input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. import pytest from mmdet.datasets import get_loading_pipeline, replace_ImageToTensor def test_replace_ImageToTensor(): # with MultiScaleFlipAug pipelines = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] expected_pipelines = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']), ]) ] with pytest.warns(UserWarning): assert expected_pipelines == replace_ImageToTensor(pipelines) # without MultiScaleFlipAug pipelines = [ dict(type='LoadImageFromFile'), dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] expected_pipelines = [ dict(type='LoadImageFromFile'), dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']), ] with pytest.warns(UserWarning): assert expected_pipelines == replace_ImageToTensor(pipelines) def test_get_loading_pipeline(): pipelines = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] expected_pipelines = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ] assert expected_pipelines == \ get_loading_pipeline(pipelines)
import pytest from mmdet.datasets import get_loading_pipeline, replace_ImageToTensor def test_replace_ImageToTensor(): # with MultiScaleFlipAug pipelines = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] expected_pipelines = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']), ]) ] with pytest.warns(UserWarning): assert expected_pipelines == replace_ImageToTensor(pipelines) # without MultiScaleFlipAug pipelines = [ dict(type='LoadImageFromFile'), dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] expected_pipelines = [ dict(type='LoadImageFromFile'), dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize'), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']), ] with pytest.warns(UserWarning): assert expected_pipelines == replace_ImageToTensor(pipelines) def test_get_loading_pipeline(): pipelines = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] expected_pipelines = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ] assert expected_pipelines == \ get_loading_pipeline(pipelines)
import torch import torchaudio.functional as F from parameterized import parameterized from torchaudio_unittest.common_utils import ( get_sinusoid, load_params, save_wav, skipIfNoExec, TempDirMixin, TestBaseMixin, ) from torchaudio_unittest.common_utils.kaldi_utils import convert_args, run_kaldi class Kaldi(TempDirMixin, TestBaseMixin): def assert_equal(self, output, *, expected, rtol=None, atol=None): expected = expected.to(dtype=self.dtype, device=self.device) self.assertEqual(output, expected, rtol=rtol, atol=atol) @skipIfNoExec("apply-cmvn-sliding") def test_sliding_window_cmn(self): """sliding_window_cmn should be numerically compatible with apply-cmvn-sliding""" kwargs = { "cmn_window": 600, "min_cmn_window": 100, "center": False, "norm_vars": False, } tensor = torch.randn(40, 10, dtype=self.dtype, device=self.device) result = F.sliding_window_cmn(tensor, **kwargs) command = ["apply-cmvn-sliding"] + convert_args(**kwargs) + ["ark:-", "ark:-"] kaldi_result = run_kaldi(command, "ark", tensor) self.assert_equal(result, expected=kaldi_result) class KaldiCPUOnly(TempDirMixin, TestBaseMixin): def assert_equal(self, output, *, expected, rtol=None, atol=None): expected = expected.to(dtype=self.dtype, device=self.device) self.assertEqual(output, expected, rtol=rtol, atol=atol) @parameterized.expand(load_params("kaldi_test_pitch_args.jsonl")) @skipIfNoExec("compute-kaldi-pitch-feats") def test_pitch_feats(self, kwargs): """compute_kaldi_pitch produces numerically compatible result with compute-kaldi-pitch-feats""" sample_rate = kwargs["sample_rate"] waveform = get_sinusoid(dtype="float32", sample_rate=sample_rate) result = F.compute_kaldi_pitch(waveform[0], **kwargs) waveform = get_sinusoid(dtype="int16", sample_rate=sample_rate) wave_file = self.get_temp_path("test.wav") save_wav(wave_file, waveform, sample_rate) command = ["compute-kaldi-pitch-feats"] + convert_args(**kwargs) + ["scp:-", "ark:-"] kaldi_result = run_kaldi(command, "scp", wave_file) self.assert_equal(result, expected=kaldi_result)
import torch import torchaudio.functional as F from parameterized import parameterized from torchaudio_unittest.common_utils import ( get_sinusoid, load_params, save_wav, skipIfNoExec, TempDirMixin, TestBaseMixin, ) from torchaudio_unittest.common_utils.kaldi_utils import ( convert_args, run_kaldi, ) class Kaldi(TempDirMixin, TestBaseMixin): def assert_equal(self, output, *, expected, rtol=None, atol=None): expected = expected.to(dtype=self.dtype, device=self.device) self.assertEqual(output, expected, rtol=rtol, atol=atol) @skipIfNoExec("apply-cmvn-sliding") def test_sliding_window_cmn(self): """sliding_window_cmn should be numerically compatible with apply-cmvn-sliding""" kwargs = { "cmn_window": 600, "min_cmn_window": 100, "center": False, "norm_vars": False, } tensor = torch.randn(40, 10, dtype=self.dtype, device=self.device) result = F.sliding_window_cmn(tensor, **kwargs) command = ["apply-cmvn-sliding"] + convert_args(**kwargs) + ["ark:-", "ark:-"] kaldi_result = run_kaldi(command, "ark", tensor) self.assert_equal(result, expected=kaldi_result) class KaldiCPUOnly(TempDirMixin, TestBaseMixin): def assert_equal(self, output, *, expected, rtol=None, atol=None): expected = expected.to(dtype=self.dtype, device=self.device) self.assertEqual(output, expected, rtol=rtol, atol=atol) @parameterized.expand(load_params("kaldi_test_pitch_args.jsonl")) @skipIfNoExec("compute-kaldi-pitch-feats") def test_pitch_feats(self, kwargs): """compute_kaldi_pitch produces numerically compatible result with compute-kaldi-pitch-feats""" sample_rate = kwargs["sample_rate"] waveform = get_sinusoid(dtype="float32", sample_rate=sample_rate) result = F.compute_kaldi_pitch(waveform[0], **kwargs) waveform = get_sinusoid(dtype="int16", sample_rate=sample_rate) wave_file = self.get_temp_path("test.wav") save_wav(wave_file, waveform, sample_rate) command = ["compute-kaldi-pitch-feats"] + convert_args(**kwargs) + ["scp:-", "ark:-"] kaldi_result = run_kaldi(command, "scp", wave_file) self.assert_equal(result, expected=kaldi_result)
from contextlib import suppress from docutils import nodes from docutils.parsers.rst import Directive from sklearn.utils import all_estimators from sklearn.utils._test_common.instance_generator import _construct_instance from sklearn.utils._testing import SkipTest class AllowNanEstimators(Directive): @staticmethod def make_paragraph_for_estimator_type(estimator_type): intro = nodes.list_item() intro += nodes.strong(text="Estimators that allow NaN values for type ") intro += nodes.literal(text=f"{estimator_type}") intro += nodes.strong(text=":\n") exists = False lst = nodes.bullet_list() for name, est_class in all_estimators(type_filter=estimator_type): with suppress(SkipTest): est = _construct_instance(est_class) if est._get_tags().get("allow_nan"): module_name = ".".join(est_class.__module__.split(".")[:2]) class_title = f"{est_class.__name__}" class_url = f"./generated/{module_name}.{class_title}.html" item = nodes.list_item() para = nodes.paragraph() para += nodes.reference( class_title, text=class_title, internal=False, refuri=class_url ) exists = True item += para lst += item intro += lst return [intro] if exists else None def run(self): lst = nodes.bullet_list() for i in ["cluster", "regressor", "classifier", "transformer"]: item = self.make_paragraph_for_estimator_type(i) if item is not None: lst += item return [lst] def setup(app): app.add_directive("allow_nan_estimators", AllowNanEstimators) return { "version": "0.1", "parallel_read_safe": True, "parallel_write_safe": True, }
from contextlib import suppress from docutils import nodes from docutils.parsers.rst import Directive from sklearn.utils import all_estimators from sklearn.utils._testing import SkipTest from sklearn.utils.estimator_checks import _construct_instance class AllowNanEstimators(Directive): @staticmethod def make_paragraph_for_estimator_type(estimator_type): intro = nodes.list_item() intro += nodes.strong(text="Estimators that allow NaN values for type ") intro += nodes.literal(text=f"{estimator_type}") intro += nodes.strong(text=":\n") exists = False lst = nodes.bullet_list() for name, est_class in all_estimators(type_filter=estimator_type): with suppress(SkipTest): est = _construct_instance(est_class) if est._get_tags().get("allow_nan"): module_name = ".".join(est_class.__module__.split(".")[:2]) class_title = f"{est_class.__name__}" class_url = f"./generated/{module_name}.{class_title}.html" item = nodes.list_item() para = nodes.paragraph() para += nodes.reference( class_title, text=class_title, internal=False, refuri=class_url ) exists = True item += para lst += item intro += lst return [intro] if exists else None def run(self): lst = nodes.bullet_list() for i in ["cluster", "regressor", "classifier", "transformer"]: item = self.make_paragraph_for_estimator_type(i) if item is not None: lst += item return [lst] def setup(app): app.add_directive("allow_nan_estimators", AllowNanEstimators) return { "version": "0.1", "parallel_read_safe": True, "parallel_write_safe": True, }
import os import numpy as np import pytest import torch from pydantic.tools import parse_obj_as from docarray import BaseDoc from docarray.typing import ( AudioNdArray, AudioTorchTensor, VideoNdArray, VideoTorchTensor, ) from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp from docarray.typing.tensor.video import VideoTensorFlowTensor @pytest.mark.parametrize( 'tensor,cls_video_tensor,cls_tensor', [ (torch.zeros(1, 224, 224, 3), VideoTorchTensor, torch.Tensor), (np.zeros((1, 224, 224, 3)), VideoNdArray, np.ndarray), ], ) def test_set_video_tensor(tensor, cls_video_tensor, cls_tensor): class MyVideoDoc(BaseDoc): tensor: cls_video_tensor doc = MyVideoDoc(tensor=tensor) assert isinstance(doc.tensor, cls_video_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_set_video_tensor_tensorflow(): class MyVideoDoc(BaseDoc): tensor: VideoTensorFlowTensor doc = MyVideoDoc(tensor=tf.zeros((1, 224, 224, 3))) assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1, 224, 224, 3))) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (VideoNdArray, np.zeros((1, 224, 224, 3))), (VideoTorchTensor, torch.zeros(1, 224, 224, 3)), (VideoTorchTensor, np.zeros((1, 224, 224, 3))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.tensorflow def test_validation_tensorflow(): arr = parse_obj_as(VideoTensorFlowTensor, np.zeros((1, 224, 224, 3))) assert isinstance(arr, VideoTensorFlowTensor) arr = parse_obj_as(VideoTensorFlowTensor, tf.zeros((1, 224, 224, 3))) assert isinstance(arr, VideoTensorFlowTensor) arr = parse_obj_as(VideoTensorFlowTensor, torch.zeros((1, 224, 224, 3))) assert isinstance(arr, VideoTensorFlowTensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (VideoNdArray, torch.zeros(1, 224, 224, 3)), (VideoTorchTensor, torch.zeros(224, 3)), (VideoTorchTensor, torch.zeros(1, 224, 224, 100)), (VideoNdArray, 'hello'), (VideoTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ ( VideoTorchTensor, torch.zeros(1, 224, 224, 3), VideoTorchTensor._proto_type_name, ), (VideoNdArray, np.zeros((1, 224, 224, 3)), VideoNdArray._proto_type_name), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert proto_key in str(proto) @pytest.mark.tensorflow def test_proto_tensor_tensorflow(): tensor = parse_obj_as(VideoTensorFlowTensor, tf.zeros((1, 224, 224, 3))) proto = tensor._to_node_protobuf() assert VideoTensorFlowTensor._proto_type_name in str(proto) @pytest.mark.parametrize( 'video_tensor', [ parse_obj_as(VideoTorchTensor, torch.zeros(1, 224, 224, 3)), parse_obj_as(VideoNdArray, np.zeros((1, 224, 224, 3))), ], ) def test_save_video_tensor_to_file(video_tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.mp4') video_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.parametrize( 'video_tensor', [ parse_obj_as(VideoTorchTensor, torch.zeros(1, 224, 224, 3)), parse_obj_as(VideoNdArray, np.zeros((1, 224, 224, 3))), ], ) def test_save_video_tensor_to_bytes(video_tensor, tmpdir): b = video_tensor.to_bytes() isinstance(b, bytes) @pytest.mark.tensorflow def test_save_video_tensorflow_tensor_to_file(tmpdir): tmp_file = str(tmpdir / 'tmp.mp4') video_tensor = parse_obj_as(VideoTensorFlowTensor, tf.zeros((1, 224, 224, 3))) video_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.parametrize( 'video_tensor', [ parse_obj_as(VideoTorchTensor, torch.zeros(1, 224, 224, 3)), parse_obj_as(VideoNdArray, np.zeros((1, 224, 224, 3))), ], ) @pytest.mark.parametrize( 'audio_tensor', [ parse_obj_as(AudioTorchTensor, torch.randn(100, 1, 1024).to(torch.float32)), parse_obj_as(AudioNdArray, np.random.randn(100, 1, 1024).astype('float32')), ], ) def test_save_video_tensor_to_file_including_audio(video_tensor, audio_tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.mp4') video_tensor.save(tmp_file, audio_tensor=audio_tensor) assert os.path.isfile(tmp_file)
import os import numpy as np import pytest import torch from pydantic.tools import parse_obj_as from docarray import BaseDoc from docarray.typing import ( AudioNdArray, AudioTorchTensor, VideoNdArray, VideoTorchTensor, ) from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp from docarray.typing.tensor.video import VideoTensorFlowTensor @pytest.mark.parametrize( 'tensor,cls_video_tensor,cls_tensor', [ (torch.zeros(1, 224, 224, 3), VideoTorchTensor, torch.Tensor), (np.zeros((1, 224, 224, 3)), VideoNdArray, np.ndarray), ], ) def test_set_video_tensor(tensor, cls_video_tensor, cls_tensor): class MyVideoDoc(BaseDoc): tensor: cls_video_tensor doc = MyVideoDoc(tensor=tensor) assert isinstance(doc.tensor, cls_video_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_set_video_tensor_tensorflow(): class MyVideoDoc(BaseDoc): tensor: VideoTensorFlowTensor doc = MyVideoDoc(tensor=tf.zeros((1, 224, 224, 3))) assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1, 224, 224, 3))) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (VideoNdArray, np.zeros((1, 224, 224, 3))), (VideoTorchTensor, torch.zeros(1, 224, 224, 3)), (VideoTorchTensor, np.zeros((1, 224, 224, 3))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.tensorflow def test_validation_tensorflow(): arr = parse_obj_as(VideoTensorFlowTensor, np.zeros((1, 224, 224, 3))) assert isinstance(arr, VideoTensorFlowTensor) arr = parse_obj_as(VideoTensorFlowTensor, tf.zeros((1, 224, 224, 3))) assert isinstance(arr, VideoTensorFlowTensor) arr = parse_obj_as(VideoTensorFlowTensor, torch.zeros((1, 224, 224, 3))) assert isinstance(arr, VideoTensorFlowTensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (VideoNdArray, torch.zeros(1, 224, 224, 3)), (VideoTorchTensor, torch.zeros(224, 3)), (VideoTorchTensor, torch.zeros(1, 224, 224, 100)), (VideoNdArray, 'hello'), (VideoTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ ( VideoTorchTensor, torch.zeros(1, 224, 224, 3), VideoTorchTensor._proto_type_name, ), (VideoNdArray, np.zeros((1, 224, 224, 3)), VideoNdArray._proto_type_name), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert proto_key in str(proto) @pytest.mark.tensorflow def test_proto_tensor_tensorflow(): tensor = parse_obj_as(VideoTensorFlowTensor, tf.zeros((1, 224, 224, 3))) proto = tensor._to_node_protobuf() assert VideoTensorFlowTensor._proto_type_name in str(proto) @pytest.mark.parametrize( 'video_tensor', [ parse_obj_as(VideoTorchTensor, torch.zeros(1, 224, 224, 3)), parse_obj_as(VideoNdArray, np.zeros((1, 224, 224, 3))), ], ) def test_save_video_tensor_to_file(video_tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.mp4') video_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.parametrize( 'video_tensor', [ parse_obj_as(VideoTorchTensor, torch.zeros(1, 224, 224, 3)), parse_obj_as(VideoNdArray, np.zeros((1, 224, 224, 3))), ], ) def test_save_video_tensor_to_bytes(video_tensor, tmpdir): b = video_tensor.to_bytes() isinstance(b, bytes) @pytest.mark.tensorflow def test_save_video_tensorflow_tensor_to_file(tmpdir): tmp_file = str(tmpdir / 'tmp.mp4') video_tensor = parse_obj_as(VideoTensorFlowTensor, tf.zeros((1, 224, 224, 3))) video_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.parametrize( 'video_tensor', [ parse_obj_as(VideoTorchTensor, torch.zeros(1, 224, 224, 3)), parse_obj_as(VideoNdArray, np.zeros((1, 224, 224, 3))), ], ) @pytest.mark.parametrize( 'audio_tensor', [ parse_obj_as(AudioTorchTensor, torch.randn(100, 1, 1024).to(torch.float32)), parse_obj_as(AudioNdArray, np.random.randn(100, 1, 1024).astype('float32')), ], ) def test_save_video_tensor_to_file_including_audio(video_tensor, audio_tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.mp4') video_tensor.save(tmp_file, audio_tensor=audio_tensor) assert os.path.isfile(tmp_file)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import MyScale, MyScaleSettings from langchain_community.vectorstores.myscale import MyScaleWithoutJSON # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MyScaleSettings": "langchain_community.vectorstores", "MyScale": "langchain_community.vectorstores", "MyScaleWithoutJSON": "langchain_community.vectorstores.myscale", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MyScale", "MyScaleSettings", "MyScaleWithoutJSON", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import MyScale, MyScaleSettings from langchain_community.vectorstores.myscale import MyScaleWithoutJSON # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MyScaleSettings": "langchain_community.vectorstores", "MyScale": "langchain_community.vectorstores", "MyScaleWithoutJSON": "langchain_community.vectorstores.myscale", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MyScaleSettings", "MyScale", "MyScaleWithoutJSON", ]
from langchain_core.documents import Document from langchain.retrievers.document_compressors.listwise_rerank import LLMListwiseRerank def test_list_rerank() -> None: from langchain_openai import ChatOpenAI documents = [ Document("Sally is my friend from school"), Document("Steve is my friend from home"), Document("I didn't always like yogurt"), Document("I wonder why it's called football"), Document("Where's waldo"), ] reranker = LLMListwiseRerank.from_llm( llm=ChatOpenAI(model="gpt-3.5-turbo"), top_n=3, ) compressed_docs = reranker.compress_documents(documents, "Who is steve") assert len(compressed_docs) == 3 assert "Steve" in compressed_docs[0].page_content
from langchain_core.documents import Document from langchain.retrievers.document_compressors.listwise_rerank import LLMListwiseRerank def test_list_rerank() -> None: from langchain_openai import ChatOpenAI documents = [ Document("Sally is my friend from school"), Document("Steve is my friend from home"), Document("I didn't always like yogurt"), Document("I wonder why it's called football"), Document("Where's waldo"), ] reranker = LLMListwiseRerank.from_llm( llm=ChatOpenAI(model="gpt-3.5-turbo"), top_n=3 ) compressed_docs = reranker.compress_documents(documents, "Who is steve") assert len(compressed_docs) == 3 assert "Steve" in compressed_docs[0].page_content
from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec from box_sdk_gen import BoxClient from llama_index.readers.box.BoxAPI.box_api import ( box_check_connection, get_box_files_details, get_files_ai_extract_data, add_extra_header_to_box_client, ) from llama_index.readers.box.BoxAPI.box_llama_adaptors import box_file_to_llama_document class BoxAIExtractToolSpec(BaseToolSpec): """ Extracts AI generated content from a Box file. Args: box_client (BoxClient): A BoxClient instance for interacting with Box API. Attributes: spec_functions (list): A list of supported functions. _box_client (BoxClient): An instance of BoxClient for interacting with Box API. Methods: ai_extract(file_id, ai_prompt): Extracts AI generated content from a Box file. Args: file_id (str): The ID of the Box file. ai_prompt (str): The AI prompt to use for extraction. Returns: Document: A Document object containing the extracted AI content. """ spec_functions = ["ai_extract"] _box_client: BoxClient def __init__(self, box_client: BoxClient) -> None: """ Initializes the BoxAIExtractToolSpec with a BoxClient instance. Args: box_client (BoxClient): The BoxClient instance to use for interacting with the Box API. """ self._box_client = add_extra_header_to_box_client(box_client) def ai_extract( self, file_id: str, ai_prompt: str, ) -> Document: """ Extracts AI generated content from a Box file using the provided AI prompt. Args: file_id (str): The ID of the Box file to process. ai_prompt (str): The AI prompt to use for content extraction. Returns: Document: A Document object containing the extracted AI content, including metadata about the original Box file. """ # Connect to Box box_check_connection(self._box_client) # get payload information box_file = get_box_files_details( box_client=self._box_client, file_ids=[file_id] )[0] box_file = get_files_ai_extract_data( box_client=self._box_client, box_files=[box_file], ai_prompt=ai_prompt, )[0] doc = box_file_to_llama_document(box_file) doc.text = box_file.ai_response if box_file.ai_response else "" doc.metadata["ai_prompt"] = box_file.ai_prompt doc.metadata["ai_response"] = box_file.ai_response return doc
from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec from box_sdk_gen import BoxClient from llama_index.readers.box.BoxAPI.box_api import ( box_check_connection, get_box_files_details, get_files_ai_extract_data, add_extra_header_to_box_client, ) from llama_index.readers.box.BoxAPI.box_llama_adaptors import box_file_to_llama_document class BoxAIExtractToolSpec(BaseToolSpec): """ Extracts AI generated content from a Box file. Args: box_client (BoxClient): A BoxClient instance for interacting with Box API. Attributes: spec_functions (list): A list of supported functions. _box_client (BoxClient): An instance of BoxClient for interacting with Box API. Methods: ai_extract(file_id, ai_prompt): Extracts AI generated content from a Box file. Args: file_id (str): The ID of the Box file. ai_prompt (str): The AI prompt to use for extraction. Returns: Document: A Document object containing the extracted AI content. """ spec_functions = ["ai_extract"] _box_client: BoxClient def __init__(self, box_client: BoxClient) -> None: """ Initializes the BoxAIExtractToolSpec with a BoxClient instance. Args: box_client (BoxClient): The BoxClient instance to use for interacting with the Box API. """ self._box_client = add_extra_header_to_box_client(box_client) def ai_extract( self, file_id: str, ai_prompt: str, ) -> Document: """ Extracts AI generated content from a Box file using the provided AI prompt. Args: file_id (str): The ID of the Box file to process. ai_prompt (str): The AI prompt to use for content extraction. Returns: Document: A Document object containing the extracted AI content, including metadata about the original Box file. """ # Connect to Box box_check_connection(self._box_client) # get payload information box_file = get_box_files_details( box_client=self._box_client, file_ids=[file_id] )[0] box_file = get_files_ai_extract_data( box_client=self._box_client, box_files=[box_file], ai_prompt=ai_prompt, )[0] doc = box_file_to_llama_document(box_file) doc.text = box_file.ai_response if box_file.ai_response else "" doc.metadata["ai_prompt"] = box_file.ai_prompt doc.metadata["ai_response"] = box_file.ai_response return doc
import os.path from typing import Any, Callable, List, Optional, Tuple from PIL import Image from .vision import VisionDataset class CocoDetection(VisionDataset): """`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset. It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.PILToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ def __init__( self, root: str, annFile: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None, ) -> None: super().__init__(root, transforms, transform, target_transform) from pycocotools.coco import COCO self.coco = COCO(annFile) self.ids = list(sorted(self.coco.imgs.keys())) def _load_image(self, id: int) -> Image.Image: path = self.coco.loadImgs(id)[0]["file_name"] return Image.open(os.path.join(self.root, path)).convert("RGB") def _load_target(self, id: int) -> List[Any]: return self.coco.loadAnns(self.coco.getAnnIds(id)) def __getitem__(self, index: int) -> Tuple[Any, Any]: id = self.ids[index] image = self._load_image(id) target = self._load_target(id) if self.transforms is not None: image, target = self.transforms(image, target) return image, target def __len__(self) -> int: return len(self.ids) class CocoCaptions(CocoDetection): """`MS Coco Captions <https://cocodataset.org/#captions-2015>`_ Dataset. It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.PILToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. Example: .. code:: python import torchvision.datasets as dset import torchvision.transforms as transforms cap = dset.CocoCaptions(root = 'dir where images are', annFile = 'json annotation file', transform=transforms.PILToTensor()) print('Number of samples: ', len(cap)) img, target = cap[3] # load 4th sample print("Image Size: ", img.size()) print(target) Output: :: Number of samples: 82783 Image Size: (3L, 427L, 640L) [u'A plane emitting smoke stream flying over a mountain.', u'A plane darts across a bright blue sky behind a mountain covered in snow', u'A plane leaves a contrail above the snowy mountain top.', u'A mountain that has a plane flying overheard in the distance.', u'A mountain view with a plume of smoke in the background'] """ def _load_target(self, id: int) -> List[str]: return [ann["caption"] for ann in super()._load_target(id)]
import os.path from typing import Any, Callable, List, Optional, Tuple from PIL import Image from .vision import VisionDataset class CocoDetection(VisionDataset): """`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset. It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.PILToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ def __init__( self, root: str, annFile: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None, ) -> None: super().__init__(root, transforms, transform, target_transform) from pycocotools.coco import COCO self.coco = COCO(annFile) self.ids = list(sorted(self.coco.imgs.keys())) def _load_image(self, id: int) -> Image.Image: path = self.coco.loadImgs(id)[0]["file_name"] return Image.open(os.path.join(self.root, path)).convert("RGB") def _load_target(self, id: int) -> List[Any]: return self.coco.loadAnns(self.coco.getAnnIds(id)) def __getitem__(self, index: int) -> Tuple[Any, Any]: id = self.ids[index] image = self._load_image(id) target = self._load_target(id) if self.transforms is not None: image, target = self.transforms(image, target) return image, target def __len__(self) -> int: return len(self.ids) class CocoCaptions(CocoDetection): """`MS Coco Captions <https://cocodataset.org/#captions-2015>`_ Dataset. It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.PILToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. Example: .. code:: python import torchvision.datasets as dset import torchvision.transforms as transforms cap = dset.CocoCaptions(root = 'dir where images are', annFile = 'json annotation file', transform=transforms.PILToTensor()) print('Number of samples: ', len(cap)) img, target = cap[3] # load 4th sample print("Image Size: ", img.size()) print(target) Output: :: Number of samples: 82783 Image Size: (3L, 427L, 640L) [u'A plane emitting smoke stream flying over a mountain.', u'A plane darts across a bright blue sky behind a mountain covered in snow', u'A plane leaves a contrail above the snowy mountain top.', u'A mountain that has a plane flying overheard in the distance.', u'A mountain view with a plume of smoke in the background'] """ def _load_target(self, id: int) -> List[str]: return [ann["caption"] for ann in super()._load_target(id)]
import os import pytest from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.mcp import BasicMCPClient, McpToolSpec # Path to the test server script - adjust as needed SERVER_SCRIPT = os.path.join(os.path.dirname(__file__), "server.py") @pytest.fixture(scope="session") def client() -> BasicMCPClient: """Create a basic MCP client connected to the test server.""" return BasicMCPClient("python", args=[SERVER_SCRIPT], timeout=5) def test_class(): names_of_base_classes = [b.__name__ for b in McpToolSpec.__mro__] assert BaseToolSpec.__name__ in names_of_base_classes def test_get_tools(client: BasicMCPClient): tool_spec = McpToolSpec(client) tools = tool_spec.to_tool_list() assert len(tools) > 0 tool_spec = McpToolSpec(client, include_resources=True) tools_plus_resources = tool_spec.to_tool_list() assert len(tools_plus_resources) > len(tools) @pytest.mark.asyncio async def test_get_tools_async(client: BasicMCPClient): tool_spec = McpToolSpec(client) tools = await tool_spec.to_tool_list_async() assert len(tools) > 0 tool_spec = McpToolSpec(client, include_resources=True) tools_plus_resources = await tool_spec.to_tool_list_async() assert len(tools_plus_resources) > len(tools) def test_get_single_tool(client: BasicMCPClient): tool_spec = McpToolSpec(client, allowed_tools=["echo"]) tools = tool_spec.to_tool_list() assert len(tools) == 1 assert tools[0].metadata.name == "echo" @pytest.mark.asyncio async def test_get_single_tool_async(client: BasicMCPClient): tool_spec = McpToolSpec(client, allowed_tools=["echo"]) tools = await tool_spec.to_tool_list_async() assert len(tools) == 1 assert tools[0].metadata.name == "echo" def test_get_zero_tools(client: BasicMCPClient): tool_spec = McpToolSpec(client, allowed_tools=[]) tools = tool_spec.to_tool_list() assert len(tools) == 0 @pytest.mark.asyncio async def test_get_zero_tools_async(client: BasicMCPClient): tool_spec = McpToolSpec(client, allowed_tools=[]) tools = await tool_spec.to_tool_list_async() assert len(tools) == 0
from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.mcp import McpToolSpec def test_class(): names_of_base_classes = [b.__name__ for b in McpToolSpec.__mro__] assert BaseToolSpec.__name__ in names_of_base_classes
import pytest from xgboost import testing as tm pytestmark = [ pytest.mark.skipif(**tm.no_spark()), tm.timeout(120), ] from ..test_with_spark.test_data import run_dmatrix_ctor @pytest.mark.skipif(**tm.no_cudf()) @pytest.mark.parametrize( "is_feature_cols,is_qdm", [(True, True), (True, False), (False, True), (False, False)], ) def test_dmatrix_ctor(is_feature_cols: bool, is_qdm: bool) -> None: run_dmatrix_ctor(is_feature_cols, is_qdm, on_gpu=True)
import pytest from xgboost import testing as tm pytestmark = pytest.mark.skipif(**tm.no_spark()) from ..test_with_spark.test_data import run_dmatrix_ctor @pytest.mark.skipif(**tm.no_cudf()) @pytest.mark.parametrize( "is_feature_cols,is_qdm", [(True, True), (True, False), (False, True), (False, False)], ) def test_dmatrix_ctor(is_feature_cols: bool, is_qdm: bool) -> None: run_dmatrix_ctor(is_feature_cols, is_qdm, on_gpu=True)
from contextlib import asynccontextmanager from datetime import timedelta from typing import Optional, List, Dict from urllib.parse import urlparse from mcp.client.session import ClientSession from mcp.client.sse import sse_client from mcp.client.stdio import stdio_client, StdioServerParameters class BasicMCPClient(ClientSession): """ Basic MCP client that can be used to connect to an MCP server. This is useful for verifying that the MCP server which implements `FastMCP` is working. Args: command_or_url: The command to run or the URL to connect to. args: The arguments to pass to StdioServerParameters. env: The environment variables to set for StdioServerParameters. timeout: The timeout for the command in seconds. """ def __init__( self, command_or_url: str, args: Optional[List[str]] = None, env: Optional[Dict[str, str]] = None, timeout: int = 30, ): self.command_or_url = command_or_url self.args = args or [] self.env = env or {} self.timeout = timeout @asynccontextmanager async def _run_session(self): if urlparse(self.command_or_url).scheme in ("http", "https"): async with sse_client(self.command_or_url) as streams: async with ClientSession( *streams, read_timeout_seconds=timedelta(seconds=self.timeout) ) as session: await session.initialize() yield session else: server_parameters = StdioServerParameters( command=self.command_or_url, args=self.args, env=self.env ) async with stdio_client(server_parameters) as streams: async with ClientSession( *streams, read_timeout_seconds=timedelta(seconds=self.timeout) ) as session: await session.initialize() yield session async def call_tool(self, tool_name: str, arguments: dict): async with self._run_session() as session: return await session.call_tool(tool_name, arguments) async def list_tools(self): async with self._run_session() as session: return await session.list_tools()
from contextlib import asynccontextmanager from datetime import timedelta from typing import Optional, List, Dict from urllib.parse import urlparse from mcp.client.session import ClientSession from mcp.client.sse import sse_client from mcp.client.stdio import stdio_client, StdioServerParameters class BasicMCPClient(ClientSession): """ Basic MCP client that can be used to connect to an MCP server. This is useful for verifying that the MCP server which implements `FastMCP` is working. Args: command_or_url: The command to run or the URL to connect to. args: The arguments to pass to StdioServerParameters. env: The environment variables to set for StdioServerParameters. timeout: The timeout for the command in seconds. """ def __init__( self, command_or_url: str, args: Optional[List[str]] = None, env: Optional[Dict[str, str]] = None, timeout: int = 30, ): self.command_or_url = command_or_url self.args = args or [] self.env = env or {} self.timeout = timeout @asynccontextmanager async def _run_session(self): if urlparse(self.command_or_url).scheme in ("http", "https"): async with sse_client(self.command_or_url) as streams: async with ClientSession( *streams, read_timeout_seconds=timedelta(seconds=self.timeout) ) as session: await session.initialize() yield session else: server_parameters = StdioServerParameters( command=self.command_or_url, args=self.args, env=self.env ) async with stdio_client(server_parameters) as streams: async with ClientSession( *streams, read_timeout_seconds=timedelta(seconds=self.timeout) ) as session: await session.initialize() yield session async def call_tool(self, tool_name: str, arguments: dict): async with self._run_session() as session: return await session.call_tool(tool_name, arguments) async def list_tools(self): async with self._run_session() as session: return await session.list_tools()
import json import os from typing import List import torch from torch import nn class LSTM(nn.Module): """Bidirectional LSTM running over word embeddings.""" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin")) model = LSTM(**config) model.load_state_dict(weights) return model
import torch from torch import nn from typing import List import os import json class LSTM(nn.Module): """Bidirectional LSTM running over word embeddings.""" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin")) model = LSTM(**config) model.load_state_dict(weights) return model
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True))) # MMEngine support the following two ways, users can choose # according to convenience # optim_wrapper = dict(type='AmpOptimWrapper') _base_.optim_wrapper.type = 'AmpOptimWrapper'
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True))) fp16 = dict(loss_scale=512.)
