input
stringlengths
33
5k
output
stringlengths
32
5k
# TODO: Awaiting refactoring _base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # Set evaluation interval evaluation = dict(interval=2) # Set checkpoint interval checkpoint_config = dict(interval=4) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='MMDetWandbHook', init_kwargs={ 'project': 'mmdetection', 'group': 'maskrcnn-r50-fpn-1x-coco' }, interval=50, log_checkpoint=True, log_checkpoint_metadata=True, num_eval_images=100) ])
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # Set evaluation interval evaluation = dict(interval=2) # Set checkpoint interval checkpoint_config = dict(interval=4) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='MMDetWandbHook', init_kwargs={ 'project': 'mmdetection', 'group': 'maskrcnn-r50-fpn-1x-coco' }, interval=50, log_checkpoint=True, log_checkpoint_metadata=True, num_eval_images=100) ])
import pytest from typing import List from unittest.mock import patch, MagicMock from llama_index.embeddings.ibm import WatsonxEmbeddings class TestWasonxLLMInference: TEST_URL = "https://us-south.ml.cloud.ibm.com" TEST_APIKEY = "apikey" TEST_PROJECT_ID = "project_id" TEST_MODEL = "test_model" def mock_embed_query(self) -> List[float]: return [-0.053358648, -0.009175377, -0.025022397] def mock_embed_texts(self) -> List[List[float]]: return [ [-0.053358648, -0.009175377, -0.025022397], [-0.053358648, -0.009175377, -0.025022397], ] def test_initialization(self) -> None: with pytest.raises(ValueError, match=r"^Did not find") as e_info: _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, project_id=self.TEST_PROJECT_ID ) # Cloud scenario with pytest.raises( ValueError, match=r"^Did not find 'apikey' or 'token'," ) as e_info: _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, project_id=self.TEST_PROJECT_ID, ) # CPD scenario with pytest.raises(ValueError, match=r"^Did not find instance_id") as e_info: _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, token="123", url="cpd-instance", project_id=self.TEST_PROJECT_ID, ) @patch("llama_index.embeddings.ibm.base.Embeddings") def test_get_query_embedding(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_query.return_value = self.mock_embed_query() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) assert embed.get_query_embedding(query="TEST") == self.mock_embed_query() @patch("llama_index.embeddings.ibm.base.Embeddings") def test_get_texts_embedding(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_documents.return_value = self.mock_embed_texts() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) assert ( embed.get_text_embedding_batch(texts=["TEST1", "TEST2"]) == self.mock_embed_texts() ) @pytest.mark.asyncio @patch("llama_index.embeddings.ibm.base.Embeddings") async def test_get_query_embedding_async(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_query.return_value = self.mock_embed_query() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) response = await embed.aget_text_embedding("TEST1") assert response == self.mock_embed_query()
import pytest from typing import List from unittest.mock import patch, MagicMock from llama_index.embeddings.ibm import WatsonxEmbeddings class TestWasonxLLMInference: TEST_URL = "https://us-south.ml.cloud.ibm.com" TEST_APIKEY = "apikey" TEST_PROJECT_ID = "project_id" TEST_MODEL = "test_model" def mock_embed_query(self) -> List[float]: return [-0.053358648, -0.009175377, -0.025022397] def mock_embed_texts(self) -> List[List[float]]: return [ [-0.053358648, -0.009175377, -0.025022397], [-0.053358648, -0.009175377, -0.025022397], ] def test_initialization(self) -> None: with pytest.raises(ValueError, match=r"^Did not find") as e_info: _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, project_id=self.TEST_PROJECT_ID ) # Cloud scenario with pytest.raises( ValueError, match=r"^Did not find 'apikey' or 'token'," ) as e_info: _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, project_id=self.TEST_PROJECT_ID, ) # CPD scenario with pytest.raises(ValueError, match=r"^Did not find instance_id") as e_info: _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, token="123", url="cpd-instance", project_id=self.TEST_PROJECT_ID, ) @patch("llama_index.embeddings.ibm.base.Embeddings") def test_get_query_embedding(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_query.return_value = self.mock_embed_query() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) assert embed.get_query_embedding(query="TEST") == self.mock_embed_query() @patch("llama_index.embeddings.ibm.base.Embeddings") def test_get_texts_embedding(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_documents.return_value = self.mock_embed_texts() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) assert ( embed.get_text_embedding_batch(texts=["TEST1", "TEST2"]) == self.mock_embed_texts() ) @pytest.mark.asyncio() @patch("llama_index.embeddings.ibm.base.Embeddings") async def test_get_query_embedding_async(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_query.return_value = self.mock_embed_query() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) response = await embed.aget_text_embedding("TEST1") assert response == self.mock_embed_query()
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # We generate a dataset with two concentric circles. In addition, a label # is associated with each sample of the dataset that is: 0 (belonging to # the outer circle), 1 (belonging to the inner circle), and -1 (unknown). # Here, all labels but two are tagged as unknown. import numpy as np from sklearn.datasets import make_circles n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = np.full(n_samples, -1.0) labels[0] = outer labels[-1] = inner # %% # Plot raw data import matplotlib.pyplot as plt plt.figure(figsize=(4, 4)) plt.scatter( X[labels == outer, 0], X[labels == outer, 1], color="navy", marker="s", lw=0, label="outer labeled", s=10, ) plt.scatter( X[labels == inner, 0], X[labels == inner, 1], color="c", marker="s", lw=0, label="inner labeled", s=10, ) plt.scatter( X[labels == -1, 0], X[labels == -1, 1], color="darkorange", marker=".", label="unlabeled", ) plt.legend(scatterpoints=1, shadow=False, loc="center") _ = plt.title("Raw data (2 classes=outer and inner)") # %% # # The aim of :class:`~sklearn.semi_supervised.LabelSpreading` is to associate # a label to sample where the label is initially unknown. from sklearn.semi_supervised import LabelSpreading label_spread = LabelSpreading(kernel="knn", alpha=0.8) label_spread.fit(X, labels) # %% # Now, we can check which labels have been associated with each sample # when the label was unknown. output_labels = label_spread.transduction_ output_label_array = np.asarray(output_labels) outer_numbers = (output_label_array == outer).nonzero()[0] inner_numbers = (output_label_array == inner).nonzero()[0] plt.figure(figsize=(4, 4)) plt.scatter( X[outer_numbers, 0], X[outer_numbers, 1], color="navy", marker="s", lw=0, s=10, label="outer learned", ) plt.scatter( X[inner_numbers, 0], X[inner_numbers, 1], color="c", marker="s", lw=0, s=10, label="inner learned", ) plt.legend(scatterpoints=1, shadow=False, loc="center") plt.title("Labels learned with Label Spreading (KNN)") plt.show()
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # We generate a dataset with two concentric circles. In addition, a label # is associated with each sample of the dataset that is: 0 (belonging to # the outer circle), 1 (belonging to the inner circle), and -1 (unknown). # Here, all labels but two are tagged as unknown. import numpy as np from sklearn.datasets import make_circles n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = np.full(n_samples, -1.0) labels[0] = outer labels[-1] = inner # %% # Plot raw data import matplotlib.pyplot as plt plt.figure(figsize=(4, 4)) plt.scatter( X[labels == outer, 0], X[labels == outer, 1], color="navy", marker="s", lw=0, label="outer labeled", s=10, ) plt.scatter( X[labels == inner, 0], X[labels == inner, 1], color="c", marker="s", lw=0, label="inner labeled", s=10, ) plt.scatter( X[labels == -1, 0], X[labels == -1, 1], color="darkorange", marker=".", label="unlabeled", ) plt.legend(scatterpoints=1, shadow=False, loc="center") _ = plt.title("Raw data (2 classes=outer and inner)") # %% # # The aim of :class:`~sklearn.semi_supervised.LabelSpreading` is to associate # a label to sample where the label is initially unknown. from sklearn.semi_supervised import LabelSpreading label_spread = LabelSpreading(kernel="knn", alpha=0.8) label_spread.fit(X, labels) # %% # Now, we can check which labels have been associated with each sample # when the label was unknown. output_labels = label_spread.transduction_ output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plt.figure(figsize=(4, 4)) plt.scatter( X[outer_numbers, 0], X[outer_numbers, 1], color="navy", marker="s", lw=0, s=10, label="outer learned", ) plt.scatter( X[inner_numbers, 0], X[inner_numbers, 1], color="c", marker="s", lw=0, s=10, label="inner learned", ) plt.legend(scatterpoints=1, shadow=False, loc="center") plt.title("Labels learned with Label Spreading (KNN)") plt.show()
""" The :mod:`sklearn._loss` module includes loss function classes suitable for fitting classification and regression tasks. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from .loss import ( AbsoluteError, HalfBinomialLoss, HalfGammaLoss, HalfMultinomialLoss, HalfPoissonLoss, HalfSquaredError, HalfTweedieLoss, HalfTweedieLossIdentity, HuberLoss, PinballLoss, ) __all__ = [ "AbsoluteError", "HalfBinomialLoss", "HalfGammaLoss", "HalfMultinomialLoss", "HalfPoissonLoss", "HalfSquaredError", "HalfTweedieLoss", "HalfTweedieLossIdentity", "HuberLoss", "PinballLoss", ]
""" The :mod:`sklearn._loss` module includes loss function classes suitable for fitting classification and regression tasks. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from .loss import ( AbsoluteError, HalfBinomialLoss, HalfGammaLoss, HalfMultinomialLoss, HalfPoissonLoss, HalfSquaredError, HalfTweedieLoss, HalfTweedieLossIdentity, HuberLoss, PinballLoss, ) __all__ = [ "HalfSquaredError", "AbsoluteError", "PinballLoss", "HuberLoss", "HalfPoissonLoss", "HalfGammaLoss", "HalfTweedieLoss", "HalfTweedieLossIdentity", "HalfBinomialLoss", "HalfMultinomialLoss", ]
import os from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredPowerPointLoader(UnstructuredFileLoader): """Load `Microsoft PowerPoint` files using `Unstructured`. Works with both .ppt and .pptx files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader( "example.pptx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-pptx """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the PowerPoint file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.file_utils.filetype import FileType, detect_filetype # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_ppt = detect_filetype(self.file_path) == FileType.PPT except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_ppt = extension == ".ppt" if is_ppt: validate_unstructured_version("0.4.11") if is_ppt: from unstructured.partition.ppt import partition_ppt return partition_ppt(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.pptx import partition_pptx return partition_pptx(filename=self.file_path, **self.unstructured_kwargs)
import os from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredPowerPointLoader(UnstructuredFileLoader): """Load `Microsoft PowerPoint` files using `Unstructured`. Works with both .ppt and .pptx files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader( "example.pptx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-pptx """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the PowerPoint file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.file_utils.filetype import FileType, detect_filetype # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_ppt = detect_filetype(self.file_path) == FileType.PPT # type: ignore[arg-type] except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_ppt = extension == ".ppt" if is_ppt: validate_unstructured_version("0.4.11") if is_ppt: from unstructured.partition.ppt import partition_ppt return partition_ppt(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type] else: from unstructured.partition.pptx import partition_pptx return partition_pptx(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type]
from workflows.decorators import StepConfig # noqa from workflows.decorators import step as upstream_step # noqa from typing import Callable, Any def step(*args: Any, **kwargs: Any) -> Callable: # Remove old, unused parameter kwargs.pop("pass_context", None) return upstream_step(*args, **kwargs)
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Type from llama_index.core.bridge.pydantic import BaseModel, ConfigDict from .errors import WorkflowValidationError from .utils import ( ServiceDefinition, inspect_signature, is_free_function, validate_step_signature, ) from .resource import ResourceDefinition if TYPE_CHECKING: # pragma: no cover from .workflow import Workflow from .retry_policy import RetryPolicy class StepConfig(BaseModel): model_config = ConfigDict(arbitrary_types_allowed=True) accepted_events: List[Any] event_name: str return_types: List[Any] context_parameter: Optional[str] num_workers: int requested_services: List[ServiceDefinition] retry_policy: Optional[RetryPolicy] resources: List[ResourceDefinition] def step( *args: Any, workflow: Optional[Type["Workflow"]] = None, pass_context: bool = False, num_workers: int = 4, retry_policy: Optional[RetryPolicy] = None, ) -> Callable: """ Decorator used to mark methods and functions as workflow steps. Decorators are evaluated at import time, but we need to wait for starting the communication channels until runtime. For this reason, we temporarily store the list of events that will be consumed by this step in the function object itself. Args: workflow: Workflow class to which the decorated step will be added. Only needed when using the decorator on free functions instead of class methods. num_workers: The number of workers that will process events for the decorated step. The default value works most of the times. retry_policy: The policy used to retry a step that encountered an error while running. """ def decorator(func: Callable) -> Callable: if not isinstance(num_workers, int) or num_workers <= 0: raise WorkflowValidationError( "num_workers must be an integer greater than 0" ) # This will raise providing a message with the specific validation failure spec = inspect_signature(func) validate_step_signature(spec) event_name, accepted_events = next(iter(spec.accepted_events.items())) # store the configuration in the function object func.__step_config = StepConfig( # type: ignore[attr-defined] accepted_events=accepted_events, event_name=event_name, return_types=spec.return_types, context_parameter=spec.context_parameter, num_workers=num_workers, requested_services=spec.requested_services or [], retry_policy=retry_policy, resources=spec.resources, ) # If this is a free function, call add_step() explicitly. if is_free_function(func.__qualname__): if workflow is None: msg = f"To decorate {func.__name__} please pass a workflow class to the @step decorator." raise WorkflowValidationError(msg) workflow.add_step(func) return func if len(args): # The decorator was used without parentheses, like `@step` func = args[0] decorator(func) return func return decorator
from typing import Any from langchain_core.memory import BaseMemory class ReadOnlySharedMemory(BaseMemory): """Memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> list[str]: """Return memory variables.""" return self.memory.memory_variables def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]: """Load memory variables from memory.""" return self.memory.load_memory_variables(inputs) def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Nothing should be saved or changed""" pass def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass
from typing import Any, Dict, List from langchain_core.memory import BaseMemory class ReadOnlySharedMemory(BaseMemory): """Memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> List[str]: """Return memory variables.""" return self.memory.memory_variables def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory variables from memory.""" return self.memory.load_memory_variables(inputs) def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed""" pass def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass
import abc import importlib import pathlib from typing import Any, Collection, Dict, Iterator, List, Optional, Sequence, Union from torchdata.datapipes.iter import IterDataPipe from torchvision.datasets.utils import verify_str_arg from ._resource import OnlineResource class Dataset(IterDataPipe[Dict[str, Any]], abc.ABC): @staticmethod def _verify_str_arg( value: str, arg: Optional[str] = None, valid_values: Optional[Collection[str]] = None, *, custom_msg: Optional[str] = None, ) -> str: return verify_str_arg(value, arg, valid_values, custom_msg=custom_msg) def __init__( self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False, dependencies: Collection[str] = () ) -> None: for dependency in dependencies: try: importlib.import_module(dependency) except ModuleNotFoundError: raise ModuleNotFoundError( f"{type(self).__name__}() depends on the third-party package '{dependency}'. " f"Please install it, for example with `pip install {dependency}`." ) from None self._root = pathlib.Path(root).expanduser().resolve() resources = [ resource.load(self._root, skip_integrity_check=skip_integrity_check) for resource in self._resources() ] self._dp = self._datapipe(resources) def __iter__(self) -> Iterator[Dict[str, Any]]: yield from self._dp @abc.abstractmethod def _resources(self) -> List[OnlineResource]: pass @abc.abstractmethod def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: pass @abc.abstractmethod def __len__(self) -> int: pass def _generate_categories(self) -> Sequence[Union[str, Sequence[str]]]: raise NotImplementedError
import abc import importlib import pathlib from typing import Any, Collection, Dict, Iterator, List, Optional, Sequence, Union from torch.utils.data import IterDataPipe from torchvision.datasets.utils import verify_str_arg from ._resource import OnlineResource class Dataset(IterDataPipe[Dict[str, Any]], abc.ABC): @staticmethod def _verify_str_arg( value: str, arg: Optional[str] = None, valid_values: Optional[Collection[str]] = None, *, custom_msg: Optional[str] = None, ) -> str: return verify_str_arg(value, arg, valid_values, custom_msg=custom_msg) def __init__( self, root: Union[str, pathlib.Path], *, skip_integrity_check: bool = False, dependencies: Collection[str] = () ) -> None: for dependency in dependencies: try: importlib.import_module(dependency) except ModuleNotFoundError: raise ModuleNotFoundError( f"{type(self).__name__}() depends on the third-party package '{dependency}'. " f"Please install it, for example with `pip install {dependency}`." ) from None self._root = pathlib.Path(root).expanduser().resolve() resources = [ resource.load(self._root, skip_integrity_check=skip_integrity_check) for resource in self._resources() ] self._dp = self._datapipe(resources) def __iter__(self) -> Iterator[Dict[str, Any]]: yield from self._dp @abc.abstractmethod def _resources(self) -> List[OnlineResource]: pass @abc.abstractmethod def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: pass @abc.abstractmethod def __len__(self) -> int: pass def _generate_categories(self) -> Sequence[Union[str, Sequence[str]]]: raise NotImplementedError
import copy import warnings from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None use_auth_token = "deprecated" ignore_url_params: bool = False storage_options: Dict[str, Any] = field(default_factory=dict) download_desc: Optional[str] = None def __post_init__(self): if self.use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={self.use_auth_token}' instead.", FutureWarning, ) self.token = self.use_auth_token if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT} def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
import copy import warnings from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None use_auth_token = "deprecated" ignore_url_params: bool = False storage_options: Dict[str, Dict[str, Any]] = field(default_factory=dict) download_desc: Optional[str] = None def __post_init__(self): if self.use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={self.use_auth_token}' instead.", FutureWarning, ) self.token = self.use_auth_token if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT} def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn( f'multiprocessing start method is set to `fork`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `fork`: {e!r}' ) # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.17.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn( f'multiprocessing start method is set to `fork`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `fork`: {e!r}' ) # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.16.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def make_atom14_masks(protein: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Construct denser atom positions (14 dimensions instead of 37).""" restype_atom14_to_atom37_list = [] restype_atom37_to_atom14_list = [] restype_atom14_mask_list = [] for rt in rc.restypes: atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]] restype_atom14_to_atom37_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)} restype_atom37_to_atom14_list.append( [(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) for name in rc.atom_types] ) restype_atom14_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atom14_to_atom37_list.append([0] * 14) restype_atom37_to_atom14_list.append([0] * 37) restype_atom14_mask_list.append([0.0] * 14) restype_atom14_to_atom37 = torch.tensor( restype_atom14_to_atom37_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom37_to_atom14 = torch.tensor( restype_atom37_to_atom14_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom14_mask = torch.tensor( restype_atom14_mask_list, dtype=torch.float32, device=protein["aatype"].device, ) protein_aatype = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype] residx_atom14_mask = restype_atom14_mask[protein_aatype] protein["atom14_atom_exists"] = residx_atom14_mask protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long() # create the gather indices for mapping back residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype] protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long() # create the corresponding mask restype_atom37_mask = torch.zeros([21, 37], dtype=torch.float32, device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): restype_name = rc.restype_1to3[restype_letter] atom_names = rc.residue_atoms[restype_name] for atom_name in atom_names: atom_type = rc.atom_order[atom_name] restype_atom37_mask[restype, atom_type] = 1 residx_atom37_mask = restype_atom37_mask[protein_aatype] protein["atom37_atom_exists"] = residx_atom37_mask return protein def make_atom14_masks_np(batch: dict[str, torch.Tensor]) -> dict[str, np.ndarray]: batch = tree_map(lambda n: torch.tensor(n, device=batch["aatype"].device), batch, np.ndarray) out = tensor_tree_map(lambda t: np.array(t), make_atom14_masks(batch)) return out
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def make_atom14_masks(protein: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """Construct denser atom positions (14 dimensions instead of 37).""" restype_atom14_to_atom37_list = [] restype_atom37_to_atom14_list = [] restype_atom14_mask_list = [] for rt in rc.restypes: atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]] restype_atom14_to_atom37_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)} restype_atom37_to_atom14_list.append( [(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) for name in rc.atom_types] ) restype_atom14_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atom14_to_atom37_list.append([0] * 14) restype_atom37_to_atom14_list.append([0] * 37) restype_atom14_mask_list.append([0.0] * 14) restype_atom14_to_atom37 = torch.tensor( restype_atom14_to_atom37_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom37_to_atom14 = torch.tensor( restype_atom37_to_atom14_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom14_mask = torch.tensor( restype_atom14_mask_list, dtype=torch.float32, device=protein["aatype"].device, ) protein_aatype = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype] residx_atom14_mask = restype_atom14_mask[protein_aatype] protein["atom14_atom_exists"] = residx_atom14_mask protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long() # create the gather indices for mapping back residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype] protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long() # create the corresponding mask restype_atom37_mask = torch.zeros([21, 37], dtype=torch.float32, device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): restype_name = rc.restype_1to3[restype_letter] atom_names = rc.residue_atoms[restype_name] for atom_name in atom_names: atom_type = rc.atom_order[atom_name] restype_atom37_mask[restype, atom_type] = 1 residx_atom37_mask = restype_atom37_mask[protein_aatype] protein["atom37_atom_exists"] = residx_atom37_mask return protein def make_atom14_masks_np(batch: Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]: batch = tree_map(lambda n: torch.tensor(n, device=batch["aatype"].device), batch, np.ndarray) out = tensor_tree_map(lambda t: np.array(t), make_atom14_masks(batch)) return out
import io from typing import Tuple, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.bytes.base_bytes import BaseBytes from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio import AudioNdArray from docarray.utils._internal.misc import import_library T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(BaseBytes): """ Bytes that store an audio and that can be load into an Audio tensor """ def load(self) -> Tuple[AudioNdArray, int]: """ Load the Audio from the [`AudioBytes`][docarray.typing.AudioBytes] into an [`AudioNdArray`][docarray.typing.AudioNdArray]. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioBytes, AudioNdArray, AudioUrl class MyAudio(BaseDoc): url: AudioUrl tensor: Optional[AudioNdArray] bytes_: Optional[AudioBytes] frame_rate: Optional[float] doc = MyAudio(url='https://www.kozco.com/tech/piano2.wav') doc.bytes_ = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes_.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.tensor, AudioNdArray) ``` --- :return: tuple of an [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio bytes content, and an integer representing the frame rate. """ pydub = import_library('pydub', raise_error=True) # noqa: F841 from pydub import AudioSegment segment = AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return parse_obj_as(AudioNdArray, samples_norm), segment.frame_rate
import io from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio import AudioNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(bytes, AbstractType): """ Bytes that store an audio and that can be load into an Audio tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self) -> Tuple[AudioNdArray, int]: """ Load the Audio from the [`AudioBytes`][docarray.typing.AudioBytes] into an [`AudioNdArray`][docarray.typing.AudioNdArray]. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioBytes, AudioNdArray, AudioUrl class MyAudio(BaseDoc): url: AudioUrl tensor: Optional[AudioNdArray] bytes_: Optional[AudioBytes] frame_rate: Optional[float] doc = MyAudio(url='https://www.kozco.com/tech/piano2.wav') doc.bytes_ = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes_.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.tensor, AudioNdArray) ``` --- :return: tuple of an [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio bytes content, and an integer representing the frame rate. """ pydub = import_library('pydub', raise_error=True) # noqa: F841 from pydub import AudioSegment segment = AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return parse_obj_as(AudioNdArray, samples_norm), segment.frame_rate
from __future__ import annotations from .CrossEncoder import CrossEncoder __all__ = ["CrossEncoder"]
from .CrossEncoder import CrossEncoder __all__ = ["CrossEncoder"]
__version__ = '0.37.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.37.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
from __future__ import annotations import pytest from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer @pytest.mark.parametrize( ("revision", "expected_base_revision"), [ ("f3cb857cba53019a20df283396bcca179cf051a4", "f3cb857cba53019a20df283396bcca179cf051a4"), ("f3cb857", "f3cb857"), ("main", "valid-revision"), (None, "valid-revision"), ], ) def test_model_card_data(revision, expected_base_revision) -> None: model_name = "sentence-transformers-testing/stsb-bert-tiny-safetensors" model = SentenceTransformer(model_name, revision=revision) assert model.model_card_data.base_model == model_name if expected_base_revision == "valid-revision": assert model.model_card_data.base_model_revision assert len(model.model_card_data.base_model_revision) == 40 else: assert model.model_card_data.base_model_revision == expected_base_revision def test_generated_from_trainer_tag(stsb_bert_tiny_model: SentenceTransformer) -> None: model = stsb_bert_tiny_model assert "generated_from_trainer" not in model.model_card_data.tags SentenceTransformerTrainer(model) assert "generated_from_trainer" in model.model_card_data.tags
import pytest from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer @pytest.mark.parametrize( ("revision", "expected_base_revision"), [ ("f3cb857cba53019a20df283396bcca179cf051a4", "f3cb857cba53019a20df283396bcca179cf051a4"), ("f3cb857", "f3cb857"), ("main", "valid-revision"), (None, "valid-revision"), ], ) def test_model_card_data(revision, expected_base_revision) -> None: model_name = "sentence-transformers-testing/stsb-bert-tiny-safetensors" model = SentenceTransformer(model_name, revision=revision) assert model.model_card_data.base_model == model_name if expected_base_revision == "valid-revision": assert model.model_card_data.base_model_revision assert len(model.model_card_data.base_model_revision) == 40 else: assert model.model_card_data.base_model_revision == expected_base_revision def test_generated_from_trainer_tag(stsb_bert_tiny_model: SentenceTransformer) -> None: model = stsb_bert_tiny_model assert "generated_from_trainer" not in model.model_card_data.tags SentenceTransformerTrainer(model) assert "generated_from_trainer" in model.model_card_data.tags
