=['/foo', '/foo2']) def foo(self, docs, **kwargs): for d in docs: d.text = '/foo' @requests def bar(self, docs, **kwargs): for d in docs: d.text = '/bar' def random(self, docs, **kwargs): for d in docs: d.text = '/random' y = """ jtype: MyExec with: bar: hello bar2: 1 metas: name: my-awesomeness description: this is an awesome executor requests: /foo_endpoint: foo /random_endpoint: random """ def test_load_save_yml(tmp_path): m = Executor.load_config(y) m.save_config(os.path.join(tmp_path, 'a.yml')) assert m.bar == 'hello' assert m.bar2 == 1 assert m.metas.name == 'my-awesomeness' for k in ('/default', '/foo_endpoint', '/random_endpoint'): assert k in m.requests @pytest.mark.parametrize( 'req_endpoint, doc_text', [ ('/foo', '/foo'), ('/foo2', '/bar'), ('/foo3', '/bar'), ('/foo_endpoint', '/foo'), ('/random_endpoint', '/random'), ('/bar', '/bar'), ], ) def test_load_yaml_route(req_endpoint, doc_text): f = Flow(port=12345).add(uses=y) c = Client(port=exposed_port, return_responses=True) with f: results = c.post(req_endpoint, Document()) assert results[0].docs[0].text == doc_text
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmengine.utils import digit_version from torch import Tensor from mmdet.registry import MODELS MODELS.register_module('Linear', module=nn.Linear) @MODELS.register_module(name='NormedLinear') class NormedLinear(nn.Linear): """Normalized Linear Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.eps = eps self.init_weights() def init_weights(self) -> None: """Initialize the weights.""" nn.init.normal_(self.weight, mean=0, std=0.01) if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedLinear`.""" weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture return F.linear(x_, weight_, self.bias) @MODELS.register_module(name='NormedConv2d') class NormedConv2d(nn.Conv2d): """Normalized Conv2d Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. norm_over_kernel (bool, optional): Normalize over kernel. Defaults to False. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, norm_over_kernel: bool = False, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.norm_over_kernel = norm_over_kernel self.eps = eps def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedConv2d`.""" if not self.norm_over_kernel: weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) else: weight_ = self.weight / ( self.weight.view(self.weight.size(0), -1).norm( dim=1, keepdim=True).pow(self.power)[..., None, None] + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture if hasattr(self, 'conv2d_forward'): x_ = self.conv2d_forward(x_, weight_) else: if digit_version(torch.__version__) >= digit_version('1.8'): x_ = self._conv_forward(x_, weight_, self.bias) else: x_ = self._conv_forward(x_, weight_) return x_
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from mmdet.registry import MODELS MODELS.register_module('Linear', module=nn.Linear) @MODELS.register_module(name='NormedLinear') class NormedLinear(nn.Linear): """Normalized Linear Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.eps = eps self.init_weights() def init_weights(self) -> None: """Initialize the weights.""" nn.init.normal_(self.weight, mean=0, std=0.01) if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedLinear`.""" weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture return F.linear(x_, weight_, self.bias) @MODELS.register_module(name='NormedConv2d') class NormedConv2d(nn.Conv2d): """Normalized Conv2d Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. norm_over_kernel (bool, optional): Normalize over kernel. Defaults to False. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, norm_over_kernel: bool = False, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.norm_over_kernel = norm_over_kernel self.eps = eps def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedConv2d`.""" if not self.norm_over_kernel: weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) else: weight_ = self.weight / ( self.weight.view(self.weight.size(0), -1).norm( dim=1, keepdim=True).pow(self.power)[..., None, None] + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture if hasattr(self, 'conv2d_forward'): x_ = self.conv2d_forward(x_, weight_) else: if torch.__version__ >= '1.8': x_ = self._conv_forward(x_, weight_, self.bias) else: x_ = self._conv_forward(x_, weight_) return x_
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression, RANSACRegressor, TheilSenRegressor estimators = [ ("OLS", LinearRegression()), ("Theil-Sen", TheilSenRegressor(random_state=42)), ("RANSAC", RANSACRegressor(random_state=42)), ] colors = {"OLS": "turquoise", "Theil-Sen": "gold", "RANSAC": "lightgreen"} lw = 2 # %% # Outliers only in the y direction # -------------------------------- np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3.0 c = 2.0 noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.scatter(x, y, color="indigo", marker="x", s=40) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot( line_x, y_pred, color=colors[name], linewidth=lw, label="%s (fit time: %.2fs)" % (name, elapsed_time), ) plt.axis("tight") plt.legend(loc="upper right") _ = plt.title("Corrupt y") # %% # Outliers in the X direction # --------------------------- np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.scatter(x, y, color="indigo", marker="x", s=40) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot( line_x, y_pred, color=colors[name], linewidth=lw, label="%s (fit time: %.2fs)" % (name, elapsed_time), ) plt.axis("tight") plt.legend(loc="upper left") plt.title("Corrupt x") plt.show()
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression, RANSACRegressor, TheilSenRegressor estimators = [ ("OLS", LinearRegression()), ("Theil-Sen", TheilSenRegressor(random_state=42)), ("RANSAC", RANSACRegressor(random_state=42)), ] colors = {"OLS": "turquoise", "Theil-Sen": "gold", "RANSAC": "lightgreen"} lw = 2 # %% # Outliers only in the y direction # -------------------------------- np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3.0 c = 2.0 noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.scatter(x, y, color="indigo", marker="x", s=40) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot( line_x, y_pred, color=colors[name], linewidth=lw, label="%s (fit time: %.2fs)" % (name, elapsed_time), ) plt.axis("tight") plt.legend(loc="upper left") _ = plt.title("Corrupt y") # %% # Outliers in the X direction # --------------------------- np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.scatter(x, y, color="indigo", marker="x", s=40) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot( line_x, y_pred, color=colors[name], linewidth=lw, label="%s (fit time: %.2fs)" % (name, elapsed_time), ) plt.axis("tight") plt.legend(loc="upper left") plt.title("Corrupt x") plt.show()
# Copyright (c) OpenMMLab. All rights reserved. import logging from abc import ABCMeta, abstractmethod from mmengine.logging import print_log class BaseStorageBackend(metaclass=ABCMeta): """Abstract class of storage backends. All backends need to implement two apis: :meth:`get()` and :meth:`get_text()`. - :meth:`get()` reads the file as a byte stream. - :meth:`get_text()` reads the file as texts. """ # a flag to indicate whether the backend can create a symlink for a file # This attribute will be deprecated in future. _allow_symlink = False @property def allow_symlink(self): print_log( 'allow_symlink will be deprecated in future', logger='current', level=logging.WARNING) return self._allow_symlink @property def name(self): return self.__class__.__name__ @abstractmethod def get(self, filepath): pass @abstractmethod def get_text(self, filepath): pass
# Copyright (c) OpenMMLab. All rights reserved. import warnings from abc import ABCMeta, abstractmethod class BaseStorageBackend(metaclass=ABCMeta): """Abstract class of storage backends. All backends need to implement two apis: :meth:`get()` and :meth:`get_text()`. - :meth:`get()` reads the file as a byte stream. - :meth:`get_text()` reads the file as texts. """ # a flag to indicate whether the backend can create a symlink for a file # This attribute will be deprecated in future. _allow_symlink = False @property def allow_symlink(self): warnings.warn('allow_symlink will be deprecated in future', DeprecationWarning) return self._allow_symlink @property def name(self): return self.__class__.__name__ @abstractmethod def get(self, filepath): pass @abstractmethod def get_text(self, filepath): pass
import re from langchain_core.output_parsers import BaseOutputParser class BooleanOutputParser(BaseOutputParser[bool]): """Parse the output of an LLM call to a boolean.""" true_val: str = "YES" """The string value that should be parsed as True.""" false_val: str = "NO" """The string value that should be parsed as False.""" def parse(self, text: str) -> bool: """Parse the output of an LLM call to a boolean. Args: text: output of a language model Returns: boolean """ regexp = rf"\b({self.true_val}|{self.false_val})\b" truthy = { val.upper() for val in re.findall(regexp, text, flags=re.IGNORECASE | re.MULTILINE) } if self.true_val.upper() in truthy: if self.false_val.upper() in truthy: msg = ( f"Ambiguous response. Both {self.true_val} and {self.false_val} " f"in received: {text}." ) raise ValueError(msg) return True elif self.false_val.upper() in truthy: if self.true_val.upper() in truthy: msg = ( f"Ambiguous response. Both {self.true_val} and {self.false_val} " f"in received: {text}." ) raise ValueError(msg) return False msg = ( f"BooleanOutputParser expected output value to include either " f"{self.true_val} or {self.false_val}. Received {text}." ) raise ValueError(msg) @property def _type(self) -> str: """Snake-case string identifier for an output parser type.""" return "boolean_output_parser"
import re from langchain_core.output_parsers import BaseOutputParser class BooleanOutputParser(BaseOutputParser[bool]): """Parse the output of an LLM call to a boolean.""" true_val: str = "YES" """The string value that should be parsed as True.""" false_val: str = "NO" """The string value that should be parsed as False.""" def parse(self, text: str) -> bool: """Parse the output of an LLM call to a boolean. Args: text: output of a language model Returns: boolean """ regexp = rf"\b({self.true_val}|{self.false_val})\b" truthy = { val.upper() for val in re.findall(regexp, text, flags=re.IGNORECASE | re.MULTILINE) } if self.true_val.upper() in truthy: if self.false_val.upper() in truthy: raise ValueError( f"Ambiguous response. Both {self.true_val} and {self.false_val} " f"in received: {text}." ) return True elif self.false_val.upper() in truthy: if self.true_val.upper() in truthy: raise ValueError( f"Ambiguous response. Both {self.true_val} and {self.false_val} " f"in received: {text}." ) return False raise ValueError( f"BooleanOutputParser expected output value to include either " f"{self.true_val} or {self.false_val}. Received {text}." ) @property def _type(self) -> str: """Snake-case string identifier for an output parser type.""" return "boolean_output_parser"
"""Init file.""" from llama_index.readers.remote.base import ( RemoteReader, ) __all__ = ["RemoteReader"]
"""Init file.""" from llama_index.readers.remote.base import ( RemoteReader, ) __all__ = ["RemoteReader"]
from langchain.output_parsers.regex import RegexParser def load_output_parser(config: dict) -> dict: """Load an output parser. Args: config: config dict Returns: config dict with output parser loaded """ if "output_parsers" in config: if config["output_parsers"] is not None: _config = config["output_parsers"] output_parser_type = _config["_type"] if output_parser_type == "regex_parser": output_parser = RegexParser(**_config) else: msg = f"Unsupported output parser {output_parser_type}" raise ValueError(msg) config["output_parsers"] = output_parser return config
from langchain.output_parsers.regex import RegexParser def load_output_parser(config: dict) -> dict: """Load an output parser. Args: config: config dict Returns: config dict with output parser loaded """ if "output_parsers" in config: if config["output_parsers"] is not None: _config = config["output_parsers"] output_parser_type = _config["_type"] if output_parser_type == "regex_parser": output_parser = RegexParser(**_config) else: raise ValueError(f"Unsupported output parser {output_parser_type}") config["output_parsers"] = output_parser return config
from __future__ import annotations import copy from typing import TYPE_CHECKING, List import pytest from langchain_core.documents import Document from pytest_mock import MockerFixture from langchain_community.retrievers import ZepRetriever if TYPE_CHECKING: from zep_python import MemorySearchResult, ZepClient @pytest.fixture def search_results() -> List[MemorySearchResult]: from zep_python import MemorySearchResult, Message search_result = [ { "message": { "uuid": "66830914-19f5-490b-8677-1ba06bcd556b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "I'm looking to plan a trip to Iceland. Can you help me?", "token_count": 17, }, "summary": None, "dist": 0.8734284910450115, }, { "message": { "uuid": "015e618c-ba9d-45b6-95c3-77a8e611570b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "How much does a trip to Iceland typically cost?", "token_count": 12, }, "summary": None, "dist": 0.8554048017463456, }, ] return [ MemorySearchResult( message=Message.parse_obj(result["message"]), summary=result["summary"], dist=result["dist"], ) for result in search_result ] @pytest.fixture @pytest.mark.requires("zep_python") def zep_retriever( mocker: MockerFixture, search_results: List[MemorySearchResult] ) -> ZepRetriever: mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True) mock_zep_client.memory = mocker.patch( "zep_python.memory.client.MemoryClient", autospec=True ) mock_zep_client.memory.search_memory.return_value = copy.deepcopy(search_results) mock_zep_client.memory.asearch_memory.return_value = copy.deepcopy(search_results) zep = ZepRetriever(session_id="123", url="http://localhost:8000") # type: ignore[call-arg] zep.zep_client = mock_zep_client return zep @pytest.mark.requires("zep_python") def test_zep_retriever_invoke( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = zep_retriever.invoke("My trip to Iceland") _test_documents(documents, search_results) @pytest.mark.requires("zep_python") async def test_zep_retriever_ainvoke( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = await zep_retriever.ainvoke("My trip to Iceland") _test_documents(documents, search_results) def _test_documents( documents: List[Document], search_results: List[MemorySearchResult] ) -> None: assert len(documents) == 2 for i, document in enumerate(documents): assert document.page_content == search_results[i].message.get("content") assert document.metadata.get("uuid") == search_results[i].message.get("uuid") assert document.metadata.get("role") == search_results[i].message.get("role") assert document.metadata.get("score") == search_results[i].dist
from __future__ import annotations import copy from typing import TYPE_CHECKING, List import pytest from langchain_core.documents import Document from pytest_mock import MockerFixture from langchain_community.retrievers import ZepRetriever if TYPE_CHECKING: from zep_python import MemorySearchResult, ZepClient @pytest.fixture def search_results() -> List[MemorySearchResult]: from zep_python import MemorySearchResult, Message search_result = [ { "message": { "uuid": "66830914-19f5-490b-8677-1ba06bcd556b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "I'm looking to plan a trip to Iceland. Can you help me?", "token_count": 17, }, "summary": None, "dist": 0.8734284910450115, }, { "message": { "uuid": "015e618c-ba9d-45b6-95c3-77a8e611570b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "How much does a trip to Iceland typically cost?", "token_count": 12, }, "summary": None, "dist": 0.8554048017463456, }, ] return [ MemorySearchResult( message=Message.parse_obj(result["message"]), summary=result["summary"], dist=result["dist"], ) for result in search_result ] @pytest.fixture @pytest.mark.requires("zep_python") def zep_retriever( mocker: MockerFixture, search_results: List[MemorySearchResult] ) -> ZepRetriever: mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True) mock_zep_client.memory = mocker.patch( "zep_python.memory.client.MemoryClient", autospec=True ) mock_zep_client.memory.search_memory.return_value = copy.deepcopy( # type: ignore search_results ) mock_zep_client.memory.asearch_memory.return_value = copy.deepcopy( # type: ignore search_results ) zep = ZepRetriever(session_id="123", url="http://localhost:8000") # type: ignore[call-arg] zep.zep_client = mock_zep_client return zep @pytest.mark.requires("zep_python") def test_zep_retriever_invoke( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = zep_retriever.invoke("My trip to Iceland") _test_documents(documents, search_results) @pytest.mark.requires("zep_python") async def test_zep_retriever_ainvoke( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = await zep_retriever.ainvoke("My trip to Iceland") _test_documents(documents, search_results) def _test_documents( documents: List[Document], search_results: List[MemorySearchResult] ) -> None: assert len(documents) == 2 for i, document in enumerate(documents): assert document.page_content == search_results[i].message.get( # type: ignore "content" ) assert document.metadata.get("uuid") == search_results[i].message.get( # type: ignore "uuid" ) assert document.metadata.get("role") == search_results[i].message.get( # type: ignore "role" ) assert document.metadata.get("score") == search_results[i].dist
import sys from jina.parsers import set_gateway_parser from jina.parsers.helper import _set_gateway_uses from jina.serve.runtimes.gateway import GatewayRuntime def run(*args, **kwargs): runtime_cls = GatewayRuntime print(f' args {args}') runtime_args = set_gateway_parser().parse_args(args) print(f' protocol {runtime_args.protocol}') _set_gateway_uses(runtime_args) print(f' runtime_cls {runtime_cls}') with runtime_cls(runtime_args) as runtime: print(f' Lets run forever') runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
import sys from jina.serve.runtimes.gateway.grpc import GRPCGatewayRuntime from jina.serve.runtimes.gateway.http import HTTPGatewayRuntime from jina.serve.runtimes.gateway.websocket import WebSocketGatewayRuntime from jina.enums import GatewayProtocolType from jina.parsers import set_gateway_parser def run(*args, **kwargs): runtime_cls = None print(f' args {args}') runtime_args = set_gateway_parser().parse_args(args) print(f' protocol {runtime_args.protocol}') if runtime_args.protocol == GatewayProtocolType.GRPC: runtime_cls = GRPCGatewayRuntime elif runtime_args.protocol == GatewayProtocolType.HTTP: runtime_cls = HTTPGatewayRuntime elif runtime_args.protocol == GatewayProtocolType.WEBSOCKET: runtime_cls = WebSocketGatewayRuntime print(f' runtime_cls {runtime_cls}') with runtime_cls(runtime_args) as runtime: print(f' Lets run forever') runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
# Copyright (c) OpenMMLab. All rights reserved. from .data_preprocessor import BatchSyncRandomResize, DetDataPreprocessor __all__ = ['DetDataPreprocessor', 'BatchSyncRandomResize']
# Copyright (c) OpenMMLab. All rights reserved. from .data_preprocessor import DetDataPreprocessor __all__ = ['DetDataPreprocessor']
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