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .logger import get_root_logger from .misc import find_latest_checkpoint from .setup_env import setup_multi_processes __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', 'setup_multi_processes' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .logger import get_root_logger from .misc import find_latest_checkpoint __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', ]
from __future__ import annotations import csv import os from . import InputExample class TripletReader(object): """Reads in the a Triplet Dataset: Each line contains (at least) 3 columns, one anchor column (s1), one positive example (s2) and one negative example (s3) """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, s3_col_idx=2, has_header=False, delimiter="\t", quoting=csv.QUOTE_NONE, ): self.dataset_folder = dataset_folder self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.s3_col_idx = s3_col_idx self.has_header = has_header self.delimiter = delimiter self.quoting = quoting def get_examples(self, filename, max_examples=0): data = csv.reader( open(os.path.join(self.dataset_folder, filename), encoding="utf-8"), delimiter=self.delimiter, quoting=self.quoting, ) examples = [] if self.has_header: next(data) for id, row in enumerate(data): s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] s3 = row[self.s3_col_idx] examples.append(InputExample(texts=[s1, s2, s3])) if max_examples > 0 and len(examples) >= max_examples: break return examples
import csv import os from . import InputExample class TripletReader(object): """Reads in the a Triplet Dataset: Each line contains (at least) 3 columns, one anchor column (s1), one positive example (s2) and one negative example (s3) """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, s3_col_idx=2, has_header=False, delimiter="\t", quoting=csv.QUOTE_NONE, ): self.dataset_folder = dataset_folder self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.s3_col_idx = s3_col_idx self.has_header = has_header self.delimiter = delimiter self.quoting = quoting def get_examples(self, filename, max_examples=0): data = csv.reader( open(os.path.join(self.dataset_folder, filename), encoding="utf-8"), delimiter=self.delimiter, quoting=self.quoting, ) examples = [] if self.has_header: next(data) for id, row in enumerate(data): s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] s3 = row[self.s3_col_idx] examples.append(InputExample(texts=[s1, s2, s3])) if max_examples > 0 and len(examples) >= max_examples: break return examples
import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: if torch.jit.is_scripting(): return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, datapoints.Image) def erase_image_tensor( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, datapoints.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal @_register_explicit_noop(datapoints.Mask, datapoints.BoundingBoxes, warn_passthrough=True) def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: if torch.jit.is_scripting(): return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, datapoints.Image) def erase_image_tensor( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, datapoints.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import subprocess import torch from mmengine.logging import print_log def parse_args(): parser = argparse.ArgumentParser( description='Process a checkpoint to be published') parser.add_argument('in_file', help='input checkpoint filename') parser.add_argument('out_file', help='output checkpoint filename') parser.add_argument( '--save-keys', nargs='+', type=str, default=['meta', 'state_dict'], help='keys to save in the published checkpoint') args = parser.parse_args() return args def process_checkpoint(in_file, out_file, save_keys=['meta', 'state_dict']): checkpoint = torch.load(in_file, map_location='cpu') # only keep `meta` and `state_dict` for smaller file size ckpt_keys = list(checkpoint.keys()) for k in ckpt_keys: if k not in save_keys: print_log( f'Key `{k}` will be removed because it is not in ' f'save_keys. If you want to keep it, ' f'please set --save-keys.', logger='current') checkpoint.pop(k, None) # if it is necessary to remove some sensitive data in checkpoint['meta'], # add the code here. if torch.__version__ >= '1.6': torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) else: torch.save(checkpoint, out_file) sha = subprocess.check_output(['sha256sum', out_file]).decode() if out_file.endswith('.pth'): out_file_name = out_file[:-4] else: out_file_name = out_file final_file = out_file_name + f'-{sha[:8]}.pth' subprocess.Popen(['mv', out_file, final_file]) print_log( f'The published model is saved at {final_file}.', logger='current') def main(): args = parse_args() process_checkpoint(args.in_file, args.out_file, args.save_keys) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import subprocess import torch def parse_args(): parser = argparse.ArgumentParser( description='Process a checkpoint to be published') parser.add_argument('in_file', help='input checkpoint filename') parser.add_argument('out_file', help='output checkpoint filename') args = parser.parse_args() return args def process_checkpoint(in_file, out_file): checkpoint = torch.load(in_file, map_location='cpu') # remove optimizer for smaller file size if 'optimizer' in checkpoint: del checkpoint['optimizer'] # if it is necessary to remove some sensitive data in checkpoint['meta'], # add the code here. if torch.__version__ >= '1.6': torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) else: torch.save(checkpoint, out_file) sha = subprocess.check_output(['sha256sum', out_file]).decode() if out_file.endswith('.pth'): out_file_name = out_file[:-4] else: out_file_name = out_file final_file = out_file_name + f'-{sha[:8]}.pth' subprocess.Popen(['mv', out_file, final_file]) def main(): args = parse_args() process_checkpoint(args.in_file, args.out_file) if __name__ == '__main__': main()
from ._dsp import adsr_envelope, extend_pitch, oscillator_bank, sinc_impulse_response from .functional import add_noise, barkscale_fbanks, convolve, deemphasis, fftconvolve, preemphasis, speed __all__ = [ "add_noise", "adsr_envelope", "barkscale_fbanks", "convolve", "deemphasis", "extend_pitch", "fftconvolve", "oscillator_bank", "preemphasis", "sinc_impulse_response", "speed", ]
from ._dsp import adsr_envelope, extend_pitch, oscillator_bank, sinc_impulse_response from .functional import add_noise, barkscale_fbanks, convolve, fftconvolve, speed __all__ = [ "add_noise", "adsr_envelope", "barkscale_fbanks", "convolve", "extend_pitch", "fftconvolve", "oscillator_bank", "sinc_impulse_response", "speed", ]
# Copyright (c) OpenMMLab. All rights reserved. from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, AmpOptimWrapper, ApexOptimWrapper, BaseOptimWrapper, DefaultOptimWrapperConstructor, OptimWrapper, OptimWrapperDict, ZeroRedundancyOptimizer, build_optim_wrapper) # yapf: disable from .scheduler import (ConstantLR, ConstantMomentum, ConstantParamScheduler, CosineAnnealingLR, CosineAnnealingMomentum, CosineAnnealingParamScheduler, ExponentialLR, ExponentialMomentum, ExponentialParamScheduler, LinearLR, LinearMomentum, LinearParamScheduler, MultiStepLR, MultiStepMomentum, MultiStepParamScheduler, OneCycleLR, OneCycleParamScheduler, PolyLR, PolyMomentum, PolyParamScheduler, ReduceOnPlateauLR, ReduceOnPlateauMomentum, ReduceOnPlateauParamScheduler, StepLR, StepMomentum, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'build_optim_wrapper', 'DefaultOptimWrapperConstructor', 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'OneCycleParamScheduler', 'OneCycleLR', 'PolyLR', 'PolyMomentum', 'PolyParamScheduler', 'ReduceOnPlateauLR', 'ReduceOnPlateauMomentum', 'ReduceOnPlateauParamScheduler', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper' ]
# Copyright (c) OpenMMLab. All rights reserved. from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, AmpOptimWrapper, ApexOptimWrapper, BaseOptimWrapper, DeepSpeedOptimWrapper, DefaultOptimWrapperConstructor, OptimWrapper, OptimWrapperDict, ZeroRedundancyOptimizer, build_optim_wrapper) # yapf: disable from .scheduler import (ConstantLR, ConstantMomentum, ConstantParamScheduler, CosineAnnealingLR, CosineAnnealingMomentum, CosineAnnealingParamScheduler, ExponentialLR, ExponentialMomentum, ExponentialParamScheduler, LinearLR, LinearMomentum, LinearParamScheduler, MultiStepLR, MultiStepMomentum, MultiStepParamScheduler, OneCycleLR, OneCycleParamScheduler, PolyLR, PolyMomentum, PolyParamScheduler, ReduceOnPlateauLR, ReduceOnPlateauMomentum, ReduceOnPlateauParamScheduler, StepLR, StepMomentum, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'build_optim_wrapper', 'DefaultOptimWrapperConstructor', 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'OneCycleParamScheduler', 'OneCycleLR', 'PolyLR', 'PolyMomentum', 'PolyParamScheduler', 'ReduceOnPlateauLR', 'ReduceOnPlateauMomentum', 'ReduceOnPlateauParamScheduler', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper', 'DeepSpeedOptimWrapper' ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.linalg import cholesky from keras.src.ops.linalg import det from keras.src.ops.linalg import eig from keras.src.ops.linalg import eigh from keras.src.ops.linalg import inv from keras.src.ops.linalg import lstsq from keras.src.ops.linalg import lu_factor from keras.src.ops.linalg import norm from keras.src.ops.linalg import qr from keras.src.ops.linalg import solve from keras.src.ops.linalg import solve_triangular from keras.src.ops.linalg import svd
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.linalg import cholesky from keras.src.ops.linalg import det from keras.src.ops.linalg import eig from keras.src.ops.linalg import eigh from keras.src.ops.linalg import inv from keras.src.ops.linalg import lu_factor from keras.src.ops.linalg import norm from keras.src.ops.linalg import qr from keras.src.ops.linalg import solve from keras.src.ops.linalg import solve_triangular from keras.src.ops.linalg import svd
from typing import Any, Optional, Sequence from langchain_core._api.deprecation import deprecated from langchain_core.documents import BaseDocumentTransformer, Document from langchain_community.utilities.vertexai import get_client_info @deprecated( since="0.0.32", removal="1.0", alternative_import="langchain_google_community.DocAIParser", ) class GoogleTranslateTransformer(BaseDocumentTransformer): """Translate text documents using Google Cloud Translation.""" def __init__( self, project_id: str, *, location: str = "global", model_id: Optional[str] = None, glossary_id: Optional[str] = None, api_endpoint: Optional[str] = None, ) -> None: """ Arguments: project_id: Google Cloud Project ID. location: (Optional) Translate model location. model_id: (Optional) Translate model ID to use. glossary_id: (Optional) Translate glossary ID to use. api_endpoint: (Optional) Regional endpoint to use. """ try: from google.api_core.client_options import ClientOptions from google.cloud import translate except ImportError as exc: raise ImportError( "Install Google Cloud Translate to use this parser." "(pip install google-cloud-translate)" ) from exc self.project_id = project_id self.location = location self.model_id = model_id self.glossary_id = glossary_id self._client = translate.TranslationServiceClient( client_info=get_client_info("translate"), client_options=( ClientOptions(api_endpoint=api_endpoint) if api_endpoint else None ), ) self._parent_path = self._client.common_location_path(project_id, location) # For some reason, there's no `model_path()` method for the client. self._model_path = ( f"{self._parent_path}/models/{model_id}" if model_id else None ) self._glossary_path = ( self._client.glossary_path(project_id, location, glossary_id) if glossary_id else None ) def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Translate text documents using Google Translate. Arguments: source_language_code: ISO 639 language code of the input document. target_language_code: ISO 639 language code of the output document. For supported languages, refer to: https://cloud.google.com/translate/docs/languages mime_type: (Optional) Media Type of input text. Options: `text/plain`, `text/html` """ try: from google.cloud import translate except ImportError as exc: raise ImportError( "Install Google Cloud Translate to use this parser." "(pip install google-cloud-translate)" ) from exc response = self._client.translate_text( request=translate.TranslateTextRequest( contents=[doc.page_content for doc in documents], parent=self._parent_path, model=self._model_path, glossary_config=translate.TranslateTextGlossaryConfig( glossary=self._glossary_path ), source_language_code=kwargs.get("source_language_code", None), target_language_code=kwargs.get("target_language_code"), mime_type=kwargs.get("mime_type", "text/plain"), ) ) # If using a glossary, the translations will be in `glossary_translations`. translations = response.glossary_translations or response.translations return [ Document( page_content=translation.translated_text, metadata={ **doc.metadata, "model": translation.model, "detected_language_code": translation.detected_language_code, }, ) for doc, translation in zip(documents, translations) ]
from typing import Any, Optional, Sequence from langchain_core._api.deprecation import deprecated from langchain_core.documents import BaseDocumentTransformer, Document from langchain_community.utilities.vertexai import get_client_info @deprecated( since="0.0.32", removal="1.0", alternative_import="langchain_google_community.DocAIParser", ) class GoogleTranslateTransformer(BaseDocumentTransformer): """Translate text documents using Google Cloud Translation.""" def __init__( self, project_id: str, *, location: str = "global", model_id: Optional[str] = None, glossary_id: Optional[str] = None, api_endpoint: Optional[str] = None, ) -> None: """ Arguments: project_id: Google Cloud Project ID. location: (Optional) Translate model location. model_id: (Optional) Translate model ID to use. glossary_id: (Optional) Translate glossary ID to use. api_endpoint: (Optional) Regional endpoint to use. """ try: from google.api_core.client_options import ClientOptions from google.cloud import translate # type: ignore[attr-defined] except ImportError as exc: raise ImportError( "Install Google Cloud Translate to use this parser." "(pip install google-cloud-translate)" ) from exc self.project_id = project_id self.location = location self.model_id = model_id self.glossary_id = glossary_id self._client = translate.TranslationServiceClient( client_info=get_client_info("translate"), client_options=( ClientOptions(api_endpoint=api_endpoint) if api_endpoint else None ), ) self._parent_path = self._client.common_location_path(project_id, location) # For some reason, there's no `model_path()` method for the client. self._model_path = ( f"{self._parent_path}/models/{model_id}" if model_id else None ) self._glossary_path = ( self._client.glossary_path(project_id, location, glossary_id) if glossary_id else None ) def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Translate text documents using Google Translate. Arguments: source_language_code: ISO 639 language code of the input document. target_language_code: ISO 639 language code of the output document. For supported languages, refer to: https://cloud.google.com/translate/docs/languages mime_type: (Optional) Media Type of input text. Options: `text/plain`, `text/html` """ try: from google.cloud import translate # type: ignore[attr-defined] except ImportError as exc: raise ImportError( "Install Google Cloud Translate to use this parser." "(pip install google-cloud-translate)" ) from exc response = self._client.translate_text( request=translate.TranslateTextRequest( contents=[doc.page_content for doc in documents], parent=self._parent_path, model=self._model_path, glossary_config=translate.TranslateTextGlossaryConfig( glossary=self._glossary_path ), source_language_code=kwargs.get("source_language_code", None), target_language_code=kwargs.get("target_language_code"), mime_type=kwargs.get("mime_type", "text/plain"), ) ) # If using a glossary, the translations will be in `glossary_translations`. translations = response.glossary_translations or response.translations return [ Document( page_content=translation.translated_text, metadata={ **doc.metadata, "model": translation.model, "detected_language_code": translation.detected_language_code, }, ) for doc, translation in zip(documents, translations) ]
from __future__ import annotations from typing import Any from langchain_core.output_parsers import BaseOutputParser from langchain_core.output_parsers.json import parse_and_check_json_markdown from pydantic import BaseModel from langchain.output_parsers.format_instructions import ( STRUCTURED_FORMAT_INSTRUCTIONS, STRUCTURED_FORMAT_SIMPLE_INSTRUCTIONS, ) line_template = '\t"{name}": {type} // {description}' class ResponseSchema(BaseModel): """Schema for a response from a structured output parser.""" name: str """The name of the schema.""" description: str """The description of the schema.""" type: str = "string" """The type of the response.""" def _get_sub_string(schema: ResponseSchema) -> str: return line_template.format( name=schema.name, description=schema.description, type=schema.type ) class StructuredOutputParser(BaseOutputParser[dict[str, Any]]): """Parse the output of an LLM call to a structured output.""" response_schemas: list[ResponseSchema] """The schemas for the response.""" @classmethod def from_response_schemas( cls, response_schemas: list[ResponseSchema] ) -> StructuredOutputParser: return cls(response_schemas=response_schemas) def get_format_instructions( self, only_json: bool = False, # noqa: FBT001,FBT002 ) -> str: """Get format instructions for the output parser. example: ```python from langchain.output_parsers.structured import ( StructuredOutputParser, ResponseSchema ) response_schemas = [ ResponseSchema( name="foo", description="a list of strings", type="List[string]" ), ResponseSchema( name="bar", description="a string", type="string" ), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) print(parser.get_format_instructions()) # noqa: T201 output: # The output should be a Markdown code snippet formatted in the following # schema, including the leading and trailing "```json" and "```": # # ```json # { # "foo": List[string] // a list of strings # "bar": string // a string # } # ``` Args: only_json (bool): If True, only the json in the Markdown code snippet will be returned, without the introducing text. Defaults to False. """ schema_str = "\n".join( [_get_sub_string(schema) for schema in self.response_schemas] ) if only_json: return STRUCTURED_FORMAT_SIMPLE_INSTRUCTIONS.format(format=schema_str) return STRUCTURED_FORMAT_INSTRUCTIONS.format(format=schema_str) def parse(self, text: str) -> dict[str, Any]: expected_keys = [rs.name for rs in self.response_schemas] return parse_and_check_json_markdown(text, expected_keys) @property def _type(self) -> str: return "structured"
from __future__ import annotations from typing import Any from langchain_core.output_parsers import BaseOutputParser from langchain_core.output_parsers.json import parse_and_check_json_markdown from pydantic import BaseModel from langchain.output_parsers.format_instructions import ( STRUCTURED_FORMAT_INSTRUCTIONS, STRUCTURED_FORMAT_SIMPLE_INSTRUCTIONS, ) line_template = '\t"{name}": {type} // {description}' class ResponseSchema(BaseModel): """Schema for a response from a structured output parser.""" name: str """The name of the schema.""" description: str """The description of the schema.""" type: str = "string" """The type of the response.""" def _get_sub_string(schema: ResponseSchema) -> str: return line_template.format( name=schema.name, description=schema.description, type=schema.type ) class StructuredOutputParser(BaseOutputParser[dict[str, Any]]): """Parse the output of an LLM call to a structured output.""" response_schemas: list[ResponseSchema] """The schemas for the response.""" @classmethod def from_response_schemas( cls, response_schemas: list[ResponseSchema] ) -> StructuredOutputParser: return cls(response_schemas=response_schemas) def get_format_instructions(self, only_json: bool = False) -> str: """Get format instructions for the output parser. example: ```python from langchain.output_parsers.structured import ( StructuredOutputParser, ResponseSchema ) response_schemas = [ ResponseSchema( name="foo", description="a list of strings", type="List[string]" ), ResponseSchema( name="bar", description="a string", type="string" ), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) print(parser.get_format_instructions()) # noqa: T201 output: # The output should be a Markdown code snippet formatted in the following # schema, including the leading and trailing "```json" and "```": # # ```json # { # "foo": List[string] // a list of strings # "bar": string // a string # } # ``` Args: only_json (bool): If True, only the json in the Markdown code snippet will be returned, without the introducing text. Defaults to False. """ schema_str = "\n".join( [_get_sub_string(schema) for schema in self.response_schemas] ) if only_json: return STRUCTURED_FORMAT_SIMPLE_INSTRUCTIONS.format(format=schema_str) return STRUCTURED_FORMAT_INSTRUCTIONS.format(format=schema_str) def parse(self, text: str) -> dict[str, Any]: expected_keys = [rs.name for rs in self.response_schemas] return parse_and_check_json_markdown(text, expected_keys) @property def _type(self) -> str: return "structured"
import os import grpc import pytest from jina import Flow, __default_host__ from jina.clients import Client from jina.excepts import PortAlreadyUsed from jina.helper import is_port_free from jina.serve.runtimes.gateway.grpc import GRPCGatewayRuntime as _GRPCGatewayRuntime from jina.serve.runtimes.helper import _get_grpc_server_options from tests import random_docs @pytest.fixture(scope='function') def flow_with_grpc(monkeypatch): class AuthInterceptor(grpc.aio.ServerInterceptor): def __init__(self, key): self._valid_metadata = ('rpc-auth-header', key) def deny(_, context): context.abort(grpc.StatusCode.UNAUTHENTICATED, 'Invalid key') self._deny = grpc.unary_unary_rpc_method_handler(deny) async def intercept_service(self, continuation, handler_call_details): meta = handler_call_details.invocation_metadata metas_dicts = {m.key: m.value for m in meta} assert 'rpc-auth-header' in metas_dicts assert ( metas_dicts['rpc-auth-header'] == 'access_key' ), f'Invalid access key detected, got {metas_dicts["rpc-auth-header"]}' for m in meta: if m == self._valid_metadata: return await continuation(handler_call_details) return self._deny class AlternativeGRPCGatewayRuntime(_GRPCGatewayRuntime): async def async_setup(self): """ The async method to setup. Create the gRPC server and expose the port for communication. """ if not self.args.proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') if not (is_port_free(__default_host__, self.args.port)): raise PortAlreadyUsed(f'port:{self.args.port}') self.server = grpc.aio.server( interceptors=(AuthInterceptor('access_key'),), options=_get_grpc_server_options(self.args.grpc_server_options), ) await self._async_setup_server() monkeypatch.setattr( 'jina.serve.runtimes.gateway.grpc.GRPCGatewayRuntime', AlternativeGRPCGatewayRuntime, ) return Flow(protocol='grpc').add() def test_client_grpc_kwargs(flow_with_grpc): with flow_with_grpc: client = Client( port=flow_with_grpc.port, host='localhost', protocol='grpc', ) meta_data = (('rpc-auth-header', 'invalid_access_key'),) try: client.post('', random_docs(1), request_size=1, metadata=meta_data) except Exception as exc: assert 'Invalid access key detected, got invalid_access_key' in repr(exc)
import os import grpc import pytest from jina import Flow, __default_host__ from jina.clients import Client from jina.excepts import PortAlreadyUsed from jina.helper import is_port_free from jina.serve.runtimes.gateway.grpc import GRPCGatewayRuntime as _GRPCGatewayRuntime from tests import random_docs @pytest.fixture(scope='function') def flow_with_grpc(monkeypatch): class AuthInterceptor(grpc.aio.ServerInterceptor): def __init__(self, key): self._valid_metadata = ('rpc-auth-header', key) def deny(_, context): context.abort(grpc.StatusCode.UNAUTHENTICATED, 'Invalid key') self._deny = grpc.unary_unary_rpc_method_handler(deny) async def intercept_service(self, continuation, handler_call_details): meta = handler_call_details.invocation_metadata metas_dicts = {m.key: m.value for m in meta} assert 'rpc-auth-header' in metas_dicts assert ( metas_dicts['rpc-auth-header'] == 'access_key' ), f'Invalid access key detected, got {metas_dicts["rpc-auth-header"]}' for m in meta: if m == self._valid_metadata: return await continuation(handler_call_details) return self._deny class AlternativeGRPCGatewayRuntime(_GRPCGatewayRuntime): async def async_setup(self): """ The async method to setup. Create the gRPC server and expose the port for communication. """ if not self.args.proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') if not (is_port_free(__default_host__, self.args.port)): raise PortAlreadyUsed(f'port:{self.args.port}') self.server = grpc.aio.server( interceptors=(AuthInterceptor('access_key'),), options=[ ('grpc.max_send_message_length', -1), ('grpc.max_receive_message_length', -1), ], ) await self._async_setup_server() monkeypatch.setattr( 'jina.serve.runtimes.gateway.grpc.GRPCGatewayRuntime', AlternativeGRPCGatewayRuntime, ) return Flow(protocol='grpc').add() def test_client_grpc_kwargs(flow_with_grpc): with flow_with_grpc: client = Client( port=flow_with_grpc.port, host='localhost', protocol='grpc', ) meta_data = (('rpc-auth-header', 'invalid_access_key'),) try: client.post('', random_docs(1), request_size=1, metadata=meta_data) except Exception as exc: assert 'Invalid access key detected, got invalid_access_key' in repr(exc)
from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_all_batches_by_type, get_user_notification_batch, get_user_notification_oldest_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_user_email_by_id, get_user_email_verification, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits(entry: NodeExecutionEntry) -> int: return await _user_credit_model.spend_credits(entry, 0, 0) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) # User Comms - async get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_email_verification = exposed_run_and_wait(get_user_email_verification) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) # Notifications - async create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_all_batches_by_type = exposed_run_and_wait(get_all_batches_by_type) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch) get_user_notification_oldest_message_in_batch = exposed_run_and_wait( get_user_notification_oldest_message_in_batch )
from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.user import ( get_user_integrations, get_user_metadata, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits(entry: NodeExecutionEntry) -> int: return await _user_credit_model.spend_credits(entry, 0, 0) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations)
#!/usr/bin/env python # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import pandas as pd import torch from datasets import load_dataset from huggingface_hub.utils import insecure_hashlib from tqdm.auto import tqdm from transformers import T5EncoderModel from diffusers import FluxPipeline MAX_SEQ_LENGTH = 77 OUTPUT_PATH = "embeddings.parquet" def generate_image_hash(image): return insecure_hashlib.sha256(image.tobytes()).hexdigest() def load_flux_dev_pipeline(): id = "black-forest-labs/FLUX.1-dev" text_encoder = T5EncoderModel.from_pretrained(id, subfolder="text_encoder_2", load_in_8bit=True, device_map="auto") pipeline = FluxPipeline.from_pretrained( id, text_encoder_2=text_encoder, transformer=None, vae=None, device_map="balanced" ) return pipeline @torch.no_grad() def compute_embeddings(pipeline, prompts, max_sequence_length): all_prompt_embeds = [] all_pooled_prompt_embeds = [] all_text_ids = [] for prompt in tqdm(prompts, desc="Encoding prompts."): ( prompt_embeds, pooled_prompt_embeds, text_ids, ) = pipeline.encode_prompt(prompt=prompt, prompt_2=None, max_sequence_length=max_sequence_length) all_prompt_embeds.append(prompt_embeds) all_pooled_prompt_embeds.append(pooled_prompt_embeds) all_text_ids.append(text_ids) max_memory = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024 print(f"Max memory allocated: {max_memory:.3f} GB") return all_prompt_embeds, all_pooled_prompt_embeds, all_text_ids def run(args): dataset = load_dataset("Norod78/Yarn-art-style", split="train") image_prompts = {generate_image_hash(sample["image"]): sample["text"] for sample in dataset} all_prompts = list(image_prompts.values()) print(f"{len(all_prompts)=}") pipeline = load_flux_dev_pipeline() all_prompt_embeds, all_pooled_prompt_embeds, all_text_ids = compute_embeddings( pipeline, all_prompts, args.max_sequence_length ) data = [] for i, (image_hash, _) in enumerate(image_prompts.items()): data.append((image_hash, all_prompt_embeds[i], all_pooled_prompt_embeds[i], all_text_ids[i])) print(f"{len(data)=}") # Create a DataFrame embedding_cols = ["prompt_embeds", "pooled_prompt_embeds", "text_ids"] df = pd.DataFrame(data, columns=["image_hash"] + embedding_cols) print(f"{len(df)=}") # Convert embedding lists to arrays (for proper storage in parquet) for col in embedding_cols: df[col] = df[col].apply(lambda x: x.cpu().numpy().flatten().tolist()) # Save the dataframe to a parquet file df.to_parquet(args.output_path) print(f"Data successfully serialized to {args.output_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--max_sequence_length", type=int, default=MAX_SEQ_LENGTH, help="Maximum sequence length to use for computing the embeddings. The more the higher computational costs.", ) parser.add_argument("--output_path", type=str, default=OUTPUT_PATH, help="Path to serialize the parquet file.") args = parser.parse_args() run(args)