import json import os import subprocess import pytest from jina.checker import NetworkChecker from jina.jaml import JAML from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_deployment_parser from jina.parsers.ping import set_ping_parser from jina_cli.autocomplete import ac_table from jina_cli.export import api_to_dict from jina_cli.lookup import _build_lookup_table, lookup_and_print from tests.helper import _generate_pod_args def test_export_api(tmpdir): with open(tmpdir / 'test.yml', 'w', encoding='utf8') as fp: JAML.dump(api_to_dict(), fp) with open(tmpdir / 'test.json', 'w', encoding='utf8') as fp: json.dump(api_to_dict(), fp) @pytest.mark.parametrize('cli', ac_table['commands']) def test_help_lookup(cli, capsys): nkw2kw, kw2info = _build_lookup_table() if cli not in {'--help', '--version', '--version-full'}: assert cli in nkw2kw lookup_and_print(cli) captured = capsys.readouterr() assert 'Traceback (most recent call last)' not in captured.out def test_main_cli(): subprocess.check_call(['jina']) def test_cli_help(): subprocess.check_call(['jina', 'help', 'deployment']) @pytest.mark.parametrize( 'uses', ['jinaai://jina-ai/DummyHubExecutor'] ) def test_cli_hub(uses): subprocess.check_call(['jina', 'hub', '--help']) for cmd in ['new', 'status', 'pull', 'push']: subprocess.check_call(['jina', 'hub', cmd, '--help']) subprocess.check_call(['jina', 'hub', 'pull', uses]) def test_cli_warn_unknown_args(): subprocess.check_call(['jina', 'help', 'deployment', '--abcdefg']) @pytest.mark.parametrize('cli', ac_table['commands']) def test_all_cli(cli): subprocess.check_call(['jina', cli, '--help']) @pytest.mark.parametrize('smethod', ['fork', 'spawn']) def test_all_start_method(smethod): s = subprocess.check_output( ['jina', '-v'], env=dict(os.environ, JINA_MP_START_METHOD=smethod), stderr=subprocess.STDOUT, ) assert 'UserWarning' in s.decode() assert smethod in s.decode() def test_help_non_exist(): s = subprocess.check_output( ['jina', 'help', 'abcdefg'], stderr=subprocess.STDOUT, ) assert 'misspelling' in s.decode() def test_help_exist(): s = subprocess.check_output( ['jina', 'help', 'port'], stderr=subprocess.STDOUT, ) assert 'a CLI argument of Jina' in s.decode() def test_parse_env_map(): a = set_deployment_parser().parse_args( ['--env', 'key1=value1', '--env', 'key2=value2'] ) assert a.env == {'key1': 'value1', 'key2': 'value2'} a = set_deployment_parser().parse_args( ['--env', 'key1=value1', 'key2=value2', 'key3=3'] ) assert a.env == {'key1': 'value1', 'key2': 'value2', 'key3': 3} @pytest.mark.slow def test_ping(): a1 = _generate_pod_args() a2 = set_ping_parser().parse_args(['executor', f'0.0.0.0:{a1.port}']) a3 = set_ping_parser().parse_args( ['executor', f'0.0.0.1:{a1.port}', '--timeout', '1000'] ) with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a2) assert cm.value.code == 0 # test with bad address with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a3) assert cm.value.code == 1 @pytest.mark.parametrize( 'cmd', [ ['jina', 'ping', 'flow', '127.0.0.1:8080'], ['jina', 'help', 'port'], ['jina', 'hub'], ], ) def test_logo_silence(cmd): from jina import __resources_path__ with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() s = subprocess.run( cmd, stdout=subprocess.PIPE, ) assert logo_str not in s.stdout.decode()
import json import os import subprocess import pytest from jina.checker import NetworkChecker from jina.jaml import JAML from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_deployment_parser from jina.parsers.ping import set_ping_parser from jina_cli.autocomplete import ac_table from jina_cli.export import api_to_dict from jina_cli.lookup import _build_lookup_table, lookup_and_print from tests.helper import _generate_pod_args def test_export_api(tmpdir): with open(tmpdir / 'test.yml', 'w', encoding='utf8') as fp: JAML.dump(api_to_dict(), fp) with open(tmpdir / 'test.json', 'w', encoding='utf8') as fp: json.dump(api_to_dict(), fp) @pytest.mark.parametrize('cli', ac_table['commands']) def test_help_lookup(cli, capsys): nkw2kw, kw2info = _build_lookup_table() if cli not in {'--help', '--version', '--version-full'}: assert cli in nkw2kw lookup_and_print(cli) captured = capsys.readouterr() assert 'Traceback (most recent call last)' not in captured.out def test_main_cli(): subprocess.check_call(['jina']) def test_cli_help(): subprocess.check_call(['jina', 'help', 'deployment']) def test_cli_hub(): subprocess.check_call(['jina', 'hub', '--help']) for cmd in ['new', 'status', 'pull', 'push']: subprocess.check_call(['jina', 'hub', cmd, '--help']) subprocess.check_call(['jina', 'hub', 'pull', 'jinahub://DummyHubExecutor']) def test_cli_warn_unknown_args(): subprocess.check_call(['jina', 'help', 'deployment', '--abcdefg']) @pytest.mark.parametrize('cli', ac_table['commands']) def test_all_cli(cli): subprocess.check_call(['jina', cli, '--help']) @pytest.mark.parametrize('smethod', ['fork', 'spawn']) def test_all_start_method(smethod): s = subprocess.check_output( ['jina', '-v'], env=dict(os.environ, JINA_MP_START_METHOD=smethod), stderr=subprocess.STDOUT, ) assert 'UserWarning' in s.decode() assert smethod in s.decode() def test_help_non_exist(): s = subprocess.check_output( ['jina', 'help', 'abcdefg'], stderr=subprocess.STDOUT, ) assert 'misspelling' in s.decode() def test_help_exist(): s = subprocess.check_output( ['jina', 'help', 'port'], stderr=subprocess.STDOUT, ) assert 'a CLI argument of Jina' in s.decode() def test_parse_env_map(): a = set_deployment_parser().parse_args( ['--env', 'key1=value1', '--env', 'key2=value2'] ) assert a.env == {'key1': 'value1', 'key2': 'value2'} a = set_deployment_parser().parse_args( ['--env', 'key1=value1', 'key2=value2', 'key3=3'] ) assert a.env == {'key1': 'value1', 'key2': 'value2', 'key3': 3} @pytest.mark.slow def test_ping(): a1 = _generate_pod_args() a2 = set_ping_parser().parse_args(['executor', f'0.0.0.0:{a1.port}']) a3 = set_ping_parser().parse_args( ['executor', f'0.0.0.1:{a1.port}', '--timeout', '1000'] ) with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a2) assert cm.value.code == 0 # test with bad address with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a3) assert cm.value.code == 1 @pytest.mark.parametrize( 'cmd', [ ['jina', 'ping', 'flow', '127.0.0.1:8080'], ['jina', 'help', 'port'], ['jina', 'hub'], ], ) def test_logo_silence(cmd): from jina import __resources_path__ with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() s = subprocess.run( cmd, stdout=subprocess.PIPE, ) assert logo_str not in s.stdout.decode()
"""Internal representation of a structured query language.""" from __future__ import annotations from abc import ABC, abstractmethod from enum import Enum from typing import TYPE_CHECKING, Any, Optional, Union from pydantic import BaseModel if TYPE_CHECKING: from collections.abc import Sequence class Visitor(ABC): """Defines interface for IR translation using a visitor pattern.""" allowed_comparators: Optional[Sequence[Comparator]] = None """Allowed comparators for the visitor.""" allowed_operators: Optional[Sequence[Operator]] = None """Allowed operators for the visitor.""" def _validate_func(self, func: Union[Operator, Comparator]) -> None: if ( isinstance(func, Operator) and self.allowed_operators is not None and func not in self.allowed_operators ): msg = ( f"Received disallowed operator {func}. Allowed " f"comparators are {self.allowed_operators}" ) raise ValueError(msg) if ( isinstance(func, Comparator) and self.allowed_comparators is not None and func not in self.allowed_comparators ): msg = ( f"Received disallowed comparator {func}. Allowed " f"comparators are {self.allowed_comparators}" ) raise ValueError(msg) @abstractmethod def visit_operation(self, operation: Operation) -> Any: """Translate an Operation. Args: operation: Operation to translate. """ @abstractmethod def visit_comparison(self, comparison: Comparison) -> Any: """Translate a Comparison. Args: comparison: Comparison to translate. """ @abstractmethod def visit_structured_query(self, structured_query: StructuredQuery) -> Any: """Translate a StructuredQuery. Args: structured_query: StructuredQuery to translate. """ def _to_snake_case(name: str) -> str: """Convert a name into snake_case.""" snake_case = "" for i, char in enumerate(name): if char.isupper() and i != 0: snake_case += "_" + char.lower() else: snake_case += char.lower() return snake_case class Expr(BaseModel): """Base class for all expressions.""" def accept(self, visitor: Visitor) -> Any: """Accept a visitor. Args: visitor: visitor to accept. Returns: result of visiting. """ return getattr(visitor, f"visit_{_to_snake_case(self.__class__.__name__)}")( self ) class Operator(str, Enum): """Enumerator of the operations.""" AND = "and" OR = "or" NOT = "not" class Comparator(str, Enum): """Enumerator of the comparison operators.""" EQ = "eq" NE = "ne" GT = "gt" GTE = "gte" LT = "lt" LTE = "lte" CONTAIN = "contain" LIKE = "like" IN = "in" NIN = "nin" class FilterDirective(Expr, ABC): """Filtering expression.""" class Comparison(FilterDirective): """Comparison to a value. Parameters: comparator: The comparator to use. attribute: The attribute to compare. value: The value to compare to. """ comparator: Comparator attribute: str value: Any def __init__( self, comparator: Comparator, attribute: str, value: Any, **kwargs: Any ) -> None: # super exists from BaseModel super().__init__( # type: ignore[call-arg] comparator=comparator, attribute=attribute, value=value, **kwargs ) class Operation(FilterDirective): """Logical operation over other directives. Parameters: operator: The operator to use. arguments: The arguments to the operator. """ operator: Operator arguments: list[FilterDirective] def __init__( self, operator: Operator, arguments: list[FilterDirective], **kwargs: Any ) -> None: # super exists from BaseModel super().__init__( # type: ignore[call-arg] operator=operator, arguments=arguments, **kwargs ) class StructuredQuery(Expr): """Structured query.""" query: str """Query string.""" filter: Optional[FilterDirective] """Filtering expression.""" limit: Optional[int] """Limit on the number of results.""" def __init__( self, query: str, filter: Optional[FilterDirective], limit: Optional[int] = None, **kwargs: Any, ) -> None: # super exists from BaseModel super().__init__( # type: ignore[call-arg] query=query, filter=filter, limit=limit, **kwargs )
"""Internal representation of a structured query language.""" from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import Sequence from enum import Enum from typing import Any, Optional, Union from pydantic import BaseModel class Visitor(ABC): """Defines interface for IR translation using a visitor pattern.""" allowed_comparators: Optional[Sequence[Comparator]] = None """Allowed comparators for the visitor.""" allowed_operators: Optional[Sequence[Operator]] = None """Allowed operators for the visitor.""" def _validate_func(self, func: Union[Operator, Comparator]) -> None: if ( isinstance(func, Operator) and self.allowed_operators is not None and func not in self.allowed_operators ): msg = ( f"Received disallowed operator {func}. Allowed " f"comparators are {self.allowed_operators}" ) raise ValueError(msg) if ( isinstance(func, Comparator) and self.allowed_comparators is not None and func not in self.allowed_comparators ): msg = ( f"Received disallowed comparator {func}. Allowed " f"comparators are {self.allowed_comparators}" ) raise ValueError(msg) @abstractmethod def visit_operation(self, operation: Operation) -> Any: """Translate an Operation. Args: operation: Operation to translate. """ @abstractmethod def visit_comparison(self, comparison: Comparison) -> Any: """Translate a Comparison. Args: comparison: Comparison to translate. """ @abstractmethod def visit_structured_query(self, structured_query: StructuredQuery) -> Any: """Translate a StructuredQuery. Args: structured_query: StructuredQuery to translate. """ def _to_snake_case(name: str) -> str: """Convert a name into snake_case.""" snake_case = "" for i, char in enumerate(name): if char.isupper() and i != 0: snake_case += "_" + char.lower() else: snake_case += char.lower() return snake_case class Expr(BaseModel): """Base class for all expressions.""" def accept(self, visitor: Visitor) -> Any: """Accept a visitor. Args: visitor: visitor to accept. Returns: result of visiting. """ return getattr(visitor, f"visit_{_to_snake_case(self.__class__.__name__)}")( self ) class Operator(str, Enum): """Enumerator of the operations.""" AND = "and" OR = "or" NOT = "not" class Comparator(str, Enum): """Enumerator of the comparison operators.""" EQ = "eq" NE = "ne" GT = "gt" GTE = "gte" LT = "lt" LTE = "lte" CONTAIN = "contain" LIKE = "like" IN = "in" NIN = "nin" class FilterDirective(Expr, ABC): """Filtering expression.""" class Comparison(FilterDirective): """Comparison to a value. Parameters: comparator: The comparator to use. attribute: The attribute to compare. value: The value to compare to. """ comparator: Comparator attribute: str value: Any def __init__( self, comparator: Comparator, attribute: str, value: Any, **kwargs: Any ) -> None: # super exists from BaseModel super().__init__( # type: ignore[call-arg] comparator=comparator, attribute=attribute, value=value, **kwargs ) class Operation(FilterDirective): """Logical operation over other directives. Parameters: operator: The operator to use. arguments: The arguments to the operator. """ operator: Operator arguments: list[FilterDirective] def __init__( self, operator: Operator, arguments: list[FilterDirective], **kwargs: Any ) -> None: # super exists from BaseModel super().__init__( # type: ignore[call-arg] operator=operator, arguments=arguments, **kwargs ) class StructuredQuery(Expr): """Structured query.""" query: str """Query string.""" filter: Optional[FilterDirective] """Filtering expression.""" limit: Optional[int] """Limit on the number of results.""" def __init__( self, query: str, filter: Optional[FilterDirective], limit: Optional[int] = None, **kwargs: Any, ) -> None: # super exists from BaseModel super().__init__( # type: ignore[call-arg] query=query, filter=filter, limit=limit, **kwargs )
import os import re from pathlib import Path from typing import Optional, Tuple, Union import torch from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import _extract_tar, _load_waveform URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz" SAMPLE_RATE = 8000 _CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4" _LANGUAGES = [ "albanian", "basque", "czech", "nnenglish", "romanian", "slovak", ] class QUESST14(Dataset): """*QUESST14* :cite:`Mir2015QUESST2014EQ` dataset. Args: root (str or Path): Root directory where the dataset's top level directory is found subset (str): Subset of the dataset to use. Options: [``"docs"``, ``"dev"``, ``"eval"``]. language (str or None, optional): Language to get dataset for. Options: [``None``, ``albanian``, ``basque``, ``czech``, ``nnenglish``, ``romanian``, ``slovak``]. If ``None``, dataset consists of all languages. (default: ``"nnenglish"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], subset: str, language: Optional[str] = "nnenglish", download: bool = False, ) -> None: if subset not in ["docs", "dev", "eval"]: raise ValueError("`subset` must be one of ['docs', 'dev', 'eval']") if language is not None and language not in _LANGUAGES: raise ValueError(f"`language` must be None or one of {str(_LANGUAGES)}") # Get string representation of 'root' root = os.fspath(root) basename = os.path.basename(URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] self._path = os.path.join(root, basename) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(URL, archive, hash_prefix=_CHECKSUM) _extract_tar(archive, root) if subset == "docs": self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst") elif subset == "dev": self.data = filter_audio_paths(self._path, language, "language_key_dev.lst") elif subset == "eval": self.data = filter_audio_paths(self._path, language, "language_key_eval.lst") def get_metadata(self, n: int) -> Tuple[str, int, str]: """Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, but otherwise returns the same fields as :py:func:`__getitem__`. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; str: Path to audio int: Sample rate str: File name """ audio_path = self.data[n] relpath = os.path.relpath(audio_path, self._path) return relpath, SAMPLE_RATE, audio_path.with_suffix("").name def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: File name """ metadata = self.get_metadata(n) waveform = _load_waveform(self._path, metadata[0], metadata[1]) return (waveform,) + metadata[1:] def __len__(self) -> int: return len(self.data) def filter_audio_paths( path: str, language: str, lst_name: str, ): """Extract audio paths for the given language.""" audio_paths = [] path = Path(path) with open(path / "scoring" / lst_name) as f: for line in f: audio_path, lang = line.strip().split() if language is not None and lang != language: continue audio_path = re.sub(r"^.*?\/", "", audio_path) audio_paths.append(path / audio_path) return audio_paths
import os import re from pathlib import Path from typing import Optional, Tuple, Union import torch from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import _load_waveform, extract_archive URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz" SAMPLE_RATE = 8000 _CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4" _LANGUAGES = [ "albanian", "basque", "czech", "nnenglish", "romanian", "slovak", ] class QUESST14(Dataset): """*QUESST14* :cite:`Mir2015QUESST2014EQ` dataset. Args: root (str or Path): Root directory where the dataset's top level directory is found subset (str): Subset of the dataset to use. Options: [``"docs"``, ``"dev"``, ``"eval"``]. language (str or None, optional): Language to get dataset for. Options: [``None``, ``albanian``, ``basque``, ``czech``, ``nnenglish``, ``romanian``, ``slovak``]. If ``None``, dataset consists of all languages. (default: ``"nnenglish"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], subset: str, language: Optional[str] = "nnenglish", download: bool = False, ) -> None: if subset not in ["docs", "dev", "eval"]: raise ValueError("`subset` must be one of ['docs', 'dev', 'eval']") if language is not None and language not in _LANGUAGES: raise ValueError(f"`language` must be None or one of {str(_LANGUAGES)}") # Get string representation of 'root' root = os.fspath(root) basename = os.path.basename(URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] self._path = os.path.join(root, basename) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive, root) if subset == "docs": self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst") elif subset == "dev": self.data = filter_audio_paths(self._path, language, "language_key_dev.lst") elif subset == "eval": self.data = filter_audio_paths(self._path, language, "language_key_eval.lst") def get_metadata(self, n: int) -> Tuple[str, int, str]: """Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, but otherwise returns the same fields as :py:func:`__getitem__`. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; str: Path to audio int: Sample rate str: File name """ audio_path = self.data[n] relpath = os.path.relpath(audio_path, self._path) return relpath, SAMPLE_RATE, audio_path.with_suffix("").name def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: File name """ metadata = self.get_metadata(n) waveform = _load_waveform(self._path, metadata[0], metadata[1]) return (waveform,) + metadata[1:] def __len__(self) -> int: return len(self.data) def filter_audio_paths( path: str, language: str, lst_name: str, ): """Extract audio paths for the given language.""" audio_paths = [] path = Path(path) with open(path / "scoring" / lst_name) as f: for line in f: audio_path, lang = line.strip().split() if language is not None and lang != language: continue audio_path = re.sub(r"^.*?\/", "", audio_path) audio_paths.append(path / audio_path) return audio_paths
from collections.abc import Generator from langchain_huggingface.llms import HuggingFacePipeline def test_huggingface_pipeline_streaming() -> None: """Test streaming tokens from huggingface_pipeline.""" llm = HuggingFacePipeline.from_model_id( model_id="openai-community/gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}, ) generator = llm.stream("Q: How do you say 'hello' in German? A:'", stop=["."]) stream_results_string = "" assert isinstance(generator, Generator) for chunk in generator: assert isinstance(chunk, str) stream_results_string = chunk assert len(stream_results_string.strip()) > 0
from collections.abc import Generator from langchain_huggingface.llms import HuggingFacePipeline def test_huggingface_pipeline_streaming() -> None: """Test streaming tokens from huggingface_pipeline.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10} ) generator = llm.stream("Q: How do you say 'hello' in German? A:'", stop=["."]) stream_results_string = "" assert isinstance(generator, Generator) for chunk in generator: assert isinstance(chunk, str) stream_results_string = chunk assert len(stream_results_string.strip()) > 1
# Copyright (c) OpenMMLab. All rights reserved. import json import os.path as osp from typing import List, Optional from mmengine.fileio import get_local_path from mmdet.registry import DATASETS from .base_det_dataset import BaseDetDataset @DATASETS.register_module() class ODVGDataset(BaseDetDataset): """object detection and visual grounding dataset.""" def __init__(self, *args, data_root: str = '', label_map_file: Optional[str] = None, need_text: bool = True, **kwargs) -> None: self.dataset_mode = 'VG' self.need_text = need_text if label_map_file: label_map_file = osp.join(data_root, label_map_file) with open(label_map_file, 'r') as file: self.label_map = json.load(file) self.dataset_mode = 'OD' super().__init__(*args, data_root=data_root, **kwargs) assert self.return_classes is True def load_data_list(self) -> List[dict]: with get_local_path( self.ann_file, backend_args=self.backend_args) as local_path: with open(local_path, 'r') as f: data_list = [json.loads(line) for line in f] out_data_list = [] for data in data_list: data_info = {} img_path = osp.join(self.data_prefix['img'], data['filename']) data_info['img_path'] = img_path data_info['height'] = data['height'] data_info['width'] = data['width'] if self.dataset_mode == 'OD': if self.need_text: data_info['text'] = self.label_map anno = data.get('detection', {}) instances = [obj for obj in anno.get('instances', [])] bboxes = [obj['bbox'] for obj in instances] bbox_labels = [str(obj['label']) for obj in instances] instances = [] for bbox, label in zip(bboxes, bbox_labels): instance = {} x1, y1, x2, y2 = bbox inter_w = max(0, min(x2, data['width']) - max(x1, 0)) inter_h = max(0, min(y2, data['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if (x2 - x1) < 1 or (y2 - y1) < 1: continue instance['ignore_flag'] = 0 instance['bbox'] = bbox instance['bbox_label'] = int(label) instances.append(instance) data_info['instances'] = instances data_info['dataset_mode'] = self.dataset_mode out_data_list.append(data_info) else: anno = data['grounding'] data_info['text'] = anno['caption'] regions = anno['regions'] instances = [] phrases = {} for i, region in enumerate(regions): bbox = region['bbox'] phrase = region['phrase'] tokens_positive = region['tokens_positive'] if not isinstance(bbox[0], list): bbox = [bbox] for box in bbox: instance = {} x1, y1, x2, y2 = box inter_w = max(0, min(x2, data['width']) - max(x1, 0)) inter_h = max(0, min(y2, data['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if (x2 - x1) < 1 or (y2 - y1) < 1: continue instance['ignore_flag'] = 0 instance['bbox'] = box instance['bbox_label'] = i phrases[i] = { 'phrase': phrase, 'tokens_positive': tokens_positive } instances.append(instance) data_info['instances'] = instances data_info['phrases'] = phrases data_info['dataset_mode'] = self.dataset_mode out_data_list.append(data_info) del data_list return out_data_list
# Copyright (c) OpenMMLab. All rights reserved. import json import os.path as osp from typing import List, Optional from mmengine.fileio import get_local_path from mmdet.registry import DATASETS from .base_det_dataset import BaseDetDataset @DATASETS.register_module() class ODVGDataset(BaseDetDataset): """object detection and visual grounding dataset.""" def __init__(self, *args, data_root: str = '', label_map_file: Optional[str] = None, need_text: bool = True, **kwargs) -> None: self.dataset_mode = 'VG' self.need_text = need_text if label_map_file: label_map_file = osp.join(data_root, label_map_file) with open(label_map_file, 'r') as file: self.label_map = json.load(file) self.dataset_mode = 'OD' super().__init__(*args, data_root=data_root, **kwargs) assert self.return_classes is True def load_data_list(self) -> List[dict]: with get_local_path( self.ann_file, backend_args=self.backend_args) as local_path: with open(local_path, 'r') as f: data_list = [json.loads(line) for line in f] out_data_list = [] for data in data_list: data_info = {} img_path = osp.join(self.data_prefix['img'], data['filename']) data_info['img_path'] = img_path data_info['height'] = data['height'] data_info['width'] = data['width'] if self.dataset_mode == 'OD': if self.need_text: data_info['text'] = self.label_map anno = data['detection'] instances = [obj for obj in anno['instances']] bboxes = [obj['bbox'] for obj in instances] bbox_labels = [str(obj['label']) for obj in instances] instances = [] for bbox, label in zip(bboxes, bbox_labels): instance = {} x1, y1, x2, y2 = bbox inter_w = max(0, min(x2, data['width']) - max(x1, 0)) inter_h = max(0, min(y2, data['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if (x2 - x1) < 1 or (y2 - y1) < 1: continue instance['ignore_flag'] = 0 instance['bbox'] = bbox instance['bbox_label'] = int(label) instances.append(instance) data_info['instances'] = instances data_info['dataset_mode'] = self.dataset_mode out_data_list.append(data_info) else: anno = data['grounding'] data_info['text'] = anno['caption'] regions = anno['regions'] instances = [] phrases = {} for i, region in enumerate(regions): bbox = region['bbox'] phrase = region['phrase'] tokens_positive = region['tokens_positive'] if not isinstance(bbox[0], list): bbox = [bbox] for box in bbox: instance = {} x1, y1, x2, y2 = box inter_w = max(0, min(x2, data['width']) - max(x1, 0)) inter_h = max(0, min(y2, data['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if (x2 - x1) < 1 or (y2 - y1) < 1: continue instance['ignore_flag'] = 0 instance['bbox'] = box instance['bbox_label'] = i # phrase only for vis. tokens_positive is important phrases[i] = { 'phrase': phrase, 'tokens_positive': tokens_positive } instances.append(instance) data_info['instances'] = instances data_info['phrases'] = phrases data_info['dataset_mode'] = self.dataset_mode out_data_list.append(data_info) del data_list return out_data_list
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = jax.default_backend() if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_meta_device(self): import torch with torch.device("meta"): x = torch.ones(5) t = backend.convert_to_tensor(x) self.assertEqual(t.device, torch.device("cpu"))
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = jax.default_backend() if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.gitlab.toolkit import GitLabToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GitLabToolkit": "langchain_community.agent_toolkits.gitlab.toolkit", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GitLabToolkit", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.gitlab.toolkit import GitLabToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GitLabToolkit": "langchain_community.agent_toolkits.gitlab.toolkit" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GitLabToolkit", ]
""" This script contains an example how to perform semantic search with PyTorch. It performs exact nearest neighborh search. As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions (we only use about 100k): https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs As embeddings model, we use the SBERT model 'quora-distilbert-multilingual', that it aligned for 100 languages. I.e., you can type in a question in various languages and it will return the closest questions in the corpus (questions in the corpus are mainly in English). Google Colab example: https://colab.research.google.com/drive/12cn5Oo0v3HfQQ8Tv6-ukgxXSmT3zl35A?usp=sharing """ import csv import os import pickle import time from sentence_transformers import SentenceTransformer, util model_name = "quora-distilbert-multilingual" model = SentenceTransformer(model_name) url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 100000 embedding_cache_path = "quora-embeddings-{}-size-{}.pkl".format(model_name.replace("/", "_"), max_corpus_size) # Check if embedding cache path exists if not os.path.exists(embedding_cache_path): # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, show_progress_bar=True, convert_to_tensor=True) print("Store file on disc") with open(embedding_cache_path, "wb") as fOut: pickle.dump({"sentences": corpus_sentences, "embeddings": corpus_embeddings}, fOut) else: print("Load pre-computed embeddings from disc") with open(embedding_cache_path, "rb") as fIn: cache_data = pickle.load(fIn) corpus_sentences = cache_data["sentences"][0:max_corpus_size] corpus_embeddings = cache_data["embeddings"][0:max_corpus_size] ############################### print(f"Corpus loaded with {len(corpus_sentences)} sentences / embeddings") # Move embeddings to the target device of the model corpus_embeddings = corpus_embeddings.to(model.device) while True: inp_question = input("Please enter a question: ") start_time = time.time() question_embedding = model.encode(inp_question, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings) end_time = time.time() hits = hits[0] # Get the hits for the first query print("Input question:", inp_question) print(f"Results (after {end_time - start_time:.3f} seconds):") for hit in hits[0:5]: print("\t{:.3f}\t{}".format(hit["score"], corpus_sentences[hit["corpus_id"]])) print("\n\n========\n")
