input
stringlengths 33
5k
| output
stringlengths 32
5k
|
---|---|
from argparse import Namespace
from copy import deepcopy
from typing import TYPE_CHECKING, Type
from hubble.executor.helper import is_valid_huburi
from hubble.executor.hubio import HubIO
from jina.enums import PodRoleType
from jina.orchestrate.pods import Pod
from jina.orchestrate.pods.container import ContainerPod
if TYPE_CHECKING: # pragma: no cover
from jina.orchestrate.pods import BasePod
class PodFactory:
"""
A PodFactory is a factory class, abstracting the Pod creation
"""
@staticmethod
def build_pod(args: 'Namespace', gateway_load_balancer: bool = False) -> Type['BasePod']:
"""Build an implementation of a `BasePod` interface
:param args: deployment arguments parsed from the CLI.
:param gateway_load_balancer: flag indicating if this Pod is supposed to be a Gateway Load Balancer
:return: the created Deployment
"""
# copy to update but forward original
cargs = deepcopy(args)
cargs.gateway_load_balancer = gateway_load_balancer
if is_valid_huburi(cargs.uses):
_hub_args = deepcopy(args)
_hub_args.uri = args.uses
_hub_args.no_usage = True
cargs.uses = HubIO(_hub_args).pull()
if (
cargs.pod_role != PodRoleType.HEAD
and cargs.uses
and cargs.uses.startswith('docker://')
):
return ContainerPod(cargs)
else:
return Pod(cargs)
|
from argparse import Namespace
from copy import deepcopy
from typing import TYPE_CHECKING, Type
from hubble.executor.helper import is_valid_huburi
from hubble.executor.hubio import HubIO
from jina.enums import PodRoleType
from jina.orchestrate.pods import Pod
from jina.orchestrate.pods.container import ContainerPod
if TYPE_CHECKING: # pragma: no cover
from jina.orchestrate.pods import BasePod
class PodFactory:
"""
A PodFactory is a factory class, abstracting the Pod creation
"""
@staticmethod
def build_pod(args: 'Namespace') -> Type['BasePod']:
"""Build an implementation of a `BasePod` interface
:param args: deployment arguments parsed from the CLI.
:return: the created Deployment
"""
# copy to update but forward original
cargs = deepcopy(args)
if is_valid_huburi(cargs.uses):
_hub_args = deepcopy(args)
_hub_args.uri = args.uses
_hub_args.no_usage = True
cargs.uses = HubIO(_hub_args).pull()
if (
cargs.pod_role != PodRoleType.HEAD
and cargs.uses
and cargs.uses.startswith('docker://')
):
return ContainerPod(cargs)
else:
return Pod(args)
|
__version__ = '0.14.5'
import os
from docarray.document import Document
from docarray.array import DocumentArray
from docarray.dataclasses import dataclass, field
if 'DA_RICH_HANDLER' in os.environ:
from rich.traceback import install
install()
|
__version__ = '0.14.4'
import os
from docarray.document import Document
from docarray.array import DocumentArray
from docarray.dataclasses import dataclass, field
if 'DA_RICH_HANDLER' in os.environ:
from rich.traceback import install
install()
|
# Licensed to the LF AI & Data foundation under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from typing import Dict, List
from docarray import BaseDoc, DocList
from docarray.documents import ImageDoc
from docarray.typing import NdArray
class MyDoc(BaseDoc):
embedding: NdArray
text: str
image: ImageDoc
class MySimpleDoc(BaseDoc):
title: str
class MyComplexDoc(BaseDoc):
content_dict_doclist: Dict[str, DocList[MySimpleDoc]]
content_dict_list: Dict[str, List[MySimpleDoc]]
aux_dict: Dict[str, int]
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_bytes(protocol, compress):
d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png'))
assert d.text == 'hello'
assert d.embedding.tolist() == [1, 2, 3, 4, 5]
assert d.image.url == 'aux.png'
bstr = d.to_bytes(protocol=protocol, compress=compress)
d2 = MyDoc.from_bytes(bstr, protocol=protocol, compress=compress)
assert d2.text == 'hello'
assert d2.embedding.tolist() == [1, 2, 3, 4, 5]
assert d2.image.url == 'aux.png'
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_base64(protocol, compress):
d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png'))
assert d.text == 'hello'
assert d.embedding.tolist() == [1, 2, 3, 4, 5]
assert d.image.url == 'aux.png'
bstr = d.to_base64(protocol=protocol, compress=compress)
d2 = MyDoc.from_base64(bstr, protocol=protocol, compress=compress)
assert d2.text == 'hello'
assert d2.embedding.tolist() == [1, 2, 3, 4, 5]
assert d2.image.url == 'aux.png'
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_bytes_complex(protocol, compress):
d = MyComplexDoc(
content_dict_doclist={
'test1': DocList[MySimpleDoc](
[MySimpleDoc(title='123'), MySimpleDoc(title='456')]
)
},
content_dict_list={
'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')]
},
aux_dict={'a': 0},
)
bstr = d.to_bytes(protocol=protocol, compress=compress)
d2 = MyComplexDoc.from_bytes(bstr, protocol=protocol, compress=compress)
assert d2.aux_dict == {'a': 0}
assert len(d2.content_dict_doclist['test1']) == 2
assert d2.content_dict_doclist['test1'][0].title == '123'
assert d2.content_dict_doclist['test1'][1].title == '456'
assert len(d2.content_dict_list['test1']) == 2
assert d2.content_dict_list['test1'][0].title == '123'
assert d2.content_dict_list['test1'][1].title == '456'
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_base64_complex(protocol, compress):
d = MyComplexDoc(
content_dict_doclist={
'test1': DocList[MySimpleDoc](
[MySimpleDoc(title='123'), MySimpleDoc(title='456')]
)
},
content_dict_list={
'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')]
},
aux_dict={'a': 0},
)
bstr = d.to_base64(protocol=protocol, compress=compress)
d2 = MyComplexDoc.from_base64(bstr, protocol=protocol, compress=compress)
assert d2.aux_dict == {'a': 0}
assert len(d2.content_dict_doclist['test1']) == 2
assert d2.content_dict_doclist['test1'][0].title == '123'
assert d2.content_dict_doclist['test1'][1].title == '456'
assert len(d2.content_dict_list['test1']) == 2
assert d2.content_dict_list['test1'][0].title == '123'
assert d2.content_dict_list['test1'][1].title == '456'
|
import pytest
from typing import Dict, List
from docarray import BaseDoc, DocList
from docarray.documents import ImageDoc
from docarray.typing import NdArray
class MyDoc(BaseDoc):
embedding: NdArray
text: str
image: ImageDoc
class MySimpleDoc(BaseDoc):
title: str
class MyComplexDoc(BaseDoc):
content_dict_doclist: Dict[str, DocList[MySimpleDoc]]
content_dict_list: Dict[str, List[MySimpleDoc]]
aux_dict: Dict[str, int]
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_bytes(protocol, compress):
d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png'))
assert d.text == 'hello'
assert d.embedding.tolist() == [1, 2, 3, 4, 5]
assert d.image.url == 'aux.png'
bstr = d.to_bytes(protocol=protocol, compress=compress)
d2 = MyDoc.from_bytes(bstr, protocol=protocol, compress=compress)
assert d2.text == 'hello'
assert d2.embedding.tolist() == [1, 2, 3, 4, 5]
assert d2.image.url == 'aux.png'
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_base64(protocol, compress):
d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png'))
assert d.text == 'hello'
assert d.embedding.tolist() == [1, 2, 3, 4, 5]
assert d.image.url == 'aux.png'
bstr = d.to_base64(protocol=protocol, compress=compress)
d2 = MyDoc.from_base64(bstr, protocol=protocol, compress=compress)
assert d2.text == 'hello'
assert d2.embedding.tolist() == [1, 2, 3, 4, 5]
assert d2.image.url == 'aux.png'
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_bytes_complex(protocol, compress):
d = MyComplexDoc(
content_dict_doclist={
'test1': DocList[MySimpleDoc](
[MySimpleDoc(title='123'), MySimpleDoc(title='456')]
)
},
content_dict_list={
'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')]
},
aux_dict={'a': 0},
)
bstr = d.to_bytes(protocol=protocol, compress=compress)
d2 = MyComplexDoc.from_bytes(bstr, protocol=protocol, compress=compress)
assert d2.aux_dict == {'a': 0}
assert len(d2.content_dict_doclist['test1']) == 2
assert d2.content_dict_doclist['test1'][0].title == '123'
assert d2.content_dict_doclist['test1'][1].title == '456'
assert len(d2.content_dict_list['test1']) == 2
assert d2.content_dict_list['test1'][0].title == '123'
assert d2.content_dict_list['test1'][1].title == '456'
@pytest.mark.parametrize('protocol', ['protobuf', 'pickle'])
@pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None])
def test_to_from_base64_complex(protocol, compress):
d = MyComplexDoc(
content_dict_doclist={
'test1': DocList[MySimpleDoc](
[MySimpleDoc(title='123'), MySimpleDoc(title='456')]
)
},
content_dict_list={
'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')]
},
aux_dict={'a': 0},
)
bstr = d.to_base64(protocol=protocol, compress=compress)
d2 = MyComplexDoc.from_base64(bstr, protocol=protocol, compress=compress)
assert d2.aux_dict == {'a': 0}
assert len(d2.content_dict_doclist['test1']) == 2
assert d2.content_dict_doclist['test1'][0].title == '123'
assert d2.content_dict_doclist['test1'][1].title == '456'
assert len(d2.content_dict_list['test1']) == 2
assert d2.content_dict_list['test1'][0].title == '123'
assert d2.content_dict_list['test1'][1].title == '456'
|
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format.
"""
import logging
from torch.nn import Module
from ..model import wav2vec2_model, Wav2Vec2Model
_LG = logging.getLogger(__name__)
def _get_config(cfg):
config = {
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
"extractor_conv_bias": cfg.conv_bias,
"encoder_embed_dim": cfg.hidden_size,
"encoder_projection_dropout": cfg.feat_proj_dropout,
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
"encoder_num_layers": cfg.num_hidden_layers,
"encoder_num_heads": cfg.num_attention_heads,
"encoder_attention_dropout": cfg.attention_dropout,
"encoder_ff_interm_features": cfg.intermediate_size,
"encoder_ff_interm_dropout": cfg.activation_dropout,
"encoder_dropout": cfg.hidden_dropout,
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
"encoder_layer_drop": cfg.layerdrop,
}
return config
def _build(config, original):
if original.__class__.__name__ == "Wav2Vec2ForCTC":
aux_num_out = original.config.vocab_size
wav2vec2 = original.wav2vec2
else:
_LG.warning("The model is not an instance of Wav2Vec2ForCTC. " '"lm_head" module is not imported.')
aux_num_out = None
wav2vec2 = original
imported = wav2vec2_model(**config, aux_num_out=aux_num_out)
imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict())
imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict())
imported.encoder.transformer.load_state_dict(wav2vec2.encoder.state_dict())
if original.__class__.__name__ == "Wav2Vec2ForCTC":
imported.aux.load_state_dict(original.lm_head.state_dict())
return imported
def import_huggingface_model(original: Module) -> Wav2Vec2Model:
"""Build Wav2Vec2Model from the corresponding model object of Hugging Face's `Transformers`_.
Args:
original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``.
Returns:
Wav2Vec2Model: Imported model.
Example
>>> from torchaudio.models.wav2vec2.utils import import_huggingface_model
>>>
>>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = import_huggingface_model(original)
>>>
>>> waveforms, _ = torchaudio.load("audio.wav")
>>> logits, _ = model(waveforms)
.. _Transformers: https://huggingface.co/transformers/
"""
_LG.info("Importing model.")
_LG.info("Loading model configuration.")
config = _get_config(original.config)
_LG.debug(" - config: %s", config)
_LG.info("Building model.")
imported = _build(config, original)
return imported
|
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format.
"""
import logging
from torch.nn import Module
from ..model import wav2vec2_model, Wav2Vec2Model
_LG = logging.getLogger(__name__)
def _get_config(cfg):
config = {
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
"extractor_conv_bias": cfg.conv_bias,
"encoder_embed_dim": cfg.hidden_size,
"encoder_projection_dropout": cfg.feat_proj_dropout,
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
"encoder_num_layers": cfg.num_hidden_layers,
"encoder_num_heads": cfg.num_attention_heads,
"encoder_attention_dropout": cfg.attention_dropout,
"encoder_ff_interm_features": cfg.intermediate_size,
"encoder_ff_interm_dropout": cfg.activation_dropout,
"encoder_dropout": cfg.hidden_dropout,
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
"encoder_layer_drop": cfg.layerdrop,
}
return config
def _build(config, original):
if original.__class__.__name__ == "Wav2Vec2ForCTC":
aux_num_out = original.config.vocab_size
wav2vec2 = original.wav2vec2
else:
_LG.warning("The model is not an instance of Wav2Vec2ForCTC. " '"lm_head" module is not imported.')
aux_num_out = None
wav2vec2 = original
imported = wav2vec2_model(**config, aux_num_out=aux_num_out)
imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict())
imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict())
imported.encoder.transformer.load_state_dict(wav2vec2.encoder.state_dict())
if original.__class__.__name__ == "Wav2Vec2ForCTC":
imported.aux.load_state_dict(original.lm_head.state_dict())
return imported
def import_huggingface_model(original: Module) -> Wav2Vec2Model:
"""import_huggingface_model(original: torch.nn.Module) -> torchaudio.models.Wav2Vec2Model
Build Wav2Vec2Model from the corresponding model object of Hugging Face's `Transformers`_.
Args:
original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``.
Returns:
Wav2Vec2Model: Imported model.
Example
>>> from torchaudio.models.wav2vec2.utils import import_huggingface_model
>>>
>>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = import_huggingface_model(original)
>>>
>>> waveforms, _ = torchaudio.load("audio.wav")
>>> logits, _ = model(waveforms)
.. _Transformers: https://huggingface.co/transformers/
"""
_LG.info("Importing model.")
_LG.info("Loading model configuration.")
config = _get_config(original.config)
_LG.debug(" - config: %s", config)
_LG.info("Building model.")
imported = _build(config, original)
return imported
|
import asyncio
from typing import AsyncIterator, Iterator, Optional, Union
from jina.helper import get_or_reuse_loop
class _RequestsCounter:
"""Class used to wrap a count integer so that it can be updated inside methods.
.. code-block:: python
def count_increment(i: int, rc: _RequestsCounter):
i += 1
rc.count += 1
c_int = 0
c_rc = _RequestsCounter()
count_increment(c_int, c_rc)
assert c_int == 0
assert c_rc.count == 1
"""
count = 0
class AsyncRequestsIterator:
"""Iterator to allow async iteration of blocking/non-blocking iterator from the Client"""
def __init__(
self,
iterator: Union[Iterator, AsyncIterator],
request_counter: Optional[_RequestsCounter] = None,
prefetch: int = 0,
iterate_sync_in_thread: bool = True,
) -> None:
"""Async request iterator
:param iterator: request iterator
:param request_counter: counter of the numbers of request being handled at a given moment
:param prefetch: The max amount of requests to be handled at a given moment (0 disables feature)
:param iterate_sync_in_thread: if True, blocking iterators will call __next__ in a Thread.
"""
self.iterator = iterator
self._request_counter = request_counter
self._prefetch = prefetch
self._iterate_sync_in_thread = iterate_sync_in_thread
def iterator__next__(self):
"""
Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception.
"StopIteration interacts badly with generators and cannot be raised into a Future"
:return: next request or None
"""
try:
return self.iterator.__next__()
except StopIteration:
return None
def __aiter__(self):
return self
async def __anext__(self):
if isinstance(self.iterator, Iterator):
"""
An `Iterator` indicates "blocking" code, which might block all tasks in the event loop.
Hence we iterate in the default executor provided by asyncio.
"""
if not self._iterate_sync_in_thread:
async def _get_next():
try:
req = self.iterator.__next__()
except StopIteration:
req = None
return req
request = await asyncio.create_task(_get_next())
else:
request = await get_or_reuse_loop().run_in_executor(
None, self.iterator__next__
)
"""
`iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor,
which raises the following exception while chaining states in futures.
"StopIteration interacts badly with generators and cannot be raised into a Future"
To avoid that, we handle the raise by a `return None`
"""
if request is None:
raise StopAsyncIteration
elif isinstance(self.iterator, AsyncIterator):
# we assume that `AsyncIterator` doesn't block the event loop
request = await self.iterator.__anext__()
if self._prefetch > 0:
while self._request_counter.count >= self._prefetch:
await asyncio.sleep(0)
return request
|
import asyncio
from typing import AsyncIterator, Iterator, Optional, Union
from jina.helper import get_or_reuse_loop
class _RequestsCounter:
"""Class used to wrap a count integer so that it can be updated inside methods.
.. code-block:: python
def count_increment(i: int, rc: _RequestsCounter):
i += 1
rc.count += 1
c_int = 0
c_rc = _RequestsCounter()
count_increment(c_int, c_rc)
assert c_int == 0
assert c_rc.count == 1
"""
count = 0
class AsyncRequestsIterator:
"""Iterator to allow async iteration of blocking/non-blocking iterator from the Client"""
def __init__(
self,
iterator: Union[Iterator, AsyncIterator],
request_counter: Optional[_RequestsCounter] = None,
prefetch: int = 0,
iterate_sync_in_thread: bool = True,
) -> None:
"""Async request iterator
:param iterator: request iterator
:param request_counter: counter of the numbers of request being handled at a given moment
:param prefetch: The max amount of requests to be handled at a given moment (0 disables feature)
:param iterate_sync_in_thread: if True, blocking iterators will call __next__ in a Thread.
"""
self.iterator = iterator
self._request_counter = request_counter
self._prefetch = prefetch
self._iterate_sync_in_thread = iterate_sync_in_thread
def iterator__next__(self):
"""
Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception.
"StopIteration interacts badly with generators and cannot be raised into a Future"
:return: next request or None
"""
try:
return self.iterator.__next__()
except StopIteration:
return None
def __aiter__(self):
return self
async def __anext__(self):
if isinstance(self.iterator, Iterator):
"""
An `Iterator` indicates "blocking" code, which might block all tasks in the event loop.
Hence we iterate in the default executor provided by asyncio.
"""
if not self._iterate_sync_in_thread:
async def _get_next():
try:
req = self.iterator.__next__()
except StopIteration:
req = None
return req
request = await asyncio.create_task(_get_next())
else:
request = await get_or_reuse_loop().run_in_executor(
None, self.iterator__next__
)
"""
`iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor,
which raises the following exception while chaining states in futures.
"StopIteration interacts badly with generators and cannot be raised into a Future"
To avoid that, we handle the raise by a `return None`
"""
if request is None:
raise StopAsyncIteration
elif isinstance(self.iterator, AsyncIterator):
# we assume that `AsyncIterator` doesn't block the event loop
request = await self.iterator.__anext__()
if self._prefetch > 0:
while self._request_counter.count >= self._prefetch:
await asyncio.sleep(0)
return request
|
_base_ = '../faster_rcnn/faster-rcnn_r50-caffe_fpn_1x_coco.py'
rpn_weight = 0.7
model = dict(
rpn_head=dict(
_delete_=True,
type='CascadeRPNHead',
num_stages=2,
stages=[
dict(
type='StageCascadeRPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[1.0],
strides=[4, 8, 16, 32, 64]),
adapt_cfg=dict(type='dilation', dilation=3),
bridged_feature=True,
with_cls=False,
reg_decoded_bbox=True,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=(.0, .0, .0, .0),
target_stds=(0.1, 0.1, 0.5, 0.5)),
loss_bbox=dict(
type='IoULoss', linear=True,
loss_weight=10.0 * rpn_weight)),
dict(
type='StageCascadeRPNHead',
in_channels=256,
feat_channels=256,
adapt_cfg=dict(type='offset'),
bridged_feature=False,
with_cls=True,
reg_decoded_bbox=True,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=(.0, .0, .0, .0),
target_stds=(0.05, 0.05, 0.1, 0.1)),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0 * rpn_weight),
loss_bbox=dict(
type='IoULoss', linear=True,
loss_weight=10.0 * rpn_weight))
]),
roi_head=dict(
bbox_head=dict(
bbox_coder=dict(target_stds=[0.04, 0.04, 0.08, 0.08]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.5),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=[
dict(
assigner=dict(
type='RegionAssigner', center_ratio=0.2, ignore_ratio=0.5),
allowed_border=-1,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False)
],
rpn_proposal=dict(max_per_img=300, nms=dict(iou_threshold=0.8)),
rcnn=dict(
assigner=dict(
pos_iou_thr=0.65, neg_iou_thr=0.65, min_pos_iou=0.65),
sampler=dict(type='RandomSampler', num=256))),
test_cfg=dict(
rpn=dict(max_per_img=300, nms=dict(iou_threshold=0.8)),
rcnn=dict(score_thr=1e-3)))
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
|
_base_ = '../faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py'
rpn_weight = 0.7
model = dict(
rpn_head=dict(
_delete_=True,
type='CascadeRPNHead',
num_stages=2,
stages=[
dict(
type='StageCascadeRPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[1.0],
strides=[4, 8, 16, 32, 64]),
adapt_cfg=dict(type='dilation', dilation=3),
bridged_feature=True,
with_cls=False,
reg_decoded_bbox=True,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=(.0, .0, .0, .0),
target_stds=(0.1, 0.1, 0.5, 0.5)),
loss_bbox=dict(
type='IoULoss', linear=True,
loss_weight=10.0 * rpn_weight)),
dict(
type='StageCascadeRPNHead',
in_channels=256,
feat_channels=256,
adapt_cfg=dict(type='offset'),
bridged_feature=False,
with_cls=True,
reg_decoded_bbox=True,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=(.0, .0, .0, .0),
target_stds=(0.05, 0.05, 0.1, 0.1)),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0 * rpn_weight),
loss_bbox=dict(
type='IoULoss', linear=True,
loss_weight=10.0 * rpn_weight))
]),
roi_head=dict(
bbox_head=dict(
bbox_coder=dict(target_stds=[0.04, 0.04, 0.08, 0.08]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.5),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=[
dict(
assigner=dict(
type='RegionAssigner', center_ratio=0.2, ignore_ratio=0.5),
allowed_border=-1,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False)
],
rpn_proposal=dict(max_per_img=300, nms=dict(iou_threshold=0.8)),
rcnn=dict(
assigner=dict(
pos_iou_thr=0.65, neg_iou_thr=0.65, min_pos_iou=0.65),
sampler=dict(type='RandomSampler', num=256))),
test_cfg=dict(
rpn=dict(max_per_img=300, nms=dict(iou_threshold=0.8)),
rcnn=dict(score_thr=1e-3)))
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
|
from typing import Union, Dict, Any
import google.ai.generativelanguage as glm
import google.generativeai as genai
from llama_index.core.base.llms.types import (
ChatMessage,
ChatResponse,
CompletionResponse,
ImageBlock,
TextBlock,
)
from llama_index.core.multi_modal_llms.base import ChatMessage
from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI
# These are the shortened model names
# Any model that contains one of these names will not support function calling
MODELS_WITHOUT_FUNCTION_CALLING_SUPPORT = [
"gemini-2.0-flash-thinking",
"gemini-2.0-flash-lite",
]
def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release
if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally)
reason = finish_reason.name
# Safety reasons have more detail, so include that if we can.
if finish_reason == 3: # 3=Safety
relevant_safety = list(
filter(
lambda sr: sr.probability > 1, # 1=Negligible
candidate.safety_ratings,
)
)
reason += f" {relevant_safety}"
raise RuntimeError(f"Response was terminated early: {reason}")
def completion_from_gemini_response(
response: Union[
"genai.types.GenerateContentResponse",
"genai.types.AsyncGenerateContentResponse",
],
) -> CompletionResponse:
top_candidate = response.candidates[0]
_error_if_finished_early(top_candidate)
raw = {
**(type(top_candidate).to_dict(top_candidate)), # type: ignore
**(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore
}
if response.usage_metadata:
raw["usage_metadata"] = type(response.usage_metadata).to_dict(
response.usage_metadata
)
return CompletionResponse(text=response.text, raw=raw)
def chat_from_gemini_response(
response: Union[
"genai.types.GenerateContentResponse",
"genai.types.AsyncGenerateContentResponse",
],
) -> ChatResponse:
top_candidate = response.candidates[0]
_error_if_finished_early(top_candidate)
raw = {
**(type(top_candidate).to_dict(top_candidate)), # type: ignore
**(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore
}
if response.usage_metadata:
raw["usage_metadata"] = type(response.usage_metadata).to_dict(
response.usage_metadata
)
role = ROLES_FROM_GEMINI[top_candidate.content.role]
try:
# When the response contains only a function call, the library
# raises an exception.
# The easiest way to detect this is to try access the text attribute and
# catch the exception.
# https://github.com/google-gemini/generative-ai-python/issues/670
text = response.text
except (ValueError, AttributeError):
text = None
additional_kwargs: Dict[str, Any] = {}
for part in response.parts:
if fn := part.function_call:
if "tool_calls" not in additional_kwargs:
additional_kwargs["tool_calls"] = []
additional_kwargs["tool_calls"].append(fn)
return ChatResponse(
message=ChatMessage(
role=role, content=text, additional_kwargs=additional_kwargs
),
raw=raw,
additional_kwargs=additional_kwargs,
)
def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict":
"""Convert ChatMessages to Gemini-specific history, including ImageDocuments."""
parts = []
for block in message.blocks:
if isinstance(block, TextBlock):
if block.text:
parts.append({"text": block.text})
elif isinstance(block, ImageBlock):
base64_bytes = block.resolve_image(as_base64=False).read()
parts.append(
{
"mime_type": block.image_mimetype,
"data": base64_bytes,
}
)
else:
msg = f"Unsupported content block type: {type(block).__name__}"
raise ValueError(msg)
for tool_call in message.additional_kwargs.get("tool_calls", []):
parts.append(tool_call)
return {
"role": ROLES_TO_GEMINI[message.role],
"parts": parts,
}
def is_function_calling_model(model: str) -> bool:
for model_name in MODELS_WITHOUT_FUNCTION_CALLING_SUPPORT:
if model_name in model:
return False
return True
|
from typing import Union, Dict, Any
import google.ai.generativelanguage as glm
import google.generativeai as genai
from llama_index.core.base.llms.types import (
ChatMessage,
ChatResponse,
CompletionResponse,
ImageBlock,
TextBlock,
)
from llama_index.core.multi_modal_llms.base import ChatMessage
from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI
def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release
if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally)
reason = finish_reason.name
# Safety reasons have more detail, so include that if we can.
if finish_reason == 3: # 3=Safety
relevant_safety = list(
filter(
lambda sr: sr.probability > 1, # 1=Negligible
candidate.safety_ratings,
)
)
reason += f" {relevant_safety}"
raise RuntimeError(f"Response was terminated early: {reason}")
def completion_from_gemini_response(
response: Union[
"genai.types.GenerateContentResponse",
"genai.types.AsyncGenerateContentResponse",
],
) -> CompletionResponse:
top_candidate = response.candidates[0]
_error_if_finished_early(top_candidate)
raw = {
**(type(top_candidate).to_dict(top_candidate)), # type: ignore
**(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore
}
if response.usage_metadata:
raw["usage_metadata"] = type(response.usage_metadata).to_dict(
response.usage_metadata
)
return CompletionResponse(text=response.text, raw=raw)
def chat_from_gemini_response(
response: Union[
"genai.types.GenerateContentResponse",
"genai.types.AsyncGenerateContentResponse",
],
) -> ChatResponse:
top_candidate = response.candidates[0]
_error_if_finished_early(top_candidate)
raw = {
**(type(top_candidate).to_dict(top_candidate)), # type: ignore
**(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore
}
if response.usage_metadata:
raw["usage_metadata"] = type(response.usage_metadata).to_dict(
response.usage_metadata
)
role = ROLES_FROM_GEMINI[top_candidate.content.role]
try:
# When the response contains only a function call, the library
# raises an exception.
# The easiest way to detect this is to try access the text attribute and
# catch the exception.
# https://github.com/google-gemini/generative-ai-python/issues/670
text = response.text
except (ValueError, AttributeError):
text = None
additional_kwargs: Dict[str, Any] = {}
for part in response.parts:
if fn := part.function_call:
if "tool_calls" not in additional_kwargs:
additional_kwargs["tool_calls"] = []
additional_kwargs["tool_calls"].append(fn)
return ChatResponse(
message=ChatMessage(
role=role, content=text, additional_kwargs=additional_kwargs
),
raw=raw,
additional_kwargs=additional_kwargs,
)
def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict":
"""Convert ChatMessages to Gemini-specific history, including ImageDocuments."""