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import pandas as pd import torch from datasets import load_dataset from huggingface_hub.utils import insecure_hashlib from tqdm.auto import tqdm from transformers import T5EncoderModel from diffusers import FluxPipeline MAX_SEQ_LENGTH = 77 OUTPUT_PATH = "embeddings.parquet" def generate_image_hash(image): return insecure_hashlib.sha256(image.tobytes()).hexdigest() def load_flux_dev_pipeline(): id = "black-forest-labs/FLUX.1-dev" text_encoder = T5EncoderModel.from_pretrained(id, subfolder="text_encoder_2", load_in_8bit=True, device_map="auto") pipeline = FluxPipeline.from_pretrained( id, text_encoder_2=text_encoder, transformer=None, vae=None, device_map="balanced" ) return pipeline @torch.no_grad() def compute_embeddings(pipeline, prompts, max_sequence_length): all_prompt_embeds = [] all_pooled_prompt_embeds = [] all_text_ids = [] for prompt in tqdm(prompts, desc="Encoding prompts."): ( prompt_embeds, pooled_prompt_embeds, text_ids, ) = pipeline.encode_prompt(prompt=prompt, prompt_2=None, max_sequence_length=max_sequence_length) all_prompt_embeds.append(prompt_embeds) all_pooled_prompt_embeds.append(pooled_prompt_embeds) all_text_ids.append(text_ids) max_memory = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024 print(f"Max memory allocated: {max_memory:.3f} GB") return all_prompt_embeds, all_pooled_prompt_embeds, all_text_ids def run(args): dataset = load_dataset("Norod78/Yarn-art-style", split="train") image_prompts = {generate_image_hash(sample["image"]): sample["text"] for sample in dataset} all_prompts = list(image_prompts.values()) print(f"{len(all_prompts)=}") pipeline = load_flux_dev_pipeline() all_prompt_embeds, all_pooled_prompt_embeds, all_text_ids = compute_embeddings( pipeline, all_prompts, args.max_sequence_length ) data = [] for i, (image_hash, _) in enumerate(image_prompts.items()): data.append((image_hash, all_prompt_embeds[i], all_pooled_prompt_embeds[i], all_text_ids[i])) print(f"{len(data)=}") # Create a DataFrame embedding_cols = ["prompt_embeds", "pooled_prompt_embeds", "text_ids"] df = pd.DataFrame(data, columns=["image_hash"] + embedding_cols) print(f"{len(df)=}") # Convert embedding lists to arrays (for proper storage in parquet) for col in embedding_cols: df[col] = df[col].apply(lambda x: x.cpu().numpy().flatten().tolist()) # Save the dataframe to a parquet file df.to_parquet(args.output_path) print(f"Data successfully serialized to {args.output_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--max_sequence_length", type=int, default=MAX_SEQ_LENGTH, help="Maximum sequence length to use for computing the embeddings. The more the higher computational costs.", ) parser.add_argument("--output_path", type=str, default=OUTPUT_PATH, help="Path to serialize the parquet file.") args = parser.parse_args() run(args)
_base_ = './panoptic_fpn_r50_fpn_1x_coco.py' # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadPanopticAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='RandomResize', scale=[(1333, 640), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # TODO: Use RepeatDataset to speed up training # training schedule for 3x train_cfg = dict(max_epochs=36, val_interval=3) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[24, 33], gamma=0.1) ]
_base_ = './panoptic_fpn_r50_fpn_1x_coco.py' # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadPanopticAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='RandomResize', img_scale=[(1333, 640), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='SegRescale', scale_factor=1 / 4), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # TODO: Use RepeatDataset to speed up training # training schedule for 3x train_cfg = dict(max_epochs=36, val_interval=3) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[24, 33], gamma=0.1) ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.dtype_policies import deserialize as deserialize from keras.src.dtype_policies import get as get from keras.src.dtype_policies import serialize as serialize from keras.src.dtype_policies.dtype_policy import DTypePolicy as DTypePolicy from keras.src.dtype_policies.dtype_policy import ( FloatDTypePolicy as FloatDTypePolicy, ) from keras.src.dtype_policies.dtype_policy import ( QuantizedDTypePolicy as QuantizedDTypePolicy, ) from keras.src.dtype_policies.dtype_policy import ( QuantizedFloat8DTypePolicy as QuantizedFloat8DTypePolicy, ) from keras.src.dtype_policies.dtype_policy_map import ( DTypePolicyMap as DTypePolicyMap, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.dtype_policies import deserialize from keras.src.dtype_policies import get from keras.src.dtype_policies import serialize from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedFloat8DTypePolicy from keras.src.dtype_policies.dtype_policy_map import DTypePolicyMap
import json import multiprocessing import os import time import pytest from jina.helper import random_port from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import ( ProcessExecutor, _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join(cur_dir, '../../yaml/test-custom-gateway.yml') def _create_gateway_runtime(port, uses, uses_with, worker_port): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' deployments_metadata = '{"pod0": {"key1": "value1", "key2": "value2"}}' with GatewayRuntime( set_gateway_parser().parse_args( [ '--port', str(port), '--uses', uses, '--uses-with', json.dumps(uses_with), '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--deployments-metadata', deployments_metadata, ] ) ) as runtime: runtime.run_forever() def _start_gateway_runtime(uses, uses_with, worker_port): port = random_port() p = multiprocessing.Process( target=_create_gateway_runtime, args=(port, uses, uses_with, worker_port), daemon=True, ) p.start() time.sleep(1) return port, p def _create_worker_runtime(port, uses): args = set_pod_parser().parse_args(['--uses', uses, '--port', str(port)]) with WorkerRuntime(args) as runtime: runtime.run_forever() def _start_worker_runtime(uses): port = random_port() p = multiprocessing.Process( target=_create_worker_runtime, args=(port, uses), daemon=True, ) p.start() time.sleep(1) return port, p @pytest.mark.parametrize( 'uses,uses_with,expected', [ ('DummyGateway', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_custom_gateway_no_executors(uses, uses_with, expected): worker_port, worker_process = _start_worker_runtime('ProcessExecutor') gateway_port, gateway_process = _start_gateway_runtime(uses, uses_with, worker_port) _validate_dummy_custom_gateway_response(gateway_port, expected) _validate_custom_gateway_process( gateway_port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) gateway_process.terminate() gateway_process.join() worker_process.terminate() worker_process.join() assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import json import multiprocessing import os import time import pytest from docarray import DocumentArray from jina import Executor, requests from jina.helper import random_port from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import ( _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join(cur_dir, '../../yaml/test-custom-gateway.yml') class ProcessExecutor(Executor): @requests(on='/') def process(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = doc.text + 'world' doc.tags['processed'] = True def _create_gateway_runtime(port, uses, uses_with, worker_port): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' deployments_metadata = '{"pod0": {"key1": "value1", "key2": "value2"}}' with GatewayRuntime( set_gateway_parser().parse_args( [ '--port', str(port), '--uses', uses, '--uses-with', json.dumps(uses_with), '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--deployments-metadata', deployments_metadata, ] ) ) as runtime: runtime.run_forever() def _start_gateway_runtime(uses, uses_with, worker_port): port = random_port() p = multiprocessing.Process( target=_create_gateway_runtime, args=(port, uses, uses_with, worker_port), daemon=True, ) p.start() time.sleep(1) return port, p def _create_worker_runtime(port, uses): args = set_pod_parser().parse_args(['--uses', uses, '--port', str(port)]) with WorkerRuntime(args) as runtime: runtime.run_forever() def _start_worker_runtime(uses): port = random_port() p = multiprocessing.Process( target=_create_worker_runtime, args=(port, uses), daemon=True, ) p.start() time.sleep(1) return port, p @pytest.mark.parametrize( 'uses,uses_with,expected', [ ('DummyGateway', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_custom_gateway_no_executors(uses, uses_with, expected): worker_port, worker_process = _start_worker_runtime('ProcessExecutor') gateway_port, gateway_process = _start_gateway_runtime(uses, uses_with, worker_port) _validate_dummy_custom_gateway_response(gateway_port, expected) _validate_custom_gateway_process( gateway_port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) gateway_process.terminate() gateway_process.join() worker_process.terminate() worker_process.join() assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
from typing import List import numpy as np from torch.utils.data import Dataset from transformers.utils.import_utils import NLTK_IMPORT_ERROR, is_nltk_available from sentence_transformers.readers.InputExample import InputExample class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: List[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import TreebankWordDetokenizer, word_tokenize words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
from torch.utils.data import Dataset from typing import List from ..readers.InputExample import InputExample import numpy as np from transformers.utils.import_utils import is_nltk_available, NLTK_IMPORT_ERROR class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: List[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize, TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
import asyncio from typing import AsyncIterator, Iterator, Optional, Union from jina.helper import get_or_reuse_loop class RequestsCounter: """Class used to wrap a count integer so that it can be updated inside methods. .. code-block:: python def count_increment(i: int, rc: RequestCounter): i += 1 rc.count += 1 c_int = 0 c_rc = RequestsCounter() count_increment(c_int, c_rc) assert c_int == 0 assert c_rc.count == 1 """ count = 0 class AsyncRequestsIterator: """Iterator to allow async iteration of blocking/non-blocking iterator from the Client""" def __init__( self, iterator: Union[Iterator, AsyncIterator], request_counter: Optional[RequestsCounter] = None, prefetch: int = 0, ) -> None: """Async request iterator :param iterator: request iterator :param request_counter: counter of the numbers of request being handled at a given moment :param prefetch: The max amount of requests to be handled at a given moment (0 disables feature) """ self.iterator = iterator self._request_counter = request_counter self._prefetch = prefetch def iterator__next__(self): """ Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception. "StopIteration interacts badly with generators and cannot be raised into a Future" :return: next request or None """ try: return self.iterator.__next__() except StopIteration: return None def __aiter__(self): return self async def __anext__(self): if isinstance(self.iterator, Iterator): """ An `Iterator` indicates "blocking" code, which might block all tasks in the event loop. Hence we iterate in the default executor provided by asyncio. """ request = await get_or_reuse_loop().run_in_executor( None, self.iterator__next__ ) """ `iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor, which raises the following exception while chaining states in futures. "StopIteration interacts badly with generators and cannot be raised into a Future" To avoid that, we handle the raise by a `return None` """ if request is None: raise StopAsyncIteration elif isinstance(self.iterator, AsyncIterator): # we assume that `AsyncIterator` doesn't block the event loop request = await self.iterator.__anext__() if self._prefetch > 0: while self._request_counter.count >= self._prefetch: await asyncio.sleep(0) return request
import asyncio from typing import AsyncIterator, Iterator, Optional, Union from jina.helper import get_or_reuse_loop class RequestsCounter: """Class used to wrap a count integer so that it can be updated inside methods. .. code-block:: python def count_increment(i: int, rc: RequestCounter): i += 1 rc.count += 1 c_int = 0 c_rc = RequestsCounter() count_increment(c_int, c_rc) assert c_int == 0 assert c_rc.count == 1 """ count = 0 class AsyncRequestsIterator: """Iterator to allow async iteration of blocking/non-blocking iterator from the Client""" def __init__( self, iterator: Union[Iterator, AsyncIterator], request_counter: Optional[RequestsCounter] = None, prefetch: int = 0, ) -> None: """Async request iterator :param iterator: request iterator :param request_counter: counter of the numbers of request being handled at a given moment :param prefetch: The max amount of requests to be handled at a given moment (0 disables feature) """ self.iterator = iterator self._request_counter = request_counter self._prefetch = prefetch def iterator__next__(self): """ Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception. "StopIteration interacts badly with generators and cannot be raised into a Future" :return: next request or None """ try: return self.iterator.__next__() except StopIteration: return None def __aiter__(self): return self async def __anext__(self): if self._prefetch > 0: while self._request_counter.count >= self._prefetch: await asyncio.sleep(0) if isinstance(self.iterator, Iterator): """ An `Iterator` indicates "blocking" code, which might block all tasks in the event loop. Hence we iterate in the default executor provided by asyncio. """ request = await get_or_reuse_loop().run_in_executor( None, self.iterator__next__ ) """ `iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor, which raises the following exception while chaining states in futures. "StopIteration interacts badly with generators and cannot be raised into a Future" To avoid that, we handle the raise by a `return None` """ if request is None: raise StopAsyncIteration elif isinstance(self.iterator, AsyncIterator): # we assume that `AsyncIterator` doesn't block the event loop request = await self.iterator.__anext__() return request
# Copyright (c) OpenMMLab. All rights reserved. from .class_aware_sampler import ClassAwareSampler from .distributed_sampler import DistributedSampler from .group_sampler import DistributedGroupSampler, GroupSampler from .infinite_sampler import InfiniteBatchSampler, InfiniteGroupBatchSampler __all__ = [ 'DistributedSampler', 'DistributedGroupSampler', 'GroupSampler', 'InfiniteGroupBatchSampler', 'InfiniteBatchSampler', 'ClassAwareSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .distributed_sampler import DistributedSampler from .group_sampler import DistributedGroupSampler, GroupSampler from .infinite_sampler import InfiniteBatchSampler, InfiniteGroupBatchSampler __all__ = [ 'DistributedSampler', 'DistributedGroupSampler', 'GroupSampler', 'InfiniteGroupBatchSampler', 'InfiniteBatchSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .logger import get_caller_name, get_root_logger, log_img_scale from .misc import find_latest_checkpoint, update_data_root from .setup_env import setup_multi_processes from .split_batch import split_batch from .util_distribution import build_ddp, build_dp, get_device __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'build_ddp', 'build_dp', 'get_device' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .logger import get_caller_name, get_root_logger, log_img_scale from .misc import find_latest_checkpoint, update_data_root from .setup_env import setup_multi_processes from .split_batch import split_batch from .util_distribution import build_ddp, build_dp, get_device __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'build_ddp', 'build_dp', 'get_device' ]
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import AgglomerativeClustering embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Some models don't automatically normalize the embeddings, in which case you should normalize the embeddings: # corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True) # Perform agglomerative clustering clustering_model = AgglomerativeClustering( n_clusters=None, distance_threshold=1.5 ) # , affinity='cosine', linkage='average', distance_threshold=0.4) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = {} for sentence_id, cluster_id in enumerate(cluster_assignment): if cluster_id not in clustered_sentences: clustered_sentences[cluster_id] = [] clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in clustered_sentences.items(): print("Cluster ", i + 1) print(cluster) print("")
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import AgglomerativeClustering embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Some models don't automatically normalize the embeddings, in which case you should normalize the embeddings: # corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True) # Perform kmean clustering clustering_model = AgglomerativeClustering( n_clusters=None, distance_threshold=1.5 ) # , affinity='cosine', linkage='average', distance_threshold=0.4) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = {} for sentence_id, cluster_id in enumerate(cluster_assignment): if cluster_id not in clustered_sentences: clustered_sentences[cluster_id] = [] clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in clustered_sentences.items(): print("Cluster ", i + 1) print(cluster) print("")
import re import unicodedata import regex # non-ASCII letters that are not separated by "NFKD" normalization ADDITIONAL_DIACRITICS = { "œ": "oe", "Œ": "OE", "ø": "o", "Ø": "O", "æ": "ae", "Æ": "AE", "ß": "ss", "ẞ": "SS", "đ": "d", "Đ": "D", "ð": "d", "Ð": "D", "þ": "th", "Þ": "th", "ł": "l", "Ł": "L", } def remove_symbols_and_diacritics(s: str, keep=""): """ Replace any other markers, symbols, and punctuations with a space, and drop any diacritics (category 'Mn' and some manual mappings) """ return "".join( c if c in keep else ADDITIONAL_DIACRITICS[c] if c in ADDITIONAL_DIACRITICS else "" if unicodedata.category(c) == "Mn" else " " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKD", s) ) def remove_symbols(s: str): """ Replace any other markers, symbols, punctuations with a space, keeping diacritics """ return "".join( " " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s) ) class BasicTextNormalizer: def __init__(self, remove_diacritics: bool = False, split_letters: bool = False): self.clean = ( remove_symbols_and_diacritics if remove_diacritics else remove_symbols ) self.split_letters = split_letters def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = self.clean(s).lower() if self.split_letters: s = " ".join(regex.findall(r"\X", s, regex.U)) s = re.sub( r"\s+", " ", s ) # replace any successive whitespace characters with a space return s
import re import unicodedata import regex # non-ASCII letters that are not separated by "NFKD" normalization ADDITIONAL_DIACRITICS = { "œ": "oe", "Œ": "OE", "ø": "o", "Ø": "O", "æ": "ae", "Æ": "AE", "ß": "ss", "ẞ": "SS", "đ": "d", "Đ": "D", "ð": "d", "Ð": "D", "þ": "th", "Þ": "th", "ł": "l", "Ł": "L", } def remove_symbols_and_diacritics(s: str, keep=""): """ Replace any other markers, symbols, and punctuations with a space, and drop any diacritics (category 'Mn' and some manual mappings) """ return "".join( c if c in keep else ADDITIONAL_DIACRITICS[c] if c in ADDITIONAL_DIACRITICS else "" if unicodedata.category(c) == "Mn" else " " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKD", s) ) def remove_symbols(s: str): """ Replace any other markers, symbols, punctuations with a space, keeping diacritics """ return "".join( " " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s) ) class BasicTextNormalizer: def __init__(self, remove_diacritics: bool = False, split_letters: bool = False): self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols self.split_letters = split_letters def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = self.clean(s).lower() if self.split_letters: s = " ".join(regex.findall(r"\X", s, regex.U)) s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space return s
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[bytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDocument from docarray.typing import ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDocument): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[bytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() """ ...
from pathlib import Path from typing import List, Tuple, Union import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] _TASKS_TO_MIXTURE = { "sep_clean": "mix_clean", "enh_single": "mix_single", "enh_both": "mix_both", "sep_noisy": "mix_both", } class LibriMix(Dataset): r"""*LibriMix* :cite:`cosentino2020librimix` dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``"train-360"``, ``"train-100"``, ``"dev"``, and ``"test"``] (Default: ``"train-360"``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): Sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): The task of LibriMix. Options: [``"enh_single"``, ``"enh_both"``, ``"sep_clean"``, ``"sep_noisy"``] (Default: ``"sep_clean"``) mode (str, optional): The mode when creating the mixture. If set to ``"min"``, the lengths of mixture and sources are the minimum length of all sources. If set to ``"max"``, the lengths of mixture and sources are zero padded to the maximum length of all sources. Options: [``"min"``, ``"max"``] (Default: ``"min"``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", mode: str = "min", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if mode not in ["max", "min"]: raise ValueError(f'Expect ``mode`` to be one in ["min", "max"]. Found {mode}.') if sample_rate == 8000: self.root = self.root / "wav8k" / mode / subset elif sample_rate == 16000: self.root = self.root / "wav16k" / mode / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / _TASKS_TO_MIXTURE[task]).resolve() if task == "enh_both": self.src_dirs = [(self.root / "mix_clean")] else: self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*.wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: Tuple of the following items; int: Sample rate Tensor: Mixture waveform list of Tensors: List of source waveforms """ return self._load_sample(self.files[key])
from pathlib import Path from typing import List, Tuple, Union import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class LibriMix(Dataset): r"""*LibriMix* :cite:`cosentino2020librimix` dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``"train-360"``, ``"train-100"``, ``"dev"``, and ``"test"``] (Default: ``"train-360"``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``"enh_single"``, ``"enh_both"``, ``"sep_clean"``, ``"sep_noisy"``] (Default: ``"sep_clean"``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: Tuple of the following items; int: Sample rate Tensor: Mixture waveform list of Tensors: List of source waveforms """ return self._load_sample(self.files[key])
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import tv_tensors from torchvision.prototype.tv_tensors import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import ( _FillType, _get_fill, _setup_fill_arg, _setup_size, get_bounding_boxes, has_any, is_pure_tensor, query_size, ) class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, tv_tensors.Image, is_pure_tensor, tv_tensors.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, tv_tensors.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_bounding_box_format( bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, tv_tensors.Mask)): inpt = tv_tensors.wrap(inpt[params["is_valid"]], like=inpt) elif isinstance(inpt, tv_tensors.BoundingBoxes): inpt = tv_tensors.wrap( F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), like=inpt, ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import ( _FillType, _get_fill, _setup_fill_arg, _setup_size, get_bounding_boxes, has_any, is_pure_tensor, query_size, ) class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_pure_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_bounding_box_format( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = datapoints.wrap(inpt[params["is_valid"]], like=inpt) elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.wrap( F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), like=inpt, ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=2, batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type={{_base_.dataset_type}}, data_root={{_base_.data_root}}, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=2, batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type={{_base_.dataset_type}}, data_root={{_base_.data_root}}, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) from recommonmark.transform import AutoStructify import os from sphinx.domains import Domain import datetime # -- Project information ----------------------------------------------------- project = "Sentence-Transformers" copyright = str(datetime.datetime.now().year) + ", Nils Reimers" author = "Nils Reimers" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "recommonmark", "sphinx_markdown_tables"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "nr_examples"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_path = ["_themes"] html_theme_options = {"logo_only": True, "canonical_url": "https://www.sbert.net"} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_css_files = [ "css/custom.css", ] html_js_files = [ "js/custom.js", ] html_show_sourcelink = False html_context = { "display_github": True, "github_user": "UKPLab", "github_repo": "sentence-transformers", "github_version": "master/", } html_logo = "img/logo.png" html_favicon = "img/favicon.ico" autoclass_content = "both" class GithubURLDomain(Domain): """ Resolve .py links to their respective Github URL """ name = "githuburl" ROOT = "https://github.com/UKPLab/sentence-transformers/tree/master" def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode): if (target.endswith(".py") or target.endswith(".ipynb")) and not target.startswith("http"): from_folder = os.path.dirname(fromdocname) contnode["refuri"] = "/".join([self.ROOT, from_folder, target]) return [("githuburl:any", contnode)] return [] def setup(app): app.add_domain(GithubURLDomain) app.add_config_value( "recommonmark_config", { #'url_resolver': lambda url: github_doc_root + url, "auto_toc_tree_section": "Contents", }, True, ) app.add_transform(AutoStructify)
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # sphinx-build -c . -a -E .. _build from recommonmark.transform import AutoStructify import os from sphinx.domains import Domain import datetime # -- Project information ----------------------------------------------------- project = "Sentence-Transformers" copyright = str(datetime.datetime.now().year) + ", Nils Reimers" author = "Nils Reimers" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "recommonmark", "sphinx_markdown_tables"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "nr_examples"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_path = ["_themes"] html_theme_options = {"logo_only": True, "canonical_url": "https://www.sbert.net"} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_css_files = [ "css/custom.css", ] html_js_files = [ "js/custom.js", ] html_show_sourcelink = False html_context = { "display_github": True, "github_user": "UKPLab", "github_repo": "sentence-transformers", "github_version": "master/", } html_logo = "img/logo.png" html_favicon = "img/favicon.ico" autoclass_content = "both" class GithubURLDomain(Domain): """ Resolve .py links to their respective Github URL """ name = "githuburl" ROOT = "https://github.com/UKPLab/sentence-transformers/tree/master" def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode): if (target.endswith(".py") or target.endswith(".ipynb")) and not target.startswith("http"): from_folder = os.path.dirname(fromdocname) contnode["refuri"] = "/".join([self.ROOT, from_folder, target]) return [("githuburl:any", contnode)] return [] def setup(app): app.add_domain(GithubURLDomain) app.add_config_value( "recommonmark_config", { #'url_resolver': lambda url: github_doc_root + url, "auto_toc_tree_section": "Contents", }, True, ) app.add_transform(AutoStructify)
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/deepfashion.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( roi_head=dict( bbox_head=dict(num_classes=15), mask_head=dict(num_classes=15))) # runtime settings max_epochs = 15 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ]
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/deepfashion.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( roi_head=dict( bbox_head=dict(num_classes=15), mask_head=dict(num_classes=15))) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=15)
from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class SequentialRetriever(BaseRetriever): """Test util that returns a sequence of documents""" sequential_responses: list[list[Document]] response_index: int = 0 def _get_relevant_documents( # type: ignore[override] self, query: str, ) -> list[Document]: if self.response_index >= len(self.sequential_responses): return [] else: self.response_index += 1 return self.sequential_responses[self.response_index - 1] async def _aget_relevant_documents( # type: ignore[override] self, query: str, ) -> list[Document]: return self._get_relevant_documents(query)
from langchain_core.retrievers import BaseRetriever, Document class SequentialRetriever(BaseRetriever): """Test util that returns a sequence of documents""" sequential_responses: list[list[Document]] response_index: int = 0 def _get_relevant_documents( # type: ignore[override] self, query: str, ) -> list[Document]: if self.response_index >= len(self.sequential_responses): return [] else: self.response_index += 1 return self.sequential_responses[self.response_index - 1] async def _aget_relevant_documents( # type: ignore[override] self, query: str, ) -> list[Document]: return self._get_relevant_documents(query)
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch import torch.nn as nn from mmcv import ops from mmengine.model import BaseModule class BaseRoIExtractor(BaseModule, metaclass=ABCMeta): """Base class for RoI extractor. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (int): Strides of input feature maps. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, roi_layer, out_channels, featmap_strides, init_cfg=None): super(BaseRoIExtractor, self).__init__(init_cfg) self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) self.out_channels = out_channels self.featmap_strides = featmap_strides self.fp16_enabled = False @property def num_inputs(self): """int: Number of input feature maps.""" return len(self.featmap_strides) def build_roi_layers(self, layer_cfg, featmap_strides): """Build RoI operator to extract feature from each level feature map. Args: layer_cfg (dict): Dictionary to construct and config RoI layer operation. Options are modules under ``mmcv/ops`` such as ``RoIAlign``. featmap_strides (List[int]): The stride of input feature map w.r.t to the original image size, which would be used to scale RoI coordinate (original image coordinate system) to feature coordinate system. Returns: nn.ModuleList: The RoI extractor modules for each level feature map. """ cfg = layer_cfg.copy() layer_type = cfg.pop('type') assert hasattr(ops, layer_type) layer_cls = getattr(ops, layer_type) roi_layers = nn.ModuleList( [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) return roi_layers def roi_rescale(self, rois, scale_factor): """Scale RoI coordinates by scale factor. Args: rois (torch.Tensor): RoI (Region of Interest), shape (n, 5) scale_factor (float): Scale factor that RoI will be multiplied by. Returns: torch.Tensor: Scaled RoI. """ cx = (rois[:, 1] + rois[:, 3]) * 0.5 cy = (rois[:, 2] + rois[:, 4]) * 0.5 w = rois[:, 3] - rois[:, 1] h = rois[:, 4] - rois[:, 2] new_w = w * scale_factor new_h = h * scale_factor x1 = cx - new_w * 0.5 x2 = cx + new_w * 0.5 y1 = cy - new_h * 0.5 y2 = cy + new_h * 0.5 new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1) return new_rois @abstractmethod def forward(self, feats, rois, roi_scale_factor=None): pass