""" This script contains an example how to perform semantic search with PyTorch. It performs exact nearest neighborh search. As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions (we only use about 100k): https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs As embeddings model, we use the SBERT model 'quora-distilbert-multilingual', that it aligned for 100 languages. I.e., you can type in a question in various languages and it will return the closest questions in the corpus (questions in the corpus are mainly in English). Google Colab example: https://colab.research.google.com/drive/12cn5Oo0v3HfQQ8Tv6-ukgxXSmT3zl35A?usp=sharing """ import csv import os import pickle import time from sentence_transformers import SentenceTransformer, util model_name = "quora-distilbert-multilingual" model = SentenceTransformer(model_name) url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 100000 embedding_cache_path = "quora-embeddings-{}-size-{}.pkl".format(model_name.replace("/", "_"), max_corpus_size) # Check if embedding cache path exists if not os.path.exists(embedding_cache_path): # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, show_progress_bar=True, convert_to_tensor=True) print("Store file on disc") with open(embedding_cache_path, "wb") as fOut: pickle.dump({"sentences": corpus_sentences, "embeddings": corpus_embeddings}, fOut) else: print("Load pre-computed embeddings from disc") with open(embedding_cache_path, "rb") as fIn: cache_data = pickle.load(fIn) corpus_sentences = cache_data["sentences"][0:max_corpus_size] corpus_embeddings = cache_data["embeddings"][0:max_corpus_size] ############################### print("Corpus loaded with {} sentences / embeddings".format(len(corpus_sentences))) # Move embeddings to the target device of the model corpus_embeddings = corpus_embeddings.to(model.device) while True: inp_question = input("Please enter a question: ") start_time = time.time() question_embedding = model.encode(inp_question, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings) end_time = time.time() hits = hits[0] # Get the hits for the first query print("Input question:", inp_question) print("Results (after {:.3f} seconds):".format(end_time - start_time)) for hit in hits[0:5]: print("\t{:.3f}\t{}".format(hit["score"], corpus_sentences[hit["corpus_id"]])) print("\n\n========\n")
import asyncio from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app __all__ = ['WebSocketGatewayRuntime'] from jina.serve.runtimes.gateway.websocket.gateway import WebSocketGateway class WebSocketGatewayRuntime(GatewayRuntime): """Runtime for Websocket interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ self.gateway = WebSocketGateway( name=self.name, port=self.args.port, ssl_keyfile=self.args.ssl_keyfile, ssl_certfile=self.args.ssl_certfile, uvicorn_kwargs=self.args.uvicorn_kwargs, logger=self.logger, ) self.gateway.set_streamer( args=self.args, timeout_send=self.timeout_send, metrics_registry=self.metrics_registry, runtime_name=self.args.name, ) await self.gateway.setup_server() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self.gateway.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self.gateway.teardown() async def async_cancel(self): """Stop the server.""" await self.gateway.stop_server() async def async_run_forever(self): """Running method of ther server.""" await self.gateway.run_server()
import asyncio import logging import os from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app __all__ = ['WebSocketGatewayRuntime'] class WebSocketGatewayRuntime(GatewayRuntime): """Runtime for Websocket interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) self.install_signal_handlers() await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) from jina.helper import extend_rest_interface uvicorn_kwargs = self.args.uvicorn_kwargs or {} for ssl_file in ['ssl_keyfile', 'ssl_certfile']: if getattr(self.args, ssl_file): if ssl_file not in uvicorn_kwargs.keys(): uvicorn_kwargs[ssl_file] = getattr(self.args, ssl_file) self._server = UviServer( config=Config( app=extend_rest_interface( get_fastapi_app( args=self.args, logger=self.logger, timeout_send=self.timeout_send, metrics_registry=self.metrics_registry, ) ), host=__default_host__, port=self.args.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs ) ) await self._server.setup() async def async_run_forever(self): """Running method of ther server.""" await self._server.serve() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self._server.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self._server.shutdown() async def async_cancel(self): """Stop the server.""" self._server.should_exit = True
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005))
# Copyright (c) OpenMMLab. All rights reserved. """Get image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmengine.config import Config from mmengine.fileio import dump, get def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--dataset', default='val', choices=['train', 'val', 'test'], help='Collect image metas from which dataset') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') shape = img.shape meta = dict(filename=filename, ori_shape=shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) dataloader_cfg = cfg.get(f'{args.dataset}_dataloader') ann_file = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.ann_file) img_prefix = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.data_prefix['img']) print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = dataloader_cfg.dataset.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) dump(image_metas, save_path, protocol=4) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. """Get image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmengine.config import Config from mmengine.fileio import FileClient, dump def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--dataset', default='val', choices=['train', 'val', 'test'], help='Collect image metas from which dataset') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): file_client = FileClient(backend='disk') filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = file_client.get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') shape = img.shape meta = dict(filename=filename, ori_shape=shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) dataloader_cfg = cfg.get(f'{args.dataset}_dataloader') ann_file = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.ann_file) img_prefix = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.data_prefix['img']) print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = dataloader_cfg.dataset.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) dump(image_metas, save_path, protocol=4) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
""" This file contains some utilities functions used to find parallel sentences in two monolingual corpora. Code in this file has been adapted from the LASER repository: https://github.com/facebookresearch/LASER """ import gzip import lzma import time import faiss import numpy as np ######## Functions to find and score candidates def score(x, y, fwd_mean, bwd_mean, margin): return margin(x.dot(y), (fwd_mean + bwd_mean) / 2) def score_candidates(x, y, candidate_inds, fwd_mean, bwd_mean, margin): scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = candidate_inds[i, j] scores[i, j] = score(x[i], y[k], fwd_mean[i], bwd_mean[k], margin) return scores def kNN(x, y, k, use_ann_search=False, ann_num_clusters=32768, ann_num_cluster_probe=3): start_time = time.time() if use_ann_search: print("Perform approx. kNN search") n_cluster = min(ann_num_clusters, int(y.shape[0] / 1000)) quantizer = faiss.IndexFlatIP(y.shape[1]) index = faiss.IndexIVFFlat(quantizer, y.shape[1], n_cluster, faiss.METRIC_INNER_PRODUCT) index.nprobe = ann_num_cluster_probe index.train(y) index.add(y) sim, ind = index.search(x, k) else: print("Perform exact search") idx = faiss.IndexFlatIP(y.shape[1]) idx.add(y) sim, ind = idx.search(x, k) print(f"Done: {time.time() - start_time:.2f} sec") return sim, ind def file_open(filepath): # Function to allowing opening files based on file extension if filepath.endswith(".gz"): return gzip.open(filepath, "rt", encoding="utf8") elif filepath.endswith("xz"): return lzma.open(filepath, "rt", encoding="utf8") else: return open(filepath, encoding="utf8")
""" This file contains some utilities functions used to find parallel sentences in two monolingual corpora. Code in this file has been adapted from the LASER repository: https://github.com/facebookresearch/LASER """ import gzip import lzma import time import faiss import numpy as np ######## Functions to find and score candidates def score(x, y, fwd_mean, bwd_mean, margin): return margin(x.dot(y), (fwd_mean + bwd_mean) / 2) def score_candidates(x, y, candidate_inds, fwd_mean, bwd_mean, margin): scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = candidate_inds[i, j] scores[i, j] = score(x[i], y[k], fwd_mean[i], bwd_mean[k], margin) return scores def kNN(x, y, k, use_ann_search=False, ann_num_clusters=32768, ann_num_cluster_probe=3): start_time = time.time() if use_ann_search: print("Perform approx. kNN search") n_cluster = min(ann_num_clusters, int(y.shape[0] / 1000)) quantizer = faiss.IndexFlatIP(y.shape[1]) index = faiss.IndexIVFFlat(quantizer, y.shape[1], n_cluster, faiss.METRIC_INNER_PRODUCT) index.nprobe = ann_num_cluster_probe index.train(y) index.add(y) sim, ind = index.search(x, k) else: print("Perform exact search") idx = faiss.IndexFlatIP(y.shape[1]) idx.add(y) sim, ind = idx.search(x, k) print("Done: {:.2f} sec".format(time.time() - start_time)) return sim, ind def file_open(filepath): # Function to allowing opening files based on file extension if filepath.endswith(".gz"): return gzip.open(filepath, "rt", encoding="utf8") elif filepath.endswith("xz"): return lzma.open(filepath, "rt", encoding="utf8") else: return open(filepath, "r", encoding="utf8")
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( depths=depths, init_cfg=dict(type='Pretrained', checkpoint=pretrained))) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( depths=depths, init_cfg=dict(type='Pretrained', checkpoint=pretrained))) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optimizer = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from pydantic import Field from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc, AudioDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) tensor, audio_tensor, key_frame_indices = vid.url.load() vid.tensor = tensor vid.audio = AudioDoc(tensor=audio_tensor) vid.key_frame_indices = key_frame_indices # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] = Field( description='URL to a (potentially remote) video file that needs to be loaded', example='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true', default=None, ) audio: Optional[AudioDoc] = Field( description='Audio document associated with the video', default=None, ) tensor: Optional[VideoTensor] = Field( description='Tensor object representing the video which be specified to one of `VideoNdArray`, `VideoTorchTensor`, `VideoTensorFlowTensor`', default=None, ) key_frame_indices: Optional[AnyTensor] = Field( description='List of all the key frames in the video', example=[0, 1, 2, 3, 4], default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the video', example=[1, 0, 1], default=None, ) bytes_: Optional[VideoBytes] = Field( description='Bytes representation of the video', default=None, ) @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from pydantic import Field from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] = Field( description='URL to a (potentially remote) video file that needs to be loaded', example='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true', default=None, ) audio: Optional[AudioDoc] = Field( description='Audio document associated with the video', default=None, ) tensor: Optional[VideoTensor] = Field( description='Tensor object representing the video which be specified to one of `VideoNdArray`, `VideoTorchTensor`, `VideoTensorFlowTensor`', default=None, ) key_frame_indices: Optional[AnyTensor] = Field( description='List of all the key frames in the video', example=[0, 1, 2, 3, 4], default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the video', example=[1, 0, 1], default=None, ) bytes_: Optional[VideoBytes] = Field( description='Bytes representation of the video', default=None, ) @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
_base_ = './faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' model = dict(roi_head=dict(bbox_head=dict(num_classes=1))) metainfo = { 'CLASSES': ('person', ), 'PALETTE': [ (220, 20, 60), ] } train_dataloader = dict(dataset=dict(metainfo=metainfo)) val_dataloader = dict(dataset=dict(metainfo=metainfo)) test_dataloader = dict(dataset=dict(metainfo=metainfo)) load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
_base_ = './faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' model = dict(roi_head=dict(bbox_head=dict(num_classes=1))) classes = ('person', ) data = dict( train=dict(classes=classes), val=dict(classes=classes), test=dict(classes=classes)) load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
"""Standard LangChain interface tests.""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_fireworks import ChatFireworks class TestFireworksStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatFireworks @property def chat_model_params(self) -> dict: return { "model": "accounts/fireworks/models/llama-v3p1-70b-instruct", "temperature": 0, } @pytest.mark.xfail(reason="Not yet implemented.") def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content(model, my_adder_tool) @property def supports_json_mode(self) -> bool: return True
"""Standard LangChain interface tests""" import pytest from langchain_core.language_models import BaseChatModel from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_fireworks import ChatFireworks class TestFireworksStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatFireworks @property def chat_model_params(self) -> dict: return { "model": "accounts/fireworks/models/llama-v3p1-70b-instruct", "temperature": 0, } @pytest.mark.xfail(reason="Not yet implemented.") def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content(model, my_adder_tool) @property def supports_json_mode(self) -> bool: return True
"""Test tool spec.""" from typing import List, Tuple, Union import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.core.tools.types import ToolMetadata from llama_index.core.workflow import Context class FooSchema(BaseModel): arg1: str arg2: int class BarSchema(BaseModel): arg1: bool class AbcSchema(BaseModel): arg1: str class TestToolSpec(BaseToolSpec): spec_functions: List[Union[str, Tuple[str, str]]] = [ "foo", "bar", "abc", "abc_with_ctx", ] def foo(self, arg1: str, arg2: int) -> str: """Foo.""" return f"foo {arg1} {arg2}" def bar(self, arg1: bool) -> str: """Bar.""" return f"bar {arg1}" async def afoo(self, arg1: str, arg2: int) -> str: """Afoo.""" return self.foo(arg1=arg1, arg2=arg2) async def abar(self, arg1: bool) -> str: """Abar.""" return self.bar(arg1=arg1) def abc(self, arg1: str) -> str: # NOTE: no docstring return f"bar {arg1}" def abc_with_ctx(self, arg1: str, ctx: Context) -> str: return f"bar {arg1}" def unused_function(self, arg1: str) -> str: return f"unused {arg1}" def test_tool_spec() -> None: """Test tool spec.""" tool_spec = TestToolSpec() # first is foo, second is bar tools = tool_spec.to_tool_list() assert len(tools) == 4 assert tools[0].metadata.name == "foo" assert tools[0].metadata.description == "foo(arg1: str, arg2: int) -> str\nFoo." assert tools[0].fn("hello", 1) == "foo hello 1" assert tools[0].ctx_param_name is None assert not tools[0].requires_context assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert str(tools[1](True)) == "bar True" assert tools[1].ctx_param_name is None assert not tools[1].requires_context assert tools[2].metadata.name == "abc" assert tools[2].metadata.description == "abc(arg1: str) -> str\n" assert ( tools[2].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"] ) assert tools[2].ctx_param_name is None assert not tools[2].requires_context assert tools[3].metadata.name == "abc_with_ctx" assert tools[3].metadata.description == "abc_with_ctx(arg1: str) -> str\n" assert ( tools[3].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"] ) assert tools[3].ctx_param_name == "ctx" assert tools[3].requires_context # test metadata mapping tools = tool_spec.to_tool_list( func_to_metadata_mapping={ "foo": ToolMetadata( "foo_description", name="foo_name", fn_schema=FooSchema ), } ) assert len(tools) == 4 assert tools[0].metadata.name == "foo_name" assert tools[0].metadata.description == "foo_description" assert tools[0].metadata.fn_schema is not None fn_schema = tools[0].metadata.fn_schema.model_json_schema() print(fn_schema) assert fn_schema["properties"]["arg1"]["type"] == "string" assert fn_schema["properties"]["arg2"]["type"] == "integer" assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert tools[1].metadata.fn_schema is not None fn_schema = tools[1].metadata.fn_schema.model_json_schema() assert fn_schema["properties"]["arg1"]["type"] == "boolean" @pytest.mark.asyncio async def test_tool_spec_async() -> None: """Test async_fn of tool spec.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list() assert len(tools) == 4 assert await tools[0].async_fn("hello", 1) == "foo hello 1" assert str(await tools[1].acall(True)) == "bar True" def test_async_patching() -> None: # test sync patching of async function tool_spec = TestToolSpec() tool_spec.spec_functions = ["afoo"] tools = tool_spec.to_tool_list() assert len(tools) == 1 assert tools[0].fn("hello", 1) == "foo hello 1" def test_tool_spec_subset() -> None: """Test tool spec subset.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list(spec_functions=["abc"]) assert len(tools) == 1 assert tools[0].metadata.name == "abc" assert tools[0].metadata.description == "abc(arg1: str) -> str\n" assert ( tools[0].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"] )
"""Test tool spec.""" from typing import List, Tuple, Union import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.core.tools.types import ToolMetadata from llama_index.core.workflow import Context class FooSchema(BaseModel): arg1: str arg2: int class BarSchema(BaseModel): arg1: bool class AbcSchema(BaseModel): arg1: str class TestToolSpec(BaseToolSpec): spec_functions: List[Union[str, Tuple[str, str]]] = ["foo", "bar", "abc", "abc_with_ctx"] def foo(self, arg1: str, arg2: int) -> str: """Foo.""" return f"foo {arg1} {arg2}" def bar(self, arg1: bool) -> str: """Bar.""" return f"bar {arg1}" async def afoo(self, arg1: str, arg2: int) -> str: """Afoo.""" return self.foo(arg1=arg1, arg2=arg2) async def abar(self, arg1: bool) -> str: """Abar.""" return self.bar(arg1=arg1) def abc(self, arg1: str) -> str: # NOTE: no docstring return f"bar {arg1}" def abc_with_ctx(self, arg1: str, ctx: Context) -> str: return f"bar {arg1}" def unused_function(self, arg1: str) -> str: return f"unused {arg1}" def test_tool_spec() -> None: """Test tool spec.""" tool_spec = TestToolSpec() # first is foo, second is bar tools = tool_spec.to_tool_list() assert len(tools) == 4 assert tools[0].metadata.name == "foo" assert tools[0].metadata.description == "foo(arg1: str, arg2: int) -> str\nFoo." assert tools[0].fn("hello", 1) == "foo hello 1" assert tools[0].ctx_param_name is None assert not tools[0].requires_context assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert str(tools[1](True)) == "bar True" assert tools[1].ctx_param_name is None assert not tools[1].requires_context assert tools[2].metadata.name == "abc" assert tools[2].metadata.description == "abc(arg1: str) -> str\n" assert tools[2].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"] assert tools[2].ctx_param_name is None assert not tools[2].requires_context assert tools[3].metadata.name == "abc_with_ctx" assert tools[3].metadata.description == "abc_with_ctx(arg1: str) -> str\n" assert tools[3].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"] assert tools[3].ctx_param_name == "ctx" assert tools[3].requires_context # test metadata mapping tools = tool_spec.to_tool_list( func_to_metadata_mapping={ "foo": ToolMetadata( "foo_description", name="foo_name", fn_schema=FooSchema ), } ) assert len(tools) == 4 assert tools[0].metadata.name == "foo_name" assert tools[0].metadata.description == "foo_description" assert tools[0].metadata.fn_schema is not None fn_schema = tools[0].metadata.fn_schema.model_json_schema() print(fn_schema) assert fn_schema["properties"]["arg1"]["type"] == "string" assert fn_schema["properties"]["arg2"]["type"] == "integer" assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert tools[1].metadata.fn_schema is not None fn_schema = tools[1].metadata.fn_schema.model_json_schema() assert fn_schema["properties"]["arg1"]["type"] == "boolean" @pytest.mark.asyncio async def test_tool_spec_async() -> None: """Test async_fn of tool spec.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list() assert len(tools) == 4 assert await tools[0].async_fn("hello", 1) == "foo hello 1" assert str(await tools[1].acall(True)) == "bar True" def test_async_patching() -> None: # test sync patching of async function tool_spec = TestToolSpec() tool_spec.spec_functions = ["afoo"] tools = tool_spec.to_tool_list() assert len(tools) == 1 assert tools[0].fn("hello", 1) == "foo hello 1" def test_tool_spec_subset() -> None: """Test tool spec subset.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list(spec_functions=["abc"]) assert len(tools) == 1 assert tools[0].metadata.name == "abc" assert tools[0].metadata.description == "abc(arg1: str) -> str\n" assert tools[0].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"]
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Union[dict, tuple, list]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (dict or tuple or list, optional): Data from dataloader. outputs (dict or sequence, optional): Outputs from model. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.registry import HOOKS from mmengine.structures import BaseDataElement from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
from typing import Any, Iterable, Protocol, Sequence, runtime_checkable import uuid from llama_index.core.schema import Document as LIDocument from llama_index.core.node_parser import NodeParser from docling_core.transforms.chunker import BaseChunker, HierarchicalChunker from docling_core.types import DoclingDocument as DLDocument from llama_index.core import Document as LIDocument from llama_index.core.node_parser import NodeParser from llama_index.core.schema import ( BaseNode, NodeRelationship, RelatedNodeType, TextNode, ) from llama_index.core.utils import get_tqdm_iterable class DoclingNodeParser(NodeParser): """ Docling format node parser. Splits the JSON format of `DoclingReader` into nodes corresponding to respective document elements from Docling's data model (paragraphs, headings, tables etc.). Args: chunker (BaseChunker, optional): The chunker to use. Defaults to `HierarchicalChunker()`. id_func(NodeIDGenCallable, optional): The node ID generation function to use. Defaults to `_uuid4_node_id_gen`. """ @runtime_checkable class NodeIDGenCallable(Protocol): def __call__(self, i: int, node: BaseNode) -> str: ... @staticmethod def _uuid4_node_id_gen(i: int, node: BaseNode) -> str: return str(uuid.uuid4()) chunker: BaseChunker = HierarchicalChunker() id_func: NodeIDGenCallable = _uuid4_node_id_gen def _parse_nodes( self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any, ) -> list[BaseNode]: nodes_with_progress: Iterable[BaseNode] = get_tqdm_iterable( items=nodes, show_progress=show_progress, desc="Parsing nodes" ) all_nodes: list[BaseNode] = [] for input_node in nodes_with_progress: li_doc = LIDocument.model_validate(input_node) dl_doc: DLDocument = DLDocument.model_validate_json(li_doc.get_content()) chunk_iter = self.chunker.chunk(dl_doc=dl_doc) for i, chunk in enumerate(chunk_iter): rels: dict[NodeRelationship, RelatedNodeType] = { NodeRelationship.SOURCE: li_doc.as_related_node_info(), } metadata = chunk.meta.export_json_dict() excl_embed_keys = [ k for k in chunk.meta.excluded_embed if k in metadata ] excl_llm_keys = [k for k in chunk.meta.excluded_llm if k in metadata] excl_embed_keys.extend( [ k for k in li_doc.excluded_embed_metadata_keys if k not in excl_embed_keys ] ) excl_llm_keys.extend( [ k for k in li_doc.excluded_llm_metadata_keys if k not in excl_llm_keys ] ) node = TextNode( id_=self.id_func(i=i, node=li_doc), text=chunk.text, excluded_embed_metadata_keys=excl_embed_keys, excluded_llm_metadata_keys=excl_llm_keys, relationships=rels, ) node.metadata = metadata all_nodes.append(node) return all_nodes
from typing import Any, Iterable, Protocol, Sequence, runtime_checkable import uuid from llama_index.core.schema import Document as LIDocument from llama_index.core.node_parser import NodeParser from docling_core.transforms.chunker import BaseChunker, HierarchicalChunker from docling_core.types import DoclingDocument as DLDocument from llama_index.core import Document as LIDocument from llama_index.core.node_parser import NodeParser from llama_index.core.schema import ( BaseNode, NodeRelationship, RelatedNodeType, TextNode, ) from llama_index.core.utils import get_tqdm_iterable class DoclingNodeParser(NodeParser): """ Docling format node parser. Splits the JSON format of `DoclingReader` into nodes corresponding to respective document elements from Docling's data model (paragraphs, headings, tables etc.). Args: chunker (BaseChunker, optional): The chunker to use. Defaults to `HierarchicalChunker()`. id_func(NodeIDGenCallable, optional): The node ID generation function to use. Defaults to `_uuid4_node_id_gen`. """ @runtime_checkable class NodeIDGenCallable(Protocol): def __call__(self, i: int, node: BaseNode) -> str: ... @staticmethod def _uuid4_node_id_gen(i: int, node: BaseNode) -> str: return str(uuid.uuid4()) chunker: BaseChunker = HierarchicalChunker() id_func: NodeIDGenCallable = _uuid4_node_id_gen def _parse_nodes( self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any, ) -> list[BaseNode]: nodes_with_progress: Iterable[BaseNode] = get_tqdm_iterable( items=nodes, show_progress=show_progress, desc="Parsing nodes" ) all_nodes: list[BaseNode] = [] for input_node in nodes_with_progress: li_doc = LIDocument.model_validate(input_node) dl_doc: DLDocument = DLDocument.model_validate_json(li_doc.get_content()) chunk_iter = self.chunker.chunk(dl_doc=dl_doc) for i, chunk in enumerate(chunk_iter): rels: dict[NodeRelationship, RelatedNodeType] = { NodeRelationship.SOURCE: li_doc.as_related_node_info(), } metadata = chunk.meta.export_json_dict() excl_embed_keys = [ k for k in chunk.meta.excluded_embed if k in metadata ] excl_llm_keys = [k for k in chunk.meta.excluded_llm if k in metadata] node = TextNode( id_=self.id_func(i=i, node=li_doc), text=chunk.text, excluded_embed_metadata_keys=excl_embed_keys, excluded_llm_metadata_keys=excl_llm_keys, relationships=rels, ) node.metadata = metadata all_nodes.append(node) return all_nodes
import multiprocessing import time import grpc import pytest import requests from jina import __jina_env__, __version__ from jina.proto import jina_pb2, jina_pb2_grpc from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import _generate_pod_args from .test_runtimes import _create_gateway_runtime, _create_head_runtime def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_worker(port): # create a single worker runtime p = multiprocessing.Process(target=_create_worker_runtime, args=(port,)) p.start() time.sleep(0.1) return p def _create_gateway(port, graph, pod_addr, protocol): # create a single worker runtime # create a single gateway runtime p = multiprocessing.Process( target=_create_gateway_runtime, args=(graph, pod_addr, port, protocol), ) p.start() time.sleep(0.1) return p def _create_head(port, connection_list_dict, polling='ANY'): p = multiprocessing.Process( target=_create_head_runtime, args=(port, connection_list_dict, 'head', polling) ) p.start() time.sleep(0.1) return p @pytest.mark.parametrize('runtime', ['head', 'worker', 'gateway']) def test_jina_info_grpc_based_runtimes(runtime, port_generator): port = port_generator() connection_list_dict = {} graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' if runtime == 'head': p = _create_head(port, connection_list_dict) elif runtime == 'gateway': p = _create_gateway(port, graph_description, pod_addresses, 'grpc') else: p = _create_worker(port) try: AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) channel = grpc.insecure_channel(f'localhost:{port}') stub = jina_pb2_grpc.JinaInfoRPCStub(channel) res = stub._status( jina_pb2.google_dot_protobuf_dot_empty__pb2.Empty(), ) assert res.jina['jina'] == __version__ for env_var in __jina_env__: assert env_var in res.envs except Exception: assert False finally: p.terminate() p.join() @pytest.mark.parametrize('protocol', ['http', 'websocket']) def test_jina_info_gateway_http(protocol, port_generator): port = port_generator() graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' p = _create_gateway(port, graph_description, pod_addresses, protocol) try: AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) x = requests.get(f'http://localhost:{port}/status') resp = x.json() assert 'jina' in resp assert 'envs' in resp assert resp['jina']['jina'] == __version__ for env_var in __jina_env__: assert env_var in resp['envs'] except Exception: assert False finally: p.terminate() p.join()
import multiprocessing import time import grpc import pytest import requests from jina import __jina_env__, __version__ from jina.parsers import set_pod_parser from jina.proto import jina_pb2, jina_pb2_grpc from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.worker import WorkerRuntime from .test_runtimes import _create_gateway_runtime, _create_head_runtime def _create_worker_runtime(port, name='', executor=None): args = set_pod_parser().parse_args([]) args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_worker(port): # create a single worker runtime p = multiprocessing.Process(target=_create_worker_runtime, args=(port,)) p.start() time.sleep(0.1) return p def _create_gateway(port, graph, pod_addr, protocol): # create a single worker runtime # create a single gateway runtime p = multiprocessing.Process( target=_create_gateway_runtime, args=(graph, pod_addr, port, protocol), ) p.start() time.sleep(0.1) return p def _create_head(port, connection_list_dict, polling='ANY'): p = multiprocessing.Process( target=_create_head_runtime, args=(port, connection_list_dict, 'head', polling) ) p.start() time.sleep(0.1) return p @pytest.mark.parametrize('runtime', ['head', 'worker', 'gateway']) def test_jina_info_grpc_based_runtimes(runtime, port_generator): port = port_generator() connection_list_dict = {} graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' if runtime == 'head': p = _create_head(port, connection_list_dict) elif runtime == 'gateway': p = _create_gateway(port, graph_description, pod_addresses, 'grpc') else: p = _create_worker(port) try: AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) channel = grpc.insecure_channel(f'localhost:{port}') stub = jina_pb2_grpc.JinaInfoRPCStub(channel) res = stub._status( jina_pb2.google_dot_protobuf_dot_empty__pb2.Empty(), ) assert res.jina['jina'] == __version__ for env_var in __jina_env__: assert env_var in res.envs except Exception: assert False finally: p.terminate() p.join() @pytest.mark.parametrize('protocol', ['http', 'websocket']) def test_jina_info_gateway_http(protocol, port_generator): port = port_generator() graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' p = _create_gateway(port, graph_description, pod_addresses, protocol) try: AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) x = requests.get(f'http://localhost:{port}/status') resp = x.json() assert 'jina' in resp assert 'envs' in resp assert resp['jina']['jina'] == __version__ for env_var in __jina_env__: assert env_var in resp['envs'] except Exception: assert False finally: p.terminate() p.join()