parts = []
for block in message.blocks:
if isinstance(block, TextBlock):
if block.text:
parts.append({"text": block.text})
elif isinstance(block, ImageBlock):
base64_bytes = block.resolve_image(as_base64=False).read()
parts.append(
{
"mime_type": block.image_mimetype,
"data": base64_bytes,
}
)
else:
msg = f"Unsupported content block type: {type(block).__name__}"
raise ValueError(msg)
for tool_call in message.additional_kwargs.get("tool_calls", []):
parts.append(tool_call)
return {
"role": ROLES_TO_GEMINI[message.role],
"parts": parts,
}
|
import numpy as np
import orjson
import pytest
from pydantic.tools import parse_obj_as, schema_json_of
from docarray.document.io.json import orjson_dumps
from docarray.typing import NdArray
from docarray.typing.tensor import NdArrayEmbedding
def test_proto_tensor():
tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224)))
tensor._to_node_protobuf()
def test_from_list():
tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]])
assert (tensor == np.zeros((2, 2))).all()
def test_json_schema():
schema_json_of(NdArray)
def test_dump_json():
tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224)))
orjson_dumps(tensor)
def test_load_json():
tensor = parse_obj_as(NdArray, np.zeros((2, 2)))
json = orjson_dumps(tensor)
print(json)
print(type(json))
new_tensor = orjson.loads(json)
assert (new_tensor == tensor).all()
def test_unwrap():
tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224)))
ndarray = tensor.unwrap()
assert not isinstance(ndarray, NdArray)
assert isinstance(ndarray, np.ndarray)
assert isinstance(tensor, NdArray)
assert (ndarray == np.zeros((3, 224, 224))).all()
def test_parametrized():
# correct shape, single axis
tensor = parse_obj_as(NdArray[128], np.zeros(128))
assert isinstance(tensor, NdArray)
assert isinstance(tensor, np.ndarray)
assert tensor.shape == (128,)
# correct shape, multiple axis
tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224)))
assert isinstance(tensor, NdArray)
assert isinstance(tensor, np.ndarray)
assert tensor.shape == (3, 224, 224)
# wrong but reshapable shape
tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224)))
assert isinstance(tensor, NdArray)
assert isinstance(tensor, np.ndarray)
assert tensor.shape == (3, 224, 224)
# wrong and not reshapable shape
with pytest.raises(ValueError):
parse_obj_as(NdArray[3, 224, 224], np.zeros((224, 224)))
def test_np_embedding():
# correct shape
tensor = parse_obj_as(NdArrayEmbedding[128], np.zeros((128,)))
assert isinstance(tensor, NdArrayEmbedding)
assert isinstance(tensor, NdArray)
assert isinstance(tensor, np.ndarray)
assert tensor.shape == (128,)
# wrong shape at data setting time
with pytest.raises(ValueError):
parse_obj_as(NdArrayEmbedding[128], np.zeros((256,)))
# illegal shape at class creation time
with pytest.raises(ValueError):
parse_obj_as(NdArrayEmbedding[128, 128], np.zeros((128, 128)))
|
import numpy as np
import orjson
import pytest
from pydantic.tools import parse_obj_as, schema_json_of
from docarray.document.io.json import orjson_dumps
from docarray.typing import NdArray
def test_proto_tensor():
tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224)))
tensor._to_node_protobuf()
def test_from_list():
tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]])
assert (tensor == np.zeros((2, 2))).all()
def test_json_schema():
schema_json_of(NdArray)
def test_dump_json():
tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224)))
orjson_dumps(tensor)
def test_load_json():
tensor = parse_obj_as(NdArray, np.zeros((2, 2)))
json = orjson_dumps(tensor)
print(json)
print(type(json))
new_tensor = orjson.loads(json)
assert (new_tensor == tensor).all()
def test_unwrap():
tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224)))
ndarray = tensor.unwrap()
assert not isinstance(ndarray, NdArray)
assert isinstance(ndarray, np.ndarray)
assert isinstance(tensor, NdArray)
assert (ndarray == np.zeros((3, 224, 224))).all()
def test_parametrized():
# correct shape, single axis
tensor = parse_obj_as(NdArray[128], np.zeros(128))
assert isinstance(tensor, NdArray)
assert isinstance(tensor, np.ndarray)
assert tensor.shape == (128,)
# correct shape, multiple axis
tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224)))
assert isinstance(tensor, NdArray)
assert isinstance(tensor, np.ndarray)
assert tensor.shape == (3, 224, 224)
# wrong but reshapable shape
tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224)))
assert isinstance(tensor, NdArray)
assert isinstance(tensor, np.ndarray)
assert tensor.shape == (3, 224, 224)
# wrong and not reshapable shape
with pytest.raises(ValueError):
parse_obj_as(NdArray[3, 224, 224], np.zeros((224, 224)))
|
"""Example of analytics tests with improved error handling and assertions."""
import json
from unittest.mock import AsyncMock, Mock
import fastapi
import fastapi.testclient
import pytest_mock
from pytest_snapshot.plugin import Snapshot
import backend.server.routers.analytics as analytics_routes
from backend.server.conftest import TEST_USER_ID
from backend.server.test_helpers import (
assert_error_response_structure,
assert_mock_called_with_partial,
assert_response_status,
safe_parse_json,
)
from backend.server.utils import get_user_id
app = fastapi.FastAPI()
app.include_router(analytics_routes.router)
client = fastapi.testclient.TestClient(app)
def override_get_user_id() -> str:
"""Override get_user_id for testing"""
return TEST_USER_ID
app.dependency_overrides[get_user_id] = override_get_user_id
def test_log_raw_metric_success_improved(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful raw metric logging with improved assertions."""
# Mock the analytics function
mock_result = Mock(id="metric-123-uuid")
mock_log_metric = mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"metric_name": "page_load_time",
"metric_value": 2.5,
"data_string": "/dashboard",
}
response = client.post("/log_raw_metric", json=request_data)
# Improved assertions with better error messages
assert_response_status(response, 200, "Metric logging should succeed")
response_data = safe_parse_json(response, "Metric response parsing")
assert response_data == "metric-123-uuid", f"Unexpected response: {response_data}"
# Verify the function was called with correct parameters
assert_mock_called_with_partial(
mock_log_metric,
user_id=TEST_USER_ID,
metric_name="page_load_time",
metric_value=2.5,
data_string="/dashboard",
)
# Snapshot test the response
configured_snapshot.assert_match(
json.dumps({"metric_id": response_data}, indent=2, sort_keys=True),
"analytics_log_metric_success_improved",
)
def test_log_raw_metric_invalid_request_improved() -> None:
"""Test invalid metric request with improved error assertions."""
# Test missing required fields
response = client.post("/log_raw_metric", json={})
error_data = assert_error_response_structure(
response, expected_status=422, expected_error_fields=["loc", "msg", "type"]
)
# Verify specific error details
detail = error_data["detail"]
assert isinstance(detail, list), "Error detail should be a list"
assert len(detail) > 0, "Should have at least one error"
# Check that required fields are mentioned in errors
error_fields = [error["loc"][-1] for error in detail if "loc" in error]
assert "metric_name" in error_fields, "Should report missing metric_name"
assert "metric_value" in error_fields, "Should report missing metric_value"
assert "data_string" in error_fields, "Should report missing data_string"
def test_log_raw_metric_type_validation_improved(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test metric type validation with improved assertions."""
# Mock the analytics function to avoid event loop issues
mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
return_value=Mock(id="test-id"),
)
invalid_requests = [
{
"data": {
"metric_name": "test",
"metric_value": "not_a_number", # Invalid type
"data_string": "test",
},
"expected_error": "Input should be a valid number",
},
{
"data": {
"metric_name": "", # Empty string
"metric_value": 1.0,
"data_string": "test",
},
"expected_error": "String should have at least 1 character",
},
{
"data": {
"metric_name": "test",
"metric_value": 123, # Valid number
"data_string": "", # Empty data_string
},
"expected_error": "String should have at least 1 character",
},
]
for test_case in invalid_requests:
response = client.post("/log_raw_metric", json=test_case["data"])
error_data = assert_error_response_structure(response, expected_status=422)
# Check that expected error is in the response
error_text = json.dumps(error_data)
assert (
test_case["expected_error"] in error_text
or test_case["expected_error"].lower() in error_text.lower()
), f"Expected error '{test_case['expected_error']}' not found in: {error_text}"
|
"""Example of analytics tests with improved error handling and assertions."""
import json
from unittest.mock import AsyncMock, Mock
import fastapi
import fastapi.testclient
import pytest_mock
from pytest_snapshot.plugin import Snapshot
import backend.server.routers.analytics as analytics_routes
from backend.server.conftest import TEST_USER_ID
from backend.server.test_helpers import (
assert_error_response_structure,
assert_mock_called_with_partial,
assert_response_status,
safe_parse_json,
)
from backend.server.utils import get_user_id
app = fastapi.FastAPI()
app.include_router(analytics_routes.router)
client = fastapi.testclient.TestClient(app)
def override_get_user_id() -> str:
"""Override get_user_id for testing"""
return TEST_USER_ID
app.dependency_overrides[get_user_id] = override_get_user_id
def test_log_raw_metric_success_improved(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful raw metric logging with improved assertions."""
# Mock the analytics function
mock_result = Mock(id="metric-123-uuid")
mock_log_metric = mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"metric_name": "page_load_time",
"metric_value": 2.5,
"data_string": "/dashboard",
}
response = client.post("/log_raw_metric", json=request_data)
# Improved assertions with better error messages
assert_response_status(response, 200, "Metric logging should succeed")
response_data = safe_parse_json(response, "Metric response parsing")
assert response_data == "metric-123-uuid", f"Unexpected response: {response_data}"
# Verify the function was called with correct parameters
assert_mock_called_with_partial(
mock_log_metric,
user_id=TEST_USER_ID,
metric_name="page_load_time",
metric_value=2.5,
data_string="/dashboard",
)
# Snapshot test the response
configured_snapshot.assert_match(
json.dumps({"metric_id": response_data}, indent=2, sort_keys=True),
"analytics_log_metric_success_improved",
)
def test_log_raw_metric_invalid_request_improved() -> None:
"""Test invalid metric request with improved error assertions."""
# Test missing required fields
response = client.post("/log_raw_metric", json={})
error_data = assert_error_response_structure(
response, expected_status=422, expected_error_fields=["loc", "msg", "type"]
)
# Verify specific error details
detail = error_data["detail"]
assert isinstance(detail, list), "Error detail should be a list"
assert len(detail) > 0, "Should have at least one error"
# Check that required fields are mentioned in errors
error_fields = [error["loc"][-1] for error in detail if "loc" in error]
assert "metric_name" in error_fields, "Should report missing metric_name"
assert "metric_value" in error_fields, "Should report missing metric_value"
assert "data_string" in error_fields, "Should report missing data_string"
def test_log_raw_metric_type_validation_improved() -> None:
"""Test metric type validation with improved assertions."""
invalid_requests = [
{
"data": {
"metric_name": "test",
"metric_value": "not_a_number", # Invalid type
"data_string": "test",
},
"expected_error": "Input should be a valid number",
},
{
"data": {
"metric_name": "", # Empty string
"metric_value": 1.0,
"data_string": "test",
},
"expected_error": "String should have at least 1 character",
},
{
"data": {
"metric_name": "test",
"metric_value": float("inf"), # Infinity
"data_string": "test",
},
"expected_error": "ensure this value is finite",
},
]
for test_case in invalid_requests:
response = client.post("/log_raw_metric", json=test_case["data"])
error_data = assert_error_response_structure(response, expected_status=422)
# Check that expected error is in the response
error_text = json.dumps(error_data)
assert (
test_case["expected_error"] in error_text
or test_case["expected_error"].lower() in error_text.lower()
), f"Expected error '{test_case['expected_error']}' not found in: {error_text}"
|
import datetime
import json
import typing
import prisma.models
import pydantic
import backend.data.block
import backend.data.graph
import backend.server.model
class LibraryAgent(pydantic.BaseModel):
id: str # Changed from agent_id to match GraphMeta
agent_id: str
agent_version: int # Changed from agent_version to match GraphMeta
preset_id: str | None
updated_at: datetime.datetime
name: str
description: str
# Made input_schema and output_schema match GraphMeta's type
input_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend
output_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend
is_favorite: bool
is_created_by_user: bool
is_latest_version: bool
@staticmethod
def from_db(agent: prisma.models.LibraryAgent):
if not agent.Agent:
raise ValueError("AgentGraph is required")
graph = backend.data.graph.GraphModel.from_db(agent.Agent)
agent_updated_at = agent.Agent.updatedAt
lib_agent_updated_at = agent.updatedAt
# Take the latest updated_at timestamp either when the graph was updated or the library agent was updated
updated_at = (
max(agent_updated_at, lib_agent_updated_at)
if agent_updated_at
else lib_agent_updated_at
)
return LibraryAgent(
id=agent.id,
agent_id=agent.agentId,
agent_version=agent.agentVersion,
updated_at=updated_at,
name=graph.name,
description=graph.description,
input_schema=graph.input_schema,
output_schema=graph.output_schema,
is_favorite=agent.isFavorite,
is_created_by_user=agent.isCreatedByUser,
is_latest_version=graph.is_active,
preset_id=agent.AgentPreset.id if agent.AgentPreset else None,
)
class LibraryAgentPreset(pydantic.BaseModel):
id: str
updated_at: datetime.datetime
agent_id: str
agent_version: int
name: str
description: str
is_active: bool
inputs: dict[str, typing.Union[backend.data.block.BlockInput, typing.Any]]
@staticmethod
def from_db(preset: prisma.models.AgentPreset):
input_data = {}
for data in preset.InputPresets or []:
input_data[data.name] = json.loads(data.data)
return LibraryAgentPreset(
id=preset.id,
updated_at=preset.updatedAt,
agent_id=preset.agentId,
agent_version=preset.agentVersion,
name=preset.name,
description=preset.description,
is_active=preset.isActive,
inputs=input_data,
)
class LibraryAgentPresetResponse(pydantic.BaseModel):
presets: list[LibraryAgentPreset]
pagination: backend.server.model.Pagination
class CreateLibraryAgentPresetRequest(pydantic.BaseModel):
name: str
description: str
inputs: dict[str, typing.Union[backend.data.block.BlockInput, typing.Any]]
agent_id: str
agent_version: int
is_active: bool
|
import typing
import pydantic
class LibraryAgent(pydantic.BaseModel):
id: str # Changed from agent_id to match GraphMeta
version: int # Changed from agent_version to match GraphMeta
is_active: bool # Added to match GraphMeta
name: str
description: str
isCreatedByUser: bool
# Made input_schema and output_schema match GraphMeta's type
input_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend
output_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend
|
from typing import Dict, Type
from llama_index.core.base.embeddings.base import BaseEmbedding
from llama_index.core.embeddings.mock_embed_model import MockEmbedding
RECOGNIZED_EMBEDDINGS: Dict[str, Type[BaseEmbedding]] = {
MockEmbedding.class_name(): MockEmbedding,
}
# conditionals for llama-cloud support
try:
from llama_index.embeddings.openai import OpenAIEmbedding # pants: no-infer-dep
RECOGNIZED_EMBEDDINGS[OpenAIEmbedding.class_name()] = OpenAIEmbedding
except ImportError:
pass
try:
from llama_index.embeddings.azure_openai import (
AzureOpenAIEmbedding,
) # pants: no-infer-dep
RECOGNIZED_EMBEDDINGS[AzureOpenAIEmbedding.class_name()] = AzureOpenAIEmbedding
except ImportError:
pass
try:
from llama_index.embeddings.huggingface_api import (
HuggingFaceInferenceAPIEmbedding,
) # pants: no-infer-dep
RECOGNIZED_EMBEDDINGS[HuggingFaceInferenceAPIEmbedding.class_name()] = (
HuggingFaceInferenceAPIEmbedding
)
except ImportError:
pass
def load_embed_model(data: dict) -> BaseEmbedding:
"""Load Embedding by name."""
if isinstance(data, BaseEmbedding):
return data
name = data.get("class_name")
if name is None:
raise ValueError("Embedding loading requires a class_name")
if name not in RECOGNIZED_EMBEDDINGS:
raise ValueError(f"Invalid Embedding name: {name}")
return RECOGNIZED_EMBEDDINGS[name].from_dict(data)
|
from typing import Dict, Type
from llama_index.core.base.embeddings.base import BaseEmbedding
from llama_index.core.embeddings.mock_embed_model import MockEmbedding
RECOGNIZED_EMBEDDINGS: Dict[str, Type[BaseEmbedding]] = {
MockEmbedding.class_name(): MockEmbedding,
}
# conditionals for llama-cloud support
try:
from llama_index.embeddings.openai import OpenAIEmbedding # pants: no-infer-dep
RECOGNIZED_EMBEDDINGS[OpenAIEmbedding.class_name()] = OpenAIEmbedding
except ImportError:
pass
try:
from llama_index.embeddings.azure_openai import (
AzureOpenAIEmbedding,
) # pants: no-infer-dep
RECOGNIZED_EMBEDDINGS[AzureOpenAIEmbedding.class_name()] = AzureOpenAIEmbedding
except ImportError:
pass
try:
from llama_index.embeddings.huggingface_api import (
HuggingFaceInferenceAPIEmbedding,
) # pants: no-infer-dep
RECOGNIZED_EMBEDDINGS[
HuggingFaceInferenceAPIEmbedding.class_name()
] = HuggingFaceInferenceAPIEmbedding
except ImportError:
pass
def load_embed_model(data: dict) -> BaseEmbedding:
"""Load Embedding by name."""
if isinstance(data, BaseEmbedding):
return data
name = data.get("class_name")
if name is None:
raise ValueError("Embedding loading requires a class_name")
if name not in RECOGNIZED_EMBEDDINGS:
raise ValueError(f"Invalid Embedding name: {name}")
return RECOGNIZED_EMBEDDINGS[name].from_dict(data)
|
import functools
import sys
from io import StringIO
from typing import Any, Dict, List, Optional, Tuple
from llama_index.core.agent import ReActAgent
from llama_index.core.llama_pack.base import BaseLlamaPack
from llama_index.llms.openai import OpenAI
from llama_index.tools.arxiv import ArxivToolSpec
from llama_index.tools.wikipedia import WikipediaToolSpec
SUPPORTED_TOOLS = {
"arxiv_search_tool": ArxivToolSpec,
"wikipedia": WikipediaToolSpec,
}
class Capturing(list):
"""
To capture the stdout from ReActAgent.chat with verbose=True. Taken from
https://stackoverflow.com/questions/16571150/\
how-to-capture-stdout-output-from-a-python-function-call.
"""
def __enter__(self) -> Any:
self._stdout = sys.stdout
sys.stdout = self._stringio = StringIO()
return self
def __exit__(self, *args) -> None:
self.extend(self._stringio.getvalue().splitlines())
del self._stringio # free up some memory
sys.stdout = self._stdout
class GradioReActAgentPack(BaseLlamaPack):
"""Gradio chatbot to chat with a ReActAgent pack."""
def __init__(
self,
tools_list: Optional[List[str]] = list(SUPPORTED_TOOLS.keys()),
**kwargs: Any,
) -> None:
"""Init params."""
try:
from ansi2html import Ansi2HTMLConverter
except ImportError:
raise ImportError("Please install ansi2html via `pip install ansi2html`")
tools = []
for t in tools_list:
try:
tools.append(SUPPORTED_TOOLS[t]())
except KeyError:
raise KeyError(f"Tool {t} is not supported.")
self.tools = tools
self.llm = OpenAI(model="gpt-4-1106-preview", max_tokens=2000)
self.agent = ReActAgent.from_tools(
tools=functools.reduce(
lambda x, y: x.to_tool_list() + y.to_tool_list(), self.tools
),
llm=self.llm,
verbose=True,
)
self.thoughts = ""
self.conv = Ansi2HTMLConverter()
def get_modules(self) -> Dict[str, Any]:
"""Get modules."""
return {"agent": self.agent, "llm": self.llm, "tools": self.tools}
def _handle_user_message(self, user_message, history):
"""
Handle the user submitted message. Clear message box, and append
to the history.
"""
return "", [*history, (user_message, "")]
def _generate_response(
self, chat_history: List[Tuple[str, str]]
) -> Tuple[str, List[Tuple[str, str]]]:
"""
Generate the response from agent, and capture the stdout of the
ReActAgent's thoughts.
"""
with Capturing() as output:
response = self.agent.stream_chat(chat_history[-1][0])
ansi = "\n========\n".join(output)
html_output = self.conv.convert(ansi)
for token in response.response_gen:
chat_history[-1][1] += token
yield chat_history, str(html_output)
def _reset_chat(self) -> Tuple[str, str]:
"""Reset the agent's chat history. And clear all dialogue boxes."""
# clear agent history
self.agent.reset()
return "", "", "" # clear textboxes
def run(self, *args: Any, **kwargs: Any) -> Any:
"""Run the pipeline."""
import gradio as gr
demo = gr.Blocks(
theme="gstaff/xkcd",
css="#box { height: 420px; overflow-y: scroll !important}",
)
with demo:
gr.Markdown(
"# Gradio ReActAgent Powered by LlamaIndex and LlamaHub 🦙\n"
"This Gradio app is powered by LlamaIndex's `ReActAgent` with\n"
"OpenAI's GPT-4-Turbo as the LLM. The tools are listed below.\n"
"## Tools\n"
"- [ArxivToolSpec](https://llamahub.ai/l/tools-arxiv)\n"
"- [WikipediaToolSpec](https://llamahub.ai/l/tools-wikipedia)"
)
with gr.Row():
chat_window = gr.Chatbot(
label="Message History",
scale=3,
)
console = gr.HTML(elem_id="box")
with gr.Row():
message = gr.Textbox(label="Write A Message", scale=4)
clear = gr.ClearButton()
message.submit(
self._handle_user_message,
[message, chat_window],
[message, chat_window],
queue=False,
).then(
self._generate_response,
chat_window,
[chat_window, console],
)
clear.click(self._reset_chat, None, [message, chat_window, console])
demo.launch(server_name="0.0.0.0", server_port=8080)
if __name__ == "__main__":
GradioReActAgentPack(run_from_main=True).run()
|
import functools
import sys
from io import StringIO
from typing import Any, Dict, List, Optional, Tuple
from llama_index.core.agent import ReActAgent
from llama_index.core.llama_pack.base import BaseLlamaPack
from llama_index.llms.openai import OpenAI
from llama_index.tools.arxiv import ArxivToolSpec
from llama_index.tools.wikipedia import WikipediaToolSpec
SUPPORTED_TOOLS = {
"arxiv_search_tool": ArxivToolSpec,
"wikipedia": WikipediaToolSpec,
}
class Capturing(list):
"""To capture the stdout from ReActAgent.chat with verbose=True. Taken from
https://stackoverflow.com/questions/16571150/\
how-to-capture-stdout-output-from-a-python-function-call.
"""
def __enter__(self) -> Any:
self._stdout = sys.stdout
sys.stdout = self._stringio = StringIO()
return self
def __exit__(self, *args) -> None:
self.extend(self._stringio.getvalue().splitlines())
del self._stringio # free up some memory
sys.stdout = self._stdout
class GradioReActAgentPack(BaseLlamaPack):
"""Gradio chatbot to chat with a ReActAgent pack."""
def __init__(
self,
tools_list: Optional[List[str]] = list(SUPPORTED_TOOLS.keys()),
**kwargs: Any,
) -> None:
"""Init params."""
try:
from ansi2html import Ansi2HTMLConverter
except ImportError:
raise ImportError("Please install ansi2html via `pip install ansi2html`")
tools = []
for t in tools_list:
try:
tools.append(SUPPORTED_TOOLS[t]())
except KeyError:
raise KeyError(f"Tool {t} is not supported.")
self.tools = tools
self.llm = OpenAI(model="gpt-4-1106-preview", max_tokens=2000)
self.agent = ReActAgent.from_tools(
tools=functools.reduce(
lambda x, y: x.to_tool_list() + y.to_tool_list(), self.tools
),
llm=self.llm,
verbose=True,
)
self.thoughts = ""
self.conv = Ansi2HTMLConverter()
def get_modules(self) -> Dict[str, Any]:
"""Get modules."""
return {"agent": self.agent, "llm": self.llm, "tools": self.tools}
def _handle_user_message(self, user_message, history):
"""Handle the user submitted message. Clear message box, and append
to the history.
"""
return "", [*history, (user_message, "")]
def _generate_response(
self, chat_history: List[Tuple[str, str]]
) -> Tuple[str, List[Tuple[str, str]]]:
"""Generate the response from agent, and capture the stdout of the
ReActAgent's thoughts.
"""
with Capturing() as output:
response = self.agent.stream_chat(chat_history[-1][0])
ansi = "\n========\n".join(output)
html_output = self.conv.convert(ansi)
for token in response.response_gen:
chat_history[-1][1] += token
yield chat_history, str(html_output)
def _reset_chat(self) -> Tuple[str, str]:
"""Reset the agent's chat history. And clear all dialogue boxes."""
# clear agent history
self.agent.reset()
return "", "", "" # clear textboxes
def run(self, *args: Any, **kwargs: Any) -> Any:
"""Run the pipeline."""
import gradio as gr
demo = gr.Blocks(
theme="gstaff/xkcd",
css="#box { height: 420px; overflow-y: scroll !important}",
)
with demo:
gr.Markdown(
"# Gradio ReActAgent Powered by LlamaIndex and LlamaHub 🦙\n"
"This Gradio app is powered by LlamaIndex's `ReActAgent` with\n"
"OpenAI's GPT-4-Turbo as the LLM. The tools are listed below.\n"
"## Tools\n"
"- [ArxivToolSpec](https://llamahub.ai/l/tools-arxiv)\n"
"- [WikipediaToolSpec](https://llamahub.ai/l/tools-wikipedia)"
)
with gr.Row():
chat_window = gr.Chatbot(
label="Message History",
scale=3,
)
console = gr.HTML(elem_id="box")
with gr.Row():
message = gr.Textbox(label="Write A Message", scale=4)
clear = gr.ClearButton()
message.submit(
self._handle_user_message,
[message, chat_window],
[message, chat_window],
queue=False,
).then(
self._generate_response,
chat_window,
[chat_window, console],
)
clear.click(self._reset_chat, None, [message, chat_window, console])
demo.launch(server_name="0.0.0.0", server_port=8080)
if __name__ == "__main__":
GradioReActAgentPack(run_from_main=True).run()
|
from .config import Settings
from .depends import requires_admin_user, requires_user
from .jwt_utils import parse_jwt_token
from .middleware import APIKeyValidator, auth_middleware
from .models import User
__all__ = [
"Settings",
"parse_jwt_token",
"requires_user",
"requires_admin_user",
"APIKeyValidator",
"auth_middleware",
"User",
]
|
from .config import Settings
from .depends import requires_admin_user, requires_user
from .jwt_utils import parse_jwt_token
from .middleware import auth_middleware
from .models import User
__all__ = [
"Settings",
"parse_jwt_token",
"requires_user",
"requires_admin_user",
"auth_middleware",
"User",
]
|
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.tools import BaseTool
from pydantic import BaseModel
from langchain_community.utilities.polygon import PolygonAPIWrapper
class Inputs(BaseModel):
"""Inputs for Polygon's Last Quote API"""
query: str
class PolygonLastQuote(BaseTool):
"""Tool that gets the last quote of a ticker from Polygon"""
mode: str = "get_last_quote"
name: str = "polygon_last_quote"
description: str = (
"A wrapper around Polygon's Last Quote API. "
"This tool is useful for fetching the latest price of a stock. "
"Input should be the ticker that you want to query the last price quote for."
)
args_schema: Type[BaseModel] = Inputs
api_wrapper: PolygonAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Polygon API tool."""
return self.api_wrapper.run(self.mode, ticker=query)
|
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.tools import BaseTool
from pydantic import BaseModel
from langchain_community.utilities.polygon import PolygonAPIWrapper
class Inputs(BaseModel):
"""Inputs for Polygon's Last Quote API"""
query: str
class PolygonLastQuote(BaseTool): # type: ignore[override, override]
"""Tool that gets the last quote of a ticker from Polygon"""
mode: str = "get_last_quote"
name: str = "polygon_last_quote"
description: str = (
"A wrapper around Polygon's Last Quote API. "
"This tool is useful for fetching the latest price of a stock. "
"Input should be the ticker that you want to query the last price quote for."
)
args_schema: Type[BaseModel] = Inputs
api_wrapper: PolygonAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Polygon API tool."""
return self.api_wrapper.run(self.mode, ticker=query)
|
"""SingleStore reader."""
from typing import List
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
from llama_index.readers.database import DatabaseReader
class SingleStoreReader(BaseReader):
"""
SingleStore reader.
Args:
scheme (str): Database Scheme.
host (str): Database Host.
port (str): Database Port.
user (str): Database User.
password (str): Database Password.
dbname (str): Database Name.
table_name (str): Table Name.
content_field (str): Content Field.
vector_field (str): Vector Field.
"""
def __init__(
self,
scheme: str,
host: str,
port: str,
user: str,
password: str,
dbname: str,
table_name: str,
content_field: str = "text",
vector_field: str = "embedding",
):
"""Initialize with parameters."""
self.scheme = scheme
self.host = host
self.port = port
self.user = user
self.password = password
self.dbname = dbname
self.table_name = table_name
self.content_field = content_field
self.vector_field = vector_field
try:
import pymysql
pymysql.install_as_MySQLdb()
except ImportError:
pass
self.DatabaseReader = DatabaseReader
self.reader = self.DatabaseReader(
scheme=self.scheme,
host=self.host,
port=self.port,
user=self.user,
password=self.password,
dbname=self.dbname,
)
def load_data(self, search_embedding: str, top_k: int = 5) -> List[Document]:
"""
Load data from SingleStore.
Args:
search_embedding (str): The embedding to search.
top_k (int): Number of results to return.
Returns:
List[Document]: A list of documents.
"""
query = f"""
SELECT {self.content_field}, DOT_PRODUCT_F64({self.vector_field}, JSON_ARRAY_PACK_F64(\'{search_embedding}\')) AS score
FROM {self.table_name}
ORDER BY score
DESC LIMIT {top_k}
"""
return self.reader.load_data(query=query)
|
"""SingleStore reader."""
from typing import List
from llama_index.core.readers.base import BaseReader
from llama_index.core.schema import Document
from llama_index.readers.database import DatabaseReader
class SingleStoreReader(BaseReader):
"""SingleStore reader.
Args:
scheme (str): Database Scheme.
host (str): Database Host.
port (str): Database Port.
user (str): Database User.
password (str): Database Password.
dbname (str): Database Name.
table_name (str): Table Name.
content_field (str): Content Field.
vector_field (str): Vector Field.