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch import torch.nn as nn from mmcv import ops from mmcv.runner import BaseModule class BaseRoIExtractor(BaseModule, metaclass=ABCMeta): """Base class for RoI extractor. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (int): Strides of input feature maps. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, roi_layer, out_channels, featmap_strides, init_cfg=None): super(BaseRoIExtractor, self).__init__(init_cfg) self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) self.out_channels = out_channels self.featmap_strides = featmap_strides self.fp16_enabled = False @property def num_inputs(self): """int: Number of input feature maps.""" return len(self.featmap_strides) def build_roi_layers(self, layer_cfg, featmap_strides): """Build RoI operator to extract feature from each level feature map. Args: layer_cfg (dict): Dictionary to construct and config RoI layer operation. Options are modules under ``mmcv/ops`` such as ``RoIAlign``. featmap_strides (List[int]): The stride of input feature map w.r.t to the original image size, which would be used to scale RoI coordinate (original image coordinate system) to feature coordinate system. Returns: nn.ModuleList: The RoI extractor modules for each level feature map. """ cfg = layer_cfg.copy() layer_type = cfg.pop('type') assert hasattr(ops, layer_type) layer_cls = getattr(ops, layer_type) roi_layers = nn.ModuleList( [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) return roi_layers def roi_rescale(self, rois, scale_factor): """Scale RoI coordinates by scale factor. Args: rois (torch.Tensor): RoI (Region of Interest), shape (n, 5) scale_factor (float): Scale factor that RoI will be multiplied by. Returns: torch.Tensor: Scaled RoI. """ cx = (rois[:, 1] + rois[:, 3]) * 0.5 cy = (rois[:, 2] + rois[:, 4]) * 0.5 w = rois[:, 3] - rois[:, 1] h = rois[:, 4] - rois[:, 2] new_w = w * scale_factor new_h = h * scale_factor x1 = cx - new_w * 0.5 x2 = cx + new_w * 0.5 y1 = cy - new_h * 0.5 y2 = cy + new_h * 0.5 new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1) return new_rois @abstractmethod def forward(self, feats, rois, roi_scale_factor=None): pass
_base_ = ['./mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( depths=depths, init_cfg=dict(type='Pretrained', checkpoint=pretrained))) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( depths=depths, init_cfg=dict(type='Pretrained', checkpoint=pretrained))) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
from ._bounding_box import BoundingBox, BoundingBoxFormat from ._encoded import EncodedData, EncodedImage from ._feature import _Feature, FillType, FillTypeJIT, InputType, InputTypeJIT, is_simple_tensor from ._image import ColorSpace, Image, ImageType, ImageTypeJIT, TensorImageType, TensorImageTypeJIT from ._label import Label, OneHotLabel from ._mask import Mask from ._video import TensorVideoType, TensorVideoTypeJIT, Video, VideoType, VideoTypeJIT
from ._bounding_box import BoundingBox, BoundingBoxFormat from ._encoded import EncodedData, EncodedImage from ._feature import _Feature, FillType, FillTypeJIT, InputType, InputTypeJIT, is_simple_tensor from ._image import ( ColorSpace, Image, ImageType, ImageTypeJIT, LegacyImageType, LegacyImageTypeJIT, TensorImageType, TensorImageTypeJIT, ) from ._label import Label, OneHotLabel from ._mask import Mask from ._video import ( LegacyVideoType, LegacyVideoTypeJIT, TensorVideoType, TensorVideoTypeJIT, Video, VideoType, VideoTypeJIT, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.inception_resnet_v2 import ( InceptionResNetV2 as InceptionResNetV2, ) from keras.src.applications.inception_resnet_v2 import ( decode_predictions as decode_predictions, ) from keras.src.applications.inception_resnet_v2 import ( preprocess_input as preprocess_input, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.inception_resnet_v2 import InceptionResNetV2 from keras.src.applications.inception_resnet_v2 import decode_predictions from keras.src.applications.inception_resnet_v2 import preprocess_input
"""Test the loading function for evaluators.""" from typing import List import pytest from langchain.evaluation.loading import EvaluatorType, load_evaluators from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator from langchain_core.embeddings import FakeEmbeddings from tests.unit_tests.llms.fake_chat_model import FakeChatModel from tests.unit_tests.llms.fake_llm import FakeLLM @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("evaluator_type", EvaluatorType) def test_load_evaluators(evaluator_type: EvaluatorType) -> None: """Test loading evaluators.""" fake_llm = FakeChatModel() embeddings = FakeEmbeddings(size=32) load_evaluators([evaluator_type], llm=fake_llm, embeddings=embeddings) # Test as string load_evaluators( [evaluator_type.value], # type: ignore[list-item] llm=fake_llm, embeddings=embeddings, ) @pytest.mark.parametrize( "evaluator_types", [ [EvaluatorType.LABELED_CRITERIA], [EvaluatorType.LABELED_PAIRWISE_STRING], [EvaluatorType.LABELED_SCORE_STRING], [EvaluatorType.QA], [EvaluatorType.CONTEXT_QA], [EvaluatorType.COT_QA], [EvaluatorType.COT_QA, EvaluatorType.LABELED_CRITERIA], [ EvaluatorType.COT_QA, EvaluatorType.LABELED_CRITERIA, EvaluatorType.LABELED_PAIRWISE_STRING, ], [EvaluatorType.JSON_EQUALITY], [EvaluatorType.EXACT_MATCH, EvaluatorType.REGEX_MATCH], ], ) def test_eval_chain_requires_references(evaluator_types: List[EvaluatorType]) -> None: """Test loading evaluators.""" fake_llm = FakeLLM( queries={"text": "The meaning of life\nCORRECT"}, sequential_responses=True ) evaluators = load_evaluators( evaluator_types, llm=fake_llm, ) for evaluator in evaluators: if not isinstance(evaluator, (StringEvaluator, PairwiseStringEvaluator)): raise ValueError("Evaluator is not a [pairwise]string evaluator") assert evaluator.requires_reference
"""Test the loading function for evaluators.""" from typing import List import pytest from langchain.evaluation.loading import EvaluatorType, load_evaluators from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator from langchain_core.embeddings import FakeEmbeddings from tests.unit_tests.llms.fake_chat_model import FakeChatModel from tests.unit_tests.llms.fake_llm import FakeLLM @pytest.mark.requires("rapidfuzz") @pytest.mark.parametrize("evaluator_type", EvaluatorType) def test_load_evaluators(evaluator_type: EvaluatorType) -> None: """Test loading evaluators.""" fake_llm = FakeChatModel() embeddings = FakeEmbeddings(size=32) load_evaluators([evaluator_type], llm=fake_llm, embeddings=embeddings) # Test as string load_evaluators( [evaluator_type.value], # type: ignore llm=fake_llm, embeddings=embeddings, ) @pytest.mark.parametrize( "evaluator_types", [ [EvaluatorType.LABELED_CRITERIA], [EvaluatorType.LABELED_PAIRWISE_STRING], [EvaluatorType.LABELED_SCORE_STRING], [EvaluatorType.QA], [EvaluatorType.CONTEXT_QA], [EvaluatorType.COT_QA], [EvaluatorType.COT_QA, EvaluatorType.LABELED_CRITERIA], [ EvaluatorType.COT_QA, EvaluatorType.LABELED_CRITERIA, EvaluatorType.LABELED_PAIRWISE_STRING, ], [EvaluatorType.JSON_EQUALITY], [EvaluatorType.EXACT_MATCH, EvaluatorType.REGEX_MATCH], ], ) def test_eval_chain_requires_references(evaluator_types: List[EvaluatorType]) -> None: """Test loading evaluators.""" fake_llm = FakeLLM( queries={"text": "The meaning of life\nCORRECT"}, sequential_responses=True ) evaluators = load_evaluators( evaluator_types, llm=fake_llm, ) for evaluator in evaluators: if not isinstance(evaluator, (StringEvaluator, PairwiseStringEvaluator)): raise ValueError("Evaluator is not a [pairwise]string evaluator") assert evaluator.requires_reference
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import uuid import pytest @pytest.fixture(scope='session', autouse=True) def start_redis(): os.system( 'docker run --name redis-stack-server -p 6379:6379 -d redis/redis-stack-server:7.2.0-RC2' ) time.sleep(1) yield os.system('docker rm -f redis-stack-server') @pytest.fixture(scope='function') def tmp_index_name(): return uuid.uuid4().hex
import os import time import uuid import pytest @pytest.fixture(scope='session', autouse=True) def start_redis(): os.system( 'docker run --name redis-stack-server -p 6379:6379 -d redis/redis-stack-server:7.2.0-RC2' ) time.sleep(1) yield os.system('docker rm -f redis-stack-server') @pytest.fixture(scope='function') def tmp_index_name(): return uuid.uuid4().hex
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config, load_dataset_builder from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de", "revision": "4d013bdd32c475c8536aae00a56efc774f061649"}, {"dataset": "wikipedia", "config_name": "20220301.en", "revision": "4d013bdd32c475c8536aae00a56efc774f061649"}, {"dataset": "wikipedia", "config_name": "20220301.fr", "revision": "4d013bdd32c475c8536aae00a56efc774f061649"}, {"dataset": "wikipedia", "config_name": "20220301.frr", "revision": "4d013bdd32c475c8536aae00a56efc774f061649"}, {"dataset": "wikipedia", "config_name": "20220301.it", "revision": "4d013bdd32c475c8536aae00a56efc774f061649"}, {"dataset": "wikipedia", "config_name": "20220301.simple", "revision": "4d013bdd32c475c8536aae00a56efc774f061649"}, {"dataset": "wiki40b", "config_name": "en", "revision": "7b21a2e64b90323b2d3d1b81aa349bb4bc76d9bf"}, { "dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed", "revision": "b24a417d802a583f8922946c1c75210290e93108", }, { "dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index", "revision": "b24a417d802a583f8922946c1c75210290e93108", }, { "dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index", "revision": "b24a417d802a583f8922946c1c75210290e93108", }, {"dataset": "natural_questions", "config_name": "default", "revision": "19ba7767b174ad046a84f46af056517a3910ee57"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True, with_revision=True): columns = ["dataset"] if with_config: columns.append("config_name") if with_revision: columns.append("revision") dataset_list = [{col: dataset[col] for col in columns} for dataset in DATASETS_ON_HF_GCP] def get_testcase_name(dataset): testcase_name = dataset["dataset"] if with_config: testcase_name += "/" + dataset["config_name"] if with_revision: testcase_name += "@" + dataset["revision"] return testcase_name dataset_list = [{"testcase_name": get_testcase_name(dataset), **dataset} for dataset in dataset_list] return dataset_list @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True, with_revision=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None revision = None def test_dataset_info_available(self, dataset, config_name, revision): with TemporaryDirectory() as tmp_dir: builder = load_dataset_builder( dataset, config_name, revision=revision, cache_dir=tmp_dir, ) dataset_info_url = "/".join( [ HF_GCP_BASE_URL, builder._relative_data_dir(with_hash=False).replace(os.sep, "/"), config.DATASET_INFO_FILENAME, ] ) datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_as_dataset_from_hf_gcs(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" builder = load_dataset_builder("wikipedia", "20220301.frr", cache_dir=tmp_dir) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder._download_and_prepare = None builder.download_and_prepare(try_from_hf_gcs=True) ds = builder.as_dataset() assert ds @pytest.mark.integration def test_as_streaming_dataset_from_hf_gcs(tmp_path): builder = load_dataset_builder( "wikipedia", "20220301.frr", revision="4d013bdd32c475c8536aae00a56efc774f061649", cache_dir=tmp_path ) ds = builder.as_streaming_dataset() assert ds assert isinstance(ds, IterableDatasetDict) assert "train" in ds assert isinstance(ds["train"], IterableDataset) assert next(iter(ds["train"]))
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False).replace(os.sep, "/"), config.DATASET_INFO_FILENAME, ] ) datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_as_dataset_from_hf_gcs(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name="20220301.frr", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder_instance._download_and_prepare = None builder_instance.download_and_prepare() ds = builder_instance.as_dataset() assert ds @pytest.mark.integration def test_as_streaming_dataset_from_hf_gcs(tmp_path): dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_path) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_path, config_name="20220301.frr", hash=dataset_module.hash, ) ds = builder_instance.as_streaming_dataset() assert ds assert isinstance(ds, IterableDatasetDict) assert "train" in ds assert isinstance(ds["train"], IterableDataset) assert next(iter(ds["train"]))
import json import logging from enum import Enum from typing import Any from requests.exceptions import HTTPError, RequestException from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests logger = logging.getLogger(name=__name__) class HttpMethod(Enum): GET = "GET" POST = "POST" PUT = "PUT" DELETE = "DELETE" PATCH = "PATCH" OPTIONS = "OPTIONS" HEAD = "HEAD" class SendWebRequestBlock(Block): class Input(BlockSchema): url: str = SchemaField( description="The URL to send the request to", placeholder="https://api.example.com", ) method: HttpMethod = SchemaField( description="The HTTP method to use for the request", default=HttpMethod.POST, ) headers: dict[str, str] = SchemaField( description="The headers to include in the request", default_factory=dict, ) json_format: bool = SchemaField( title="JSON format", description="Whether to send and receive body as JSON", default=True, ) body: Any = SchemaField( description="The body of the request", default=None, ) class Output(BlockSchema): response: object = SchemaField(description="The response from the server") client_error: object = SchemaField(description="Errors on 4xx status codes") server_error: object = SchemaField(description="Errors on 5xx status codes") error: str = SchemaField(description="Errors for all other exceptions") def __init__(self): super().__init__( id="6595ae1f-b924-42cb-9a41-551a0611c4b4", description="This block makes an HTTP request to the given URL.", categories={BlockCategory.OUTPUT}, input_schema=SendWebRequestBlock.Input, output_schema=SendWebRequestBlock.Output, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: body = input_data.body if input_data.json_format: if isinstance(body, str): try: # Try to parse as JSON first body = json.loads(body) except json.JSONDecodeError: # If it's not valid JSON and just plain text, # we should send it as plain text instead input_data.json_format = False try: response = requests.request( input_data.method.value, input_data.url, headers=input_data.headers, json=body if input_data.json_format else None, data=body if not input_data.json_format else None, ) result = response.json() if input_data.json_format else response.text yield "response", result except HTTPError as e: # Handle error responses try: result = e.response.json() if input_data.json_format else str(e) except json.JSONDecodeError: result = str(e) if 400 <= e.response.status_code < 500: yield "client_error", result elif 500 <= e.response.status_code < 600: yield "server_error", result else: error_msg = ( "Unexpected status code " f"{e.response.status_code} '{e.response.reason}'" ) logger.warning(error_msg) yield "error", error_msg except RequestException as e: # Handle other request-related exceptions yield "error", str(e) except Exception as e: # Catch any other unexpected exceptions yield "error", str(e)
import json import logging from enum import Enum from typing import Any from requests.exceptions import HTTPError, RequestException from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests logger = logging.getLogger(name=__name__) class HttpMethod(Enum): GET = "GET" POST = "POST" PUT = "PUT" DELETE = "DELETE" PATCH = "PATCH" OPTIONS = "OPTIONS" HEAD = "HEAD" class SendWebRequestBlock(Block): class Input(BlockSchema): url: str = SchemaField( description="The URL to send the request to", placeholder="https://api.example.com", ) method: HttpMethod = SchemaField( description="The HTTP method to use for the request", default=HttpMethod.POST, ) headers: dict[str, str] = SchemaField( description="The headers to include in the request", default={}, ) json_format: bool = SchemaField( title="JSON format", description="Whether to send and receive body as JSON", default=True, ) body: Any = SchemaField( description="The body of the request", default=None, ) class Output(BlockSchema): response: object = SchemaField(description="The response from the server") client_error: object = SchemaField(description="Errors on 4xx status codes") server_error: object = SchemaField(description="Errors on 5xx status codes") error: str = SchemaField(description="Errors for all other exceptions") def __init__(self): super().__init__( id="6595ae1f-b924-42cb-9a41-551a0611c4b4", description="This block makes an HTTP request to the given URL.", categories={BlockCategory.OUTPUT}, input_schema=SendWebRequestBlock.Input, output_schema=SendWebRequestBlock.Output, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: body = input_data.body if input_data.json_format: if isinstance(body, str): try: # Try to parse as JSON first body = json.loads(body) except json.JSONDecodeError: # If it's not valid JSON and just plain text, # we should send it as plain text instead input_data.json_format = False try: response = requests.request( input_data.method.value, input_data.url, headers=input_data.headers, json=body if input_data.json_format else None, data=body if not input_data.json_format else None, ) result = response.json() if input_data.json_format else response.text yield "response", result except HTTPError as e: # Handle error responses try: result = e.response.json() if input_data.json_format else str(e) except json.JSONDecodeError: result = str(e) if 400 <= e.response.status_code < 500: yield "client_error", result elif 500 <= e.response.status_code < 600: yield "server_error", result else: error_msg = ( "Unexpected status code " f"{e.response.status_code} '{e.response.reason}'" ) logger.warning(error_msg) yield "error", error_msg except RequestException as e: # Handle other request-related exceptions yield "error", str(e) except Exception as e: # Catch any other unexpected exceptions yield "error", str(e)
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from diffusers import ( MotionAdapter, ) from diffusers.utils.testing_utils import ( enable_full_determinism, ) enable_full_determinism() class MotionAdapterSingleFileTests(unittest.TestCase): model_class = MotionAdapter def test_single_file_components_version_v1_5(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/mm_sd_v15.ckpt" repo_id = "guoyww/animatediff-motion-adapter-v1-5" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" ) def test_single_file_components_version_v1_5_2(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/mm_sd_v15_v2.ckpt" repo_id = "guoyww/animatediff-motion-adapter-v1-5-2" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" ) def test_single_file_components_version_v1_5_3(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_mm.ckpt" repo_id = "guoyww/animatediff-motion-adapter-v1-5-3" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" ) def test_single_file_components_version_sdxl_beta(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/mm_sdxl_v10_beta.ckpt" repo_id = "guoyww/animatediff-motion-adapter-sdxl-beta" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" )
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from diffusers import ( MotionAdapter, ) from diffusers.utils.testing_utils import ( enable_full_determinism, ) enable_full_determinism() class MotionAdapterSingleFileTests(unittest.TestCase): model_class = MotionAdapter def test_single_file_components_version_v1_5(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/mm_sd_v15.ckpt" repo_id = "guoyww/animatediff-motion-adapter-v1-5" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" ) def test_single_file_components_version_v1_5_2(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/mm_sd_v15_v2.ckpt" repo_id = "guoyww/animatediff-motion-adapter-v1-5-2" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" ) def test_single_file_components_version_v1_5_3(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_mm.ckpt" repo_id = "guoyww/animatediff-motion-adapter-v1-5-3" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" ) def test_single_file_components_version_sdxl_beta(self): ckpt_path = "https://huggingface.co/guoyww/animatediff/blob/main/mm_sdxl_v10_beta.ckpt" repo_id = "guoyww/animatediff-motion-adapter-sdxl-beta" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" )
tta_model = dict( type='DetTTAModel', tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) img_scales = [(640, 640), (320, 320), (960, 960)] tta_pipeline = [ dict(type='LoadImageFromFile', backend_args=None), dict( type='TestTimeAug', transforms=[ [ dict(type='Resize', scale=s, keep_ratio=True) for s in img_scales ], [ # ``RandomFlip`` must be placed before ``Pad``, otherwise # bounding box coordinates after flipping cannot be # recovered correctly. dict(type='RandomFlip', prob=1.), dict(type='RandomFlip', prob=0.) ], [ dict( type='Pad', size=(960, 960), pad_val=dict(img=(114, 114, 114))), ], [dict(type='LoadAnnotations', with_bbox=True)], [ dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction')) ] ]) ]
tta_model = dict( type='DetTTAModel', tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) img_scales = [(640, 640), (320, 320), (960, 960)] tta_pipeline = [ dict(type='LoadImageFromFile', backend_args=None), dict( type='TestTimeAug', transforms=[ [ dict(type='Resize', scale=s, keep_ratio=True) for s in img_scales ], [ # ``RandomFlip`` must be placed before ``Pad``, otherwise # bounding box coordinates after flipping cannot be # recovered correctly. dict(type='RandomFlip', prob=1.), dict(type='RandomFlip', prob=0.) ], [ dict( type='Pad', size=(960, 960), pad_val=dict(img=(114, 114, 114))), ], [ dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction')) ] ]) ]
import warnings from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.filetypes import AUDIO_FILE_FORMATS from docarray.utils._internal.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to a audio file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: import os from urllib.parse import urlparse url = super().validate(value, field, config) # basic url validation path = urlparse(url).path ext = os.path.splitext(path)[1][1:].lower() # pass test if extension is valid or no extension has_audio_extension = ext in AUDIO_FILE_FORMATS or ext == '' if not has_audio_extension: raise ValueError('Audio URL must have a valid extension') return cls(str(url), scheme=None) def load(self: T) -> Tuple[np.ndarray, int]: """ Load the data from the url into an AudioNdArray. :return: AudioNdArray representing the audio file content. EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc import numpy as np from docarray.typing import AudioUrl class MyDoc(Document): audio_url: AudioUrl audio_tensor: AudioNdArray doc = MyDoc(audio_url="toydata/hello.wav") doc.audio_tensor, doc.frame_rate = doc.audio_url.load() assert isinstance(doc.audio_tensor, np.ndarray) """ bytes_ = AudioBytes(self.load_bytes()) return bytes_.load() def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
import warnings from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.filetypes import AUDIO_FILE_FORMATS from docarray.utils.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to a audio file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: import os from urllib.parse import urlparse url = super().validate(value, field, config) # basic url validation path = urlparse(url).path ext = os.path.splitext(path)[1][1:].lower() # pass test if extension is valid or no extension has_audio_extension = ext in AUDIO_FILE_FORMATS or ext == '' if not has_audio_extension: raise ValueError('Audio URL must have a valid extension') return cls(str(url), scheme=None) def load(self: T) -> Tuple[np.ndarray, int]: """ Load the data from the url into an AudioNdArray. :return: AudioNdArray representing the audio file content. EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc import numpy as np from docarray.typing import AudioUrl class MyDoc(Document): audio_url: AudioUrl audio_tensor: AudioNdArray doc = MyDoc(audio_url="toydata/hello.wav") doc.audio_tensor, doc.frame_rate = doc.audio_url.load() assert isinstance(doc.audio_tensor, np.ndarray) """ bytes_ = AudioBytes(self.load_bytes()) return bytes_.load() def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class GridRCNN(TwoStageDetector): """Grid R-CNN. This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688) """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(GridRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class GridRCNN(TwoStageDetector): """Grid R-CNN. This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688) """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(GridRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
import warnings from typing import TYPE_CHECKING, Any, Type, TypeVar, Union from docarray.typing.bytes.video_bytes import VideoLoadResult from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='VideoUrl') VIDEO_FILE_FORMATS = ['mp4'] @_register_proto(proto_type_name='video_url') class VideoUrl(AnyUrl): """ URL to a .wav file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) has_video_extension = any(ext in url for ext in VIDEO_FILE_FORMATS) if not has_video_extension: raise ValueError( f'Video URL must have one of the following extensions:' f'{VIDEO_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load(self: T, **kwargs) -> VideoLoadResult: """ Load the data from the url into a named Tuple of VideoNdArray, AudioNdArray and NdArray. :param kwargs: supports all keyword arguments that are being supported by av.open() as described in: https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open :return: AudioNdArray representing the audio content, VideoNdArray representing the images of the video, NdArray of the key frame indices. EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDoc from docarray.typing import VideoUrl, VideoNdArray, AudioNdArray, NdArray class MyDoc(BaseDoc): video_url: VideoUrl video: Optional[VideoNdArray] audio: Optional[AudioNdArray] key_frame_indices: Optional[NdArray] doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) doc.video, doc.audio, doc.key_frame_indices = doc.video_url.load() assert isinstance(doc.video, VideoNdArray) assert isinstance(doc.audio, AudioNdArray) assert isinstance(doc.key_frame_indices, NdArray) You can load only the key frames (or video, audio respectively): .. code-block:: python from pydantic import parse_obj_as from docarray.typing import NdArray, VideoUrl url = parse_obj_as( VideoUrl, 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) key_frame_indices = url.load().key_frame_indices assert isinstance(key_frame_indices, NdArray) """ from docarray.typing.bytes.video_bytes import VideoBytes buffer = VideoBytes(self.load_bytes(**kwargs)) return buffer.load() def display(self): """ Play video from url in notebook. """ if is_notebook(): from IPython.display import display remote_url = True if self.startswith('http') else False if remote_url: from IPython.display import Video b = self.load_bytes() display(Video(data=b, embed=True, mimetype='video/mp4')) else: import os from IPython.display import HTML path = os.path.relpath(self) src = f''' <body> <video width="320" height="240" autoplay muted controls> <source src="{path}"> Your browser does not support the video tag. </video> </body> ''' display(HTML(src)) else: warnings.warn('Display of video is only possible in a notebook.')
import warnings from typing import TYPE_CHECKING, Any, Type, TypeVar, Union from docarray.typing.bytes.video_bytes import VideoLoadResult from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='VideoUrl') VIDEO_FILE_FORMATS = ['mp4'] @_register_proto(proto_type_name='video_url') class VideoUrl(AnyUrl): """ URL to a .wav file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) has_video_extension = any(ext in url for ext in VIDEO_FILE_FORMATS) if not has_video_extension: raise ValueError( f'Video URL must have one of the following extensions:' f'{VIDEO_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load(self: T, **kwargs) -> VideoLoadResult: """ Load the data from the url into a named Tuple of VideoNdArray, AudioNdArray and NdArray. :param kwargs: supports all keyword arguments that are being supported by av.open() as described in: https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open :return: AudioNdArray representing the audio content, VideoNdArray representing the images of the video, NdArray of the key frame indices. EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDoc from docarray.typing import VideoUrl, VideoNdArray, AudioNdArray, NdArray class MyDoc(BaseDoc): video_url: VideoUrl video: Optional[VideoNdArray] audio: Optional[AudioNdArray] key_frame_indices: Optional[NdArray] doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) doc.video, doc.audio, doc.key_frame_indices = doc.video_url.load() assert isinstance(doc.video, VideoNdArray) assert isinstance(doc.audio, AudioNdArray) assert isinstance(doc.key_frame_indices, NdArray) You can load only the key frames (or video, audio respectively): .. code-block:: python from pydantic import parse_obj_as from docarray.typing import NdArray, VideoUrl url = parse_obj_as( VideoUrl, 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) key_frame_indices = url.load().key_frame_indices assert isinstance(key_frame_indices, NdArray) """ from docarray.typing.bytes.video_bytes import VideoBytes buffer = VideoBytes(self.load_bytes(**kwargs)) return buffer.load() def display(self): """ Play video from url in notebook. """ if is_notebook(): from IPython.display import display remote_url = True if self.startswith('http') else False if remote_url: from IPython.display import Video b = self.load_bytes() display(Video(data=b, embed=True, mimetype='video/mp4')) else: import os from IPython.display import HTML path = os.path.relpath(self) src = f''' <body> <video width="320" height="240" autoplay muted controls> <source src="{path}"> Your browser does not support the video tag. </video> </body> ''' display(HTML(src)) else: warnings.warn('Display of video is only possible in a notebook.')