from dataclasses import dataclass, field from typing import Union from transformers import TrainingArguments as TransformersTrainingArguments from transformers.utils import ExplicitEnum class BatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for batch samplers. The batch sampler is responsible for determining how samples are grouped into batches during training. Valid options are: - ``BatchSamplers.BATCH_SAMPLER``: The default PyTorch batch sampler. - ``BatchSamplers.NO_DUPLICATES``: Ensures no duplicate samples in a batch. - ``BatchSamplers.GROUP_BY_LABEL``: Ensures each batch has 2+ samples from the same label. """ BATCH_SAMPLER = "batch_sampler" NO_DUPLICATES = "no_duplicates" GROUP_BY_LABEL = "group_by_label" class MultiDatasetBatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for multi-dataset batch samplers. The multi-dataset batch sampler is responsible for determining in what order batches are sampled from multiple datasets during training. Valid options are: - ``MultiDatasetBatchSamplers.ROUND_ROBIN``: Round-robin sampling from each dataset until one is exhausted. With this strategy, it's likely that not all samples from each dataset are used, but each dataset is sampled from equally. - ``MultiDatasetBatchSamplers.PROPORTIONAL``: Sample from each dataset in proportion to its size [default]. With this strategy, all samples from each dataset are used and larger datasets are sampled from more frequently. """ ROUND_ROBIN = "round_robin" # Round-robin sampling from each dataset PROPORTIONAL = "proportional" # Sample from each dataset in proportion to its size [default] @dataclass class SentenceTransformerTrainingArguments(TransformersTrainingArguments): """ SentenceTransformerTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. """ batch_sampler: Union[BatchSamplers, str] = field( default=BatchSamplers.BATCH_SAMPLER, metadata={"help": "The batch sampler to use."} ) multi_dataset_batch_sampler: Union[MultiDatasetBatchSamplers, str] = field( default=MultiDatasetBatchSamplers.PROPORTIONAL, metadata={"help": "The multi-dataset batch sampler to use."} ) def __post_init__(self): super().__post_init__() self.batch_sampler = BatchSamplers(self.batch_sampler) self.multi_dataset_batch_sampler = MultiDatasetBatchSamplers(self.multi_dataset_batch_sampler) # The `compute_loss` method in `SentenceTransformerTrainer` is overridden to only compute the prediction loss, # so we set `prediction_loss_only` to `True` here to avoid self.prediction_loss_only = True
from dataclasses import dataclass, field from typing import Union from transformers import TrainingArguments as TransformersTrainingArguments from transformers.utils import ExplicitEnum class BatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for batch samplers. The batch sampler is responsible for determining how samples are grouped into batches during training. Valid options are: - ``BatchSamplers.BATCH_SAMPLER``: The default PyTorch batch sampler. - ``BatchSamplers.NO_DUPLICATES``: Ensures no duplicate samples in a batch. - ``BatchSamplers.GROUP_BY_LABEL``: Ensures each batch has 2+ samples from the same label. """ BATCH_SAMPLER = "batch_sampler" NO_DUPLICATES = "no_duplicates" GROUP_BY_LABEL = "group_by_label" class MultiDatasetBatchSamplers(ExplicitEnum): """ Stores the acceptable string identifiers for multi-dataset batch samplers. The multi-dataset batch sampler is responsible for determining in what order batches are sampled from multiple datasets during training. Valid options are: - ``MultiDatasetBatchSamplers.ROUND_ROBIN``: Round-robin sampling from each dataset until one is exhausted. With this strategy, it's likely that not all samples from each dataset are used, but each dataset is sampled from equally. - ``MultiDatasetBatchSamplers.PROPORTIONAL``: Sample from each dataset in proportion to its size [default]. With this strategy, all samples from each dataset are used and larger datasets are sampled from more frequently. """ ROUND_ROBIN = "round_robin" # Round-robin sampling from each dataset PROPORTIONAL = "proportional" # Sample from each dataset in proportion to its size [default] @dataclass class SentenceTransformerTrainingArguments(TransformersTrainingArguments): """ SentenceTransformerTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. """ batch_sampler: Union[BatchSamplers, str] = field( default=BatchSamplers.BATCH_SAMPLER, metadata={"help": "The batch sampler to use."} ) multi_dataset_batch_sampler: Union[MultiDatasetBatchSamplers, str] = field( default=MultiDatasetBatchSamplers.PROPORTIONAL, metadata={"help": "The multi-dataset batch sampler to use."} ) def __post_init__(self): super().__post_init__() self.batch_sampler = BatchSamplers(self.batch_sampler) self.multi_dataset_batch_sampler = MultiDatasetBatchSamplers(self.multi_dataset_batch_sampler) # The `compute_loss` method in `SentenceTransformerTrainer` is overridden to only compute the prediction loss, # so we set `prediction_loss_only` to `True` here to avoid self.prediction_loss_only = True
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.23.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.22.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. from .base_panoptic_fusion_head import \ BasePanopticFusionHead # noqa: F401,F403 from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403 from .maskformer_fusion_head import MaskFormerFusionHead # noqa: F401,F403
# Copyright (c) OpenMMLab. All rights reserved. from .base_panoptic_fusion_head import \ BasePanopticFusionHead # noqa: F401,F403 from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway.http.app import get_fastapi_app from jina.serve.streamer import GatewayStreamer JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') graph_description = json.loads(args.graph_description) graph_conditions = json.loads(args.graph_conditions) deployments_addresses = json.loads(args.deployments_addresses) deployments_disable_reduce = json.loads(args.deployments_disable_reduce) streamer = GatewayStreamer( graph_representation=graph_description, executor_addresses=deployments_addresses, graph_conditions=graph_conditions, deployments_disable_reduce=deployments_disable_reduce, timeout_send=args.timeout_send, retries=args.retries, compression=args.compression, runtime_name=args.name, prefetch=args.prefetch, logger=logger, ) gateway_app = get_fastapi_app( streamer=streamer, title=args.title, description=args.description, no_debug_endpoints=args.no_debug_endpoints, no_crud_endpoints=args.no_crud_endpoints, expose_endpoints=args.expose_endpoints, expose_graphql_endpoint=args.expose_graphql_endpoint, cors=args.cors, logger=logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w') as f: json.dump(gateway_schema, f)
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway.http.app import get_fastapi_app JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') gateway_app = get_fastapi_app( title=args.title, description=args.description, no_debug_endpoints=args.no_debug_endpoints, no_crud_endpoints=args.no_crud_endpoints, expose_endpoints=args.expose_endpoints, expose_graphql_endpoint=args.expose_graphql_endpoint, cors=args.cors, logger=args.logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w') as f: json.dump(gateway_schema, f)
_base_ = './yolof_r50-c5_8xb8-1x_coco.py' # We implemented the iter-based config according to the source code. # COCO dataset has 117266 images after filtering. We use 8 gpu and # 8 batch size training, so 22500 is equivalent to # 22500/(117266/(8x8))=12.3 epoch, 15000 is equivalent to 8.2 epoch, # 20000 is equivalent to 10.9 epoch. Due to lr(0.12) is large, # the iter-based and epoch-based setting have about 0.2 difference on # the mAP evaluation value. train_cfg = dict( _delete_=True, type='IterBasedTrainLoop', max_iters=22500, val_interval=4500) # learning rate policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=22500, by_epoch=False, milestones=[15000, 20000], gamma=0.1) ] train_dataloader = dict(sampler=dict(type='InfiniteSampler')) default_hooks = dict(checkpoint=dict(by_epoch=False, interval=2500)) log_processor = dict(by_epoch=False)
_base_ = './yolof_r50_c5_8x8_1x_coco.py' # We implemented the iter-based config according to the source code. # COCO dataset has 117266 images after filtering. We use 8 gpu and # 8 batch size training, so 22500 is equivalent to # 22500/(117266/(8x8))=12.3 epoch, 15000 is equivalent to 8.2 epoch, # 20000 is equivalent to 10.9 epoch. Due to lr(0.12) is large, # the iter-based and epoch-based setting have about 0.2 difference on # the mAP evaluation value. train_cfg = dict( _delete_=True, type='IterBasedTrainLoop', max_iters=22500, val_interval=4500) # learning rate policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=22500, by_epoch=False, milestones=[15000, 20000], gamma=0.1) ] train_dataloader = dict(sampler=dict(type='InfiniteSampler')) default_hooks = dict(checkpoint=dict(by_epoch=False, interval=2500)) log_processor = dict(by_epoch=False)
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class TextDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Text( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class TextDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Text( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset
from unittest.mock import patch import pytest from llama_index.core.readers.base import BaseReader from llama_index.readers.microsoft_outlook_emails import OutlookEmailReader def test_class(): names_of_base_classes = [b.__name__ for b in OutlookEmailReader.__mro__] assert BaseReader.__name__ in names_of_base_classes def test_serialize(): reader = OutlookEmailReader( client_id="test_client_id", client_secret="test_client_secret", tenant_id="test_tenant_id", user_email="[email protected]", num_mails=5, ) # Get the JSON schema schema = reader.model_json_schema() assert schema is not None assert "properties" in schema assert "client_id" in schema["properties"] assert "client_secret" in schema["properties"] assert "tenant_id" in schema["properties"] assert "user_email" in schema["properties"] # Test serialization/deserialization data = reader.model_dump() data.pop("is_remote") data.pop("class_name") new_reader = OutlookEmailReader.model_validate(data) assert new_reader.client_id == reader.client_id assert new_reader.client_secret == reader.client_secret assert new_reader.tenant_id == reader.tenant_id assert new_reader.user_email == reader.user_email @pytest.fixture() def outlook_reader(): return OutlookEmailReader( client_id="dummy_client_id", client_secret="dummy_client_secret", tenant_id="dummy_tenant_id", user_email="[email protected]", num_mails=2, ) def mock_fetch_emails(*args, **kwargs): return [ { "subject": "Test Email 1", "body": {"content": "This is the body of email 1."}, }, { "subject": "Test Email 2", "body": {"content": "This is the body of email 2."}, }, ] def test_load_data(outlook_reader): # Only mock the response from _fetch_emails, not the entire method with patch.object( OutlookEmailReader, "_fetch_emails", return_value=mock_fetch_emails() ): email_texts = outlook_reader.load_data() # Verify the results assert len(email_texts) == 2 assert email_texts[0] == "Subject: Test Email 1\n\nThis is the body of email 1." assert email_texts[1] == "Subject: Test Email 2\n\nThis is the body of email 2."
import pytest from unittest.mock import patch from llama_index.core.readers.base import BaseReader from llama_index.readers.outlook_emails import OutlookEmailReader def test_class(): names_of_base_classes = [b.__name__ for b in OutlookEmailReader.__mro__] assert BaseReader.__name__ in names_of_base_classes def test_serialize(): reader = OutlookEmailReader( client_id="test_client_id", client_secret="test_client_secret", tenant_id="test_tenant_id", user_email="[email protected]", num_mails=5, ) # Get the JSON schema schema = reader.model_json_schema() assert schema is not None assert "properties" in schema assert "client_id" in schema["properties"] assert "client_secret" in schema["properties"] assert "tenant_id" in schema["properties"] assert "user_email" in schema["properties"] # Test serialization/deserialization data = reader.model_dump() data.pop("is_remote") data.pop("class_name") new_reader = OutlookEmailReader.model_validate(data) assert new_reader.client_id == reader.client_id assert new_reader.client_secret == reader.client_secret assert new_reader.tenant_id == reader.tenant_id assert new_reader.user_email == reader.user_email @pytest.fixture() def outlook_reader(): return OutlookEmailReader( client_id="dummy_client_id", client_secret="dummy_client_secret", tenant_id="dummy_tenant_id", user_email="[email protected]", num_mails=2, ) def mock_fetch_emails(*args, **kwargs): return [ { "subject": "Test Email 1", "body": {"content": "This is the body of email 1."}, }, { "subject": "Test Email 2", "body": {"content": "This is the body of email 2."}, }, ] def test_load_data(outlook_reader): # Only mock the response from _fetch_emails, not the entire method with patch.object( OutlookEmailReader, "_fetch_emails", return_value=mock_fetch_emails() ): email_texts = outlook_reader.load_data() # Verify the results assert len(email_texts) == 2 assert email_texts[0] == "Subject: Test Email 1\n\nThis is the body of email 1." assert email_texts[1] == "Subject: Test Email 2\n\nThis is the body of email 2."
"""Base classes for chain routing.""" from __future__ import annotations from abc import ABC from collections.abc import Mapping from typing import Any, NamedTuple, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from pydantic import ConfigDict from langchain.chains.base import Chain class Route(NamedTuple): destination: Optional[str] next_inputs: dict[str, Any] class RouterChain(Chain, ABC): """Chain that outputs the name of a destination chain and the inputs to it.""" @property def output_keys(self) -> list[str]: return ["destination", "next_inputs"] def route(self, inputs: dict[str, Any], callbacks: Callbacks = None) -> Route: """ Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) async def aroute( self, inputs: dict[str, Any], callbacks: Callbacks = None ) -> Route: result = await self.acall(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) class MultiRouteChain(Chain): """Use a single chain to route an input to one of multiple candidate chains.""" router_chain: RouterChain """Chain that routes inputs to destination chains.""" destination_chains: Mapping[str, Chain] """Chains that return final answer to inputs.""" default_chain: Chain """Default chain to use when none of the destination chains are suitable.""" silent_errors: bool = False """If True, use default_chain when an invalid destination name is provided. Defaults to False.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the router chain prompt expects. :meta private: """ return self.router_chain.input_keys @property def output_keys(self) -> list[str]: """Will always return text key. :meta private: """ return [] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = self.router_chain.route(inputs, callbacks=callbacks) _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return self.default_chain(route.next_inputs, callbacks=callbacks) elif route.destination in self.destination_chains: return self.destination_chains[route.destination]( route.next_inputs, callbacks=callbacks ) elif self.silent_errors: return self.default_chain(route.next_inputs, callbacks=callbacks) else: msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = await self.router_chain.aroute(inputs, callbacks=callbacks) await _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) elif route.destination in self.destination_chains: return await self.destination_chains[route.destination].acall( route.next_inputs, callbacks=callbacks ) elif self.silent_errors: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) else: msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg)
"""Base classes for chain routing.""" from __future__ import annotations from abc import ABC from collections.abc import Mapping from typing import Any, NamedTuple, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from pydantic import ConfigDict from langchain.chains.base import Chain class Route(NamedTuple): destination: Optional[str] next_inputs: dict[str, Any] class RouterChain(Chain, ABC): """Chain that outputs the name of a destination chain and the inputs to it.""" @property def output_keys(self) -> list[str]: return ["destination", "next_inputs"] def route(self, inputs: dict[str, Any], callbacks: Callbacks = None) -> Route: """ Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) async def aroute( self, inputs: dict[str, Any], callbacks: Callbacks = None ) -> Route: result = await self.acall(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) class MultiRouteChain(Chain): """Use a single chain to route an input to one of multiple candidate chains.""" router_chain: RouterChain """Chain that routes inputs to destination chains.""" destination_chains: Mapping[str, Chain] """Chains that return final answer to inputs.""" default_chain: Chain """Default chain to use when none of the destination chains are suitable.""" silent_errors: bool = False """If True, use default_chain when an invalid destination name is provided. Defaults to False.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the router chain prompt expects. :meta private: """ return self.router_chain.input_keys @property def output_keys(self) -> list[str]: """Will always return text key. :meta private: """ return [] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = self.router_chain.route(inputs, callbacks=callbacks) _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return self.default_chain(route.next_inputs, callbacks=callbacks) elif route.destination in self.destination_chains: return self.destination_chains[route.destination]( route.next_inputs, callbacks=callbacks ) elif self.silent_errors: return self.default_chain(route.next_inputs, callbacks=callbacks) else: raise ValueError( f"Received invalid destination chain name '{route.destination}'" ) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = await self.router_chain.aroute(inputs, callbacks=callbacks) await _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) elif route.destination in self.destination_chains: return await self.destination_chains[route.destination].acall( route.next_inputs, callbacks=callbacks ) elif self.silent_errors: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) else: raise ValueError( f"Received invalid destination chain name '{route.destination}'" )
import unittest import pytest import torch from torchvision.models.maxvit import SwapAxes, WindowDepartition, WindowPartition class MaxvitTester(unittest.TestCase): def test_maxvit_window_partition(self): input_shape = (1, 3, 224, 224) partition_size = 7 n_partitions = input_shape[3] // partition_size x = torch.randn(input_shape) partition = WindowPartition() departition = WindowDepartition() x_hat = partition(x, partition_size) x_hat = departition(x_hat, partition_size, n_partitions, n_partitions) torch.testing.assert_close(x, x_hat) def test_maxvit_grid_partition(self): input_shape = (1, 3, 224, 224) partition_size = 7 n_partitions = input_shape[3] // partition_size x = torch.randn(input_shape) pre_swap = SwapAxes(-2, -3) post_swap = SwapAxes(-2, -3) partition = WindowPartition() departition = WindowDepartition() x_hat = partition(x, n_partitions) x_hat = pre_swap(x_hat) x_hat = post_swap(x_hat) x_hat = departition(x_hat, n_partitions, partition_size, partition_size) torch.testing.assert_close(x, x_hat) if __name__ == "__main__": pytest.main([__file__])
import unittest import pytest import torch from torchvision.models.maxvit import SwapAxes, WindowDepartition, WindowPartition class MaxvitTester(unittest.TestCase): def test_maxvit_window_partition(self): input_shape = (1, 3, 224, 224) partition_size = 7 n_partitions = input_shape[3] // partition_size x = torch.randn(input_shape) partition = WindowPartition() departition = WindowDepartition() x_hat = partition(x, partition_size) x_hat = departition(x_hat, partition_size, n_partitions, n_partitions) assert torch.allclose(x, x_hat) def test_maxvit_grid_partition(self): input_shape = (1, 3, 224, 224) partition_size = 7 n_partitions = input_shape[3] // partition_size x = torch.randn(input_shape) pre_swap = SwapAxes(-2, -3) post_swap = SwapAxes(-2, -3) partition = WindowPartition() departition = WindowDepartition() x_hat = partition(x, n_partitions) x_hat = pre_swap(x_hat) x_hat = post_swap(x_hat) x_hat = departition(x_hat, n_partitions, partition_size, partition_size) assert torch.allclose(x, x_hat) if __name__ == "__main__": pytest.main([__file__])