"""
def __init__(
self,
scheme: str,
host: str,
port: str,
user: str,
password: str,
dbname: str,
table_name: str,
content_field: str = "text",
vector_field: str = "embedding",
):
"""Initialize with parameters."""
self.scheme = scheme
self.host = host
self.port = port
self.user = user
self.password = password
self.dbname = dbname
self.table_name = table_name
self.content_field = content_field
self.vector_field = vector_field
try:
import pymysql
pymysql.install_as_MySQLdb()
except ImportError:
pass
self.DatabaseReader = DatabaseReader
self.reader = self.DatabaseReader(
scheme=self.scheme,
host=self.host,
port=self.port,
user=self.user,
password=self.password,
dbname=self.dbname,
)
def load_data(self, search_embedding: str, top_k: int = 5) -> List[Document]:
"""Load data from SingleStore.
Args:
search_embedding (str): The embedding to search.
top_k (int): Number of results to return.
Returns:
List[Document]: A list of documents.
"""
query = f"""
SELECT {self.content_field}, DOT_PRODUCT_F64({self.vector_field}, JSON_ARRAY_PACK_F64(\'{search_embedding}\')) AS score
FROM {self.table_name}
ORDER BY score
DESC LIMIT {top_k}
"""
return self.reader.load_data(query=query)
|
from __future__ import annotations
from collections.abc import Iterable
import torch.nn.functional as F
from torch import Tensor, nn
from sentence_transformers.SentenceTransformer import SentenceTransformer
from .ContrastiveLoss import SiameseDistanceMetric
class OnlineContrastiveLoss(nn.Module):
def __init__(
self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5
) -> None:
"""
This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that
are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs.
This loss often yields better performances than ContrastiveLoss.
Args:
model: SentenceTransformer model
distance_metric: Function that returns a distance between
two embeddings. The class SiameseDistanceMetric contains
pre-defined metrics that can be used
margin: Negative samples (label == 0) should have a distance
of at least the margin value.
References:
- `Training Examples > Quora Duplicate Questions <../../../examples/sentence_transformer/training/quora_duplicate_questions/README.html>`_
Requirements:
1. (anchor, positive/negative) pairs
2. Data should include hard positives and hard negatives
Inputs:
+-----------------------------------------------+------------------------------+
| Texts | Labels |
+===============================================+==============================+
| (anchor, positive/negative) pairs | 1 if positive, 0 if negative |
+-----------------------------------------------+------------------------------+
Relations:
- :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs.
:class:`OnlineContrastiveLoss` often yields better results.
Example:
::
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses
from datasets import Dataset
model = SentenceTransformer("microsoft/mpnet-base")
train_dataset = Dataset.from_dict({
"sentence1": ["It's nice weather outside today.", "He drove to work."],
"sentence2": ["It's so sunny.", "She walked to the store."],
"label": [1, 0],
})
loss = losses.OnlineContrastiveLoss(model)
trainer = SentenceTransformerTrainer(
model=model,
train_dataset=train_dataset,
loss=loss,
)
trainer.train()
"""
super().__init__()
self.model = model
self.margin = margin
self.distance_metric = distance_metric
def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor, size_average=False) -> Tensor:
embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features]
distance_matrix = self.distance_metric(embeddings[0], embeddings[1])
negs = distance_matrix[labels == 0]
poss = distance_matrix[labels == 1]
# select hard positive and hard negative pairs
negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())]
positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())]
positive_loss = positive_pairs.pow(2).sum()
negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum()
loss = positive_loss + negative_loss
return loss
|
from __future__ import annotations
from collections.abc import Iterable
import torch.nn.functional as F
from torch import Tensor, nn
from sentence_transformers.SentenceTransformer import SentenceTransformer
from .ContrastiveLoss import SiameseDistanceMetric
class OnlineContrastiveLoss(nn.Module):
def __init__(
self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5
) -> None:
"""
This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that
are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs.
This loss often yields better performances than ContrastiveLoss.
Args:
model: SentenceTransformer model
distance_metric: Function that returns a distance between
two embeddings. The class SiameseDistanceMetric contains
pre-defined metrics that can be used
margin: Negative samples (label == 0) should have a distance
of at least the margin value.
References:
- `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_
Requirements:
1. (anchor, positive/negative) pairs
2. Data should include hard positives and hard negatives
Inputs:
+-----------------------------------------------+------------------------------+
| Texts | Labels |
+===============================================+==============================+
| (anchor, positive/negative) pairs | 1 if positive, 0 if negative |
+-----------------------------------------------+------------------------------+
Relations:
- :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs.
:class:`OnlineContrastiveLoss` often yields better results.
Example:
::
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses
from datasets import Dataset
model = SentenceTransformer("microsoft/mpnet-base")
train_dataset = Dataset.from_dict({
"sentence1": ["It's nice weather outside today.", "He drove to work."],
"sentence2": ["It's so sunny.", "She walked to the store."],
"label": [1, 0],
})
loss = losses.OnlineContrastiveLoss(model)
trainer = SentenceTransformerTrainer(
model=model,
train_dataset=train_dataset,
loss=loss,
)
trainer.train()
"""
super().__init__()
self.model = model
self.margin = margin
self.distance_metric = distance_metric
def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor, size_average=False) -> Tensor:
embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features]
distance_matrix = self.distance_metric(embeddings[0], embeddings[1])
negs = distance_matrix[labels == 0]
poss = distance_matrix[labels == 1]
# select hard positive and hard negative pairs
negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())]
positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())]
positive_loss = positive_pairs.pow(2).sum()
negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum()
loss = positive_loss + negative_loss
return loss
|
from .spacy_text_encoder import SpacyTextEncoder
|
from .spacy_text_encoder import SpacyTextEncoder
|
from langchain_cli.namespaces.migrate.generate.utils import PKGS_ROOT
def test_root() -> None:
if PKGS_ROOT.name != "libs":
msg = "Expected PKGS_ROOT.name to be 'libs'."
raise ValueError(msg)
|
from langchain_cli.namespaces.migrate.generate.utils import PKGS_ROOT
def test_root() -> None:
assert PKGS_ROOT.name == "libs"
|
from __future__ import annotations
from collections.abc import Iterable
import torch
import torch.nn as nn
from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ReconstructionLoss
from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import (
SparseMultipleNegativesRankingLoss,
)
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
class CSRLoss(nn.Module):
"""
CSR Loss module that combines Reconstruction Loss and Sparse Multiple Negatives Ranking Loss.
Based on the paper:
Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation, https://arxiv.org/abs/2503.01776
This module computes the combined loss according to the formula:
L_CSR = L_recon + γ * L_MRL
where:
- L_recon = L(k) + L(4k)/8 + β*L_aux
- L_MRL is the Multiple Negatives Ranking Loss
"""
def __init__(
self,
model: SparseEncoder,
beta: float = 0.1,
gamma: float = 1.0,
scale: float = 20.0,
):
super().__init__()
self.model = model
self.beta = beta
self.gamma = gamma
self.scale = scale
# Initialize the component losses
self.reconstruction_loss = ReconstructionLoss(model, beta)
self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale)
def forward(
self,
sentence_features: Iterable[dict[str, torch.Tensor]],
labels: torch.Tensor = None,
) -> dict[str, torch.Tensor]:
"""
Forward pass of the CSR Loss module.
This method is used when the loss is computed as part of the model's forward pass.
Args:
sentence_features: Iterable of dictionaries containing sentence embeddings
labels: Optional tensor of labels (not used in this implementation)
Returns:
Dictionary containing the total loss and individual loss components
"""
# Compute embeddings using the model
outputs = [self.model(sentence_feature) for sentence_feature in sentence_features]
sparse_embeddings = [output["sparse_embedding"] for output in outputs]
recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs)
ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sparse_embeddings)
# Compute total loss: L_CSR = L_recon + γ * L_MRL
total_loss = recon_loss + self.gamma * ranking_loss
return total_loss
def get_config_dict(self):
"""
Get the configuration dictionary.
Returns:
Dictionary containing the configuration parameters
"""
return {
"beta": self.beta,
"gamma": self.gamma,
"scale": self.scale,
}
|
from __future__ import annotations
from collections.abc import Iterable
import torch
import torch.nn as nn
from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ReconstructionLoss
from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import (
SparseMultipleNegativesRankingLoss,
)
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
class CSRLoss(nn.Module):
"""
CSR Loss module that combines Reconstruction Loss and Sparse Multiple Negatives Ranking Loss.
This module computes the combined loss according to the formula:
L_CSR = L_recon + γ * L_MRL
where:
- L_recon = L(k) + L(4k)/8 + β*L_aux
- L_MRL is the Multiple Negatives Ranking Loss
"""
def __init__(
self,
model: SparseEncoder,
beta: float = 0.1,
gamma: float = 1.0,
scale: float = 20.0,
):
super().__init__()
self.model = model
self.beta = beta
self.gamma = gamma
self.scale = scale
# Initialize the component losses
self.reconstruction_loss = ReconstructionLoss(model, beta)
self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale)
def forward(
self,
sentence_features: Iterable[dict[str, torch.Tensor]],
labels: torch.Tensor = None,
) -> dict[str, torch.Tensor]:
"""
Forward pass of the CSR Loss module.
This method is used when the loss is computed as part of the model's forward pass.
Args:
sentence_features: Iterable of dictionaries containing sentence embeddings
labels: Optional tensor of labels (not used in this implementation)
Returns:
Dictionary containing the total loss and individual loss components
"""
# Compute embeddings using the model
outputs = [self.model(sentence_feature) for sentence_feature in sentence_features]
sparse_embeddings = [output["sparse_embedding"] for output in outputs]
recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs)
ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sparse_embeddings)
# Compute total loss: L_CSR = L_recon + γ * L_MRL
total_loss = recon_loss + self.gamma * ranking_loss
return total_loss
def get_config_dict(self):
"""
Get the configuration dictionary.
Returns:
Dictionary containing the configuration parameters
"""
return {
"beta": self.beta,
"gamma": self.gamma,
"scale": self.scale,
}
|
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
data_preprocessor=dict(
mean=[103.530, 116.280, 123.675],
std=[1.0, 1.0, 1.0],
bgr_to_rgb=False),
backbone=dict(
norm_cfg=norm_cfg,
init_cfg=dict(
type='Pretrained',
checkpoint='open-mmlab://detectron/resnet50_gn')),
neck=dict(norm_cfg=norm_cfg),
roi_head=dict(
bbox_head=dict(
type='Shared4Conv1FCBBoxHead',
conv_out_channels=256,
norm_cfg=norm_cfg),
mask_head=dict(norm_cfg=norm_cfg)))
# learning policy
max_epochs = 24
train_cfg = dict(max_epochs=max_epochs)
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
|
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
backbone=dict(
norm_cfg=norm_cfg,
init_cfg=dict(
type='Pretrained',
checkpoint='open-mmlab://detectron/resnet50_gn')),
neck=dict(norm_cfg=norm_cfg),
roi_head=dict(
bbox_head=dict(
type='Shared4Conv1FCBBoxHead',
conv_out_channels=256,
norm_cfg=norm_cfg),
mask_head=dict(norm_cfg=norm_cfg)))
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
|
from urllib.parse import urlparse, urlunparse
import pytest
from requests_mock import Mocker
from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface
@pytest.fixture()
def mock_v1_local_models2(requests_mock: Mocker, base_url: str) -> None:
parsed = urlparse(base_url)
normalized_path = parsed.path.rstrip("/")
if not normalized_path.endswith("/v1"):
normalized_path += "/v1"
base_url = urlunparse(
(parsed.scheme, parsed.netloc, normalized_path, None, None, None)
)
requests_mock.get(
f"{base_url}/models",
json={
"data": [
{
"id": "model1",
"object": "model",
"created": 1234567890,
"owned_by": "OWNER",
"root": "model1",
},
]
},
)
# test case for invalid base_url
@pytest.mark.parametrize(
"base_url",
[
"http://0.0.0.0:8888/rankings",
"http://0.0.0.0:8888/ranking",
"http://test_url/.../v1",
"https://test_url/.../v1",
],
)
def test_base_url_invalid_not_hosted(
base_url: str, mock_v1_local_models2: None
) -> None:
Interface(base_url=base_url)
@pytest.mark.parametrize(
"base_url",
[
"http://0.0.0.0:8888/v1",
],
)
def test_base_url_valid_not_hosted(base_url: str, mock_v1_local_models2: None) -> None:
with pytest.warns(UserWarning) as record:
Interface(base_url=base_url)
assert "Default model is set" in str(record[0].message)
@pytest.mark.parametrize(
"base_url",
["https://ai.api.nvidia.com/v1"],
)
def test_base_url_valid_hosted(base_url: str, mock_v1_local_models2: None) -> None:
Interface(base_url=base_url, api_key="BOGUS")
@pytest.mark.parametrize(
"base_url",
[
"bogus",
"http:/",
"http://",
"http:/oops",
],
)
def test_param_base_url_negative(base_url: str, monkeypatch) -> None:
monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key")
with pytest.raises(ValueError) as e:
Interface(model="model1", base_url=base_url)
assert "Invalid base_url" in str(e.value)
@pytest.mark.parametrize(
"base_url",
[
"http://host/path0/path1/path2/v1",
"http://host:123/path0/path1/path2/v1",
],
)
def test_proxy_base_url(base_url: str, mock_v1_local_models2: None) -> None:
client = Interface(api_key="NO_API_KEY_PROVIDED", base_url=base_url)
assert not client._is_hosted
assert base_url.startswith(client.base_url)
|
from urllib.parse import urlparse, urlunparse
import pytest
from requests_mock import Mocker
from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface
@pytest.fixture()
def mock_v1_local_models2(requests_mock: Mocker, base_url: str) -> None:
result = urlparse(base_url)
base_url = urlunparse((result.scheme, result.netloc, "v1", "", "", ""))
requests_mock.get(
f"{base_url}/models",
json={
"data": [
{
"id": "model1",
"object": "model",
"created": 1234567890,
"owned_by": "OWNER",
"root": "model1",
},
]
},
)
# test case for invalid base_url
@pytest.mark.parametrize(
"base_url",
[
"localhost",
"localhost:8888",
"http://0.0.0.0:8888/rankings",
"http://0.0.0.0:8888/ranking",
"http://test_url/.../v1",
"https://test_url/.../v1",
],
)
def test_base_url_invalid_not_hosted(
base_url: str, mock_v1_local_models2: None
) -> None:
with pytest.raises(ValueError):
Interface(base_url=base_url)
@pytest.mark.parametrize(
"base_url",
[
"http://0.0.0.0:8888/v1",
],
)
def test_base_url_valid_not_hosted(base_url: str, mock_v1_local_models2: None) -> None:
with pytest.warns(UserWarning):
Interface(base_url=base_url)
@pytest.mark.parametrize(
"base_url",
["https://ai.api.nvidia.com/v1"],
)
def test_base_url_valid_hosted(base_url: str, mock_v1_local_models2: None) -> None:
Interface(base_url=base_url, api_key="BOGUS")
|
from typing import Dict
MISTRALAI_MODELS: Dict[str, int] = {
"mistral-tiny": 32000,
"mistral-small": 32000,
"mistral-medium": 32000,
"mistral-large": 131000,
"mistral-saba-latest": 32000,
"open-mixtral-8x7b": 32000,
"open-mistral-7b": 32000,
"open-mixtral-8x22b": 64000,
"mistral-small-latest": 32000,
"mistral-medium-latest": 32000,
"mistral-large-latest": 32000,
"codestral-latest": 256000,
"open-mistral-nemo-latest": 131000,
"ministral-8b-latest": 131000,
"ministral-3b-latest": 131000,
"pixtral-large-latest": 131000,
"pixtral-12b-2409": 131000,
}
MISTRALAI_FUNCTION_CALLING_MODELS = (
"mistral-large-latest",
"open-mixtral-8x22b",
"ministral-8b-latest",
"ministral-3b-latest",
"mistral-small-latest",
"codestral-latest",
"open-mistral-nemo-latest",
"pixtral-large-latest",
"pixtral-12b-2409",
)
MISTRALAI_CODE_MODELS = "codestral-latest"
def mistralai_modelname_to_contextsize(modelname: str) -> int:
# handling finetuned models
if modelname.startswith("ft:"):
modelname = modelname.split(":")[1]
if modelname not in MISTRALAI_MODELS:
raise ValueError(
f"Unknown model: {modelname}. Please provide a valid MistralAI model name."
"Known models are: " + ", ".join(MISTRALAI_MODELS.keys())
)
return MISTRALAI_MODELS[modelname]
def is_mistralai_function_calling_model(modelname: str) -> bool:
return modelname in MISTRALAI_FUNCTION_CALLING_MODELS
def is_mistralai_code_model(modelname: str) -> bool:
return modelname in MISTRALAI_CODE_MODELS
|
from typing import Dict
MISTRALAI_MODELS: Dict[str, int] = {
"mistral-tiny": 32000,
"mistral-small": 32000,
"mistral-medium": 32000,
"mistral-large": 131000,
"mistral-saba-latest": 32000,
"open-mixtral-8x7b": 32000,
"open-mistral-7b": 32000,
"open-mixtral-8x22b": 64000,
"mistral-small-latest": 32000,
"mistral-medium-latest": 32000,
"mistral-large-latest": 32000,
"codestral-latest": 256000,
"open-mistral-nemo-latest": 131000,
"ministral-8b-latest": 131000,
"ministral-3b-latest": 131000,
}
MISTRALAI_FUNCTION_CALLING_MODELS = (
"mistral-large-latest",
"open-mixtral-8x22b",
"ministral-8b-latest",
"ministral-3b-latest",
"mistral-small-latest",
"codestral-latest",
"open-mistral-nemo-latest",
)
MISTRALAI_CODE_MODELS = "codestral-latest"
def mistralai_modelname_to_contextsize(modelname: str) -> int:
# handling finetuned models
if modelname.startswith("ft:"):
modelname = modelname.split(":")[1]
if modelname not in MISTRALAI_MODELS:
raise ValueError(
f"Unknown model: {modelname}. Please provide a valid MistralAI model name."
"Known models are: " + ", ".join(MISTRALAI_MODELS.keys())
)
return MISTRALAI_MODELS[modelname]
def is_mistralai_function_calling_model(modelname: str) -> bool:
return modelname in MISTRALAI_FUNCTION_CALLING_MODELS
def is_mistralai_code_model(modelname: str) -> bool:
return modelname in MISTRALAI_CODE_MODELS
|
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import os
from pathlib import Path
import numpy as np
import pytest
from jina import Document, DocumentArray, Executor
from jina.executors.metas import get_default_metas
from jina_commons.indexers.dump import import_vectors
from ..annoy_searcher import AnnoySearcher
# fix the seed here
np.random.seed(500)
docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)])
search_doc = DocumentArray([Document(embedding=np.random.random(10))])
DUMP_PATH = 'tests/dump1'
TOP_K = 5
@pytest.fixture(scope='function', autouse=True)
def metas(tmpdir):
os.environ['TEST_WORKSPACE'] = str(tmpdir)
metas = get_default_metas()
metas['workspace'] = os.environ['TEST_WORKSPACE']
yield metas
del os.environ['TEST_WORKSPACE']
def test_config():
ex = Executor.load_config(str(Path(__file__).parents[1] / 'config.yml'))
assert ex.metric == 'cosine'
def test_simple_annoy():
from annoy import AnnoyIndex
_index = AnnoyIndex(5, 'angular')
for j in range(3):
_index.add_item(j, np.random.random((5,)))
_index.build(4)
idx1, _ = _index.get_nns_by_vector(
np.random.random((5,)), 3, include_distances=True
)
assert len(idx1) == 3
@pytest.mark.parametrize(
['metric', 'is_distance'],
[
('cosine', True),
('euclidean', True),
('inner_product', True),
('cosine', False),
('euclidean', False),
('inner_product', False),
],
)
def test_metric(tmpdir, metric, is_distance):
metas = {
'workspace': str(tmpdir),
'name': 'searcher',
}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(
dump_path=DUMP_PATH,
default_top_k=TOP_K,
metas=metas,
metric=metric,
is_distance=is_distance,
runtime_args=runtime_args,
)
docs = DocumentArray([Document(embedding=np.random.random(7))])
indexer.search(docs, {})
assert len(docs[0].matches) == TOP_K
for i in range(len(docs[0].matches) - 1):
if not is_distance:
assert (
docs[0].matches[i].scores[metric].value
>= docs[0].matches[i + 1].scores[metric].value
)
else:
assert (
docs[0].matches[i].scores[metric].value
<= docs[0].matches[i + 1].scores[metric].value
)
def test_query_vector(tmpdir):
metas = {'workspace': str(tmpdir), 'name': 'searcher'}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(
dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args
)
docs = DocumentArray([Document(embedding=np.random.random(7))])
indexer.search(docs, {})
ids, vecs = import_vectors(DUMP_PATH, str(0))
ids = np.array(list(ids))
vecs = np.array(list(vecs))
assert len(docs) == 1
assert len(docs[0].matches) == TOP_K
assert docs[0].matches[0].id in ids
assert len(docs[0].matches[0].embedding) == 7
assert docs[0].matches[0].embedding in vecs
da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)])
indexer.fill_embedding(da)
for i, doc in enumerate(da):
assert list(doc.embedding)
def test_fill_embeddings(tmpdir):
metas = {'workspace': str(tmpdir), 'name': 'searcher'}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(
dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args
)
da = DocumentArray([Document(id=0), Document(id=1), Document(id=20)])
indexer.fill_embedding(da)
assert da['0'].embedding is not None
assert da['1'].embedding is not None
assert da['20'].embedding is None
def test_query_vector_empty(tmpdir):
metas = {'workspace': str(tmpdir), 'name': 'searcher'}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(default_top_k=TOP_K, metas=metas, runtime_args=runtime_args)
docs = DocumentArray([Document(embedding=np.random.random(7))])
indexer.search(docs, {})
assert len(docs[0].matches) == 0
|
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import os
from pathlib import Path
import numpy as np
import pytest
from jina import Document, DocumentArray, Executor
from jina.executors.metas import get_default_metas
from jina_commons.indexers.dump import import_vectors
from ..annoy_searcher import AnnoySearcher
# fix the seed here
np.random.seed(500)
docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)])
search_doc = DocumentArray([Document(embedding=np.random.random(10))])
DUMP_PATH = 'tests/dump1'
TOP_K = 5
@pytest.fixture(scope='function', autouse=True)
def metas(tmpdir):
os.environ['TEST_WORKSPACE'] = str(tmpdir)
metas = get_default_metas()
metas['workspace'] = os.environ['TEST_WORKSPACE']
yield metas
del os.environ['TEST_WORKSPACE']
def test_config():
ex = Executor.load_config(str(Path(__file__).parents[1] / 'config.yml'))
assert ex.metric == 'euclidean'
def test_simple_annoy():
from annoy import AnnoyIndex
_index = AnnoyIndex(5, 'angular')
for j in range(3):
_index.add_item(j, np.random.random((5,)))
_index.build(4)
idx1, _ = _index.get_nns_by_vector(
np.random.random((5,)), 3, include_distances=True
)
assert len(idx1) == 3
@pytest.mark.parametrize(
['metric', 'is_distance'],
[
('cosine', True),
('euclidean', True),
('inner_product', True),
('cosine', False),
('euclidean', False),
('inner_product', False),
],
)
def test_metric(tmpdir, metric, is_distance):
metas = {
'workspace': str(tmpdir),
'name': 'searcher',
}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(
dump_path=DUMP_PATH,
default_top_k=TOP_K,
metas=metas,
metric=metric,
is_distance=is_distance,
runtime_args=runtime_args,
)
docs = DocumentArray([Document(embedding=np.random.random(7))])
indexer.search(docs, {})
assert len(docs[0].matches) == TOP_K
for i in range(len(docs[0].matches) - 1):
if not is_distance:
assert (
docs[0].matches[i].scores[metric].value
>= docs[0].matches[i + 1].scores[metric].value
)
else:
assert (
docs[0].matches[i].scores[metric].value
<= docs[0].matches[i + 1].scores[metric].value
)
def test_query_vector(tmpdir):
metas = {'workspace': str(tmpdir), 'name': 'searcher'}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(
dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args
)
docs = DocumentArray([Document(embedding=np.random.random(7))])
indexer.search(docs, {})
ids, vecs = import_vectors(DUMP_PATH, str(0))
ids = np.array(list(ids))
vecs = np.array(list(vecs))
assert len(docs) == 1
assert len(docs[0].matches) == TOP_K
assert docs[0].matches[0].id in ids
assert len(docs[0].matches[0].embedding) == 7
assert docs[0].matches[0].embedding in vecs
da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)])
indexer.fill_embedding(da)
for i, doc in enumerate(da):
assert list(doc.embedding)
def test_fill_embeddings(tmpdir):
metas = {'workspace': str(tmpdir), 'name': 'searcher'}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(
dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args
)
da = DocumentArray([Document(id=0), Document(id=1), Document(id=20)])
indexer.fill_embedding(da)
assert da['0'].embedding is not None
assert da['1'].embedding is not None
assert da['20'].embedding is None
def test_query_vector_empty(tmpdir):
metas = {'workspace': str(tmpdir), 'name': 'searcher'}
runtime_args = {'pea_id': 0, 'replica_id': 0}
indexer = AnnoySearcher(default_top_k=TOP_K, metas=metas, runtime_args=runtime_args)
docs = DocumentArray([Document(embedding=np.random.random(7))])
indexer.search(docs, {})
assert len(docs[0].matches) == 0
|
from collections.abc import Sequence
from typing import Union
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.exceptions import OutputParserException
from langchain.agents.agent import AgentOutputParser
class SelfAskOutputParser(AgentOutputParser):
"""Parses self-ask style LLM calls.
Expects output to be in one of two formats.
If the output signals that an action should be taken,
should be in the below format. This will result in an AgentAction
being returned.
```
Thoughts go here...
Follow up: what is the temperature in SF?
```
If the output signals that a final answer should be given,
should be in the below format. This will result in an AgentFinish
being returned.
```
Thoughts go here...
So the final answer is: The temperature is 100 degrees
```
"""
followups: Sequence[str] = ("Follow up:", "Followup:")
finish_string: str = "So the final answer is: "
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
last_line = text.split("\n")[-1]
if not any([follow in last_line for follow in self.followups]):
if self.finish_string not in last_line:
raise OutputParserException(f"Could not parse output: {text}")
return AgentFinish({"output": last_line[len(self.finish_string) :]}, text)
after_colon = text.split(":")[-1].strip()
return AgentAction("Intermediate Answer", after_colon, text)
@property
def _type(self) -> str:
return "self_ask"
|
from typing import Sequence, Union
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.exceptions import OutputParserException
from langchain.agents.agent import AgentOutputParser
class SelfAskOutputParser(AgentOutputParser):
"""Parses self-ask style LLM calls.
Expects output to be in one of two formats.
If the output signals that an action should be taken,
should be in the below format. This will result in an AgentAction
being returned.
```
Thoughts go here...
Follow up: what is the temperature in SF?
```
If the output signals that a final answer should be given,
should be in the below format. This will result in an AgentFinish
being returned.
```
Thoughts go here...