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads.mask_heads import GridHead from mmdet.models.utils import unpack_gt_instances from mmdet.testing import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results) class TestGridHead(TestCase): @parameterized.expand(['cpu', 'cuda']) def test_grid_head_loss(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') grid_head = GridHead() grid_head.to(device=device) s = 256 image_shapes = [(3, s, s)] packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True) proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device=device)) proposals_list[i] = proposals_list[i].to(device=device) packed_inputs[i]['data_sample'] = \ packed_inputs[i]['data_sample'].to(device=device) train_cfg = ConfigDict(dict(pos_radius=1)) # prepare ground truth data_samples = [inputs['data_sample'] for inputs in packed_inputs] (batch_gt_instances, batch_gt_instances_ignore, _) = unpack_gt_instances(data_samples) sampling_results = demo_mm_sampling_results( proposals_list=proposals_list, batch_gt_instances=batch_gt_instances, batch_gt_instances_ignore=batch_gt_instances_ignore) # prepare grid feats pos_bboxes = torch.cat([res.pos_bboxes for res in sampling_results]) grid_feats = torch.rand((pos_bboxes.size(0), 256, 14, 14)).to(device) sample_idx = torch.arange(0, pos_bboxes.size(0)) grid_pred = grid_head(grid_feats) grid_head.loss(grid_pred, sample_idx, sampling_results, train_cfg) @parameterized.expand(['cpu', 'cuda']) def test_mask_iou_head_predict_by_feat(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') grid_head = GridHead() grid_head.to(device=device) s = 128 num_samples = 2 num_classes = 4 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } results = InstanceData(metainfo=img_metas) results.bboxes = torch.rand((num_samples, 4)).to(device) results.scores = torch.rand((num_samples, )).to(device) results.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) grid_feats = torch.rand((num_samples, 256, 14, 14)).to(device) grid_preds = grid_head(grid_feats) grid_head.predict_by_feat( grid_preds=grid_preds, results_list=[results], batch_img_metas=[img_metas])
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads.mask_heads import GridHead from mmdet.models.utils import unpack_gt_instances from mmdet.testing import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results) class TestGridHead(TestCase): @parameterized.expand(['cpu', 'cuda']) def test_grid_head_loss(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') grid_head = GridHead() grid_head.to(device=device) s = 256 image_shapes = [(3, s, s)] packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True) proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device=device)) proposals_list[i] = proposals_list[i].to(device=device) train_cfg = ConfigDict(dict(pos_radius=1)) # prepare ground truth data_samples = [inputs['data_sample'] for inputs in packed_inputs] (batch_gt_instances, batch_gt_instances_ignore, _) = unpack_gt_instances(data_samples) sampling_results = demo_mm_sampling_results( proposals_list=proposals_list, batch_gt_instances=batch_gt_instances, batch_gt_instances_ignore=batch_gt_instances_ignore) # prepare grid feats pos_bboxes = torch.cat([res.pos_bboxes for res in sampling_results]) grid_feats = torch.rand((pos_bboxes.size(0), 256, 14, 14)).to(device) sample_idx = torch.arange(0, pos_bboxes.size(0)) grid_pred = grid_head(grid_feats) grid_head.loss(grid_pred, sample_idx, sampling_results, train_cfg) @parameterized.expand(['cpu', 'cuda']) def test_mask_iou_head_predict_by_feat(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') grid_head = GridHead() grid_head.to(device=device) s = 128 num_samples = 2 num_classes = 4 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } results = InstanceData(metainfo=img_metas) results.bboxes = torch.rand((num_samples, 4)).to(device) results.scores = torch.rand((num_samples, )).to(device) results.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) grid_feats = torch.rand((num_samples, 256, 14, 14)).to(device) grid_preds = grid_head(grid_feats) grid_head.predict_by_feat( grid_preds=grid_preds, results_list=[results], batch_img_metas=[img_metas])
from ._conformer_wav2vec2 import ( conformer_wav2vec2_base, conformer_wav2vec2_model, conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large, conformer_wav2vec2_pretrain_model, ConformerWav2Vec2PretrainModel, ) from ._emformer_hubert import emformer_hubert_base, emformer_hubert_model from .conv_emformer import ConvEmformer from .hifi_gan import hifigan_vocoder, hifigan_vocoder_v1, hifigan_vocoder_v2, hifigan_vocoder_v3, HiFiGANVocoder from .rnnt import conformer_rnnt_base, conformer_rnnt_biasing, conformer_rnnt_biasing_base, conformer_rnnt_model from .rnnt_decoder import Hypothesis, RNNTBeamSearchBiasing from .squim import squim_objective_base, squim_objective_model, SquimObjective __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "conformer_rnnt_biasing", "conformer_rnnt_biasing_base", "conv_tasnet_base", "ConvEmformer", "conformer_wav2vec2_model", "conformer_wav2vec2_base", "conformer_wav2vec2_pretrain_model", "conformer_wav2vec2_pretrain_base", "conformer_wav2vec2_pretrain_large", "ConformerWav2Vec2PretrainModel", "emformer_hubert_base", "emformer_hubert_model", "Hypothesis", "RNNTBeamSearchBiasing", "HiFiGANVocoder", "hifigan_vocoder_v1", "hifigan_vocoder_v2", "hifigan_vocoder_v3", "hifigan_vocoder", "squim_objective_base", "squim_objective_model", "SquimObjective", ]
from ._conformer_wav2vec2 import ( conformer_wav2vec2_base, conformer_wav2vec2_model, conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large, conformer_wav2vec2_pretrain_model, ConformerWav2Vec2PretrainModel, ) from ._emformer_hubert import emformer_hubert_base, emformer_hubert_model from .conv_emformer import ConvEmformer from .hifi_gan import hifigan_vocoder, hifigan_vocoder_v1, hifigan_vocoder_v2, hifigan_vocoder_v3, HiFiGANVocoder from .rnnt import conformer_rnnt_base, conformer_rnnt_model from .squim import squim_objective_base, squim_objective_model, SquimObjective __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "ConvEmformer", "conformer_wav2vec2_model", "conformer_wav2vec2_base", "conformer_wav2vec2_pretrain_model", "conformer_wav2vec2_pretrain_base", "conformer_wav2vec2_pretrain_large", "ConformerWav2Vec2PretrainModel", "emformer_hubert_base", "emformer_hubert_model", "HiFiGANVocoder", "hifigan_vocoder_v1", "hifigan_vocoder_v2", "hifigan_vocoder_v3", "hifigan_vocoder", "squim_objective_base", "squim_objective_model", "SquimObjective", ]
"""Tavily Search API toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.tavily_search.tool import ( TavilyAnswer, TavilySearchResults, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TavilySearchResults": "langchain_community.tools.tavily_search.tool", "TavilyAnswer": "langchain_community.tools.tavily_search.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TavilyAnswer", "TavilySearchResults", ]
"""Tavily Search API toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.tavily_search.tool import ( TavilyAnswer, TavilySearchResults, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TavilySearchResults": "langchain_community.tools.tavily_search.tool", "TavilyAnswer": "langchain_community.tools.tavily_search.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TavilySearchResults", "TavilyAnswer", ]
"""Test chat model integration.""" import json from collections.abc import Generator from contextlib import contextmanager from typing import Any import pytest from httpx import Client, Request, Response from langchain_core.messages import ChatMessage from langchain_tests.unit_tests import ChatModelUnitTests from langchain_ollama.chat_models import ChatOllama, _parse_arguments_from_tool_call class TestChatOllama(ChatModelUnitTests): @property def chat_model_class(self) -> type[ChatOllama]: return ChatOllama @property def chat_model_params(self) -> dict: return {"model": "llama3-groq-tool-use"} def test__parse_arguments_from_tool_call() -> None: raw_response = '{"model":"sample-model","message":{"role":"assistant","content":"","tool_calls":[{"function":{"name":"get_profile_details","arguments":{"arg_1":"12345678901234567890123456"}}}]},"done":false}' # noqa: E501 raw_tool_calls = json.loads(raw_response)["message"]["tool_calls"] response = _parse_arguments_from_tool_call(raw_tool_calls[0]) assert response is not None assert isinstance(response["arg_1"], str) @contextmanager def _mock_httpx_client_stream( *args: Any, **kwargs: Any ) -> Generator[Response, Any, Any]: yield Response( status_code=200, content='{"message": {"role": "assistant", "content": "The meaning ..."}}', request=Request(method="POST", url="http://whocares:11434"), ) def test_arbitrary_roles_accepted_in_chatmessages( monkeypatch: pytest.MonkeyPatch, ) -> None: monkeypatch.setattr(Client, "stream", _mock_httpx_client_stream) llm = ChatOllama( base_url="http://whocares:11434", model="granite3.2", verbose=True, format=None, ) messages = [ ChatMessage( role="somerandomrole", content="I'm ok with you adding any role message now!", ), ChatMessage(role="control", content="thinking"), ChatMessage(role="user", content="What is the meaning of life?"), ] llm.invoke(messages)
"""Test chat model integration.""" import json from langchain_tests.unit_tests import ChatModelUnitTests from langchain_ollama.chat_models import ChatOllama, _parse_arguments_from_tool_call class TestChatOllama(ChatModelUnitTests): @property def chat_model_class(self) -> type[ChatOllama]: return ChatOllama @property def chat_model_params(self) -> dict: return {"model": "llama3-groq-tool-use"} def test__parse_arguments_from_tool_call() -> None: raw_response = '{"model":"sample-model","message":{"role":"assistant","content":"","tool_calls":[{"function":{"name":"get_profile_details","arguments":{"arg_1":"12345678901234567890123456"}}}]},"done":false}' # noqa: E501 raw_tool_calls = json.loads(raw_response)["message"]["tool_calls"] response = _parse_arguments_from_tool_call(raw_tool_calls[0]) assert response is not None assert isinstance(response["arg_1"], str)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_finance.tool import GoogleFinanceQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleFinanceQueryRun": "langchain_community.tools.google_finance.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleFinanceQueryRun", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_finance.tool import GoogleFinanceQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleFinanceQueryRun": "langchain_community.tools.google_finance.tool" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleFinanceQueryRun", ]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( roi_head=dict( bbox_head=dict( num_classes=1203, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0)), mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] dataset_type = 'LVISV1Dataset' data_root = 'data/lvis_v1/' train_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_train.json', data_prefix=dict(img=''), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_val.json', data_prefix=dict(img=''))) test_dataloader = val_dataloader val_evaluator = dict( type='LVISMetric', ann_file=data_root + 'annotations/lvis_v1_val.json', metric=['bbox', 'segm']) test_evaluator = val_evaluator train_cfg = dict(val_interval=24)
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( roi_head=dict( bbox_head=dict( num_classes=1203, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0)), mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] dataset_type = 'LVISV1Dataset' data_root = 'data/lvis_v1/' train_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_train.json', data_prefix=dict(img=''), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_val.json', data_prefix=dict(img=''))) test_dataloader = val_dataloader val_evaluator = dict( type='LVISMetric', ann_file=data_root + 'annotations/lvis_v1_val.json', metric=['bbox', 'segm']) test_evaluator = val_evaluator train_cfg = dict(val_interval=24)
from typing import TYPE_CHECKING, Union import numpy as np if TYPE_CHECKING: # pragma: no cover from docarray.typing import T import trimesh class Mesh: FILE_EXTENSIONS = [ 'glb', 'obj', 'ply', ] VERTICES = 'vertices' FACES = 'faces' class MeshDataMixin: """Provide helper functions for :class:`Document` to support 3D mesh data and point cloud.""" def _load_mesh( self, force: str = None ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """Load a trimesh.Mesh or trimesh.Scene object from :attr:`.uri`. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse import trimesh scheme = urllib.parse.urlparse(self.uri).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self.uri, force=force) return mesh def load_uri_to_point_cloud_tensor( self: 'T', samples: int, as_chunks: bool = False ) -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.tensor` :param samples: number of points to sample from the mesh :param as_chunks: when multiple geometry stored in one mesh file, then store each geometry into different :attr:`.chunks` :return: itself after processed """ if as_chunks: import trimesh from docarray.document import Document # try to coerce everything into a scene scene = self._load_mesh(force='scene') for geo in scene.geometry.values(): geo: trimesh.Trimesh self.chunks.append(Document(tensor=np.array(geo.sample(samples)))) else: # combine a scene into a single mesh mesh = self._load_mesh(force='mesh') self.tensor = np.array(mesh.sample(samples)) return self def load_uri_to_vertices_and_faces(self: 'T') -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.chunks` as vertices and faces :return: itself after processed """ from docarray.document import Document mesh = self._load_mesh(force='mesh') vertices = mesh.vertices.view(np.ndarray) faces = mesh.faces.view(np.ndarray) self.chunks = [ Document(name=Mesh.VERTICES, tensor=vertices), Document(name=Mesh.FACES, tensor=faces), ] return self def load_vertices_and_faces_to_point_cloud(self: 'T', samples: int) -> 'T': """Convert a 3d mesh of vertices and faces from :attr:`.chunks` into point cloud :attr:`.tensor` :param samples: number of points to sample from the mesh :return: itself after processed """ vertices = None faces = None for chunk in self.chunks: if chunk.tags['name'] == Mesh.VERTICES: vertices = chunk.tensor if chunk.tags['name'] == Mesh.FACES: faces = chunk.tensor if vertices is not None and faces is not None: import trimesh mesh = trimesh.Trimesh(vertices=vertices, faces=faces) self.tensor = np.array(mesh.sample(samples)) else: raise AttributeError( 'Point cloud tensor can not be set, since vertices and faces chunk tensor have not been set.' ) return self
import warnings from typing import TYPE_CHECKING import numpy as np if TYPE_CHECKING: # pragma: no cover from docarray.typing import T class MeshDataMixin: """Provide helper functions for :class:`Document` to support 3D mesh data and point cloud.""" def load_uri_to_point_cloud_tensor( self: 'T', samples: int, as_chunks: bool = False ) -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.tensor` :param samples: number of points to sample from the mesh :param as_chunks: when multiple geometry stored in one mesh file, then store each geometry into different :attr:`.chunks` :return: itself after processed """ import trimesh import urllib.parse scheme = urllib.parse.urlparse(self.uri).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load if as_chunks: from docarray.document import Document # try to coerce everything into a scene scene = loader(self.uri, force='scene') for geo in scene.geometry.values(): geo: trimesh.Trimesh self.chunks.append(Document(tensor=np.array(geo.sample(samples)))) else: # combine a scene into a single mesh mesh = loader(self.uri, force='mesh') self.tensor = np.array(mesh.sample(samples)) return self def load_uri_to_vertices_and_faces(self: 'T') -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.chunks` as vertices and faces :return: itself after processed """ import trimesh import urllib.parse from docarray.document import Document scheme = urllib.parse.urlparse(self.uri).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self.uri, force='mesh') vertices = mesh.vertices.view(np.ndarray) faces = mesh.faces.view(np.ndarray) self.chunks = [ Document(name='vertices', tensor=vertices), Document(name='faces', tensor=faces), ] return self def load_vertices_and_faces_to_point_cloud(self: 'T', samples: int) -> 'T': """Convert a 3d mesh of vertices and faces from :attr:`.chunks` into point cloud :attr:`.tensor` :param samples: number of points to sample from the mesh :return: itself after processed """ import trimesh vertices = None faces = None for chunk in self.chunks: if chunk.tags['name'] == 'vertices': vertices = chunk.tensor if chunk.tags['name'] == 'faces': faces = chunk.tensor if vertices is not None and faces is not None: mesh = trimesh.Trimesh(vertices=vertices, faces=faces) self.tensor = np.array(mesh.sample(samples)) else: raise AttributeError( 'Point cloud tensor can not be set, since vertices and faces chunk tensor have not been set.' ) return self
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.2.0' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.1.0' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .custom import CustomDataset from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, MultiImageMixDataset, RepeatDataset) from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler from .utils import (NumClassCheckHook, get_loading_pipeline, replace_ImageToTensor) from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler', 'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES', 'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline', 'NumClassCheckHook', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset' ]
# Copyright (c) OpenMMLab. All rights reserved. from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .custom import CustomDataset from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, MultiImageMixDataset, RepeatDataset) from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler from .utils import (NumClassCheckHook, get_loading_pipeline, replace_ImageToTensor) from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler', 'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES', 'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline', 'NumClassCheckHook', 'CocoPanopticDataset', 'MultiImageMixDataset' ]
import functools import numbers from collections import defaultdict from typing import Any, Dict, Literal, Sequence, Type, TypeVar, Union from torchvision.prototype import datapoints from torchvision.prototype.datapoints._datapoint import FillType, FillTypeJIT from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size # noqa: F401 def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]: if not isinstance(arg, (float, Sequence)): raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}") if isinstance(arg, Sequence) and len(arg) != req_size: raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}") if isinstance(arg, Sequence): for element in arg: if not isinstance(element, float): raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}") if isinstance(arg, float): arg = [float(arg), float(arg)] if isinstance(arg, (list, tuple)) and len(arg) == 1: arg = [arg[0], arg[0]] return arg def _check_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> None: if isinstance(fill, dict): for key, value in fill.items(): # Check key for type _check_fill_arg(value) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() _check_fill_arg(default_value) else: if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.") T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) def _convert_fill_arg(fill: datapoints.FillType) -> datapoints.FillTypeJIT: # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517 # So, we can't reassign fill to 0 # if fill is None: # fill = 0 if fill is None: return fill if not isinstance(fill, (int, float)): fill = [float(v) for v in list(fill)] return fill # type: ignore[return-value] def _setup_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> Dict[Type, FillTypeJIT]: _check_fill_arg(fill) if isinstance(fill, dict): for k, v in fill.items(): fill[k] = _convert_fill_arg(v) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() sanitized_default = _convert_fill_arg(default_value) fill.default_factory = functools.partial(_default_arg, sanitized_default) return fill # type: ignore[return-value] return _get_defaultdict(_convert_fill_arg(fill)) def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None: if not isinstance(padding, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate padding arg") if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]: raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple") # TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums) # https://github.com/pytorch/vision/issues/6250 def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None: if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
import functools import numbers from collections import defaultdict from typing import Any, Dict, Literal, Sequence, Type, TypeVar, Union from torchvision.prototype import datapoints from torchvision.prototype.datapoints._datapoint import FillType, FillTypeJIT from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size # noqa: F401 def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]: if not isinstance(arg, (float, Sequence)): raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}") if isinstance(arg, Sequence) and len(arg) != req_size: raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}") if isinstance(arg, Sequence): for element in arg: if not isinstance(element, float): raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}") if isinstance(arg, float): arg = [float(arg), float(arg)] if isinstance(arg, (list, tuple)) and len(arg) == 1: arg = [arg[0], arg[0]] return arg def _check_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> None: if isinstance(fill, dict): for key, value in fill.items(): # Check key for type _check_fill_arg(value) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() _check_fill_arg(default_value) else: if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.") T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) def _convert_fill_arg(fill: datapoints.FillType) -> datapoints.FillTypeJIT: # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517 # So, we can't reassign fill to 0 # if fill is None: # fill = 0 if fill is None: return fill # This cast does Sequence -> List[float] to please mypy and torch.jit.script if not isinstance(fill, (int, float)): fill = [float(v) for v in list(fill)] return fill def _setup_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> Dict[Type, FillTypeJIT]: _check_fill_arg(fill) if isinstance(fill, dict): for k, v in fill.items(): fill[k] = _convert_fill_arg(v) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() sanitized_default = _convert_fill_arg(default_value) fill.default_factory = functools.partial(_default_arg, sanitized_default) return fill # type: ignore[return-value] return _get_defaultdict(_convert_fill_arg(fill)) def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None: if not isinstance(padding, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate padding arg") if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]: raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple") # TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums) # https://github.com/pytorch/vision/issues/6250 def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None: if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads.mask_heads import FCNMaskHead class TestFCNMaskHead(TestCase): @parameterized.expand(['cpu', 'cuda']) def test_get_seg_masks(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') num_classes = 6 mask_head = FCNMaskHead( num_convs=1, in_channels=1, conv_out_channels=1, num_classes=num_classes) rcnn_test_cfg = ConfigDict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5) s = 128 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } result = InstanceData(metainfo=img_metas) num_samples = 2 mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.rand((num_samples, 4)).to(device) result.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_head.to(device=device) result_list = mask_head.predict_by_feat( mask_preds=tuple(mask_pred), results_list=[result], batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s)) # test with activate_map, `mask_pred` has been activated before num_samples = 2 mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] mask_pred = [m.sigmoid().detach() for m in mask_pred] result.bboxes = torch.rand((num_samples, 4)).to(device) result.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_head.to(device=device) result_list = mask_head.predict_by_feat( mask_preds=tuple(mask_pred), results_list=[result], batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg, activate_map=True) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s)) # num_samples is 0 num_samples = 0 result = InstanceData(metainfo=img_metas) mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.zeros((num_samples, 4)).to(device) result.labels = torch.zeros((num_samples, )).to(device) result_list = mask_head.predict_by_feat( mask_preds=tuple(mask_pred), results_list=[result], batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s))
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads.mask_heads import FCNMaskHead class TestFCNMaskHead(TestCase): @parameterized.expand(['cpu', 'cuda']) def test_get_seg_masks(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') num_classes = 6 mask_head = FCNMaskHead( num_convs=1, in_channels=1, conv_out_channels=1, num_classes=num_classes) rcnn_test_cfg = ConfigDict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5) s = 128 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } result = InstanceData(metainfo=img_metas) num_samples = 2 mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.rand((num_samples, 4)).to(device) result.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_head.to(device=device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s)) # test with activate_map, `mask_pred` has been activated before num_samples = 2 mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] mask_pred = [m.sigmoid().detach() for m in mask_pred] result.bboxes = torch.rand((num_samples, 4)).to(device) result.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_head.to(device=device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg, activate_map=True) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s)) # num_samples is 0 num_samples = 0 result = InstanceData(metainfo=img_metas) mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.zeros((num_samples, 4)).to(device) result.labels = torch.zeros((num_samples, )).to(device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s))
# Copyright (c) OpenMMLab. All rights reserved. from .base_bbox_coder import BaseBBoxCoder from .bucketing_bbox_coder import BucketingBBoxCoder from .delta_xywh_bbox_coder import (DeltaXYWHBBoxCoder, DeltaXYWHBBoxCoderForGLIP) from .distance_point_bbox_coder import DistancePointBBoxCoder from .legacy_delta_xywh_bbox_coder import LegacyDeltaXYWHBBoxCoder from .pseudo_bbox_coder import PseudoBBoxCoder from .tblr_bbox_coder import TBLRBBoxCoder from .yolo_bbox_coder import YOLOBBoxCoder __all__ = [ 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'LegacyDeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'YOLOBBoxCoder', 'BucketingBBoxCoder', 'DistancePointBBoxCoder', 'DeltaXYWHBBoxCoderForGLIP' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_bbox_coder import BaseBBoxCoder from .bucketing_bbox_coder import BucketingBBoxCoder from .delta_xywh_bbox_coder import DeltaXYWHBBoxCoder from .distance_point_bbox_coder import DistancePointBBoxCoder from .legacy_delta_xywh_bbox_coder import LegacyDeltaXYWHBBoxCoder from .pseudo_bbox_coder import PseudoBBoxCoder from .tblr_bbox_coder import TBLRBBoxCoder from .yolo_bbox_coder import YOLOBBoxCoder __all__ = [ 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'LegacyDeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'YOLOBBoxCoder', 'BucketingBBoxCoder', 'DistancePointBBoxCoder' ]
# Copyright (c) OpenMMLab. All rights reserved. from .activations import SiLU from .bbox_nms import fast_nms, multiclass_nms from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .dropblock import DropBlock from .ema import ExpMomentumEMA from .inverted_residual import InvertedResidual from .matrix_nms import mask_matrix_nms from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder from .normed_predictor import NormedConv2d, NormedLinear from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import ChannelAttention, DyReLU, SELayer # yapf: disable from .transformer import (MLP, AdaptivePadding, CdnQueryGenerator, ConditionalAttention, ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer, DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder, DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer, DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer, DinoTransformerDecoder, DynamicConv, Mask2FormerTransformerDecoder, Mask2FormerTransformerDecoderLayer, Mask2FormerTransformerEncoder, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) # yapf: enable __all__ = [ 'fast_nms', 'multiclass_nms', 'mask_matrix_nms', 'DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder', 'MSDeformAttnPixelDecoder', 'ResLayer', 'PatchMerging', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'InvertedResidual', 'SELayer', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'DyReLU', 'ExpMomentumEMA', 'inverse_sigmoid', 'ChannelAttention', 'SiLU', 'MLP', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'AdaptivePadding', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator', 'Mask2FormerTransformerEncoder', 'Mask2FormerTransformerDecoderLayer', 'Mask2FormerTransformerDecoder' ]
# Copyright (c) OpenMMLab. All rights reserved. from .activations import SiLU from .bbox_nms import fast_nms, multiclass_nms from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .dropblock import DropBlock from .ema import ExpMomentumEMA from .inverted_residual import InvertedResidual from .matrix_nms import mask_matrix_nms from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder from .normed_predictor import NormedConv2d, NormedLinear from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import ChannelAttention, DyReLU, SELayer # yapf: disable from .transformer import (MLP, AdaptivePadding, CdnQueryGenerator, ConditionalAttention, ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer, DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder, DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer, DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer, DinoTransformerDecoder, DynamicConv, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) # yapf: enable __all__ = [ 'fast_nms', 'multiclass_nms', 'mask_matrix_nms', 'DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder', 'MSDeformAttnPixelDecoder', 'ResLayer', 'PatchMerging', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'InvertedResidual', 'SELayer', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'DyReLU', 'ExpMomentumEMA', 'inverse_sigmoid', 'ChannelAttention', 'SiLU', 'MLP', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'AdaptivePadding', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator' ]
""" This example loads the pre-trained SentenceTransformer model 'nli-distilroberta-base-v2' from Hugging Face. It then fine-tunes this model for some epochs on the STS benchmark dataset. Note: In this example, you must specify a SentenceTransformer model. If you want to fine-tune a huggingface/transformers model like bert-base-uncased, see training_nli.py and training_stsbenchmark.py """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Sentence Transformer model here, for example all-mpnet-base-v2, all-MiniLM-L6-v2, mixedbread-ai/mxbai-embed-large-v1 model_name = sys.argv[1] if len(sys.argv) > 1 else "sentence-transformers/all-mpnet-base-v2" train_batch_size = 16 num_epochs = 4 output_dir = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # 1. Here we define our SentenceTransformer model. model = SentenceTransformer(model_name) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one # similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # train_loss = losses.CoSENTLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts')`." )
""" This example loads the pre-trained SentenceTransformer model 'nli-distilroberta-base-v2' from Hugging Face. It then fine-tunes this model for some epochs on the STS benchmark dataset. Note: In this example, you must specify a SentenceTransformer model. If you want to fine-tune a huggingface/transformers model like bert-base-uncased, see training_nli.py and training_stsbenchmark.py """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Sentence Transformer model here, for example all-mpnet-base-v2, all-MiniLM-L6-v2, mixedbread-ai/mxbai-embed-large-v1 model_name = sys.argv[1] if len(sys.argv) > 1 else "sentence-transformers/all-mpnet-base-v2" train_batch_size = 16 num_epochs = 4 output_dir = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # 1. Here we define our SentenceTransformer model. model = SentenceTransformer(model_name) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one # similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # train_loss = losses.CoSENTLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts')`." )
import os import sys import torch from ._internally_replaced_utils import _get_extension_path _HAS_OPS = False def _has_ops(): return False try: # On Windows Python-3.8.x has `os.add_dll_directory` call, # which is called to configure dll search path. # To find cuda related dlls we need to make sure the # conda environment/bin path is configured Please take a look: # https://stackoverflow.com/questions/59330863/cant-import-dll-module-in-python # Please note: if some path can't be added using add_dll_directory we simply ignore this path if os.name == "nt" and sys.version_info < (3, 9): env_path = os.environ["PATH"] path_arr = env_path.split(";") for path in path_arr: if os.path.exists(path): try: os.add_dll_directory(path) # type: ignore[attr-defined] except Exception: pass lib_path = _get_extension_path("_C") torch.ops.load_library(lib_path) _HAS_OPS = True def _has_ops(): # noqa: F811 return True except (ImportError, OSError): pass def _assert_has_ops(): if not _has_ops(): raise RuntimeError( "Couldn't load custom C++ ops. This can happen if your PyTorch and " "torchvision versions are incompatible, or if you had errors while compiling " "torchvision from source. For further information on the compatible versions, check " "https://github.com/pytorch/vision#installation for the compatibility matrix. " "Please check your PyTorch version with torch.__version__ and your torchvision " "version with torchvision.__version__ and verify if they are compatible, and if not " "please reinstall torchvision so that it matches your PyTorch install." ) def _check_cuda_version(): """ Make sure that CUDA versions match between the pytorch install and torchvision install """ if not _HAS_OPS: return -1 from torch.version import cuda as torch_version_cuda _version = torch.ops.torchvision._cuda_version() if _version != -1 and torch_version_cuda is not None: tv_version = str(_version) if int(tv_version) < 10000: tv_major = int(tv_version[0]) tv_minor = int(tv_version[2]) else: tv_major = int(tv_version[0:2]) tv_minor = int(tv_version[3]) t_version = torch_version_cuda.split(".") t_major = int(t_version[0]) t_minor = int(t_version[1]) if t_major != tv_major or t_minor != tv_minor: raise RuntimeError( "Detected that PyTorch and torchvision were compiled with different CUDA versions. " f"PyTorch has CUDA Version={t_major}.{t_minor} and torchvision has " f"CUDA Version={tv_major}.{tv_minor}. " "Please reinstall the torchvision that matches your PyTorch install." ) return _version def _load_library(lib_name): lib_path = _get_extension_path(lib_name) torch.ops.load_library(lib_path) _check_cuda_version()