"""Copyright 2024, XGBoost contributors""" import pytest from distributed import Client, Scheduler, Worker from distributed.utils_test import gen_cluster import xgboost as xgb from xgboost import testing as tm from xgboost.testing.dask import check_external_memory @pytest.mark.parametrize("is_qdm", [True, False]) @gen_cluster(client=True) async def test_external_memory( client: Client, s: Scheduler, a: Worker, b: Worker, is_qdm: bool ) -> None: workers = tm.get_client_workers(client) args = await client.sync( xgb.dask._get_rabit_args, len(workers), None, client, ) n_workers = len(workers) futs = client.map( check_external_memory, range(n_workers), n_workers=n_workers, device="cpu", comm_args=args, is_qdm=is_qdm, ) await client.gather(futs)
from typing import List, cast import numpy as np from distributed import Client, Scheduler, Worker, get_worker from distributed.utils_test import gen_cluster import xgboost as xgb from xgboost import testing as tm from xgboost.compat import concat def run_external_memory(worker_id: int, n_workers: int, comm_args: dict) -> None: n_samples_per_batch = 32 n_features = 4 n_batches = 16 use_cupy = False n_threads = get_worker().state.nthreads with xgb.collective.CommunicatorContext(dmlc_communicator="rabit", **comm_args): it = tm.IteratorForTest( *tm.make_batches( n_samples_per_batch, n_features, n_batches, use_cupy, random_state=worker_id, ), cache="cache", ) Xy = xgb.DMatrix(it, nthread=n_threads) results: xgb.callback.TrainingCallback.EvalsLog = {} booster = xgb.train( {"tree_method": "hist", "nthread": n_threads}, Xy, evals=[(Xy, "Train")], num_boost_round=32, evals_result=results, ) assert tm.non_increasing(cast(List[float], results["Train"]["rmse"])) lx, ly, lw = [], [], [] for i in range(n_workers): x, y, w = tm.make_batches( n_samples_per_batch, n_features, n_batches, use_cupy, random_state=i, ) lx.extend(x) ly.extend(y) lw.extend(w) X = concat(lx) yconcat = concat(ly) wconcat = concat(lw) Xy = xgb.DMatrix(X, yconcat, weight=wconcat, nthread=n_threads) results_local: xgb.callback.TrainingCallback.EvalsLog = {} booster = xgb.train( {"tree_method": "hist", "nthread": n_threads}, Xy, evals=[(Xy, "Train")], num_boost_round=32, evals_result=results_local, ) np.testing.assert_allclose( results["Train"]["rmse"], results_local["Train"]["rmse"], rtol=1e-4 ) @gen_cluster(client=True) async def test_external_memory( client: Client, s: Scheduler, a: Worker, b: Worker ) -> None: workers = tm.get_client_workers(client) args = await client.sync( xgb.dask._get_rabit_args, len(workers), None, client, ) n_workers = len(workers) futs = client.map( run_external_memory, range(n_workers), n_workers=n_workers, comm_args=args ) await client.gather(futs)
import torch from parameterized import parameterized from torchaudio.prototype.models import ( conformer_wav2vec2_base, conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large, ) from torchaudio_unittest.common_utils import disabledInCI, nested_params, skipIfNoCuda, torch_script, TorchaudioTestCase class TestConformerWav2Vec2(TorchaudioTestCase): def _smoke_test(self, model, device, dtype): model = model.to(device=device, dtype=dtype) model = model.eval() batch_size, num_frames, in_features = 3, 1024, 64 features = torch.randn(batch_size, num_frames, in_features, device=device, dtype=dtype) lengths = torch.randint( low=0, high=num_frames, size=[ batch_size, ], device=device, ) model(features, lengths) @parameterized.expand([(torch.float32,), (torch.float64,)]) def test_cpu_smoke_test(self, dtype): model = conformer_wav2vec2_base() self._smoke_test(model, torch.device("cpu"), dtype) @parameterized.expand([(torch.float32,), (torch.float64,)]) @skipIfNoCuda # Disabled in CI: https://github.com/pytorch/audio/issues/3376 @disabledInCI def test_cuda_smoke_test(self, dtype): model = conformer_wav2vec2_base() self._smoke_test(model, torch.device("cuda"), dtype) @nested_params( [conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large], [torch.float32, torch.float64], ) def test_pretrain_cpu_smoke_test(self, model, dtype): model = model() self._smoke_test(model, torch.device("cpu"), dtype) @nested_params( [conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large], [torch.float32, torch.float64], ) @skipIfNoCuda # Disabled in CI: https://github.com/pytorch/audio/issues/3376 @disabledInCI def test_pretrain_cuda_smoke_test(self, model, dtype): model = model() self._smoke_test(model, torch.device("cuda"), dtype) def test_extract_feature(self): model = conformer_wav2vec2_base() model.eval() batch_size, num_frames, in_features = 3, 1024, 64 num_layers = len(model.encoder.conformer) features = torch.randn(batch_size, num_frames, in_features) lengths = torch.randint( low=0, high=num_frames, size=[ batch_size, ], ) all_features, lengths_ = model.extract_features(features, lengths, num_layers=None) assert len(all_features) == num_layers for feats in all_features: assert feats.ndim == 3 assert feats.shape[0] == batch_size assert lengths_.shape == torch.Size([batch_size]) for l in range(1, num_layers + 1): feats, lengths_ = model.extract_features(features, lengths, num_layers=l) assert len(feats) == l for i in range(l): self.assertEqual(all_features[i], feats[i]) assert lengths_.shape == torch.Size([batch_size]) def test_zero_length(self): model = conformer_wav2vec2_base() model.eval() batch_size, num_frames, in_features = 3, 1024, 64 features = torch.randn(batch_size, num_frames, in_features) input_lengths = torch.zeros(batch_size) _, output_lengths = model(features, input_lengths) self.assertEqual(torch.zeros_like(output_lengths), output_lengths) _, output_lengths = model.extract_features(features, input_lengths) self.assertEqual(torch.zeros_like(output_lengths), output_lengths) def test_torchscript_consistency(self): model = conformer_wav2vec2_base() model.eval() batch_size, num_frames, in_features = 3, 1024, 64 features = torch.randn(batch_size, num_frames, in_features) lengths = torch.randint( low=0, high=num_frames, size=[ batch_size, ], ) ref_out, ref_len = model(features, lengths) scripted = torch_script(model) hyp_out, hyp_len = scripted(features, lengths) self.assertEqual(hyp_out, ref_out) self.assertEqual(hyp_len, ref_len)
import torch from parameterized import parameterized from torchaudio.prototype.models import ( conformer_wav2vec2_base, conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large, ) from torchaudio_unittest.common_utils import nested_params, skipIfNoCuda, torch_script, TorchaudioTestCase class TestConformerWav2Vec2(TorchaudioTestCase): def _smoke_test(self, model, device, dtype): model = model.to(device=device, dtype=dtype) model = model.eval() batch_size, num_frames, in_features = 3, 1024, 64 features = torch.randn(batch_size, num_frames, in_features, device=device, dtype=dtype) lengths = torch.randint( low=0, high=num_frames, size=[ batch_size, ], device=device, ) model(features, lengths) @parameterized.expand([(torch.float32,), (torch.float64,)]) def test_cpu_smoke_test(self, dtype): model = conformer_wav2vec2_base() self._smoke_test(model, torch.device("cpu"), dtype) @parameterized.expand([(torch.float32,), (torch.float64,)]) @skipIfNoCuda def test_cuda_smoke_test(self, dtype): model = conformer_wav2vec2_base() self._smoke_test(model, torch.device("cuda"), dtype) @nested_params( [conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large], [torch.float32, torch.float64], ) def test_pretrain_cpu_smoke_test(self, model, dtype): model = model() self._smoke_test(model, torch.device("cpu"), dtype) @nested_params( [conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large], [torch.float32, torch.float64], ) @skipIfNoCuda def test_pretrain_cuda_smoke_test(self, model, dtype): model = model() self._smoke_test(model, torch.device("cuda"), dtype) def test_extract_feature(self): model = conformer_wav2vec2_base() model.eval() batch_size, num_frames, in_features = 3, 1024, 64 num_layers = len(model.encoder.conformer) features = torch.randn(batch_size, num_frames, in_features) lengths = torch.randint( low=0, high=num_frames, size=[ batch_size, ], ) all_features, lengths_ = model.extract_features(features, lengths, num_layers=None) assert len(all_features) == num_layers for feats in all_features: assert feats.ndim == 3 assert feats.shape[0] == batch_size assert lengths_.shape == torch.Size([batch_size]) for l in range(1, num_layers + 1): feats, lengths_ = model.extract_features(features, lengths, num_layers=l) assert len(feats) == l for i in range(l): self.assertEqual(all_features[i], feats[i]) assert lengths_.shape == torch.Size([batch_size]) def test_zero_length(self): model = conformer_wav2vec2_base() model.eval() batch_size, num_frames, in_features = 3, 1024, 64 features = torch.randn(batch_size, num_frames, in_features) input_lengths = torch.zeros(batch_size) _, output_lengths = model(features, input_lengths) self.assertEqual(torch.zeros_like(output_lengths), output_lengths) _, output_lengths = model.extract_features(features, input_lengths) self.assertEqual(torch.zeros_like(output_lengths), output_lengths) def test_torchscript_consistency(self): model = conformer_wav2vec2_base() model.eval() batch_size, num_frames, in_features = 3, 1024, 64 features = torch.randn(batch_size, num_frames, in_features) lengths = torch.randint( low=0, high=num_frames, size=[ batch_size, ], ) ref_out, ref_len = model(features, lengths) scripted = torch_script(model) hyp_out, hyp_len = scripted(features, lengths) self.assertEqual(hyp_out, ref_out) self.assertEqual(hyp_len, ref_len)
_base_ = '../cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] vis_backends = [dict(type='LocalVisBackend'), dict(type='WandBVisBackend')] visualizer = dict(vis_backends=vis_backends) # MMEngine support the following two ways, users can choose # according to convenience # default_hooks = dict(checkpoint=dict(interval=4)) _base_.default_hooks.checkpoint.interval = 4 # train_cfg = dict(val_interval=2) _base_.train_cfg.val_interval = 2
# TODO: Awaiting refactoring _base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # Set evaluation interval evaluation = dict(interval=2) # Set checkpoint interval checkpoint_config = dict(interval=4) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='MMDetWandbHook', init_kwargs={ 'project': 'mmdetection', 'group': 'maskrcnn-r50-fpn-1x-coco' }, interval=50, log_checkpoint=True, log_checkpoint_metadata=True, num_eval_images=100) ])
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray import BaseDoc from docarray.typing import AnyUrl def test_set_any_url(): class MyDocument(BaseDoc): any_url: AnyUrl d = MyDocument(any_url="https://jina.ai") assert isinstance(d.any_url, AnyUrl) assert d.any_url == "https://jina.ai"
from docarray import BaseDoc from docarray.typing import AnyUrl def test_set_any_url(): class MyDocument(BaseDoc): any_url: AnyUrl d = MyDocument(any_url="https://jina.ai") assert isinstance(d.any_url, AnyUrl) assert d.any_url == "https://jina.ai"
from __future__ import annotations import pytest from sentence_transformers import SparseEncoder @pytest.fixture() def splade_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture(scope="session") def splade_bert_tiny_model_reused() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture() def csr_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sentence-transformers-testing/stsb-bert-tiny-safetensors")
from __future__ import annotations import pytest from sentence_transformers import SparseEncoder @pytest.fixture() def splade_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture() def csr_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sentence-transformers-testing/stsb-bert-tiny-safetensors")
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.quantizers import deserialize from keras.src.quantizers import get from keras.src.quantizers import serialize from keras.src.quantizers.quantizers import AbsMaxQuantizer from keras.src.quantizers.quantizers import Quantizer from keras.src.quantizers.quantizers import abs_max_quantize from keras.src.quantizers.quantizers import compute_float8_amax_history from keras.src.quantizers.quantizers import compute_float8_scale from keras.src.quantizers.quantizers import fake_quant_with_min_max_vars from keras.src.quantizers.quantizers import quantize_and_dequantize
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.quantizers import deserialize from keras.src.quantizers import get from keras.src.quantizers import serialize from keras.src.quantizers.quantizers import AbsMaxQuantizer from keras.src.quantizers.quantizers import Quantizer from keras.src.quantizers.quantizers import abs_max_quantize from keras.src.quantizers.quantizers import compute_float8_amax_history from keras.src.quantizers.quantizers import compute_float8_scale from keras.src.quantizers.quantizers import ( fake_quant_with_min_max_vars as fake_quant_with_min_max_vars_per_channel, ) from keras.src.quantizers.quantizers import quantize_and_dequantize
"""Top-level imports for LlamaIndex.""" __version__ = "0.12.39" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Top-level imports for LlamaIndex.""" __version__ = "0.12.38" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Module to change the configuration of libsox, which is used by I/O functions like :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`. """ from typing import Dict, List import torchaudio sox_ext = torchaudio._extension.lazy_import_sox_ext() def set_seed(seed: int): """Set libsox's PRNG Args: seed (int): seed value. valid range is int32. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_seed(seed) def set_verbosity(verbosity: int): """Set libsox's verbosity Args: verbosity (int): Set verbosity level of libsox. * ``1`` failure messages * ``2`` warnings * ``3`` details of processing * ``4``-``6`` increasing levels of debug messages See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_verbosity(verbosity) def set_buffer_size(buffer_size: int): """Set buffer size for sox effect chain Args: buffer_size (int): Set the size in bytes of the buffers used for processing audio. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_buffer_size(buffer_size) def set_use_threads(use_threads: bool): """Set multithread option for sox effect chain Args: use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing. To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support. See Also: http://sox.sourceforge.net/sox.html """ sox_ext.set_use_threads(use_threads) def list_effects() -> Dict[str, str]: """List the available sox effect names Returns: Dict[str, str]: Mapping from ``effect name`` to ``usage`` """ return dict(sox_ext.list_effects()) def list_read_formats() -> List[str]: """List the supported audio formats for read Returns: List[str]: List of supported audio formats """ return sox_ext.list_read_formats() def list_write_formats() -> List[str]: """List the supported audio formats for write Returns: List[str]: List of supported audio formats """ return sox_ext.list_write_formats() def get_buffer_size() -> int: """Get buffer size for sox effect chain Returns: int: size in bytes of buffers used for processing audio. """ return sox_ext.get_buffer_size()
"""Module to change the configuration of libsox, which is used by I/O functions like :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`. """ from typing import Dict, List import torchaudio @torchaudio._extension.fail_if_no_sox def set_seed(seed: int): """Set libsox's PRNG Args: seed (int): seed value. valid range is int32. See Also: http://sox.sourceforge.net/sox.html """ torchaudio.lib._torchaudio_sox.set_seed(seed) @torchaudio._extension.fail_if_no_sox def set_verbosity(verbosity: int): """Set libsox's verbosity Args: verbosity (int): Set verbosity level of libsox. * ``1`` failure messages * ``2`` warnings * ``3`` details of processing * ``4``-``6`` increasing levels of debug messages See Also: http://sox.sourceforge.net/sox.html """ torchaudio.lib._torchaudio_sox.set_verbosity(verbosity) @torchaudio._extension.fail_if_no_sox def set_buffer_size(buffer_size: int): """Set buffer size for sox effect chain Args: buffer_size (int): Set the size in bytes of the buffers used for processing audio. See Also: http://sox.sourceforge.net/sox.html """ torchaudio.lib._torchaudio_sox.set_buffer_size(buffer_size) @torchaudio._extension.fail_if_no_sox def set_use_threads(use_threads: bool): """Set multithread option for sox effect chain Args: use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing. To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support. See Also: http://sox.sourceforge.net/sox.html """ torchaudio.lib._torchaudio_sox.set_use_threads(use_threads) @torchaudio._extension.fail_if_no_sox def list_effects() -> Dict[str, str]: """List the available sox effect names Returns: Dict[str, str]: Mapping from ``effect name`` to ``usage`` """ return dict(torchaudio.lib._torchaudio_sox.list_effects()) @torchaudio._extension.fail_if_no_sox def list_read_formats() -> List[str]: """List the supported audio formats for read Returns: List[str]: List of supported audio formats """ return torchaudio.lib._torchaudio_sox.list_read_formats() @torchaudio._extension.fail_if_no_sox def list_write_formats() -> List[str]: """List the supported audio formats for write Returns: List[str]: List of supported audio formats """ return torchaudio.lib._torchaudio_sox.list_write_formats() @torchaudio._extension.fail_if_no_sox def get_buffer_size() -> int: """Get buffer size for sox effect chain Returns: int: size in bytes of buffers used for processing audio. """ return torchaudio.lib._torchaudio_sox.get_buffer_size()
from langchain_core.load.dump import default, dumpd, dumps __all__ = ["default", "dumpd", "dumps"]
from langchain_core.load.dump import default, dumpd, dumps __all__ = ["default", "dumps", "dumpd"]
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn import backend.data.block import backend.data.db import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() yield await backend.data.db.disconnect() def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(500, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return await backend.server.routers.v1.execute_graph( graph_id, node_input, user_id ) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn import backend.data.block import backend.data.db import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() yield await backend.data.db.disconnect() def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(500, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return await backend.server.routers.v1.execute_graph( graph_id, node_input, user_id ) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import unittest import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torchaudio_unittest.common_utils import skipIfNoRIR, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum", torch.float64)) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,)) class TorchScriptConsistencyCPUOnlyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @skipIfNoRIR @parameterized.expand([(1,), (4,)]) def test_simulate_rir_ism_single_band(self, channel): room_dim = torch.rand(3, dtype=self.dtype, device=self.device) + 5 mic_array = torch.rand(channel, 3, dtype=self.dtype, device=self.device) + 1 source = torch.rand(3, dtype=self.dtype, device=self.device) + 4 max_order = 3 absorption = 0.5 center_frequency = torch.tensor([125, 250, 500, 1000, 2000, 4000, 8000], dtype=self.dtype, device=self.device) self._assert_consistency( F.simulate_rir_ism, (room_dim, source, mic_array, max_order, absorption, None, 81, center_frequency, 343.0, 16000.0), ) @skipIfNoRIR @parameterized.expand([(1,), (4,)]) def test_simulate_rir_ism_multi_band(self, channel): room_dim = torch.rand(3, dtype=self.dtype, device=self.device) + 5 mic_array = torch.rand(channel, 3, dtype=self.dtype, device=self.device) + 1 source = torch.rand(3, dtype=self.dtype, device=self.device) + 4 max_order = 3 absorption = torch.rand(7, 6, dtype=self.dtype, device=self.device) center_frequency = torch.tensor([125, 250, 500, 1000, 2000, 4000, 8000], dtype=self.dtype, device=self.device) self._assert_consistency( F.simulate_rir_ism, (room_dim, source, mic_array, max_order, absorption, None, 81, center_frequency, 343.0, 16000.0), )