So the final answer is: The temperature is 100 degrees
```
"""
followups: Sequence[str] = ("Follow up:", "Followup:")
finish_string: str = "So the final answer is: "
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
last_line = text.split("\n")[-1]
if not any([follow in last_line for follow in self.followups]):
if self.finish_string not in last_line:
raise OutputParserException(f"Could not parse output: {text}")
return AgentFinish({"output": last_line[len(self.finish_string) :]}, text)
after_colon = text.split(":")[-1].strip()
return AgentAction("Intermediate Answer", after_colon, text)
@property
def _type(self) -> str:
return "self_ask"
|
import pytest
from pydantic.tools import parse_obj_as, schema_json_of
from docarray.base_document.io.json import orjson_dumps
from docarray.typing import AnyUrl
@pytest.mark.proto
def test_proto_any_url():
uri = parse_obj_as(AnyUrl, 'http://jina.ai/img.png')
uri._to_node_protobuf()
def test_json_schema():
schema_json_of(AnyUrl)
def test_dump_json():
url = parse_obj_as(AnyUrl, 'http://jina.ai/img.png')
orjson_dumps(url)
@pytest.mark.parametrize(
'relative_path',
[
'data/05978.jpg',
'../../data/05978.jpg',
],
)
def test_relative_path(relative_path):
# see issue: https://github.com/docarray/docarray/issues/978
url = parse_obj_as(AnyUrl, relative_path)
assert url == relative_path
def test_operators():
url = parse_obj_as(AnyUrl, 'data/05978.jpg')
assert url == 'data/05978.jpg'
assert url != 'aljdñjd'
assert 'data' in url
assert 'docarray' not in url
|
import pytest
from pydantic.tools import parse_obj_as, schema_json_of
from docarray.base_document.io.json import orjson_dumps
from docarray.typing import AnyUrl
@pytest.mark.proto
def test_proto_any_url():
uri = parse_obj_as(AnyUrl, 'http://jina.ai/img.png')
uri._to_node_protobuf()
def test_json_schema():
schema_json_of(AnyUrl)
def test_dump_json():
url = parse_obj_as(AnyUrl, 'http://jina.ai/img.png')
orjson_dumps(url)
def test_relative_path():
# see issue: https://github.com/docarray/docarray/issues/978
url = parse_obj_as(AnyUrl, 'data/05978.jpg')
assert url == 'data/05978.jpg'
def test_operators():
url = parse_obj_as(AnyUrl, 'data/05978.jpg')
assert url == 'data/05978.jpg'
assert url != 'aljdñjd'
assert 'data' in url
assert 'docarray' not in url
|
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files",
[
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
],
)
def test_from_dir(files, tmp_path_factory):
dataset_infos_dir = tmp_path_factory.mktemp("dset_infos_dir")
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w") as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---")
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w") as f:
f.write("")
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w") as f:
f.write('{"default": {"dataset_size": 42}}')
dataset_infos = DatasetInfosDict.from_directory(dataset_infos_dir)
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info",
[
DatasetInfo(),
DatasetInfo(
description="foo",
features=Features({"a": Value("int32")}),
builder_name="builder",
config_name="config",
version="1.0.0",
splits=[{"name": "train"}],
download_size=42,
),
],
)
def test_dataset_info_dump_and_reload(tmp_path, dataset_info: DatasetInfo):
tmp_path = str(tmp_path)
dataset_info.write_to_directory(tmp_path)
reloaded = DatasetInfo.from_directory(tmp_path)
assert dataset_info == reloaded
assert os.path.exists(os.path.join(tmp_path, "dataset_info.json"))
def test_dataset_info_to_yaml_dict():
dataset_info = DatasetInfo(
description="foo",
citation="bar",
homepage="https://foo.bar",
license="CC0",
features=Features({"a": Value("int32")}),
post_processed={},
supervised_keys=(),
task_templates=[],
builder_name="builder",
config_name="config",
version="1.0.0",
splits=[{"name": "train", "num_examples": 42}],
download_checksums={},
download_size=1337,
post_processing_size=442,
dataset_size=1234,
size_in_bytes=1337 + 442 + 1234,
)
dataset_info_yaml_dict = dataset_info._to_yaml_dict()
assert sorted(dataset_info_yaml_dict) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML)
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str))
dataset_info_yaml = yaml.safe_dump(dataset_info_yaml_dict)
reloaded = yaml.safe_load(dataset_info_yaml)
assert dataset_info_yaml_dict == reloaded
def test_dataset_info_to_yaml_dict_empty():
dataset_info = DatasetInfo()
dataset_info_yaml_dict = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict",
[
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()}),
DatasetInfosDict({"my_config_name": DatasetInfo()}),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo",
features=Features({"a": Value("int32")}),
builder_name="builder",
config_name="config",
version="1.0.0",
splits=[{"name": "train"}],
download_size=42,
)
}
),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42),
"v2": DatasetInfo(dataset_size=1337),
}
),
],
)
def test_dataset_infos_dict_dump_and_reload(tmp_path, dataset_infos_dict: DatasetInfosDict):
tmp_path = str(tmp_path)
dataset_infos_dict.write_to_directory(tmp_path)
reloaded = DatasetInfosDict.from_directory(tmp_path)
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
dataset_info.config_name = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
dataset_infos_dict[config_name] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict())
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(tmp_path, "README.md"))
|
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files",
[
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
],
)
def test_from_dir(files, tmp_path_factory):
dataset_infos_dir = tmp_path_factory.mktemp("dset_infos_dir")
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w") as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---")
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w") as f:
f.write("")
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w") as f:
f.write('{"default": {"dataset_size": 42}}')
dataset_infos = DatasetInfosDict.from_directory(dataset_infos_dir)
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info",
[
DatasetInfo(),
DatasetInfo(
description="foo",
features=Features({"a": Value("int32")}),
builder_name="builder",
config_name="config",
version="1.0.0",
splits=[{"name": "train"}],
download_size=42,
),
],
)
def test_dataset_info_dump_and_reload(tmp_path, dataset_info: DatasetInfo):
tmp_path = str(tmp_path)
dataset_info.write_to_directory(tmp_path)
reloaded = DatasetInfo.from_directory(tmp_path)
assert dataset_info == reloaded
assert os.path.exists(os.path.join(tmp_path, "dataset_info.json"))
def test_dataset_info_to_yaml_dict():
dataset_info = DatasetInfo(
description="foo",
citation="bar",
homepage="https://foo.bar",
license="CC0",
features=Features({"a": Value("int32")}),
post_processed={},
supervised_keys=tuple(),
task_templates=[],
builder_name="builder",
config_name="config",
version="1.0.0",
splits=[{"name": "train", "num_examples": 42}],
download_checksums={},
download_size=1337,
post_processing_size=442,
dataset_size=1234,
size_in_bytes=1337 + 442 + 1234,
)
dataset_info_yaml_dict = dataset_info._to_yaml_dict()
assert sorted(dataset_info_yaml_dict) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML)
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str))
dataset_info_yaml = yaml.safe_dump(dataset_info_yaml_dict)
reloaded = yaml.safe_load(dataset_info_yaml)
assert dataset_info_yaml_dict == reloaded
def test_dataset_info_to_yaml_dict_empty():
dataset_info = DatasetInfo()
dataset_info_yaml_dict = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict",
[
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()}),
DatasetInfosDict({"my_config_name": DatasetInfo()}),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo",
features=Features({"a": Value("int32")}),
builder_name="builder",
config_name="config",
version="1.0.0",
splits=[{"name": "train"}],
download_size=42,
)
}
),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42),
"v2": DatasetInfo(dataset_size=1337),
}
),
],
)
def test_dataset_infos_dict_dump_and_reload(tmp_path, dataset_infos_dict: DatasetInfosDict):
tmp_path = str(tmp_path)
dataset_infos_dict.write_to_directory(tmp_path)
reloaded = DatasetInfosDict.from_directory(tmp_path)
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
dataset_info.config_name = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
dataset_infos_dict[config_name] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict())
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(tmp_path, "README.md"))
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import subprocess
import pytest
from executor.audioclip_text import AudioCLIPTextEncoder
from jina import Document, DocumentArray, Flow
_EMBEDDING_DIM = 1024
@pytest.mark.parametrize('request_size', [1, 10, 50, 100])
def test_integration(request_size: int):
docs = DocumentArray(
[Document(text='just some random text here') for _ in range(50)]
)
with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow:
resp = flow.post(
on='/index',
inputs=docs,
request_size=request_size,
return_results=True,
)
assert sum(len(resp_batch.docs) for resp_batch in resp) == 50
for r in resp:
for doc in r.docs:
assert doc.embedding.shape == (_EMBEDDING_DIM,)
@pytest.mark.docker
def test_docker_runtime(build_docker_image: str):
with pytest.raises(subprocess.TimeoutExpired):
subprocess.run(
[
'jina',
'executor',
f'--uses=docker://{build_docker_image}',
'--volumes=.cache:/workspace/.cache',
],
timeout=30,
check=True,
)
|
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved."
__license__ = "Apache-2.0"
import subprocess
import pytest
from jina import Document, DocumentArray, Flow
from ...audioclip_text import AudioCLIPTextEncoder
_EMBEDDING_DIM = 1024
@pytest.mark.parametrize('request_size', [1, 10, 50, 100])
def test_integration(request_size: int):
docs = DocumentArray(
[Document(text='just some random text here') for _ in range(50)]
)
with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow:
resp = flow.post(
on='/index',
inputs=docs,
request_size=request_size,
return_results=True,
)
assert sum(len(resp_batch.docs) for resp_batch in resp) == 50
for r in resp:
for doc in r.docs:
assert doc.embedding.shape == (_EMBEDDING_DIM,)
@pytest.mark.docker
def test_docker_runtime(build_docker_image: str):
with pytest.raises(subprocess.TimeoutExpired):
subprocess.run(
[
'jina',
'executor',
f'--uses=docker://{build_docker_image}',
'--volumes=.cache:/workspace/.cache',
],
timeout=30,
check=True,
)
|
"""!!!DO NOT USE!!!
Distribution related class for Tensorflow backend.
This is just a prototype and we might want to unify it
with other backends in the future.
"""
import tensorflow as tf
from tensorflow.experimental import dtensor
def list_devices(device_type=None):
"""Return all the available devices based on the device type.
Note that this should return the global devices in a distributed setting.
Args:
device_type: string of `"cpu"`, `"gpu"` or `"tpu"`. Default to `gpu` or
`tpu` if available when device_type is not provided. Otherwise will
return the `cpu` devices.
Return:
List of devices that are available for distribute computation.
"""
device_type = device_type.upper() if device_type else None
# DTensor doesn't support getting global devices, even when knowing the
# Mesh. Use TF API instead to get global devices. Coordinator service is
# enabled by default with DTensor, so that list_logical_devices() returns
# a list of global devices. More context can be found in b/254911601.
tf_devices = tf.config.list_logical_devices(device_type=device_type)
cpu_devices = []
other_devices = []
for device in tf_devices:
if device.device_type.lower() == "cpu":
cpu_devices.append(device)
else:
other_devices.append(device)
if device_type is None:
tf_devices = other_devices if len(other_devices) > 0 else cpu_devices
return [
f"{device.device_type.lower()}:{device.name.split(':')[-1]}"
for device in tf_devices
]
def distribute_value(value, tensor_layout):
# TODO
pass
def _to_backend_mesh(device_mesh):
"""Convert the DeviceMesh to Tensorflow backend specific Mesh.
Args:
device_mesh: DeviceMesh instance to convert.
Returns:
A `tf.dtensor.Mesh` instance.
"""
mesh_dims = list(zip(device_mesh.axis_names, device_mesh.shape))
return dtensor.create_distributed_mesh(
mesh_dims=mesh_dims, local_devices=device_mesh.devices.flatten()
)
def _to_backend_layout(tensor_layout):
"""Convert the TensorLayout to Tensorflow backend specific Sharding.
Args:
tensor_layout: TensorLayout instance to convert.
Returns:
A `tf.dtensor.Layout` instance.
"""
if tensor_layout.device_mesh is None:
raise ValueError(
"Cannot create sharding when device mesh is not set for "
"TensorLayout."
)
sharding_specs = [
axis if axis else dtensor.UNSHARDED for axis in tensor_layout.axes
]
dtensor_mesh = tensor_layout.device_mesh.backend_mesh
return dtensor.Layout(sharding_specs=sharding_specs, mesh=dtensor_mesh)
|
"""!!!DO NOT USE!!!
Distribution related class for Tensorflow backend.
This is just a prototype and we might want to unify it
with other backends in the future.
"""
import tensorflow as tf
from tensorflow.experimental import dtensor
def list_devices(device_type=None):
"""Return all the available devices based on the device type.
Note that this should return the global devices in a distributed setting.
Args:
device_type: string of `"cpu"`, `"gpu"` or `"tpu"`. Default to `gpu` or
`tpu` if available when device_type is not provided. Otherwise will
return the `cpu` devices.
Return:
List of devices that are available for distribute computation.
"""
device_type = device_type.upper() if device_type else None
# DTensor doesn't support getting global devices, even when knowing the
# Mesh. Use TF API instead to get global devices. Coordinator service is
# enabled by default with DTensor, so that list_logical_devices() returns
# a list of global devices. More context can be found in b/254911601.
tf_devices = tf.config.list_logical_devices(device_type=device_type)
cpu_devices = []
other_devices = []
for device in tf_devices:
if device.device_type.lower() == "cpu":
cpu_devices.append(device)
else:
other_devices.append(device)
if device_type is None:
tf_devices = other_devices if len(other_devices) > 0 else cpu_devices
return [
f"{device.device_type.lower()}:{device.name.split(':')[-1]}"
for device in tf_devices
]
def distribute_value(value, tensor_layout):
# TODO
pass
def _to_dtensor_mesh(device_mesh):
"""Convert the DeviceMesh to Tensorflow backend specific Mesh.
Args:
device_mesh: DeviceMesh instance to convert.
Returns:
A `tf.dtensor.Mesh` instance.
"""
mesh_dims = list(zip(device_mesh.axis_names, device_mesh.shape))
return dtensor.create_distributed_mesh(
mesh_dims=mesh_dims, local_devices=device_mesh.devices.flatten()
)
def _to_dtensor_layout(tensor_layout):
"""Convert the TensorLayout to Tensorflow backend specific Sharding.
Args:
tensor_layout: TensorLayout instance to convert.
Returns:
A `tf.dtensor.Layout` instance.
"""
if tensor_layout.device_mesh is None:
raise ValueError(
"Cannot create sharding when device mesh is not set for "
"TensorLayout."
)
sharding_specs = [
axis if axis else dtensor.UNSHARDED for axis in tensor_layout.axes
]
dtensor_mesh = _to_dtensor_mesh(tensor_layout.device_mesh)
return dtensor.Layout(sharding_specs=sharding_specs, mesh=dtensor_mesh)
|
# Copyright (c) OpenMMLab. All rights reserved.
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from .se_layer import SELayer
class InvertedResidual(BaseModule):
"""Inverted Residual Block.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
mid_channels (int): The input channels of the depthwise convolution.
kernel_size (int): The kernel size of the depthwise convolution.
Default: 3.
stride (int): The stride of the depthwise convolution. Default: 1.
se_cfg (dict): Config dict for se layer. Default: None, which means no
se layer.
with_expand_conv (bool): Use expand conv or not. If set False,
mid_channels must be the same with in_channels.
Default: True.
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
Returns:
Tensor: The output tensor.
"""
def __init__(self,
in_channels,
out_channels,
mid_channels,
kernel_size=3,
stride=1,
se_cfg=None,
with_expand_conv=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
with_cp=False,
init_cfg=None):
super(InvertedResidual, self).__init__(init_cfg)
self.with_res_shortcut = (stride == 1 and in_channels == out_channels)
assert stride in [1, 2], f'stride must in [1, 2]. ' \
f'But received {stride}.'
self.with_cp = with_cp
self.with_se = se_cfg is not None
self.with_expand_conv = with_expand_conv
if self.with_se:
assert isinstance(se_cfg, dict)
if not self.with_expand_conv:
assert mid_channels == in_channels
if self.with_expand_conv:
self.expand_conv = ConvModule(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.depthwise_conv = ConvModule(
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
padding=kernel_size // 2,
groups=mid_channels,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
if self.with_se:
self.se = SELayer(**se_cfg)
self.linear_conv = ConvModule(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
def forward(self, x):
def _inner_forward(x):
out = x
if self.with_expand_conv:
out = self.expand_conv(out)
out = self.depthwise_conv(out)
if self.with_se:
out = self.se(out)
out = self.linear_conv(out)
if self.with_res_shortcut:
return x + out
else:
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
|
# Copyright (c) OpenMMLab. All rights reserved.
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from .se_layer import SELayer
class InvertedResidual(BaseModule):
"""Inverted Residual Block.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
mid_channels (int): The input channels of the depthwise convolution.
kernel_size (int): The kernal size of the depthwise convolution.
Default: 3.
stride (int): The stride of the depthwise convolution. Default: 1.
se_cfg (dict): Config dict for se layer. Defaul: None, which means no
se layer.
with_expand_conv (bool): Use expand conv or not. If set False,
mid_channels must be the same with in_channels.
Default: True.
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
Returns:
Tensor: The output tensor.
"""
def __init__(self,
in_channels,
out_channels,
mid_channels,
kernel_size=3,
stride=1,
se_cfg=None,
with_expand_conv=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
with_cp=False,
init_cfg=None):
super(InvertedResidual, self).__init__(init_cfg)
self.with_res_shortcut = (stride == 1 and in_channels == out_channels)
assert stride in [1, 2], f'stride must in [1, 2]. ' \
f'But received {stride}.'
self.with_cp = with_cp
self.with_se = se_cfg is not None
self.with_expand_conv = with_expand_conv
if self.with_se:
assert isinstance(se_cfg, dict)
if not self.with_expand_conv:
assert mid_channels == in_channels
if self.with_expand_conv:
self.expand_conv = ConvModule(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.depthwise_conv = ConvModule(
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
padding=kernel_size // 2,
groups=mid_channels,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
if self.with_se:
self.se = SELayer(**se_cfg)
self.linear_conv = ConvModule(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
def forward(self, x):
def _inner_forward(x):
out = x
if self.with_expand_conv:
out = self.expand_conv(out)
out = self.depthwise_conv(out)
if self.with_se:
out = self.se(out)
out = self.linear_conv(out)
if self.with_res_shortcut:
return x + out
else:
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
|
from abc import abstractmethod
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, TypeVar, Union
from docarray import Document, DocumentArray
from docarray.math import ndarray
from docarray.score import NamedScore
from qdrant_client.http import models as rest
from qdrant_client.http.models.models import Distance
if TYPE_CHECKING: # pragma: no cover
import numpy as np
import tensorflow
import torch
from qdrant_client import QdrantClient
QdrantArrayType = TypeVar(
'QdrantArrayType',
np.ndarray,
tensorflow.Tensor,
torch.Tensor,
Sequence[float],
)
class FindMixin:
@property
@abstractmethod
def client(self) -> 'QdrantClient':
raise NotImplementedError()
@property
@abstractmethod
def collection_name(self) -> str:
raise NotImplementedError()
@property
@abstractmethod
def serialize_config(self) -> dict:
raise NotImplementedError()
@property
@abstractmethod
def distance(self) -> 'Distance':
raise NotImplementedError()
def _find_similar_vectors(
self,
q: 'QdrantArrayType',
limit: int = 10,
filter: Optional[Dict] = None,
search_params: Optional[Dict] = None,
**kwargs,
):
query_vector = self._map_embedding(q)
search_result = self.client.search(
self.collection_name,
query_vector=query_vector,
query_filter=filter,
search_params=None
if not search_params
else rest.SearchParams(**search_params),
top=limit,
append_payload=['_serialized'],
)
docs = []
for hit in search_result:
doc = Document.from_base64(
hit.payload['_serialized'], **self.serialize_config
)
doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore(
value=hit.score
)
docs.append(doc)
return DocumentArray(docs)
def _find(
self,
query: 'QdrantArrayType',
limit: int = 10,
filter: Optional[Dict] = None,
search_params: Optional[Dict] = None,
**kwargs,
) -> List['DocumentArray']:
"""Returns approximate nearest neighbors given a batch of input queries.
:param query: input supported to be used in Qdrant.
:param limit: number of retrieved items
:param filter: filter query used for pre-filtering
:param search_params: additional parameters of the search
:return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`.
"""
num_rows, _ = ndarray.get_array_rows(query)
if num_rows == 1:
return [
self._find_similar_vectors(
query, limit=limit, filter=filter, search_params=search_params
)
]
else:
closest_docs = []
for q in query:
da = self._find_similar_vectors(
q, limit=limit, filter=filter, search_params=search_params
)
closest_docs.append(da)
return closest_docs
def _find_with_filter(
self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10
):
list_of_points, _offset = self.client.scroll(
collection_name=self.collection_name,
scroll_filter=filter,
with_payload=True,
limit=limit,
)
da = DocumentArray()
for result in list_of_points[:limit]:
doc = Document.from_base64(
result.payload['_serialized'], **self.serialize_config
)
da.append(doc)
return da
def _filter(
self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10
) -> 'DocumentArray':
"""Returns a subset of documents by filtering by the given filter (`Qdrant` filter)..
:param limit: number of retrieved items
:param filter: filter query used for filtering.
For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant
:return: a `DocumentArray` containing the `Document` objects that verify the filter.
"""
return self._find_with_filter(filter, limit=limit)
|
from abc import abstractmethod
from typing import (
TYPE_CHECKING,
TypeVar,
Sequence,
List,
Union,
Optional,
Dict,
)
from qdrant_client.http.models.models import Distance
from docarray import Document, DocumentArray
from docarray.math import ndarray
from docarray.score import NamedScore
if TYPE_CHECKING: # pragma: no cover
import tensorflow
import torch
import numpy as np
from qdrant_client import QdrantClient
QdrantArrayType = TypeVar(
'QdrantArrayType',
np.ndarray,
tensorflow.Tensor,
torch.Tensor,
Sequence[float],
)
class FindMixin:
@property
@abstractmethod
def client(self) -> 'QdrantClient':
raise NotImplementedError()
@property
@abstractmethod
def collection_name(self) -> str:
raise NotImplementedError()
@property
@abstractmethod
def serialize_config(self) -> dict:
raise NotImplementedError()
@property
@abstractmethod
def distance(self) -> 'Distance':
raise NotImplementedError()
def _find_similar_vectors(
self, q: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None
):
query_vector = self._map_embedding(q)
search_result = self.client.search(
self.collection_name,
query_vector=query_vector,
query_filter=filter,
search_params=None,
top=limit,
append_payload=['_serialized'],
)
docs = []
for hit in search_result:
doc = Document.from_base64(
hit.payload['_serialized'], **self.serialize_config
)
doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore(
value=hit.score
)
docs.append(doc)
return DocumentArray(docs)
def _find(
self,
query: 'QdrantArrayType',
limit: int = 10,
filter: Optional[Dict] = None,
**kwargs,
) -> List['DocumentArray']:
"""Returns approximate nearest neighbors given a batch of input queries.
:param query: input supported to be used in Qdrant.
:param limit: number of retrieved items
:param filter: filter query used for pre-filtering
:return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`.
"""
num_rows, _ = ndarray.get_array_rows(query)
if num_rows == 1:
return [self._find_similar_vectors(query, limit=limit, filter=filter)]
else:
closest_docs = []
for q in query:
da = self._find_similar_vectors(q, limit=limit, filter=filter)
closest_docs.append(da)
return closest_docs
def _find_with_filter(
self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10
):
list_of_points, _offset = self.client.scroll(
collection_name=self.collection_name,
scroll_filter=filter,
with_payload=True,
limit=limit,
)
da = DocumentArray()
for result in list_of_points[:limit]:
doc = Document.from_base64(
result.payload['_serialized'], **self.serialize_config
)
da.append(doc)
return da
def _filter(
self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10
) -> 'DocumentArray':
"""Returns a subset of documents by filtering by the given filter (`Qdrant` filter)..
:param limit: number of retrieved items
:param filter: filter query used for filtering.
For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant
:return: a `DocumentArray` containing the `Document` objects that verify the filter.
"""
return self._find_with_filter(filter, limit=limit)
|
from typing import TYPE_CHECKING
from .github import GithubWebhooksManager
from .slant3d import Slant3DWebhooksManager
if TYPE_CHECKING:
from .base import BaseWebhooksManager
# --8<-- [start:WEBHOOK_MANAGERS_BY_NAME]
WEBHOOK_MANAGERS_BY_NAME: dict[str, type["BaseWebhooksManager"]] = {
handler.PROVIDER_NAME: handler
for handler in [
GithubWebhooksManager,
Slant3DWebhooksManager,
]
}
# --8<-- [end:WEBHOOK_MANAGERS_BY_NAME]
__all__ = ["WEBHOOK_MANAGERS_BY_NAME"]
|
from typing import TYPE_CHECKING
from .github import GithubWebhooksManager
if TYPE_CHECKING:
from .base import BaseWebhooksManager
# --8<-- [start:WEBHOOK_MANAGERS_BY_NAME]
WEBHOOK_MANAGERS_BY_NAME: dict[str, type["BaseWebhooksManager"]] = {
handler.PROVIDER_NAME: handler
for handler in [
GithubWebhooksManager,
]
}
# --8<-- [end:WEBHOOK_MANAGERS_BY_NAME]
__all__ = ["WEBHOOK_MANAGERS_BY_NAME"]
|
from __future__ import annotations
from typing import Any, Optional, Union
import torch
from ._datapoint import Datapoint
class Video(Datapoint):
"""[BETA] :class:`torch.Tensor` subclass for videos.
Args:
data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`.
dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from
``data``.
device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a
:class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU.
requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and
``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``.
"""
def __new__(
cls,
data: Any,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[Union[torch.device, str, int]] = None,
requires_grad: Optional[bool] = None,
) -> Video:
tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad)
if data.ndim < 4:
raise ValueError
return cls._wrap(tensor)
def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override]
return self._make_repr()
_VideoType = Union[torch.Tensor, Video]
_VideoTypeJIT = torch.Tensor
_TensorVideoType = Union[torch.Tensor, Video]
_TensorVideoTypeJIT = torch.Tensor
|
from __future__ import annotations
from typing import Any, Optional, Union
import torch
from ._datapoint import Datapoint
class Video(Datapoint):
"""[BETA] :class:`torch.Tensor` subclass for videos.
Args:
data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`.
dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from
``data``.
device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a
:class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU.
requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and
``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``.
"""
@classmethod
def _wrap(cls, tensor: torch.Tensor) -> Video:
video = tensor.as_subclass(cls)
return video
def __new__(
cls,
data: Any,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[Union[torch.device, str, int]] = None,
requires_grad: Optional[bool] = None,
) -> Video:
tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad)
if data.ndim < 4:
raise ValueError
return cls._wrap(tensor)
@classmethod
def wrap_like(cls, other: Video, tensor: torch.Tensor) -> Video:
return cls._wrap(tensor)
def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override]
return self._make_repr()
_VideoType = Union[torch.Tensor, Video]
_VideoTypeJIT = torch.Tensor
_TensorVideoType = Union[torch.Tensor, Video]
_TensorVideoTypeJIT = torch.Tensor
|
"""
This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings
that can be compared using cosine-similarity to measure the similarity.
Usage:
python training_nli.py
OR
python training_nli.py pretrained_transformer_model_name
"""
from torch.utils.data import DataLoader
import math
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import sys
import os
import gzip
import csv
#### Just some code to print debug information to stdout
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()]
)
#### /print debug information to stdout
# Check if dataset exists. If not, download and extract it
sts_dataset_path = "datasets/stsbenchmark.tsv.gz"
if not os.path.exists(sts_dataset_path):
util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path)
# You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base
model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased"
# Read the dataset
train_batch_size = 16
num_epochs = 4
model_save_path = (
"output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
)
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings
word_embedding_model = models.Transformer(model_name)
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(
word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False,
)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark train dataset")
train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn:
reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)
if row["split"] == "dev":
dev_samples.append(inp_example)
elif row["split"] == "test":
test_samples.append(inp_example)
else:
train_samples.append(inp_example)
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)
logging.info("Read STSbenchmark dev dataset")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev")
# Configure the training. We skip evaluation in this example
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(
train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=model_save_path,
)
##############################################################################
#
# Load the stored model and evaluate its performance on STS benchmark dataset
#
##############################################################################
model = SentenceTransformer(model_save_path)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test")
test_evaluator(model, output_path=model_save_path)
|
"""
This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings
that can be compared using cosine-similarity to measure the similarity.
Usage:
python training_nli.py
OR
python training_nli.py pretrained_transformer_model_name
"""
from torch.utils.data import DataLoader
import math
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import sys
import os
import gzip
import csv
#### Just some code to print debug information to stdout
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()]
)
#### /print debug information to stdout
# Check if dataset exists. If not, download and extract it
sts_dataset_path = "datasets/stsbenchmark.tsv.gz"
if not os.path.exists(sts_dataset_path):
util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path)
# You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base
model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased"
# Read the dataset
train_batch_size = 16
num_epochs = 4
model_save_path = (
"output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
)
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings
word_embedding_model = models.Transformer(model_name)
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(
word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False,
)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark train dataset")
train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn:
reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)
if row["split"] == "dev":
dev_samples.append(inp_example)
elif row["split"] == "test":
test_samples.append(inp_example)
else:
train_samples.append(inp_example)
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)
logging.info("Read STSbenchmark dev dataset")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev")
# Configure the training. We skip evaluation in this example
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(
train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=model_save_path,
)
##############################################################################
#
# Load the stored model and evaluate its performance on STS benchmark dataset
#
##############################################################################
model = SentenceTransformer(model_save_path)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test")
test_evaluator(model, output_path=model_save_path)
|
"""langchain-core version information and utilities."""
VERSION = "0.3.67"
|
"""langchain-core version information and utilities."""