"""XGBoost: eXtreme Gradient Boosting library. Contributors: https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md """ from . import tracker # noqa from . import collective, dask from .core import Booster, DataIter, DMatrix, QuantileDMatrix, _py_version, build_info from .tracker import RabitTracker # noqa from .training import cv, train try: from .config import config_context, get_config, set_config from .plotting import plot_importance, plot_tree, to_graphviz from .sklearn import ( XGBClassifier, XGBModel, XGBRanker, XGBRegressor, XGBRFClassifier, XGBRFRegressor, ) except ImportError: pass __version__ = _py_version() __all__ = [ # core "DMatrix", "QuantileDMatrix", "Booster", "DataIter", "train", "cv", # utilities "RabitTracker", "build_info", "plot_importance", "plot_tree", "to_graphviz", "set_config", "get_config", "config_context", # sklearn "XGBModel", "XGBClassifier", "XGBRegressor", "XGBRanker", "XGBRFClassifier", "XGBRFRegressor", # dask "dask", # collective "collective", ]
"""XGBoost: eXtreme Gradient Boosting library. Contributors: https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md """ from . import tracker # noqa from . import collective, dask from .core import ( Booster, DataIter, DeviceQuantileDMatrix, DMatrix, QuantileDMatrix, _py_version, build_info, ) from .tracker import RabitTracker # noqa from .training import cv, train try: from .config import config_context, get_config, set_config from .plotting import plot_importance, plot_tree, to_graphviz from .sklearn import ( XGBClassifier, XGBModel, XGBRanker, XGBRegressor, XGBRFClassifier, XGBRFRegressor, ) except ImportError: pass __version__ = _py_version() __all__ = [ # core "DMatrix", "DeviceQuantileDMatrix", "QuantileDMatrix", "Booster", "DataIter", "train", "cv", # utilities "RabitTracker", "build_info", "plot_importance", "plot_tree", "to_graphviz", "set_config", "get_config", "config_context", # sklearn "XGBModel", "XGBClassifier", "XGBRegressor", "XGBRanker", "XGBRFClassifier", "XGBRFRegressor", # dask "dask", # collective "collective", ]
import logging from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for all NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) # Print the results print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}")
from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for all NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=32, ) # Run evaluation print("Starting evaluation on all NanoBEIR datasets") results = evaluator(model) print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # Print results for each dataset for key, value in results.items(): if key.startswith("Nano"): print(f"{key}: {value:.4f}")
import pathlib import pytest from mktestdocs import grab_code_blocks from mktestdocs.__main__ import _executors, check_raw_string def check_raw_file_full(raw, lang="python", keyword_ignore=[]): if lang not in _executors: raise LookupError( f"{lang} is not a supported language to check\n" "\tHint: you can add support for any language by using register_executor" ) executor = _executors[lang] all_code = "" add_code_block = True for b in grab_code_blocks(raw, lang=lang): add_code_block = True for keyword in keyword_ignore: if keyword in b: add_code_block = False break if add_code_block: all_code = f"{all_code}\n{b}" executor(all_code) def check_md_file(fpath, memory=False, lang="python", keyword_ignore=[]): """ NOTE: copy paste from mktestdocs.__main__ and add the keyword ignore Given a markdown file, parse the contents for python code blocks and check that each independent block does not cause an error. Arguments: fpath: path to markdown file memory: whether or not previous code-blocks should be remembered """ text = pathlib.Path(fpath).read_text() if not memory: check_raw_string(text, lang=lang) else: check_raw_file_full(text, lang=lang, keyword_ignore=keyword_ignore) @pytest.mark.parametrize( 'fpath', [ *list(pathlib.Path('docs/user_guide').glob('**/*.md')), *list(pathlib.Path('docs/data_types').glob('**/*.md')), ], ids=str, ) def test_files_good(fpath): check_md_file(fpath=fpath, memory=True) def test_readme(): check_md_file( fpath='README.md', memory=True, keyword_ignore=['tensorflow', 'fastapi', 'push'] )
import pathlib import pytest from mktestdocs import grab_code_blocks from mktestdocs.__main__ import _executors, check_raw_string def check_raw_file_full(raw, lang="python", keyword_ignore=[]): if lang not in _executors: raise LookupError( f"{lang} is not a supported language to check\n" "\tHint: you can add support for any language by using register_executor" ) executor = _executors[lang] all_code = "" add_code_block = True for b in grab_code_blocks(raw, lang=lang): add_code_block = True for keyword in keyword_ignore: if keyword in b: add_code_block = False break if add_code_block: all_code = f"{all_code}\n{b}" executor(all_code) def check_md_file(fpath, memory=False, lang="python", keyword_ignore=[]): """ NOTE: copy paste from mktestdocs.__main__ and add the keyword ignore Given a markdown file, parse the contents for python code blocks and check that each independent block does not cause an error. Arguments: fpath: path to markdown file memory: whether or not previous code-blocks should be remembered """ text = pathlib.Path(fpath).read_text() if not memory: check_raw_string(text, lang=lang) else: check_raw_file_full(text, lang=lang, keyword_ignore=keyword_ignore) @pytest.mark.parametrize( 'fpath', pathlib.Path('docs/user_guide').glob('**/*.md'), ids=str ) def test_files_good(fpath): check_md_file(fpath=fpath, memory=True) def test_readme(): check_md_file( fpath='README.md', memory=True, keyword_ignore=['tensorflow', 'fastapi', 'push'] )
from pathlib import Path from typing import Any, Optional, TypedDict from tomlkit import load def get_package_root(cwd: Optional[Path] = None) -> Path: # traverse path for routes to host (any directory holding a pyproject.toml file) package_root = Path.cwd() if cwd is None else cwd visited: set[Path] = set() while package_root not in visited: visited.add(package_root) pyproject_path = package_root / "pyproject.toml" if pyproject_path.exists(): return package_root package_root = package_root.parent msg = "No pyproject.toml found" raise FileNotFoundError(msg) class LangServeExport(TypedDict): """Fields from pyproject.toml that are relevant to LangServe. Attributes: module: The module to import from, tool.langserve.export_module attr: The attribute to import from the module, tool.langserve.export_attr package_name: The name of the package, tool.poetry.name """ module: str attr: str package_name: str def get_langserve_export(filepath: Path) -> LangServeExport: with open(filepath) as f: data: dict[str, Any] = load(f) try: module = data["tool"]["langserve"]["export_module"] attr = data["tool"]["langserve"]["export_attr"] package_name = data["tool"]["poetry"]["name"] except KeyError as e: msg = "Invalid LangServe PyProject.toml" raise KeyError(msg) from e return LangServeExport(module=module, attr=attr, package_name=package_name)
from pathlib import Path from typing import Any, Optional, TypedDict from tomlkit import load def get_package_root(cwd: Optional[Path] = None) -> Path: # traverse path for routes to host (any directory holding a pyproject.toml file) package_root = Path.cwd() if cwd is None else cwd visited: set[Path] = set() while package_root not in visited: visited.add(package_root) pyproject_path = package_root / "pyproject.toml" if pyproject_path.exists(): return package_root package_root = package_root.parent msg = "No pyproject.toml found" raise FileNotFoundError(msg) class LangServeExport(TypedDict): """Fields from pyproject.toml that are relevant to LangServe. Attributes: module: The module to import from, tool.langserve.export_module attr: The attribute to import from the module, tool.langserve.export_attr package_name: The name of the package, tool.poetry.name """ module: str attr: str package_name: str def get_langserve_export(filepath: Path) -> LangServeExport: with open(filepath) as f: data: dict[str, Any] = load(f) try: module = data["tool"]["langserve"]["export_module"] attr = data["tool"]["langserve"]["export_attr"] package_name = data["tool"]["poetry"]["name"] except KeyError as e: msg = "Invalid LangServe PyProject.toml" raise KeyError(msg) from e return LangServeExport(module=module, attr=attr, package_name=package_name)
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __docarray_validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form Tensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type Tensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form Tensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _docarray_create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__docarray_validate_shape__(t, _cls._docarray_target_shape) _ParametrizedTensor.__name__ = f'{cls.__name__}[{shape_str}]' _ParametrizedTensor.__qualname__ = f'{cls.__qualname__}[{shape_str}]' return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__docarray_validate_getitem__(item) return cls._docarray_create_parametrized_type(target_shape) @classmethod @abc.abstractmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" ...
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __docarray_validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form Tensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type Tensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form Tensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _docarray_create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape __name__ = f'{cls.__name__}[{shape_str}]' __qualname__ = f'{cls.__qualname__}[{shape_str}]' @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__docarray_validate_shape__(t, _cls._docarray_target_shape) return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__docarray_validate_getitem__(item) return cls._docarray_create_parametrized_type(target_shape) @classmethod @abc.abstractmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" ...
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional from mmengine.utils.manager import ManagerMixin, _accquire_lock, _release_lock class DefaultScope(ManagerMixin): """Scope of current task used to reset the current registry, which can be accessed globally. Consider the case of resetting the current ``Resgitry`` by``default_scope`` in the internal module which cannot access runner directly, it is difficult to get the ``default_scope`` defined in ``Runner``. However, if ``Runner`` created ``DefaultScope`` instance by given ``default_scope``, the internal module can get ``default_scope`` by ``DefaultScope.get_current_instance`` everywhere. Args: name (str): Name of default scope for global access. scope_name (str): Scope of current task. Examples: >>> from mmengine import MODELS >>> # Define default scope in runner. >>> DefaultScope.get_instance('task', scope_name='mmdet') >>> # Get default scope globally. >>> scope_name = DefaultScope.get_instance('task').scope_name """ def __init__(self, name: str, scope_name: str): super().__init__(name) self._scope_name = scope_name @property def scope_name(self) -> str: """ Returns: str: Get current scope. """ return self._scope_name @classmethod def get_current_instance(cls) -> Optional['DefaultScope']: """Get latest created default scope. Since default_scope is an optional argument for ``Registry.build``. ``get_current_instance`` should return ``None`` if there is no ``DefaultScope`` created. Examples: >>> default_scope = DefaultScope.get_current_instance() >>> # There is no `DefaultScope` created yet, >>> # `get_current_instance` return `None`. >>> default_scope = DefaultScope.get_instance( >>> 'instance_name', scope_name='mmengine') >>> default_scope.scope_name mmengine >>> default_scope = DefaultScope.get_current_instance() >>> default_scope.scope_name mmengine Returns: Optional[DefaultScope]: Return None If there has not been ``DefaultScope`` instance created yet, otherwise return the latest created DefaultScope instance. """ _accquire_lock() if cls._instance_dict: instance = super(DefaultScope, cls).get_current_instance() else: instance = None _release_lock() return instance
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional from mmengine.utils.manager import ManagerMixin, _accquire_lock, _release_lock class DefaultScope(ManagerMixin): """Scope of current task used to reset the current registry, which can be accessed globally. Consider the case of resetting the current ``Resgitry`` by``default_scope`` in the internal module which cannot access runner directly, it is difficult to get the ``default_scope`` defined in ``Runner``. However, if ``Runner`` created ``DefaultScope`` instance by given ``default_scope``, the internal module can get ``default_scope`` by ``DefaultScope.get_current_instance`` everywhere. Args: name (str): Name of default scope for global access. scope_name (str): Scope of current task. Examples: >>> from mmengine import MODELS >>> # Define default scope in runner. >>> DefaultScope.get_instance('task', scope_name='mmdet') >>> # Get default scope globally. >>> scope_name = DefaultScope.get_instance('task').scope_name >>> # build model from cfg. >>> model = MODELS.build(model_cfg, default_scope=scope_name) """ def __init__(self, name: str, scope_name: str): super().__init__(name) self._scope_name = scope_name @property def scope_name(self) -> str: """ Returns: str: Get current scope. """ return self._scope_name @classmethod def get_current_instance(cls) -> Optional['DefaultScope']: """Get latest created default scope. Since default_scope is an optional argument for ``Registry.build``. ``get_current_instance`` should return ``None`` if there is no ``DefaultScope`` created. Examples: >>> default_scope = DefaultScope.get_current_instance() >>> # There is no `DefaultScope` created yet, >>> # `get_current_instance` return `None`. >>> default_scope = DefaultScope.get_instance( >>> 'instance_name', scope_name='mmengine') >>> default_scope.scope_name mmengine >>> default_scope = DefaultScope.get_current_instance() >>> default_scope.scope_name mmengine Returns: Optional[DefaultScope]: Return None If there has not been ``DefaultScope`` instance created yet, otherwise return the latest created DefaultScope instance. """ _accquire_lock() if cls._instance_dict: instance = super(DefaultScope, cls).get_current_instance() else: instance = None _release_lock() return instance
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import ( FewShotPromptWithTemplates, ) from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "format_document", "aformat_document", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ] _dynamic_imports = { "BasePromptTemplate": "base", "format_document": "base", "aformat_document": "base", "AIMessagePromptTemplate": "chat", "BaseChatPromptTemplate": "chat", "ChatMessagePromptTemplate": "chat", "ChatPromptTemplate": "chat", "HumanMessagePromptTemplate": "chat", "MessagesPlaceholder": "chat", "SystemMessagePromptTemplate": "chat", "FewShotChatMessagePromptTemplate": "few_shot", "FewShotPromptTemplate": "few_shot", "FewShotPromptWithTemplates": "few_shot_with_templates", "load_prompt": "loading", "PipelinePromptTemplate": "pipeline", "PromptTemplate": "prompt", "StringPromptTemplate": "string", "check_valid_template": "string", "get_template_variables": "string", "jinja2_formatter": "string", "validate_jinja2": "string", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import ( FewShotPromptWithTemplates, ) from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "format_document", "aformat_document", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ] _dynamic_imports = { "BasePromptTemplate": "base", "format_document": "base", "aformat_document": "base", "AIMessagePromptTemplate": "chat", "BaseChatPromptTemplate": "chat", "ChatMessagePromptTemplate": "chat", "ChatPromptTemplate": "chat", "HumanMessagePromptTemplate": "chat", "MessagesPlaceholder": "chat", "SystemMessagePromptTemplate": "chat", "FewShotChatMessagePromptTemplate": "few_shot", "FewShotPromptTemplate": "few_shot", "FewShotPromptWithTemplates": "few_shot_with_templates", "load_prompt": "loading", "PipelinePromptTemplate": "pipeline", "PromptTemplate": "prompt", "StringPromptTemplate": "string", "check_valid_template": "string", "get_template_variables": "string", "jinja2_formatter": "string", "validate_jinja2": "string", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
import json from collections.abc import Sequence from langchain_core.agents import AgentAction from langchain_core.messages import ( AIMessage, BaseMessage, ToolMessage, ) from langchain.agents.output_parsers.tools import ToolAgentAction def _create_tool_message( agent_action: ToolAgentAction, observation: str, ) -> ToolMessage: """Convert agent action and observation into a tool message. Args: agent_action: the tool invocation request from the agent. observation: the result of the tool invocation. Returns: ToolMessage that corresponds to the original tool invocation. Raises: ValueError: if the observation cannot be converted to a string. """ if not isinstance(observation, str): try: content = json.dumps(observation, ensure_ascii=False) except Exception: content = str(observation) else: content = observation return ToolMessage( tool_call_id=agent_action.tool_call_id, content=content, additional_kwargs={"name": agent_action.tool}, ) def format_to_tool_messages( intermediate_steps: Sequence[tuple[AgentAction, str]], ) -> list[BaseMessage]: """Convert (AgentAction, tool output) tuples into ToolMessages. Args: intermediate_steps: Steps the LLM has taken to date, along with observations. Returns: list of messages to send to the LLM for the next prediction. """ messages = [] for agent_action, observation in intermediate_steps: if isinstance(agent_action, ToolAgentAction): new_messages = [ *list(agent_action.message_log), _create_tool_message(agent_action, observation), ] messages.extend([new for new in new_messages if new not in messages]) else: messages.append(AIMessage(content=agent_action.log)) return messages
import json from collections.abc import Sequence from langchain_core.agents import AgentAction from langchain_core.messages import ( AIMessage, BaseMessage, ToolMessage, ) from langchain.agents.output_parsers.tools import ToolAgentAction def _create_tool_message( agent_action: ToolAgentAction, observation: str ) -> ToolMessage: """Convert agent action and observation into a tool message. Args: agent_action: the tool invocation request from the agent. observation: the result of the tool invocation. Returns: ToolMessage that corresponds to the original tool invocation. Raises: ValueError: if the observation cannot be converted to a string. """ if not isinstance(observation, str): try: content = json.dumps(observation, ensure_ascii=False) except Exception: content = str(observation) else: content = observation return ToolMessage( tool_call_id=agent_action.tool_call_id, content=content, additional_kwargs={"name": agent_action.tool}, ) def format_to_tool_messages( intermediate_steps: Sequence[tuple[AgentAction, str]], ) -> list[BaseMessage]: """Convert (AgentAction, tool output) tuples into ToolMessages. Args: intermediate_steps: Steps the LLM has taken to date, along with observations. Returns: list of messages to send to the LLM for the next prediction. """ messages = [] for agent_action, observation in intermediate_steps: if isinstance(agent_action, ToolAgentAction): new_messages = [ *list(agent_action.message_log), _create_tool_message(agent_action, observation), ] messages.extend([new for new in new_messages if new not in messages]) else: messages.append(AIMessage(content=agent_action.log)) return messages
"""Setup script.""" import os import pathlib from setuptools import find_packages from setuptools import setup def read(rel_path): here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, rel_path)) as fp: return fp.read() def get_version(rel_path): for line in read(rel_path).splitlines(): if line.startswith("__version__"): delim = '"' if '"' in line else "'" return line.split(delim)[1] raise RuntimeError("Unable to find version string.") HERE = pathlib.Path(__file__).parent README = (HERE / "README.md").read_text() VERSION = get_version("keras/src/version.py") setup( name="keras", description="Multi-backend Keras.", long_description_content_type="text/markdown", long_description=README, version=VERSION, url="https://github.com/keras-team/keras", author="Keras team", author_email="[email protected]", license="Apache License 2.0", install_requires=[ "absl-py", "numpy", "rich", "namex", "h5py", "optree", "ml-dtypes", "packaging", ], # Supported Python versions python_requires=">=3.9", classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3 :: Only", "Operating System :: Unix", "Operating System :: MacOS", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Topic :: Software Development", ], packages=find_packages(exclude=("*_test.py",)), )
"""Setup script.""" import os import pathlib from setuptools import find_packages from setuptools import setup def read(rel_path): here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, rel_path)) as fp: return fp.read() def get_version(rel_path): for line in read(rel_path).splitlines(): if line.startswith("__version__"): delim = '"' if '"' in line else "'" return line.split(delim)[1] raise RuntimeError("Unable to find version string.") HERE = pathlib.Path(__file__).parent README = (HERE / "README.md").read_text() VERSION = get_version("keras/src/version.py") setup( name="keras", description="Multi-backend Keras.", long_description_content_type="text/markdown", long_description=README, version=VERSION, url="https://github.com/keras-team/keras", author="Keras team", author_email="[email protected]", license="Apache License 2.0", install_requires=[ "absl-py", "numpy", "rich", "namex", "h5py", "optree", "ml-dtypes", ], # Supported Python versions python_requires=">=3.9", classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3 :: Only", "Operating System :: Unix", "Operating System :: MacOS", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Topic :: Software Development", ], packages=find_packages(exclude=("*_test.py",)), )
import torchaudio _STREAM_READER = [ "StreamReader", "StreamReaderSourceStream", "StreamReaderSourceAudioStream", "StreamReaderSourceVideoStream", "StreamReaderOutputStream", ] _STREAM_WRITER = [ "StreamWriter", ] _LAZILY_IMPORTED = _STREAM_READER + _STREAM_WRITER def __getattr__(name: str): if name in _LAZILY_IMPORTED: torchaudio._extension._init_ffmpeg() if name in _STREAM_READER: from . import _stream_reader item = getattr(_stream_reader, name) else: from . import _stream_writer item = getattr(_stream_writer, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
import torchaudio _LAZILY_IMPORTED = [ "StreamReader", "StreamReaderSourceStream", "StreamReaderSourceAudioStream", "StreamReaderSourceVideoStream", "StreamReaderOutputStream", ] def __getattr__(name: str): if name in _LAZILY_IMPORTED: torchaudio._extension._init_ffmpeg() from . import _stream_reader item = getattr(_stream_reader, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
_base_ = './vfnet_r50-mdconv-c3-c5_fpn_ms-2x_coco.py' model = dict( backbone=dict( type='Res2Net', depth=101, scales=4, base_width=26, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
_base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py' model = dict( backbone=dict( type='Res2Net', depth=101, scales=4, base_width=26, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
import json from typing import ( Any, Union, ) from langchain_core._api import deprecated from pydantic import PrivateAttr from langchain_anthropic.chat_models import ChatAnthropic SYSTEM_PROMPT_FORMAT = """In this environment you have access to a set of tools you can use to answer the user's question. You may call them like this: <function_calls> <invoke> <tool_name>$TOOL_NAME</tool_name> <parameters> <$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME> ... </parameters> </invoke> </function_calls> Here are the tools available: <tools> {formatted_tools} </tools>""" # noqa: E501 TOOL_FORMAT = """<tool_description> <tool_name>{tool_name}</tool_name> <description>{tool_description}</description> <parameters> {formatted_parameters} </parameters> </tool_description>""" TOOL_PARAMETER_FORMAT = """<parameter> <name>{parameter_name}</name> <type>{parameter_type}</type> <description>{parameter_description}</description> </parameter>""" def _get_type(parameter: dict[str, Any]) -> str: if "type" in parameter: return parameter["type"] if "anyOf" in parameter: return json.dumps({"anyOf": parameter["anyOf"]}) if "allOf" in parameter: return json.dumps({"allOf": parameter["allOf"]}) return json.dumps(parameter) def get_system_message(tools: list[dict]) -> str: """Generate a system message that describes the available tools.""" tools_data: list[dict] = [ { "tool_name": tool["name"], "tool_description": tool["description"], "formatted_parameters": "\n".join( [ TOOL_PARAMETER_FORMAT.format( parameter_name=name, parameter_type=_get_type(parameter), parameter_description=parameter.get("description"), ) for name, parameter in tool["parameters"]["properties"].items() ] ), } for tool in tools ] tools_formatted = "\n".join( [ TOOL_FORMAT.format( tool_name=tool["tool_name"], tool_description=tool["tool_description"], formatted_parameters=tool["formatted_parameters"], ) for tool in tools_data ] ) return SYSTEM_PROMPT_FORMAT.format(formatted_tools=tools_formatted) def _xml_to_dict(t: Any) -> Union[str, dict[str, Any]]: # Base case: If the element has no children, return its text or an empty string. if len(t) == 0: return t.text or "" # Recursive case: The element has children. Convert them into a dictionary. d: dict[str, Any] = {} for child in t: if child.tag not in d: d[child.tag] = _xml_to_dict(child) else: # Handle multiple children with the same tag if not isinstance(d[child.tag], list): d[child.tag] = [d[child.tag]] # Convert existing entry into a list d[child.tag].append(_xml_to_dict(child)) return d def _xml_to_function_call(invoke: Any, tools: list[dict]) -> dict[str, Any]: name = invoke.find("tool_name").text arguments = _xml_to_dict(invoke.find("parameters")) # make list elements in arguments actually lists filtered_tools = [tool for tool in tools if tool["name"] == name] if len(filtered_tools) > 0 and not isinstance(arguments, str): tool = filtered_tools[0] for key, value in arguments.items(): if key in tool["parameters"]["properties"]: if "type" in tool["parameters"]["properties"][key]: if tool["parameters"]["properties"][key][ "type" ] == "array" and not isinstance(value, list): arguments[key] = [value] if ( tool["parameters"]["properties"][key]["type"] != "object" and isinstance(value, dict) and len(value.keys()) == 1 ): arguments[key] = list(value.values())[0] return { "function": { "name": name, "arguments": json.dumps(arguments), }, "type": "function", } def _xml_to_tool_calls(elem: Any, tools: list[dict]) -> list[dict[str, Any]]: """ Convert an XML element and its children into a dictionary of dictionaries. """ invokes = elem.findall("invoke") return [_xml_to_function_call(invoke, tools) for invoke in invokes] @deprecated( "0.1.5", removal="1.0.0", alternative="ChatAnthropic", message=( "Tool-calling is now officially supported by the Anthropic API so this " "workaround is no longer needed." ), ) class ChatAnthropicTools(ChatAnthropic): """Chat model for interacting with Anthropic functions.""" _xmllib: Any = PrivateAttr(default=None)
import json from typing import ( Any, Dict, List, Union, ) from langchain_core._api import deprecated from pydantic import PrivateAttr from langchain_anthropic.chat_models import ChatAnthropic SYSTEM_PROMPT_FORMAT = """In this environment you have access to a set of tools you can use to answer the user's question. You may call them like this: <function_calls> <invoke> <tool_name>$TOOL_NAME</tool_name> <parameters> <$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME> ... </parameters> </invoke> </function_calls> Here are the tools available: <tools> {formatted_tools} </tools>""" # noqa: E501 TOOL_FORMAT = """<tool_description> <tool_name>{tool_name}</tool_name> <description>{tool_description}</description> <parameters> {formatted_parameters} </parameters> </tool_description>""" TOOL_PARAMETER_FORMAT = """<parameter> <name>{parameter_name}</name> <type>{parameter_type}</type> <description>{parameter_description}</description> </parameter>""" def _get_type(parameter: Dict[str, Any]) -> str: if "type" in parameter: return parameter["type"] if "anyOf" in parameter: return json.dumps({"anyOf": parameter["anyOf"]}) if "allOf" in parameter: return json.dumps({"allOf": parameter["allOf"]}) return json.dumps(parameter) def get_system_message(tools: List[Dict]) -> str: """Generate a system message that describes the available tools.""" tools_data: List[Dict] = [ { "tool_name": tool["name"], "tool_description": tool["description"], "formatted_parameters": "\n".join( [ TOOL_PARAMETER_FORMAT.format( parameter_name=name, parameter_type=_get_type(parameter), parameter_description=parameter.get("description"), ) for name, parameter in tool["parameters"]["properties"].items() ] ), } for tool in tools ] tools_formatted = "\n".join( [ TOOL_FORMAT.format( tool_name=tool["tool_name"], tool_description=tool["tool_description"], formatted_parameters=tool["formatted_parameters"], ) for tool in tools_data ] ) return SYSTEM_PROMPT_FORMAT.format(formatted_tools=tools_formatted) def _xml_to_dict(t: Any) -> Union[str, Dict[str, Any]]: # Base case: If the element has no children, return its text or an empty string. if len(t) == 0: return t.text or "" # Recursive case: The element has children. Convert them into a dictionary. d: Dict[str, Any] = {} for child in t: if child.tag not in d: d[child.tag] = _xml_to_dict(child) else: # Handle multiple children with the same tag if not isinstance(d[child.tag], list): d[child.tag] = [d[child.tag]] # Convert existing entry into a list d[child.tag].append(_xml_to_dict(child)) return d def _xml_to_function_call(invoke: Any, tools: List[Dict]) -> Dict[str, Any]: name = invoke.find("tool_name").text arguments = _xml_to_dict(invoke.find("parameters")) # make list elements in arguments actually lists filtered_tools = [tool for tool in tools if tool["name"] == name] if len(filtered_tools) > 0 and not isinstance(arguments, str): tool = filtered_tools[0] for key, value in arguments.items(): if key in tool["parameters"]["properties"]: if "type" in tool["parameters"]["properties"][key]: if tool["parameters"]["properties"][key][ "type" ] == "array" and not isinstance(value, list): arguments[key] = [value] if ( tool["parameters"]["properties"][key]["type"] != "object" and isinstance(value, dict) and len(value.keys()) == 1 ): arguments[key] = list(value.values())[0] return { "function": { "name": name, "arguments": json.dumps(arguments), }, "type": "function", } def _xml_to_tool_calls(elem: Any, tools: List[Dict]) -> List[Dict[str, Any]]: """ Convert an XML element and its children into a dictionary of dictionaries. """ invokes = elem.findall("invoke") return [_xml_to_function_call(invoke, tools) for invoke in invokes] @deprecated( "0.1.5", removal="1.0.0", alternative="ChatAnthropic", message=( "Tool-calling is now officially supported by the Anthropic API so this " "workaround is no longer needed." ), ) class ChatAnthropicTools(ChatAnthropic): """Chat model for interacting with Anthropic functions.""" _xmllib: Any = PrivateAttr(default=None)