import unittest import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torchaudio_unittest.common_utils import skipIfNoRIR, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,)) class TorchScriptConsistencyCPUOnlyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @skipIfNoRIR @parameterized.expand([(1,), (4,)]) def test_simulate_rir_ism_single_band(self, channel): room_dim = torch.rand(3, dtype=self.dtype, device=self.device) + 5 mic_array = torch.rand(channel, 3, dtype=self.dtype, device=self.device) + 1 source = torch.rand(3, dtype=self.dtype, device=self.device) + 4 max_order = 3 absorption = 0.5 center_frequency = torch.tensor([125, 250, 500, 1000, 2000, 4000, 8000], dtype=self.dtype, device=self.device) self._assert_consistency( F.simulate_rir_ism, (room_dim, source, mic_array, max_order, absorption, None, 81, center_frequency, 343.0, 16000.0), ) @skipIfNoRIR @parameterized.expand([(1,), (4,)]) def test_simulate_rir_ism_multi_band(self, channel): room_dim = torch.rand(3, dtype=self.dtype, device=self.device) + 5 mic_array = torch.rand(channel, 3, dtype=self.dtype, device=self.device) + 1 source = torch.rand(3, dtype=self.dtype, device=self.device) + 4 max_order = 3 absorption = torch.rand(7, 6, dtype=self.dtype, device=self.device) center_frequency = torch.tensor([125, 250, 500, 1000, 2000, 4000, 8000], dtype=self.dtype, device=self.device) self._assert_consistency( F.simulate_rir_ism, (room_dim, source, mic_array, max_order, absorption, None, 81, center_frequency, 343.0, 16000.0), )
# This file should NEVER be packaged! This is a hack to make "import keras" from # the base of the repo just import the source files. We'll keep it for compat. import os # isort: skip # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 from keras.api import * # noqa: F403, E402 from keras.api import __version__ # noqa: E402 # Don't pollute namespace. del os
# DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import RematScope from keras.api import Sequential from keras.api import StatelessScope from keras.api import SymbolicScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import remat from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version from keras.api import visualization from keras.api import wrappers # END DO NOT EDIT. import os # isort: skip # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import SlackGetMessage from langchain_community.tools.slack.get_message import SlackGetMessageSchema # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "SlackGetMessageSchema": "langchain_community.tools.slack.get_message", "SlackGetMessage": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "SlackGetMessage", "SlackGetMessageSchema", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import SlackGetMessage from langchain_community.tools.slack.get_message import SlackGetMessageSchema # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "SlackGetMessageSchema": "langchain_community.tools.slack.get_message", "SlackGetMessage": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "SlackGetMessageSchema", "SlackGetMessage", ]
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.3' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.6.1,<0.7", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "pandas": "pandas<2.3.0", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "pandas": "pandas<2.3.0", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .builder import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS, ROI_EXTRACTORS, SHARED_HEADS, build_backbone, build_detector, build_head, build_loss, build_neck, build_roi_extractor, build_shared_head) from .data_preprocessors import * # noqa: F401,F403 from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .plugins import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 __all__ = [ 'BACKBONES', 'NECKS', 'ROI_EXTRACTORS', 'SHARED_HEADS', 'HEADS', 'LOSSES', 'DETECTORS', 'build_backbone', 'build_neck', 'build_roi_extractor', 'build_shared_head', 'build_head', 'build_loss', 'build_detector' ]
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .builder import (BACKBONES, DETECTORS, HEADS, LOSSES, NECKS, ROI_EXTRACTORS, SHARED_HEADS, build_backbone, build_detector, build_head, build_loss, build_neck, build_roi_extractor, build_shared_head) from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .plugins import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 __all__ = [ 'BACKBONES', 'NECKS', 'ROI_EXTRACTORS', 'SHARED_HEADS', 'HEADS', 'LOSSES', 'DETECTORS', 'build_backbone', 'build_neck', 'build_roi_extractor', 'build_shared_head', 'build_head', 'build_loss', 'build_detector' ]
import sys from absl import logging from keras.src.api_export import keras_export from keras.src.backend.common import global_state @keras_export( [ "keras.config.enable_interactive_logging", "keras.utils.enable_interactive_logging", ] ) def enable_interactive_logging(): """Turn on interactive logging. When interactive logging is enabled, Keras displays logs via stdout. This provides the best experience when using Keras in an interactive environment such as a shell or a notebook. """ global_state.set_global_attribute("interactive_logging", True) @keras_export( [ "keras.config.disable_interactive_logging", "keras.utils.disable_interactive_logging", ] ) def disable_interactive_logging(): """Turn off interactive logging. When interactive logging is disabled, Keras sends logs to `absl.logging`. This is the best option when using Keras in a non-interactive way, such as running a training or inference job on a server. """ global_state.set_global_attribute("interactive_logging", False) @keras_export( [ "keras.config.is_interactive_logging_enabled", "keras.utils.is_interactive_logging_enabled", ] ) def is_interactive_logging_enabled(): """Check if interactive logging is enabled. To switch between writing logs to stdout and `absl.logging`, you may use `keras.config.enable_interactive_logging()` and `keras.config.disable_interactive_logging()`. Returns: Boolean, `True` if interactive logging is enabled, and `False` otherwise. """ return global_state.get_global_attribute("interactive_logging", True) def set_logging_verbosity(level): """Sets the verbosity level for logging. Supported log levels are as follows: - `"FATAL"` (least verbose) - `"ERROR"` - `"WARNING"` - `"INFO"` - `"DEBUG"` (most verbose) Args: level: A string corresponding to the level of verbosity for logging. """ valid_levels = { "FATAL": logging.FATAL, "ERROR": logging.ERROR, "WARNING": logging.WARNING, "INFO": logging.INFO, "DEBUG": logging.DEBUG, } verbosity = valid_levels.get(level) if verbosity is None: raise ValueError( "Please pass a valid level for logging verbosity. " f"Expected one of: {set(valid_levels.keys())}. " f"Received: {level}" ) logging.set_verbosity(verbosity) def print_msg(message, line_break=True): """Print the message to absl logging or stdout.""" message = str(message) if is_interactive_logging_enabled(): message = message + "\n" if line_break else message try: sys.stdout.write(message) except UnicodeEncodeError: # If the encoding differs from UTF-8, `sys.stdout.write` may fail. # To address this, replace special unicode characters in the # message, and then encode and decode using the target encoding. message = _replace_special_unicode_character(message) # Fallback to UTF-8 when `sys.stdout.encoding` is `None` (e.g. when # stdout is redirected). This prevents a `TypeError` that would be # raised by `bytes.encode(None)` / `bytes.decode(None)`. encoding = sys.stdout.encoding or "utf-8" message_bytes = message.encode(encoding, errors="ignore") message = message_bytes.decode(encoding) sys.stdout.write(message) sys.stdout.flush() else: logging.info(message) def ask_to_proceed_with_overwrite(filepath): """Produces a prompt asking about overwriting a file. Args: filepath: the path to the file to be overwritten. Returns: True if we can proceed with overwrite, False otherwise. """ overwrite = ( input(f"[WARNING] {filepath} already exists - overwrite? [y/n]") .strip() .lower() ) while overwrite not in ("y", "n"): overwrite = ( input('Enter "y" (overwrite) or "n" (cancel).').strip().lower() ) if overwrite == "n": return False print_msg("[TIP] Next time specify overwrite=True!") return True def _replace_special_unicode_character(message): message = str(message).replace("━", "=") # Fall back to Keras2 behavior. return message
import sys from absl import logging from keras.src.api_export import keras_export from keras.src.backend.common import global_state @keras_export( [ "keras.config.enable_interactive_logging", "keras.utils.enable_interactive_logging", ] ) def enable_interactive_logging(): """Turn on interactive logging. When interactive logging is enabled, Keras displays logs via stdout. This provides the best experience when using Keras in an interactive environment such as a shell or a notebook. """ global_state.set_global_attribute("interactive_logging", True) @keras_export( [ "keras.config.disable_interactive_logging", "keras.utils.disable_interactive_logging", ] ) def disable_interactive_logging(): """Turn off interactive logging. When interactive logging is disabled, Keras sends logs to `absl.logging`. This is the best option when using Keras in a non-interactive way, such as running a training or inference job on a server. """ global_state.set_global_attribute("interactive_logging", False) @keras_export( [ "keras.config.is_interactive_logging_enabled", "keras.utils.is_interactive_logging_enabled", ] ) def is_interactive_logging_enabled(): """Check if interactive logging is enabled. To switch between writing logs to stdout and `absl.logging`, you may use `keras.config.enable_interactive_logging()` and `keras.config.disable_interactive_logging()`. Returns: Boolean, `True` if interactive logging is enabled, and `False` otherwise. """ return global_state.get_global_attribute("interactive_logging", True) def set_logging_verbosity(level): """Sets the verbosity level for logging. Supported log levels are as follows: - `"FATAL"` (least verbose) - `"ERROR"` - `"WARNING"` - `"INFO"` - `"DEBUG"` (most verbose) Args: level: A string corresponding to the level of verbosity for logging. """ valid_levels = { "FATAL": logging.FATAL, "ERROR": logging.ERROR, "WARNING": logging.WARNING, "INFO": logging.INFO, "DEBUG": logging.DEBUG, } verbosity = valid_levels.get(level) if verbosity is None: raise ValueError( "Please pass a valid level for logging verbosity. " f"Expected one of: {set(valid_levels.keys())}. " f"Received: {level}" ) logging.set_verbosity(verbosity) def print_msg(message, line_break=True): """Print the message to absl logging or stdout.""" message = str(message) if is_interactive_logging_enabled(): message = message + "\n" if line_break else message try: sys.stdout.write(message) except UnicodeEncodeError: # If the encoding differs from UTF-8, `sys.stdout.write` may fail. # To address this, replace special unicode characters in the # message, and then encode and decode using the target encoding. message = _replace_special_unicode_character(message) message_bytes = message.encode(sys.stdout.encoding, errors="ignore") message = message_bytes.decode(sys.stdout.encoding) sys.stdout.write(message) sys.stdout.flush() else: logging.info(message) def ask_to_proceed_with_overwrite(filepath): """Produces a prompt asking about overwriting a file. Args: filepath: the path to the file to be overwritten. Returns: True if we can proceed with overwrite, False otherwise. """ overwrite = ( input(f"[WARNING] {filepath} already exists - overwrite? [y/n]") .strip() .lower() ) while overwrite not in ("y", "n"): overwrite = ( input('Enter "y" (overwrite) or "n" (cancel).').strip().lower() ) if overwrite == "n": return False print_msg("[TIP] Next time specify overwrite=True!") return True def _replace_special_unicode_character(message): message = str(message).replace("━", "=") # Fall back to Keras2 behavior. return message
"""Standard LangChain interface tests""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_fireworks import ChatFireworks class TestFireworksStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatFireworks @property def chat_model_params(self) -> dict: return { "model": "accounts/fireworks/models/llama-v3p1-70b-instruct", "temperature": 0, } @pytest.mark.xfail(reason="Not yet implemented.") def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content(model, my_adder_tool) @property def supports_json_mode(self) -> bool: return True
"""Standard LangChain interface tests""" from typing import Type import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_fireworks import ChatFireworks class TestFireworksStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatFireworks @property def chat_model_params(self) -> dict: return { "model": "accounts/fireworks/models/llama-v3p1-70b-instruct", "temperature": 0, } @pytest.mark.xfail(reason="Not yet implemented.") def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content(model, my_adder_tool) @property def supports_json_mode(self) -> bool: return True
import textwrap import pyarrow as pa import pytest from datasets import Features, Image from datasets.packaged_modules.text.text import Text from ..utils import require_pil @pytest.fixture def text_file(tmp_path): filename = tmp_path / "text.txt" data = textwrap.dedent( """\ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Second paragraph: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. """ ) with open(filename, "w", encoding="utf-8") as f: f.write(data) return str(filename) @pytest.fixture def text_file_with_image(tmp_path, image_file): filename = tmp_path / "text_with_image.txt" with open(filename, "w", encoding="utf-8") as f: f.write(image_file) return str(filename) @pytest.mark.parametrize("keep_linebreaks", [True, False]) def test_text_linebreaks(text_file, keep_linebreaks): with open(text_file, encoding="utf-8") as f: expected_content = f.read().splitlines(keepends=keep_linebreaks) text = Text(keep_linebreaks=keep_linebreaks, encoding="utf-8") generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content @require_pil def test_text_cast_image(text_file_with_image): with open(text_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[0] text = Text(encoding="utf-8", features=Features({"image": Image()})) generator = text._generate_tables([[text_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] @pytest.mark.parametrize("sample_by", ["line", "paragraph", "document"]) def test_text_sample_by(sample_by, text_file): with open(text_file, encoding="utf-8") as f: expected_content = f.read() if sample_by == "line": expected_content = expected_content.splitlines() elif sample_by == "paragraph": expected_content = expected_content.split("\n\n") elif sample_by == "document": expected_content = [expected_content] text = Text(sample_by=sample_by, encoding="utf-8", chunksize=100) generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content
import textwrap import pyarrow as pa import pytest from datasets import Features, Image from datasets.packaged_modules.text.text import Text from ..utils import require_pil @pytest.fixture def text_file(tmp_path): filename = tmp_path / "text.txt" data = textwrap.dedent( """\ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. """ ) with open(filename, "w", encoding="utf-8") as f: f.write(data) return str(filename) @pytest.fixture def text_file_with_image(tmp_path, image_file): filename = tmp_path / "text_with_image.txt" with open(filename, "w", encoding="utf-8") as f: f.write(image_file) return str(filename) @pytest.mark.parametrize("keep_linebreaks", [True, False]) def test_text_linebreaks(text_file, keep_linebreaks): with open(text_file, encoding="utf-8") as f: expected_content = f.read().splitlines(keepends=keep_linebreaks) text = Text(keep_linebreaks=keep_linebreaks, encoding="utf-8") generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content @require_pil def test_text_cast_image(text_file_with_image): with open(text_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[0] text = Text(encoding="utf-8", features=Features({"image": Image()})) generator = text._generate_tables([[text_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}]
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Helium model.""" import unittest from transformers import AutoModelForCausalLM, AutoTokenizer, HeliumConfig, is_torch_available from transformers.testing_utils import ( require_read_token, require_torch, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ..gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester if is_torch_available(): import torch from transformers import ( HeliumForCausalLM, HeliumForSequenceClassification, HeliumForTokenClassification, HeliumModel, ) class HeliumModelTester(GemmaModelTester): if is_torch_available(): config_class = HeliumConfig model_class = HeliumModel for_causal_lm_class = HeliumForCausalLM for_sequence_class = HeliumForSequenceClassification for_token_class = HeliumForTokenClassification @require_torch class HeliumModelTest(GemmaModelTest, unittest.TestCase): all_model_classes = ( (HeliumModel, HeliumForCausalLM, HeliumForSequenceClassification, HeliumForTokenClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": HeliumModel, "text-classification": HeliumForSequenceClassification, "token-classification": HeliumForTokenClassification, "text-generation": HeliumForCausalLM, "zero-shot": HeliumForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False _is_stateful = True model_split_percents = [0.5, 0.6] def setUp(self): self.model_tester = HeliumModelTester(self) self.config_tester = ConfigTester(self, config_class=HeliumConfig, hidden_size=37) @slow # @require_torch_gpu class HeliumIntegrationTest(unittest.TestCase): input_text = ["Hello, today is a great day to"] @require_read_token def test_model_2b(self): model_id = "kyutai/helium-1-preview" EXPECTED_TEXTS = [ "Hello, today is a great day to start a new project. I have been working on a new project for a while now and I have" ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision="refs/pr/1" ).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id, revision="refs/pr/1") inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Helium model.""" import unittest from transformers import AutoModelForCausalLM, AutoTokenizer, HeliumConfig, is_torch_available from transformers.testing_utils import ( require_read_token, require_torch, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ..gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester if is_torch_available(): import torch from transformers import ( HeliumForCausalLM, HeliumForSequenceClassification, HeliumForTokenClassification, HeliumModel, ) class HeliumModelTester(GemmaModelTester): if is_torch_available(): config_class = HeliumConfig model_class = HeliumModel for_causal_lm_class = HeliumForCausalLM for_sequence_class = HeliumForSequenceClassification for_token_class = HeliumForTokenClassification @require_torch class HeliumModelTest(GemmaModelTest, unittest.TestCase): all_model_classes = ( (HeliumModel, HeliumForCausalLM, HeliumForSequenceClassification, HeliumForTokenClassification) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": HeliumModel, "text-classification": HeliumForSequenceClassification, "token-classification": HeliumForTokenClassification, "text-generation": HeliumForCausalLM, "zero-shot": HeliumForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False _is_stateful = True model_split_percents = [0.5, 0.6] def setUp(self): self.model_tester = HeliumModelTester(self) self.config_tester = ConfigTester(self, config_class=HeliumConfig, hidden_size=37) @slow # @require_torch_gpu class HeliumIntegrationTest(unittest.TestCase): input_text = ["Hello, today is a great day to"] # This variable is used to determine which CUDA device are we using for our runners (A10 or T4) # Depending on the hardware we get different logits / generations cuda_compute_capability_major_version = None @classmethod def setUpClass(cls): if is_torch_available() and torch.cuda.is_available(): # 8 is for A100 / A10 and 7 for T4 cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0] @require_read_token def test_model_2b(self): model_id = "kyutai/helium-1-preview" EXPECTED_TEXTS = [ "Hello, today is a great day to start a new project. I have been working on a new project for a while now and I have" ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision="refs/pr/1" ).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id, revision="refs/pr/1") inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS)