VERSION = "0.3.66"
|
import itertools
import numpy as np
from absl.testing import parameterized
from torch.utils.data import Dataset as TorchDataset
from keras.src.testing import test_case
from keras.src.testing.test_utils import named_product
from keras.src.utils.dataset_utils import split_dataset
from keras.src.utils.module_utils import tensorflow as tf
class MyTorchDataset(TorchDataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return len(self.x)
def __getitem__(self, index):
return self.x[index], self.y[index]
class DatasetUtilsTest(test_case.TestCase):
@parameterized.named_parameters(
named_product(
dataset_type=["list", "tuple", "tensorflow", "torch"],
features_shape=[(2,), (100, 2), (10, 10, 2)],
)
)
def test_split_dataset(self, dataset_type, features_shape):
n_sample, left_size, right_size = 100, 0.2, 0.8
features = np.random.sample((n_sample,) + features_shape)
labels = np.random.sample((n_sample, 1))
if dataset_type == "list":
dataset = [features, labels]
elif dataset_type == "tuple":
dataset = (features, labels)
elif dataset_type == "tensorflow":
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
elif dataset_type == "torch":
dataset = MyTorchDataset(features, labels)
dataset_left, dataset_right = split_dataset(
dataset, left_size=left_size, right_size=right_size
)
self.assertEqual(
int(dataset_left.cardinality()), int(n_sample * left_size)
)
self.assertEqual(
int(dataset_right.cardinality()), int(n_sample * right_size)
)
for sample in itertools.chain(dataset_left, dataset_right):
self.assertEqual(sample[0].shape, features_shape)
self.assertEqual(sample[1].shape, (1,))
@parameterized.named_parameters(
named_product(structure_type=["dict", "tuple"])
)
def test_split_dataset_nested_structures(self, structure_type):
n_sample, left_size, right_size = 100, 0.2, 0.8
features1 = np.random.sample((n_sample, 2))
features2 = np.random.sample((n_sample, 10, 2))
labels = np.random.sample((n_sample, 1))
if structure_type == "dict":
dataset = tf.data.Dataset.from_tensor_slices(
{"x1": features1, "x2": features2, "labels": labels}
)
elif structure_type == "tuple":
dataset = tf.data.Dataset.from_tensor_slices(
((features1, features2), labels)
)
dataset_left, dataset_right = split_dataset(
dataset, left_size=left_size, right_size=right_size
)
self.assertEqual(
int(dataset_left.cardinality()), int(n_sample * left_size)
)
self.assertEqual(
int(dataset_right.cardinality()), int(n_sample * right_size)
)
for sample in itertools.chain(dataset_left, dataset_right):
if structure_type == "dict":
x1, x2, labels = sample["x1"], sample["x2"], sample["labels"]
elif structure_type == "tuple":
(x1, x2), labels = sample
self.assertEqual(x1.shape, (2,))
self.assertEqual(x2.shape, (10, 2))
self.assertEqual(labels.shape, (1,))
|
import itertools
import numpy as np
from absl.testing import parameterized
from torch.utils.data import Dataset as TorchDataset
from keras.src.testing import test_case
from keras.src.testing.test_utils import named_product
from keras.src.utils.dataset_utils import split_dataset
from keras.src.utils.module_utils import tensorflow as tf
class MyTorchDataset(TorchDataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return len(self.x)
def __getitem__(self, index):
return self.x[index], self.y[index]
class DatasetUtilsTest(test_case.TestCase):
@parameterized.named_parameters(
named_product(
dataset_type=["list", "tuple", "tensorflow", "torch"],
features_shape=[(2,), (100, 2), (10, 10, 2)],
)
)
def test_split_dataset(self, dataset_type, features_shape):
n_sample, left_size, right_size = 100, 0.2, 0.8
features = np.random.sample((n_sample,) + features_shape)
labels = np.random.sample((n_sample, 1))
if dataset_type == "list":
dataset = [features, labels]
elif dataset_type == "tuple":
dataset = (features, labels)
elif dataset_type == "tensorflow":
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
elif dataset_type == "torch":
dataset = MyTorchDataset(features, labels)
dataset_left, dataset_right = split_dataset(
dataset, left_size=left_size, right_size=right_size
)
self.assertEqual(
int(dataset_left.cardinality()), int(n_sample * left_size)
)
self.assertEqual(
int(dataset_right.cardinality()), int(n_sample * right_size)
)
for sample in itertools.chain(dataset_left, dataset_right):
self.assertEqual(sample[0].shape, features_shape)
self.assertEqual(sample[1].shape, (1,))
@parameterized.named_parameters(
named_product(structure_type=["dict", "tuple"])
)
def test_split_dataset_nested_structures(self, structure_type):
n_sample, left_size, right_size = 100, 0.2, 0.8
features1 = np.random.sample((n_sample, 2))
features2 = np.random.sample((n_sample, 10, 2))
labels = np.random.sample((n_sample, 1))
if structure_type == "dict":
dataset = tf.data.Dataset.from_tensor_slices(
{"x1": features1, "x2": features2, "labels": labels}
)
elif structure_type == "tuple":
dataset = tf.data.Dataset.from_tensor_slices(
((features1, features2), labels)
)
dataset_left, dataset_right = split_dataset(
dataset, left_size=left_size, right_size=right_size
)
self.assertEqual(
int(dataset_left.cardinality()), int(n_sample * left_size)
)
self.assertEqual(
int(dataset_right.cardinality()), int(n_sample * right_size)
)
for sample in itertools.chain(dataset_left, dataset_right):
if structure_type == "dict":
x1, x2, labels = sample["x1"], sample["x2"], sample["labels"]
elif structure_type == "tuple":
(x1, x2), labels = sample
self.assertEqual(x1.shape, (2,))
self.assertEqual(x2.shape, (10, 2))
self.assertEqual(labels.shape, (1,))
|
import subprocess
import pytest
import os
from typing import List, Generator
from llama_index.core.schema import BaseNode, Document
from llama_index.storage.docstore.gel import (
GelDocumentStore,
)
from llama_index.storage.kvstore.gel import GelKVStore
try:
import gel # noqa
no_packages = False
except ImportError:
no_packages = True
skip_in_cicd = os.environ.get("CI") is not None
try:
if not skip_in_cicd:
subprocess.run(["gel", "project", "init", "--non-interactive"], check=True)
except subprocess.CalledProcessError as e:
print(e)
@pytest.fixture()
def documents() -> List[Document]:
return [
Document(text="doc_1"),
Document(text="doc_2"),
]
@pytest.fixture()
def gel_kvstore() -> Generator[GelKVStore, None, None]:
kvstore = None
try:
kvstore = GelKVStore()
yield kvstore
finally:
if kvstore:
keys = kvstore.get_all().keys()
for key in keys:
kvstore.delete(key)
@pytest.fixture()
def gel_docstore(gel_kvstore: GelKVStore) -> Generator[GelDocumentStore, None, None]:
docstore = None
try:
docstore = GelDocumentStore(gel_kvstore=gel_kvstore)
for id_ in docstore.docs:
docstore.delete_document(id_)
yield docstore
finally:
if docstore:
for id_ in docstore.docs:
docstore.delete_document(id_)
@pytest.mark.skipif(no_packages or skip_in_cicd, reason="gel not installed")
def test_gel_docstore(
gel_docstore: GelDocumentStore, documents: List[Document]
) -> None:
ds = gel_docstore
assert len(ds.docs) == 0
# test adding documents
ds.add_documents(documents)
assert len(ds.docs) == 2
assert all(isinstance(doc, BaseNode) for doc in ds.docs.values())
# test updating documents
ds.add_documents(documents)
print(ds.docs)
assert len(ds.docs) == 2
# test getting documents
doc0 = ds.get_document(documents[0].get_doc_id())
assert doc0 is not None
assert documents[0].get_content() == doc0.get_content()
# test deleting documents
ds.delete_document(documents[0].get_doc_id())
assert len(ds.docs) == 1
@pytest.mark.skipif(no_packages or skip_in_cicd, reason="gel not installed")
def test_gel_docstore_hash(
gel_docstore: GelDocumentStore, documents: List[Document]
) -> None:
ds = gel_docstore
# Test setting hash
ds.set_document_hash("test_doc_id", "test_doc_hash")
doc_hash = ds.get_document_hash("test_doc_id")
assert doc_hash == "test_doc_hash"
# Test updating hash
ds.set_document_hash("test_doc_id", "test_doc_hash_new")
doc_hash = ds.get_document_hash("test_doc_id")
assert doc_hash == "test_doc_hash_new"
# Test getting non-existent
doc_hash = ds.get_document_hash("test_not_exist")
assert doc_hash is None
|
from typing import List, Generator
import subprocess
import pytest
from llama_index.core.schema import BaseNode, Document
from llama_index.storage.docstore.gel import (
GelDocumentStore,
)
from llama_index.storage.kvstore.gel import GelKVStore
try:
import gel # noqa
no_packages = False
except ImportError:
no_packages = True
try:
subprocess.run(["gel", "project", "init", "--non-interactive"], check=True)
except subprocess.CalledProcessError as e:
print(e)
@pytest.fixture()
def documents() -> List[Document]:
return [
Document(text="doc_1"),
Document(text="doc_2"),
]
@pytest.fixture()
def gel_kvstore() -> Generator[GelKVStore, None, None]:
kvstore = None
try:
kvstore = GelKVStore()
yield kvstore
finally:
if kvstore:
keys = kvstore.get_all().keys()
for key in keys:
kvstore.delete(key)
@pytest.fixture()
def gel_docstore(gel_kvstore: GelKVStore) -> Generator[GelDocumentStore, None, None]:
docstore = None
try:
docstore = GelDocumentStore(gel_kvstore=gel_kvstore)
for id_ in docstore.docs:
docstore.delete_document(id_)
yield docstore
finally:
if docstore:
for id_ in docstore.docs:
docstore.delete_document(id_)
@pytest.mark.skipif(no_packages, reason="gel not installed")
def test_gel_docstore(
gel_docstore: GelDocumentStore, documents: List[Document]
) -> None:
ds = gel_docstore
assert len(ds.docs) == 0
# test adding documents
ds.add_documents(documents)
assert len(ds.docs) == 2
assert all(isinstance(doc, BaseNode) for doc in ds.docs.values())
# test updating documents
ds.add_documents(documents)
print(ds.docs)
assert len(ds.docs) == 2
# test getting documents
doc0 = ds.get_document(documents[0].get_doc_id())
assert doc0 is not None
assert documents[0].get_content() == doc0.get_content()
# test deleting documents
ds.delete_document(documents[0].get_doc_id())
assert len(ds.docs) == 1
@pytest.mark.skipif(no_packages, reason="gel not installed")
def test_gel_docstore_hash(
gel_docstore: GelDocumentStore, documents: List[Document]
) -> None:
ds = gel_docstore
# Test setting hash
ds.set_document_hash("test_doc_id", "test_doc_hash")
doc_hash = ds.get_document_hash("test_doc_id")
assert doc_hash == "test_doc_hash"
# Test updating hash
ds.set_document_hash("test_doc_id", "test_doc_hash_new")
doc_hash = ds.get_document_hash("test_doc_id")
assert doc_hash == "test_doc_hash_new"
# Test getting non-existent
doc_hash = ds.get_document_hash("test_not_exist")
assert doc_hash is None
|
from pydantic import BaseModel
from inspect import Signature, Parameter
from typing import Any, Dict, Optional, List, Callable
from llama_index.core.llms import ChatMessage, AudioBlock, TextBlock, MessageRole
from llama_index.core.tools import BaseTool
def make_function_from_tool_model(
model_cls: type[BaseModel], tool: BaseTool
) -> Callable:
fields = model_cls.model_fields
parameters = [
Parameter(name, Parameter.POSITIONAL_OR_KEYWORD, annotation=field.annotation)
for name, field in fields.items()
]
sig = Signature(parameters)
def func_template(*args, **kwargs):
bound = func_template.__signature__.bind(*args, **kwargs)
bound.apply_defaults()
return tool(**bound.arguments).raw_output
func_template.__signature__ = sig
return func_template
def callback_user_message(
messages: Dict[int, List[ChatMessage]],
message_id: int,
text: Optional[str] = None,
audio: Optional[Any] = None,
) -> None:
if messages.get(message_id) is None:
if text:
messages[message_id] = []
messages[message_id].append(
ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text=text)])
)
else:
messages[message_id] = []
messages[message_id].append(
ChatMessage(role=MessageRole.USER, blocks=[AudioBlock(audio=audio)])
)
else:
last_user_messages = [
message
for message in messages[message_id]
if message.role == MessageRole.USER
]
if len(last_user_messages) > 0:
last_user_message = last_user_messages[-1]
else:
messages[message_id].append(ChatMessage(role=MessageRole.USER, blocks=[]))
last_user_message = [
message
for message in messages[message_id]
if message.role == MessageRole.USER
][-1]
if text:
last_user_message.blocks.append(TextBlock(text=text))
else:
last_user_message.blocks.append(AudioBlock(audio=audio))
def callback_agent_message(
messages: Dict[int, List[ChatMessage]],
message_id: int,
text: Optional[str] = None,
audio: Optional[Any] = None,
) -> None:
if messages.get(message_id) is None:
if text:
messages[message_id] = []
messages[message_id].append(
ChatMessage(role=MessageRole.ASSISTANT, blocks=[TextBlock(text=text)])
)
else:
messages[message_id] = []
messages[message_id].append(
ChatMessage(
role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=audio)]
)
)
else:
last_agent_messages = [
message
for message in messages[message_id]
if message.role == MessageRole.ASSISTANT
]
if len(last_agent_messages) > 0:
last_agent_message = last_agent_messages[-1]
else:
messages[message_id].append(
ChatMessage(role=MessageRole.ASSISTANT, blocks=[])
)
last_agent_message = [
message
for message in messages[message_id]
if message.role == MessageRole.ASSISTANT
][-1]
if text:
last_agent_message.blocks.append(TextBlock(text=text))
else:
last_agent_message.blocks.append(AudioBlock(audio=audio))
def callback_agent_message_correction(
messages: Dict[int, List[ChatMessage]], message_id: int, text: str
) -> None:
last_agent_message = [
message
for message in messages[message_id]
if message.role == MessageRole.ASSISTANT
][-1]
last_block = [
block for block in last_agent_message.blocks if block.block_type == "text"
][-1]
last_block.text = text
def callback_latency_measurement(latencies: List[int], latency: int) -> None:
latencies.append(latency)
def get_messages_from_chat(chat: Dict[int, List[ChatMessage]]) -> List[ChatMessage]:
messages: List[ChatMessage] = []
for msgs in chat.values():
for msg in msgs:
messages.append(msg)
return messages
|
from pydantic import BaseModel
from inspect import Signature, Parameter
from typing import Any, Dict, Optional, List, Callable
from llama_index.core.llms import ChatMessage, AudioBlock, TextBlock, MessageRole
from llama_index.core.tools import BaseTool
def make_function_from_tool_model(
model_cls: type[BaseModel], tool: BaseTool
) -> Callable:
fields = model_cls.model_fields
parameters = [
Parameter(name, Parameter.POSITIONAL_OR_KEYWORD, annotation=field.annotation)
for name, field in fields.items()
]
sig = Signature(parameters)
def func_template(*args, **kwargs):
bound = func_template.__signature__.bind(*args, **kwargs)
bound.apply_defaults()
return tool(**bound.arguments).raw_output
func_template.__signature__ = sig
return func_template
def callback_user_message(
messages: Dict[int, List[ChatMessage]],
message_id: int,
text: Optional[str] = None,
audio: Optional[Any] = None,
) -> None:
if messages.get(message_id) is None:
if text:
messages[message_id] = []
messages[message_id].append(
ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text=text)])
)
else:
messages[message_id] = []
messages[message_id].append(
ChatMessage(role=MessageRole.USER, blocks=[AudioBlock(audio=audio)])
)
else:
last_user_messages = [
message
for message in messages[message_id]
if message.role == MessageRole.USER
]
if len(last_user_messages) > 0:
last_user_message = last_user_messages[-1]
else:
messages[message_id].append(ChatMessage(role=MessageRole.USER, blocks=[]))
last_user_message = [
message
for message in messages[message_id]
if message.role == MessageRole.USER
][-1]
if text:
last_user_message.blocks.append(TextBlock(text=text))
else:
last_user_message.blocks.append(AudioBlock(audio=audio))
def callback_agent_message(
messages: Dict[int, List[ChatMessage]],
message_id: int,
text: Optional[str] = None,
audio: Optional[Any] = None,
) -> None:
if messages.get(message_id) is None:
if text:
messages[message_id] = []
messages[message_id].append(
ChatMessage(role=MessageRole.ASSISTANT, blocks=[TextBlock(text=text)])
)
else:
messages[message_id] = []
messages[message_id].append(
ChatMessage(
role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=audio)]
)
)
else:
last_agent_messages = [
message
for message in messages[message_id]
if message.role == MessageRole.ASSISTANT
]
if len(last_agent_messages) > 0:
last_agent_message = last_agent_messages[-1]
else:
messages[message_id].append(
ChatMessage(role=MessageRole.ASSISTANT, blocks=[])
)
last_agent_message = [
message
for message in messages[message_id]
if message.role == MessageRole.ASSISTANT
][-1]
if text:
last_agent_message.blocks.append(TextBlock(text=text))
else:
last_agent_message.blocks.append(AudioBlock(audio=audio))
def callback_agent_message_correction(
messages: Dict[int, List[ChatMessage]], message_id: int, text: str
) -> None:
last_agent_message = [
message
for message in messages[message_id]
if message.role == MessageRole.ASSISTANT
][-1]
last_block = [
block for block in last_agent_message.blocks if block.block_type == "text"
][-1]
last_block.text = text
def callback_latency_measurement(latencies: List[int], latency: int) -> None:
latencies.append(latency)
|
import torch
from torchaudio_unittest.common_utils import PytorchTestCase
from .kaldi_compatibility_test_impl import Kaldi
class TestKaldiFloat32(Kaldi, PytorchTestCase):
dtype = torch.float32
device = torch.device("cpu")
class TestKaldiFloat64(Kaldi, PytorchTestCase):
dtype = torch.float64
device = torch.device("cpu")
|
import torch
from torchaudio_unittest.common_utils import PytorchTestCase
from .kaldi_compatibility_test_impl import Kaldi, KaldiCPUOnly
class TestKaldiCPUOnly(KaldiCPUOnly, PytorchTestCase):
dtype = torch.float32
device = torch.device("cpu")
class TestKaldiFloat32(Kaldi, PytorchTestCase):
dtype = torch.float32
device = torch.device("cpu")
class TestKaldiFloat64(Kaldi, PytorchTestCase):
dtype = torch.float64
device = torch.device("cpu")
|
_base_ = 'faster-rcnn_regnetx-3.2GF_fpn_ms-3x_coco.py'
model = dict(
backbone=dict(
type='RegNet',
arch='regnetx_1.6gf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')),
neck=dict(
type='FPN',
in_channels=[72, 168, 408, 912],
out_channels=256,
num_outs=5))
|
_base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
model = dict(
backbone=dict(
type='RegNet',
arch='regnetx_1.6gf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')),
neck=dict(
type='FPN',
in_channels=[72, 168, 408, 912],
out_channels=256,
num_outs=5))
|
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import torch
from diffusers import StableCascadeUNet
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
require_torch_accelerator,
slow,
torch_device,
)
logger = logging.get_logger(__name__)
enable_full_determinism()
@slow
@require_torch_accelerator
class StableCascadeUNetSingleFileTest(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def test_single_file_components_stage_b(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder", use_safetensors=True
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
def test_single_file_components_stage_b_lite(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder_lite"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
def test_single_file_components_stage_c(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
def test_single_file_components_stage_c_lite(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_lite_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior_lite"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
|
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import torch
from diffusers import StableCascadeUNet
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
require_torch_accelerator,
slow,
torch_device,
)
logger = logging.get_logger(__name__)
enable_full_determinism()
@slow
@require_torch_accelerator
class StableCascadeUNetSingleFileTest(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def test_single_file_components_stage_b(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder", use_safetensors=True
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
def test_single_file_components_stage_b_lite(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder_lite"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
def test_single_file_components_stage_c(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
def test_single_file_components_stage_c_lite(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_lite_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior_lite"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert model.config[param_name] == param_value, (
f"{param_name} differs between single file loading and pretrained loading"
)
|
import enum
from typing import Any, List, Optional, Union
import pydantic
import backend.data.graph
from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash
class Methods(enum.Enum):
SUBSCRIBE = "subscribe"
UNSUBSCRIBE = "unsubscribe"
EXECUTION_EVENT = "execution_event"
ERROR = "error"
HEARTBEAT = "heartbeat"
class WsMessage(pydantic.BaseModel):
method: Methods
data: Optional[Union[dict[str, Any], list[Any], str]] = None
success: bool | None = None
channel: str | None = None
error: str | None = None
class ExecutionSubscription(pydantic.BaseModel):
graph_id: str
class SubscriptionDetails(pydantic.BaseModel):
event_type: str
channel: str
graph_id: str
class CreateGraph(pydantic.BaseModel):
template_id: str | None = None
template_version: int | None = None
graph: backend.data.graph.Graph | None = None
class CreateAPIKeyRequest(pydantic.BaseModel):
name: str
permissions: List[APIKeyPermission]
description: Optional[str] = None
class CreateAPIKeyResponse(pydantic.BaseModel):
api_key: APIKeyWithoutHash
plain_text_key: str
class SetGraphActiveVersion(pydantic.BaseModel):
active_graph_version: int
class UpdatePermissionsRequest(pydantic.BaseModel):
permissions: List[APIKeyPermission]
|
import enum
from typing import Any, List, Optional, Union
import pydantic
import backend.data.graph
from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash
class Methods(enum.Enum):
SUBSCRIBE = "subscribe"
UNSUBSCRIBE = "unsubscribe"
EXECUTION_EVENT = "execution_event"
ERROR = "error"
HEARTBEAT = "heartbeat"
class WsMessage(pydantic.BaseModel):
method: Methods
data: Optional[Union[dict[str, Any], list[Any], str]] = None
success: bool | None = None
channel: str | None = None
error: str | None = None
class ExecutionSubscription(pydantic.BaseModel):
graph_id: str
class SubscriptionDetails(pydantic.BaseModel):
event_type: str
channel: str
graph_id: str
class CreateGraph(pydantic.BaseModel):
template_id: str | None = None
template_version: int | None = None
graph: backend.data.graph.Graph | None = None
class CreateAPIKeyRequest(pydantic.BaseModel):
name: str
permissions: List[APIKeyPermission]
description: Optional[str] = None
class CreateAPIKeyResponse(pydantic.BaseModel):
api_key: APIKeyWithoutHash
plain_text_key: str
class SetGraphActiveVersion(pydantic.BaseModel):
active_graph_version: int
class UpdatePermissionsRequest(pydantic.BaseModel):
permissions: List[APIKeyPermission]
class Pagination(pydantic.BaseModel):
total_items: int = pydantic.Field(
description="Total number of items.", examples=[42]
)
total_pages: int = pydantic.Field(
description="Total number of pages.", examples=[2]
)
current_page: int = pydantic.Field(
description="Current_page page number.", examples=[1]
)
page_size: int = pydantic.Field(
description="Number of items per page.", examples=[25]
)
|
# Copyright (c) OpenMMLab. All rights reserved.
from .backbones import * # noqa: F401,F403
from .data_preprocessors import * # noqa: F401,F403
from .dense_heads import * # noqa: F401,F403
from .detectors import * # noqa: F401,F403
from .layers import * # noqa: F401,F403
from .losses import * # noqa: F401,F403
from .mot import * # noqa: F401,F403
from .necks import * # noqa: F401,F403
from .reid import * # noqa: F401,F403
from .roi_heads import * # noqa: F401,F403
from .seg_heads import * # noqa: F401,F403
from .task_modules import * # noqa: F401,F403
from .test_time_augs import * # noqa: F401,F403
from .trackers import * # noqa: F401,F403
from .tracking_heads import * # noqa: F401,F403
from .vis import * # noqa: F401,F403
|
# Copyright (c) OpenMMLab. All rights reserved.
from .backbones import * # noqa: F401,F403
from .data_preprocessors import * # noqa: F401,F403
from .dense_heads import * # noqa: F401,F403
from .detectors import * # noqa: F401,F403
from .layers import * # noqa: F401,F403
from .losses import * # noqa: F401,F403
from .mot import * # noqa: F401,F403
from .necks import * # noqa: F401,F403
from .reid import * # noqa: F401,F403
from .roi_heads import * # noqa: F401,F403
from .seg_heads import * # noqa: F401,F403
from .task_modules import * # noqa: F401,F403
from .test_time_augs import * # noqa: F401,F403
from .trackers import * # noqa: F401,F403
from .tracking_heads import * # noqa: F401,F403
|
"""Utility functions for validating Ollama models."""
from httpx import ConnectError
from ollama import Client, ResponseError
def validate_model(client: Client, model_name: str) -> None:
"""Validate that a model exists in the Ollama instance.
Args:
client: The Ollama client.
model_name: The name of the model to validate.
Raises:
ValueError: If the model is not found or if there's a connection issue.
"""
try:
response = client.list()
model_names: list[str] = [model["model"] for model in response["models"]]
if not any(
model_name == m or m.startswith(f"{model_name}:") for m in model_names
):
msg = (
f"Model `{model_name}` not found in Ollama. Please pull the "
f"model (using `ollama pull {model_name}`) or specify a valid "
f"model name. Available local models: {', '.join(model_names)}"
)
raise ValueError(msg)
except ConnectError as e:
msg = "Failed to connect to Ollama. Please check that Ollama is downloaded, running and accessible. https://ollama.com/download" # noqa: E501
raise ValueError(msg) from e
except ResponseError as e:
msg = (
"Received an error from the Ollama API. "
"Please check your Ollama server logs."
)
raise ValueError(msg) from e
|
"""Utility functions for validating Ollama models."""
from httpx import ConnectError
from ollama import Client, ResponseError
def validate_model(client: Client, model_name: str) -> None:
"""Validate that a model exists in the Ollama instance.
Args:
client: The Ollama client.
model_name: The name of the model to validate.
Raises:
ValueError: If the model is not found or if there's a connection issue.
"""
try:
response = client.list()
model_names: list[str] = [model["name"] for model in response["models"]]
if not any(
model_name == m or m.startswith(f"{model_name}:") for m in model_names
):
msg = (
f"Model `{model_name}` not found in Ollama. Please pull the "
f"model (using `ollama pull {model_name}`) or specify a valid "
f"model name. Available local models: {', '.join(model_names)}"
)
raise ValueError(msg)
except ConnectError as e:
msg = (
"Connection to Ollama failed. Please make sure Ollama is running "
f"and accessible at {client._client.base_url}. "
)
raise ValueError(msg) from e
except ResponseError as e:
msg = (
"Received an error from the Ollama API. "
"Please check your Ollama server logs."
)
raise ValueError(msg) from e
|
from typing import TYPE_CHECKING, Any
from langchain._api import create_importer
if TYPE_CHECKING:
from langchain_community.callbacks.wandb_callback import WandbCallbackHandler
# Create a way to dynamically look up deprecated imports.
# Used to consolidate logic for raising deprecation warnings and
# handling optional imports.
DEPRECATED_LOOKUP = {
"WandbCallbackHandler": "langchain_community.callbacks.wandb_callback",
}
_import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP)
def __getattr__(name: str) -> Any:
"""Look up attributes dynamically."""
return _import_attribute(name)
__all__ = [
"WandbCallbackHandler",
]
|
from typing import TYPE_CHECKING, Any
from langchain._api import create_importer
if TYPE_CHECKING:
from langchain_community.callbacks.wandb_callback import WandbCallbackHandler
# Create a way to dynamically look up deprecated imports.
# Used to consolidate logic for raising deprecation warnings and
# handling optional imports.
DEPRECATED_LOOKUP = {
"WandbCallbackHandler": "langchain_community.callbacks.wandb_callback"
}
_import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP)
def __getattr__(name: str) -> Any:
"""Look up attributes dynamically."""