import ctypes import os import sys from warnings import warn import torch from ._internally_replaced_utils import _get_extension_path _HAS_OPS = False def _has_ops(): return False try: # On Windows Python-3.8.x has `os.add_dll_directory` call, # which is called to configure dll search path. # To find cuda related dlls we need to make sure the # conda environment/bin path is configured Please take a look: # https://stackoverflow.com/questions/59330863/cant-import-dll-module-in-python # Please note: if some path can't be added using add_dll_directory we simply ignore this path if os.name == "nt" and sys.version_info >= (3, 8) and sys.version_info < (3, 9): env_path = os.environ["PATH"] path_arr = env_path.split(";") for path in path_arr: if os.path.exists(path): try: os.add_dll_directory(path) # type: ignore[attr-defined] except Exception: pass lib_path = _get_extension_path("_C") torch.ops.load_library(lib_path) _HAS_OPS = True def _has_ops(): # noqa: F811 return True except (ImportError, OSError): pass def _assert_has_ops(): if not _has_ops(): raise RuntimeError( "Couldn't load custom C++ ops. This can happen if your PyTorch and " "torchvision versions are incompatible, or if you had errors while compiling " "torchvision from source. For further information on the compatible versions, check " "https://github.com/pytorch/vision#installation for the compatibility matrix. " "Please check your PyTorch version with torch.__version__ and your torchvision " "version with torchvision.__version__ and verify if they are compatible, and if not " "please reinstall torchvision so that it matches your PyTorch install." ) def _check_cuda_version(): """ Make sure that CUDA versions match between the pytorch install and torchvision install """ if not _HAS_OPS: return -1 from torch.version import cuda as torch_version_cuda _version = torch.ops.torchvision._cuda_version() if _version != -1 and torch_version_cuda is not None: tv_version = str(_version) if int(tv_version) < 10000: tv_major = int(tv_version[0]) tv_minor = int(tv_version[2]) else: tv_major = int(tv_version[0:2]) tv_minor = int(tv_version[3]) t_version = torch_version_cuda.split(".") t_major = int(t_version[0]) t_minor = int(t_version[1]) if t_major != tv_major or t_minor != tv_minor: raise RuntimeError( "Detected that PyTorch and torchvision were compiled with different CUDA versions. " f"PyTorch has CUDA Version={t_major}.{t_minor} and torchvision has " f"CUDA Version={tv_major}.{tv_minor}. " "Please reinstall the torchvision that matches your PyTorch install." ) return _version def _load_library(lib_name): lib_path = _get_extension_path(lib_name) # On Windows Python-3.8+ has `os.add_dll_directory` call, # which is called from _get_extension_path to configure dll search path # Condition below adds a workaround for older versions by # explicitly calling `LoadLibraryExW` with the following flags: # - LOAD_LIBRARY_SEARCH_DEFAULT_DIRS (0x1000) # - LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR (0x100) if os.name == "nt" and sys.version_info < (3, 8): _kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True) if hasattr(_kernel32, "LoadLibraryExW"): _kernel32.LoadLibraryExW(lib_path, None, 0x00001100) else: warn("LoadLibraryExW is missing in kernel32.dll") torch.ops.load_library(lib_path) _check_cuda_version()
"""Test retriever tool.""" from typing import List, Optional from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.schema import NodeWithScore, TextNode, QueryBundle from llama_index.core.tools import RetrieverTool from llama_index.core.postprocessor.types import BaseNodePostprocessor import pytest class MockRetriever(BaseRetriever): """Custom retriever for testing.""" def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Mock retrieval.""" return [ NodeWithScore( node=TextNode( text=f"mock_{query_bundle}", text_template="Metadata:\n{metadata_str}\n\nContent:\n{content}", metadata_template="- {key}: {value}", metadata={"key": "value"}, ), score=0.9, ) ] async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Mock retrieval.""" return [ NodeWithScore( node=TextNode( text=f"mock_{query_bundle}", text_template="Metadata:\n{metadata_str}\n\nContent:\n{content}", metadata_template="- {key}: {value}", metadata={"key": "value"}, ), score=0.9, ) ] class MockPostProcessor(BaseNodePostprocessor): @classmethod def class_name(cls) -> str: return "CitationPostProcessor" def _postprocess_nodes( self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: for n in nodes: prefix = f"processed_" n.node.text = prefix + n.node.text return nodes def test_retriever_tool() -> None: """Test retriever tool.""" # Test retrieval retriever = MockRetriever() retriever_tool = RetrieverTool.from_defaults(retriever=retriever) response_nodes = retriever_tool("hello world") assert ( str(response_nodes) == "Metadata:\n- key: value\n\nContent:\nmock_hello world\n\n" ) assert response_nodes.raw_output[0].node.text == "mock_hello world\n\n" # Test node_postprocessors node_postprocessors = [MockPostProcessor()] pr_retriever_tool = RetrieverTool.from_defaults( retriever=retriever, node_postprocessors=node_postprocessors ) pr_response_nodes = pr_retriever_tool("hello world") assert ( str(pr_response_nodes) == "Metadata:\n- key: value\n\nContent:\nprocessed_mock_hello world\n\n" ) @pytest.mark.asyncio async def test_retriever_tool_async() -> None: """Test retriever tool async call.""" # Test async retrieval retriever = MockRetriever() retriever_tool = RetrieverTool.from_defaults(retriever=retriever) response_nodes = await retriever_tool.acall("hello world") assert ( str(response_nodes) == "Metadata:\n- key: value\n\nContent:\nmock_hello world\n\n" ) assert response_nodes.raw_output[0].node.text == "mock_hello world\n\n" # Test node_postprocessors async node_postprocessors = [MockPostProcessor()] pr_retriever_tool = RetrieverTool.from_defaults( retriever=retriever, node_postprocessors=node_postprocessors ) pr_response_nodes = await pr_retriever_tool.acall("hello world") assert ( str(pr_response_nodes) == "Metadata:\n- key: value\n\nContent:\nprocessed_mock_hello world\n\n" )
"""Test retriever tool.""" from typing import List, Optional from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.schema import NodeWithScore, TextNode, QueryBundle from llama_index.core.tools import RetrieverTool from llama_index.core.postprocessor.types import BaseNodePostprocessor import pytest class MockRetriever(BaseRetriever): """Custom retriever for testing.""" def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Mock retrieval.""" return [ NodeWithScore( node=TextNode( text=f"mock_{query_bundle}", text_template="Metadata:\n{metadata_str}\n\nContent:\n{content}", metadata_template="- {key}: {value}", metadata={"key": "value"}, ), score=0.9, ) ] async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Mock retrieval.""" return [ NodeWithScore( node=TextNode( text=f"mock_{query_bundle}", text_template="Metadata:\n{metadata_str}\n\nContent:\n{content}", metadata_template="- {key}: {value}", metadata={"key": "value"}, ), score=0.9, ) ] class MockPostProcessor(BaseNodePostprocessor): @classmethod def class_name(cls) -> str: return "CitationPostProcessor" def _postprocess_nodes( self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: for n in nodes: prefix = f"processed_" n.node.text = prefix + n.node.text return nodes def test_retriever_tool() -> None: """Test retriever tool.""" # Test retrieval retriever = MockRetriever() retriever_tool = RetrieverTool.from_defaults(retriever=retriever) response_nodes = retriever_tool("hello world") assert ( str(response_nodes) == "Metadata:\n- key: value\n\nContent:\nmock_hello world\n\n" ) assert response_nodes.raw_output[0].node.text == "mock_hello world\n\n" # Test node_postprocessors node_postprocessors = [MockPostProcessor()] pr_retriever_tool = RetrieverTool.from_defaults( retriever=retriever, node_postprocessors=node_postprocessors ) pr_response_nodes = pr_retriever_tool("hello world") assert ( str(pr_response_nodes) == "Metadata:\n- key: value\n\nContent:\nprocessed_mock_hello world\n\n" ) @pytest.mark.asyncio() async def test_retriever_tool_async() -> None: """Test retriever tool async call.""" # Test async retrieval retriever = MockRetriever() retriever_tool = RetrieverTool.from_defaults(retriever=retriever) response_nodes = await retriever_tool.acall("hello world") assert ( str(response_nodes) == "Metadata:\n- key: value\n\nContent:\nmock_hello world\n\n" ) assert response_nodes.raw_output[0].node.text == "mock_hello world\n\n" # Test node_postprocessors async node_postprocessors = [MockPostProcessor()] pr_retriever_tool = RetrieverTool.from_defaults( retriever=retriever, node_postprocessors=node_postprocessors ) pr_response_nodes = await pr_retriever_tool.acall("hello world") assert ( str(pr_response_nodes) == "Metadata:\n- key: value\n\nContent:\nprocessed_mock_hello world\n\n" )
import os import urllib import pytest from pydantic import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TextUrl REMOTE_TXT = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TXT = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'penal_colony.txt') @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TXT, '<!DOCTYPE html>'), (LOCAL_TXT, '“It’s a peculiar apparatus,”')], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TXT, LOCAL_TXT]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_bytes() assert isinstance(txt_bytes, bytes) @pytest.mark.proto def test_proto_text_url(): uri = parse_obj_as(TextUrl, LOCAL_TXT) uri._to_node_protobuf() @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TXT) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_bytes(timeout=0.001) def test_json_schema(): schema_json_of(TextUrl) def test_dump_json(): url = parse_obj_as(TextUrl, REMOTE_TXT) orjson_dumps(url)
import os import urllib import pytest from pydantic import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TextUrl REMOTE_TXT = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TXT = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'penal_colony.txt') @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TXT, '<!DOCTYPE html>'), (LOCAL_TXT, '“It’s a peculiar apparatus,”')], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TXT, LOCAL_TXT]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_bytes() assert isinstance(txt_bytes, bytes) def test_proto_text_url(): uri = parse_obj_as(TextUrl, LOCAL_TXT) uri._to_node_protobuf() @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TXT) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_bytes(timeout=0.001) def test_json_schema(): schema_json_of(TextUrl) def test_dump_json(): url = parse_obj_as(TextUrl, REMOTE_TXT) orjson_dumps(url)
import asyncio import logging from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class AsyncWebPageReader(BaseReader): """ Asynchronous web page reader. Reads pages from the web asynchronously. Args: html_to_text (bool): Whether to convert HTML to text. Requires `html2text` package. limit (int): Maximum number of concurrent requests. dedupe (bool): to deduplicate urls if there is exact-match within given list fail_on_error (bool): if requested url does not return status code 200 the routine will raise an ValueError """ def __init__( self, html_to_text: bool = False, limit: int = 10, dedupe: bool = True, fail_on_error: bool = False, ) -> None: """Initialize with parameters.""" try: import html2text # noqa: F401 except ImportError: raise ImportError( "`html2text` package not found, please run `pip install html2text`" ) try: import aiohttp # noqa: F401 except ImportError: raise ImportError( "`aiohttp` package not found, please run `pip install aiohttp`" ) self._limit = limit self._html_to_text = html_to_text self._dedupe = dedupe self._fail_on_error = fail_on_error async def aload_data(self, urls: List[str]) -> List[Document]: """ Load data from the input urls. Args: urls (List[str]): List of URLs to scrape. Returns: List[Document]: List of documents. """ if self._dedupe: urls = list(dict.fromkeys(urls)) import aiohttp def chunked_http_client(limit: int): semaphore = asyncio.Semaphore(limit) async def http_get(url: str, session: aiohttp.ClientSession): async with semaphore: async with session.get(url) as response: return response, await response.text() return http_get async def fetch_urls(urls: List[str]): http_client = chunked_http_client(self._limit) async with aiohttp.ClientSession() as session: tasks = [http_client(url, session) for url in urls] return await asyncio.gather(*tasks, return_exceptions=True) if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] responses = await fetch_urls(urls) for i, response_tuple in enumerate(responses): if not isinstance(response_tuple, tuple): raise ValueError(f"One of the inputs is not a valid url: {urls[i]}") response, raw_page = response_tuple if response.status != 200: logger.warning(f"error fetching page from {urls[i]}") logger.info(response) if self._fail_on_error: raise ValueError( f"error fetching page from {urls[i]}. server returned status:" f" {response.status} and response {raw_page}" ) continue if self._html_to_text: import html2text response_text = html2text.html2text(raw_page) else: response_text = raw_page documents.append( Document(text=response_text, extra_info={"Source": str(response.url)}) ) return documents def load_data(self, urls: List[str]) -> List[Document]: """ Load data from the input urls. Args: urls (List[str]): List of URLs to scrape. Returns: List[Document]: List of documents. """ return asyncio.run(self.aload_data(urls))
import asyncio import logging from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class AsyncWebPageReader(BaseReader): """Asynchronous web page reader. Reads pages from the web asynchronously. Args: html_to_text (bool): Whether to convert HTML to text. Requires `html2text` package. limit (int): Maximum number of concurrent requests. dedupe (bool): to deduplicate urls if there is exact-match within given list fail_on_error (bool): if requested url does not return status code 200 the routine will raise an ValueError """ def __init__( self, html_to_text: bool = False, limit: int = 10, dedupe: bool = True, fail_on_error: bool = False, ) -> None: """Initialize with parameters.""" try: import html2text # noqa: F401 except ImportError: raise ImportError( "`html2text` package not found, please run `pip install html2text`" ) try: import aiohttp # noqa: F401 except ImportError: raise ImportError( "`aiohttp` package not found, please run `pip install aiohttp`" ) self._limit = limit self._html_to_text = html_to_text self._dedupe = dedupe self._fail_on_error = fail_on_error async def aload_data(self, urls: List[str]) -> List[Document]: """Load data from the input urls. Args: urls (List[str]): List of URLs to scrape. Returns: List[Document]: List of documents. """ if self._dedupe: urls = list(dict.fromkeys(urls)) import aiohttp def chunked_http_client(limit: int): semaphore = asyncio.Semaphore(limit) async def http_get(url: str, session: aiohttp.ClientSession): async with semaphore: async with session.get(url) as response: return response, await response.text() return http_get async def fetch_urls(urls: List[str]): http_client = chunked_http_client(self._limit) async with aiohttp.ClientSession() as session: tasks = [http_client(url, session) for url in urls] return await asyncio.gather(*tasks, return_exceptions=True) if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] responses = await fetch_urls(urls) for i, response_tuple in enumerate(responses): if not isinstance(response_tuple, tuple): raise ValueError(f"One of the inputs is not a valid url: {urls[i]}") response, raw_page = response_tuple if response.status != 200: logger.warning(f"error fetching page from {urls[i]}") logger.info(response) if self._fail_on_error: raise ValueError( f"error fetching page from {urls[i]}. server returned status:" f" {response.status} and response {raw_page}" ) continue if self._html_to_text: import html2text response_text = html2text.html2text(raw_page) else: response_text = raw_page documents.append( Document(text=response_text, extra_info={"Source": str(response.url)}) ) return documents def load_data(self, urls: List[str]) -> List[Document]: """Load data from the input urls. Args: urls (List[str]): List of URLs to scrape. Returns: List[Document]: List of documents. """ return asyncio.run(self.aload_data(urls))
import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: """[BETA] See :class:`~torchvision.transforms.v2.RandomErase` for details.""" if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, tv_tensors.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, tv_tensors.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: """[BETA] See :class:`~torchvision.transforms.v2.RandomErase` for details.""" if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, datapoints.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, datapoints.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
import os from typing import Dict import numpy as np import pytest import xgboost from xgboost import testing as tm from xgboost.testing.ranking import run_normalization, run_score_normalization pytestmark = tm.timeout(30) def comp_training_with_rank_objective( dtrain: xgboost.DMatrix, dtest: xgboost.DMatrix, rank_objective: str, metric_name: str, tolerance: float = 1e-02, ) -> None: """Internal method that trains the dataset using the rank objective on GPU and CPU, evaluates the metric and determines if the delta between the metric is within the tolerance level. """ # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] params = { "booster": "gbtree", "tree_method": "gpu_hist", "gpu_id": 0, } num_trees = 100 check_metric_improvement_rounds = 10 evals_result: Dict[str, Dict] = {} params["objective"] = rank_objective params["eval_metric"] = metric_name bst = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) gpu_scores = evals_result["train"][metric_name][-1] evals_result = {} cpu_params = { "booster": "gbtree", "tree_method": "hist", "gpu_id": -1, } cpu_params["objective"] = rank_objective cpu_params["eval_metric"] = metric_name bstc = xgboost.train( cpu_params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) cpu_scores = evals_result["train"][metric_name][-1] info = (rank_objective, metric_name) assert np.allclose(gpu_scores, cpu_scores, tolerance, tolerance), info assert np.allclose(bst.best_score, bstc.best_score, tolerance, tolerance), info evals_result_weighted: Dict[str, Dict] = {} dtest.set_weight(np.ones((dtest.get_group().size,))) dtrain.set_weight(np.ones((dtrain.get_group().size,))) watchlist = [(dtest, "eval"), (dtrain, "train")] bst_w = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result_weighted, ) weighted_metric = evals_result_weighted["train"][metric_name][-1] tolerance = 1e-5 assert np.allclose(bst_w.best_score, bst.best_score, tolerance, tolerance) assert np.allclose(weighted_metric, gpu_scores, tolerance, tolerance) @pytest.mark.parametrize( "objective,metric", [ ("rank:pairwise", "auc"), ("rank:pairwise", "ndcg"), ("rank:pairwise", "map"), ("rank:ndcg", "auc"), ("rank:ndcg", "ndcg"), ("rank:ndcg", "map"), ("rank:map", "auc"), ("rank:map", "ndcg"), ("rank:map", "map"), ], ) def test_with_mq2008(objective, metric) -> None: ( x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid, ) = tm.data.get_mq2008(tm.demo_dir(__file__)) if metric.find("map") != -1 or objective.find("map") != -1: y_train[y_train <= 1] = 0.0 y_train[y_train > 1] = 1.0 y_test[y_test <= 1] = 0.0 y_test[y_test > 1] = 1.0 dtrain = xgboost.DMatrix(x_train, y_train, qid=qid_train) dtest = xgboost.DMatrix(x_test, y_test, qid=qid_test) comp_training_with_rank_objective(dtrain, dtest, objective, metric) def test_normalization() -> None: run_normalization("cuda") @pytest.mark.parametrize("objective", ["rank:pairwise", "rank:ndcg", "rank:map"]) def test_score_normalization(objective: str) -> None: run_score_normalization("cuda", objective)
import os from typing import Dict import numpy as np import pytest import xgboost from xgboost import testing as tm from xgboost.testing.ranking import run_normalization pytestmark = tm.timeout(30) def comp_training_with_rank_objective( dtrain: xgboost.DMatrix, dtest: xgboost.DMatrix, rank_objective: str, metric_name: str, tolerance: float = 1e-02, ) -> None: """Internal method that trains the dataset using the rank objective on GPU and CPU, evaluates the metric and determines if the delta between the metric is within the tolerance level. """ # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] params = { "booster": "gbtree", "tree_method": "gpu_hist", "gpu_id": 0, } num_trees = 100 check_metric_improvement_rounds = 10 evals_result: Dict[str, Dict] = {} params["objective"] = rank_objective params["eval_metric"] = metric_name bst = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) gpu_scores = evals_result["train"][metric_name][-1] evals_result = {} cpu_params = { "booster": "gbtree", "tree_method": "hist", "gpu_id": -1, } cpu_params["objective"] = rank_objective cpu_params["eval_metric"] = metric_name bstc = xgboost.train( cpu_params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) cpu_scores = evals_result["train"][metric_name][-1] info = (rank_objective, metric_name) assert np.allclose(gpu_scores, cpu_scores, tolerance, tolerance), info assert np.allclose(bst.best_score, bstc.best_score, tolerance, tolerance), info evals_result_weighted: Dict[str, Dict] = {} dtest.set_weight(np.ones((dtest.get_group().size,))) dtrain.set_weight(np.ones((dtrain.get_group().size,))) watchlist = [(dtest, "eval"), (dtrain, "train")] bst_w = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result_weighted, ) weighted_metric = evals_result_weighted["train"][metric_name][-1] tolerance = 1e-5 assert np.allclose(bst_w.best_score, bst.best_score, tolerance, tolerance) assert np.allclose(weighted_metric, gpu_scores, tolerance, tolerance) @pytest.mark.parametrize( "objective,metric", [ ("rank:pairwise", "auc"), ("rank:pairwise", "ndcg"), ("rank:pairwise", "map"), ("rank:ndcg", "auc"), ("rank:ndcg", "ndcg"), ("rank:ndcg", "map"), ("rank:map", "auc"), ("rank:map", "ndcg"), ("rank:map", "map"), ], ) def test_with_mq2008(objective, metric) -> None: ( x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid, ) = tm.data.get_mq2008(tm.demo_dir(__file__)) if metric.find("map") != -1 or objective.find("map") != -1: y_train[y_train <= 1] = 0.0 y_train[y_train > 1] = 1.0 y_test[y_test <= 1] = 0.0 y_test[y_test > 1] = 1.0 dtrain = xgboost.DMatrix(x_train, y_train, qid=qid_train) dtest = xgboost.DMatrix(x_test, y_test, qid=qid_test) comp_training_with_rank_objective(dtrain, dtest, objective, metric) def test_normalization() -> None: run_normalization("cuda")
import sys import warnings import torch _onnx_opset_version_11 = 11 _onnx_opset_version_16 = 16 base_onnx_opset_version = _onnx_opset_version_11 def _register_custom_op(): from torch.onnx.symbolic_helper import parse_args from torch.onnx.symbolic_opset11 import select, squeeze, unsqueeze @parse_args("v", "v", "f") def symbolic_multi_label_nms(g, boxes, scores, iou_threshold): boxes = unsqueeze(g, boxes, 0) scores = unsqueeze(g, unsqueeze(g, scores, 0), 0) max_output_per_class = g.op("Constant", value_t=torch.tensor([sys.maxsize], dtype=torch.long)) iou_threshold = g.op("Constant", value_t=torch.tensor([iou_threshold], dtype=torch.float)) nms_out = g.op( "NonMaxSuppression", g.op("Cast", boxes, to_i=torch.onnx.TensorProtoDataType.FLOAT), g.op("Cast", scores, to_i=torch.onnx.TensorProtoDataType.FLOAT), max_output_per_class, iou_threshold, ) return squeeze(g, select(g, nms_out, 1, g.op("Constant", value_t=torch.tensor([2], dtype=torch.long))), 1) def _process_batch_indices_for_roi_align(g, rois): indices = squeeze(g, select(g, rois, 1, g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))), 1) return g.op("Cast", indices, to_i=torch.onnx.TensorProtoDataType.INT64) def _process_rois_for_roi_align(g, rois): return select(g, rois, 1, g.op("Constant", value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long))) def _process_sampling_ratio_for_roi_align(g, sampling_ratio: int): if sampling_ratio < 0: warnings.warn( "ONNX export for RoIAlign with a non-zero sampling_ratio is not supported. " "The model will be exported with a sampling_ratio of 0." ) sampling_ratio = 0 return sampling_ratio @parse_args("v", "v", "f", "i", "i", "i", "i") def roi_align_opset11(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _process_batch_indices_for_roi_align(g, rois) rois = _process_rois_for_roi_align(g, rois) if aligned: warnings.warn( "ROIAlign with aligned=True is only supported in opset >= 16. " "Please export with opset 16 or higher, or use aligned=False." ) sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio) return g.op( "RoiAlign", input, rois, batch_indices, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio, ) @parse_args("v", "v", "f", "i", "i", "i", "i") def roi_align_opset16(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _process_batch_indices_for_roi_align(g, rois) rois = _process_rois_for_roi_align(g, rois) coordinate_transformation_mode = "half_pixel" if aligned else "output_half_pixel" sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio) return g.op( "RoiAlign", input, rois, batch_indices, coordinate_transformation_mode_s=coordinate_transformation_mode, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio, ) @parse_args("v", "v", "f", "i", "i") def roi_pool(g, input, rois, spatial_scale, pooled_height, pooled_width): roi_pool = g.op( "MaxRoiPool", input, rois, pooled_shape_i=(pooled_height, pooled_width), spatial_scale_f=spatial_scale ) return roi_pool, None from torch.onnx import register_custom_op_symbolic register_custom_op_symbolic("torchvision::nms", symbolic_multi_label_nms, _onnx_opset_version_11) register_custom_op_symbolic("torchvision::roi_align", roi_align_opset11, _onnx_opset_version_11) register_custom_op_symbolic("torchvision::roi_align", roi_align_opset16, _onnx_opset_version_16) register_custom_op_symbolic("torchvision::roi_pool", roi_pool, _onnx_opset_version_11)
import sys import warnings import torch _onnx_opset_version_11 = 11 _onnx_opset_version_16 = 16 base_onnx_opset_version = _onnx_opset_version_11 def _register_custom_op(): from torch.onnx.symbolic_helper import parse_args from torch.onnx.symbolic_opset11 import select, squeeze, unsqueeze from torch.onnx.symbolic_opset9 import _cast_Long @parse_args("v", "v", "f") def symbolic_multi_label_nms(g, boxes, scores, iou_threshold): boxes = unsqueeze(g, boxes, 0) scores = unsqueeze(g, unsqueeze(g, scores, 0), 0) max_output_per_class = g.op("Constant", value_t=torch.tensor([sys.maxsize], dtype=torch.long)) iou_threshold = g.op("Constant", value_t=torch.tensor([iou_threshold], dtype=torch.float)) nms_out = g.op("NonMaxSuppression", boxes, scores, max_output_per_class, iou_threshold) return squeeze(g, select(g, nms_out, 1, g.op("Constant", value_t=torch.tensor([2], dtype=torch.long))), 1) def _process_batch_indices_for_roi_align(g, rois): return _cast_Long( g, squeeze(g, select(g, rois, 1, g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))), 1), False ) def _process_rois_for_roi_align(g, rois): return select(g, rois, 1, g.op("Constant", value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long))) def _process_sampling_ratio_for_roi_align(g, sampling_ratio: int): if sampling_ratio < 0: warnings.warn( "ONNX export for RoIAlign with a non-zero sampling_ratio is not supported. " "The model will be exported with a sampling_ratio of 0." ) sampling_ratio = 0 return sampling_ratio @parse_args("v", "v", "f", "i", "i", "i", "i") def roi_align_opset11(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _process_batch_indices_for_roi_align(g, rois) rois = _process_rois_for_roi_align(g, rois) if aligned: warnings.warn( "ROIAlign with aligned=True is only supported in opset >= 16. " "Please export with opset 16 or higher, or use aligned=False." ) sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio) return g.op( "RoiAlign", input, rois, batch_indices, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio, ) @parse_args("v", "v", "f", "i", "i", "i", "i") def roi_align_opset16(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _process_batch_indices_for_roi_align(g, rois) rois = _process_rois_for_roi_align(g, rois) coordinate_transformation_mode = "half_pixel" if aligned else "output_half_pixel" sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio) return g.op( "RoiAlign", input, rois, batch_indices, coordinate_transformation_mode_s=coordinate_transformation_mode, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio, ) @parse_args("v", "v", "f", "i", "i") def roi_pool(g, input, rois, spatial_scale, pooled_height, pooled_width): roi_pool = g.op( "MaxRoiPool", input, rois, pooled_shape_i=(pooled_height, pooled_width), spatial_scale_f=spatial_scale ) return roi_pool, None from torch.onnx import register_custom_op_symbolic register_custom_op_symbolic("torchvision::nms", symbolic_multi_label_nms, _onnx_opset_version_11) register_custom_op_symbolic("torchvision::roi_align", roi_align_opset11, _onnx_opset_version_11) register_custom_op_symbolic("torchvision::roi_align", roi_align_opset16, _onnx_opset_version_16) register_custom_op_symbolic("torchvision::roi_pool", roi_pool, _onnx_opset_version_11)
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.22.0" SCIPY_MIN_VERSION = "1.8.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.17.1", "build"), "matplotlib": ("3.5.0", "benchmark, docs, examples, tests"), "scikit-image": ("0.19.0", "docs, examples, tests"), "pandas": ("1.4.0", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.11.7", "tests"), "mypy": ("1.15", "tests"), "pyamg": ("4.2.1", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("8.4.0", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), "towncrier": ("24.8.0", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("3.0.1", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.22.0" SCIPY_MIN_VERSION = "1.8.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.16.0", "build"), "matplotlib": ("3.5.0", "benchmark, docs, examples, tests"), "scikit-image": ("0.19.0", "docs, examples, tests"), "pandas": ("1.4.0", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.11.7", "tests"), "mypy": ("1.15", "tests"), "pyamg": ("4.2.1", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("8.4.0", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), "towncrier": ("24.8.0", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("3.0.1", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
"""Utilities for JSON Schema.""" from __future__ import annotations from copy import deepcopy from typing import TYPE_CHECKING, Any, Optional if TYPE_CHECKING: from collections.abc import Sequence def _retrieve_ref(path: str, schema: dict) -> dict: components = path.split("/") if components[0] != "#": msg = ( "ref paths are expected to be URI fragments, meaning they should start " "with #." ) raise ValueError(msg) out = schema for component in components[1:]: if component in out: out = out[component] elif component.isdigit() and int(component) in out: out = out[int(component)] else: msg = f"Reference '{path}' not found." raise KeyError(msg) return deepcopy(out) def _dereference_refs_helper( obj: Any, full_schema: dict[str, Any], skip_keys: Sequence[str], processed_refs: Optional[set[str]] = None, ) -> Any: if processed_refs is None: processed_refs = set() if isinstance(obj, dict): obj_out = {} for k, v in obj.items(): if k in skip_keys: obj_out[k] = v elif k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) full_ref = _dereference_refs_helper( ref, full_schema, skip_keys, processed_refs ) processed_refs.remove(v) return full_ref elif isinstance(v, (list, dict)): obj_out[k] = _dereference_refs_helper( v, full_schema, skip_keys, processed_refs ) else: obj_out[k] = v return obj_out elif isinstance(obj, list): return [ _dereference_refs_helper(el, full_schema, skip_keys, processed_refs) for el in obj ] else: return obj def _infer_skip_keys( obj: Any, full_schema: dict, processed_refs: Optional[set[str]] = None ) -> list[str]: if processed_refs is None: processed_refs = set() keys = [] if isinstance(obj, dict): for k, v in obj.items(): if k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) keys.append(v.split("/")[1]) keys += _infer_skip_keys(ref, full_schema, processed_refs) elif isinstance(v, (list, dict)): keys += _infer_skip_keys(v, full_schema, processed_refs) elif isinstance(obj, list): for el in obj: keys += _infer_skip_keys(el, full_schema, processed_refs) return keys def dereference_refs( schema_obj: dict, *, full_schema: Optional[dict] = None, skip_keys: Optional[Sequence[str]] = None, ) -> dict: """Try to substitute $refs in JSON Schema. Args: schema_obj: The schema object to dereference. full_schema: The full schema object. Defaults to None. skip_keys: The keys to skip. Defaults to None. Returns: The dereferenced schema object. """ full_schema = full_schema or schema_obj skip_keys = ( skip_keys if skip_keys is not None else _infer_skip_keys(schema_obj, full_schema) ) return _dereference_refs_helper(schema_obj, full_schema, skip_keys)
from __future__ import annotations from copy import deepcopy from typing import TYPE_CHECKING, Any, Optional if TYPE_CHECKING: from collections.abc import Sequence def _retrieve_ref(path: str, schema: dict) -> dict: components = path.split("/") if components[0] != "#": msg = ( "ref paths are expected to be URI fragments, meaning they should start " "with #." ) raise ValueError(msg) out = schema for component in components[1:]: if component in out: out = out[component] elif component.isdigit() and int(component) in out: out = out[int(component)] else: msg = f"Reference '{path}' not found." raise KeyError(msg) return deepcopy(out) def _dereference_refs_helper( obj: Any, full_schema: dict[str, Any], skip_keys: Sequence[str], processed_refs: Optional[set[str]] = None, ) -> Any: if processed_refs is None: processed_refs = set() if isinstance(obj, dict): obj_out = {} for k, v in obj.items(): if k in skip_keys: obj_out[k] = v elif k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) full_ref = _dereference_refs_helper( ref, full_schema, skip_keys, processed_refs ) processed_refs.remove(v) return full_ref elif isinstance(v, (list, dict)): obj_out[k] = _dereference_refs_helper( v, full_schema, skip_keys, processed_refs ) else: obj_out[k] = v return obj_out elif isinstance(obj, list): return [ _dereference_refs_helper(el, full_schema, skip_keys, processed_refs) for el in obj ] else: return obj def _infer_skip_keys( obj: Any, full_schema: dict, processed_refs: Optional[set[str]] = None ) -> list[str]: if processed_refs is None: processed_refs = set() keys = [] if isinstance(obj, dict): for k, v in obj.items(): if k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) keys.append(v.split("/")[1]) keys += _infer_skip_keys(ref, full_schema, processed_refs) elif isinstance(v, (list, dict)): keys += _infer_skip_keys(v, full_schema, processed_refs) elif isinstance(obj, list): for el in obj: keys += _infer_skip_keys(el, full_schema, processed_refs) return keys def dereference_refs( schema_obj: dict, *, full_schema: Optional[dict] = None, skip_keys: Optional[Sequence[str]] = None, ) -> dict: """Try to substitute $refs in JSON Schema. Args: schema_obj: The schema object to dereference. full_schema: The full schema object. Defaults to None. skip_keys: The keys to skip. Defaults to None. Returns: The dereferenced schema object. """ full_schema = full_schema or schema_obj skip_keys = ( skip_keys if skip_keys is not None else _infer_skip_keys(schema_obj, full_schema) ) return _dereference_refs_helper(schema_obj, full_schema, skip_keys)
import importlib import os import re import types from typing import Any, Optional import numpy as np try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True try: import jax.numpy as jnp # type: ignore # noqa: F401 except (ImportError, TypeError): jnp_imported = False else: jnp_imported = True INSTALL_INSTRUCTIONS = { 'google.protobuf': '"docarray[proto]"', 'lz4': '"docarray[proto]"', 'pandas': '"docarray[pandas]"', 'PIL': '"docarray[image]"', 'pydub': '"docarray[audio]"', 'av': '"docarray[video]"', 'trimesh': '"docarray[mesh]"', 'hnswlib': '"docarray[hnswlib]"', 'elasticsearch': '"docarray[elasticsearch]"', 'elastic_transport': '"docarray[elasticsearch]"', 'weaviate': '"docarray[weaviate]"', 'qdrant_client': '"docarray[qdrant]"', 'fastapi': '"docarray[web]"', 'torch': '"docarray[torch]"', 'tensorflow': 'protobuf==3.19.0 tensorflow', 'hubble': '"docarray[jac]"', 'smart_open': '"docarray[aws]"', 'boto3': '"docarray[aws]"', 'botocore': '"docarray[aws]"', 'redis': '"docarray[redis]"', } def import_library( package: str, raise_error: bool = True ) -> Optional[types.ModuleType]: lib: Optional[types.ModuleType] try: lib = importlib.import_module(package) except (ModuleNotFoundError, ImportError): lib = None if lib is None and raise_error: raise ImportError( f'The following required library is not installed: {package} \n' f'To install all necessary libraries, run: `pip install {INSTALL_INSTRUCTIONS[package]}`.' ) else: return lib def _get_path_from_docarray_root_level(file_path: str) -> str: path = os.path.dirname(file_path) rel_path = re.sub('(?s:.*)docarray', 'docarray', path).replace('/', '.') return rel_path def is_torch_available(): return torch_imported def is_tf_available(): return tf_imported def is_jax_available(): return jnp_imported def is_np_int(item: Any) -> bool: dtype = getattr(item, 'dtype', None) ndim = getattr(item, 'ndim', None) if dtype is not None and ndim is not None: try: return ndim == 0 and np.issubdtype(dtype, np.integer) except TypeError: return False return False # this is unreachable, but mypy wants it def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