from langchain_core.agents import AgentAction from langchain_core.messages import AIMessage, BaseMessage, HumanMessage def format_log_to_messages( intermediate_steps: list[tuple[AgentAction, str]], template_tool_response: str = "{observation}", ) -> list[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process. Args: intermediate_steps: List of tuples of AgentAction and observation strings. template_tool_response: Template to format the observation with. Defaults to "{observation}". Returns: List[BaseMessage]: The scratchpad. """ thoughts: list[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=template_tool_response.format(observation=observation), ) thoughts.append(human_message) return thoughts
from langchain_core.agents import AgentAction from langchain_core.messages import AIMessage, BaseMessage, HumanMessage def format_log_to_messages( intermediate_steps: list[tuple[AgentAction, str]], template_tool_response: str = "{observation}", ) -> list[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process. Args: intermediate_steps: List of tuples of AgentAction and observation strings. template_tool_response: Template to format the observation with. Defaults to "{observation}". Returns: List[BaseMessage]: The scratchpad. """ thoughts: list[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=template_tool_response.format(observation=observation) ) thoughts.append(human_message) return thoughts
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result from mmdet.registry import MODELS from ...core.utils import flip_tensor from .single_stage import SingleStageDetector @MODELS.register_module() class CenterNet(SingleStageDetector): """Implementation of CenterNet(Objects as Points) <https://arxiv.org/abs/1904.07850>. """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(CenterNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) def merge_aug_results(self, aug_results, with_nms): """Merge augmented detection bboxes and score. Args: aug_results (list[list[Tensor]]): Det_bboxes and det_labels of each image. with_nms (bool): If True, do nms before return boxes. Returns: tuple: (out_bboxes, out_labels) """ recovered_bboxes, aug_labels = [], [] for single_result in aug_results: recovered_bboxes.append(single_result[0][0]) aug_labels.append(single_result[0][1]) bboxes = torch.cat(recovered_bboxes, dim=0).contiguous() labels = torch.cat(aug_labels).contiguous() if with_nms: out_bboxes, out_labels = self.bbox_head._bboxes_nms( bboxes, labels, self.bbox_head.test_cfg) else: out_bboxes, out_labels = bboxes, labels return out_bboxes, out_labels def aug_test(self, imgs, img_metas, rescale=True): """Augment testing of CenterNet. Aug test must have flipped image pair, and unlike CornerNet, it will perform an averaging operation on the feature map instead of detecting bbox. Args: imgs (list[Tensor]): Augmented images. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If True, return boxes in original image space. Default: True. Note: ``imgs`` must including flipped image pairs. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ img_inds = list(range(len(imgs))) assert img_metas[0][0]['flip'] + img_metas[1][0]['flip'], ( 'aug test must have flipped image pair') aug_results = [] for ind, flip_ind in zip(img_inds[0::2], img_inds[1::2]): flip_direction = img_metas[flip_ind][0]['flip_direction'] img_pair = torch.cat([imgs[ind], imgs[flip_ind]]) x = self.extract_feat(img_pair) center_heatmap_preds, wh_preds, offset_preds = self.bbox_head(x) assert len(center_heatmap_preds) == len(wh_preds) == len( offset_preds) == 1 # Feature map averaging center_heatmap_preds[0] = ( center_heatmap_preds[0][0:1] + flip_tensor(center_heatmap_preds[0][1:2], flip_direction)) / 2 wh_preds[0] = (wh_preds[0][0:1] + flip_tensor(wh_preds[0][1:2], flip_direction)) / 2 bbox_list = self.bbox_head.get_bboxes( center_heatmap_preds, wh_preds, [offset_preds[0][0:1]], img_metas[ind], rescale=rescale, with_nms=False) aug_results.append(bbox_list) nms_cfg = self.bbox_head.test_cfg.get('nms_cfg', None) if nms_cfg is None: with_nms = False else: with_nms = True bbox_list = [self.merge_aug_results(aug_results, with_nms)] bbox_results = [ bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) for det_bboxes, det_labels in bbox_list ] return bbox_results
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result from mmdet.models.builder import DETECTORS from ...core.utils import flip_tensor from .single_stage import SingleStageDetector @DETECTORS.register_module() class CenterNet(SingleStageDetector): """Implementation of CenterNet(Objects as Points) <https://arxiv.org/abs/1904.07850>. """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(CenterNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) def merge_aug_results(self, aug_results, with_nms): """Merge augmented detection bboxes and score. Args: aug_results (list[list[Tensor]]): Det_bboxes and det_labels of each image. with_nms (bool): If True, do nms before return boxes. Returns: tuple: (out_bboxes, out_labels) """ recovered_bboxes, aug_labels = [], [] for single_result in aug_results: recovered_bboxes.append(single_result[0][0]) aug_labels.append(single_result[0][1]) bboxes = torch.cat(recovered_bboxes, dim=0).contiguous() labels = torch.cat(aug_labels).contiguous() if with_nms: out_bboxes, out_labels = self.bbox_head._bboxes_nms( bboxes, labels, self.bbox_head.test_cfg) else: out_bboxes, out_labels = bboxes, labels return out_bboxes, out_labels def aug_test(self, imgs, img_metas, rescale=True): """Augment testing of CenterNet. Aug test must have flipped image pair, and unlike CornerNet, it will perform an averaging operation on the feature map instead of detecting bbox. Args: imgs (list[Tensor]): Augmented images. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If True, return boxes in original image space. Default: True. Note: ``imgs`` must including flipped image pairs. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ img_inds = list(range(len(imgs))) assert img_metas[0][0]['flip'] + img_metas[1][0]['flip'], ( 'aug test must have flipped image pair') aug_results = [] for ind, flip_ind in zip(img_inds[0::2], img_inds[1::2]): flip_direction = img_metas[flip_ind][0]['flip_direction'] img_pair = torch.cat([imgs[ind], imgs[flip_ind]]) x = self.extract_feat(img_pair) center_heatmap_preds, wh_preds, offset_preds = self.bbox_head(x) assert len(center_heatmap_preds) == len(wh_preds) == len( offset_preds) == 1 # Feature map averaging center_heatmap_preds[0] = ( center_heatmap_preds[0][0:1] + flip_tensor(center_heatmap_preds[0][1:2], flip_direction)) / 2 wh_preds[0] = (wh_preds[0][0:1] + flip_tensor(wh_preds[0][1:2], flip_direction)) / 2 bbox_list = self.bbox_head.get_bboxes( center_heatmap_preds, wh_preds, [offset_preds[0][0:1]], img_metas[ind], rescale=rescale, with_nms=False) aug_results.append(bbox_list) nms_cfg = self.bbox_head.test_cfg.get('nms_cfg', None) if nms_cfg is None: with_nms = False else: with_nms = True bbox_list = [self.merge_aug_results(aug_results, with_nms)] bbox_results = [ bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) for det_bboxes, det_labels in bbox_list ] return bbox_results
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.19.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.19.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
"""Init file.""" from llama_index.readers.docstring_walker.base import DocstringWalker __all__ = ["DocstringWalker"]
"""Init file.""" from llama_index.readers.docstring_walker.base import DocstringWalker __all__ = ["DocstringWalker"]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.saving.serialization import ( deserialize_keras_object as deserialize_keras_object, ) from keras.src.legacy.saving.serialization import ( serialize_keras_object as serialize_keras_object, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.saving.serialization import deserialize_keras_object from keras.src.legacy.saving.serialization import serialize_keras_object
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp import warnings from typing import Optional from mmengine.fileio import dump from mmengine.logging import print_log from . import root from .default_scope import DefaultScope from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Defaults to True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print_log( f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ", logger='current') modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print_log( f'Finish registry analysis, got: {scan_data}', logger='current') if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print_log(f'Result has been saved to {json_path}', logger='current') return scan_data def init_default_scope(scope: str) -> None: """Initialize the given default scope. Args: scope (str): The name of the default scope. """ never_created = DefaultScope.get_current_instance( ) is None or not DefaultScope.check_instance_created(scope) if never_created: DefaultScope.get_instance(scope, scope_name=scope) return current_scope = DefaultScope.get_current_instance() # type: ignore if current_scope.scope_name != scope: # type: ignore warnings.warn('The current default scope ' # type: ignore f'"{current_scope.scope_name}" is not "{scope}", ' '`init_default_scope` will force set the current' f'default scope to "{scope}".') # avoid name conflict new_instance_name = f'{scope}-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name=scope)
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp import warnings from typing import Optional from mmengine.fileio import dump from mmengine.logging import print_log from . import root from .default_scope import DefaultScope from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Default: True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print_log( f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ", logger='current') modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print_log( f'Finish registry analysis, got: {scan_data}', logger='current') if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print_log(f'Result has been saved to {json_path}', logger='current') return scan_data def init_default_scope(scope: str) -> None: """Initialize the given default scope. Args: scope (str): The name of the default scope. """ never_created = DefaultScope.get_current_instance( ) is None or not DefaultScope.check_instance_created(scope) if never_created: DefaultScope.get_instance(scope, scope_name=scope) return current_scope = DefaultScope.get_current_instance() # type: ignore if current_scope.scope_name != scope: # type: ignore warnings.warn('The current default scope ' # type: ignore f'"{current_scope.scope_name}" is not "{scope}", ' '`init_default_scope` will force set the current' f'default scope to "{scope}".') # avoid name conflict new_instance_name = f'{scope}-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name=scope)
from __future__ import annotations import logging import numpy as np from torch.utils.data import IterableDataset from sentence_transformers.readers import InputExample logger = logging.getLogger(__name__) class SentenceLabelDataset(IterableDataset): """ This dataset can be used for some specific Triplet Losses like BATCH_HARD_TRIPLET_LOSS which requires multiple examples with the same label in a batch. It draws n consecutive, random and unique samples from one label at a time. This is repeated for each label. Labels with fewer than n unique samples are ignored. This also applied to drawing without replacement, once less than n samples remain for a label, it is skipped. This *DOES NOT* check if there are more labels than the batch is large or if the batch size is divisible by the samples drawn per label. """ def __init__(self, examples: list[InputExample], samples_per_label: int = 2, with_replacement: bool = False): """ Creates a LabelSampler for a SentenceLabelDataset. Args: examples (List[InputExample]): A list of InputExamples. samples_per_label (int, optional): The number of consecutive, random, and unique samples drawn per label. The batch size should be a multiple of samples_per_label. Defaults to 2. with_replacement (bool, optional): If True, each sample is drawn at most once (depending on the total number of samples per label). If False, one sample can be drawn in multiple draws, but not multiple times in the same drawing. Defaults to False. """ super().__init__() self.samples_per_label = samples_per_label # Group examples by label label2ex = {} for example in examples: if example.label not in label2ex: label2ex[example.label] = [] label2ex[example.label].append(example) # Include only labels with at least 2 examples self.grouped_inputs = [] self.groups_right_border = [] num_labels = 0 for label, label_examples in label2ex.items(): if len(label_examples) >= self.samples_per_label: self.grouped_inputs.extend(label_examples) self.groups_right_border.append( len(self.grouped_inputs) ) # At which position does this label group / bucket end? num_labels += 1 self.label_range = np.arange(num_labels) self.with_replacement = with_replacement np.random.shuffle(self.label_range) logger.info( "SentenceLabelDataset: {} examples, from which {} examples could be used (those labels appeared at least {} times). {} different labels found.".format( len(examples), len(self.grouped_inputs), self.samples_per_label, num_labels ) ) def __iter__(self): label_idx = 0 count = 0 already_seen = {} while count < len(self.grouped_inputs): label = self.label_range[label_idx] if label not in already_seen: already_seen[label] = set() left_border = 0 if label == 0 else self.groups_right_border[label - 1] right_border = self.groups_right_border[label] if self.with_replacement: selection = np.arange(left_border, right_border) else: selection = [i for i in np.arange(left_border, right_border) if i not in already_seen[label]] if len(selection) >= self.samples_per_label: for element_idx in np.random.choice(selection, self.samples_per_label, replace=False): count += 1 already_seen[label].add(element_idx) yield self.grouped_inputs[element_idx] label_idx += 1 if label_idx >= len(self.label_range): label_idx = 0 already_seen = {} np.random.shuffle(self.label_range) def __len__(self): return len(self.grouped_inputs)
import logging from typing import List import numpy as np from torch.utils.data import IterableDataset from sentence_transformers.readers import InputExample logger = logging.getLogger(__name__) class SentenceLabelDataset(IterableDataset): """ This dataset can be used for some specific Triplet Losses like BATCH_HARD_TRIPLET_LOSS which requires multiple examples with the same label in a batch. It draws n consecutive, random and unique samples from one label at a time. This is repeated for each label. Labels with fewer than n unique samples are ignored. This also applied to drawing without replacement, once less than n samples remain for a label, it is skipped. This *DOES NOT* check if there are more labels than the batch is large or if the batch size is divisible by the samples drawn per label. """ def __init__(self, examples: List[InputExample], samples_per_label: int = 2, with_replacement: bool = False): """ Creates a LabelSampler for a SentenceLabelDataset. Args: examples (List[InputExample]): A list of InputExamples. samples_per_label (int, optional): The number of consecutive, random, and unique samples drawn per label. The batch size should be a multiple of samples_per_label. Defaults to 2. with_replacement (bool, optional): If True, each sample is drawn at most once (depending on the total number of samples per label). If False, one sample can be drawn in multiple draws, but not multiple times in the same drawing. Defaults to False. """ super().__init__() self.samples_per_label = samples_per_label # Group examples by label label2ex = {} for example in examples: if example.label not in label2ex: label2ex[example.label] = [] label2ex[example.label].append(example) # Include only labels with at least 2 examples self.grouped_inputs = [] self.groups_right_border = [] num_labels = 0 for label, label_examples in label2ex.items(): if len(label_examples) >= self.samples_per_label: self.grouped_inputs.extend(label_examples) self.groups_right_border.append( len(self.grouped_inputs) ) # At which position does this label group / bucket end? num_labels += 1 self.label_range = np.arange(num_labels) self.with_replacement = with_replacement np.random.shuffle(self.label_range) logger.info( "SentenceLabelDataset: {} examples, from which {} examples could be used (those labels appeared at least {} times). {} different labels found.".format( len(examples), len(self.grouped_inputs), self.samples_per_label, num_labels ) ) def __iter__(self): label_idx = 0 count = 0 already_seen = {} while count < len(self.grouped_inputs): label = self.label_range[label_idx] if label not in already_seen: already_seen[label] = set() left_border = 0 if label == 0 else self.groups_right_border[label - 1] right_border = self.groups_right_border[label] if self.with_replacement: selection = np.arange(left_border, right_border) else: selection = [i for i in np.arange(left_border, right_border) if i not in already_seen[label]] if len(selection) >= self.samples_per_label: for element_idx in np.random.choice(selection, self.samples_per_label, replace=False): count += 1 already_seen[label].add(element_idx) yield self.grouped_inputs[element_idx] label_idx += 1 if label_idx >= len(self.label_range): label_idx = 0 already_seen = {} np.random.shuffle(self.label_range) def __len__(self): return len(self.grouped_inputs)
import pytest import torch from mmengine.structures import InstanceData from mmdet.models.utils import empty_instances, unpack_gt_instances from mmdet.testing import demo_mm_inputs def test_parse_gt_instance_info(): packed_inputs = demo_mm_inputs()['data_samples'] batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ = unpack_gt_instances(packed_inputs) assert len(batch_gt_instances) == len(packed_inputs) assert len(batch_gt_instances_ignore) == len(packed_inputs) assert len(batch_img_metas) == len(packed_inputs) def test_process_empty_roi(): batch_size = 2 batch_img_metas = [{'ori_shape': (10, 12)}] * batch_size device = torch.device('cpu') results_list = empty_instances(batch_img_metas, device, task_type='bbox') assert len(results_list) == batch_size for results in results_list: assert isinstance(results, InstanceData) assert len(results) == 0 assert torch.allclose(results.bboxes, torch.zeros(0, 4, device=device)) results_list = empty_instances( batch_img_metas, device, task_type='mask', instance_results=results_list, mask_thr_binary=0.5) assert len(results_list) == batch_size for results in results_list: assert isinstance(results, InstanceData) assert len(results) == 0 assert results.masks.shape == (0, 10, 12) # batch_img_metas and instance_results length must be the same with pytest.raises(AssertionError): empty_instances( batch_img_metas, device, task_type='mask', instance_results=[results_list[0]] * 3)