from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] num_queries = 1_000 queries = corpus[:num_queries] # 2. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 3. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # 4. Encode the queries using the full precision query_embeddings = model.encode(queries, normalize_embeddings=True) for exact in (True, False): for corpus_precision in ("float32", "int8", "binary"): corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # 5. Perform semantic search using usearch rescore_multiplier = 4 results, search_time = semantic_search_usearch( query_embeddings, corpus_embeddings=corpus_embeddings, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=rescore_multiplier, exact=exact, ) print( f"{'Exact' if exact else 'Approximate'} search time using {corpus_precision} corpus: {search_time:.6f} seconds" + (f" (rescore_multiplier: {rescore_multiplier})" if corpus_precision != "float32" else "") )
from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] num_queries = 1_000 queries = corpus[:num_queries] # 2. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 3. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # 4. Encode the queries using the full precision query_embeddings = model.encode(queries, normalize_embeddings=True) for exact in (True, False): for corpus_precision in ("float32", "int8", "binary"): corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # 5. Perform semantic search using usearch rescore_multiplier = 4 results, search_time = semantic_search_usearch( query_embeddings, corpus_embeddings=corpus_embeddings, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=rescore_multiplier, exact=exact, ) print( f"{'Exact' if exact else 'Approximate'} search time using {corpus_precision} corpus: {search_time:.6f} seconds" + (f" (rescore_multiplier: {rescore_multiplier})" if corpus_precision != "float32" else "") )
from collections import defaultdict import torch def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 import v2_extras return torchvision.transforms.v2, torchvision.datapoints, v2_extras else: import transforms return transforms, None, None class SegmentationPresetTrain: def __init__( self, *, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False, ): T, datapoints, v2_extras = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImageTensor()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.RandomResize(min_size=int(0.5 * base_size), max_size=int(2.0 * base_size))] if hflip_prob > 0: transforms += [T.RandomHorizontalFlip(hflip_prob)] if use_v2: # We need a custom pad transform here, since the padding we want to perform here is fundamentally # different from the padding in `RandomCrop` if `pad_if_needed=True`. transforms += [v2_extras.PadIfSmaller(crop_size, fill=defaultdict(lambda: 0, {datapoints.Mask: 255}))] transforms += [T.RandomCrop(crop_size)] if backend == "pil": transforms += [T.PILToTensor()] if use_v2: img_type = datapoints.Image if backend == "datapoint" else torch.Tensor transforms += [ T.ToDtype(dtype={img_type: torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True) ] else: # No need to explicitly convert masks as they're magically int64 already transforms += [T.ConvertImageDtype(torch.float)] transforms += [T.Normalize(mean=mean, std=std)] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__( self, *, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False ): T, _, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImageTensor()] elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if use_v2: transforms += [T.Resize(size=(base_size, base_size))] else: transforms += [T.RandomResize(min_size=base_size, max_size=base_size)] if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] transforms += [ T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
import torch import transforms as T class SegmentationPresetTrain: def __init__(self, *, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): min_size = int(0.5 * base_size) max_size = int(2.0 * base_size) trans = [T.RandomResize(min_size, max_size)] if hflip_prob > 0: trans.append(T.RandomHorizontalFlip(hflip_prob)) trans.extend( [ T.RandomCrop(crop_size), T.PILToTensor(), T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] ) self.transforms = T.Compose(trans) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__(self, *, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): self.transforms = T.Compose( [ T.RandomResize(base_size, base_size), T.PILToTensor(), T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] ) def __call__(self, img, target): return self.transforms(img, target)
import logging import os from argparse import ArgumentParser import sentencepiece as spm from average_checkpoints import ensemble from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from transforms import get_data_module def get_trainer(args): seed_everything(1) checkpoint = ModelCheckpoint( dirpath=os.path.join(args.exp_dir, args.experiment_name) if args.exp_dir else None, monitor="monitoring_step", mode="max", save_last=True, filename="{{epoch}}", save_top_k=10, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, lr_monitor, ] return Trainer( sync_batchnorm=True, default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.num_nodes, devices=args.gpus, accelerator="gpu", strategy=DDPStrategy(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, resume_from_checkpoint=args.resume_from_checkpoint, ) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.md == "av": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) return model def parse_args(): parser = ArgumentParser() parser.add_argument( "--md", type=str, help="Modality", required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--dataset-path", type=str, help="Path to LRW audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--pretrained-model-path", type=str, help="Path to Pretraned model.", ) parser.add_argument( "--exp-dir", type=str, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--experiment-name", default="online_avsr_public_test", type=str, help="Experiment name", ) parser.add_argument( "--num-nodes", default=8, type=int, help="Number of nodes to use for training. (Default: 8)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=55, type=int, help="Number of epochs to train for. (Default: 55)", ) parser.add_argument( "--resume-from-checkpoint", default=None, type=str, help="Path to the checkpoint to resume from" ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) trainer = get_trainer(args) trainer.fit(model, data_module) ensemble(args) if __name__ == "__main__": cli_main()
import logging import os import pathlib from argparse import ArgumentParser import sentencepiece as spm from average_checkpoints import ensemble from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from transforms import get_data_module def get_trainer(args): seed_everything(1) checkpoint = ModelCheckpoint( dirpath=os.path.join(args.exp_dir, args.experiment_name) if args.exp_dir else None, monitor="monitoring_step", mode="max", save_last=True, filename=f"{{epoch}}", save_top_k=10, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, lr_monitor, ] return Trainer( sync_batchnorm=True, default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.num_nodes, devices=args.gpus, accelerator="gpu", strategy=DDPStrategy(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, resume_from_checkpoint=args.resume_from_checkpoint, ) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.md == "av": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) return model def parse_args(): parser = ArgumentParser() parser.add_argument( "--md", type=str, help="Modality", required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--dataset-path", type=str, help="Path to LRW audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--pretrained-model-path", type=str, help="Path to Pretraned model.", ) parser.add_argument( "--exp-dir", type=str, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--experiment-name", default="online_avsr_public_test", type=str, help="Experiment name", ) parser.add_argument( "--num-nodes", default=8, type=int, help="Number of nodes to use for training. (Default: 8)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=55, type=int, help="Number of epochs to train for. (Default: 55)", ) parser.add_argument( "--resume-from-checkpoint", default=None, type=str, help="Path to the checkpoint to resume from" ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) trainer = get_trainer(args) trainer.fit(model, data_module) ensemble(args) if __name__ == "__main__": cli_main()
# Copyright (c) OpenMMLab. All rights reserved. from .bbox_head import BBoxHead from .convfc_bbox_head import (ConvFCBBoxHead, Shared2FCBBoxHead, Shared4Conv1FCBBoxHead) from .dii_head import DIIHead from .double_bbox_head import DoubleConvFCBBoxHead from .multi_instance_bbox_head import MultiInstanceBBoxHead from .sabl_head import SABLHead from .scnet_bbox_head import SCNetBBoxHead __all__ = [ 'BBoxHead', 'ConvFCBBoxHead', 'Shared2FCBBoxHead', 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'SABLHead', 'DIIHead', 'SCNetBBoxHead', 'MultiInstanceBBoxHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .bbox_head import BBoxHead from .convfc_bbox_head import (ConvFCBBoxHead, Shared2FCBBoxHead, Shared4Conv1FCBBoxHead) from .dii_head import DIIHead from .double_bbox_head import DoubleConvFCBBoxHead from .sabl_head import SABLHead from .scnet_bbox_head import SCNetBBoxHead __all__ = [ 'BBoxHead', 'ConvFCBBoxHead', 'Shared2FCBBoxHead', 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'SABLHead', 'DIIHead', 'SCNetBBoxHead' ]
import types from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, celu, elu, selu, softplus, softsign, squareplus, soft_shrink, silu, gelu, glu, tanh, tanh_shrink, sigmoid, exponential, hard_sigmoid, hard_silu, hard_tanh, hard_shrink, linear, mish, log_softmax, log_sigmoid, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
import types from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, celu, elu, selu, softplus, softsign, soft_shrink, silu, gelu, glu, tanh, tanh_shrink, sigmoid, exponential, hard_sigmoid, hard_silu, hard_tanh, hard_shrink, linear, mish, log_softmax, log_sigmoid, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
from typing import Union, Iterable from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray.array.storage.registry import _REGISTRY from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with weaviate as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses weaviate as storage :return: the length of this :class:`DocumentArrayWeaviate` object """ cls_data = ( self._client.query.aggregate(self._class_name) .with_meta_count() .do() .get('data', {}) .get('Aggregate', {}) .get(self._class_name, []) ) if not cls_data: return 0 return cls_data[0]['meta']['count'] def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with weaviate storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._client.data_object.exists(self._map_id(x)) elif isinstance(x, Document): return self._client.data_object.exists(self._map_id(x.id)) else: return False def __del__(self): """Delete this :class:`DocumentArrayWeaviate` object""" super().__del__() if ( not self._persist and len(_REGISTRY[self.__class__.__name__][self._class_name]) == 1 ): self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) _REGISTRY[self.__class__.__name__][self._class_name].remove(self) def __repr__(self): """Return the string representation of :class:`DocumentArrayWeaviate` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def extend(self, values: Iterable['Document']) -> None: """Extends the array with the given values :param values: Documents to be added """ with self._client.batch(batch_size=50) as _b: for d in values: _b.add_data_object(**self._doc2weaviate_create_payload(d)) self._offset2ids.append(d.id)
from typing import Union, Iterable from ..base.seqlike import BaseSequenceLikeMixin from ..registry import _REGISTRY from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with weaviate as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses weaviate as storage :return: the length of this :class:`DocumentArrayWeaviate` object """ cls_data = ( self._client.query.aggregate(self._class_name) .with_meta_count() .do() .get('data', {}) .get('Aggregate', {}) .get(self._class_name, []) ) if not cls_data: return 0 return cls_data[0]['meta']['count'] def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with weaviate storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._client.data_object.exists(self._map_id(x)) elif isinstance(x, Document): return self._client.data_object.exists(self._map_id(x.id)) else: return False def __del__(self): """Delete this :class:`DocumentArrayWeaviate` object""" super().__del__() if ( not self._persist and len(_REGISTRY[self.__class__.__name__][self._class_name]) == 1 ): self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) _REGISTRY[self.__class__.__name__][self._class_name].remove(self) def __repr__(self): """Return the string representation of :class:`DocumentArrayWeaviate` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def extend(self, values: Iterable['Document']) -> None: """Extends the array with the given values :param values: Documents to be added """ with self._client.batch(batch_size=50) as _b: for d in values: _b.add_data_object(**self._doc2weaviate_create_payload(d)) self._offset2ids.append(d.id)
from . import InputExample import csv import gzip import os class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open( filepath, encoding="utf-8" ) as fIn: data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
from . import InputExample import csv import gzip import os class STSDataReader: """ Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """ filename specified which data split to use (train.csv, dev.csv, test.csv). """ filepath = os.path.join(self.dataset_folder, filename) with gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open( filepath, encoding="utf-8" ) as fIn: data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """ Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] # disable opencv multithreading to avoid system being overloaded opencv_num_threads = 0 # set multi-process start method as `fork` to speed up the training mp_start_method = 'fork' # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] # disable opencv multithreading to avoid system being overloaded opencv_num_threads = 0 # set multi-process start method as `fork` to speed up the training mp_start_method = 'fork'
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.clickup.toolkit import ClickupToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ClickupToolkit": "langchain_community.agent_toolkits.clickup.toolkit", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ClickupToolkit", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.clickup.toolkit import ClickupToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ClickupToolkit": "langchain_community.agent_toolkits.clickup.toolkit" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ClickupToolkit", ]
"""Tests for tf.distribute related functionality under tf implementation.""" import numpy as np import pytest import tensorflow as tf from tensorflow.python.eager import context from keras.src import backend from keras.src import layers from keras.src import models from keras.src import testing from keras.src.backend.tensorflow import trainer as tf_trainer @pytest.mark.skipif( backend.backend() != "tensorflow", reason="The distribute test can only run with TF backend.", ) class DistributeTest(testing.TestCase): def setUp(self): super().setUp() # Need at least 2 devices for distribution related tests. cpus = tf.config.list_physical_devices("CPU") context._reset_context() tf.config.set_logical_device_configuration( cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ], ) def test_variable_creation(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): dense = layers.Dense(2) dense.build([4, 2]) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) self.assertIn("MirroredVariable", dense.kernel.value.__class__.__name__) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance(dense.bias.value, tf.distribute.DistributedValues) self.assertIn("MirroredVariable", dense.bias.value.__class__.__name__) def test_strategy_run(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): inputs = layers.Input(shape=[4]) dense = layers.Dense(2) output = dense(inputs) model = models.Functional(inputs, output) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) def input_fn(ctx): if ctx.replica_id_in_sync_group == 1: return tf.ones([8, 4]) else: return tf.zeros([8, 4]) distributed_inputs = ( strategy.experimental_distribute_values_from_function(input_fn) ) @tf.function def run_fn(data): return model(data) result = strategy.run(run_fn, args=(distributed_inputs,)) self.assertIsInstance( result, tf.types.experimental.distributed.PerReplica ) self.assertLen(result.values, 2) self.assertEqual(result.values[0].shape, [8, 2]) self.assertEqual(result.values[1].shape, [8, 2]) self.assertNotAllClose(result.values[0], result.values[1]) self.assertAllClose(result.values[0], tf.zeros([8, 2])) def test_epoch_iterator(self): x = np.random.random((100, 16)) y = np.random.random((100, 4)) sample_weight = np.random.random((100,)) batch_size = 16 shuffle = True strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) epoch_iterator = tf_trainer.TFEpochIterator( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, shuffle=shuffle, distribute_strategy=strategy, ) steps_seen = [] for step, data_iterator in epoch_iterator: steps_seen.append(step) batch = next(data_iterator) self.assertEqual(len(batch), 3) x, y, sample_weight = batch self.assertTrue( isinstance(x, tf.types.experimental.distributed.PerReplica) ) # Make sure the local batch size is 8 if step < 6: self.assertEqual(x.values[0].shape, [8, 16]) self.assertEqual(y.values[0].shape, [8, 4]) self.assertEqual(sample_weight.values[0].shape, [8]) else: # Last partial batch self.assertEqual(x.values[0].shape, [2, 16]) self.assertEqual(y.values[0].shape, [2, 4]) self.assertEqual(sample_weight.values[0].shape, [2]) self.assertEqual(steps_seen, [0, 1, 2, 3, 4, 5, 6]) def test_variable_aggregation(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): x = np.random.random((4, 4)) v1 = backend.Variable(x, dtype="float32") self.assertEqual(v1.aggregation, "mean") self.assertEqual(v1.value.aggregation, tf.VariableAggregation.MEAN) v2 = backend.Variable(x, dtype="float32", aggregation="sum") self.assertEqual(v2.aggregation, "sum") self.assertEqual(v2.value.aggregation, tf.VariableAggregation.SUM)
"""Tests for tf.distribute related functionality under tf implementation.""" import numpy as np import pytest import tensorflow as tf from tensorflow.python.eager import context from keras.src import backend from keras.src import layers from keras.src import models from keras.src import testing from keras.src.backend.tensorflow import trainer as tf_trainer @pytest.mark.skipif( backend.backend() != "tensorflow", reason="The distribute test can only run with TF backend.", ) class DistributeTest(testing.TestCase): def setUp(self): super().setUp() # Need at least 2 devices for distribution related tests. cpus = tf.config.list_physical_devices("CPU") context._reset_context() tf.config.set_logical_device_configuration( cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ], ) def test_variable_creation(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): dense = layers.Dense(2) dense.build([4, 2]) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) self.assertIn("MirroredVariable", dense.kernel.value.__class__.__name__) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance(dense.bias.value, tf.distribute.DistributedValues) self.assertIn("MirroredVariable", dense.bias.value.__class__.__name__) def test_strategy_run(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): inputs = layers.Input(shape=[4]) dense = layers.Dense(2) output = dense(inputs) model = models.Functional(inputs, output) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) def input_fn(ctx): if ctx.replica_id_in_sync_group == 1: return tf.ones([8, 4]) else: return tf.zeros([8, 4]) distributed_inputs = ( strategy.experimental_distribute_values_from_function(input_fn) ) @tf.function def run_fn(data): return model(data) result = strategy.run(run_fn, args=(distributed_inputs,)) self.assertIsInstance( result, tf.types.experimental.distributed.PerReplica ) self.assertLen(result.values, 2) self.assertEqual(result.values[0].shape, [8, 2]) self.assertEqual(result.values[1].shape, [8, 2]) self.assertNotAllClose(result.values[0], result.values[1]) self.assertAllClose(result.values[0], tf.zeros([8, 2])) def test_epoch_iterator(self): x = np.random.random((100, 16)) y = np.random.random((100, 4)) sample_weight = np.random.random((100,)) batch_size = 16 shuffle = True strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) epoch_iterator = tf_trainer.TFEpochIterator( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, shuffle=shuffle, distribute_strategy=strategy, ) steps_seen = [] for step, data_iterator in epoch_iterator: steps_seen.append(step) batch = next(data_iterator) self.assertEqual(len(batch), 3) x, y, sample_weight = batch self.assertTrue( isinstance(x, tf.types.experimental.distributed.PerReplica) ) # Make sure the local batch size is 8 if step < 6: self.assertEqual(x.values[0].shape, [8, 16]) self.assertEqual(y.values[0].shape, [8, 4]) self.assertEqual(sample_weight.values[0].shape, [8]) else: # Last partial batch self.assertEqual(x.values[0].shape, [2, 16]) self.assertEqual(y.values[0].shape, [2, 4]) self.assertEqual(sample_weight.values[0].shape, [2]) self.assertEqual(steps_seen, [0, 1, 2, 3, 4, 5, 6])
from __future__ import annotations import re from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. Extend this class and implement __call__ for custom evaluators. """ def __init__(self): self.greater_is_better = True self.primary_metric = None def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> float | dict[str, float]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: dict[str, float], name: str) -> dict[str, float]: if not name: return metrics def maybe_to_float(value: Any) -> Any: try: return float(value) except ValueError: return value metrics = {name + "_" + key: maybe_to_float(value) for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data( self, model: SentenceTransformer, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Replace "CE" prefix with "CrossEncoder" 2. Remove "Evaluator" from the class name 3. Add a space before every capital letter """ class_name = self.__class__.__name__ if class_name.startswith("CE"): class_name = "CrossEncoder" + class_name[2:] try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", r"\g<1> \g<2>", class_name) def get_config_dict(self) -> dict[str, Any]: """ Return a dictionary with all meaningful configuration values of the evaluator to store in the model card. """ return {}
from __future__ import annotations import re from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. Extend this class and implement __call__ for custom evaluators. """ def __init__(self): self.greater_is_better = True self.primary_metric = None def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> float | dict[str, float]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: dict[str, float], name: str) -> dict[str, float]: if not name: return metrics def maybe_to_float(value: Any) -> Any: try: return float(value) except ValueError: return value metrics = {name + "_" + key: maybe_to_float(value) for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data( self, model: SentenceTransformer, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Replace "CE" prefix with "CrossEncoder" 2. Remove "Evaluator" from the class name 3. Add a space before every capital letter """ class_name = self.__class__.__name__ if class_name.startswith("CE"): class_name = "CrossEncoder" + class_name[2:] try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", r"\g<1> \g<2>", class_name)
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_accelerator, slow, torch_device enable_full_determinism() class DDPMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(4, 8), layers_per_block=1, norm_num_groups=4, sample_size=8, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_fast_inference(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDPMScheduler() ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(device) ddpm.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="np", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) expected_slice = np.array([0.0, 0.9996672, 0.00329116, 1.0, 0.9995991, 1.0, 0.0060907, 0.00115037, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_predict_sample(self): unet = self.dummy_uncond_unet scheduler = DDPMScheduler(prediction_type="sample") ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.manual_seed(0) image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="np")[0] image_slice = image[0, -3:, -3:, -1] image_eps_slice = image_eps[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance @slow @require_torch_accelerator class DDPMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDPMScheduler.from_pretrained(model_id) ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4200, 0.3588, 0.1939, 0.3847, 0.3382, 0.2647, 0.4155, 0.3582, 0.3385]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_accelerator, slow, torch_device enable_full_determinism() class DDPMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(4, 8), layers_per_block=1, norm_num_groups=4, sample_size=8, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_fast_inference(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDPMScheduler() ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(device) ddpm.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="np", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) expected_slice = np.array([0.0, 0.9996672, 0.00329116, 1.0, 0.9995991, 1.0, 0.0060907, 0.00115037, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_predict_sample(self): unet = self.dummy_uncond_unet scheduler = DDPMScheduler(prediction_type="sample") ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images generator = torch.manual_seed(0) image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="np")[0] image_slice = image[0, -3:, -3:, -1] image_eps_slice = image_eps[0, -3:, -3:, -1] assert image.shape == (1, 8, 8, 3) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance @slow @require_torch_accelerator class DDPMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDPMScheduler.from_pretrained(model_id) ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4200, 0.3588, 0.1939, 0.3847, 0.3382, 0.2647, 0.4155, 0.3582, 0.3385]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
from jina.parsers.base import set_base_parser from jina.parsers.helper import _chf def mixin_hub_usage_parser(parser): """Add the arguments for hub pull to the parser :param parser: the parser configure """ parser.add_argument( '--no-usage', action='store_true', default=False, help='If set, Hub executor usage will not be printed.', ) def set_hub_push_parser(parser=None): """Set the parser for the hub push :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() from jina.parsers.hubble.push import mixin_hub_push_parser mixin_hub_usage_parser(parser) mixin_hub_push_parser(parser) return parser def set_hub_pull_parser(parser=None): """Set the parser for the hub pull :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() from jina.parsers.hubble.pull import mixin_hub_pull_parser mixin_hub_usage_parser(parser) mixin_hub_pull_parser(parser) return parser def set_hub_new_parser(parser=None): """Set the parser for the hub new :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() from jina.parsers.hubble.new import mixin_hub_new_parser mixin_hub_new_parser(parser) return parser def set_hub_status_parser(parser=None): """Set the parser for the hub status :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() from jina.parsers.hubble.status import mixin_hub_status_parser mixin_hub_status_parser(parser) return parser def set_hub_parser(parser=None): """Set the parser for the hub :param parser: the parser configure :return: the parser """ if not parser: parser = set_base_parser() spp = parser.add_subparsers( dest='hub', description='use `%(prog)-8s [sub-command] --help` ' 'to get detailed information about each sub-command', required=True, ) set_hub_new_parser( spp.add_parser( 'new', help='create a new executor using the template', description='Create a new executor using the template', formatter_class=_chf, ) ) set_hub_push_parser( spp.add_parser( 'push', help='push an executor package to Jina hub', description='Push an executor package to Jina hub', formatter_class=_chf, ) ) set_hub_pull_parser( spp.add_parser( 'pull', help='download an executor image/package from Jina hub', description='Download an executor image/package from Jina hub', formatter_class=_chf, ) ) set_hub_status_parser( spp.add_parser( 'status', help='query an executor building status of of a pushed Executor from Jina hub', description='Query an executor building status of of a pushed Executor from Jina hub', formatter_class=_chf, ) ) return parser