import importlib import os import re import types from typing import Any, Optional import numpy as np try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True INSTALL_INSTRUCTIONS = { 'google.protobuf': '"docarray[proto]"', 'lz4': '"docarray[proto]"', 'pandas': '"docarray[pandas]"', 'PIL': '"docarray[image]"', 'pydub': '"docarray[audio]"', 'av': '"docarray[video]"', 'trimesh': '"docarray[mesh]"', 'hnswlib': '"docarray[hnswlib]"', 'elasticsearch': '"docarray[elasticsearch]"', 'elastic_transport': '"docarray[elasticsearch]"', 'weaviate': '"docarray[weaviate]"', 'qdrant_client': '"docarray[qdrant]"', 'fastapi': '"docarray[web]"', 'torch': '"docarray[torch]"', 'tensorflow': 'protobuf==3.19.0 tensorflow', 'hubble': '"docarray[jac]"', 'smart_open': '"docarray[aws]"', 'boto3': '"docarray[aws]"', 'botocore': '"docarray[aws]"', 'redis': '"docarray[redis]"', } def import_library( package: str, raise_error: bool = True ) -> Optional[types.ModuleType]: lib: Optional[types.ModuleType] try: lib = importlib.import_module(package) except (ModuleNotFoundError, ImportError): lib = None if lib is None and raise_error: raise ImportError( f'The following required library is not installed: {package} \n' f'To install all necessary libraries, run: `pip install {INSTALL_INSTRUCTIONS[package]}`.' ) else: return lib def _get_path_from_docarray_root_level(file_path: str) -> str: path = os.path.dirname(file_path) rel_path = re.sub('(?s:.*)docarray', 'docarray', path).replace('/', '.') return rel_path def is_torch_available(): return torch_imported def is_tf_available(): return tf_imported def is_np_int(item: Any) -> bool: dtype = getattr(item, 'dtype', None) ndim = getattr(item, 'ndim', None) if dtype is not None and ndim is not None: try: return ndim == 0 and np.issubdtype(dtype, np.integer) except TypeError: return False return False # this is unreachable, but mypy wants it def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
import types from typing import TYPE_CHECKING from docarray.index.backends.in_memory import InMemoryExactNNIndex from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 from docarray.index.backends.weaviate import WeaviateDocumentIndex # noqa: F401 from docarray.index.backends.redis import RedisDocumentIndex # noqa: F401 __all__ = ['InMemoryExactNNIndex'] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib elif name == 'WeaviateDocumentIndex': import_library('weaviate', raise_error=True) import docarray.index.backends.weaviate as lib elif name == 'RedisDocumentIndex': import_library('redis', raise_error=True) import docarray.index.backends.redis as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
import types from typing import TYPE_CHECKING from docarray.index.backends.in_memory import InMemoryExactNNIndex from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 from docarray.index.backends.weaviate import WeaviateDocumentIndex # noqa: F401 __all__ = ['InMemoryExactNNIndex'] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib elif name == 'WeaviateDocumentIndex': import_library('weaviate', raise_error=True) import docarray.index.backends.weaviate as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "AQLM (Additive Quantization of Language Model) integration file" from ..utils import ACCELERATE_MIN_VERSION, is_accelerate_available, is_aqlm_available, is_torch_available if is_torch_available(): import torch.nn as nn def replace_with_aqlm_linear( model, quantization_config=None, linear_weights_not_to_quantize=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers. `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the conversion has been successful or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`AqlmConfig`): The quantization config object that contains the quantization parameters. linear_weights_not_to_quantize (`list[str]`, *optional*): A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be converted. current_key_name (`list`, *optional*): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ if not is_aqlm_available(): raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`") if not is_accelerate_available(): raise ValueError( f"AQLM requires Accelerate to be installed: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" ) if linear_weights_not_to_quantize is None: linear_weights_not_to_quantize = [] from accelerate import init_empty_weights from aqlm import QuantizedLinear for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, nn.Linear): # Check if the current key is not in the `linear_weights_not_to_quantize` if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize: with init_empty_weights(): in_features = module.in_features out_features = module.out_features model._modules[name] = QuantizedLinear( in_features, out_features, bias=module.bias is not None, in_group_size=quantization_config.in_group_size, out_group_size=quantization_config.out_group_size, num_codebooks=quantization_config.num_codebooks, nbits_per_codebook=quantization_config.nbits_per_codebook, ) has_been_replaced = True # Store the module class in case we need to transpose the weight later model._modules[name].source_cls = type(module) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = replace_with_aqlm_linear( module, quantization_config=quantization_config, linear_weights_not_to_quantize=linear_weights_not_to_quantize, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "AQLM (Additive Quantization of Language Model) integration file" from ..utils import ACCELERATE_MIN_VERSION, is_accelerate_available, is_aqlm_available, is_torch_available if is_torch_available(): import torch.nn as nn def replace_with_aqlm_linear( model, quantization_config=None, linear_weights_not_to_quantize=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers. `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`AqlmConfig`): The quantization config object that contains the quantization parameters. linear_weights_not_to_quantize (`list[str]`, *optional*): A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be converted. current_key_name (`list`, *optional*): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ if not is_aqlm_available(): raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`") if not is_accelerate_available(): raise ValueError( f"AQLM requires Accelerate to be installed: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" ) if linear_weights_not_to_quantize is None: linear_weights_not_to_quantize = [] from accelerate import init_empty_weights from aqlm import QuantizedLinear for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, nn.Linear): # Check if the current key is not in the `linear_weights_not_to_quantize` if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize: with init_empty_weights(): in_features = module.in_features out_features = module.out_features model._modules[name] = QuantizedLinear( in_features, out_features, bias=module.bias is not None, in_group_size=quantization_config.in_group_size, out_group_size=quantization_config.out_group_size, num_codebooks=quantization_config.num_codebooks, nbits_per_codebook=quantization_config.nbits_per_codebook, ) has_been_replaced = True # Store the module class in case we need to transpose the weight later model._modules[name].source_cls = type(module) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = replace_with_aqlm_linear( module, quantization_config=quantization_config, linear_weights_not_to_quantize=linear_weights_not_to_quantize, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced
"""DashVector reader.""" from typing import Dict, List, Optional import json from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class DashVectorReader(BaseReader): """ DashVector reader. Args: api_key (str): DashVector API key. endpoint (str): DashVector cluster endpoint. """ def __init__(self, api_key: str, endpoint: str): """Initialize with parameters.""" try: import dashvector except ImportError: raise ImportError( "`dashvector` package not found, please run `pip install dashvector`" ) self._client: dashvector.Client = dashvector.Client( api_key=api_key, endpoint=endpoint ) def load_data( self, collection_name: str, vector: Optional[List[float]], topk: int, filter: Optional[str] = None, include_vector: bool = True, partition: Optional[str] = None, output_fields: Optional[List[str]] = None, sparse_vector: Optional[Dict[int, float]] = None, ) -> List[Document]: """ Load data from DashVector. Args: collection_name (str): Name of the collection. vector (List[float]): Query vector. topk (int): Number of results to return. filter (Optional[str]): doc fields filter conditions that meet the SQL where clause specification.detail in https://help.aliyun.com/document_detail/2513006.html?spm=a2c4g.2510250.0.0.40d25637QMI4eV include_vector (bool): Whether to include the embedding in the response.Defaults to True. partition (Optional[str]): The partition name to query. Defaults to None. output_fields (Optional[List[str]]): The fields to return. Defaults to None, meaning all fields sparse_vector (Optional[Dict[int, float]]): The sparse vector to query.Defaults to None. Returns: List[Document]: A list of documents. """ collection = self._client.get(collection_name) if not collection: raise ValueError( f"Failed to get collection: {collection_name}," f"Error: {collection}" ) ret = collection.query( vector=vector, topk=topk, filter=filter, include_vector=include_vector, partition=partition, output_fields=output_fields, sparse_vector=sparse_vector, ) if not ret: raise Exception(f"Failed to query document," f"Error: {ret}") doc_metas = ret.output documents = [] for doc_meta in doc_metas: node_content = json.loads(doc_meta.fields["_node_content"]) document = Document( id_=doc_meta.id, text=node_content["text"], metadata=node_content["metadata"], embedding=doc_meta.vector, ) documents.append(document) return documents
"""DashVector reader.""" from typing import Dict, List, Optional import json from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class DashVectorReader(BaseReader): """DashVector reader. Args: api_key (str): DashVector API key. endpoint (str): DashVector cluster endpoint. """ def __init__(self, api_key: str, endpoint: str): """Initialize with parameters.""" try: import dashvector except ImportError: raise ImportError( "`dashvector` package not found, please run `pip install dashvector`" ) self._client: dashvector.Client = dashvector.Client( api_key=api_key, endpoint=endpoint ) def load_data( self, collection_name: str, vector: Optional[List[float]], topk: int, filter: Optional[str] = None, include_vector: bool = True, partition: Optional[str] = None, output_fields: Optional[List[str]] = None, sparse_vector: Optional[Dict[int, float]] = None, ) -> List[Document]: """Load data from DashVector. Args: collection_name (str): Name of the collection. vector (List[float]): Query vector. topk (int): Number of results to return. filter (Optional[str]): doc fields filter conditions that meet the SQL where clause specification.detail in https://help.aliyun.com/document_detail/2513006.html?spm=a2c4g.2510250.0.0.40d25637QMI4eV include_vector (bool): Whether to include the embedding in the response.Defaults to True. partition (Optional[str]): The partition name to query. Defaults to None. output_fields (Optional[List[str]]): The fields to return. Defaults to None, meaning all fields sparse_vector (Optional[Dict[int, float]]): The sparse vector to query.Defaults to None. Returns: List[Document]: A list of documents. """ collection = self._client.get(collection_name) if not collection: raise ValueError( f"Failed to get collection: {collection_name}," f"Error: {collection}" ) ret = collection.query( vector=vector, topk=topk, filter=filter, include_vector=include_vector, partition=partition, output_fields=output_fields, sparse_vector=sparse_vector, ) if not ret: raise Exception(f"Failed to query document," f"Error: {ret}") doc_metas = ret.output documents = [] for doc_meta in doc_metas: node_content = json.loads(doc_meta.fields["_node_content"]) document = Document( id_=doc_meta.id, text=node_content["text"], metadata=node_content["metadata"], embedding=doc_meta.vector, ) documents.append(document) return documents
import os from typing import Dict import numpy as np import pytest import xgboost from xgboost import testing as tm from xgboost.testing.ranking import run_normalization, run_score_normalization pytestmark = tm.timeout(30) def comp_training_with_rank_objective( dtrain: xgboost.DMatrix, dtest: xgboost.DMatrix, rank_objective: str, metric_name: str, tolerance: float = 1e-02, ) -> None: """Internal method that trains the dataset using the rank objective on GPU and CPU, evaluates the metric and determines if the delta between the metric is within the tolerance level. """ # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] params = { "booster": "gbtree", "tree_method": "hist", "device": "cuda", } num_trees = 100 check_metric_improvement_rounds = 10 evals_result: Dict[str, Dict] = {} params["objective"] = rank_objective params["eval_metric"] = metric_name bst = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) gpu_scores = evals_result["train"][metric_name][-1] evals_result = {} cpu_params = { "booster": "gbtree", "tree_method": "hist", "device": "cpu", } cpu_params["objective"] = rank_objective cpu_params["eval_metric"] = metric_name bstc = xgboost.train( cpu_params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) cpu_scores = evals_result["train"][metric_name][-1] info = (rank_objective, metric_name) assert np.allclose(gpu_scores, cpu_scores, tolerance, tolerance), info assert np.allclose(bst.best_score, bstc.best_score, tolerance, tolerance), info evals_result_weighted: Dict[str, Dict] = {} dtest.set_weight(np.ones((dtest.get_group().size,))) dtrain.set_weight(np.ones((dtrain.get_group().size,))) watchlist = [(dtest, "eval"), (dtrain, "train")] bst_w = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result_weighted, ) weighted_metric = evals_result_weighted["train"][metric_name][-1] tolerance = 1e-5 assert np.allclose(bst_w.best_score, bst.best_score, tolerance, tolerance) assert np.allclose(weighted_metric, gpu_scores, tolerance, tolerance) @pytest.mark.parametrize( "objective,metric", [ ("rank:pairwise", "auc"), ("rank:pairwise", "ndcg"), ("rank:pairwise", "map"), ("rank:ndcg", "auc"), ("rank:ndcg", "ndcg"), ("rank:ndcg", "map"), ("rank:map", "auc"), ("rank:map", "ndcg"), ("rank:map", "map"), ], ) def test_with_mq2008(objective, metric) -> None: ( x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid, ) = tm.data.get_mq2008(tm.demo_dir(__file__)) if metric.find("map") != -1 or objective.find("map") != -1: y_train[y_train <= 1] = 0.0 y_train[y_train > 1] = 1.0 y_test[y_test <= 1] = 0.0 y_test[y_test > 1] = 1.0 dtrain = xgboost.DMatrix(x_train, y_train, qid=qid_train) dtest = xgboost.DMatrix(x_test, y_test, qid=qid_test) comp_training_with_rank_objective(dtrain, dtest, objective, metric) def test_normalization() -> None: run_normalization("cuda") @pytest.mark.parametrize("objective", ["rank:pairwise", "rank:ndcg", "rank:map"]) def test_score_normalization(objective: str) -> None: run_score_normalization("cuda", objective)
import os from typing import Dict import numpy as np import pytest import xgboost from xgboost import testing as tm from xgboost.testing.ranking import run_normalization, run_score_normalization pytestmark = tm.timeout(30) def comp_training_with_rank_objective( dtrain: xgboost.DMatrix, dtest: xgboost.DMatrix, rank_objective: str, metric_name: str, tolerance: float = 1e-02, ) -> None: """Internal method that trains the dataset using the rank objective on GPU and CPU, evaluates the metric and determines if the delta between the metric is within the tolerance level. """ # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] params = { "booster": "gbtree", "tree_method": "gpu_hist", "gpu_id": 0, } num_trees = 100 check_metric_improvement_rounds = 10 evals_result: Dict[str, Dict] = {} params["objective"] = rank_objective params["eval_metric"] = metric_name bst = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) gpu_scores = evals_result["train"][metric_name][-1] evals_result = {} cpu_params = { "booster": "gbtree", "tree_method": "hist", "gpu_id": -1, } cpu_params["objective"] = rank_objective cpu_params["eval_metric"] = metric_name bstc = xgboost.train( cpu_params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result, ) cpu_scores = evals_result["train"][metric_name][-1] info = (rank_objective, metric_name) assert np.allclose(gpu_scores, cpu_scores, tolerance, tolerance), info assert np.allclose(bst.best_score, bstc.best_score, tolerance, tolerance), info evals_result_weighted: Dict[str, Dict] = {} dtest.set_weight(np.ones((dtest.get_group().size,))) dtrain.set_weight(np.ones((dtrain.get_group().size,))) watchlist = [(dtest, "eval"), (dtrain, "train")] bst_w = xgboost.train( params, dtrain, num_boost_round=num_trees, early_stopping_rounds=check_metric_improvement_rounds, evals=watchlist, evals_result=evals_result_weighted, ) weighted_metric = evals_result_weighted["train"][metric_name][-1] tolerance = 1e-5 assert np.allclose(bst_w.best_score, bst.best_score, tolerance, tolerance) assert np.allclose(weighted_metric, gpu_scores, tolerance, tolerance) @pytest.mark.parametrize( "objective,metric", [ ("rank:pairwise", "auc"), ("rank:pairwise", "ndcg"), ("rank:pairwise", "map"), ("rank:ndcg", "auc"), ("rank:ndcg", "ndcg"), ("rank:ndcg", "map"), ("rank:map", "auc"), ("rank:map", "ndcg"), ("rank:map", "map"), ], ) def test_with_mq2008(objective, metric) -> None: ( x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid, ) = tm.data.get_mq2008(tm.demo_dir(__file__)) if metric.find("map") != -1 or objective.find("map") != -1: y_train[y_train <= 1] = 0.0 y_train[y_train > 1] = 1.0 y_test[y_test <= 1] = 0.0 y_test[y_test > 1] = 1.0 dtrain = xgboost.DMatrix(x_train, y_train, qid=qid_train) dtest = xgboost.DMatrix(x_test, y_test, qid=qid_test) comp_training_with_rank_objective(dtrain, dtest, objective, metric) def test_normalization() -> None: run_normalization("cuda") @pytest.mark.parametrize("objective", ["rank:pairwise", "rank:ndcg", "rank:map"]) def test_score_normalization(objective: str) -> None: run_score_normalization("cuda", objective)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch import torch.nn as nn from ..builder import LOSSES from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def smooth_l1_loss(pred, target, beta=1.0): """Smooth L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. Returns: torch.Tensor: Calculated loss """ assert beta > 0 if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def l1_loss(pred, target): """L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. Returns: torch.Tensor: Calculated loss """ if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() loss = torch.abs(pred - target) return loss @LOSSES.register_module() class SmoothL1Loss(nn.Module): """Smooth L1 loss. Args: beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". Defaults to "mean". loss_weight (float, optional): The weight of loss. """ def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0): super(SmoothL1Loss, self).__init__() self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * smooth_l1_loss( pred, target, weight, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox @LOSSES.register_module() class L1Loss(nn.Module): """L1 loss. Args: reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of loss. """ def __init__(self, reduction='mean', loss_weight=1.0): super(L1Loss, self).__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * l1_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss_bbox
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch import torch.nn as nn from ..builder import LOSSES from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def smooth_l1_loss(pred, target, beta=1.0): """Smooth L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. Returns: torch.Tensor: Calculated loss """ assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def l1_loss(pred, target): """L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. Returns: torch.Tensor: Calculated loss """ assert pred.size() == target.size() and target.numel() > 0 loss = torch.abs(pred - target) return loss @LOSSES.register_module() class SmoothL1Loss(nn.Module): """Smooth L1 loss. Args: beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". Defaults to "mean". loss_weight (float, optional): The weight of loss. """ def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0): super(SmoothL1Loss, self).__init__() self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * smooth_l1_loss( pred, target, weight, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox @LOSSES.register_module() class L1Loss(nn.Module): """L1 loss. Args: reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of loss. """ def __init__(self, reduction='mean', loss_weight=1.0): super(L1Loss, self).__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * l1_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss_bbox
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseRerankingEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation").select(range(1000)) samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms_marco_dev_small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) """ RerankingEvaluator: Evaluating the model on the ms_marco_dev_small dataset: Queries: 967 Positives: Min 1.0, Mean 1.1, Max 3.0 Negatives: Min 1.0, Mean 7.1, Max 9.0 MAP: 53.61 MRR@10: 54.30 NDCG@10: 65.20 Model Query Sparsity: Active Dimensions: 43.9, Sparsity Ratio: 0.9986 Model Corpus Sparsity: Active Dimensions: 128.4, Sparsity Ratio: 0.9958 """ # Print the results print(f"Primary metric: {reranking_evaluator.primary_metric}") # => Primary metric: ms_marco_dev_small_ndcg@10 print(f"Primary metric value: {results[reranking_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6520
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseRerankingEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation").select(range(1000)) samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms-marco-dev-small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) """ RerankingEvaluator: Evaluating the model on the ms-marco-dev-small dataset: Queries: 967 Positives: Min 1.0, Mean 1.1, Max 3.0 Negatives: Min 1.0, Mean 7.1, Max 9.0 MAP: 53.46 MRR@10: 54.18 NDCG@10: 65.10 Model Sparsity Stats Query : Row Non-Zero Mean: 43.89658737182617, Row Sparsity Mean: 0.9985617995262146 Model Sparsity Stats Corpus : Row Non-Zero Mean: 128.37216186523438, Row Sparsity Mean: 0.9957940578460693 """ # Print the results print(f"Primary metric: {reranking_evaluator.primary_metric}") # => Primary metric: ms-marco-dev-small_ndcg@10 print(f"Primary metric value: {results[reranking_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6510
""" This module provides dynamic access to deprecated Zapier tools in LangChain. It supports backward compatibility by forwarding references such as `ZapierNLAListActions` and `ZapierNLARunAction` to their updated locations in the `langchain_community.tools` package. Developers using older import paths will continue to function, while LangChain internally redirects access to the newer, supported module structure. """ from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ZapierNLAListActions, ZapierNLARunAction # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZapierNLARunAction": "langchain_community.tools", "ZapierNLAListActions": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """ Dynamically retrieve attributes from the updated module path. This method is used to resolve deprecated attribute imports at runtime and forward them to their new locations. Args: name (str): The name of the attribute to import. Returns: Any: The resolved attribute from the appropriate updated module. """ return _import_attribute(name) __all__ = [ "ZapierNLAListActions", "ZapierNLARunAction", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ZapierNLAListActions, ZapierNLARunAction # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZapierNLARunAction": "langchain_community.tools", "ZapierNLAListActions": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ZapierNLAListActions", "ZapierNLARunAction", ]
__version__ = '0.30.0a3' import logging from docarray.array import DocArray, DocArrayStacked from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocArray', 'DocArrayStacked'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
__version__ = '0.30.0a3' from docarray.array import DocumentArray, DocumentArrayStacked from docarray.base_document.document import BaseDocument import logging __all__ = ['BaseDocument', 'DocumentArray', 'DocumentArrayStacked'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
# mypy: allow-untyped-defs from torch.ao.quantization.pt2e.utils import _is_sym_size_node from torch.ao.quantization.quantizer.quantizer import QuantizationAnnotation from torch.fx import Node def _annotate_input_qspec_map(node: Node, input_node: Node, qspec): quantization_annotation = node.meta.get( "quantization_annotation", QuantizationAnnotation() ) if quantization_annotation.input_qspec_map is None: quantization_annotation.input_qspec_map = {} quantization_annotation.input_qspec_map[input_node] = qspec node.meta["quantization_annotation"] = quantization_annotation def _annotate_output_qspec(node: Node, qspec): quantization_annotation = node.meta.get( "quantization_annotation", QuantizationAnnotation() ) quantization_annotation.output_qspec = qspec node.meta["quantization_annotation"] = quantization_annotation def _node_only_used_for_sym_size(node: Node, partition_nodes: list[Node]): """ This utility is used to handle cases when dynami_shape=True tracing leads to symint nodes in the pattern of linear module. In those cases, we need to distinguish between the nodes that are in input for just extracting value of some dimensions (and symint nodes) vs. the one that is activation. For example: graph(x, y, weight): size_0 = torch.ops.aten.sym_size([x], [0]) size_1 = torch.ops.aten.sym_size([y], [1]) view_size = size_0 * size_1 size_3 = torch.ops.aten.sym_size([x], [2]) vie_out = torch.ops.aten.view(x, [view_size, size_3]) return mm(view_out, weight) In the example above y node is not actual input. It exist only to extract size_1 """ if _is_sym_size_node(node): return True return all( ((user not in partition_nodes) or _is_sym_size_node(user)) for user in node.users ) def _get_module_name_filter(module_name: str): """Get the module_name_filter function for a given module name, the filter accepts a node and checks if the node comes from a module that has certain module name For example: node: linear_op = call_function[...](...) # comes from a module with name blocks.sub.linear1 >> module_name_filter = _get_module_name_filter("blocks.sub") >> print(module_name_filter(node)) True # the node is from "blocks.sub" based on the fully qualified name "blocks.sub.linear1" """ def module_name_filter(n: Node) -> bool: # example: { # 'L__self___sub': ("L['self'].sub", <class '....Sub'>), # 'L__self___sub_linear': ("L['self'].sub.linear", <class 'torch.nn.modules.linear.Linear'>) # } # get_attr nodes doesn't have nn_module_stack? nn_module_stack = n.meta.get("nn_module_stack", {}) def _normalize_path(n): prefix = 0 # TODO This is non standard behavior and should be removed when we migrate off capture_pre_autograd_graph. if n.startswith("L['self']."): prefix = len("L['self'].") return n[prefix:] names = [_normalize_path(n) for n, _ in nn_module_stack.values()] return module_name in names return module_name_filter
# mypy: allow-untyped-defs from torch.ao.quantization.pt2e.utils import _is_sym_size_node from torch.ao.quantization.quantizer.quantizer import QuantizationAnnotation from torch.fx import Node def _annotate_input_qspec_map(node: Node, input_node: Node, qspec): quantization_annotation = node.meta.get( "quantization_annotation", QuantizationAnnotation() ) if quantization_annotation.input_qspec_map is None: quantization_annotation.input_qspec_map = {} quantization_annotation.input_qspec_map[input_node] = qspec node.meta["quantization_annotation"] = quantization_annotation def _annotate_output_qspec(node: Node, qspec): quantization_annotation = node.meta.get( "quantization_annotation", QuantizationAnnotation() ) quantization_annotation.output_qspec = qspec node.meta["quantization_annotation"] = quantization_annotation def _node_only_used_for_sym_size(node: Node, partition_nodes: list[Node]): """ This utility is used to handle cases when dynami_shape=True tracing leads to symint nodes in the pattern of linear module. In those cases, we need to distinguish between the nodes that are in input for just extracting value of some dimentions (and symint nodes) vs. the one that is activation. For example: graph(x, y, weight): size_0 = torch.ops.aten.sym_size([x], [0]) size_1 = torch.ops.aten.sym_size([y], [1]) view_size = size_0 * size_1 size_3 = torch.ops.aten.sym_size([x], [2]) vie_out = torch.ops.aten.view(x, [view_size, size_3]) return mm(view_out, weight) In the example above y node is not actual input. It exist only to extract size_1 """ if _is_sym_size_node(node): return True return all( ((user not in partition_nodes) or _is_sym_size_node(user)) for user in node.users ) def _get_module_name_filter(module_name: str): """Get the module_name_filter function for a given module name, the filter accepts a node and checks if the node comes from a module that has certain module name For example: node: linear_op = call_function[...](...) # comes from a module with name blocks.sub.linear1 >> module_name_filter = _get_module_name_filter("blocks.sub") >> print(module_name_filter(node)) True # the node is from "blocks.sub" based on the fully qualified name "blocks.sub.linear1" """ def module_name_filter(n: Node) -> bool: # example: { # 'L__self___sub': ("L['self'].sub", <class '....Sub'>), # 'L__self___sub_linear': ("L['self'].sub.linear", <class 'torch.nn.modules.linear.Linear'>) # } # get_attr nodes doesn't have nn_module_stack? nn_module_stack = n.meta.get("nn_module_stack", {}) def _normalize_path(n): prefix = 0 # TODO This is non standard behavior and should be removed when we migrate off capture_pre_autograd_graph. if n.startswith("L['self']."): prefix = len("L['self'].") return n[prefix:] names = [_normalize_path(n) for n, _ in nn_module_stack.values()] return module_name in names return module_name_filter
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized). This is a modification of :class:`SparseCoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SparseEncoder scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseAnglELoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseAnglELoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized). This is a modification of :class:`SparseCoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SparseEncoder scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseAnglELoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseAngleLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
"""XGBoost Experimental Federated Learning related API.""" import ctypes from threading import Thread from typing import Any, Dict, Optional from .core import _LIB, _check_call, make_jcargs from .tracker import RabitTracker class FederatedTracker(RabitTracker): """Tracker for federated training. Parameters ---------- n_workers : The number of federated workers. port : The port to listen on. secure : Whether this is a secure instance. If True, then the following arguments for SSL must be provided. server_key_path : Path to the server private key file. server_cert_path : Path to the server certificate file. client_cert_path : Path to the client certificate file. """ def __init__( # pylint: disable=R0913, W0231 self, n_workers: int, port: int, secure: bool, server_key_path: Optional[str] = None, server_cert_path: Optional[str] = None, client_cert_path: Optional[str] = None, timeout: int = 300, ) -> None: handle = ctypes.c_void_p() args = make_jcargs( n_workers=n_workers, port=port, dmlc_communicator="federated", federated_secure=secure, server_key_path=server_key_path, server_cert_path=server_cert_path, client_cert_path=client_cert_path, timeout=int(timeout), ) _check_call(_LIB.XGTrackerCreate(args, ctypes.byref(handle))) self.handle = handle def run_federated_server( # pylint: disable=too-many-arguments n_workers: int, port: int, server_key_path: Optional[str] = None, server_cert_path: Optional[str] = None, client_cert_path: Optional[str] = None, blocking: bool = True, timeout: int = 300, ) -> Optional[Dict[str, Any]]: """See :py:class:`~xgboost.federated.FederatedTracker` for more info. Parameters ---------- blocking : Block the server until the training is finished. If set to False, the function launches an additional thread and returns the worker arguments. The default is True and a higher level framework is responsible for setting worker parameters. """ args: Dict[str, Any] = {"n_workers": n_workers} secure = all( path is not None for path in [server_key_path, server_cert_path, client_cert_path] ) tracker = FederatedTracker( n_workers=n_workers, port=port, secure=secure, timeout=timeout, server_key_path=server_key_path, server_cert_path=server_cert_path, client_cert_path=client_cert_path, ) tracker.start() if blocking: tracker.wait_for() return None thread = Thread(target=tracker.wait_for) thread.daemon = True thread.start() args.update(tracker.worker_args()) return args
"""XGBoost Experimental Federated Learning related API.""" import ctypes from threading import Thread from typing import Any, Dict, Optional from .core import _LIB, _check_call, make_jcargs from .tracker import RabitTracker class FederatedTracker(RabitTracker): """Tracker for federated training. Parameters ---------- n_workers : The number of federated workers. port : The port to listen on. secure : Whether this is a secure instance. If True, then the following arguments for SSL must be provided. server_key_path : Path to the server private key file. server_cert_path : Path to the server certificate file. client_cert_path : Path to the client certificate file. """ def __init__( # pylint: disable=R0913, W0231 self, n_workers: int, port: int, secure: bool, server_key_path: str = "", server_cert_path: str = "", client_cert_path: str = "", timeout: int = 300, ) -> None: handle = ctypes.c_void_p() args = make_jcargs( n_workers=n_workers, port=port, dmlc_communicator="federated", federated_secure=secure, server_key_path=server_key_path, server_cert_path=server_cert_path, client_cert_path=client_cert_path, timeout=int(timeout), ) _check_call(_LIB.XGTrackerCreate(args, ctypes.byref(handle))) self.handle = handle def run_federated_server( # pylint: disable=too-many-arguments n_workers: int, port: int, server_key_path: Optional[str] = None, server_cert_path: Optional[str] = None, client_cert_path: Optional[str] = None, blocking: bool = True, timeout: int = 300, ) -> Optional[Dict[str, Any]]: """See :py:class:`~xgboost.federated.FederatedTracker` for more info. Parameters ---------- blocking : Block the server until the training is finished. If set to False, the function launches an additional thread and returns the worker arguments. The default is True and a higher level framework is responsible for setting worker parameters. """ args: Dict[str, Any] = {"n_workers": n_workers} secure = all( path is not None for path in [server_key_path, server_cert_path, client_cert_path] ) tracker = FederatedTracker( n_workers=n_workers, port=port, secure=secure, timeout=timeout ) tracker.start() if blocking: tracker.wait_for() return None thread = Thread(target=tracker.wait_for) thread.daemon = True thread.start() args.update(tracker.worker_args()) return args