return _import_attribute(name)
__all__ = [
"WandbCallbackHandler",
]
|
from typing import AsyncGenerator, Generator, Optional
import pytest
from jina import Client, Executor, requests
from jina._docarray import Document, DocumentArray
from jina.helper import random_port
class MyDocument(Document):
text: str
number: Optional[int]
class OutputDocument(Document):
text: str
class MyExecutor(Executor):
@requests(on='/hello')
async def task(self, doc: MyDocument, **kwargs) -> MyDocument:
for i in range(100):
yield MyDocument(text=f'{doc.text} {doc.number + i}')
class CustomResponseExecutor(Executor):
@requests(on='/task1')
async def task1(self, doc: MyDocument, **kwargs) -> OutputDocument:
for i in range(100):
yield OutputDocument(text=f'{doc.text} {doc.number}-{i}-task1')
@requests(on='/task2')
async def task2(
self, doc: MyDocument, **kwargs
) -> Generator[OutputDocument, None, None]:
for i in range(100):
yield OutputDocument(text=f'{doc.text} {doc.number}-{i}-task2')
@requests(on='/task3')
async def task3(
self, doc: MyDocument, **kwargs
) -> AsyncGenerator[OutputDocument, None]:
for i in range(100):
yield OutputDocument(text=f'{doc.text} {doc.number}-{i}-task3')
@pytest.mark.asyncio
@pytest.mark.parametrize('protocol', ['http', 'grpc'])
@pytest.mark.parametrize('include_gateway', [False, True])
async def test_streaming_deployment(protocol, include_gateway):
from jina import Deployment
port = random_port()
with Deployment(
uses=MyExecutor,
timeout_ready=-1,
protocol=protocol,
cors=True,
port=port,
include_gateway=include_gateway,
):
client = Client(port=port, protocol=protocol, cors=True, asyncio=True)
i = 10
async for doc in client.stream_doc(
on='/hello',
inputs=MyDocument(text='hello world', number=i),
return_type=MyDocument,
):
assert doc.text == f'hello world {i}'
i += 1
@pytest.mark.asyncio
@pytest.mark.parametrize('protocol', ['http', 'grpc'])
@pytest.mark.parametrize('endpoint', ['task1', 'task2', 'task3'])
@pytest.mark.parametrize('include_gateway', [False, True])
async def test_streaming_custom_response(protocol, endpoint, include_gateway):
from jina import Deployment
port = random_port()
with Deployment(
uses=CustomResponseExecutor,
timeout_ready=-1,
protocol=protocol,
cors=True,
port=port,
include_gateway=include_gateway,
):
client = Client(port=port, protocol=protocol, cors=True, asyncio=True)
i = 0
async for doc in client.stream_doc(
on=f'/{endpoint}',
inputs=MyDocument(text='hello world', number=5),
return_type=OutputDocument,
):
assert doc.text == f'hello world 5-{i}-{endpoint}'
i += 1
class Executor1(Executor):
@requests
def generator(self, doc: MyDocument, **kwargs) -> MyDocument:
yield MyDocument(text='new document')
@requests(on='/non_generator')
def non_generator(self, docs: DocumentArray, **kwargs):
return docs
class Executor2(Executor):
@requests
def non_generator(self, docs: DocumentArray, **kwargs):
return docs
@requests(on='/generator')
def generator(self, doc: MyDocument, **kwargs):
yield MyDocument(text='new document')
class Executor3(Executor):
@requests(on='/non_generator')
def non_generator(self, docs: DocumentArray, **kwargs):
return docs
@requests(on='/generator')
def generator(self, doc: MyDocument, **kwargs):
yield MyDocument(text='new document')
@pytest.mark.asyncio
@pytest.mark.parametrize(
'executor,expected',
[
('Executor1', {'/default': True, '/non_generator': False}),
('Executor2', {'/default': False, '/generator': True}),
('Executor3', {'/generator': True, '/non_generator': False}),
],
)
async def test_endpoint_discovery(executor, expected):
from google.protobuf import json_format
from jina.logging.logger import JinaLogger
from jina.parsers import set_pod_parser
from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler
args = set_pod_parser().parse_args(['--uses', executor])
handler = WorkerRequestHandler(args, JinaLogger('data request handler'))
res = await handler.endpoint_discovery(None, None)
for endpoint, is_generator in expected.items():
assert (
json_format.MessageToDict(res.schemas)[endpoint]['is_generator']
== is_generator
)
|
from typing import AsyncGenerator, Generator, Optional
import pytest
from jina import Client, Executor, requests
from jina._docarray import Document, DocumentArray
from jina.helper import random_port
class MyDocument(Document):
text: str
number: Optional[int]
class OutputDocument(Document):
text: str
class MyExecutor(Executor):
@requests(on='/hello')
async def task(self, doc: MyDocument, **kwargs) -> MyDocument:
for i in range(100):
yield MyDocument(text=f'{doc.text} {doc.number + i}')
class CustomResponseExecutor(Executor):
@requests(on='/task1')
async def task1(self, doc: MyDocument, **kwargs) -> OutputDocument:
for i in range(100):
yield OutputDocument(text=f'{doc.text} {doc.number}-{i}-task1')
@requests(on='/task2')
async def task2(
self, doc: MyDocument, **kwargs
) -> Generator[OutputDocument, None, None]:
for i in range(100):
yield OutputDocument(text=f'{doc.text} {doc.number}-{i}-task2')
@requests(on='/task3')
async def task3(
self, doc: MyDocument, **kwargs
) -> AsyncGenerator[OutputDocument, None]:
for i in range(100):
yield OutputDocument(text=f'{doc.text} {doc.number}-{i}-task3')
@pytest.mark.asyncio
@pytest.mark.parametrize('protocol', ['http', 'grpc'])
async def test_streaming_deployment(protocol):
from jina import Deployment
port = random_port()
with Deployment(
uses=MyExecutor,
timeout_ready=-1,
protocol=protocol,
cors=True,
port=port,
include_gateway=False,
):
client = Client(port=port, protocol=protocol, cors=True, asyncio=True)
i = 10
async for doc in client.stream_doc(
on='/hello',
inputs=MyDocument(text='hello world', number=i),
return_type=MyDocument,
):
assert doc.text == f'hello world {i}'
i += 1
@pytest.mark.asyncio
@pytest.mark.parametrize('protocol', ['http', 'grpc'])
@pytest.mark.parametrize('endpoint', ['task1', 'task2', 'task3'])
async def test_streaming_custom_response(protocol, endpoint):
from jina import Deployment
port = random_port()
with Deployment(
uses=CustomResponseExecutor,
timeout_ready=-1,
protocol=protocol,
cors=True,
port=port,
include_gateway=False,
):
client = Client(port=port, protocol=protocol, cors=True, asyncio=True)
i = 0
async for doc in client.stream_doc(
on=f'/{endpoint}',
inputs=MyDocument(text='hello world', number=5),
return_type=OutputDocument,
):
assert doc.text == f'hello world 5-{i}-{endpoint}'
i += 1
class Executor1(Executor):
@requests
def generator(self, doc: MyDocument, **kwargs) -> MyDocument:
yield MyDocument(text='new document')
@requests(on='/non_generator')
def non_generator(self, docs: DocumentArray, **kwargs):
return docs
class Executor2(Executor):
@requests
def non_generator(self, docs: DocumentArray, **kwargs):
return docs
@requests(on='/generator')
def generator(self, doc: MyDocument, **kwargs):
yield MyDocument(text='new document')
class Executor3(Executor):
@requests(on='/non_generator')
def non_generator(self, docs: DocumentArray, **kwargs):
return docs
@requests(on='/generator')
def generator(self, doc: MyDocument, **kwargs):
yield MyDocument(text='new document')
@pytest.mark.asyncio
@pytest.mark.parametrize(
'executor,expected',
[
('Executor1', {'/default': True, '/non_generator': False}),
('Executor2', {'/default': False, '/generator': True}),
('Executor3', {'/generator': True, '/non_generator': False}),
],
)
async def test_endpoint_discovery(executor, expected):
from google.protobuf import json_format
from jina.logging.logger import JinaLogger
from jina.parsers import set_pod_parser
from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler
args = set_pod_parser().parse_args(['--uses', executor])
handler = WorkerRequestHandler(args, JinaLogger('data request handler'))
res = await handler.endpoint_discovery(None, None)
for endpoint, is_generator in expected.items():
assert (
json_format.MessageToDict(res.schemas)[endpoint]['is_generator']
== is_generator
)
|
from pathlib import Path
from typing import List
import pytest
from dpr_text import DPRTextEncoder
from jina import Document, DocumentArray, Executor
_EMBEDDING_DIM = 768
@pytest.fixture(scope='session')
def basic_encoder() -> DPRTextEncoder:
return DPRTextEncoder()
@pytest.fixture(scope='session')
def basic_encoder_ctx() -> DPRTextEncoder:
return DPRTextEncoder(
'facebook/dpr-ctx_encoder-single-nq-base',
encoder_type='context',
title_tag_key='title',
)
def test_config():
encoder = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml'))
assert encoder.encoder_type == 'question'
def test_no_document(basic_encoder: DPRTextEncoder):
basic_encoder.encode(None, {})
def test_empty_documents(basic_encoder: DPRTextEncoder):
docs = DocumentArray([])
basic_encoder.encode(docs, {})
assert len(docs) == 0
def test_no_text_documents(basic_encoder: DPRTextEncoder):
docs = DocumentArray([Document()])
basic_encoder.encode(docs, {})
assert len(docs) == 1
assert docs[0].embedding is None
def test_context_encoder_doc_no_title(basic_encoder_ctx: DPRTextEncoder):
docs = DocumentArray([Document(text='hello there')])
with pytest.raises(ValueError, match='If you set `title_tag_key` property'):
basic_encoder_ctx.encode(docs, {})
def test_wrong_encoder_type():
with pytest.raises(ValueError, match='The ``encoder_type`` parameter'):
DPRTextEncoder(encoder_type='worng_type')
def test_encoding_cpu():
docs = DocumentArray([Document(text='hello there')])
encoder = DPRTextEncoder(device='cpu')
encoder.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
def test_encoding_question_type(basic_encoder: DPRTextEncoder):
docs = DocumentArray([Document(text='hello there')])
basic_encoder.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
def test_encoding_context_type(basic_encoder_ctx: DPRTextEncoder):
docs = DocumentArray([Document(text='hello there', tags={'title': 'greeting'})])
basic_encoder_ctx.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
@pytest.mark.gpu
def test_encoding_gpu():
docs = DocumentArray([Document(text='hello there')])
encoder = DPRTextEncoder(device='cuda')
encoder.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
@pytest.mark.parametrize(
'traversal_paths, counts',
[
(['r'], [['r', 1], ['c', 0], ['cc', 0]]),
(['c'], [['r', 0], ['c', 3], ['cc', 0]]),
(['cc'], [['r', 0], ['c', 0], ['cc', 2]]),
(['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]),
],
)
def test_traversal_path(
traversal_paths: List[str], counts: List, basic_encoder: DPRTextEncoder
):
text = 'blah'
docs = DocumentArray([Document(id='root1', text=text)])
docs[0].chunks = [
Document(id='chunk11', text=text),
Document(id='chunk12', text=text),
Document(id='chunk13', text=text),
]
docs[0].chunks[0].chunks = [
Document(id='chunk111', text=text),
Document(id='chunk112', text=text),
]
basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths})
for path, count in counts:
embeddings = docs.traverse_flat([path]).get_attributes('embedding')
assert len(list(filter(lambda x: x is not None, embeddings))) == count
@pytest.mark.parametrize('batch_size', [1, 2, 4, 8])
def test_batch_size(basic_encoder: DPRTextEncoder, batch_size: int):
docs = DocumentArray([Document(text='hello there') for _ in range(32)])
basic_encoder.encode(docs, parameters={'batch_size': batch_size})
for doc in docs:
assert doc.embedding.shape == (_EMBEDDING_DIM,)
def test_quality_embeddings(basic_encoder: DPRTextEncoder):
docs = DocumentArray(
[
Document(id='A', text='a furry animal that with a long tail'),
Document(id='B', text='a domesticated mammal with four legs'),
Document(id='C', text='a type of aircraft that uses rotating wings'),
Document(id='D', text='flying vehicle that has fixed wings and engines'),
]
)
basic_encoder.encode(DocumentArray(docs), {})
# assert semantic meaning is captured in the encoding
docs.match(docs)
matches = ['B', 'A', 'D', 'C']
for i, doc in enumerate(docs):
assert doc.matches[1].id == matches[i]
|
from pathlib import Path
from typing import List
import pytest
from jina import Document, DocumentArray, Executor
from ...dpr_text import DPRTextEncoder
_EMBEDDING_DIM = 768
@pytest.fixture(scope='session')
def basic_encoder() -> DPRTextEncoder:
return DPRTextEncoder()
@pytest.fixture(scope='session')
def basic_encoder_ctx() -> DPRTextEncoder:
return DPRTextEncoder(
'facebook/dpr-ctx_encoder-single-nq-base',
encoder_type='context',
title_tag_key='title',
)
def test_config():
encoder = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml'))
assert encoder.encoder_type == 'question'
def test_no_document(basic_encoder: DPRTextEncoder):
basic_encoder.encode(None, {})
def test_empty_documents(basic_encoder: DPRTextEncoder):
docs = DocumentArray([])
basic_encoder.encode(docs, {})
assert len(docs) == 0
def test_no_text_documents(basic_encoder: DPRTextEncoder):
docs = DocumentArray([Document()])
basic_encoder.encode(docs, {})
assert len(docs) == 1
assert docs[0].embedding is None
def test_context_encoder_doc_no_title(basic_encoder_ctx: DPRTextEncoder):
docs = DocumentArray([Document(text='hello there')])
with pytest.raises(ValueError, match='If you set `title_tag_key` property'):
basic_encoder_ctx.encode(docs, {})
def test_wrong_encoder_type():
with pytest.raises(ValueError, match='The ``encoder_type`` parameter'):
DPRTextEncoder(encoder_type='worng_type')
def test_encoding_cpu():
docs = DocumentArray([Document(text='hello there')])
encoder = DPRTextEncoder(device='cpu')
encoder.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
def test_encoding_question_type(basic_encoder: DPRTextEncoder):
docs = DocumentArray([Document(text='hello there')])
basic_encoder.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
def test_encoding_context_type(basic_encoder_ctx: DPRTextEncoder):
docs = DocumentArray([Document(text='hello there', tags={'title': 'greeting'})])
basic_encoder_ctx.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
@pytest.mark.gpu
def test_encoding_gpu():
docs = DocumentArray([Document(text='hello there')])
encoder = DPRTextEncoder(device='cuda')
encoder.encode(docs, {})
assert docs[0].embedding.shape == (_EMBEDDING_DIM,)
@pytest.mark.parametrize(
'traversal_paths, counts',
[
(['r'], [['r', 1], ['c', 0], ['cc', 0]]),
(['c'], [['r', 0], ['c', 3], ['cc', 0]]),
(['cc'], [['r', 0], ['c', 0], ['cc', 2]]),
(['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]),
],
)
def test_traversal_path(
traversal_paths: List[str], counts: List, basic_encoder: DPRTextEncoder
):
text = 'blah'
docs = DocumentArray([Document(id='root1', text=text)])
docs[0].chunks = [
Document(id='chunk11', text=text),
Document(id='chunk12', text=text),
Document(id='chunk13', text=text),
]
docs[0].chunks[0].chunks = [
Document(id='chunk111', text=text),
Document(id='chunk112', text=text),
]
basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths})
for path, count in counts:
embeddings = docs.traverse_flat([path]).get_attributes('embedding')
assert len(list(filter(lambda x: x is not None, embeddings))) == count
@pytest.mark.parametrize('batch_size', [1, 2, 4, 8])
def test_batch_size(basic_encoder: DPRTextEncoder, batch_size: int):
docs = DocumentArray([Document(text='hello there') for _ in range(32)])
basic_encoder.encode(docs, parameters={'batch_size': batch_size})
for doc in docs:
assert doc.embedding.shape == (_EMBEDDING_DIM,)
def test_quality_embeddings(basic_encoder: DPRTextEncoder):
docs = DocumentArray(
[
Document(id='A', text='a furry animal that with a long tail'),
Document(id='B', text='a domesticated mammal with four legs'),
Document(id='C', text='a type of aircraft that uses rotating wings'),
Document(id='D', text='flying vehicle that has fixed wings and engines'),
]
)
basic_encoder.encode(DocumentArray(docs), {})
# assert semantic meaning is captured in the encoding
docs.match(docs)
matches = ['B', 'A', 'D', 'C']
for i, doc in enumerate(docs):
assert doc.matches[1].id == matches[i]
|
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from pydantic import BaseModel
# Ignoring type because below is valid pydantic code
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
class Params(BaseModel, extra="allow"):
"""Parameters for the MLflow AI Gateway LLM."""
temperature: float = 0.0
candidate_count: int = 1
"""The number of candidates to return."""
stop: Optional[List[str]] = None
max_tokens: Optional[int] = None
class MlflowAIGateway(LLM):
"""MLflow AI Gateway LLMs.
To use, you should have the ``mlflow[gateway]`` python package installed.
For more information, see https://mlflow.org/docs/latest/gateway/index.html.
Example:
.. code-block:: python
from langchain_community.llms import MlflowAIGateway
completions = MlflowAIGateway(
gateway_uri="<your-mlflow-ai-gateway-uri>",
route="<your-mlflow-ai-gateway-completions-route>",
params={
"temperature": 0.1
}
)
"""
route: str
gateway_uri: Optional[str] = None
params: Optional[Params] = None
def __init__(self, **kwargs: Any):
warnings.warn(
"`MlflowAIGateway` is deprecated. Use `Mlflow` or `Databricks` instead.",
DeprecationWarning,
)
try:
import mlflow.gateway
except ImportError as e:
raise ImportError(
"Could not import `mlflow.gateway` module. "
"Please install it with `pip install mlflow[gateway]`."
) from e
super().__init__(**kwargs)
if self.gateway_uri:
mlflow.gateway.set_gateway_uri(self.gateway_uri)
@property
def _default_params(self) -> Dict[str, Any]:
params: Dict[str, Any] = {
"gateway_uri": self.gateway_uri,
"route": self.route,
**(self.params.dict() if self.params else {}),
}
return params
@property
def _identifying_params(self) -> Mapping[str, Any]:
return self._default_params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
try:
import mlflow.gateway
except ImportError as e:
raise ImportError(
"Could not import `mlflow.gateway` module. "
"Please install it with `pip install mlflow[gateway]`."
) from e
data: Dict[str, Any] = {
"prompt": prompt,
**(self.params.dict() if self.params else {}),
}
if s := (stop or (self.params.stop if self.params else None)):
data["stop"] = s
resp = mlflow.gateway.query(self.route, data=data)
return resp["candidates"][0]["text"]
@property
def _llm_type(self) -> str:
return "mlflow-ai-gateway"
|
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from pydantic import BaseModel
# Ignoring type because below is valid pydantic code
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
class Params(BaseModel, extra="allow"): # type: ignore[call-arg]
"""Parameters for the MLflow AI Gateway LLM."""
temperature: float = 0.0
candidate_count: int = 1
"""The number of candidates to return."""
stop: Optional[List[str]] = None
max_tokens: Optional[int] = None
class MlflowAIGateway(LLM):
"""MLflow AI Gateway LLMs.
To use, you should have the ``mlflow[gateway]`` python package installed.
For more information, see https://mlflow.org/docs/latest/gateway/index.html.
Example:
.. code-block:: python
from langchain_community.llms import MlflowAIGateway
completions = MlflowAIGateway(
gateway_uri="<your-mlflow-ai-gateway-uri>",
route="<your-mlflow-ai-gateway-completions-route>",
params={
"temperature": 0.1
}
)
"""
route: str
gateway_uri: Optional[str] = None
params: Optional[Params] = None
def __init__(self, **kwargs: Any):
warnings.warn(
"`MlflowAIGateway` is deprecated. Use `Mlflow` or `Databricks` instead.",
DeprecationWarning,
)
try:
import mlflow.gateway
except ImportError as e:
raise ImportError(
"Could not import `mlflow.gateway` module. "
"Please install it with `pip install mlflow[gateway]`."
) from e
super().__init__(**kwargs)
if self.gateway_uri:
mlflow.gateway.set_gateway_uri(self.gateway_uri)
@property
def _default_params(self) -> Dict[str, Any]:
params: Dict[str, Any] = {
"gateway_uri": self.gateway_uri,
"route": self.route,
**(self.params.dict() if self.params else {}),
}
return params
@property
def _identifying_params(self) -> Mapping[str, Any]:
return self._default_params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
try:
import mlflow.gateway
except ImportError as e:
raise ImportError(
"Could not import `mlflow.gateway` module. "
"Please install it with `pip install mlflow[gateway]`."
) from e
data: Dict[str, Any] = {
"prompt": prompt,
**(self.params.dict() if self.params else {}),
}
if s := (stop or (self.params.stop if self.params else None)):
data["stop"] = s
resp = mlflow.gateway.query(self.route, data=data)
return resp["candidates"][0]["text"]
@property
def _llm_type(self) -> str:
return "mlflow-ai-gateway"
|
"""Image prompt template for a multimodal model."""
from typing import Any
from pydantic import Field
from langchain_core.prompt_values import ImagePromptValue, ImageURL, PromptValue
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.string import (
DEFAULT_FORMATTER_MAPPING,
PromptTemplateFormat,
)
from langchain_core.runnables import run_in_executor
class ImagePromptTemplate(BasePromptTemplate[ImageURL]):
"""Image prompt template for a multimodal model."""
template: dict = Field(default_factory=dict)
"""Template for the prompt."""
template_format: PromptTemplateFormat = "f-string"
"""The format of the prompt template.
Options are: 'f-string', 'mustache', 'jinja2'."""
def __init__(self, **kwargs: Any) -> None:
"""Create an image prompt template."""
if "input_variables" not in kwargs:
kwargs["input_variables"] = []
overlap = set(kwargs["input_variables"]) & {"url", "path", "detail"}
if overlap:
msg = (
"input_variables for the image template cannot contain"
" any of 'url', 'path', or 'detail'."
f" Found: {overlap}"
)
raise ValueError(msg)
super().__init__(**kwargs)
@property
def _prompt_type(self) -> str:
"""Return the prompt type key."""
return "image-prompt"
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "prompts", "image"]
def format_prompt(self, **kwargs: Any) -> PromptValue:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
"""
return ImagePromptValue(image_url=self.format(**kwargs))
async def aformat_prompt(self, **kwargs: Any) -> PromptValue:
"""Async format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
"""
return ImagePromptValue(image_url=await self.aformat(**kwargs))
def format(
self,
**kwargs: Any,
) -> ImageURL:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Raises:
ValueError: If the url is not provided.
ValueError: If the url is not a string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
formatted = {}
for k, v in self.template.items():
if isinstance(v, str):
formatted[k] = DEFAULT_FORMATTER_MAPPING[self.template_format](
v, **kwargs
)
else:
formatted[k] = v
url = kwargs.get("url") or formatted.get("url")
if kwargs.get("path") or formatted.get("path"):
msg = (
"Loading images from 'path' has been removed as of 0.3.15 for security "
"reasons. Please specify images by 'url'."
)
raise ValueError(msg)
detail = kwargs.get("detail") or formatted.get("detail")
if not url:
msg = "Must provide url."
raise ValueError(msg)
if not isinstance(url, str):
msg = "url must be a string."
raise ValueError(msg) # noqa: TRY004
output: ImageURL = {"url": url}
if detail:
# Don't check literal values here: let the API check them
output["detail"] = detail # type: ignore[typeddict-item]
return output
async def aformat(self, **kwargs: Any) -> ImageURL:
"""Async format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Raises:
ValueError: If the path or url is not a string.
"""
return await run_in_executor(None, self.format, **kwargs)
def pretty_repr(
self,
html: bool = False, # noqa: FBT001,FBT002
) -> str:
"""Return a pretty representation of the prompt.
Args:
html: Whether to return an html formatted string.
Returns:
A pretty representation of the prompt.
"""
raise NotImplementedError
|
"""Image prompt template for a multimodal model."""
from typing import Any
from pydantic import Field
from langchain_core.prompt_values import ImagePromptValue, ImageURL, PromptValue
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.string import (
DEFAULT_FORMATTER_MAPPING,
PromptTemplateFormat,
)
from langchain_core.runnables import run_in_executor
class ImagePromptTemplate(BasePromptTemplate[ImageURL]):
"""Image prompt template for a multimodal model."""
template: dict = Field(default_factory=dict)
"""Template for the prompt."""
template_format: PromptTemplateFormat = "f-string"
"""The format of the prompt template.
Options are: 'f-string', 'mustache', 'jinja2'."""
def __init__(self, **kwargs: Any) -> None:
"""Create an image prompt template."""
if "input_variables" not in kwargs:
kwargs["input_variables"] = []
overlap = set(kwargs["input_variables"]) & {"url", "path", "detail"}
if overlap:
msg = (
"input_variables for the image template cannot contain"
" any of 'url', 'path', or 'detail'."
f" Found: {overlap}"
)
raise ValueError(msg)
super().__init__(**kwargs)
@property
def _prompt_type(self) -> str:
"""Return the prompt type key."""
return "image-prompt"
@classmethod
def get_lc_namespace(cls) -> list[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "prompts", "image"]
def format_prompt(self, **kwargs: Any) -> PromptValue:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
"""
return ImagePromptValue(image_url=self.format(**kwargs))
async def aformat_prompt(self, **kwargs: Any) -> PromptValue:
"""Async format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
"""
return ImagePromptValue(image_url=await self.aformat(**kwargs))
def format(
self,
**kwargs: Any,
) -> ImageURL:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Raises:
ValueError: If the url is not provided.
ValueError: If the url is not a string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
formatted = {}
for k, v in self.template.items():
if isinstance(v, str):
formatted[k] = DEFAULT_FORMATTER_MAPPING[self.template_format](
v, **kwargs
)
else:
formatted[k] = v
url = kwargs.get("url") or formatted.get("url")
if kwargs.get("path") or formatted.get("path"):
msg = (
"Loading images from 'path' has been removed as of 0.3.15 for security "
"reasons. Please specify images by 'url'."
)
raise ValueError(msg)
detail = kwargs.get("detail") or formatted.get("detail")
if not url:
msg = "Must provide url."
raise ValueError(msg)
if not isinstance(url, str):
msg = "url must be a string."
raise ValueError(msg) # noqa: TRY004
output: ImageURL = {"url": url}
if detail:
# Don't check literal values here: let the API check them
output["detail"] = detail # type: ignore[typeddict-item]
return output
async def aformat(self, **kwargs: Any) -> ImageURL:
"""Async format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Raises:
ValueError: If the path or url is not a string.
"""
return await run_in_executor(None, self.format, **kwargs)
def pretty_repr(self, html: bool = False) -> str:
"""Return a pretty representation of the prompt.
Args:
html: Whether to return an html formatted string.
Returns:
A pretty representation of the prompt.
"""
raise NotImplementedError
|
from torio.utils import ffmpeg_utils
from . import sox_utils
from .download import download_asset
__all__ = [
"download_asset",
"sox_utils",
"ffmpeg_utils",
]
|
from . import ffmpeg_utils, sox_utils
from .download import download_asset
__all__ = [
"download_asset",
"sox_utils",
"ffmpeg_utils",
]
|
from __future__ import annotations
import torch
import torch.nn as nn
class TopKActivation(nn.Module):
"""
TopK activation function for Sparse AutoEncoder.
This module implements the TopK activation function.
The TopK activation function keeps only the k largest values and sets the rest to zero.
"""
def __init__(self, k: int = 100):
"""
Initialize the TopK activation function.
Args:
k: Number of top values to keep
"""
super().__init__()
self.k = k
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the TopK activation function.
Args:
x: Input tensor
Returns:
Tensor with only the k largest values, rest set to zero
"""
# Get the k largest values and their indices
values, indices = torch.topk(x, k=self.k, dim=-1)
# Create a mask of zeros with the same shape as x
mask = torch.zeros_like(x)
# Set the k largest values to 1 in the mask
for i in range(self.k):
mask.scatter_(-1, indices[..., i : i + 1], 1)
# Apply the mask to the input tensor
return x * mask
|
from __future__ import annotations
import torch
import torch.nn as nn
class TopKActivation(nn.Module):
"""
TopK activation function for Sparse AutoEncoder.
This module implements the TopK activation function as described in the paper:
z_k := TopK(W_enc(f(x) - b_pre) + b_enc)
The TopK activation function keeps only the k largest values and sets the rest to zero.
"""
def __init__(self, k: int = 100):
"""
Initialize the TopK activation function.
Args:
k: Number of top values to keep
"""
super().__init__()
self.k = k
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the TopK activation function.
Args:
x: Input tensor
Returns:
Tensor with only the k largest values, rest set to zero
"""
# Get the k largest values and their indices
values, indices = torch.topk(x, k=self.k, dim=-1)
# Create a mask of zeros with the same shape as x
mask = torch.zeros_like(x)
# Set the k largest values to 1 in the mask
for i in range(self.k):
mask.scatter_(-1, indices[..., i : i + 1], 1)
# Apply the mask to the input tensor
return x * mask
|
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.registry import TASK_UTILS
from .base_sampler import BaseSampler
@TASK_UTILS.register_module()
class CombinedSampler(BaseSampler):
"""A sampler that combines positive sampler and negative sampler."""
def __init__(self, pos_sampler, neg_sampler, **kwargs):
super(CombinedSampler, self).__init__(**kwargs)
self.pos_sampler = TASK_UTILS.build(pos_sampler, default_args=kwargs)
self.neg_sampler = TASK_UTILS.build(neg_sampler, default_args=kwargs)
def _sample_pos(self, **kwargs):
"""Sample positive samples."""
raise NotImplementedError
def _sample_neg(self, **kwargs):
"""Sample negative samples."""
raise NotImplementedError
|
# Copyright (c) OpenMMLab. All rights reserved.
from ..builder import BBOX_SAMPLERS, build_sampler
from .base_sampler import BaseSampler
@BBOX_SAMPLERS.register_module()
class CombinedSampler(BaseSampler):
"""A sampler that combines positive sampler and negative sampler."""
def __init__(self, pos_sampler, neg_sampler, **kwargs):
super(CombinedSampler, self).__init__(**kwargs)
self.pos_sampler = build_sampler(pos_sampler, **kwargs)
self.neg_sampler = build_sampler(neg_sampler, **kwargs)
def _sample_pos(self, **kwargs):
"""Sample positive samples."""
raise NotImplementedError
def _sample_neg(self, **kwargs):
"""Sample negative samples."""
raise NotImplementedError
|
"""ReAct output parser."""
import re
from typing import Tuple
from llama_index.core.agent.react.types import (
ActionReasoningStep,
BaseReasoningStep,
ResponseReasoningStep,
)
from llama_index.core.output_parsers.utils import extract_json_str
from llama_index.core.types import BaseOutputParser
def extract_tool_use(input_text: str) -> Tuple[str, str, str]:
pattern = (
r"\s*Thought: (.*?)\n+Action: ([^\n\(\) ]+).*?\n+Action Input: .*?(\{.*\})"
)
match = re.search(pattern, input_text, re.DOTALL)
if not match:
raise ValueError(f"Could not extract tool use from input text: {input_text}")
thought = match.group(1).strip()
action = match.group(2).strip()
action_input = match.group(3).strip()
return thought, action, action_input
def action_input_parser(json_str: str) -> dict:
processed_string = re.sub(r"(?<!\w)\'|\'(?!\w)", '"', json_str)
pattern = r'"(\w+)":\s*"([^"]*)"'
matches = re.findall(pattern, processed_string)
return dict(matches)
def extract_final_response(input_text: str) -> Tuple[str, str]:
pattern = r"\s*Thought:(.*?)Answer:(.*?)(?:$)"
match = re.search(pattern, input_text, re.DOTALL)
if not match:
raise ValueError(
f"Could not extract final answer from input text: {input_text}"
)
thought = match.group(1).strip()
answer = match.group(2).strip()
return thought, answer
def parse_action_reasoning_step(output: str) -> ActionReasoningStep:
"""
Parse an action reasoning step from the LLM output.
"""
# Weaker LLMs may generate ReActAgent steps whose Action Input are horrible JSON strings.
# `dirtyjson` is more lenient than `json` in parsing JSON strings.
import dirtyjson as json
thought, action, action_input = extract_tool_use(output)
json_str = extract_json_str(action_input)
# First we try json, if this fails we use ast
try:
action_input_dict = json.loads(json_str)
except Exception:
action_input_dict = action_input_parser(json_str)
return ActionReasoningStep(
thought=thought, action=action, action_input=action_input_dict
)
class ReActOutputParser(BaseOutputParser):
"""ReAct Output parser."""
def parse(self, output: str, is_streaming: bool = False) -> BaseReasoningStep:
"""
Parse output from ReAct agent.