import pytest import torch from mmengine.data import InstanceData from mmdet.models.utils import empty_instances, unpack_gt_instances from mmdet.testing import demo_mm_inputs def test_parse_gt_instance_info(): packed_inputs = demo_mm_inputs() batch_data_samples = [] for inputs in packed_inputs: batch_data_samples.append(inputs['data_sample']) batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ = unpack_gt_instances(batch_data_samples) assert len(batch_gt_instances) == len(packed_inputs) assert len(batch_gt_instances_ignore) == len(packed_inputs) assert len(batch_img_metas) == len(packed_inputs) def test_process_empty_roi(): batch_size = 2 batch_img_metas = [{'ori_shape': (10, 12)}] * batch_size device = torch.device('cpu') results_list = empty_instances(batch_img_metas, device, task_type='bbox') assert len(results_list) == batch_size for results in results_list: assert isinstance(results, InstanceData) assert len(results) == 0 assert torch.allclose(results.bboxes, torch.zeros(0, 4, device=device)) results_list = empty_instances( batch_img_metas, device, task_type='mask', instance_results=results_list, mask_thr_binary=0.5) assert len(results_list) == batch_size for results in results_list: assert isinstance(results, InstanceData) assert len(results) == 0 assert results.masks.shape == (0, 10, 12) # batch_img_metas and instance_results length must be the same with pytest.raises(AssertionError): empty_instances( batch_img_metas, device, task_type='mask', instance_results=[results_list[0]] * 3)
# Copyright (c) OpenMMLab. All rights reserved. from .coco_api import COCO, COCOeval, COCOPanoptic __all__ = ['COCO', 'COCOeval', 'COCOPanoptic']
# Copyright (c) OpenMMLab. All rights reserved. from .coco_api import COCO, COCOeval, COCOPanoptic from .panoptic_evaluation import pq_compute_multi_core, pq_compute_single_core __all__ = [ 'COCO', 'COCOeval', 'pq_compute_multi_core', 'pq_compute_single_core', 'COCOPanoptic' ]
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.features import Label from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: Tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.features import EncodedImage, Label from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: Tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
class AudioMetaData: """Return type of ``torchaudio.info`` function. This class is used by :py:mod:`"sox_io" backend<torchaudio.backends.sox_io_backend>` and :py:mod:`"soundfile" backend<torchaudio.backends.soundfile_backend>`. :ivar int sample_rate: Sample rate :ivar int num_frames: The number of frames :ivar int num_channels: The number of channels :ivar int bits_per_sample: The number of bits per sample. This is 0 for lossy formats, or when it cannot be accurately inferred. :ivar str encoding: Audio encoding The values encoding can take are one of the following: * ``PCM_S``: Signed integer linear PCM * ``PCM_U``: Unsigned integer linear PCM * ``PCM_F``: Floating point linear PCM * ``FLAC``: Flac, Free Lossless Audio Codec * ``ULAW``: Mu-law * ``ALAW``: A-law * ``MP3`` : MP3, MPEG-1 Audio Layer III * ``VORBIS``: OGG Vorbis * ``AMR_WB``: Adaptive Multi-Rate Wideband * ``AMR_NB``: Adaptive Multi-Rate Narrowband * ``OPUS``: Opus * ``HTK``: Single channel 16-bit PCM * ``UNKNOWN`` : None of above """ def __init__( self, sample_rate: int, num_frames: int, num_channels: int, bits_per_sample: int, encoding: str, ): self.sample_rate = sample_rate self.num_frames = num_frames self.num_channels = num_channels self.bits_per_sample = bits_per_sample self.encoding = encoding def __str__(self): return ( f"AudioMetaData(" f"sample_rate={self.sample_rate}, " f"num_frames={self.num_frames}, " f"num_channels={self.num_channels}, " f"bits_per_sample={self.bits_per_sample}, " f"encoding={self.encoding}" f")" )
class AudioMetaData: """Return type of ``torchaudio.info`` function. This class is used by :py:mod:`"sox_io" backend<torchaudio.backends.sox_io_backend>` and :py:mod:`"soundfile" backend<torchaudio.backends.soundfile_backend>`. :ivar int sample_rate: Sample rate :ivar int num_frames: The number of frames :ivar int num_channels: The number of channels :ivar int bits_per_sample: The number of bits per sample. This is 0 for lossy formats, or when it cannot be accurately inferred. :ivar str encoding: Audio encoding The values encoding can take are one of the following: * ``PCM_S``: Signed integer linear PCM * ``PCM_U``: Unsigned integer linear PCM * ``PCM_F``: Floating point linear PCM * ``FLAC``: Flac, Free Lossless Audio Codec * ``ULAW``: Mu-law * ``ALAW``: A-law * ``MP3`` : MP3, MPEG-1 Audio Layer III * ``VORBIS``: OGG Vorbis * ``AMR_WB``: Adaptive Multi-Rate * ``AMR_NB``: Adaptive Multi-Rate Wideband * ``OPUS``: Opus * ``HTK``: Single channel 16-bit PCM * ``UNKNOWN`` : None of above """ def __init__( self, sample_rate: int, num_frames: int, num_channels: int, bits_per_sample: int, encoding: str, ): self.sample_rate = sample_rate self.num_frames = num_frames self.num_channels = num_channels self.bits_per_sample = bits_per_sample self.encoding = encoding def __str__(self): return ( f"AudioMetaData(" f"sample_rate={self.sample_rate}, " f"num_frames={self.num_frames}, " f"num_channels={self.num_channels}, " f"bits_per_sample={self.bits_per_sample}, " f"encoding={self.encoding}" f")" )
""" This example uses a simple bag-of-words (BoW) approach. A sentence is mapped to a sparse vector with e.g. 25,000 dimensions. Optionally, you can also use tf-idf. To make the model trainable, we add multiple dense layers to create a Deep Averaging Network (DAN). """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses, util from sentence_transformers import LoggingHandler, SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample from sentence_transformers.models.tokenizer.WordTokenizer import ENGLISH_STOP_WORDS import logging from datetime import datetime import os import csv import gzip #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Read the dataset batch_size = 32 model_save_path = "output/training_tf-idf_word_embeddings-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) ##### Construction of the SentenceTransformer Model ##### # Wikipedia document frequency for words wiki_doc_freq = "wikipedia_doc_frequencies.txt" if not os.path.exists(wiki_doc_freq): util.http_get( "https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/wikipedia_doc_frequencies.txt", wiki_doc_freq ) # Create the vocab for the BoW model stop_words = ENGLISH_STOP_WORDS max_vocab_size = 25000 # This is also the size of the BoW sentence vector. # Read the most common max_vocab_size words. Skip stop-words vocab = set() weights = {} lines = open("wikipedia_doc_frequencies.txt", encoding="utf8").readlines() num_docs = int(lines[0]) for line in lines[1:]: word, freq = line.lower().strip().split("\t") if word in stop_words: continue vocab.add(word) weights[word] = math.log(num_docs / int(freq)) if len(vocab) >= max_vocab_size: break ##### Construction of the SentenceTransformer Model ##### # Create the BoW model. Because we set word_weights to the IDF values and cumulative_term_frequency=True, we # get tf-idf vectors. Set word_weights to an empty dict and cumulative_term_frequency=False to get a 1-hot sentence encoding bow = models.BoW(vocab=vocab, word_weights=weights, cumulative_term_frequency=True) # Add two trainable feed-forward networks (DAN) with max_vocab_size -> 768 -> 512 dimensions. sent_embeddings_dimension = max_vocab_size dan1 = models.Dense(in_features=sent_embeddings_dimension, out_features=768) dan2 = models.Dense(in_features=768, out_features=512) model = SentenceTransformer(modules=[bow, dan1, dan2]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training num_epochs = 10 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") model.evaluate(test_evaluator)
""" This example uses a simple bag-of-words (BoW) approach. A sentence is mapped to a sparse vector with e.g. 25,000 dimensions. Optionally, you can also use tf-idf. To make the model trainable, we add multiple dense layers to create a Deep Averaging Network (DAN). """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses, util from sentence_transformers import LoggingHandler, SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample from sentence_transformers.models.tokenizer.WordTokenizer import ENGLISH_STOP_WORDS import logging from datetime import datetime import os import csv import gzip #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Read the dataset batch_size = 32 model_save_path = "output/training_tf-idf_word_embeddings-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) ##### Construction of the SentenceTransformer Model ##### # Wikipedia document frequency for words wiki_doc_freq = "wikipedia_doc_frequencies.txt" if not os.path.exists(wiki_doc_freq): util.http_get( "https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/wikipedia_doc_frequencies.txt", wiki_doc_freq ) # Create the vocab for the BoW model stop_words = ENGLISH_STOP_WORDS max_vocab_size = 25000 # This is also the size of the BoW sentence vector. # Read the most common max_vocab_size words. Skip stop-words vocab = set() weights = {} lines = open("wikipedia_doc_frequencies.txt", encoding="utf8").readlines() num_docs = int(lines[0]) for line in lines[1:]: word, freq = line.lower().strip().split("\t") if word in stop_words: continue vocab.add(word) weights[word] = math.log(num_docs / int(freq)) if len(vocab) >= max_vocab_size: break ##### Construction of the SentenceTransformer Model ##### # Create the BoW model. Because we set word_weights to the IDF values and cumulative_term_frequency=True, we # get tf-idf vectors. Set word_weights to an empty dict and cumulative_term_frequency=False to get a 1-hot sentence encoding bow = models.BoW(vocab=vocab, word_weights=weights, cumulative_term_frequency=True) # Add two trainable feed-forward networks (DAN) with max_vocab_size -> 768 -> 512 dimensions. sent_embeddings_dimension = max_vocab_size dan1 = models.Dense(in_features=sent_embeddings_dimension, out_features=768) dan2 = models.Dense(in_features=768, out_features=512) model = SentenceTransformer(modules=[bow, dan1, dan2]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training num_epochs = 10 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") model.evaluate(evaluator)
_base_ = 'faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' max_iter = 90000 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_iter, by_epoch=False, milestones=[60000, 80000], gamma=0.1) ] train_cfg = dict( _delete_=True, type='IterBasedTrainLoop', max_iters=max_iter, val_interval=10000) default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) log_processor = dict(by_epoch=False)
_base_ = 'faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[60000, 80000]) # Runner type runner = dict(_delete_=True, type='IterBasedRunner', max_iters=90000) checkpoint_config = dict(interval=10000) evaluation = dict(interval=10000, metric='bbox')
from __future__ import annotations from collections.abc import Iterable import torch.nn as nn from torch import Tensor from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCosineSimilarityLoss(CosineSimilarityLoss): def __init__( self, model: SparseEncoder, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SparseEncoder model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range `[0, 1]` Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseCosineSimilarityLoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCosineSimilarityLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from collections.abc import Iterable import torch.nn as nn from torch import Tensor from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCosineSimilarityLoss(CosineSimilarityLoss): def __init__( self, model: SparseEncoder, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SparseEncoder model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: # TODO: Not yet for sparse might want it ? - `Training Examples > Semantic Textual Similarity <../../../examples/sentence_transformer/training/sts/README.html>`_ Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range `[0, 1]` Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, SparseCoSENTLoss is recommended. - :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than SparseCosineSimilarityLoss. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseCosineSimilarityLoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCosineSimilarityLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
# TODO: Add _log_api_usage_once() in all mid-level kernels. If they remain not jit-scriptable we can use decorators from torchvision.transforms import InterpolationMode # usort: skip from ._meta import ( clamp_bounding_box, convert_format_bounding_box, convert_color_space_image_tensor, convert_color_space_image_pil, convert_color_space_video, convert_color_space, convert_dtype_image_tensor, convert_dtype, convert_dtype_video, convert_image_dtype, get_dimensions_image_tensor, get_dimensions_image_pil, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image_tensor, get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_spatial_size_bounding_box, get_spatial_size_image_tensor, get_spatial_size_image_pil, get_spatial_size_mask, get_spatial_size_video, get_spatial_size, ) # usort: skip from ._augment import erase, erase_image_pil, erase_image_tensor, erase_video from ._color import ( adjust_brightness, adjust_brightness_image_pil, adjust_brightness_image_tensor, adjust_brightness_video, adjust_contrast, adjust_contrast_image_pil, adjust_contrast_image_tensor, adjust_contrast_video, adjust_gamma, adjust_gamma_image_pil, adjust_gamma_image_tensor, adjust_gamma_video, adjust_hue, adjust_hue_image_pil, adjust_hue_image_tensor, adjust_hue_video, adjust_saturation, adjust_saturation_image_pil, adjust_saturation_image_tensor, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image_pil, adjust_sharpness_image_tensor, adjust_sharpness_video, autocontrast, autocontrast_image_pil, autocontrast_image_tensor, autocontrast_video, equalize, equalize_image_pil, equalize_image_tensor, equalize_video, invert, invert_image_pil, invert_image_tensor, invert_video, posterize, posterize_image_pil, posterize_image_tensor, posterize_video, solarize, solarize_image_pil, solarize_image_tensor, solarize_video, ) from ._geometry import ( affine, affine_bounding_box, affine_image_pil, affine_image_tensor, affine_mask, affine_video, center_crop, center_crop_bounding_box, center_crop_image_pil, center_crop_image_tensor, center_crop_mask, center_crop_video, crop, crop_bounding_box, crop_image_pil, crop_image_tensor, crop_mask, crop_video, elastic, elastic_bounding_box, elastic_image_pil, elastic_image_tensor, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image_pil, five_crop_image_tensor, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_box, horizontal_flip_image_pil, horizontal_flip_image_tensor, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_box, pad_image_pil, pad_image_tensor, pad_mask, pad_video, perspective, perspective_bounding_box, perspective_image_pil, perspective_image_tensor, perspective_mask, perspective_video, resize, resize_bounding_box, resize_image_pil, resize_image_tensor, resize_mask, resize_video, resized_crop, resized_crop_bounding_box, resized_crop_image_pil, resized_crop_image_tensor, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_box, rotate_image_pil, rotate_image_tensor, rotate_mask, rotate_video, ten_crop, ten_crop_image_pil, ten_crop_image_tensor, ten_crop_video, vertical_flip, vertical_flip_bounding_box, vertical_flip_image_pil, vertical_flip_image_tensor, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( gaussian_blur, gaussian_blur_image_pil, gaussian_blur_image_tensor, gaussian_blur_video, normalize, normalize_image_tensor, normalize_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import ( decode_image_with_pil, decode_video_with_av, pil_to_tensor, to_image_pil, to_image_tensor, to_pil_image, ) from ._deprecated import get_image_size, rgb_to_grayscale, to_grayscale, to_tensor # usort: skip
# TODO: Add _log_api_usage_once() in all mid-level kernels. If they remain not jit-scriptable we can use decorators from torchvision.transforms import InterpolationMode # usort: skip from ._meta import ( clamp_bounding_box, convert_format_bounding_box, convert_color_space_image_tensor, convert_color_space_image_pil, convert_color_space_video, convert_color_space, convert_dtype_image_tensor, convert_dtype, convert_dtype_video, convert_image_dtype, get_dimensions_image_tensor, get_dimensions_image_pil, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image_tensor, get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_spatial_size_bounding_box, get_spatial_size_image_tensor, get_spatial_size_image_pil, get_spatial_size_mask, get_spatial_size_video, get_spatial_size, ) # usort: skip from ._augment import erase, erase_image_pil, erase_image_tensor, erase_video from ._color import ( adjust_brightness, adjust_brightness_image_pil, adjust_brightness_image_tensor, adjust_brightness_video, adjust_contrast, adjust_contrast_image_pil, adjust_contrast_image_tensor, adjust_contrast_video, adjust_gamma, adjust_gamma_image_pil, adjust_gamma_image_tensor, adjust_gamma_video, adjust_hue, adjust_hue_image_pil, adjust_hue_image_tensor, adjust_hue_video, adjust_saturation, adjust_saturation_image_pil, adjust_saturation_image_tensor, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image_pil, adjust_sharpness_image_tensor, adjust_sharpness_video, autocontrast, autocontrast_image_pil, autocontrast_image_tensor, autocontrast_video, equalize, equalize_image_pil, equalize_image_tensor, equalize_video, invert, invert_image_pil, invert_image_tensor, invert_video, posterize, posterize_image_pil, posterize_image_tensor, posterize_video, solarize, solarize_image_pil, solarize_image_tensor, solarize_video, ) from ._geometry import ( affine, affine_bounding_box, affine_image_pil, affine_image_tensor, affine_mask, affine_video, center_crop, center_crop_bounding_box, center_crop_image_pil, center_crop_image_tensor, center_crop_mask, center_crop_video, crop, crop_bounding_box, crop_image_pil, crop_image_tensor, crop_mask, crop_video, elastic, elastic_bounding_box, elastic_image_pil, elastic_image_tensor, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image_pil, five_crop_image_tensor, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_box, horizontal_flip_image_pil, horizontal_flip_image_tensor, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_box, pad_image_pil, pad_image_tensor, pad_mask, pad_video, perspective, perspective_bounding_box, perspective_image_pil, perspective_image_tensor, perspective_mask, perspective_video, resize, resize_bounding_box, resize_image_pil, resize_image_tensor, resize_mask, resize_video, resized_crop, resized_crop_bounding_box, resized_crop_image_pil, resized_crop_image_tensor, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_box, rotate_image_pil, rotate_image_tensor, rotate_mask, rotate_video, ten_crop, ten_crop_image_pil, ten_crop_image_tensor, ten_crop_video, vertical_flip, vertical_flip_bounding_box, vertical_flip_image_pil, vertical_flip_image_tensor, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( gaussian_blur, gaussian_blur_image_pil, gaussian_blur_image_tensor, gaussian_blur_video, normalize, normalize_image_tensor, normalize_video, ) from ._type_conversion import ( decode_image_with_pil, decode_video_with_av, pil_to_tensor, to_image_pil, to_image_tensor, to_pil_image, ) from ._deprecated import get_image_size, rgb_to_grayscale, to_grayscale, to_tensor # usort: skip
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file) as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', 'sphinx_tabs.tabs', ] # yapf: disable autodoc_typehints = 'description' myst_heading_anchors = 4 myst_enable_extensions = ['colon_fence'] # Configuration for intersphinx intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable', None), 'torch': ('https://pytorch.org/docs/stable/', None), 'mmcv': ('https://mmcv.readthedocs.io/en/2.x/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'en', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file) as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' myst_heading_anchors = 4 myst_enable_extensions = ['colon_fence'] # Configuration for intersphinx intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable', None), 'torch': ('https://pytorch.org/docs/stable/', None), 'mmcv': ('https://mmcv.readthedocs.io/en/2.x/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'en', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from docarray.document import DocumentSourceType from docarray.document.mixins.content import DocumentContentType from docarray import Document from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: Optional['GeneratorSourceType'] = None, request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from docarray.document import DocumentSourceType from docarray.document.mixins.content import DocumentContentType from docarray import Document from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: 'GeneratorSourceType', request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ _kwargs = dict(extra_kwargs=kwargs) try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( _kwargs=kwargs, batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