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_1.6gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')), neck=dict( type='FPN', in_channels=[72, 168, 408, 912], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005), clip_grad=dict(max_norm=35, norm_type=2))
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_1.6gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')), neck=dict( type='FPN', in_channels=[72, 168, 408, 912], out_channels=256, num_outs=5)) optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
from typing import Any, Optional from llama_index.core.base.agent.types import TaskStepOutput, TaskStep from llama_index.core.bridge.pydantic import model_validator, field_validator from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.chat_engine.types import ( AGENT_CHAT_RESPONSE_TYPE, AgentChatResponse, StreamingAgentChatResponse, ) from llama_index.core.tools.types import ToolMetadata class AgentRunStepStartEvent(BaseEvent): """ AgentRunStepStartEvent. Args: task_id (str): Task ID. step (Optional[TaskStep]): Task step. input (Optional[str]): Optional input. """ task_id: str step: Optional[TaskStep] input: Optional[str] @classmethod def class_name(cls) -> str: """Class name.""" return "AgentRunStepStartEvent" class AgentRunStepEndEvent(BaseEvent): """ AgentRunStepEndEvent. Args: step_output (TaskStepOutput): Task step output. """ step_output: TaskStepOutput @classmethod def class_name(cls) -> str: """Class name.""" return "AgentRunStepEndEvent" class AgentChatWithStepStartEvent(BaseEvent): """ AgentChatWithStepStartEvent. Args: user_msg (str): User input message. """ user_msg: str @classmethod def class_name(cls) -> str: """Class name.""" return "AgentChatWithStepStartEvent" class AgentChatWithStepEndEvent(BaseEvent): """ AgentChatWithStepEndEvent. Args: response (Optional[AGENT_CHAT_RESPONSE_TYPE]): Agent chat response. """ response: Optional[AGENT_CHAT_RESPONSE_TYPE] @model_validator(mode="before") @classmethod def validate_response(cls: Any, values: Any) -> Any: """Validate response.""" response = values.get("response") if response is None: pass elif not isinstance(response, AgentChatResponse) and not isinstance( response, StreamingAgentChatResponse ): raise ValueError( "response must be of type AgentChatResponse or StreamingAgentChatResponse" ) return values @field_validator("response", mode="before") @classmethod def validate_response_type(cls: Any, response: Any) -> Any: """Validate response type.""" if response is None: return response if not isinstance(response, AgentChatResponse) and not isinstance( response, StreamingAgentChatResponse ): raise ValueError( "response must be of type AgentChatResponse or StreamingAgentChatResponse" ) return response @classmethod def class_name(cls) -> str: """Class name.""" return "AgentChatWithStepEndEvent" class AgentToolCallEvent(BaseEvent): """ AgentToolCallEvent. Args: arguments (str): Arguments. tool (ToolMetadata): Tool metadata. """ arguments: str tool: ToolMetadata @classmethod def class_name(cls) -> str: """Class name.""" return "AgentToolCallEvent"
from typing import Any, Optional from llama_index.core.base.agent.types import TaskStepOutput, TaskStep from llama_index.core.bridge.pydantic import model_validator, field_validator from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.chat_engine.types import ( AGENT_CHAT_RESPONSE_TYPE, AgentChatResponse, StreamingAgentChatResponse, ) from llama_index.core.tools.types import ToolMetadata class AgentRunStepStartEvent(BaseEvent): """AgentRunStepStartEvent. Args: task_id (str): Task ID. step (Optional[TaskStep]): Task step. input (Optional[str]): Optional input. """ task_id: str step: Optional[TaskStep] input: Optional[str] @classmethod def class_name(cls) -> str: """Class name.""" return "AgentRunStepStartEvent" class AgentRunStepEndEvent(BaseEvent): """AgentRunStepEndEvent. Args: step_output (TaskStepOutput): Task step output. """ step_output: TaskStepOutput @classmethod def class_name(cls) -> str: """Class name.""" return "AgentRunStepEndEvent" class AgentChatWithStepStartEvent(BaseEvent): """AgentChatWithStepStartEvent. Args: user_msg (str): User input message. """ user_msg: str @classmethod def class_name(cls) -> str: """Class name.""" return "AgentChatWithStepStartEvent" class AgentChatWithStepEndEvent(BaseEvent): """AgentChatWithStepEndEvent. Args: response (Optional[AGENT_CHAT_RESPONSE_TYPE]): Agent chat response. """ response: Optional[AGENT_CHAT_RESPONSE_TYPE] @model_validator(mode="before") @classmethod def validate_response(cls: Any, values: Any) -> Any: """Validate response.""" response = values.get("response") if response is None: pass elif not isinstance(response, AgentChatResponse) and not isinstance( response, StreamingAgentChatResponse ): raise ValueError( "response must be of type AgentChatResponse or StreamingAgentChatResponse" ) return values @field_validator("response", mode="before") @classmethod def validate_response_type(cls: Any, response: Any) -> Any: """Validate response type.""" if response is None: return response if not isinstance(response, AgentChatResponse) and not isinstance( response, StreamingAgentChatResponse ): raise ValueError( "response must be of type AgentChatResponse or StreamingAgentChatResponse" ) return response @classmethod def class_name(cls) -> str: """Class name.""" return "AgentChatWithStepEndEvent" class AgentToolCallEvent(BaseEvent): """AgentToolCallEvent. Args: arguments (str): Arguments. tool (ToolMetadata): Tool metadata. """ arguments: str tool: ToolMetadata @classmethod def class_name(cls) -> str: """Class name.""" return "AgentToolCallEvent"
# Copyright (c) OpenMMLab. All rights reserved. import torch.utils.checkpoint as cp from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from .se_layer import SELayer class InvertedResidual(BaseModule): """Inverted Residual Block. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. mid_channels (int): The input channels of the depthwise convolution. kernel_size (int): The kernal size of the depthwise convolution. Default: 3. stride (int): The stride of the depthwise convolution. Default: 1. se_cfg (dict): Config dict for se layer. Defaul: None, which means no se layer. with_expand_conv (bool): Use expand conv or not. If set False, mid_channels must be the same with in_channels. Default: True. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, mid_channels, kernel_size=3, stride=1, se_cfg=None, with_expand_conv=True, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), with_cp=False, init_cfg=None): super(InvertedResidual, self).__init__(init_cfg) self.with_res_shortcut = (stride == 1 and in_channels == out_channels) assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.with_se = se_cfg is not None self.with_expand_conv = with_expand_conv if self.with_se: assert isinstance(se_cfg, dict) if not self.with_expand_conv: assert mid_channels == in_channels if self.with_expand_conv: self.expand_conv = ConvModule( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.depthwise_conv = ConvModule( in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if self.with_se: self.se = SELayer(**se_cfg) self.linear_conv = ConvModule( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) def forward(self, x): def _inner_forward(x): out = x if self.with_expand_conv: out = self.expand_conv(out) out = self.depthwise_conv(out) if self.with_se: out = self.se(out) out = self.linear_conv(out) if self.with_res_shortcut: return x + out else: return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out
import torch.utils.checkpoint as cp from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from .se_layer import SELayer class InvertedResidual(BaseModule): """Inverted Residual Block. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. mid_channels (int): The input channels of the depthwise convolution. kernel_size (int): The kernal size of the depthwise convolution. Default: 3. stride (int): The stride of the depthwise convolution. Default: 1. se_cfg (dict): Config dict for se layer. Defaul: None, which means no se layer. with_expand_conv (bool): Use expand conv or not. If set False, mid_channels must be the same with in_channels. Default: True. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, mid_channels, kernel_size=3, stride=1, se_cfg=None, with_expand_conv=True, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), with_cp=False, init_cfg=None): super(InvertedResidual, self).__init__(init_cfg) self.with_res_shortcut = (stride == 1 and in_channels == out_channels) assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.with_se = se_cfg is not None self.with_expand_conv = with_expand_conv if self.with_se: assert isinstance(se_cfg, dict) if not self.with_expand_conv: assert mid_channels == in_channels if self.with_expand_conv: self.expand_conv = ConvModule( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.depthwise_conv = ConvModule( in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if self.with_se: self.se = SELayer(**se_cfg) self.linear_conv = ConvModule( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) def forward(self, x): def _inner_forward(x): out = x if self.with_expand_conv: out = self.expand_conv(out) out = self.depthwise_conv(out) if self.with_se: out = self.se(out) out = self.linear_conv(out) if self.with_res_shortcut: return x + out else: return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out
import inspect import logging import secrets from typing import Any, Callable, Optional from fastapi import HTTPException, Request, Security from fastapi.security import APIKeyHeader, HTTPBearer from starlette.status import HTTP_401_UNAUTHORIZED from .config import settings from .jwt_utils import parse_jwt_token security = HTTPBearer() logger = logging.getLogger(__name__) async def auth_middleware(request: Request): if not settings.ENABLE_AUTH: # If authentication is disabled, allow the request to proceed logger.warning("Auth disabled") return {} security = HTTPBearer() credentials = await security(request) if not credentials: raise HTTPException(status_code=401, detail="Authorization header is missing") try: payload = parse_jwt_token(credentials.credentials) request.state.user = payload logger.debug("Token decoded successfully") except ValueError as e: raise HTTPException(status_code=401, detail=str(e)) return payload class APIKeyValidator: """ Configurable API key validator that supports custom validation functions for FastAPI applications. This class provides a flexible way to implement API key authentication with optional custom validation logic. It can be used for simple token matching or more complex validation scenarios like database lookups. Examples: Simple token validation: ```python validator = APIKeyValidator( header_name="X-API-Key", expected_token="your-secret-token" ) @app.get("/protected", dependencies=[Depends(validator.get_dependency())]) def protected_endpoint(): return {"message": "Access granted"} ``` Custom validation with database lookup: ```python async def validate_with_db(api_key: str): api_key_obj = await db.get_api_key(api_key) return api_key_obj if api_key_obj and api_key_obj.is_active else None validator = APIKeyValidator( header_name="X-API-Key", validate_fn=validate_with_db ) ``` Args: header_name (str): The name of the header containing the API key expected_token (Optional[str]): The expected API key value for simple token matching validate_fn (Optional[Callable]): Custom validation function that takes an API key string and returns a boolean or object. Can be async. error_status (int): HTTP status code to use for validation errors error_message (str): Error message to return when validation fails """ def __init__( self, header_name: str, expected_token: Optional[str] = None, validate_fn: Optional[Callable[[str], bool]] = None, error_status: int = HTTP_401_UNAUTHORIZED, error_message: str = "Invalid API key", ): # Create the APIKeyHeader as a class property self.security_scheme = APIKeyHeader(name=header_name) self.expected_token = expected_token self.custom_validate_fn = validate_fn self.error_status = error_status self.error_message = error_message async def default_validator(self, api_key: str) -> bool: if not self.expected_token: raise ValueError( "Expected Token Required to be set when uisng API Key Validator default validation" ) return secrets.compare_digest(api_key, self.expected_token) async def __call__( self, request: Request, api_key: str = Security(APIKeyHeader) ) -> Any: if api_key is None: raise HTTPException(status_code=self.error_status, detail="Missing API key") # Use custom validation if provided, otherwise use default equality check validator = self.custom_validate_fn or self.default_validator result = ( await validator(api_key) if inspect.iscoroutinefunction(validator) else validator(api_key) ) if not result: raise HTTPException( status_code=self.error_status, detail=self.error_message ) # Store validation result in request state if it's not just a boolean if result is not True: request.state.api_key = result return result def get_dependency(self): """ Returns a callable dependency that FastAPI will recognize as a security scheme """ async def validate_api_key( request: Request, api_key: str = Security(self.security_scheme) ) -> Any: return await self(request, api_key) # This helps FastAPI recognize it as a security dependency validate_api_key.__name__ = f"validate_{self.security_scheme.model.name}" return validate_api_key
import inspect import logging from typing import Any, Callable, Optional from fastapi import HTTPException, Request, Security from fastapi.security import APIKeyHeader, HTTPBearer from starlette.status import HTTP_401_UNAUTHORIZED from .config import settings from .jwt_utils import parse_jwt_token security = HTTPBearer() logger = logging.getLogger(__name__) async def auth_middleware(request: Request): if not settings.ENABLE_AUTH: # If authentication is disabled, allow the request to proceed logger.warning("Auth disabled") return {} security = HTTPBearer() credentials = await security(request) if not credentials: raise HTTPException(status_code=401, detail="Authorization header is missing") try: payload = parse_jwt_token(credentials.credentials) request.state.user = payload logger.debug("Token decoded successfully") except ValueError as e: raise HTTPException(status_code=401, detail=str(e)) return payload class APIKeyValidator: """ Configurable API key validator that supports custom validation functions for FastAPI applications. This class provides a flexible way to implement API key authentication with optional custom validation logic. It can be used for simple token matching or more complex validation scenarios like database lookups. Examples: Simple token validation: ```python validator = APIKeyValidator( header_name="X-API-Key", expected_token="your-secret-token" ) @app.get("/protected", dependencies=[Depends(validator.get_dependency())]) def protected_endpoint(): return {"message": "Access granted"} ``` Custom validation with database lookup: ```python async def validate_with_db(api_key: str): api_key_obj = await db.get_api_key(api_key) return api_key_obj if api_key_obj and api_key_obj.is_active else None validator = APIKeyValidator( header_name="X-API-Key", validate_fn=validate_with_db ) ``` Args: header_name (str): The name of the header containing the API key expected_token (Optional[str]): The expected API key value for simple token matching validate_fn (Optional[Callable]): Custom validation function that takes an API key string and returns a boolean or object. Can be async. error_status (int): HTTP status code to use for validation errors error_message (str): Error message to return when validation fails """ def __init__( self, header_name: str, expected_token: Optional[str] = None, validate_fn: Optional[Callable[[str], bool]] = None, error_status: int = HTTP_401_UNAUTHORIZED, error_message: str = "Invalid API key", ): # Create the APIKeyHeader as a class property self.security_scheme = APIKeyHeader(name=header_name) self.expected_token = expected_token self.custom_validate_fn = validate_fn self.error_status = error_status self.error_message = error_message async def default_validator(self, api_key: str) -> bool: return api_key == self.expected_token async def __call__( self, request: Request, api_key: str = Security(APIKeyHeader) ) -> Any: if api_key is None: raise HTTPException(status_code=self.error_status, detail="Missing API key") # Use custom validation if provided, otherwise use default equality check validator = self.custom_validate_fn or self.default_validator result = ( await validator(api_key) if inspect.iscoroutinefunction(validator) else validator(api_key) ) if not result: raise HTTPException( status_code=self.error_status, detail=self.error_message ) # Store validation result in request state if it's not just a boolean if result is not True: request.state.api_key = result return result def get_dependency(self): """ Returns a callable dependency that FastAPI will recognize as a security scheme """ async def validate_api_key( request: Request, api_key: str = Security(self.security_scheme) ) -> Any: return await self(request, api_key) # This helps FastAPI recognize it as a security dependency validate_api_key.__name__ = f"validate_{self.security_scheme.model.name}" return validate_api_key
from collections.abc import Generator from langchain_huggingface.llms import HuggingFacePipeline def test_huggingface_pipeline_streaming() -> None: """Test streaming tokens from huggingface_pipeline.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10} ) generator = llm.stream("Q: How do you say 'hello' in German? A:'", stop=["."]) stream_results_string = "" assert isinstance(generator, Generator) for chunk in generator: assert isinstance(chunk, str) stream_results_string = chunk assert len(stream_results_string.strip()) > 1
from typing import Generator from langchain_huggingface.llms import HuggingFacePipeline def test_huggingface_pipeline_streaming() -> None: """Test streaming tokens from huggingface_pipeline.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10} ) generator = llm.stream("Q: How do you say 'hello' in German? A:'", stop=["."]) stream_results_string = "" assert isinstance(generator, Generator) for chunk in generator: assert isinstance(chunk, str) stream_results_string = chunk assert len(stream_results_string.strip()) > 1
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.saving.file_editor import KerasFileEditor as KerasFileEditor from keras.src.saving.object_registration import ( CustomObjectScope as CustomObjectScope, ) from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import ( get_custom_objects as get_custom_objects, ) from keras.src.saving.object_registration import ( get_registered_name as get_registered_name, ) from keras.src.saving.object_registration import ( get_registered_object as get_registered_object, ) from keras.src.saving.object_registration import ( register_keras_serializable as register_keras_serializable, ) from keras.src.saving.saving_api import load_model as load_model from keras.src.saving.saving_api import load_weights as load_weights from keras.src.saving.saving_api import save_model as save_model from keras.src.saving.saving_api import save_weights as save_weights from keras.src.saving.serialization_lib import ( deserialize_keras_object as deserialize_keras_object, ) from keras.src.saving.serialization_lib import ( serialize_keras_object as serialize_keras_object, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.saving.file_editor import KerasFileEditor from keras.src.saving.object_registration import CustomObjectScope from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import get_custom_objects from keras.src.saving.object_registration import get_registered_name from keras.src.saving.object_registration import get_registered_object from keras.src.saving.object_registration import register_keras_serializable from keras.src.saving.saving_api import load_model from keras.src.saving.saving_api import load_weights from keras.src.saving.saving_api import save_model from keras.src.saving.saving_api import save_weights from keras.src.saving.serialization_lib import deserialize_keras_object from keras.src.saving.serialization_lib import serialize_keras_object
# deprecated, please use datasets.download.download_manager
# deprecated, please use daatsets.download.download_manager
from typing import Any from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, get_buffer_string from langchain.memory.chat_memory import BaseChatMemory @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class ConversationTokenBufferMemory(BaseChatMemory): """Conversation chat memory with token limit. Keeps only the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. """ human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel memory_key: str = "history" max_token_limit: int = 2000 @property def buffer(self) -> Any: """String buffer of memory.""" return self.buffer_as_messages if self.return_messages else self.buffer_as_str @property def buffer_as_str(self) -> str: """Exposes the buffer as a string in case return_messages is False.""" return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def buffer_as_messages(self) -> list[BaseMessage]: """Exposes the buffer as a list of messages in case return_messages is True.""" return self.chat_memory.messages @property def memory_variables(self) -> list[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this conversation to buffer. Pruned.""" super().save_context(inputs, outputs) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
from typing import Any, Dict, List from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, get_buffer_string from langchain.memory.chat_memory import BaseChatMemory @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class ConversationTokenBufferMemory(BaseChatMemory): """Conversation chat memory with token limit. Keeps only the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. """ human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel memory_key: str = "history" max_token_limit: int = 2000 @property def buffer(self) -> Any: """String buffer of memory.""" return self.buffer_as_messages if self.return_messages else self.buffer_as_str @property def buffer_as_str(self) -> str: """Exposes the buffer as a string in case return_messages is False.""" return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def buffer_as_messages(self) -> List[BaseMessage]: """Exposes the buffer as a list of messages in case return_messages is True.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer. Pruned.""" super().save_context(inputs, outputs) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
import os from typing import Dict from jina import __default_executor__, __version__ from jina.enums import PodRoleType from jina.hubble.helper import parse_hub_uri from jina.hubble.hubio import HubIO def get_image_name(uses: str) -> str: """The image can be provided in different formats by the user. This function converts it to an image name which can be understood by k8s. It uses the Hub api to get the image name and the latest tag on Docker Hub. If you don't want to rebuild image on Jina Hub, you can set `JINA_HUB_NO_IMAGE_REBUILD` environment variable. :param uses: image name :return: normalized image name """ try: rebuild_image = 'JINA_HUB_NO_IMAGE_REBUILD' not in os.environ scheme, name, tag, secret = parse_hub_uri(uses) meta_data, _ = HubIO.fetch_meta( name, tag, secret=secret, rebuild_image=rebuild_image, force=True ) image_name = meta_data.image_name return image_name except Exception: if uses.startswith('docker'): # docker:// is a valid requirement and user may want to put its own image return uses.replace('docker://', '') raise def to_compatible_name(name: str) -> str: """Converts the deployment name to a valid name for K8s and docker compose. :param name: name of the deployment :return: compatible name """ return name.replace('/', '-').replace('_', '-').lower() def get_base_executor_version(): """ Get the version of jina to be used :return: the version tag """ import requests try: url = 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags' result: Dict = requests.get(url, params={'name': __version__}).json() if result.get('count', 0) > 0: return __version__ else: return 'master' except: return 'master' def construct_runtime_container_args(cargs, uses_metas, uses_with, pod_type): """ Construct a set of Namespace arguments into a list of arguments to pass to a container entrypoint :param cargs: The namespace arguments :param uses_metas: The uses_metas to override :param uses_with: The uses_with to override :param pod_type: The pod_type :return: Arguments to pass to container """ import json from jina.helper import ArgNamespace from jina.parsers import set_pod_parser taboo = { 'uses_with', 'uses_metas', 'volumes', 'uses_before', 'uses_after', 'workspace_id', 'upload_files', 'noblock_on_start', 'env', } if pod_type == PodRoleType.HEAD: taboo.add('uses') taboo.add('workspace') if pod_type in {PodRoleType.WORKER, PodRoleType.GATEWAY}: taboo.add('polling') non_defaults = ArgNamespace.get_non_defaults_args( cargs, set_pod_parser(), taboo=taboo, ) _args = ArgNamespace.kwargs2list(non_defaults) container_args = ['executor'] + _args if uses_metas is not None: container_args.extend(['--uses-metas', json.dumps(uses_metas)]) if uses_with is not None: container_args.extend(['--uses-with', json.dumps(uses_with)]) container_args.append('--native') return container_args def validate_uses(uses: str): """Validate uses argument :param uses: uses argument :return: boolean indicating whether is a valid uses to be used in K8s or docker compose """ if uses == __default_executor__ or uses.startswith('docker://'): return True try: scheme, _, _, _ = parse_hub_uri(uses) if scheme in {'jinahub+docker', 'jinahub+sandbox'}: return True except ValueError: return False
import os from jina import __default_executor__, __version__ from jina.enums import PodRoleType from jina.hubble.helper import parse_hub_uri from jina.hubble.hubio import HubIO def get_image_name(uses: str) -> str: """The image can be provided in different formats by the user. This function converts it to an image name which can be understood by k8s. It uses the Hub api to get the image name and the latest tag on Docker Hub. If you don't want to rebuild image on Jina Hub, you can set `JINA_HUB_NO_IMAGE_REBUILD` environment variable. :param uses: image name :return: normalized image name """ try: rebuild_image = 'JINA_HUB_NO_IMAGE_REBUILD' not in os.environ scheme, name, tag, secret = parse_hub_uri(uses) meta_data, _ = HubIO.fetch_meta( name, tag, secret=secret, rebuild_image=rebuild_image, force=True ) image_name = meta_data.image_name return image_name except Exception: if uses.startswith('docker'): # docker:// is a valid requirement and user may want to put its own image return uses.replace('docker://', '') raise def to_compatible_name(name: str) -> str: """Converts the deployment name to a valid name for K8s and docker compose. :param name: name of the deployment :return: compatible name """ return name.replace('/', '-').replace('_', '-').lower() def get_base_executor_version(): """ Get the version of jina to be used :return: the version tag """ import requests try: url = 'https://registry.hub.docker.com/v1/repositories/jinaai/jina/tags' tags = requests.get(url).json() name_set = {tag['name'] for tag in tags} if __version__ in name_set: return __version__ else: return 'master' except: return 'master' def construct_runtime_container_args(cargs, uses_metas, uses_with, pod_type): """ Construct a set of Namespace arguments into a list of arguments to pass to a container entrypoint :param cargs: The namespace arguments :param uses_metas: The uses_metas to override :param uses_with: The uses_with to override :param pod_type: The pod_type :return: Arguments to pass to container """ import json from jina.helper import ArgNamespace from jina.parsers import set_pod_parser taboo = { 'uses_with', 'uses_metas', 'volumes', 'uses_before', 'uses_after', 'workspace_id', 'upload_files', 'noblock_on_start', 'env', } if pod_type == PodRoleType.HEAD: taboo.add('uses') taboo.add('workspace') if pod_type in {PodRoleType.WORKER, PodRoleType.GATEWAY}: taboo.add('polling') non_defaults = ArgNamespace.get_non_defaults_args( cargs, set_pod_parser(), taboo=taboo, ) _args = ArgNamespace.kwargs2list(non_defaults) container_args = ['executor'] + _args if uses_metas is not None: container_args.extend(['--uses-metas', json.dumps(uses_metas)]) if uses_with is not None: container_args.extend(['--uses-with', json.dumps(uses_with)]) container_args.append('--native') return container_args def validate_uses(uses: str): """Validate uses argument :param uses: uses argument :return: boolean indicating whether is a valid uses to be used in K8s or docker compose """ if uses == __default_executor__ or uses.startswith('docker://'): return True try: scheme, _, _, _ = parse_hub_uri(uses) if scheme in {'jinahub+docker', 'jinahub+sandbox'}: return True except ValueError: return False
from typing import List, cast from llama_index.core.indices.vector_store.base import VectorStoreIndex from llama_index.core.schema import ( Document, NodeRelationship, QueryBundle, RelatedNodeInfo, TextNode, ) from llama_index.core.vector_stores.simple import SimpleVectorStore def test_simple_query( documents: List[Document], patch_llm_predictor, patch_token_text_splitter, mock_embed_model, ) -> None: """Test embedding query.""" index = VectorStoreIndex.from_documents(documents, embed_model=mock_embed_model) # test embedding query query_str = "What is?" retriever = index.as_retriever(similarity_top_k=1) nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) == 1 assert nodes[0].node.get_content() == "This is another test." def test_query_and_similarity_scores( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test that sources nodes have similarity scores.""" doc_text = ( "Hello world.\nThis is a test.\nThis is another test.\nThis is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) > 0 assert nodes[0].score is not None def test_simple_check_ids( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test build VectorStoreIndex.""" ref_doc_id = "ref_doc_id_test" source_rel = {NodeRelationship.SOURCE: RelatedNodeInfo(node_id=ref_doc_id)} all_nodes = [ TextNode(text="Hello world.", id_="node1", relationships=source_rel), TextNode(text="This is a test.", id_="node2", relationships=source_rel), TextNode(text="This is another test.", id_="node3", relationships=source_rel), TextNode(text="This is a test v2.", id_="node4", relationships=source_rel), ] index = VectorStoreIndex(all_nodes) # test query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert nodes[0].node.get_content() == "This is another test." assert nodes[0].node.ref_doc_id == "ref_doc_id_test" assert nodes[0].node.node_id == "node3" vector_store = cast(SimpleVectorStore, index._vector_store) assert "node3" in vector_store._data.embedding_dict assert "node3" in vector_store._data.text_id_to_ref_doc_id def test_query( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test embedding query.""" doc_text = ( "Hello world.\nThis is a test.\nThis is another test.\nThis is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() _ = retriever.retrieve(QueryBundle(query_str))
from typing import List, cast from llama_index.core.indices.vector_store.base import VectorStoreIndex from llama_index.core.schema import ( Document, NodeRelationship, QueryBundle, RelatedNodeInfo, TextNode, ) from llama_index.core.vector_stores.simple import SimpleVectorStore def test_simple_query( documents: List[Document], patch_llm_predictor, patch_token_text_splitter, mock_embed_model, ) -> None: """Test embedding query.""" index = VectorStoreIndex.from_documents(documents, embed_model=mock_embed_model) # test embedding query query_str = "What is?" retriever = index.as_retriever(similarity_top_k=1) nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) == 1 assert nodes[0].node.get_content() == "This is another test." def test_query_and_similarity_scores( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test that sources nodes have similarity scores.""" doc_text = ( "Hello world.\n" "This is a test.\n" "This is another test.\n" "This is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) > 0 assert nodes[0].score is not None def test_simple_check_ids( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test build VectorStoreIndex.""" ref_doc_id = "ref_doc_id_test" source_rel = {NodeRelationship.SOURCE: RelatedNodeInfo(node_id=ref_doc_id)} all_nodes = [ TextNode(text="Hello world.", id_="node1", relationships=source_rel), TextNode(text="This is a test.", id_="node2", relationships=source_rel), TextNode(text="This is another test.", id_="node3", relationships=source_rel), TextNode(text="This is a test v2.", id_="node4", relationships=source_rel), ] index = VectorStoreIndex(all_nodes) # test query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert nodes[0].node.get_content() == "This is another test." assert nodes[0].node.ref_doc_id == "ref_doc_id_test" assert nodes[0].node.node_id == "node3" vector_store = cast(SimpleVectorStore, index._vector_store) assert "node3" in vector_store._data.embedding_dict assert "node3" in vector_store._data.text_id_to_ref_doc_id def test_query( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test embedding query.""" doc_text = ( "Hello world.\n" "This is a test.\n" "This is another test.\n" "This is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() _ = retriever.retrieve(QueryBundle(query_str))
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import numpy as np import pytest from docarray import BaseDoc, DocList, DocVec from docarray.typing import NdArray class Nested(BaseDoc): tensor: NdArray class Image(BaseDoc): features: Optional[Nested] = None def test_optional_field(): docs = DocVec[Image]([Image() for _ in range(10)]) assert docs.features is None docs.features = DocList[Nested]([Nested(tensor=np.zeros(10)) for _ in range(10)]) assert docs.features.tensor.shape == (10, 10) for doc in docs: assert doc.features.tensor.shape == (10,) def test_set_none(): docs = DocVec[Image]( [Image(features=Nested(tensor=np.zeros(10))) for _ in range(10)] ) assert docs.features.tensor.shape == (10, 10) docs.features = None assert docs.features is None for doc in docs: assert doc.features is None def test_set_doc(): docs = DocVec[Image]( [Image(features=Nested(tensor=np.zeros(10))) for _ in range(10)] ) assert docs.features.tensor.shape == (10, 10) for doc in docs: doc.features = Nested(tensor=np.ones(10)) with pytest.raises(ValueError): doc.features = None def test_set_doc_none(): docs = DocVec[Image]([Image() for _ in range(10)]) assert docs.features is None for doc in docs: with pytest.raises(ValueError): doc.features = Nested(tensor=np.ones(10)) def test_no_uniform_none(): with pytest.raises(ValueError): DocVec[Image]([Image(), Image(features=Nested(tensor=np.zeros(10)))]) with pytest.raises(ValueError): DocVec[Image]([Image(features=Nested(tensor=np.zeros(10))), Image()])
from typing import Optional import numpy as np import pytest from docarray import BaseDoc, DocList, DocVec from docarray.typing import NdArray class Nested(BaseDoc): tensor: NdArray class Image(BaseDoc): features: Optional[Nested] = None def test_optional_field(): docs = DocVec[Image]([Image() for _ in range(10)]) assert docs.features is None docs.features = DocList[Nested]([Nested(tensor=np.zeros(10)) for _ in range(10)]) assert docs.features.tensor.shape == (10, 10) for doc in docs: assert doc.features.tensor.shape == (10,) def test_set_none(): docs = DocVec[Image]( [Image(features=Nested(tensor=np.zeros(10))) for _ in range(10)] ) assert docs.features.tensor.shape == (10, 10) docs.features = None assert docs.features is None for doc in docs: assert doc.features is None def test_set_doc(): docs = DocVec[Image]( [Image(features=Nested(tensor=np.zeros(10))) for _ in range(10)] ) assert docs.features.tensor.shape == (10, 10) for doc in docs: doc.features = Nested(tensor=np.ones(10)) with pytest.raises(ValueError): doc.features = None def test_set_doc_none(): docs = DocVec[Image]([Image() for _ in range(10)]) assert docs.features is None for doc in docs: with pytest.raises(ValueError): doc.features = Nested(tensor=np.ones(10)) def test_no_uniform_none(): with pytest.raises(ValueError): DocVec[Image]([Image(), Image(features=Nested(tensor=np.zeros(10)))]) with pytest.raises(ValueError): DocVec[Image]([Image(features=Nested(tensor=np.zeros(10))), Image()])