from jina.parsers.base import set_base_parser from jina.parsers.helper import _chf def mixin_hub_usage_parser(parser): """Add the arguments for hub pull to the parser :param parser: the parser configure """ parser.add_argument( '--no-usage', action='store_true', default=False, help='If set, Hub executor usage will not be printed.', ) def set_hub_push_parser(parser=None): """Set the parser for the hub push :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() from jina.parsers.hubble.push import mixin_hub_push_parser mixin_hub_usage_parser(parser) mixin_hub_push_parser(parser) return parser def set_hub_pull_parser(parser=None): """Set the parser for the hub pull :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() from jina.parsers.hubble.pull import mixin_hub_pull_parser mixin_hub_usage_parser(parser) mixin_hub_pull_parser(parser) return parser def set_hub_new_parser(parser=None): """Set the parser for the hub new :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() from jina.parsers.hubble.new import mixin_hub_new_parser mixin_hub_new_parser(parser) return parser def set_hub_parser(parser=None): """Set the parser for the hub :param parser: the parser configure :return: the parser """ if not parser: parser = set_base_parser() spp = parser.add_subparsers( dest='hub', description='use `%(prog)-8s [sub-command] --help` ' 'to get detailed information about each sub-command', required=True, ) set_hub_new_parser( spp.add_parser( 'new', help='create a new executor using the template', description='Create a new executor using the template', formatter_class=_chf, ) ) set_hub_push_parser( spp.add_parser( 'push', help='push an executor package to Jina hub', description='Push an executor package to Jina hub', formatter_class=_chf, ) ) set_hub_pull_parser( spp.add_parser( 'pull', help='download an executor image/package from Jina hub', description='Download an executor image/package from Jina hub', formatter_class=_chf, ) ) return parser
"""Test openai embeddings.""" import numpy as np import pytest from langchain_community.embeddings.openai import OpenAIEmbeddings @pytest.mark.scheduled def test_openai_embedding_documents() -> None: """Test openai embeddings.""" documents = ["foo bar"] embedding = OpenAIEmbeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 1536 @pytest.mark.scheduled def test_openai_embedding_documents_multiple() -> None: """Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = OpenAIEmbeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = embedding.embed_documents(documents) assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 @pytest.mark.scheduled async def test_openai_embedding_documents_async_multiple() -> None: """Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = OpenAIEmbeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = await embedding.aembed_documents(documents) assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 @pytest.mark.scheduled def test_openai_embedding_query() -> None: """Test openai embeddings.""" document = "foo bar" embedding = OpenAIEmbeddings() output = embedding.embed_query(document) assert len(output) == 1536 @pytest.mark.scheduled async def test_openai_embedding_async_query() -> None: """Test openai embeddings.""" document = "foo bar" embedding = OpenAIEmbeddings() output = await embedding.aembed_query(document) assert len(output) == 1536 @pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.") @pytest.mark.scheduled def test_openai_embedding_with_empty_string() -> None: """Test openai embeddings with empty string.""" import openai document = ["", "abc"] embedding = OpenAIEmbeddings() output = embedding.embed_documents(document) assert len(output) == 2 assert len(output[0]) == 1536 expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[ "data" ][0]["embedding"] assert np.allclose(output[0], expected_output) assert len(output[1]) == 1536 @pytest.mark.scheduled def test_embed_documents_normalized() -> None: output = OpenAIEmbeddings().embed_documents(["foo walked to the market"]) assert np.isclose(np.linalg.norm(output[0]), 1.0) @pytest.mark.scheduled def test_embed_query_normalized() -> None: output = OpenAIEmbeddings().embed_query("foo walked to the market") assert np.isclose(np.linalg.norm(output), 1.0)
"""Test openai embeddings.""" import numpy as np import pytest from langchain_community.embeddings.openai import OpenAIEmbeddings @pytest.mark.scheduled def test_openai_embedding_documents() -> None: """Test openai embeddings.""" documents = ["foo bar"] embedding = OpenAIEmbeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 1536 @pytest.mark.scheduled def test_openai_embedding_documents_multiple() -> None: """Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = OpenAIEmbeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = embedding.embed_documents(documents) assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 @pytest.mark.scheduled async def test_openai_embedding_documents_async_multiple() -> None: """Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = OpenAIEmbeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = await embedding.aembed_documents(documents) assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 @pytest.mark.scheduled def test_openai_embedding_query() -> None: """Test openai embeddings.""" document = "foo bar" embedding = OpenAIEmbeddings() output = embedding.embed_query(document) assert len(output) == 1536 @pytest.mark.scheduled async def test_openai_embedding_async_query() -> None: """Test openai embeddings.""" document = "foo bar" embedding = OpenAIEmbeddings() output = await embedding.aembed_query(document) assert len(output) == 1536 @pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.") @pytest.mark.scheduled def test_openai_embedding_with_empty_string() -> None: """Test openai embeddings with empty string.""" import openai document = ["", "abc"] embedding = OpenAIEmbeddings() output = embedding.embed_documents(document) assert len(output) == 2 assert len(output[0]) == 1536 expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[ # type: ignore[attr-defined] "data" ][0]["embedding"] assert np.allclose(output[0], expected_output) assert len(output[1]) == 1536 @pytest.mark.scheduled def test_embed_documents_normalized() -> None: output = OpenAIEmbeddings().embed_documents(["foo walked to the market"]) assert np.isclose(np.linalg.norm(output[0]), 1.0) @pytest.mark.scheduled def test_embed_query_normalized() -> None: output = OpenAIEmbeddings().embed_query("foo walked to the market") assert np.isclose(np.linalg.norm(output), 1.0)
from typing import Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) if sinfo[5] == 0: waveform, _ = _load_audio(s) num_frames = waveform.size(1) else: num_frames = sinfo[5] return AudioMetaData( int(sinfo[8]), num_frames, sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], buffer_size: int = 4096, ) -> AudioMetaData: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() waveform = s.pop_chunks()[0] if waveform is None: raise RuntimeError("Failed to decode audio.") assert waveform is not None if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
from typing import Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) if sinfo[5] == 0: waveform, _ = _load_audio(s) num_frames = waveform.size(1) else: num_frames = sinfo[5] return AudioMetaData( int(sinfo[8]), num_frames, sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], ) -> AudioMetaData: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, 4096) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() waveform = s.pop_chunks()[0] if waveform is None: raise RuntimeError("Failed to decode audio.") assert waveform is not None if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, 4096) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTripletEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model) """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% Model Anchor Sparsity: Active Dimensions: 105.5, Sparsity Ratio: 0.9965 Model Positive Sparsity: Active Dimensions: 69.8, Sparsity Ratio: 0.9977 Model Negative Sparsity: Active Dimensions: 68.6, Sparsity Ratio: 0.9978 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTripletEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model, ".") """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% Model Sparsity Stats Query : Row Non-Zero Mean: 105.4530029296875, Row Sparsity Mean: 0.9965449571609497 Model Sparsity Stats Corpus : Row Non-Zero Mean: 69.18349838256836, Row Sparsity Mean: 0.9977333247661591 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
import numpy as np from docarray.array import DocumentArray from docarray.document import BaseDocument from docarray.typing import NdArray def test_get_bulk_attributes_function(): class Mmdoc(BaseDocument): text: str tensor: NdArray N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da._get_documents_attribute('tensor') assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da._get_documents_attribute('text') assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes(): class Mmdoc(BaseDocument): text: str tensor: NdArray N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da.tensor assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da.text assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes_document(): class InnerDoc(BaseDocument): text: str class Mmdoc(BaseDocument): inner: InnerDoc N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(inner=InnerDoc(text=f'hello{i}')) for i in range(N)) ) assert isinstance(da.inner, DocumentArray)
import numpy as np from docarray.array import DocumentArray from docarray.document import BaseDocument from docarray.typing import Tensor def test_get_bulk_attributes_function(): class Mmdoc(BaseDocument): text: str tensor: Tensor N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da._get_documents_attribute('tensor') assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da._get_documents_attribute('text') assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes(): class Mmdoc(BaseDocument): text: str tensor: Tensor N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da.tensor assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da.text assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes_document(): class InnerDoc(BaseDocument): text: str class Mmdoc(BaseDocument): inner: InnerDoc N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(inner=InnerDoc(text=f'hello{i}')) for i in range(N)) ) assert isinstance(da.inner, DocumentArray)
from abc import abstractmethod import pytest from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_tests.base import BaseStandardTests class RetrieversIntegrationTests(BaseStandardTests): """Base class for retrievers integration tests.""" @property @abstractmethod def retriever_constructor(self) -> type[BaseRetriever]: """A BaseRetriever subclass to be tested.""" ... @property def retriever_constructor_params(self) -> dict: """Returns a dictionary of parameters to pass to the retriever constructor.""" return {} @property @abstractmethod def retriever_query_example(self) -> str: """Returns a str representing the "query" of an example retriever call.""" ... @pytest.fixture def retriever(self) -> BaseRetriever: """:private:""" return self.retriever_constructor(**self.retriever_constructor_params) def test_k_constructor_param(self) -> None: """Test that the retriever constructor accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, either the retriever constructor does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever(k=3).invoke("query") should return 3 documents when invoked with a query. """ params = { k: v for k, v in self.retriever_constructor_params.items() if k != "k" } params_3 = {**params, "k": 3} retriever_3 = self.retriever_constructor(**params_3) result_3 = retriever_3.invoke(self.retriever_query_example) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) params_1 = {**params, "k": 1} retriever_1 = self.retriever_constructor(**params_1) result_1 = retriever_1.invoke(self.retriever_query_example) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) def test_invoke_with_k_kwarg(self, retriever: BaseRetriever) -> None: """Test that the invoke method accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever().invoke("query", k=3) should return 3 documents when invoked with a query. """ result_1 = retriever.invoke(self.retriever_query_example, k=1) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) result_3 = retriever.invoke(self.retriever_query_example, k=3) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) def test_invoke_returns_documents(self, retriever: BaseRetriever) -> None: """If invoked with the example params, the retriever should return a list of Documents. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not return a list of `langchain_core.document.Document` objects. Please confirm that your `_get_relevant_documents` method returns a list of `Document` objects. """ result = retriever.invoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result) async def test_ainvoke_returns_documents(self, retriever: BaseRetriever) -> None: """If ainvoked with the example params, the retriever should return a list of Documents. See :meth:`test_invoke_returns_documents` for more information on troubleshooting. """ result = await retriever.ainvoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result)
from abc import abstractmethod import pytest from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_tests.base import BaseStandardTests class RetrieversIntegrationTests(BaseStandardTests): """ Base class for retrievers integration tests. """ @property @abstractmethod def retriever_constructor(self) -> type[BaseRetriever]: """ A BaseRetriever subclass to be tested. """ ... @property def retriever_constructor_params(self) -> dict: """ Returns a dictionary of parameters to pass to the retriever constructor. """ return {} @property @abstractmethod def retriever_query_example(self) -> str: """ Returns a str representing the "query" of an example retriever call. """ ... @pytest.fixture def retriever(self) -> BaseRetriever: """ :private: """ return self.retriever_constructor(**self.retriever_constructor_params) def test_k_constructor_param(self) -> None: """ Test that the retriever constructor accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, either the retriever constructor does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever(k=3).invoke("query") should return 3 documents when invoked with a query. """ params = { k: v for k, v in self.retriever_constructor_params.items() if k != "k" } params_3 = {**params, "k": 3} retriever_3 = self.retriever_constructor(**params_3) result_3 = retriever_3.invoke(self.retriever_query_example) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) params_1 = {**params, "k": 1} retriever_1 = self.retriever_constructor(**params_1) result_1 = retriever_1.invoke(self.retriever_query_example) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) def test_invoke_with_k_kwarg(self, retriever: BaseRetriever) -> None: """ Test that the invoke method accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever().invoke("query", k=3) should return 3 documents when invoked with a query. """ result_1 = retriever.invoke(self.retriever_query_example, k=1) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) result_3 = retriever.invoke(self.retriever_query_example, k=3) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) def test_invoke_returns_documents(self, retriever: BaseRetriever) -> None: """ If invoked with the example params, the retriever should return a list of Documents. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not return a list of `langchain_core.document.Document` objects. Please confirm that your `_get_relevant_documents` method returns a list of `Document` objects. """ result = retriever.invoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result) async def test_ainvoke_returns_documents(self, retriever: BaseRetriever) -> None: """ If ainvoked with the example params, the retriever should return a list of Documents. See :meth:`test_invoke_returns_documents` for more information on troubleshooting. """ result = await retriever.ainvoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result)
from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, ) @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] da: DocumentArray[Inner] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())), da=DocumentArray[Inner]([Inner(img=ImageDoc(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDocument): title: str img: ImageDoc access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes_', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}}
from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, ) @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] da: DocumentArray[Inner] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())), da=DocumentArray[Inner]([Inner(img=ImageDoc(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDocument): title: str img: ImageDoc access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}}
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode T = TypeVar('T', bound='ImageTorchTensor') @_register_proto(proto_type_name='image_torch_tensor') class ImageTorchTensor(AbstractImageTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageTorchTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTorchTensor] url: Optional[ImageUrl] bytes: Optional[bytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode T = TypeVar('T', bound='ImageTorchTensor') @_register_proto(proto_type_name='image_torch_tensor') class ImageTorchTensor(AbstractImageTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageTorchTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTorchTensor] url: Optional[ImageUrl] bytes: Optional[bytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() """ ...
from urllib.parse import quote from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class FactCheckerBlock(Block): class Input(BlockSchema): statement: str = SchemaField( description="The statement to check for factuality" ) credentials: JinaCredentialsInput = JinaCredentialsField() class Output(BlockSchema): factuality: float = SchemaField( description="The factuality score of the statement" ) result: bool = SchemaField(description="The result of the factuality check") reason: str = SchemaField(description="The reason for the factuality result") error: str = SchemaField(description="Error message if the check fails") def __init__(self): super().__init__( id="d38b6c5e-9968-4271-8423-6cfe60d6e7e6", description="This block checks the factuality of a given statement using Jina AI's Grounding API.", categories={BlockCategory.SEARCH}, input_schema=FactCheckerBlock.Input, output_schema=FactCheckerBlock.Output, ) async def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: encoded_statement = quote(input_data.statement) url = f"https://g.jina.ai/{encoded_statement}" headers = { "Accept": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } response = await Requests().get(url, headers=headers) data = response.json() if "data" in data: data = data["data"] yield "factuality", data["factuality"] yield "result", data["result"] yield "reason", data["reason"] else: raise RuntimeError(f"Expected 'data' key not found in response: {data}")
from urllib.parse import quote from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class FactCheckerBlock(Block): class Input(BlockSchema): statement: str = SchemaField( description="The statement to check for factuality" ) credentials: JinaCredentialsInput = JinaCredentialsField() class Output(BlockSchema): factuality: float = SchemaField( description="The factuality score of the statement" ) result: bool = SchemaField(description="The result of the factuality check") reason: str = SchemaField(description="The reason for the factuality result") error: str = SchemaField(description="Error message if the check fails") def __init__(self): super().__init__( id="d38b6c5e-9968-4271-8423-6cfe60d6e7e6", description="This block checks the factuality of a given statement using Jina AI's Grounding API.", categories={BlockCategory.SEARCH}, input_schema=FactCheckerBlock.Input, output_schema=FactCheckerBlock.Output, ) def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: encoded_statement = quote(input_data.statement) url = f"https://g.jina.ai/{encoded_statement}" headers = { "Accept": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } response = requests.get(url, headers=headers) response.raise_for_status() data = response.json() if "data" in data: data = data["data"] yield "factuality", data["factuality"] yield "result", data["result"] yield "reason", data["reason"] else: raise RuntimeError(f"Expected 'data' key not found in response: {data}")
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmengine.data import BaseDataElement as PixelData from mmengine.data import InstanceData from mmdet.datasets.transforms import PackDetInputs from mmdet.structures import DetDataSample from mmdet.structures.mask import BitmapMasks class TestPackDetInputs(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') rng = np.random.RandomState(0) self.results1 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'gt_ignore_flags': np.array([0, 0, 1], dtype=np.bool), 'proposals': rng.rand(2, 4) } self.results2 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'proposals': rng.rand(2, 4) } self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'scale_factor', 'flip') def test_transform(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results1)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 2) self.assertEqual(len(results['data_sample'].ignored_instances), 1) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_transform_without_ignore(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results2)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 3) self.assertEqual(len(results['data_sample'].ignored_instances), 0) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_repr(self): transform = PackDetInputs(meta_keys=self.meta_keys) self.assertEqual( repr(transform), f'PackDetInputs(meta_keys={self.meta_keys})')
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmengine.data import BaseDataElement as PixelData from mmengine.data import InstanceData from mmdet.datasets.transforms import PackDetInputs from mmdet.structures import DetDataSample from mmdet.structures.mask import BitmapMasks class TestPackDetInputs(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') rng = np.random.RandomState(0) self.results1 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(2, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'gt_ignore_flags': np.array([0, 0, 1], dtype=np.bool), 'proposals': rng.rand(2, 4) } self.results2 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'proposals': rng.rand(2, 4) } self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'scale_factor', 'flip') def test_transform(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results1)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 2) self.assertEqual(len(results['data_sample'].ignored_instances), 1) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_transform_without_ignore(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results2)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 3) self.assertEqual(len(results['data_sample'].ignored_instances), 0) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_repr(self): transform = PackDetInputs(meta_keys=self.meta_keys) self.assertEqual( repr(transform), f'PackDetInputs(meta_keys={self.meta_keys})')
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.MaxPooling1D", "keras.layers.MaxPool1D"]) class MaxPooling1D(BasePooling): """Max pooling operation for 1D temporal data. Downsamples the input representation by taking the maximum value over a spatial window of size `pool_size`. The window is shifted by `strides`. The resulting output when using the `"valid"` padding option has a shape of: `output_shape = (input_shape - pool_size + 1) / strides)`. The resulting output shape when using the `"same"` padding option is: `output_shape = input_shape / strides` Args: pool_size: int, size of the max pooling window. strides: int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to `pool_size`. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, steps, features)` while `"channels_first"` corresponds to inputs with shape `(batch, features, steps)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, steps)`. Output shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, downsampled_steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, downsampled_steps)`. Examples: `strides=1` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="valid") >>> max_pool_1d(x) `strides=2` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=2, padding="valid") >>> max_pool_1d(x) `strides=1` and `padding="same"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="same") >>> max_pool_1d(x) """ def __init__( self, pool_size=2, strides=None, padding="valid", data_format=None, name=None, **kwargs, ): super().__init__( pool_size, strides, pool_dimensions=1, pool_mode="max", padding=padding, data_format=data_format, name=name, **kwargs, )
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.MaxPooling1D", "keras.layers.MaxPool1D"]) class MaxPooling1D(BasePooling): """Max pooling operation for 1D temporal data. Downsamples the input representation by taking the maximum value over a spatial window of size `pool_size`. The window is shifted by `strides`. The resulting output when using the `"valid"` padding option has a shape of: `output_shape = (input_shape - pool_size + 1) / strides)`. The resulting output shape when using the `"same"` padding option is: `output_shape = input_shape / strides` Args: pool_size: int, size of the max pooling window. strides: int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to `pool_size`. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, steps, features)` while `"channels_first"` corresponds to inputs with shape `(batch, features, steps)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, steps)`. Output shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, downsampled_steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, downsampled_steps)`. Examples: `strides=1` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="valid") >>> max_pool_1d(x) `strides=2` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=2, padding="valid") >>> max_pool_1d(x) `strides=1` and `padding="same"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="same") >>> max_pool_1d(x) """ def __init__( self, pool_size=2, strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=1, pool_mode="max", padding=padding, data_format=data_format, name=name, **kwargs, )
from __future__ import annotations from collections.abc import Iterable from enum import Enum import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses import ( FlopsLoss, SparseDistillKLDivLoss, SparseMarginMSELoss, SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class PrincipalLoss(Enum): """The principal loss types for the model""" MMSE = SparseMarginMSELoss KL = SparseDistillKLDivLoss MRL = SparseMultipleNegativesRankingLoss class SpladeLoss(nn.Module): def __init__( self, model: SparseEncoder, main_loss: PrincipalLoss, lambda_corpus: float = 0.1, lambda_query: float = 0.1 ): super().__init__() self.model = model self.lambda_corpus = lambda_corpus self.lambda_query = lambda_query self.main_loss = main_loss self.flops_loss = FlopsLoss(model) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None ) -> dict[str, torch.Tensor]: # Compute embeddings using the model embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] main_loss_value = self.main_loss.compute_loss_from_embeddings(embeddings, labels) flops_query = self.flops_loss.compute_loss_from_embeddings(embeddings, "query") flops_corpus = self.flops_loss.compute_loss_from_embeddings(embeddings, "corpus") # Compute the total loss total_loss = main_loss_value + self.lambda_query * flops_query + self.lambda_corpus * flops_corpus return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"lambda_corpus": self.lambda_corpus, "lambda_query": self.lambda_query, "main_loss": self.main_loss} @property def citation(self) -> str: return """ @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } """
from __future__ import annotations from collections.abc import Iterable from enum import Enum import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses import ( FlopsLoss, SparseDistillKLDivLoss, SparseMarginMSELoss, SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class PrincipalLoss(Enum): """The principal loss types for the model""" MMSE = SparseMarginMSELoss KL = SparseDistillKLDivLoss MRL = SparseMultipleNegativesRankingLoss class SpladeLoss(nn.Module): def __init__( self, model: SparseEncoder, main_loss: PrincipalLoss, lamda_corpus: float = 0.1, lamda_query: float = 0.1 ): super().__init__() self.model = model self.lamda_corpus = lamda_corpus self.lamda_query = lamda_query self.main_loss = main_loss self.flops_loss = FlopsLoss(model) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None ) -> dict[str, torch.Tensor]: # Compute embeddings using the model embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] main_loss_value = self.main_loss.compute_loss_from_embeddings(embeddings, labels) flops_query = self.flops_loss.compute_loss_from_embeddings(embeddings, "query") flops_corpus = self.flops_loss.compute_loss_from_embeddings(embeddings, "corpus") # Compute the total loss total_loss = main_loss_value + self.lamda_query * flops_query + self.lamda_corpus * flops_corpus return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"lamda_corpus": self.lamda_corpus, "lamda_query": self.lamda_query, "main_loss": self.main_loss} @property def citation(self) -> str: return """ @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } """
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.6.2.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.6.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 1.0, similarity_fct=util.dot_score) -> None: """ Given a list of (anchor, positive) pairs or (anchor, positive, negative) triplets, this loss optimizes the following: 1. Given an anchor (e.g. a question), assign the highest similarity to the corresponding positive (i.e. answer) out of every single positive and negative (e.g. all answers) in the batch. If you provide the optional negatives, they will all be used as extra options from which the model must pick the correct positive. Within reason, the harder this "picking" is, the stronger the model will become. Because of this, a higher batch size results in more in-batch negatives, which then increases performance (to a point). This loss function works great to train embeddings for retrieval setups where you have positive pairs (e.g. (query, answer)) as it will sample in each batch ``n-1`` negative docs randomly. This loss is also known as InfoNCE loss, SimCSE loss, Cross-Entropy Loss with in-batch negatives, or simply in-batch negatives loss. Args: model: SparseEncoder model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, dot product. Can also be set to cosine similarity (and then set scale to 20) Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive) pairs or (anchor, positive, negative) triplets Inputs: +-------------------------------------------------+--------+ | Texts | Labels | +=================================================+========+ | (anchor, positive) pairs | none | +-------------------------------------------------+--------+ | (anchor, positive, negative) triplets | none | +-------------------------------------------------+--------+ | (anchor, positive, negative_1, ..., negative_n) | none | +-------------------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseCachedMultipleNegativesRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. - :class:`SparseGISTEmbedLoss` is equivalent to this loss, but uses a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model), corpus_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError( "SparseMultipleNegativesRankingLoss should not be used alone. Use it with SpladeLoss or CSRLoss." )