"""This file only exists to be lazy-imported and avoid V2-related import warnings when just using V1.""" import torch from torchvision import tv_tensors from torchvision.transforms import v2 class PadIfSmaller(v2.Transform): def __init__(self, size, fill=0): super().__init__() self.size = size self.fill = v2._utils._setup_fill_arg(fill) def _get_params(self, sample): _, height, width = v2._utils.query_chw(sample) padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)] needs_padding = any(padding) return dict(padding=padding, needs_padding=needs_padding) def _transform(self, inpt, params): if not params["needs_padding"]: return inpt fill = v2._utils._get_fill(self.fill, type(inpt)) fill = v2._utils._convert_fill_arg(fill) return v2.functional.pad(inpt, padding=params["padding"], fill=fill) class CocoDetectionToVOCSegmentation(v2.Transform): """Turn samples from datasets.CocoDetection into the same format as VOCSegmentation. This is achieved in two steps: 1. COCO differentiates between 91 categories while VOC only supports 21, including background for both. Fortunately, the COCO categories are a superset of the VOC ones and thus can be mapped. Instances of the 70 categories not present in VOC are dropped and replaced by background. 2. COCO only offers detection masks, i.e. a (N, H, W) bool-ish tensor, where the truthy values in each individual mask denote the instance. However, a segmentation mask is a (H, W) integer tensor (typically torch.uint8), where the value of each pixel denotes the category it belongs to. The detection masks are merged into one segmentation mask while pixels that belong to multiple detection masks are marked as invalid. """ COCO_TO_VOC_LABEL_MAP = dict( zip( [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72], range(21), ) ) INVALID_VALUE = 255 def _coco_detection_masks_to_voc_segmentation_mask(self, target): if "masks" not in target: return None instance_masks, instance_labels_coco = target["masks"], target["labels"] valid_labels_voc = [ (idx, label_voc) for idx, label_coco in enumerate(instance_labels_coco.tolist()) if (label_voc := self.COCO_TO_VOC_LABEL_MAP.get(label_coco)) is not None ] if not valid_labels_voc: return None valid_voc_category_idcs, instance_labels_voc = zip(*valid_labels_voc) instance_masks = instance_masks[list(valid_voc_category_idcs)].to(torch.uint8) instance_labels_voc = torch.tensor(instance_labels_voc, dtype=torch.uint8) # Calling `.max()` on the stacked detection masks works fine to separate background from foreground as long as # there is at most a single instance per pixel. Overlapping instances will be filtered out in the next step. segmentation_mask, _ = (instance_masks * instance_labels_voc.reshape(-1, 1, 1)).max(dim=0) segmentation_mask[instance_masks.sum(dim=0) > 1] = self.INVALID_VALUE return segmentation_mask def forward(self, image, target): segmentation_mask = self._coco_detection_masks_to_voc_segmentation_mask(target) if segmentation_mask is None: segmentation_mask = torch.zeros(v2.functional.get_size(image), dtype=torch.uint8) return image, tv_tensors.Mask(segmentation_mask)
"""This file only exists to be lazy-imported and avoid V2-related import warnings when just using V1.""" import torch from torchvision import datapoints from torchvision.transforms import v2 class PadIfSmaller(v2.Transform): def __init__(self, size, fill=0): super().__init__() self.size = size self.fill = v2._utils._setup_fill_arg(fill) def _get_params(self, sample): _, height, width = v2._utils.query_chw(sample) padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)] needs_padding = any(padding) return dict(padding=padding, needs_padding=needs_padding) def _transform(self, inpt, params): if not params["needs_padding"]: return inpt fill = v2._utils._get_fill(self.fill, type(inpt)) fill = v2._utils._convert_fill_arg(fill) return v2.functional.pad(inpt, padding=params["padding"], fill=fill) class CocoDetectionToVOCSegmentation(v2.Transform): """Turn samples from datasets.CocoDetection into the same format as VOCSegmentation. This is achieved in two steps: 1. COCO differentiates between 91 categories while VOC only supports 21, including background for both. Fortunately, the COCO categories are a superset of the VOC ones and thus can be mapped. Instances of the 70 categories not present in VOC are dropped and replaced by background. 2. COCO only offers detection masks, i.e. a (N, H, W) bool-ish tensor, where the truthy values in each individual mask denote the instance. However, a segmentation mask is a (H, W) integer tensor (typically torch.uint8), where the value of each pixel denotes the category it belongs to. The detection masks are merged into one segmentation mask while pixels that belong to multiple detection masks are marked as invalid. """ COCO_TO_VOC_LABEL_MAP = dict( zip( [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72], range(21), ) ) INVALID_VALUE = 255 def _coco_detection_masks_to_voc_segmentation_mask(self, target): if "masks" not in target: return None instance_masks, instance_labels_coco = target["masks"], target["labels"] valid_labels_voc = [ (idx, label_voc) for idx, label_coco in enumerate(instance_labels_coco.tolist()) if (label_voc := self.COCO_TO_VOC_LABEL_MAP.get(label_coco)) is not None ] if not valid_labels_voc: return None valid_voc_category_idcs, instance_labels_voc = zip(*valid_labels_voc) instance_masks = instance_masks[list(valid_voc_category_idcs)].to(torch.uint8) instance_labels_voc = torch.tensor(instance_labels_voc, dtype=torch.uint8) # Calling `.max()` on the stacked detection masks works fine to separate background from foreground as long as # there is at most a single instance per pixel. Overlapping instances will be filtered out in the next step. segmentation_mask, _ = (instance_masks * instance_labels_voc.reshape(-1, 1, 1)).max(dim=0) segmentation_mask[instance_masks.sum(dim=0) > 1] = self.INVALID_VALUE return segmentation_mask def forward(self, image, target): segmentation_mask = self._coco_detection_masks_to_voc_segmentation_mask(target) if segmentation_mask is None: segmentation_mask = torch.zeros(v2.functional.get_size(image), dtype=torch.uint8) return image, datapoints.Mask(segmentation_mask)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from .audio_clip.model import AudioCLIP class AudioCLIPTextEncoder(Executor): """ Encode text data with the AudioCLIP model """ def __init__( self, model_path: str = '.cache/AudioCLIP-Full-Training.pt', tokenizer_path: str = '.cache/bpe_simple_vocab_16e6.txt.gz', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', download_model: bool = True, *args, **kwargs ): """ :param model_path: path to the pre-trained AudioCLIP model. :param traversal_paths: default traversal path (used if not specified in request's parameters) :param batch_size: default batch size (used if not specified in request's parameters) :param device: device that the model is on (should be "cpu", "cuda" or "cuda:X", where X is the index of the GPU on the machine) """ super().__init__(*args, **kwargs) if download_model: import os import subprocess root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) subprocess.call(['sh', 'scripts/download_full.sh'], cwd=root_path) self.model = ( AudioCLIP( pretrained=model_path, bpe_path=tokenizer_path, ) .to(device) .eval() ) self.traversal_paths = traversal_paths self.batch_size = batch_size @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, *args, **kwargs ) -> None: """ Method to create embeddings for documents by encoding their text. :param docs: A document array with documents to create embeddings for. Only the documents that have the ``text`` attribute will get embeddings. :param parameters: A dictionary that contains parameters to control encoding. The accepted keys are ``traversal_paths`` and ``batch_size`` - in their absence their corresponding default values are used. """ if not docs: return batch_generator = docs.batch( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), require_attr='text', ) with torch.inference_mode(): for batch in batch_generator: embeddings = self.model.encode_text(text=[[doc.text] for doc in batch]) embeddings = embeddings.cpu().numpy() for idx, doc in enumerate(batch): doc.embedding = embeddings[idx]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from .audio_clip.model import AudioCLIP class AudioCLIPTextEncoder(Executor): """ Encode text data with the AudioCLIP model """ def __init__( self, model_path: str = '.cache/AudioCLIP-Full-Training.pt', tokenizer_path: str = '.cache/bpe_simple_vocab_16e6.txt.gz', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs ): """ :param model_path: path to the pre-trained AudioCLIP model. :param traversal_paths: default traversal path (used if not specified in request's parameters) :param batch_size: default batch size (used if not specified in request's parameters) :param device: device that the model is on (should be "cpu", "cuda" or "cuda:X", where X is the index of the GPU on the machine) """ super().__init__(*args, **kwargs) self.model = ( AudioCLIP( pretrained=model_path, bpe_path=tokenizer_path, ) .to(device) .eval() ) self.traversal_paths = traversal_paths self.batch_size = batch_size @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, *args, **kwargs ) -> None: """ Method to create embeddings for documents by encoding their text. :param docs: A document array with documents to create embeddings for. Only the documents that have the ``text`` attribute will get embeddings. :param parameters: A dictionary that contains parameters to control encoding. The accepted keys are ``traversal_paths`` and ``batch_size`` - in their absence their corresponding default values are used. """ if not docs: return batch_generator = docs.batch( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), require_attr='text', ) with torch.inference_mode(): for batch in batch_generator: embeddings = self.model.encode_text(text=[[doc.text] for doc in batch]) embeddings = embeddings.cpu().numpy() for idx, doc in enumerate(batch): doc.embedding = embeddings[idx]
"""Markdown parser. Contains parser for md files. """ import re from pathlib import Path from fsspec import AbstractFileSystem from fsspec.implementations.local import LocalFileSystem from typing import Any, Dict, List, Optional, Tuple from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MarkdownReader(BaseReader): """Markdown parser. Extract text from markdown files. Returns dictionary with keys as headers and values as the text between headers. """ def __init__( self, *args: Any, remove_hyperlinks: bool = True, remove_images: bool = True, **kwargs: Any, ) -> None: """Init params.""" super().__init__(*args, **kwargs) self._remove_hyperlinks = remove_hyperlinks self._remove_images = remove_images def markdown_to_tups(self, markdown_text: str) -> List[Tuple[Optional[str], str]]: """Convert a markdown file to a dictionary. The keys are the headers and the values are the text under each header. """ markdown_tups: List[Tuple[Optional[str], str]] = [] lines = markdown_text.split("\n") current_header = None current_lines = [] in_code_block = False for line in lines: if line.startswith("```"): # This is the end of a code block if we are already in it, and vice versa. in_code_block = not in_code_block header_match = re.match(r"^#+\s", line) if not in_code_block and header_match: # Upon first header, skip if current text chunk is empty if current_header is not None or len(current_lines) > 0: markdown_tups.append((current_header, "\n".join(current_lines))) current_header = line current_lines.clear() else: current_lines.append(line) # Append final text chunk markdown_tups.append((current_header, "\n".join(current_lines))) # Postprocess the tuples before returning return [ ( key if key is None else re.sub(r"#", "", key).strip(), re.sub(r"<.*?>", "", value), ) for key, value in markdown_tups ] def remove_images(self, content: str) -> str: """Remove images in markdown content but keep the description.""" pattern = r"![(.?)](.?)" return re.sub(pattern, r"\1", content) def remove_hyperlinks(self, content: str) -> str: """Remove hyperlinks in markdown content.""" pattern = r"\[(.*?)\]\((.*?)\)" return re.sub(pattern, r"\1", content) def _init_parser(self) -> Dict: """Initialize the parser with the config.""" return {} def parse_tups( self, filepath: Path, errors: str = "ignore", fs: Optional[AbstractFileSystem] = None, ) -> List[Tuple[Optional[str], str]]: """Parse file into tuples.""" fs = fs or LocalFileSystem() with fs.open(filepath, encoding="utf-8") as f: content = f.read().decode(encoding="utf-8") if self._remove_hyperlinks: content = self.remove_hyperlinks(content) if self._remove_images: content = self.remove_images(content) return self.markdown_to_tups(content) def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file into string.""" tups = self.parse_tups(file, fs=fs) results = [] # TODO: don't include headers right now for header, value in tups: if header is None: results.append(Document(text=value, metadata=extra_info or {})) else: results.append( Document(text=f"\n\n{header}\n{value}", metadata=extra_info or {}) ) return results
"""Markdown parser. Contains parser for md files. """ import re from pathlib import Path from fsspec import AbstractFileSystem from fsspec.implementations.local import LocalFileSystem from typing import Any, Dict, List, Optional, Tuple from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MarkdownReader(BaseReader): """Markdown parser. Extract text from markdown files. Returns dictionary with keys as headers and values as the text between headers. """ def __init__( self, *args: Any, remove_hyperlinks: bool = True, remove_images: bool = True, **kwargs: Any, ) -> None: """Init params.""" super().__init__(*args, **kwargs) self._remove_hyperlinks = remove_hyperlinks self._remove_images = remove_images def markdown_to_tups(self, markdown_text: str) -> List[Tuple[Optional[str], str]]: """Convert a markdown file to a dictionary. The keys are the headers and the values are the text under each header. """ markdown_tups: List[Tuple[Optional[str], str]] = [] lines = markdown_text.split("\n") current_header = None current_lines = [] in_code_block = False for line in lines: if line.startswith("```"): # This is the end of a code block if we are already in it, and vice versa. in_code_block = not in_code_block header_match = re.match(r"^#+\s", line) if not in_code_block and header_match: # Upon first header, skip if current text chunk is empty if current_header is not None or len(current_lines) > 0: markdown_tups.append((current_header, "\n".join(current_lines))) current_header = line current_lines.clear() else: current_lines.append(line) # Append final text chunk markdown_tups.append((current_header, "\n".join(current_lines))) # Postprocess the tuples before returning return [ ( key if key is None else re.sub(r"#", "", key).strip(), re.sub(r"<.*?>", "", value), ) for key, value in markdown_tups ] def remove_images(self, content: str) -> str: """Remove images in markdown content.""" pattern = r"!{1}\[\[(.*)\]\]" return re.sub(pattern, "", content) def remove_hyperlinks(self, content: str) -> str: """Remove hyperlinks in markdown content.""" pattern = r"\[(.*?)\]\((.*?)\)" return re.sub(pattern, r"\1", content) def _init_parser(self) -> Dict: """Initialize the parser with the config.""" return {} def parse_tups( self, filepath: Path, errors: str = "ignore", fs: Optional[AbstractFileSystem] = None, ) -> List[Tuple[Optional[str], str]]: """Parse file into tuples.""" fs = fs or LocalFileSystem() with fs.open(filepath, encoding="utf-8") as f: content = f.read().decode(encoding="utf-8") if self._remove_hyperlinks: content = self.remove_hyperlinks(content) if self._remove_images: content = self.remove_images(content) return self.markdown_to_tups(content) def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file into string.""" tups = self.parse_tups(file, fs=fs) results = [] # TODO: don't include headers right now for header, value in tups: if header is None: results.append(Document(text=value, metadata=extra_info or {})) else: results.append( Document(text=f"\n\n{header}\n{value}", metadata=extra_info or {}) ) return results
# Copyright (c) OpenMMLab. All rights reserved. from .builder import DATASETS from .coco import CocoDataset @DATASETS.register_module() class DeepFashionDataset(CocoDataset): CLASSES = ('top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag', 'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair', 'skin', 'face')
from .builder import DATASETS from .coco import CocoDataset @DATASETS.register_module() class DeepFashionDataset(CocoDataset): CLASSES = ('top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag', 'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair', 'skin', 'face')
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 75.00 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.22 (Threshold: 0.5974) Precision with Cosine-Similarity: 54.18 Recall with Cosine-Similarity: 88.51 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.56 Accuracy with Dot-Product: 76.50 (Threshold: 23.4236) F1 with Dot-Product: 67.00 (Threshold: 19.0095) Precision with Dot-Product: 55.93 Recall with Dot-Product: 83.54 Average Precision with Dot-Product: 65.89 Matthews Correlation with Dot-Product: 48.88 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0041) F1 with Euclidean-Distance: 48.60 (Threshold: -0.1876) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.0263) F1 with Manhattan-Distance: 48.60 (Threshold: -0.8532) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 Model Sparsity: Active Dimensions: 61.2, Sparsity Ratio: 0.9980 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 Model Sparsity: Active Dimensions: 63.1, Sparsity Ratio: 0.9979 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