We expect the output to be in one of the following formats:
1. If the agent need to use a tool to answer the question:
```
Thought: <thought>
Action: <action>
Action Input: <action_input>
```
2. If the agent can answer the question without any tools:
```
Thought: <thought>
Answer: <answer>
```
"""
if "Thought:" not in output:
# NOTE: handle the case where the agent directly outputs the answer
# instead of following the thought-answer format
return ResponseReasoningStep(
thought="(Implicit) I can answer without any more tools!",
response=output,
is_streaming=is_streaming,
)
# An "Action" should take priority over an "Answer"
if "Action:" in output:
return parse_action_reasoning_step(output)
if "Answer:" in output:
thought, answer = extract_final_response(output)
return ResponseReasoningStep(
thought=thought, response=answer, is_streaming=is_streaming
)
raise ValueError(f"Could not parse output: {output}")
def format(self, output: str) -> str:
"""Format a query with structured output formatting instructions."""
raise NotImplementedError
|
"""ReAct output parser."""
import re
from typing import Tuple
from llama_index.core.agent.react.types import (
ActionReasoningStep,
BaseReasoningStep,
ResponseReasoningStep,
)
from llama_index.core.output_parsers.utils import extract_json_str
from llama_index.core.types import BaseOutputParser
def extract_tool_use(input_text: str) -> Tuple[str, str, str]:
pattern = (
r"\s*Thought: (.*?)\n+Action: ([^\n\(\) ]+).*?\n+Action Input: .*?(\{.*\})"
)
match = re.search(pattern, input_text, re.DOTALL)
if not match:
raise ValueError(f"Could not extract tool use from input text: {input_text}")
thought = match.group(1).strip()
action = match.group(2).strip()
action_input = match.group(3).strip()
return thought, action, action_input
def action_input_parser(json_str: str) -> dict:
processed_string = re.sub(r"(?<!\w)\'|\'(?!\w)", '"', json_str)
pattern = r'"(\w+)":\s*"([^"]*)"'
matches = re.findall(pattern, processed_string)
return dict(matches)
def extract_final_response(input_text: str) -> Tuple[str, str]:
pattern = r"\s*Thought:(.*?)Answer:(.*?)(?:$)"
match = re.search(pattern, input_text, re.DOTALL)
if not match:
raise ValueError(
f"Could not extract final answer from input text: {input_text}"
)
thought = match.group(1).strip()
answer = match.group(2).strip()
return thought, answer
def parse_action_reasoning_step(output: str) -> ActionReasoningStep:
"""
Parse an action reasoning step from the LLM output.
"""
# Weaker LLMs may generate ReActAgent steps whose Action Input are horrible JSON strings.
# `dirtyjson` is more lenient than `json` in parsing JSON strings.
import dirtyjson as json
thought, action, action_input = extract_tool_use(output)
json_str = extract_json_str(action_input)
# First we try json, if this fails we use ast
try:
action_input_dict = json.loads(json_str)
except Exception:
action_input_dict = action_input_parser(json_str)
return ActionReasoningStep(
thought=thought, action=action, action_input=action_input_dict
)
class ReActOutputParser(BaseOutputParser):
"""ReAct Output parser."""
def parse(self, output: str, is_streaming: bool = False) -> BaseReasoningStep:
"""Parse output from ReAct agent.
We expect the output to be in one of the following formats:
1. If the agent need to use a tool to answer the question:
```
Thought: <thought>
Action: <action>
Action Input: <action_input>
```
2. If the agent can answer the question without any tools:
```
Thought: <thought>
Answer: <answer>
```
"""
if "Thought:" not in output:
# NOTE: handle the case where the agent directly outputs the answer
# instead of following the thought-answer format
return ResponseReasoningStep(
thought="(Implicit) I can answer without any more tools!",
response=output,
is_streaming=is_streaming,
)
# An "Action" should take priority over an "Answer"
if "Action:" in output:
return parse_action_reasoning_step(output)
if "Answer:" in output:
thought, answer = extract_final_response(output)
return ResponseReasoningStep(
thought=thought, response=answer, is_streaming=is_streaming
)
raise ValueError(f"Could not parse output: {output}")
def format(self, output: str) -> str:
"""Format a query with structured output formatting instructions."""
raise NotImplementedError
|
# Copyright (c) OpenMMLab. All rights reserved.
from .batch_sampler import AspectRatioBatchSampler
from .class_aware_sampler import ClassAwareSampler
from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler
from .track_img_sampler import TrackImgSampler
__all__ = [
'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler',
'GroupMultiSourceSampler', 'TrackImgSampler'
]
|
# Copyright (c) OpenMMLab. All rights reserved.
from .batch_sampler import AspectRatioBatchSampler
from .class_aware_sampler import ClassAwareSampler
from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler
__all__ = [
'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler',
'GroupMultiSourceSampler'
]
|
import json
import os
from typing import Any, List, Literal
from llama_index.vector_stores.docarray.base import DocArrayVectorStore
class DocArrayHnswVectorStore(DocArrayVectorStore):
"""
Class representing a DocArray HNSW vector store.
This class is a lightweight Document Index implementation provided by Docarray.
It stores vectors on disk in hnswlib, and stores all other data in SQLite.
Examples:
`pip install llama-index-vector-stores-docarray`
```python
from llama_index.vector_stores.docarray import DocArrayHnswVectorStore
# Initialize the DocArrayHnswVectorStore
vector_store = DocArrayHnswVectorStore(work_dir="hnsw_index", dim=1536)
```
"""
def __init__(
self,
work_dir: str,
dim: int = 1536,
dist_metric: Literal["cosine", "ip", "l2"] = "cosine",
max_elements: int = 1024,
ef_construction: int = 200,
ef: int = 10,
M: int = 16,
allow_replace_deleted: bool = True,
num_threads: int = 1,
):
"""
Initializes the DocArrayHnswVectorStore.
Args:
work_dir (str): The working directory.
dim (int, optional): Dimensionality of the vectors. Default is 1536.
dist_metric (Literal["cosine", "ip", "l2"], optional): The distance
metric to use. Default is "cosine".
max_elements (int, optional): defines the maximum number of elements
that can be stored in the structure(can be increased/shrunk).
ef_construction (int, optional): defines a construction time/accuracy
trade-off. Default is 200.
ef (int, optional): The size of the dynamic candidate list. Default is 10.
M (int, optional): defines the maximum number of outgoing connections
in the graph. Default is 16.
allow_replace_deleted (bool, optional): Whether to allow replacing
deleted elements. Default is True.
num_threads (int, optional): Number of threads for index construction.
Default is 1.
"""
import_err_msg = """
`docarray` package not found. Install the package via pip:
`pip install docarray[hnswlib]`
"""
try:
import docarray # noqa
except ImportError:
raise ImportError(import_err_msg)
self._work_dir = work_dir
ref_docs_path = os.path.join(self._work_dir, "ref_docs.json")
if os.path.exists(ref_docs_path):
with open(ref_docs_path) as f:
self._ref_docs = json.load(f)
else:
self._ref_docs = {}
self._index, self._schema = self._init_index(
dim=dim,
dist_metric=dist_metric,
max_elements=max_elements,
ef_construction=ef_construction,
ef=ef,
M=M,
allow_replace_deleted=allow_replace_deleted,
num_threads=num_threads,
)
def _init_index(self, **kwargs: Any): # type: ignore[no-untyped-def]
"""
Initializes the HNSW document index.
Args:
**kwargs: Variable length argument list for the HNSW index.
Returns:
tuple: The HNSW document index and its schema.
"""
from docarray.index import HnswDocumentIndex
schema = self._get_schema(**kwargs)
index = HnswDocumentIndex[schema] # type: ignore[valid-type]
return index(work_dir=self._work_dir), schema
def _find_docs_to_be_removed(self, doc_id: str) -> List[str]:
"""
Finds the documents to be removed from the vector store.
Args:
doc_id (str): Reference document ID that should be removed.
Returns:
List[str]: List of document IDs to be removed.
"""
docs = self._ref_docs.get(doc_id, [])
del self._ref_docs[doc_id]
self._save_ref_docs()
return docs
def _save_ref_docs(self) -> None:
"""Saves reference documents."""
with open(os.path.join(self._work_dir, "ref_docs.json"), "w") as f:
json.dump(self._ref_docs, f)
def _update_ref_docs(self, docs): # type: ignore[no-untyped-def]
"""
Updates reference documents.
Args:
docs (List): List of documents to update.
"""
for doc in docs:
if doc.metadata["doc_id"] not in self._ref_docs:
self._ref_docs[doc.metadata["doc_id"]] = []
self._ref_docs[doc.metadata["doc_id"]].append(doc.id)
self._save_ref_docs()
|
import json
import os
from typing import Any, List, Literal
from llama_index.vector_stores.docarray.base import DocArrayVectorStore
class DocArrayHnswVectorStore(DocArrayVectorStore):
"""Class representing a DocArray HNSW vector store.
This class is a lightweight Document Index implementation provided by Docarray.
It stores vectors on disk in hnswlib, and stores all other data in SQLite.
Examples:
`pip install llama-index-vector-stores-docarray`
```python
from llama_index.vector_stores.docarray import DocArrayHnswVectorStore
# Initialize the DocArrayHnswVectorStore
vector_store = DocArrayHnswVectorStore(work_dir="hnsw_index", dim=1536)
```
"""
def __init__(
self,
work_dir: str,
dim: int = 1536,
dist_metric: Literal["cosine", "ip", "l2"] = "cosine",
max_elements: int = 1024,
ef_construction: int = 200,
ef: int = 10,
M: int = 16,
allow_replace_deleted: bool = True,
num_threads: int = 1,
):
"""Initializes the DocArrayHnswVectorStore.
Args:
work_dir (str): The working directory.
dim (int, optional): Dimensionality of the vectors. Default is 1536.
dist_metric (Literal["cosine", "ip", "l2"], optional): The distance
metric to use. Default is "cosine".
max_elements (int, optional): defines the maximum number of elements
that can be stored in the structure(can be increased/shrunk).
ef_construction (int, optional): defines a construction time/accuracy
trade-off. Default is 200.
ef (int, optional): The size of the dynamic candidate list. Default is 10.
M (int, optional): defines the maximum number of outgoing connections
in the graph. Default is 16.
allow_replace_deleted (bool, optional): Whether to allow replacing
deleted elements. Default is True.
num_threads (int, optional): Number of threads for index construction.
Default is 1.
"""
import_err_msg = """
`docarray` package not found. Install the package via pip:
`pip install docarray[hnswlib]`
"""
try:
import docarray # noqa
except ImportError:
raise ImportError(import_err_msg)
self._work_dir = work_dir
ref_docs_path = os.path.join(self._work_dir, "ref_docs.json")
if os.path.exists(ref_docs_path):
with open(ref_docs_path) as f:
self._ref_docs = json.load(f)
else:
self._ref_docs = {}
self._index, self._schema = self._init_index(
dim=dim,
dist_metric=dist_metric,
max_elements=max_elements,
ef_construction=ef_construction,
ef=ef,
M=M,
allow_replace_deleted=allow_replace_deleted,
num_threads=num_threads,
)
def _init_index(self, **kwargs: Any): # type: ignore[no-untyped-def]
"""Initializes the HNSW document index.
Args:
**kwargs: Variable length argument list for the HNSW index.
Returns:
tuple: The HNSW document index and its schema.
"""
from docarray.index import HnswDocumentIndex
schema = self._get_schema(**kwargs)
index = HnswDocumentIndex[schema] # type: ignore[valid-type]
return index(work_dir=self._work_dir), schema
def _find_docs_to_be_removed(self, doc_id: str) -> List[str]:
"""Finds the documents to be removed from the vector store.
Args:
doc_id (str): Reference document ID that should be removed.
Returns:
List[str]: List of document IDs to be removed.
"""
docs = self._ref_docs.get(doc_id, [])
del self._ref_docs[doc_id]
self._save_ref_docs()
return docs
def _save_ref_docs(self) -> None:
"""Saves reference documents."""
with open(os.path.join(self._work_dir, "ref_docs.json"), "w") as f:
json.dump(self._ref_docs, f)
def _update_ref_docs(self, docs): # type: ignore[no-untyped-def]
"""Updates reference documents.
Args:
docs (List): List of documents to update.
"""
for doc in docs:
if doc.metadata["doc_id"] not in self._ref_docs:
self._ref_docs[doc.metadata["doc_id"]] = []
self._ref_docs[doc.metadata["doc_id"]].append(doc.id)
self._save_ref_docs()
|
from typing import Union
from langchain.agents.agent import BaseSingleActionAgent
from langchain.agents.agent_types import AgentType
from langchain.agents.chat.base import ChatAgent
from langchain.agents.conversational.base import ConversationalAgent
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent
from langchain.agents.react.base import ReActDocstoreAgent
from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent
from langchain.agents.structured_chat.base import StructuredChatAgent
AGENT_TYPE = Union[type[BaseSingleActionAgent], type[OpenAIMultiFunctionsAgent]]
AGENT_TO_CLASS: dict[AgentType, AGENT_TYPE] = {
AgentType.ZERO_SHOT_REACT_DESCRIPTION: ZeroShotAgent,
AgentType.REACT_DOCSTORE: ReActDocstoreAgent,
AgentType.SELF_ASK_WITH_SEARCH: SelfAskWithSearchAgent,
AgentType.CONVERSATIONAL_REACT_DESCRIPTION: ConversationalAgent,
AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION: ChatAgent,
AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION: ConversationalChatAgent,
AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION: StructuredChatAgent,
AgentType.OPENAI_FUNCTIONS: OpenAIFunctionsAgent,
AgentType.OPENAI_MULTI_FUNCTIONS: OpenAIMultiFunctionsAgent,
}
|
from typing import Dict, Type, Union
from langchain.agents.agent import BaseSingleActionAgent
from langchain.agents.agent_types import AgentType
from langchain.agents.chat.base import ChatAgent
from langchain.agents.conversational.base import ConversationalAgent
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent
from langchain.agents.react.base import ReActDocstoreAgent
from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent
from langchain.agents.structured_chat.base import StructuredChatAgent
AGENT_TYPE = Union[Type[BaseSingleActionAgent], Type[OpenAIMultiFunctionsAgent]]
AGENT_TO_CLASS: Dict[AgentType, AGENT_TYPE] = {
AgentType.ZERO_SHOT_REACT_DESCRIPTION: ZeroShotAgent,
AgentType.REACT_DOCSTORE: ReActDocstoreAgent,
AgentType.SELF_ASK_WITH_SEARCH: SelfAskWithSearchAgent,
AgentType.CONVERSATIONAL_REACT_DESCRIPTION: ConversationalAgent,
AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION: ChatAgent,
AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION: ConversationalChatAgent,
AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION: StructuredChatAgent,
AgentType.OPENAI_FUNCTIONS: OpenAIFunctionsAgent,
AgentType.OPENAI_MULTI_FUNCTIONS: OpenAIMultiFunctionsAgent,
}
|
from pathlib import Path
from typing import List, Tuple, Union
import torch
import torchaudio
from torch.utils.data import Dataset
SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]]
class LibriMix(Dataset):
r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset.
Args:
root (str or Path): The path to the directory where the directory ``Libri2Mix`` or
``Libri3Mix`` is stored.
subset (str, optional): The subset to use. Options: [``train-360``, ``train-100``,
``dev``, and ``test``] (Default: ``train-360``).
num_speakers (int, optional): The number of speakers, which determines the directories
to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect
N source audios. (Default: 2)
sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines
which subdirectory the audio are fetched. If any of the audio has a different sample
rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000)
task (str, optional): the task of LibriMix.
Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``]
(Default: ``sep_clean``)
Note:
The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix
"""
def __init__(
self,
root: Union[str, Path],
subset: str = "train-360",
num_speakers: int = 2,
sample_rate: int = 8000,
task: str = "sep_clean",
):
self.root = Path(root) / f"Libri{num_speakers}Mix"
if sample_rate == 8000:
self.root = self.root / "wav8k/min" / subset
elif sample_rate == 16000:
self.root = self.root / "wav16k/min" / subset
else:
raise ValueError(f"Unsupported sample rate. Found {sample_rate}.")
self.sample_rate = sample_rate
self.task = task
self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve()
self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)]
self.files = [p.name for p in self.mix_dir.glob("*wav")]
self.files.sort()
def _load_audio(self, path) -> torch.Tensor:
waveform, sample_rate = torchaudio.load(path)
if sample_rate != self.sample_rate:
raise ValueError(
f"The dataset contains audio file of sample rate {sample_rate}, "
f"but the requested sample rate is {self.sample_rate}."
)
return waveform
def _load_sample(self, filename) -> SampleType:
mixed = self._load_audio(str(self.mix_dir / filename))
srcs = []
for i, dir_ in enumerate(self.src_dirs):
src = self._load_audio(str(dir_ / filename))
if mixed.shape != src.shape:
raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}")
srcs.append(src)
return self.sample_rate, mixed, srcs
def __len__(self) -> int:
return len(self.files)
def __getitem__(self, key: int) -> SampleType:
"""Load the n-th sample from the dataset.
Args:
key (int): The index of the sample to be loaded
Returns:
(int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)``
"""
return self._load_sample(self.files[key])
|
from pathlib import Path
from typing import List, Tuple, Union
import torch
import torchaudio
from torch.utils.data import Dataset
SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]]
class LibriMix(Dataset):
r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset.
Args:
root (str or Path): The path to the directory where the directory ``Libri2Mix`` or
``Libri3Mix`` is stored.
subset (str, optional): The subset to use. Options: [``train-360``, ``train-100``,
``dev``, and ``test``] (Default: ``train-360``).
num_speakers (int, optional): The number of speakers, which determines the directories
to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect
N source audios. (Default: 2)
sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines
which subdirectory the audio are fetched. If any of the audio has a different sample
rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000)
task (str, optional): the task of LibriMix.
Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``]
(Default: ``sep_clean``)
Note:
The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix
"""
def __init__(
self,
root: Union[str, Path],
subset: str = "train-360",
num_speakers: int = 2,
sample_rate: int = 8000,
task: str = "sep_clean",
):
self.root = Path(root) / f"Libri{num_speakers}Mix"
if sample_rate == 8000:
self.root = self.root / "wav8k/min" / subset
elif sample_rate == 16000:
self.root = self.root / "wav16k/min" / subset
else:
raise ValueError(f"Unsupported sample rate. Found {sample_rate}.")
self.sample_rate = sample_rate
self.task = task
self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve()
self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)]
self.files = [p.name for p in self.mix_dir.glob("*wav")]
self.files.sort()
def _load_audio(self, path) -> torch.Tensor:
waveform, sample_rate = torchaudio.load(path)
if sample_rate != self.sample_rate:
raise ValueError(
f"The dataset contains audio file of sample rate {sample_rate}, "
f"but the requested sample rate is {self.sample_rate}."
)
return waveform
def _load_sample(self, filename) -> SampleType:
mixed = self._load_audio(str(self.mix_dir / filename))
srcs = []
for i, dir_ in enumerate(self.src_dirs):
src = self._load_audio(str(dir_ / filename))
if mixed.shape != src.shape:
raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}")
srcs.append(src)
return self.sample_rate, mixed, srcs
def __len__(self) -> int:
return len(self.files)
def __getitem__(self, key: int) -> SampleType:
"""Load the n-th sample from the dataset.
Args:
key (int): The index of the sample to be loaded
Returns:
(int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)``
"""
return self._load_sample(self.files[key])
|
"""DO NOT EDIT.
This file was autogenerated. Do not edit it by hand,
since your modifications would be overwritten.
"""
from keras.src.export.saved_model import ExportArchive as ExportArchive
|
"""DO NOT EDIT.
This file was autogenerated. Do not edit it by hand,
since your modifications would be overwritten.
"""
from keras.src.export.saved_model import ExportArchive
|
from __future__ import annotations
try:
from typing import Self
except ImportError:
from typing_extensions import Self
import torch
from torch import nn
from sentence_transformers.models.Module import Module
class LSTM(Module):
"""Bidirectional LSTM running over word embeddings."""
config_keys: list[str] = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"]
config_file_name: str = "lstm_config.json"
def __init__(
self,
word_embedding_dimension: int,
hidden_dim: int,
num_layers: int = 1,
dropout: float = 0,
bidirectional: bool = True,
):
super().__init__()
self.word_embedding_dimension = word_embedding_dimension
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.dropout = dropout
self.bidirectional = bidirectional
self.embeddings_dimension = hidden_dim
if self.bidirectional:
self.embeddings_dimension *= 2
self.encoder = nn.LSTM(
word_embedding_dimension,
hidden_dim,
num_layers=num_layers,
dropout=dropout,
bidirectional=bidirectional,
batch_first=True,
)
def forward(self, features):
token_embeddings = features["token_embeddings"]
sentence_lengths = torch.clamp(features["sentence_lengths"], min=1)
packed = nn.utils.rnn.pack_padded_sequence(
token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False
)
packed = self.encoder(packed)
unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0]
features.update({"token_embeddings": unpack})
return features
def get_word_embedding_dimension(self) -> int:
return self.embeddings_dimension
def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None:
self.save_config(output_path)
# Saving LSTM models with Safetensors does not work unless the weights are on CPU
# See https://github.com/UKPLab/sentence-transformers/pull/2722
device = next(self.parameters()).device
self.cpu()
self.save_torch_weights(output_path, safe_serialization=safe_serialization)
self.to(device)
@classmethod
def load(
cls,
model_name_or_path: str,
subfolder: str = "",
token: bool | str | None = None,
cache_folder: str | None = None,
revision: str | None = None,
local_files_only: bool = False,
**kwargs,
) -> Self:
hub_kwargs = {
"subfolder": subfolder,
"token": token,
"cache_folder": cache_folder,
"revision": revision,
"local_files_only": local_files_only,
}
config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs)
model = cls(**config)
model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs)
return model
|
from __future__ import annotations
import json
import os
import torch
from safetensors.torch import load_model as load_safetensors_model
from safetensors.torch import save_model as save_safetensors_model
from torch import nn
class LSTM(nn.Module):
"""Bidirectional LSTM running over word embeddings."""
def __init__(
self,
word_embedding_dimension: int,
hidden_dim: int,
num_layers: int = 1,
dropout: float = 0,
bidirectional: bool = True,
):
nn.Module.__init__(self)
self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"]
self.word_embedding_dimension = word_embedding_dimension
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.dropout = dropout
self.bidirectional = bidirectional
self.embeddings_dimension = hidden_dim
if self.bidirectional:
self.embeddings_dimension *= 2
self.encoder = nn.LSTM(
word_embedding_dimension,
hidden_dim,
num_layers=num_layers,
dropout=dropout,
bidirectional=bidirectional,
batch_first=True,
)
def forward(self, features):
token_embeddings = features["token_embeddings"]
sentence_lengths = torch.clamp(features["sentence_lengths"], min=1)
packed = nn.utils.rnn.pack_padded_sequence(
token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False
)
packed = self.encoder(packed)
unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0]
features.update({"token_embeddings": unpack})
return features
def get_word_embedding_dimension(self) -> int:
return self.embeddings_dimension
def tokenize(self, text: str, **kwargs) -> list[int]:
raise NotImplementedError()
def save(self, output_path: str, safe_serialization: bool = True):
with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
device = next(self.parameters()).device
if safe_serialization:
save_safetensors_model(self.cpu(), os.path.join(output_path, "model.safetensors"))
self.to(device)
else:
torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
@staticmethod
def load(input_path: str):
with open(os.path.join(input_path, "lstm_config.json")) as fIn:
config = json.load(fIn)
model = LSTM(**config)
if os.path.exists(os.path.join(input_path, "model.safetensors")):
load_safetensors_model(model, os.path.join(input_path, "model.safetensors"))
else:
model.load_state_dict(
torch.load(
os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True
)
)
return model
|
from __future__ import annotations
from collections.abc import Iterable
from enum import Enum
import torch
import torch.nn as nn
from sentence_transformers.sparse_encoder.losses import (
FlopsLoss,
SparseDistillKLDivLoss,
SparseMarginMSELoss,
SparseMultipleNegativesRankingLoss,
)
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
class PrincipalLoss(Enum):
"""The principal loss types for the model"""
MMSE = SparseMarginMSELoss
KL = SparseDistillKLDivLoss
MRL = SparseMultipleNegativesRankingLoss
class SpladeLoss(nn.Module):
def __init__(
self, model: SparseEncoder, main_loss: PrincipalLoss, lambda_corpus: float = 0.1, lambda_query: float = 0.1
):
super().__init__()
self.model = model
self.lambda_corpus = lambda_corpus
self.lambda_query = lambda_query
self.main_loss = main_loss
self.flops_loss = FlopsLoss(model)
def forward(
self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None
) -> dict[str, torch.Tensor]:
# Compute embeddings using the model
embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features]
main_loss_value = self.main_loss.compute_loss_from_embeddings(embeddings, labels)
flops_query = self.flops_loss.compute_loss_from_embeddings(embeddings, "query")
flops_corpus = self.flops_loss.compute_loss_from_embeddings(embeddings, "corpus")
# Compute the total loss
total_loss = main_loss_value + self.lambda_query * flops_query + self.lambda_corpus * flops_corpus
return total_loss
def get_config_dict(self):
"""
Get the configuration dictionary.
Returns:
Dictionary containing the configuration parameters
"""
return {"lambda_corpus": self.lambda_corpus, "lambda_query": self.lambda_query, "main_loss": self.main_loss}
@property
def citation(self) -> str:
return """
@inproceedings{10.1145/3477495.3531857,
author = {Formal, Thibault and Lassance, Carlos and Piwowarski, Benjamin and Clinchant, St\'{e}phane},
title = {From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
year = {2022},
isbn = {9781450387323},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477495.3531857},
doi = {10.1145/3477495.3531857},
abstract = {Neural retrievers based on dense representations combined with Approximate Nearest Neighbors search have recently received a lot of attention, owing their success to distillation and/or better sampling of examples for training -- while still relying on the same backbone architecture. In the meantime, sparse representation learning fueled by traditional inverted indexing techniques has seen a growing interest, inheriting from desirable IR priors such as explicit lexical matching. While some architectural variants have been proposed, a lesser effort has been put in the training of such models. In this work, we build on SPLADE -- a sparse expansion-based retriever -- and show to which extent it is able to benefit from the same training improvements as dense models, by studying the effect of distillation, hard-negative mining as well as the Pre-trained Language Model initialization. We furthermore study the link between effectiveness and efficiency, on in-domain and zero-shot settings, leading to state-of-the-art results in both scenarios for sufficiently expressive models.},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2353–2359},
numpages = {7},
keywords = {neural networks, indexing, sparse representations, regularization},
location = {Madrid, Spain},
series = {SIGIR '22}
}
}
"""
|
from __future__ import annotations
from collections.abc import Iterable
from enum import Enum
import torch
import torch.nn as nn
from sentence_transformers.sparse_encoder.losses import (
FlopsLoss,
SparseDistillKLDivLoss,
SparseMarginMSELoss,
SparseMultipleNegativesRankingLoss,
)
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
class PrincipalLoss(Enum):
"""The principal loss types for the model"""
MMSE = SparseMarginMSELoss
KL = SparseDistillKLDivLoss
MRL = SparseMultipleNegativesRankingLoss
class SpladeLoss(nn.Module):
def __init__(
self, model: SparseEncoder, main_loss: PrincipalLoss, lambda_corpus: float = 0.1, lambda_query: float = 0.1
):
super().__init__()
self.model = model
self.lambda_corpus = lambda_corpus
self.lambda_query = lambda_query
self.main_loss = main_loss
self.flops_loss = FlopsLoss(model)
def forward(
self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None
) -> dict[str, torch.Tensor]:
# Compute embeddings using the model
embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features]
main_loss_value = self.main_loss.compute_loss_from_embeddings(embeddings, labels)
flops_query = self.flops_loss.compute_loss_from_embeddings(embeddings, "query")
flops_corpus = self.flops_loss.compute_loss_from_embeddings(embeddings, "corpus")
# Compute the total loss
total_loss = main_loss_value + self.lambda_query * flops_query + self.lambda_corpus * flops_corpus
return total_loss
def get_config_dict(self):
"""
Get the configuration dictionary.