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 1.0, similarity_fct=util.dot_score) -> None: """ Given a list of (anchor, positive) pairs or (anchor, positive, negative) triplets, this loss optimizes the following: 1. Given an anchor (e.g. a question), assign the highest similarity to the corresponding positive (i.e. answer) out of every single positive and negative (e.g. all answers) in the batch. If you provide the optional negatives, they will all be used as extra options from which the model must pick the correct positive. Within reason, the harder this "picking" is, the stronger the model will become. Because of this, a higher batch size results in more in-batch negatives, which then increases performance (to a point). This loss function works great to train embeddings for retrieval setups where you have positive pairs (e.g. (query, answer)) as it will sample in each batch ``n-1`` negative docs randomly. This loss is also known as InfoNCE loss, SimCSE loss, Cross-Entropy Loss with in-batch negatives, or simply in-batch negatives loss. Args: model: SparseEncoder model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, dot product. Can also be set to cosine similarity (and then set scale to 20) Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive) pairs or (anchor, positive, negative) triplets Inputs: +-------------------------------------------------+--------+ | Texts | Labels | +=================================================+========+ | (anchor, positive) pairs | none | +-------------------------------------------------+--------+ | (anchor, positive, negative) triplets | none | +-------------------------------------------------+--------+ | (anchor, positive, negative_1, ..., negative_n) | none | +-------------------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseCachedMultipleNegativesRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. - :class:`SparseGISTEmbedLoss` is equivalent to this loss, but uses a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model), lambda_corpus=3e-5, lambda_query=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError( "SparseMultipleNegativesRankingLoss should not be used alone. Use it with SpladeLoss or CSRLoss." )
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import (find_latest_checkpoint, get_test_pipeline_cfg, update_data_root) from .mot_error_visualize import imshow_mot_errors from .replace_cfg_vals import replace_cfg_vals from .setup_env import (register_all_modules, setup_cache_size_limit_of_dynamo, setup_multi_processes) from .split_batch import split_batch from .typing_utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'get_test_pipeline_cfg', 'setup_cache_size_limit_of_dynamo', 'imshow_mot_errors' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import (find_latest_checkpoint, get_test_pipeline_cfg, update_data_root) from .replace_cfg_vals import replace_cfg_vals from .setup_env import (register_all_modules, setup_cache_size_limit_of_dynamo, setup_multi_processes) from .split_batch import split_batch from .typing_utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'get_test_pipeline_cfg', 'setup_cache_size_limit_of_dynamo' ]
"""Callback Handler that writes to a file.""" from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from typing_extensions import override from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast("TextIO", Path(filename).open(mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() @override def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] else: if serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) @override def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) @override def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) @override def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) @override def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) @override def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
"""Callback Handler that writes to a file.""" from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast("TextIO", Path(filename).open(mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] else: if serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, levels_to_images, mask2ndarray, multi_apply, select_single_mlvl, unmap) from .typing import (ConfigType, ForwardResults, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, OptSampleList, OptSamplingResultList, PixelList, SampleList, SamplingResultList) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk', 'sync_random_seed', 'levels_to_images', 'ConfigType', 'OptConfigType', 'MultiConfig', 'OptMultiConfig', 'InstanceList', 'OptInstanceList', 'SampleList', 'OptSampleList', 'SamplingResultList', 'ForwardResults', 'OptSamplingResultList', 'PixelList', 'OptPixelList' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, levels_to_images, mask2ndarray, multi_apply, select_single_mlvl, unmap) from .typing import (ConfigType, ForwardResults, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptSampleList, OptSamplingResultList, SampleList, SamplingResultList) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk', 'sync_random_seed', 'levels_to_images', 'ConfigType', 'OptConfigType', 'MultiConfig', 'OptMultiConfig', 'InstanceList', 'OptInstanceList', 'SampleList', 'OptSampleList', 'SamplingResultList', 'ForwardResults', 'OptSamplingResultList' ]
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: return super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, save_on_cpu=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: return super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import AuraFlowTransformer2DModel from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class AuraFlowTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = AuraFlowTransformer2DModel main_input_name = "hidden_states" # We override the items here because the transformer under consideration is small. model_split_percents = [0.7, 0.6, 0.6] @property def dummy_input(self): batch_size = 2 num_channels = 4 height = width = embedding_dim = 32 sequence_length = 256 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "patch_size": 2, "in_channels": 4, "num_mmdit_layers": 1, "num_single_dit_layers": 1, "attention_head_dim": 8, "num_attention_heads": 4, "caption_projection_dim": 32, "joint_attention_dim": 32, "out_channels": 4, "pos_embed_max_size": 256, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"AuraFlowTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @unittest.skip("AuraFlowTransformer2DModel uses its own dedicated attention processor. This test does not apply") def test_set_attn_processor_for_determinism(self): pass
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import AuraFlowTransformer2DModel from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class AuraFlowTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = AuraFlowTransformer2DModel main_input_name = "hidden_states" # We override the items here because the transformer under consideration is small. model_split_percents = [0.7, 0.6, 0.6] @property def dummy_input(self): batch_size = 2 num_channels = 4 height = width = embedding_dim = 32 sequence_length = 256 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "patch_size": 2, "in_channels": 4, "num_mmdit_layers": 1, "num_single_dit_layers": 1, "attention_head_dim": 8, "num_attention_heads": 4, "caption_projection_dim": 32, "joint_attention_dim": 32, "out_channels": 4, "pos_embed_max_size": 256, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"AuraFlowTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @unittest.skip("AuraFlowTransformer2DModel uses its own dedicated attention processor. This test does not apply") def test_set_attn_processor_for_determinism(self): pass
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Metrics model generator for mobilenet v1. The produced model is to be used as part of the mini-benchmark, combined into the same flatbuffer with the main model. Mobilenet v1 is described in https://tfhub.dev/tensorflow/coral-model/mobilenet_v1_1.0_224_quantized/1/default/1 The metrics used are symmetric KL-divergence and MSE. """ import argparse import sys # TODO(b/152872335): (re-)port to tf v2 after output names are kept during # conversion in v2. import tensorflow.compat.v1 as tf from tensorflow.lite.experimental.acceleration.mini_benchmark.metrics import kl_divergence from tensorflow.lite.python import lite from tensorflow.lite.tools import flatbuffer_utils parser = argparse.ArgumentParser( description='Script to generate a metrics model for mobilenet v1.') parser.add_argument('output', help='Output filepath') def main(output_path): tf.reset_default_graph() with tf.Graph().as_default(): expected_scores = tf.placeholder(dtype=tf.float32, shape=[1, 1001]) actual_scores = tf.placeholder(dtype=tf.float32, shape=[1, 1001]) mse = tf.reshape( tf.math.reduce_mean((expected_scores - actual_scores)**2), [1], name='mse') kld_metric = kl_divergence.symmetric_kl_divergence(expected_scores, actual_scores) kld_metric = tf.reshape(kld_metric, [1], name='symmetric_kl_divergence') # Thresholds chosen by comparing NNAPI top-k accuracy on MLTS on devices # with top-k accuracy within 1%-p of tflite CPU and with a 5-%p drop. ok = tf.reshape( tf.logical_and(kld_metric < 5.5, mse < 0.003), [1], name='ok') sess = tf.compat.v1.Session() converter = lite.TFLiteConverter.from_session(sess, [ expected_scores, actual_scores, ], [kld_metric, mse, ok]) converter.experimental_new_converter = True tflite_model = converter.convert() if sys.byteorder == 'big': tflite_model = flatbuffer_utils.byte_swap_tflite_buffer( tflite_model, 'big', 'little' ) open(output_path, 'wb').write(tflite_model) if __name__ == '__main__': flags, unparsed = parser.parse_known_args() if unparsed: parser.print_usage() sys.stderr.write('\nGot the following unparsed args, %r please fix.\n' % unparsed) exit(1) else: main(flags.output) exit(0)
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Metrics model generator for mobilenet v1. The produced model is to be used as part of the mini-benchmark, combined into the same flatbuffer with the main model. Mobilenet v1 is described in https://tfhub.dev/tensorflow/coral-model/mobilenet_v1_1.0_224_quantized/1/default/1 The metrics used are symmetric KL-divergence and MSE. """ import argparse import sys # TODO(b/152872335): (re-)port to tf v2 after output names are kept during # conversion in v2. import tensorflow.compat.v1 as tf from tensorflow.lite.experimental.acceleration.mini_benchmark.metrics import kl_divergence from tensorflow.lite.tools import flatbuffer_utils parser = argparse.ArgumentParser( description='Script to generate a metrics model for mobilenet v1.') parser.add_argument('output', help='Output filepath') def main(output_path): tf.reset_default_graph() with tf.Graph().as_default(): expected_scores = tf.placeholder(dtype=tf.float32, shape=[1, 1001]) actual_scores = tf.placeholder(dtype=tf.float32, shape=[1, 1001]) mse = tf.reshape( tf.math.reduce_mean((expected_scores - actual_scores)**2), [1], name='mse') kld_metric = kl_divergence.symmetric_kl_divergence(expected_scores, actual_scores) kld_metric = tf.reshape(kld_metric, [1], name='symmetric_kl_divergence') # Thresholds chosen by comparing NNAPI top-k accuracy on MLTS on devices # with top-k accuracy within 1%-p of tflite CPU and with a 5-%p drop. ok = tf.reshape( tf.logical_and(kld_metric < 5.5, mse < 0.003), [1], name='ok') sess = tf.compat.v1.Session() converter = tf.lite.TFLiteConverter.from_session(sess, [ expected_scores, actual_scores, ], [kld_metric, mse, ok]) converter.experimental_new_converter = True tflite_model = converter.convert() if sys.byteorder == 'big': tflite_model = flatbuffer_utils.byte_swap_tflite_buffer( tflite_model, 'big', 'little' ) open(output_path, 'wb').write(tflite_model) if __name__ == '__main__': flags, unparsed = parser.parse_known_args() if unparsed: parser.print_usage() sys.stderr.write('\nGot the following unparsed args, %r please fix.\n' % unparsed) exit(1) else: main(flags.output) exit(0)
# mypy: allow-untyped-defs import warnings import torch import torch.distributed.algorithms.model_averaging.averagers as averagers class PostLocalSGDOptimizer(torch.optim.Optimizer): r""" Wraps an arbitrary :class:`torch.optim.Optimizer` and runs `post-local SGD <https://arxiv.org/abs/1808.07217>`_, This optimizer runs local optimizer at every step. After the warm-up stage, it averages parameters periodically after the local optimizer is applied. Args: optim: The local optimizer. averager: A model averager instance to run post-localSGD algorithm. Example:: >>> # xdoctest: +SKIP("undefined variables") >>> import torch >>> import torch.distributed as dist >>> import torch.distributed.algorithms.model_averaging.averagers as averagers >>> import torch.nn as nn >>> from torch.distributed.optim import PostLocalSGDOptimizer >>> from torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook import ( >>> PostLocalSGDState, >>> post_localSGD_hook, >>> ) >>> >>> model = nn.parallel.DistributedDataParallel( >>> module, device_ids=[rank], output_device=rank >>> ) >>> >>> # Register a post-localSGD communication hook. >>> state = PostLocalSGDState(process_group=None, subgroup=None, start_localSGD_iter=100) >>> model.register_comm_hook(state, post_localSGD_hook) >>> >>> # Create a post-localSGD optimizer that wraps a local optimizer. >>> # Note that ``warmup_steps`` used in ``PostLocalSGDOptimizer`` must be the same as >>> # ``start_localSGD_iter`` used in ``PostLocalSGDState``. >>> local_optim = torch.optim.SGD(params=model.parameters(), lr=0.01) >>> opt = PostLocalSGDOptimizer( >>> optim=local_optim, >>> averager=averagers.PeriodicModelAverager(period=4, warmup_steps=100) >>> ) >>> >>> # In the first 100 steps, DDP runs global gradient averaging at every step. >>> # After 100 steps, DDP runs gradient averaging within each subgroup (intra-node by default), >>> # and post-localSGD optimizer runs global model averaging every 4 steps after applying the local optimizer. >>> for step in range(0, 200): >>> opt.zero_grad() >>> loss = loss_fn(output, labels) >>> loss.backward() >>> opt.step() """ def __init__(self, optim: torch.optim.Optimizer, averager: averagers.ModelAverager): self.optim = optim self.param_groups = self.optim.param_groups self.averager = averager @property def state(self): # type: ignore[override] return self.optim.state def __repr__(self): return self.optim.__repr__() def state_dict(self): r""" This is the same as :class:`torch.optim.Optimizer` :meth:`state_dict`, but adds an extra entry to record model averager's step to the checkpoint to ensure reload does not cause unnecessary warm up again. """ optim_state_dict = self.optim.state_dict() optim_state_dict["step"] = self.averager.step return optim_state_dict def load_state_dict(self, state_dict): r""" This is the same as :class:`torch.optim.Optimizer` :meth:`load_state_dict`, but also restores model averager's step value to the one saved in the provided ``state_dict``. If there is no ``"step"`` entry in ``state_dict``, it will raise a warning and initialize the model averager's step to 0. """ self.optim.load_state_dict(state_dict) if "step" in state_dict: self.averager.step = state_dict["step"] else: warnings.warn( "Loaded state dict does not contain a step counter for an averager. " "Setting step counter to 0." ) self.averager.step = 0 def step(self): # type: ignore[override] r""" Performs a single optimization step (parameter update). """ self.optim.step() self.averager.average_parameters(params=self.param_groups) def zero_grad(self, set_to_none: bool = True): # type: ignore[override] self.optim.zero_grad(set_to_none=set_to_none) def add_param_group(self, param_group): self.optim.add_param_group(param_group)
# mypy: allow-untyped-defs import warnings import torch import torch.distributed.algorithms.model_averaging.averagers as averagers class PostLocalSGDOptimizer(torch.optim.Optimizer): r""" Wraps an arbitrary :class:`torch.optim.Optimizer` and runs `post-local SGD <https://arxiv.org/abs/1808.07217>`_, This optimizer runs local optimizer at every step. After the warm-up stage, it averages parameters periodically afer the local optimizer is applied. Args: optim: The local optimizer. averager: A model averager instance to run post-localSGD algorithm. Example:: >>> # xdoctest: +SKIP("undefined variables") >>> import torch >>> import torch.distributed as dist >>> import torch.distributed.algorithms.model_averaging.averagers as averagers >>> import torch.nn as nn >>> from torch.distributed.optim import PostLocalSGDOptimizer >>> from torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook import ( >>> PostLocalSGDState, >>> post_localSGD_hook, >>> ) >>> >>> model = nn.parallel.DistributedDataParallel( >>> module, device_ids=[rank], output_device=rank >>> ) >>> >>> # Register a post-localSGD communication hook. >>> state = PostLocalSGDState(process_group=None, subgroup=None, start_localSGD_iter=100) >>> model.register_comm_hook(state, post_localSGD_hook) >>> >>> # Create a post-localSGD optimizer that wraps a local optimizer. >>> # Note that ``warmup_steps`` used in ``PostLocalSGDOptimizer`` must be the same as >>> # ``start_localSGD_iter`` used in ``PostLocalSGDState``. >>> local_optim = torch.optim.SGD(params=model.parameters(), lr=0.01) >>> opt = PostLocalSGDOptimizer( >>> optim=local_optim, >>> averager=averagers.PeriodicModelAverager(period=4, warmup_steps=100) >>> ) >>> >>> # In the first 100 steps, DDP runs global gradient averaging at every step. >>> # After 100 steps, DDP runs gradient averaging within each subgroup (intra-node by default), >>> # and post-localSGD optimizer runs global model averaging every 4 steps after applying the local optimizer. >>> for step in range(0, 200): >>> opt.zero_grad() >>> loss = loss_fn(output, labels) >>> loss.backward() >>> opt.step() """ def __init__(self, optim: torch.optim.Optimizer, averager: averagers.ModelAverager): self.optim = optim self.param_groups = self.optim.param_groups self.averager = averager @property def state(self): # type: ignore[override] return self.optim.state def __repr__(self): return self.optim.__repr__() def state_dict(self): r""" This is the same as :class:`torch.optim.Optimizer` :meth:`state_dict`, but adds an extra entry to record model averager's step to the checkpoint to ensure reload does not cause unnecessary warm up again. """ optim_state_dict = self.optim.state_dict() optim_state_dict["step"] = self.averager.step return optim_state_dict def load_state_dict(self, state_dict): r""" This is the same as :class:`torch.optim.Optimizer` :meth:`load_state_dict`, but also restores model averager's step value to the one saved in the provided ``state_dict``. If there is no ``"step"`` entry in ``state_dict``, it will raise a warning and initialize the model averager's step to 0. """ self.optim.load_state_dict(state_dict) if "step" in state_dict: self.averager.step = state_dict["step"] else: warnings.warn( "Loaded state dict does not contain a step counter for an averager. " "Setting step counter to 0." ) self.averager.step = 0 def step(self): # type: ignore[override] r""" Performs a single optimization step (parameter update). """ self.optim.step() self.averager.average_parameters(params=self.param_groups) def zero_grad(self, set_to_none: bool = True): # type: ignore[override] self.optim.zero_grad(set_to_none=set_to_none) def add_param_group(self, param_group): self.optim.add_param_group(param_group)
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseMSEEvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model student_model_name = "prithivida/Splade_PP_en_v1" student_model = SparseEncoder( modules=[ MLMTransformer(student_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Initialize the SPLADE model teacher_model_name = "naver/splade-cocondenser-ensembledistil" teacher_model = SparseEncoder( modules=[ MLMTransformer(teacher_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load any dataset with some texts dataset = load_dataset("sentence-transformers/stsb", split="validation") sentences = dataset["sentence1"] + dataset["sentence2"] # Given queries, a corpus and a mapping with relevant documents, the InformationRetrievalEvaluator computes different IR metrics. mse_evaluator = SparseMSEEvaluator( source_sentences=sentences, target_sentences=sentences, teacher_model=teacher_model, name="stsb-dev", ) results = mse_evaluator(student_model) # Print the results print(f"Primary metric: {mse_evaluator.primary_metric}") print(f"Primary metric value: {results[mse_evaluator.primary_metric]:.4f}")
from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseMSEEvaluator, SpladePooling, ) # Initialize the SPLADE model student_model_name = "prithivida/Splade_PP_en_v1" student_model = SparseEncoder( modules=[ MLMTransformer(student_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Initialize the SPLADE model teacher_model_name = "naver/splade-cocondenser-ensembledistil" teacher_model = SparseEncoder( modules=[ MLMTransformer(teacher_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load any dataset with some texts dataset = load_dataset("sentence-transformers/stsb", split="validation") sentences = dataset["sentence1"] + dataset["sentence2"] # Given queries, a corpus and a mapping with relevant documents, the InformationRetrievalEvaluator computes different IR metrics. mse_evaluator = SparseMSEEvaluator( source_sentences=sentences, target_sentences=sentences, teacher_model=teacher_model, name="stsb-dev", ) results = mse_evaluator(student_model) print(mse_evaluator.primary_metric) print(results[mse_evaluator.primary_metric])
# coding: utf-8 """Get the most recent status of workflow for the current PR. [usage] python get_workflow_status.py TRIGGER_PHRASE TRIGGER_PHRASE: Code phrase that triggers workflow. """ import json from os import environ from sys import argv, exit from time import sleep from urllib import request def get_runs(trigger_phrase): """Get all triggering workflow comments in the current PR. Parameters ---------- trigger_phrase : str Code phrase that triggers workflow. Returns ------- pr_runs : list List of comment objects sorted by the time of creation in decreasing order. """ pr_runs = [] if environ.get("GITHUB_EVENT_NAME", "") == "pull_request": pr_number = int(environ.get("GITHUB_REF").split("/")[-2]) page = 1 while True: req = request.Request( url="{}/repos/microsoft/LightGBM/issues/{}/comments?page={}&per_page=100".format( environ.get("GITHUB_API_URL"), pr_number, page ), headers={"Accept": "application/vnd.github.v3+json"}, ) url = request.urlopen(req) data = json.loads(url.read().decode("utf-8")) url.close() if not data: break runs_on_page = [ i for i in data if i["author_association"].lower() in {"owner", "member", "collaborator"} and i["body"].startswith("/gha run {}".format(trigger_phrase)) ] pr_runs.extend(runs_on_page) page += 1 return pr_runs[::-1] def get_status(runs): """Get the most recent status of workflow for the current PR. Parameters ---------- runs : list List of comment objects sorted by the time of creation in decreasing order. Returns ------- status : str The most recent status of workflow. Can be 'success', 'failure' or 'in-progress'. """ status = "success" for run in runs: body = run["body"] if "Status: " in body: if "Status: skipped" in body: continue if "Status: failure" in body: status = "failure" break if "Status: success" in body: status = "success" break else: status = "in-progress" break return status if __name__ == "__main__": trigger_phrase = argv[1] while True: status = get_status(get_runs(trigger_phrase)) if status != "in-progress": break sleep(60) if status == "failure": exit(1)
# coding: utf-8 """Get the most recent status of workflow for the current PR. [usage] python get_workflow_status.py TRIGGER_PHRASE TRIGGER_PHRASE: Code phrase that triggers workflow. """ import json from os import environ from sys import argv, exit from time import sleep from urllib import request def get_runs(trigger_phrase): """Get all triggering workflow comments in the current PR. Parameters ---------- trigger_phrase : str Code phrase that triggers workflow. Returns ------- pr_runs : list List of comment objects sorted by the time of creation in decreasing order. """ pr_runs = [] if environ.get("GITHUB_EVENT_NAME", "") == "pull_request": pr_number = int(environ.get("GITHUB_REF").split("/")[-2]) page = 1 while True: req = request.Request( url="{}/repos/microsoft/LightGBM/issues/{}/comments?page={}&per_page=100".format( environ.get("GITHUB_API_URL"), pr_number, page ), headers={"Accept": "application/vnd.github.v3+json"}, ) url = request.urlopen(req) data = json.loads(url.read().decode("utf-8")) url.close() if not data: break runs_on_page = [ i for i in data if i["author_association"].lower() in {"owner", "member", "collaborator"} and i["body"].startswith("/gha run {}".format(trigger_phrase)) ] pr_runs.extend(runs_on_page) page += 1 return pr_runs[::-1] def get_status(runs): """Get the most recent status of workflow for the current PR. Parameters ---------- runs : list List of comment objects sorted by the time of creation in decreasing order. Returns ------- status : str The most recent status of workflow. Can be 'success', 'failure' or 'in-progress'. """ status = "success" for run in runs: body = run["body"] if "Status: " in body: if "Status: skipped" in body: continue if "Status: failure" in body: status = "failure" break if "Status: success" in body: status = "success" break else: status = "in-progress" break return status if __name__ == "__main__": trigger_phrase = argv[1] while True: status = get_status(get_runs(trigger_phrase)) if status != "in-progress": break sleep(60) if status == "failure": exit(1)
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import HnswDocumentIndex from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] class MyDoc(BaseDoc): tens: NdArray def test_configure_dim(tmp_path): class Schema(BaseDoc): tens: NdArray = Field(dim=10) index = HnswDocumentIndex[Schema](work_dir=str(tmp_path)) assert index._hnsw_indices['tens'].dim == 10 docs = [Schema(tens=np.random.random((10,))) for _ in range(10)] index.index(docs) assert index.num_docs() == 10 def test_configure_index(tmp_path): class Schema(BaseDoc): tens: NdArray[100] = Field(max_elements=12, space='cosine') tens_two: NdArray[10] = Field(M=4, space='ip') index = HnswDocumentIndex[Schema](work_dir=str(tmp_path)) assert index._hnsw_indices['tens'].max_elements == 12 assert index._hnsw_indices['tens'].space == 'cosine' assert index._hnsw_indices['tens'].M == 16 # default assert index._hnsw_indices['tens'].dim == 100 assert index._hnsw_indices['tens_two'].max_elements == 1024 # default assert index._hnsw_indices['tens_two'].space == 'ip' assert index._hnsw_indices['tens_two'].M == 4 assert index._hnsw_indices['tens_two'].dim == 10
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import HnswDocumentIndex from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] class MyDoc(BaseDoc): tens: NdArray def test_configure_dim(tmp_path): class Schema(BaseDoc): tens: NdArray = Field(dim=10) index = HnswDocumentIndex[Schema](work_dir=str(tmp_path)) assert index._hnsw_indices['tens'].dim == 10 docs = [Schema(tens=np.random.random((10,))) for _ in range(10)] index.index(docs) assert index.num_docs() == 10
from enum import Enum from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from langchain_core.utils import pre_init class EnumOutputParser(BaseOutputParser[Enum]): """Parse an output that is one of a set of values.""" enum: type[Enum] """The enum to parse. Its values must be strings.""" @pre_init def raise_deprecation(cls, values: dict) -> dict: enum = values["enum"] if not all(isinstance(e.value, str) for e in enum): raise ValueError("Enum values must be strings") return values @property def _valid_values(self) -> list[str]: return [e.value for e in self.enum] def parse(self, response: str) -> Enum: try: return self.enum(response.strip()) except ValueError: raise OutputParserException( f"Response '{response}' is not one of the " f"expected values: {self._valid_values}" ) def get_format_instructions(self) -> str: return f"Select one of the following options: {', '.join(self._valid_values)}" @property def OutputType(self) -> type[Enum]: return self.enum
from enum import Enum from typing import Dict, List, Type from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from langchain_core.utils import pre_init class EnumOutputParser(BaseOutputParser[Enum]): """Parse an output that is one of a set of values.""" enum: Type[Enum] """The enum to parse. Its values must be strings.""" @pre_init def raise_deprecation(cls, values: Dict) -> Dict: enum = values["enum"] if not all(isinstance(e.value, str) for e in enum): raise ValueError("Enum values must be strings") return values @property def _valid_values(self) -> List[str]: return [e.value for e in self.enum] def parse(self, response: str) -> Enum: try: return self.enum(response.strip()) except ValueError: raise OutputParserException( f"Response '{response}' is not one of the " f"expected values: {self._valid_values}" ) def get_format_instructions(self) -> str: return f"Select one of the following options: {', '.join(self._valid_values)}" @property def OutputType(self) -> Type[Enum]: return self.enum
import torch from torchvision import datapoints from torchvision.utils import _log_api_usage_once from ._utils import is_simple_tensor def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices) def uniform_temporal_subsample(inpt: datapoints._VideoTypeJIT, num_samples: int) -> datapoints._VideoTypeJIT: if not torch.jit.is_scripting(): _log_api_usage_once(uniform_temporal_subsample) if torch.jit.is_scripting() or is_simple_tensor(inpt): return uniform_temporal_subsample_video(inpt, num_samples) elif isinstance(inpt, datapoints.Video): output = uniform_temporal_subsample_video(inpt.as_subclass(torch.Tensor), num_samples) return datapoints.Video.wrap_like(inpt, output) else: raise TypeError(f"Input can either be a plain tensor or a `Video` datapoint, but got {type(inpt)} instead.")