import logging import os from typing import Any, Callable, Optional, Tuple, Union from llama_index.core.base.llms.generic_utils import get_from_param_or_env from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, stop_after_delay, wait_exponential, wait_random_exponential, ) from tenacity.stop import stop_base import openai from openai.types.chat import ChatCompletionMessageToolCall from openai.types.chat.chat_completion_chunk import ChoiceDeltaToolCall DEFAULT_OPENAI_API_BASE = "https://api.openai.com/v1" DEFAULT_OPENAI_API_VERSION = "" MISSING_API_KEY_ERROR_MESSAGE = """No API key found for OpenAI. Please set either the OPENAI_API_KEY environment variable or \ openai.api_key prior to initialization. API keys can be found or created at \ https://platform.openai.com/account/api-keys """ logger = logging.getLogger(__name__) OpenAIToolCall = Union[ChatCompletionMessageToolCall, ChoiceDeltaToolCall] def create_retry_decorator( max_retries: int, random_exponential: bool = False, stop_after_delay_seconds: Optional[float] = None, min_seconds: float = 4, max_seconds: float = 10, ) -> Callable[[Any], Any]: wait_strategy = ( wait_random_exponential(min=min_seconds, max=max_seconds) if random_exponential else wait_exponential(multiplier=1, min=min_seconds, max=max_seconds) ) stop_strategy: stop_base = stop_after_attempt(max_retries) if stop_after_delay_seconds is not None: stop_strategy = stop_strategy | stop_after_delay(stop_after_delay_seconds) return retry( reraise=True, stop=stop_strategy, wait=wait_strategy, retry=( retry_if_exception_type( ( openai.APIConnectionError, openai.APITimeoutError, openai.RateLimitError, openai.InternalServerError, ) ) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def resolve_openai_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, ) -> Tuple[Optional[str], str, str]: """ "Resolve OpenAI credentials. The order of precedence is: 1. param 2. env 3. openai module 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "OPENAI_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "OPENAI_API_BASE", "") api_version = get_from_param_or_env( "api_version", api_version, "OPENAI_API_VERSION", "" ) # resolve from openai module or default final_api_key = api_key or openai.api_key or "" final_api_base = api_base or openai.base_url or DEFAULT_OPENAI_API_BASE final_api_version = api_version or openai.api_version or DEFAULT_OPENAI_API_VERSION return final_api_key, str(final_api_base), final_api_version def validate_openai_api_key(api_key: Optional[str] = None) -> None: openai_api_key = api_key or os.environ.get("OPENAI_API_KEY", "") if not openai_api_key: raise ValueError(MISSING_API_KEY_ERROR_MESSAGE)
import logging import os from typing import Any, Callable, Optional, Tuple, Union from llama_index.core.base.llms.generic_utils import get_from_param_or_env from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, stop_after_delay, wait_exponential, wait_random_exponential, ) from tenacity.stop import stop_base import openai from openai.types.chat import ChatCompletionMessageToolCall from openai.types.chat.chat_completion_chunk import ChoiceDeltaToolCall DEFAULT_OPENAI_API_BASE = "https://api.openai.com/v1" DEFAULT_OPENAI_API_VERSION = "" MISSING_API_KEY_ERROR_MESSAGE = """No API key found for OpenAI. Please set either the OPENAI_API_KEY environment variable or \ openai.api_key prior to initialization. API keys can be found or created at \ https://platform.openai.com/account/api-keys """ logger = logging.getLogger(__name__) OpenAIToolCall = Union[ChatCompletionMessageToolCall, ChoiceDeltaToolCall] def create_retry_decorator( max_retries: int, random_exponential: bool = False, stop_after_delay_seconds: Optional[float] = None, min_seconds: float = 4, max_seconds: float = 10, ) -> Callable[[Any], Any]: wait_strategy = ( wait_random_exponential(min=min_seconds, max=max_seconds) if random_exponential else wait_exponential(multiplier=1, min=min_seconds, max=max_seconds) ) stop_strategy: stop_base = stop_after_attempt(max_retries) if stop_after_delay_seconds is not None: stop_strategy = stop_strategy | stop_after_delay(stop_after_delay_seconds) return retry( reraise=True, stop=stop_strategy, wait=wait_strategy, retry=( retry_if_exception_type( ( openai.APIConnectionError, openai.APITimeoutError, openai.RateLimitError, openai.InternalServerError, ) ) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def resolve_openai_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, ) -> Tuple[Optional[str], str, str]: """ "Resolve OpenAI credentials. The order of precedence is: 1. param 2. env 3. openai module 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "OPENAI_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "OPENAI_API_BASE", "") api_version = get_from_param_or_env( "api_version", api_version, "OPENAI_API_VERSION", "" ) # resolve from openai module or default final_api_key = api_key or openai.api_key or "" final_api_base = api_base or openai.base_url or DEFAULT_OPENAI_API_BASE final_api_version = api_version or openai.api_version or DEFAULT_OPENAI_API_VERSION return final_api_key, str(final_api_base), final_api_version def validate_openai_api_key(api_key: Optional[str] = None) -> None: openai_api_key = api_key or os.environ.get("OPENAI_API_KEY", "") if not openai_api_key: raise ValueError(MISSING_API_KEY_ERROR_MESSAGE)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict import pytest import numpy as np from jina import DocumentArray, Document from ...torch_encoder import ImageTorchEncoder MODELS_TO_TEST = [ 'mobilenet_v2', 'squeezenet1_0', 'alexnet', 'vgg11', 'densenet121', 'mnasnet0_5', ] @pytest.mark.parametrize( 'model_name', MODELS_TO_TEST ) def test_load_torch_models(model_name: str, test_images: Dict[str, np.array]): encoder = ImageTorchEncoder(model_name=model_name) docs = DocumentArray([Document(blob=img_arr) for img_arr in test_images.values()]) encoder.encode( docs=docs, parameters={} ) for doc in docs: assert doc.embedding is not None
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict import pytest import numpy as np from jina import DocumentArray, Document try: from torch_encoder import ImageTorchEncoder except: from jinahub.image.encoder.torch_encoder import ImageTorchEncoder MODELS_TO_TEST = [ 'mobilenet_v2', 'squeezenet1_0', 'alexnet', 'vgg11', 'densenet121', 'mnasnet0_5', ] @pytest.mark.parametrize( 'model_name', MODELS_TO_TEST ) def test_load_torch_models(model_name: str, test_images: Dict[str, np.array]): encoder = ImageTorchEncoder(model_name=model_name) docs = DocumentArray([Document(blob=img_arr) for img_arr in test_images.values()]) encoder.encode( docs=docs, parameters={} ) for doc in docs: assert doc.embedding is not None
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class GridRCNN(TwoStageDetector): """Grid R-CNN. This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688) """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(GridRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class GridRCNN(TwoStageDetector): """Grid R-CNN. This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688) """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(GridRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.core import DetDataSample from .utils import demo_mm_inputs, get_detector_cfg class TestSingleStageDetector(TestCase): @parameterized.expand([ 'retinanet/retinanet_r18_fpn_1x_coco.py', 'centernet/centernet_resnet18_140e_coco.py' ]) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) assert detector.backbone assert detector.neck assert detector.bbox_head assert detector.device.type == 'cpu' @parameterized.expand([ ('retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda')), ('centernet/centernet_resnet18_140e_coco.py', ('cpu', 'cuda')) ]) def test_single_stage_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) detector.init_weights() if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward train losses = detector.forward(packed_inputs, return_loss=True) assert isinstance(losses, dict) # Test forward_dummy batch = torch.ones((1, 3, 64, 64)).to(device=device) out = detector.forward_dummy(batch) assert isinstance(out, tuple) @parameterized.expand([ ('retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda')), ('centernet/centernet_resnet18_140e_coco.py', ('cpu', 'cuda')) ]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( packed_inputs, return_loss=False) assert len(batch_results) == 2 assert isinstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.core import DetDataSample from .utils import demo_mm_inputs, get_detector_cfg class TestSingleStageDetector(TestCase): @parameterized.expand(['retinanet/retinanet_r18_fpn_1x_coco.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) assert detector.backbone assert detector.neck assert detector.bbox_head assert detector.device.type == 'cpu' @parameterized.expand([('retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_single_stage_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward train losses = detector.forward(packed_inputs, return_loss=True) assert isinstance(losses, dict) # Test forward_dummy batch = torch.ones((1, 3, 64, 64)).to(device=device) out = detector.forward_dummy(batch) assert isinstance(out, tuple) assert len(out) == 2 @parameterized.expand([('retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( packed_inputs, return_loss=False) assert len(batch_results) == 2 assert isinstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner, MaxIoUAssigner, RegionAssigner) from .builder import build_assigner, build_bbox_coder, build_sampler from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, DistancePointBBoxCoder, PseudoBBoxCoder, TBLRBBoxCoder) from .iou_calculators import BboxOverlaps2D, bbox_overlaps from .match_costs import (BBoxL1Cost, ClassificationCost, CrossEntropyLossCost, DiceCost, FocalLossCost, IoUCost) from .samplers import (BaseSampler, CombinedSampler, InstanceBalancedPosSampler, IoUBalancedNegSampler, OHEMSampler, PseudoSampler, RandomSampler, SamplingResult, ScoreHLRSampler) from .transforms import (bbox2corner, bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_project, bbox_rescale, bbox_xyxy_to_cxcywh, corner2bbox, distance2bbox, find_inside_bboxes, roi2bbox) __all__ = [ 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner', 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'DistancePointBBoxCoder', 'CenterRegionAssigner', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'RegionAssigner', 'find_inside_bboxes', 'bbox2corner', 'corner2bbox', 'bbox_project', 'BBoxL1Cost', 'FocalLossCost', 'ClassificationCost', 'IoUCost', 'DiceCost', 'CrossEntropyLossCost' ]
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner, MaxIoUAssigner, RegionAssigner) from .builder import build_assigner, build_bbox_coder, build_sampler from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, DistancePointBBoxCoder, PseudoBBoxCoder, TBLRBBoxCoder) from .iou_calculators import BboxOverlaps2D, bbox_overlaps from .samplers import (BaseSampler, CombinedSampler, InstanceBalancedPosSampler, IoUBalancedNegSampler, OHEMSampler, PseudoSampler, RandomSampler, SamplingResult, ScoreHLRSampler) from .transforms import (bbox2corner, bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_project, bbox_rescale, bbox_xyxy_to_cxcywh, corner2bbox, distance2bbox, find_inside_bboxes, roi2bbox) __all__ = [ 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner', 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'DistancePointBBoxCoder', 'CenterRegionAssigner', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'RegionAssigner', 'find_inside_bboxes', 'bbox2corner', 'corner2bbox', 'bbox_project' ]
from io import BytesIO from typing import TYPE_CHECKING, Any, List, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of: - a [`VideoNdArray`][docarray.typing.VideoNdArray] (`VideoLoadResult.video`) - an [`AudioNdArray`][docarray.typing.AudioNdArray] (`VideoLoadResult.audio`) - an [`NdArray`][docarray.typing.NdArray] containing the key frame indices (`VideoLoadResult.key_frame_indices`). --- ```python from docarray import BaseDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray, VideoUrl class MyDoc(BaseDoc): video_url: VideoUrl doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, VideoNdArray) assert isinstance(audio, AudioNdArray) assert isinstance(key_frame_indices, NdArray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described [here](https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open) :return: a `VideoLoadResult` instance with video, audio and keyframe indices """ if TYPE_CHECKING: import av else: av = import_library('av') with av.open(BytesIO(self), **kwargs) as container: audio_frames: List[np.ndarray] = [] video_frames: List[np.ndarray] = [] keyframe_indices: List[int] = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) video_frames.append(frame.to_ndarray(format='rgb24')) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
from io import BytesIO from typing import TYPE_CHECKING, Any, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of: - a [`VideoNdArray`][docarray.typing.VideoNdArray] (`VideoLoadResult.video`) - an [`AudioNdArray`][docarray.typing.AudioNdArray] (`VideoLoadResult.audio`) - an [`NdArray`][docarray.typing.NdArray] containing the key frame indices (`VideoLoadResult.key_frame_indices`). --- ```python from docarray import BaseDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray, VideoUrl class MyDoc(BaseDoc): video_url: VideoUrl doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, VideoNdArray) assert isinstance(audio, AudioNdArray) assert isinstance(key_frame_indices, NdArray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described [here](https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open) :return: a `VideoLoadResult` instance with video, audio and keyframe indices """ if TYPE_CHECKING: import av else: av = import_library('av') with av.open(BytesIO(self), **kwargs) as container: audio_frames = [] video_frames = [] keyframe_indices = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: video_frames.append(frame.to_ndarray(format='rgb24')) if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
# Copyright (c) OpenMMLab. All rights reserved. from .amp_optimizer_wrapper import AmpOptimWrapper from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, build_optim_wrapper) from .default_constructor import DefaultOptimWrapperConstructor from .optimizer_wrapper import OptimWrapper from .optimizer_wrapper_dict import OptimWrapperDict from .zero_optimizer import ZeroRedundancyOptimizer __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimWrapperConstructor', 'build_optim_wrapper', 'OptimWrapper', 'AmpOptimWrapper', 'OptimWrapperDict', 'ZeroRedundancyOptimizer' ]
# Copyright (c) OpenMMLab. All rights reserved. from .amp_optimizer_wrapper import AmpOptimWrapper from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, build_optim_wrapper) from .default_constructor import DefaultOptimWrapperConstructor from .optimizer_wrapper import OptimWrapper from .optimizer_wrapper_dict import OptimWrapperDict __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimWrapperConstructor', 'build_optim_wrapper', 'OptimWrapper', 'AmpOptimWrapper', 'OptimWrapperDict' ]
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import LuminaNextDiT2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class LuminaNextDiT2DModelTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = LuminaNextDiT2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): """ Args: None Returns: Dict: Dictionary of dummy input tensors """ batch_size = 2 # N num_channels = 4 # C height = width = 16 # H, W embedding_dim = 32 # D sequence_length = 16 # L hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.rand(size=(batch_size,)).to(torch_device) encoder_mask = torch.randn(size=(batch_size, sequence_length)).to(torch_device) image_rotary_emb = torch.randn((384, 384, 4)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "encoder_mask": encoder_mask, "image_rotary_emb": image_rotary_emb, "cross_attention_kwargs": {}, } @property def input_shape(self): """ Args: None Returns: Tuple: (int, int, int) """ return (4, 16, 16) @property def output_shape(self): """ Args: None Returns: Tuple: (int, int, int) """ return (4, 16, 16) def prepare_init_args_and_inputs_for_common(self): """ Args: None Returns: Tuple: (Dict, Dict) """ init_dict = { "sample_size": 16, "patch_size": 2, "in_channels": 4, "hidden_size": 24, "num_layers": 2, "num_attention_heads": 3, "num_kv_heads": 1, "multiple_of": 16, "ffn_dim_multiplier": None, "norm_eps": 1e-5, "learn_sigma": False, "qk_norm": True, "cross_attention_dim": 32, "scaling_factor": 1.0, } inputs_dict = self.dummy_input return init_dict, inputs_dict
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import LuminaNextDiT2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class LuminaNextDiT2DModelTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = LuminaNextDiT2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): """ Args: None Returns: Dict: Dictionary of dummy input tensors """ batch_size = 2 # N num_channels = 4 # C height = width = 16 # H, W embedding_dim = 32 # D sequence_length = 16 # L hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.rand(size=(batch_size,)).to(torch_device) encoder_mask = torch.randn(size=(batch_size, sequence_length)).to(torch_device) image_rotary_emb = torch.randn((384, 384, 4)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "encoder_mask": encoder_mask, "image_rotary_emb": image_rotary_emb, "cross_attention_kwargs": {}, } @property def input_shape(self): """ Args: None Returns: Tuple: (int, int, int) """ return (4, 16, 16) @property def output_shape(self): """ Args: None Returns: Tuple: (int, int, int) """ return (4, 16, 16) def prepare_init_args_and_inputs_for_common(self): """ Args: None Returns: Tuple: (Dict, Dict) """ init_dict = { "sample_size": 16, "patch_size": 2, "in_channels": 4, "hidden_size": 24, "num_layers": 2, "num_attention_heads": 3, "num_kv_heads": 1, "multiple_of": 16, "ffn_dim_multiplier": None, "norm_eps": 1e-5, "learn_sigma": False, "qk_norm": True, "cross_attention_dim": 32, "scaling_factor": 1.0, } inputs_dict = self.dummy_input return init_dict, inputs_dict
from keras.src import regularizers from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ActivityRegularization") class ActivityRegularization(Layer): """Layer that applies an update to the cost function based input activity. Args: l1: L1 regularization factor (positive float). l2: L2 regularization factor (positive float). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, l1=0.0, l2=0.0, **kwargs): super().__init__( activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs ) self.supports_masking = True self.l1 = l1 self.l2 = l2 self.built = True def call(self, inputs): return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() base_config.pop("activity_regularizer", None) config = {"l1": self.l1, "l2": self.l2} return {**base_config, **config}
from keras.src import regularizers from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ActivityRegularization") class ActivityRegularization(Layer): """Layer that applies an update to the cost function based input activity. Args: l1: L1 regularization factor (positive float). l2: L2 regularization factor (positive float). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, l1=0.0, l2=0.0, **kwargs): super().__init__( activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs ) self.supports_masking = True self.l1 = l1 self.l2 = l2 def call(self, inputs): return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() base_config.pop("activity_regularizer", None) config = {"l1": self.l1, "l2": self.l2} return {**base_config, **config}
from typing import List, Union class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
from typing import Union, List class InputExample: """ Structure for one input example with texts, the label and a unique id """ def __init__(self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label :param guid id for the example :param texts the texts for the example. :param label the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))