import torch from torchvision import datapoints from torchvision.utils import _log_api_usage_once from ._utils import is_simple_tensor def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices) def uniform_temporal_subsample(inpt: datapoints.VideoTypeJIT, num_samples: int) -> datapoints.VideoTypeJIT: if not torch.jit.is_scripting(): _log_api_usage_once(uniform_temporal_subsample) if torch.jit.is_scripting() or is_simple_tensor(inpt): return uniform_temporal_subsample_video(inpt, num_samples) elif isinstance(inpt, datapoints.Video): output = uniform_temporal_subsample_video(inpt.as_subclass(torch.Tensor), num_samples) return datapoints.Video.wrap_like(inpt, output) else: raise TypeError(f"Input can either be a plain tensor or a `Video` datapoint, but got {type(inpt)} instead.")
from llama_index.core.base.llms.types import ( LLMMetadata, ) from llama_index.core.bridge.pydantic import Field from llama_index.llms.openai_like import OpenAILike class LlamaAPI(OpenAILike): """ LlamaAPI LLM. Examples: `pip install llama-index-llms-llama-api` ```python from llama_index.llms.llama_api import LlamaAPI # Obtain an API key from https://www.llama-api.com/ api_key = "your-api-key" llm = LlamaAPI(model="llama3.1-8b", context_window=128000, is_function_calling_model=True, api_key=api_key) # Call the complete method with a prompt resp = llm.complete("Paul Graham is ") print(resp) ``` """ model: str = Field( default="llama3.1-8b", description=LLMMetadata.model_fields["model_name"].description, ) api_base: str = Field( default="https://api.llmapi.com/", description="The base URL for OpenAI API.", ) is_chat_model: bool = Field( default=True, description=LLMMetadata.model_fields["is_chat_model"].description, ) is_function_calling_model: bool = Field( default=False, description=LLMMetadata.model_fields["is_function_calling_model"].description, ) @classmethod def class_name(cls) -> str: return "llama_api_llm"
from llama_index.core.base.llms.types import ( LLMMetadata, ) from llama_index.core.bridge.pydantic import Field from llama_index.llms.openai_like import OpenAILike class LlamaAPI(OpenAILike): """LlamaAPI LLM. Examples: `pip install llama-index-llms-llama-api` ```python from llama_index.llms.llama_api import LlamaAPI # Obtain an API key from https://www.llama-api.com/ api_key = "your-api-key" llm = LlamaAPI(model="llama3.1-8b", context_window=128000, is_function_calling_model=True, api_key=api_key) # Call the complete method with a prompt resp = llm.complete("Paul Graham is ") print(resp) ``` """ model: str = Field( default="llama3.1-8b", description=LLMMetadata.model_fields["model_name"].description, ) api_base: str = Field( default="https://api.llmapi.com/", description="The base URL for OpenAI API.", ) is_chat_model: bool = Field( default=True, description=LLMMetadata.model_fields["is_chat_model"].description, ) is_function_calling_model: bool = Field( default=False, description=LLMMetadata.model_fields["is_function_calling_model"].description, ) @classmethod def class_name(cls) -> str: return "llama_api_llm"
from docarray.array.array.array import DocArray from docarray.array.stacked.array_stacked import DocArrayStacked __all__ = ['DocArray', 'DocArrayStacked']
from docarray.array.array.array import DocumentArray from docarray.array.stacked.array_stacked import DocumentArrayStacked __all__ = ['DocumentArray', 'DocumentArrayStacked']
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src.testing import test_case class SpatialDropoutTest(test_case.TestCase): @pytest.mark.requires_trainable_backend def test_spatial_dropout_1d(self): self.run_layer_test( layers.SpatialDropout1D, init_kwargs={"rate": 0.5}, call_kwargs={"training": True}, input_shape=(2, 3, 4), assert_built_after_instantiation=True, ) self.run_layer_test( layers.SpatialDropout1D, init_kwargs={"rate": 0.5}, call_kwargs={"training": False}, input_shape=(2, 3, 4), assert_built_after_instantiation=True, ) @pytest.mark.requires_trainable_backend def test_spatial_dropout_2d(self): self.run_layer_test( layers.SpatialDropout2D, init_kwargs={"rate": 0.5}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 5), assert_built_after_instantiation=True, ) self.run_layer_test( layers.SpatialDropout2D, init_kwargs={"rate": 0.5, "data_format": "channels_first"}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 5), assert_built_after_instantiation=True, ) @pytest.mark.requires_trainable_backend def test_spatial_dropout_3d(self): self.run_layer_test( layers.SpatialDropout3D, init_kwargs={"rate": 0.5}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 4, 5), assert_built_after_instantiation=True, ) self.run_layer_test( layers.SpatialDropout3D, init_kwargs={"rate": 0.5, "data_format": "channels_first"}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 4, 5), assert_built_after_instantiation=True, ) def test_spatial_dropout_1D_dynamic(self): inputs = layers.Input((3, 2)) layer = layers.SpatialDropout1D(0.5) layer(inputs, training=True) def test_spatial_dropout_1D_correctness(self): inputs = np.ones((10, 3, 10)) layer = layers.SpatialDropout1D(0.5) outputs = layer(inputs, training=True) self.assertAllClose(outputs[:, 0, :], outputs[:, 1, :]) def test_spatial_dropout_2D_dynamic(self): inputs = layers.Input((3, 2, 4)) layer = layers.SpatialDropout2D(0.5) layer(inputs, training=True) def test_spatial_dropout_2D_correctness(self): if backend.config.image_data_format() == "channels_last": inputs = np.ones((10, 3, 3, 10)) else: inputs = np.ones((10, 10, 3, 3)) layer = layers.SpatialDropout2D(0.5) outputs = layer(inputs, training=True) if backend.config.image_data_format() == "channels_last": self.assertAllClose(outputs[:, 0, 0, :], outputs[:, 1, 1, :]) else: self.assertAllClose(outputs[:, :, 0, 0], outputs[:, :, 1, 1]) def test_spatial_dropout_3D_dynamic(self): inputs = layers.Input((3, 2, 4, 2)) layer = layers.SpatialDropout3D(0.5) layer(inputs, training=True) def test_spatial_dropout_3D_correctness(self): if backend.config.image_data_format() == "channels_last": inputs = np.ones((10, 3, 3, 3, 10)) else: inputs = np.ones((10, 10, 3, 3, 3)) layer = layers.SpatialDropout3D(0.5) outputs = layer(inputs, training=True) if backend.config.image_data_format() == "channels_last": self.assertAllClose(outputs[:, 0, 0, 0, :], outputs[:, 1, 1, 1, :]) else: self.assertAllClose(outputs[:, :, 0, 0, 0], outputs[:, :, 1, 1, 1])
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src.testing import test_case class SpatialDropoutTest(test_case.TestCase): @pytest.mark.requires_trainable_backend def test_spatial_dropout_1d(self): self.run_layer_test( layers.SpatialDropout1D, init_kwargs={"rate": 0.5}, call_kwargs={"training": True}, input_shape=(2, 3, 4), ) self.run_layer_test( layers.SpatialDropout1D, init_kwargs={"rate": 0.5}, call_kwargs={"training": False}, input_shape=(2, 3, 4), ) @pytest.mark.requires_trainable_backend def test_spatial_dropout_2d(self): self.run_layer_test( layers.SpatialDropout2D, init_kwargs={"rate": 0.5}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 5), ) self.run_layer_test( layers.SpatialDropout2D, init_kwargs={"rate": 0.5, "data_format": "channels_first"}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 5), ) @pytest.mark.requires_trainable_backend def test_spatial_dropout_3d(self): self.run_layer_test( layers.SpatialDropout3D, init_kwargs={"rate": 0.5}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 4, 5), ) self.run_layer_test( layers.SpatialDropout3D, init_kwargs={"rate": 0.5, "data_format": "channels_first"}, call_kwargs={"training": True}, input_shape=(2, 3, 4, 4, 5), ) def test_spatial_dropout_1D_dynamic(self): inputs = layers.Input((3, 2)) layer = layers.SpatialDropout1D(0.5) layer(inputs, training=True) def test_spatial_dropout_1D_correctness(self): inputs = np.ones((10, 3, 10)) layer = layers.SpatialDropout1D(0.5) outputs = layer(inputs, training=True) self.assertAllClose(outputs[:, 0, :], outputs[:, 1, :]) def test_spatial_dropout_2D_dynamic(self): inputs = layers.Input((3, 2, 4)) layer = layers.SpatialDropout2D(0.5) layer(inputs, training=True) def test_spatial_dropout_2D_correctness(self): if backend.config.image_data_format() == "channels_last": inputs = np.ones((10, 3, 3, 10)) else: inputs = np.ones((10, 10, 3, 3)) layer = layers.SpatialDropout2D(0.5) outputs = layer(inputs, training=True) if backend.config.image_data_format() == "channels_last": self.assertAllClose(outputs[:, 0, 0, :], outputs[:, 1, 1, :]) else: self.assertAllClose(outputs[:, :, 0, 0], outputs[:, :, 1, 1]) def test_spatial_dropout_3D_dynamic(self): inputs = layers.Input((3, 2, 4, 2)) layer = layers.SpatialDropout3D(0.5) layer(inputs, training=True) def test_spatial_dropout_3D_correctness(self): if backend.config.image_data_format() == "channels_last": inputs = np.ones((10, 3, 3, 3, 10)) else: inputs = np.ones((10, 10, 3, 3, 3)) layer = layers.SpatialDropout3D(0.5) outputs = layer(inputs, training=True) if backend.config.image_data_format() == "channels_last": self.assertAllClose(outputs[:, 0, 0, 0, :], outputs[:, 1, 1, 1, :]) else: self.assertAllClose(outputs[:, :, 0, 0, 0], outputs[:, :, 1, 1, 1])
_base_ = './gfl_r50_fpn_ms-2x_coco.py' model = dict( backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './gfl_r50_fpn_mstrain_2x_coco.py' model = dict( backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
import os import platform import sys import pkg_resources from setuptools import find_packages, setup def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux") and platform.machine() == "x86_64": triton_requirement = "triton==2.0.0" try: import re import subprocess version_line = ( subprocess.check_output(["nvcc", "--version"]).strip().split(b"\n")[-1] ) major, minor = re.findall(rb"([\d]+)\.([\d]+)", version_line)[0] if (int(major), int(minor)) < (11, 4): # the last version supporting CUDA < 11.4 triton_requirement = "triton==2.0.0.dev20221011" except (IndexError, OSError, subprocess.SubprocessError): pass requirements.append(triton_requirement) setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=requirements + [ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]}, )
import os import sys import pkg_resources from setuptools import find_packages, setup def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux"): triton_requirement = "triton>=2.0.0.dev20221202" try: import re import subprocess version_line = ( subprocess.check_output(["nvcc", "--version"]).strip().split(b"\n")[-1] ) major, minor = re.findall(rb"([\d]+)\.([\d]+)", version_line)[0] if (int(major), int(minor)) < (11, 4): # the last version supporting CUDA < 11.4 triton_requirement = "triton==2.0.0.dev20221011" except (IndexError, OSError, subprocess.SubprocessError): pass requirements.append(triton_requirement) setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=requirements + [ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]}, )
from __future__ import annotations from typing import Any, Dict, List, Mapping, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM from pydantic import BaseModel # Ignoring type because below is valid pydantic code # Unexpected keyword argument "extra" for "__init_subclass__" of "object" class Params(BaseModel, extra="allow"): """Parameters for the Javelin AI Gateway LLM.""" temperature: float = 0.0 stop: Optional[List[str]] = None max_tokens: Optional[int] = None class JavelinAIGateway(LLM): """Javelin AI Gateway LLMs. To use, you should have the ``javelin_sdk`` python package installed. For more information, see https://docs.getjavelin.io Example: .. code-block:: python from langchain_community.llms import JavelinAIGateway completions = JavelinAIGateway( gateway_uri="<your-javelin-ai-gateway-uri>", route="<your-javelin-ai-gateway-completions-route>", params={ "temperature": 0.1 } ) """ route: str """The route to use for the Javelin AI Gateway API.""" client: Optional[Any] = None """The Javelin AI Gateway client.""" gateway_uri: Optional[str] = None """The URI of the Javelin AI Gateway API.""" params: Optional[Params] = None """Parameters for the Javelin AI Gateway API.""" javelin_api_key: Optional[str] = None """The API key for the Javelin AI Gateway API.""" def __init__(self, **kwargs: Any): try: from javelin_sdk import ( JavelinClient, UnauthorizedError, ) except ImportError: raise ImportError( "Could not import javelin_sdk python package. " "Please install it with `pip install javelin_sdk`." ) super().__init__(**kwargs) if self.gateway_uri: try: self.client = JavelinClient( base_url=self.gateway_uri, api_key=self.javelin_api_key ) except UnauthorizedError as e: raise ValueError("Javelin: Incorrect API Key.") from e @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Javelin AI Gateway API.""" params: Dict[str, Any] = { "gateway_uri": self.gateway_uri, "route": self.route, "javelin_api_key": self.javelin_api_key, **(self.params.dict() if self.params else {}), } return params @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return self._default_params def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the Javelin AI Gateway API.""" data: Dict[str, Any] = { "prompt": prompt, **(self.params.dict() if self.params else {}), } if s := (stop or (self.params.stop if self.params else None)): data["stop"] = s if self.client is not None: resp = self.client.query_route(self.route, query_body=data) else: raise ValueError("Javelin client is not initialized.") resp_dict = resp.dict() try: return resp_dict["llm_response"]["choices"][0]["text"] except KeyError: return "" async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call async the Javelin AI Gateway API.""" data: Dict[str, Any] = { "prompt": prompt, **(self.params.dict() if self.params else {}), } if s := (stop or (self.params.stop if self.params else None)): data["stop"] = s if self.client is not None: resp = await self.client.aquery_route(self.route, query_body=data) else: raise ValueError("Javelin client is not initialized.") resp_dict = resp.dict() try: return resp_dict["llm_response"]["choices"][0]["text"] except KeyError: return "" @property def _llm_type(self) -> str: """Return type of llm.""" return "javelin-ai-gateway"
from __future__ import annotations from typing import Any, Dict, List, Mapping, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM from pydantic import BaseModel # Ignoring type because below is valid pydantic code # Unexpected keyword argument "extra" for "__init_subclass__" of "object" class Params(BaseModel, extra="allow"): # type: ignore[call-arg] """Parameters for the Javelin AI Gateway LLM.""" temperature: float = 0.0 stop: Optional[List[str]] = None max_tokens: Optional[int] = None class JavelinAIGateway(LLM): """Javelin AI Gateway LLMs. To use, you should have the ``javelin_sdk`` python package installed. For more information, see https://docs.getjavelin.io Example: .. code-block:: python from langchain_community.llms import JavelinAIGateway completions = JavelinAIGateway( gateway_uri="<your-javelin-ai-gateway-uri>", route="<your-javelin-ai-gateway-completions-route>", params={ "temperature": 0.1 } ) """ route: str """The route to use for the Javelin AI Gateway API.""" client: Optional[Any] = None """The Javelin AI Gateway client.""" gateway_uri: Optional[str] = None """The URI of the Javelin AI Gateway API.""" params: Optional[Params] = None """Parameters for the Javelin AI Gateway API.""" javelin_api_key: Optional[str] = None """The API key for the Javelin AI Gateway API.""" def __init__(self, **kwargs: Any): try: from javelin_sdk import ( JavelinClient, UnauthorizedError, ) except ImportError: raise ImportError( "Could not import javelin_sdk python package. " "Please install it with `pip install javelin_sdk`." ) super().__init__(**kwargs) if self.gateway_uri: try: self.client = JavelinClient( base_url=self.gateway_uri, api_key=self.javelin_api_key ) except UnauthorizedError as e: raise ValueError("Javelin: Incorrect API Key.") from e @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Javelin AI Gateway API.""" params: Dict[str, Any] = { "gateway_uri": self.gateway_uri, "route": self.route, "javelin_api_key": self.javelin_api_key, **(self.params.dict() if self.params else {}), } return params @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return self._default_params def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the Javelin AI Gateway API.""" data: Dict[str, Any] = { "prompt": prompt, **(self.params.dict() if self.params else {}), } if s := (stop or (self.params.stop if self.params else None)): data["stop"] = s if self.client is not None: resp = self.client.query_route(self.route, query_body=data) else: raise ValueError("Javelin client is not initialized.") resp_dict = resp.dict() try: return resp_dict["llm_response"]["choices"][0]["text"] except KeyError: return "" async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call async the Javelin AI Gateway API.""" data: Dict[str, Any] = { "prompt": prompt, **(self.params.dict() if self.params else {}), } if s := (stop or (self.params.stop if self.params else None)): data["stop"] = s if self.client is not None: resp = await self.client.aquery_route(self.route, query_body=data) else: raise ValueError("Javelin client is not initialized.") resp_dict = resp.dict() try: return resp_dict["llm_response"]["choices"][0]["text"] except KeyError: return "" @property def _llm_type(self) -> str: """Return type of llm.""" return "javelin-ai-gateway"
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .l2_loss import L2Loss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .triplet_loss import TripletLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss', 'L2Loss', 'TripletLoss' ]
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss' ]
from langchain_core.globals import get_debug, set_debug def test_debug_is_settable_via_setter() -> None: from langchain_core import globals as globals_ from langchain_core.callbacks.manager import _get_debug previous_value = globals_._debug previous_fn_reading = _get_debug() assert previous_value == previous_fn_reading # Flip the value of the flag. set_debug(not previous_value) new_value = globals_._debug new_fn_reading = _get_debug() try: # We successfully changed the value of `debug`. assert new_value != previous_value # If we access `debug` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `debug` via `get_debug()` we also get the same value. assert new_value == get_debug() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `debug` to the value it had before. set_debug(previous_value)
from langchain_core.globals import get_debug, set_debug def test_debug_is_settable_via_setter() -> None: from langchain_core import globals from langchain_core.callbacks.manager import _get_debug previous_value = globals._debug previous_fn_reading = _get_debug() assert previous_value == previous_fn_reading # Flip the value of the flag. set_debug(not previous_value) new_value = globals._debug new_fn_reading = _get_debug() try: # We successfully changed the value of `debug`. assert new_value != previous_value # If we access `debug` via a function used elsewhere in langchain, # it also sees the same new value. assert new_value == new_fn_reading # If we access `debug` via `get_debug()` we also get the same value. assert new_value == get_debug() finally: # Make sure we don't alter global state, even if the test fails. # Always reset `debug` to the value it had before. set_debug(previous_value)
from backend.app import run_processes from backend.executor import DatabaseManager, ExecutionScheduler from backend.notifications.notifications import NotificationManager from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( NotificationManager(), DatabaseManager(), ExecutionScheduler(), AgentServer(), ) if __name__ == "__main__": main()
from backend.app import run_processes from backend.executor import DatabaseManager, ExecutionScheduler from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( DatabaseManager(), ExecutionScheduler(), AgentServer(), ) if __name__ == "__main__": main()
import sys from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.head.request_handling import HeaderRequestHandler from jina.parsers import set_pod_parser def run(*args, **kwargs): runtime_args = set_pod_parser().parse_args(args) runtime_args.host = runtime_args.host[0] runtime_args.port = runtime_args.port with AsyncNewLoopRuntime( args=runtime_args, req_handler_cls=HeaderRequestHandler ) as runtime: runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
import sys from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.head.request_handling import HeaderRequestHandler from jina.parsers import set_pod_parser def run(*args, **kwargs): runtime_args = set_pod_parser().parse_args(args) runtime_args.host = runtime_args.host[0] runtime_args.port = runtime_args.port with AsyncNewLoopRuntime(args=runtime_args, req_handler_cls=HeaderRequestHandler) as runtime: runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str agent_image: str | None = None description: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool = False class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float store_listing_version_id: str | None = None class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None class ReviewSubmissionRequest(pydantic.BaseModel): store_listing_version_id: str is_approved: bool comments: str
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str description: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool = False class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float store_listing_version_id: str | None = None class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None class ReviewSubmissionRequest(pydantic.BaseModel): store_listing_version_id: str is_approved: bool comments: str
# mypy: allow-untyped-defs import functools from collections.abc import Hashable from dataclasses import fields class _UnionTag(str): __slots__ = ("_cls",) _cls: Hashable @staticmethod def create(t, cls): tag = _UnionTag(t) assert not hasattr(tag, "_cls") tag._cls = cls return tag def __eq__(self, cmp) -> bool: assert isinstance(cmp, str) other = str(cmp) assert other in _get_field_names(self._cls), ( f"{other} is not a valid tag for {self._cls}. Available tags: {_get_field_names(self._cls)}" ) return str(self) == other def __hash__(self): return hash(str(self)) @functools.cache def _get_field_names(cls) -> set[str]: return {f.name for f in fields(cls)} class _Union: _type: _UnionTag @classmethod def create(cls, **kwargs): assert len(kwargs) == 1 obj = cls(**{**{f.name: None for f in fields(cls)}, **kwargs}) # type: ignore[arg-type] obj._type = _UnionTag.create(next(iter(kwargs.keys())), cls) return obj def __post_init__(self): assert not any( f.name in ("type", "_type", "create", "value") for f in fields(self) # type: ignore[arg-type, misc] ) @property def type(self) -> str: try: return self._type except AttributeError as e: raise RuntimeError( f"Please use {type(self).__name__}.create to instantiate the union type." ) from e @property def value(self): return getattr(self, self.type) def __getattribute__(self, name): attr = super().__getattribute__(name) if attr is None and name in _get_field_names(type(self)) and name != self.type: # type: ignore[arg-type] raise AttributeError(f"Field {name} is not set.") return attr def __str__(self): return self.__repr__() def __repr__(self): return f"{type(self).__name__}({self.type}={getattr(self, self.type)})"
# mypy: allow-untyped-defs import functools from collections.abc import Hashable from dataclasses import fields class _UnionTag(str): __slots__ = ("_cls",) _cls: Hashable @staticmethod def create(t, cls): tag = _UnionTag(t) assert not hasattr(tag, "_cls") tag._cls = cls return tag def __eq__(self, cmp) -> bool: assert isinstance(cmp, str) other = str(cmp) assert other in _get_field_names( self._cls ), f"{other} is not a valid tag for {self._cls}. Available tags: {_get_field_names(self._cls)}" return str(self) == other def __hash__(self): return hash(str(self)) @functools.cache def _get_field_names(cls) -> set[str]: return {f.name for f in fields(cls)} class _Union: _type: _UnionTag @classmethod def create(cls, **kwargs): assert len(kwargs) == 1 obj = cls(**{**{f.name: None for f in fields(cls)}, **kwargs}) # type: ignore[arg-type] obj._type = _UnionTag.create(next(iter(kwargs.keys())), cls) return obj def __post_init__(self): assert not any(f.name in ("type", "_type", "create", "value") for f in fields(self)) # type: ignore[arg-type, misc] @property def type(self) -> str: try: return self._type except AttributeError as e: raise RuntimeError( f"Please use {type(self).__name__}.create to instantiate the union type." ) from e @property def value(self): return getattr(self, self.type) def __getattribute__(self, name): attr = super().__getattribute__(name) if attr is None and name in _get_field_names(type(self)) and name != self.type: # type: ignore[arg-type] raise AttributeError(f"Field {name} is not set.") return attr def __str__(self): return self.__repr__() def __repr__(self): return f"{type(self).__name__}({self.type}={getattr(self, self.type)})"
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.MaxPooling1D", "keras.layers.MaxPool1D"]) class MaxPooling1D(BasePooling): """Max pooling operation for 1D temporal data. Downsamples the input representation by taking the maximum value over a spatial window of size `pool_size`. The window is shifted by `strides`. The resulting output when using the `"valid"` padding option has a shape of: `output_shape = (input_shape - pool_size + 1) / strides)`. The resulting output shape when using the `"same"` padding option is: `output_shape = input_shape / strides` Args: pool_size: int, size of the max pooling window. strides: int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to `pool_size`. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, steps, features)` while `"channels_first"` corresponds to inputs with shape `(batch, features, steps)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, steps)`. Output shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, downsampled_steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, downsampled_steps)`. Examples: `strides=1` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="valid") >>> max_pool_1d(x) `strides=2` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=2, padding="valid") >>> max_pool_1d(x) `strides=1` and `padding="same"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="same") >>> max_pool_1d(x) """ def __init__( self, pool_size=2, strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=1, pool_mode="max", padding=padding, data_format=data_format, name=name, **kwargs, )
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.MaxPooling1D", "keras.layers.MaxPool1D"]) class MaxPooling1D(BasePooling): """Max pooling operation for 1D temporal data. Downsamples the input representation by taking the maximum value over a spatial window of size `pool_size`. The window is shifted by `strides`. The resulting output when using the `"valid"` padding option has a shape of: `output_shape = (input_shape - pool_size + 1) / strides)`. The resulting output shape when using the `"same"` padding option is: `output_shape = input_shape / strides` Args: pool_size: int, size of the max pooling window. strides: int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to `pool_size`. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, steps, features)` while `"channels_first"` corresponds to inputs with shape `(batch, features, steps)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, steps)`. Output shape: - If `data_format="channels_last"`: 3D tensor with shape `(batch_size, downsampled_steps, features)`. - If `data_format="channels_first"`: 3D tensor with shape `(batch_size, features, downsampled_steps)`. Examples: `strides=1` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="valid") >>> max_pool_1d(x) `strides=2` and `padding="valid"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=2, padding="valid") >>> max_pool_1d(x) `strides=1` and `padding="same"`: >>> x = np.array([1., 2., 3., 4., 5.]) >>> x = np.reshape(x, [1, 5, 1]) >>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, ... strides=1, padding="same") >>> max_pool_1d(x) """ def __init__( self, pool_size=2, strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=1, pool_mode="max", padding=padding, data_format=data_format, name=name, **kwargs, )