Returns:
Dictionary containing the configuration parameters
"""
return {"lambda_corpus": self.lambda_corpus, "lambda_query": self.lambda_query, "main_loss": self.main_loss}
@property
def citation(self) -> str:
return """
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
"""
|
import pytest
import torch
from torchaudio._internal.module_utils import UNSUPPORTED
from torchaudio.sox_effects import apply_effects_tensor
# Importing prototype modules is needed to trigger the registration of the
# corresponding APIs in the UNSUPPORTED register.
from torchaudio.prototype import datasets, functional, models, pipelines, transforms
@pytest.mark.parametrize("func", UNSUPPORTED)
def test_deprecations(func):
with pytest.warns(UserWarning, match="deprecated"):
try:
func()
except Exception as e:
assert isinstance(e, (TypeError, RuntimeError, ValueError, ImportError))
# It's not great, but the deprecation decorator we're using breaks torchscript
# This test just illustrates this behavior. Ideally, we wouldn't break
# torchscript users. But oh well, torchscript is supposed to have been
# deprecated for years.
@pytest.mark.parametrize("scripted", (True, False))
def test_torchscript_fails(scripted):
f = apply_effects_tensor
if scripted:
pytest.xfail("Deprecation decorator breaks torchscript")
f = torch.jit.script(f)
_, out_sample_rate = f(torch.rand(2, 1000), sample_rate=16_000, effects=[["rate", "8000"]])
assert out_sample_rate == 8000
|
import pytest
from torchaudio._internal.module_utils import UNSUPPORTED
@pytest.mark.parametrize("func", UNSUPPORTED)
def test_deprecations(func):
with pytest.warns(UserWarning, match="deprecated"):
try:
func()
except Exception as e:
# Type or Runtime error because we call func() without proper parameters.
# The deprecation warning is still properly raised, since it is emitted before
# the underlying (deprecated) function is called.
assert isinstance(e, (TypeError, RuntimeError))
|
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from unittest.mock import patch
import transformers.commands.transformers_cli as cli
from transformers.commands.serving import ServeCommand
from transformers.testing_utils import CaptureStd
class ServeCLITest(unittest.TestCase):
def test_help(self):
with patch("sys.argv", ["transformers", "serve", "--help"]), CaptureStd() as cs:
with self.assertRaises(SystemExit):
cli.main()
self.assertIn("serve", cs.out.lower())
def test_parsed_args(self):
with (
patch.object(ServeCommand, "__init__", return_value=None) as init_mock,
patch.object(ServeCommand, "run") as run_mock,
patch("sys.argv", ["transformers", "serve", "--host", "0.0.0.0", "--port", "9000"]),
):
cli.main()
init_mock.assert_called_once()
run_mock.assert_called_once()
parsed_args = init_mock.call_args[0][0]
self.assertEqual(parsed_args.host, "0.0.0.0")
self.assertEqual(parsed_args.port, 9000)
def test_build_chunk(self):
dummy = ServeCommand.__new__(ServeCommand)
dummy.args = type("Args", (), {})()
chunk = ServeCommand.build_chunk(dummy, "hello", "req0", finish_reason="stop")
self.assertIn("chat.completion.chunk", chunk)
self.assertIn("data:", chunk)
|
import unittest
from unittest.mock import patch
import transformers.commands.transformers_cli as cli
from transformers.commands.serving import ServeCommand
from transformers.testing_utils import CaptureStd
class ServeCLITest(unittest.TestCase):
def test_help(self):
with patch("sys.argv", ["transformers", "serve", "--help"]), CaptureStd() as cs:
with self.assertRaises(SystemExit):
cli.main()
self.assertIn("serve", cs.out.lower())
def test_parsed_args(self):
with (
patch.object(ServeCommand, "__init__", return_value=None) as init_mock,
patch.object(ServeCommand, "run") as run_mock,
patch("sys.argv", ["transformers", "serve", "--host", "0.0.0.0", "--port", "9000"]),
):
cli.main()
init_mock.assert_called_once()
run_mock.assert_called_once()
parsed_args = init_mock.call_args[0][0]
self.assertEqual(parsed_args.host, "0.0.0.0")
self.assertEqual(parsed_args.port, 9000)
def test_build_chunk(self):
dummy = ServeCommand.__new__(ServeCommand)
dummy.args = type("Args", (), {})()
chunk = ServeCommand.build_chunk(dummy, "hello", "req0", finish_reason="stop")
self.assertIn("chat.completion.chunk", chunk)
self.assertIn("data:", chunk)
|
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/cityscapes_detection.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py'
]
model = dict(
backbone=dict(init_cfg=None),
roi_head=dict(
bbox_head=dict(
num_classes=8,
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))))
# optimizer
# lr is set for a batch size of 8
optim_wrapper = dict(optimizer=dict(lr=0.01))
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=8,
by_epoch=True,
# [7] yields higher performance than [6]
milestones=[7],
gamma=0.1)
]
# actual epoch = 8 * 8 = 64
train_cfg = dict(max_epochs=8)
# For better, more stable performance initialize from COCO
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (1 samples per GPU)
# TODO: support auto scaling lr
# auto_scale_lr = dict(base_batch_size=8)
|
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/cityscapes_detection.py',
'../_base_/default_runtime.py'
]
model = dict(
backbone=dict(init_cfg=None),
roi_head=dict(
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=8,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))))
# optimizer
# lr is set for a batch size of 8
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
# [7] yields higher performance than [6]
milestones=[7],
gamma=0.1)
]
train_cfg = dict(by_epoch=True, max_epochs=8) # actual epoch = 8 * 8 = 64
val_cfg = dict(interval=1)
test_cfg = dict()
# For better, more stable performance initialize from COCO
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (1 samples per GPU)
# TODO: support auto scaling lr
# auto_scale_lr = dict(base_batch_size=8)
|
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import Any, List, Optional, Sequence, Tuple
import torch
from torch.nn.parameter import Parameter
from torch.nn.utils import clip_grad
from mmengine.data import BaseDataElement
from mmengine.registry import HOOKS
from .hook import Hook
DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]]
@HOOKS.register_module()
class OptimizerHook(Hook):
"""A hook contains custom operations for the optimizer.
Args:
grad_clip (dict, optional): A config dict to control the clip_grad.
Defaults to None.
detect_anomalous_params (bool): This option is only used for
debugging which will slow down the training speed.
Detect anomalous parameters that are not included in
the computational graph with ``loss`` as the root.
There are two cases
- Parameters were not used during
forward pass.
- Parameters were not used to produce
loss.
Defaults to False.
"""
priority = 'HIGH'
def __init__(self,
grad_clip: Optional[dict] = None,
detect_anomalous_params: bool = False) -> None:
self.grad_clip = grad_clip
self.detect_anomalous_params = detect_anomalous_params
def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]:
"""Clip the gradients of parameters.
Args:
params (list[Parameter]): Model's parameters.
Returns:
Optional[torch.Tensor]: Total norm of the parameters if there is
at least one param requiring gradient, else None.
"""
params = list(
filter(lambda p: p.requires_grad and p.grad is not None, params))
if len(params) > 0:
return clip_grad.clip_grad_norm_(params, **self.grad_clip)
return None
def after_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[dict] = None) -> None:
"""All operations need to be finished after each training iteration.
This function will finish following 3 operations:
- Detect any anomalous parameters which are not included in the
training graph. (optional)
- Compute the gradient of model parameters.
- Clip the gradients of each parameter. (optional)
- Update model parameters with gradients.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data
from dataloader. In order to keep this interface consistent
with other hooks, we keep ``data_batch`` here.
Defaults to None.
outputs (dict, optional): Outputs from model.
In order to keep this interface consistent with other hooks,
we keep ``outputs`` here. Defaults to None.
"""
runner.optimizer.zero_grad()
if self.detect_anomalous_params:
self.detect_anomalous_parameters(runner.outputs['loss'], runner)
runner.outputs['loss'].backward()
if self.grad_clip is not None:
grad_norm = self.clip_grads(runner.model.parameters())
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update({'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
runner.optimizer.step()
def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None:
"""Detect anomalous parameters that are not included in the graph.
Args:
loss (torch.Tensor): The loss of current iteration.
runner (Runner): The runner of the training process.
"""
logger = runner.logger
parameters_in_graph = set()
visited = set()
def traverse(grad_fn):
if grad_fn is None:
return
if grad_fn not in visited:
visited.add(grad_fn)
if hasattr(grad_fn, 'variable'):
parameters_in_graph.add(grad_fn.variable)
parents = grad_fn.next_functions
if parents is not None:
for parent in parents:
grad_fn = parent[0]
traverse(grad_fn)
traverse(loss.grad_fn)
for n, p in runner.model.named_parameters():
if p not in parameters_in_graph and p.requires_grad:
logger.log(
level=logging.ERROR,
msg=f'{n} with shape {p.size()} is not '
f'in the computational graph \n')
|
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import Any, List, Optional, Sequence, Tuple
import torch
from torch.nn.parameter import Parameter
from torch.nn.utils import clip_grad
from mmengine.data import BaseDataSample
from mmengine.registry import HOOKS
from .hook import Hook
DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]]
@HOOKS.register_module()
class OptimizerHook(Hook):
"""A hook contains custom operations for the optimizer.
Args:
grad_clip (dict, optional): A config dict to control the clip_grad.
Defaults to None.
detect_anomalous_params (bool): This option is only used for
debugging which will slow down the training speed.
Detect anomalous parameters that are not included in
the computational graph with ``loss`` as the root.
There are two cases
- Parameters were not used during
forward pass.
- Parameters were not used to produce
loss.
Defaults to False.
"""
priority = 'HIGH'
def __init__(self,
grad_clip: Optional[dict] = None,
detect_anomalous_params: bool = False) -> None:
self.grad_clip = grad_clip
self.detect_anomalous_params = detect_anomalous_params
def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]:
"""Clip the gradients of parameters.
Args:
params (list[Parameter]): Model's parameters.
Returns:
Optional[torch.Tensor]: Total norm of the parameters if there is
at least one param requiring gradient, else None.
"""
params = list(
filter(lambda p: p.requires_grad and p.grad is not None, params))
if len(params) > 0:
return clip_grad.clip_grad_norm_(params, **self.grad_clip)
return None
def after_train_iter(self,
runner,
batch_idx: int,
data_batch: DATA_BATCH = None,
outputs: Optional[dict] = None) -> None:
"""All operations need to be finished after each training iteration.
This function will finish following 3 operations:
- Detect any anomalous parameters which are not included in the
training graph. (optional)
- Compute the gradient of model parameters.
- Clip the gradients of each parameter. (optional)
- Update model parameters with gradients.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data
from dataloader. In order to keep this interface consistent
with other hooks, we keep ``data_batch`` here.
Defaults to None.
outputs (dict, optional): Outputs from model.
In order to keep this interface consistent with other hooks,
we keep ``outputs`` here. Defaults to None.
"""
runner.optimizer.zero_grad()
if self.detect_anomalous_params:
self.detect_anomalous_parameters(runner.outputs['loss'], runner)
runner.outputs['loss'].backward()
if self.grad_clip is not None:
grad_norm = self.clip_grads(runner.model.parameters())
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update({'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
runner.optimizer.step()
def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None:
"""Detect anomalous parameters that are not included in the graph.
Args:
loss (torch.Tensor): The loss of current iteration.
runner (Runner): The runner of the training process.
"""
logger = runner.logger
parameters_in_graph = set()
visited = set()
def traverse(grad_fn):
if grad_fn is None:
return
if grad_fn not in visited:
visited.add(grad_fn)
if hasattr(grad_fn, 'variable'):
parameters_in_graph.add(grad_fn.variable)
parents = grad_fn.next_functions
if parents is not None:
for parent in parents:
grad_fn = parent[0]
traverse(grad_fn)
traverse(loss.grad_fn)
for n, p in runner.model.named_parameters():
if p not in parameters_in_graph and p.requires_grad:
logger.log(
level=logging.ERROR,
msg=f'{n} with shape {p.size()} is not '
f'in the computational graph \n')
|
from typing import List, Optional
import pandas as pd
import pytest
from docarray import BaseDoc, DocList, DocVec
from docarray.documents import ImageDoc
@pytest.fixture()
def nested_doc_cls():
class MyDoc(BaseDoc):
count: Optional[int]
text: str
class MyDocNested(MyDoc):
image: ImageDoc
lst: List[str]
return MyDocNested
@pytest.mark.parametrize('doc_vec', [False, True])
def test_to_from_pandas_df(nested_doc_cls, doc_vec):
da = DocList[nested_doc_cls](
[
nested_doc_cls(
count=0,
text='hello',
image=ImageDoc(url='aux.png'),
lst=["hello", "world"],
),
nested_doc_cls(
text='hello world', image=ImageDoc(), lst=["hello", "world"]
),
]
)
if doc_vec:
da = da.to_doc_vec()
df = da.to_dataframe()
assert isinstance(df, pd.DataFrame)
assert len(df) == 2
assert (
df.columns
== [
'id',
'count',
'text',
'image__id',
'image__url',
'image__tensor',
'image__embedding',
'image__bytes_',
'lst',
]
).all()
if doc_vec:
da_from_df = DocVec[nested_doc_cls].from_dataframe(df)
assert isinstance(da_from_df, DocVec)
else:
da_from_df = DocList[nested_doc_cls].from_dataframe(df)
assert isinstance(da_from_df, DocList)
for doc1, doc2 in zip(da, da_from_df):
assert doc1 == doc2
@pytest.fixture()
def nested_doc():
class Inner(BaseDoc):
img: Optional[ImageDoc]
class Middle(BaseDoc):
img: Optional[ImageDoc]
inner: Optional[Inner]
class Outer(BaseDoc):
img: Optional[ImageDoc]
middle: Optional[Middle]
doc = Outer(
img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc()))
)
return doc
@pytest.mark.parametrize('array_cls', [DocList, DocVec])
def test_from_pandas_without_schema_raise_exception(array_cls):
with pytest.raises(TypeError, match='no document schema defined'):
df = pd.DataFrame(
columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]]
)
array_cls.from_dataframe(df=df)
@pytest.mark.parametrize('array_cls', [DocList, DocVec])
def test_from_pandas_with_wrong_schema_raise_exception(nested_doc, array_cls):
with pytest.raises(ValueError, match='Column names do not match the schema'):
df = pd.DataFrame(
columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]]
)
array_cls[nested_doc.__class__].from_dataframe(df=df)
def test_doc_list_error():
class Book(BaseDoc):
title: str
# not testing DocVec bc it already fails here (as it should!)
docs = DocList([Book(title='hello'), Book(title='world')])
with pytest.raises(TypeError):
docs.to_dataframe()
@pytest.mark.proto
def test_union_type_error():
from typing import Union
from docarray.documents import TextDoc
class CustomDoc(BaseDoc):
ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type')
docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))])
with pytest.raises(ValueError):
DocList[CustomDoc].from_dataframe(docs.to_dataframe())
class BasisUnion(BaseDoc):
ud: Union[int, str]
docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")])
docs_copy = DocList[BasisUnion].from_dataframe(docs_basic.to_dataframe())
assert docs_copy == docs_basic
|
from typing import List, Optional
import pandas as pd
import pytest
from docarray import BaseDoc, DocList
from docarray.documents import ImageDoc
@pytest.fixture()
def nested_doc_cls():
class MyDoc(BaseDoc):
count: Optional[int]
text: str
class MyDocNested(MyDoc):
image: ImageDoc
lst: List[str]
return MyDocNested
def test_to_from_pandas_df(nested_doc_cls):
da = DocList[nested_doc_cls](
[
nested_doc_cls(
count=0,
text='hello',
image=ImageDoc(url='aux.png'),
lst=["hello", "world"],
),
nested_doc_cls(
text='hello world', image=ImageDoc(), lst=["hello", "world"]
),
]
)
df = da.to_dataframe()
assert isinstance(df, pd.DataFrame)
assert len(df) == 2
assert (
df.columns
== [
'id',
'count',
'text',
'image__id',
'image__url',
'image__tensor',
'image__embedding',
'image__bytes_',
'lst',
]
).all()
da_from_df = DocList[nested_doc_cls].from_dataframe(df)
for doc1, doc2 in zip(da, da_from_df):
assert doc1 == doc2
@pytest.fixture()
def nested_doc():
class Inner(BaseDoc):
img: Optional[ImageDoc]
class Middle(BaseDoc):
img: Optional[ImageDoc]
inner: Optional[Inner]
class Outer(BaseDoc):
img: Optional[ImageDoc]
middle: Optional[Middle]
doc = Outer(
img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc()))
)
return doc
def test_from_pandas_without_schema_raise_exception():
with pytest.raises(TypeError, match='no document schema defined'):
df = pd.DataFrame(
columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]]
)
DocList.from_dataframe(df=df)
def test_from_pandas_with_wrong_schema_raise_exception(nested_doc):
with pytest.raises(ValueError, match='Column names do not match the schema'):
df = pd.DataFrame(
columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]]
)
DocList[nested_doc.__class__].from_dataframe(df=df)
def test_doc_list_error():
class Book(BaseDoc):
title: str
docs = DocList([Book(title='hello'), Book(title='world')])
with pytest.raises(TypeError):
docs.to_dataframe()
@pytest.mark.proto
def test_union_type_error():
from typing import Union
from docarray.documents import TextDoc
class CustomDoc(BaseDoc):
ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type')
docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))])
with pytest.raises(ValueError):
DocList[CustomDoc].from_dataframe(docs.to_dataframe())
class BasisUnion(BaseDoc):
ud: Union[int, str]
docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")])
docs_copy = DocList[BasisUnion].from_dataframe(docs_basic.to_dataframe())
assert docs_copy == docs_basic
|
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable
from sentence_transformers.evaluation import RerankingEvaluator
from sentence_transformers.util import cos_sim
if TYPE_CHECKING:
import numpy as np
from torch import Tensor
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
logger = logging.getLogger(__name__)
class SparseRerankingEvaluator(RerankingEvaluator):
def __init__(
self,
samples: list[dict[str, str | list[str]]],
at_k: int = 10,
name: str = "",
write_csv: bool = True,
similarity_fct: Callable[[Tensor, Tensor], Tensor] = cos_sim,
batch_size: int = 64,
show_progress_bar: bool = False,
use_batched_encoding: bool = True,
truncate_dim: int | None = None,
mrr_at_k: int | None = None,
):
super().__init__(
samples=samples,
at_k=at_k,
name=name,
write_csv=write_csv,
similarity_fct=similarity_fct,
batch_size=batch_size,
show_progress_bar=show_progress_bar,
use_batched_encoding=use_batched_encoding,
truncate_dim=truncate_dim,
mrr_at_k=mrr_at_k,
)
def __call__(
self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1
) -> dict[str, float]:
return super().__call__(model, output_path, epoch, steps)
def compute_metrices(
self,
model: SparseEncoder,
):
return super().compute_metrices(model)
def compute_metrices_batched(
self,
model: SparseEncoder,
):
return super().compute_metrices_batched(model)
def compute_metrices_individual(
self,
model: SparseEncoder,
):
return super().compute_metrices_individual(model)
def embed_inputs(
self,
model: SparseEncoder,
sentences: str | list[str] | np.ndarray,
show_progress_bar: bool | None = None,
**kwargs,
) -> Tensor:
return model.encode(
sentences,
batch_size=self.batch_size,
show_progress_bar=show_progress_bar,
convert_to_tensor=True,
**kwargs,
)
def store_metrics_in_model_card_data(
self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0
) -> None:
model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
|
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any
from sentence_transformers.evaluation import RerankingEvaluator
if TYPE_CHECKING:
import numpy as np
from torch import Tensor
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
logger = logging.getLogger(__name__)
class SparseRerankingEvaluator(RerankingEvaluator):
def __call__(
self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1
) -> dict[str, float]:
return super.__call__(model, output_path, epoch, steps)
def compute_metrices(
self,
model: SparseEncoder,
):
return super.compute_metrices(model)
def compute_metrices_batched(
self,
model: SparseEncoder,
):
return super.compute_metrices_batched(model)
def compute_metrices_individual(
self,
model: SparseEncoder,
):
return super.compute_metrices_individual(model)
def embed_inputs(
self,
model: SparseEncoder,
sentences: str | list[str] | np.ndarray,
show_progress_bar: bool | None = None,
**kwargs,
) -> Tensor:
return model.encode(
sentences,
batch_size=self.batch_size,
show_progress_bar=show_progress_bar,
convert_to_tensor=True,
**kwargs,
)
def store_metrics_in_model_card_data(
self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0
) -> None:
model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
|
_base_ = './retinanet_r50-caffe_fpn_1x_coco.py'
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomChoiceResize',
scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768),
(1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
_base_ = './retinanet_r50-caffe_fpn_1x_coco.py'
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize',
scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768),
(1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
from typing import Optional
from fastapi import Depends, FastAPI, Query, status
from fastapi.testclient import TestClient
app = FastAPI()
def _get_client_key(client_id: str = Query(...)) -> str:
return f"{client_id}_key"
def _get_client_tag(client_id: Optional[str] = Query(None)) -> Optional[str]:
if client_id is None:
return None
return f"{client_id}_tag"
@app.get("/foo")
def foo_handler(
client_key: str = Depends(_get_client_key),
client_tag: Optional[str] = Depends(_get_client_tag),
):
return {"client_id": client_key, "client_tag": client_tag}
client = TestClient(app)
expected_schema = {
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {"$ref": "#/components/schemas/ValidationError"},
"title": "Detail",
"type": "array",
}
},
"title": "HTTPValidationError",
"type": "object",
},
"ValidationError": {
"properties": {
"loc": {
"items": {"anyOf": [{"type": "string"}, {"type": "integer"}]},
"title": "Location",
"type": "array",
},
"msg": {"title": "Message", "type": "string"},
"type": {"title": "Error Type", "type": "string"},
},
"required": ["loc", "msg", "type"],
"title": "ValidationError",
"type": "object",
},
}
},
"info": {"title": "FastAPI", "version": "0.1.0"},
"openapi": "3.1.0",
"paths": {
"/foo": {
"get": {
"operationId": "foo_handler_foo_get",
"parameters": [
{
"in": "query",
"name": "client_id",
"required": True,
"schema": {"title": "Client Id", "type": "string"},
},
],
"responses": {
"200": {
"content": {"application/json": {"schema": {}}},
"description": "Successful Response",
},
"422": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
"description": "Validation Error",
},
},
"summary": "Foo Handler",
}
}
},
}
def test_schema():
response = client.get("/openapi.json")
assert response.status_code == status.HTTP_200_OK
actual_schema = response.json()
assert actual_schema == expected_schema
def test_get_invalid():
response = client.get("/foo")
assert response.status_code == status.HTTP_422_UNPROCESSABLE_ENTITY
def test_get_valid():
response = client.get("/foo", params={"client_id": "bar"})
assert response.status_code == 200
assert response.json() == {"client_id": "bar_key", "client_tag": "bar_tag"}
|
from typing import Optional
from fastapi import Depends, FastAPI, Query, status
from fastapi.testclient import TestClient
app = FastAPI()
def _get_client_key(client_id: str = Query(...)) -> str:
return f"{client_id}_key"
def _get_client_tag(client_id: Optional[str] = Query(None)) -> Optional[str]:
if client_id is None:
return None
return f"{client_id}_tag"
@app.get("/foo")
def foo_handler(
client_key: str = Depends(_get_client_key),
client_tag: Optional[str] = Depends(_get_client_tag),
):
return {"client_id": client_key, "client_tag": client_tag}
client = TestClient(app)
expected_schema = {
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {"$ref": "#/components/schemas/ValidationError"},
"title": "Detail",
"type": "array",
}
},
"title": "HTTPValidationError",
"type": "object",
},
"ValidationError": {
"properties": {
"loc": {
"items": {"anyOf": [{"type": "string"}, {"type": "integer"}]},
"title": "Location",
"type": "array",
},
"msg": {"title": "Message", "type": "string"},
"type": {"title": "Error " "Type", "type": "string"},
},
"required": ["loc", "msg", "type"],
"title": "ValidationError",
"type": "object",
},
}
},
"info": {"title": "FastAPI", "version": "0.1.0"},
"openapi": "3.1.0",
"paths": {
"/foo": {
"get": {
"operationId": "foo_handler_foo_get",
"parameters": [
{
"in": "query",
"name": "client_id",
"required": True,
"schema": {"title": "Client Id", "type": "string"},
},
],
"responses": {
"200": {
"content": {"application/json": {"schema": {}}},
"description": "Successful " "Response",
},
"422": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
"description": "Validation " "Error",
},
},
"summary": "Foo Handler",
}
}
},
}
def test_schema():
response = client.get("/openapi.json")
assert response.status_code == status.HTTP_200_OK
actual_schema = response.json()
assert actual_schema == expected_schema
def test_get_invalid():
response = client.get("/foo")
assert response.status_code == status.HTTP_422_UNPROCESSABLE_ENTITY
def test_get_valid():
response = client.get("/foo", params={"client_id": "bar"})
assert response.status_code == 200
assert response.json() == {"client_id": "bar_key", "client_tag": "bar_tag"}
|
from typing import Any, Dict, List, Optional, Tuple
from llama_index.core.schema import BaseNode, TextNode
from llama_index.core.vector_stores.utils import (
metadata_dict_to_node,
legacy_metadata_dict_to_node,
)
import json
import logging
logger = logging.getLogger(__name__)
def create_node_from_result(
result: Dict[str, Any], field_mapping: Dict[str, str]
) -> BaseNode:
"""
Create a node from a search result.
Args:
result (Dict[str, Any]): Search result dictionary
field_mapping (Dict[str, str]): Field mapping dictionary
Returns:
BaseNode: Created node
"""
metadata_str = result[field_mapping["metadata"]]
metadata = json.loads(metadata_str) if metadata_str else {}
try:
node = metadata_dict_to_node(metadata)
node.set_content(result[field_mapping["chunk"]])
node.embedding = result.get(field_mapping["embedding"])
except Exception:
# NOTE: deprecated legacy logic for backward compatibility
metadata, node_info, relationships = legacy_metadata_dict_to_node(metadata)
node = TextNode(
text=result[field_mapping["chunk"]],
id_=result[field_mapping["id"]],
metadata=metadata,
start_char_idx=node_info.get("start", None),
end_char_idx=node_info.get("end", None),
relationships=relationships,
)
if field_mapping.get("embedding"):
node.embedding = result.get(field_mapping["embedding"])
return node
def process_batch_results(
batch_nodes: List[BaseNode],
nodes: List[BaseNode],
batch_size: int,
limit: Optional[int] = None,
) -> Tuple[List[BaseNode], bool]:
"""
Process batch results and determine if we should continue fetching.
Args:
batch_nodes (List[BaseNode]): Current batch of nodes
nodes (List[BaseNode]): Accumulated nodes
batch_size (int): Size of each batch
limit (Optional[int]): Maximum number of nodes to retrieve
Returns:
Tuple[List[BaseNode], bool]: Updated nodes list and whether to continue fetching
"""
if not batch_nodes:
return nodes, False
nodes.extend(batch_nodes)
# If we've hit the requested limit, stop
if limit and len(nodes) >= limit:
return nodes[:limit], False
# If we got less than batch_size results, we've hit the end
if len(batch_nodes) < batch_size:
return nodes, False
return nodes, True
def create_search_request(
field_mapping: Dict[str, str],
filter_str: Optional[str],
batch_size: int,
offset: int,
) -> Dict[str, Any]:
"""
Create a search request dictionary.
Args:
field_mapping (Dict[str, str]): Field mapping dictionary
filter_str (Optional[str]): OData filter string
batch_size (int): Size of batch to retrieve
offset (int): Number of results to skip
Returns:
Dict[str, Any]: Search request parameters
"""
return {
"search_text": "*",
"filter": filter_str,
"top": batch_size,
"skip": offset,
"select": list(field_mapping.values()),
}
def handle_search_error(e: Exception) -> None:
"""
Handle search errors by logging them appropriately.
Args:
e (Exception): The exception that occurred
"""
if isinstance(e, ValueError):
logger.error(f"Invalid search parameters: {e}")
else:
logger.error(f"Error during search operation: {e}")
|
from typing import Any, Dict, List, Optional, Tuple
from llama_index.core.schema import BaseNode, TextNode
from llama_index.core.vector_stores.utils import (
metadata_dict_to_node,
legacy_metadata_dict_to_node,
)
import json
import logging
logger = logging.getLogger(__name__)
def create_node_from_result(
result: Dict[str, Any], field_mapping: Dict[str, str]
) -> BaseNode:
"""Create a node from a search result.
Args:
result (Dict[str, Any]): Search result dictionary
field_mapping (Dict[str, str]): Field mapping dictionary
Returns:
BaseNode: Created node
"""
metadata_str = result[field_mapping["metadata"]]
metadata = json.loads(metadata_str) if metadata_str else {}
try:
node = metadata_dict_to_node(metadata)
node.set_content(result[field_mapping["chunk"]])
node.embedding = result.get(field_mapping["embedding"])
except Exception:
# NOTE: deprecated legacy logic for backward compatibility
metadata, node_info, relationships = legacy_metadata_dict_to_node(metadata)
node = TextNode(
text=result[field_mapping["chunk"]],
id_=result[field_mapping["id"]],
metadata=metadata,
start_char_idx=node_info.get("start", None),
end_char_idx=node_info.get("end", None),
relationships=relationships,
)
if field_mapping.get("embedding"):
node.embedding = result.get(field_mapping["embedding"])
return node
def process_batch_results(
batch_nodes: List[BaseNode],
nodes: List[BaseNode],
batch_size: int,
limit: Optional[int] = None,
) -> Tuple[List[BaseNode], bool]:
"""Process batch results and determine if we should continue fetching.
Args:
batch_nodes (List[BaseNode]): Current batch of nodes
nodes (List[BaseNode]): Accumulated nodes
batch_size (int): Size of each batch
limit (Optional[int]): Maximum number of nodes to retrieve
Returns:
Tuple[List[BaseNode], bool]: Updated nodes list and whether to continue fetching
"""
if not batch_nodes:
return nodes, False
nodes.extend(batch_nodes)
# If we've hit the requested limit, stop
if limit and len(nodes) >= limit:
return nodes[:limit], False
# If we got less than batch_size results, we've hit the end
if len(batch_nodes) < batch_size:
return nodes, False
return nodes, True
def create_search_request(
field_mapping: Dict[str, str],
filter_str: Optional[str],
batch_size: int,
offset: int,
) -> Dict[str, Any]:
"""Create a search request dictionary.
Args:
field_mapping (Dict[str, str]): Field mapping dictionary
filter_str (Optional[str]): OData filter string
batch_size (int): Size of batch to retrieve
offset (int): Number of results to skip
Returns:
Dict[str, Any]: Search request parameters
"""
return {
"search_text": "*",
"filter": filter_str,
"top": batch_size,
"skip": offset,
"select": list(field_mapping.values()),
}
def handle_search_error(e: Exception) -> None:
"""Handle search errors by logging them appropriately.
Args:
e (Exception): The exception that occurred
"""
if isinstance(e, ValueError):
logger.error(f"Invalid search parameters: {e}")
else:
logger.error(f"Error during search operation: {e}")
|
from __future__ import annotations
from torch import Tensor, nn
from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder
class CrossEntropyLoss(nn.Module):
def __init__(self, model: CrossEncoder, activation_fct: nn.Module = nn.Identity(), **kwargs) -> None:
"""
Computes the Cross Entropy Loss for a CrossEncoder model. This loss is used to train a model to predict the
correct class label for a given pair of sentences. The number of classes should be equal to the number of model
output labels.
Args:
model (:class:`~sentence_transformers.cross_encoder.CrossEncoder`): A CrossEncoder model to be trained.
activation_fct (:class:`~torch.nn.Module`): Activation function applied to the logits before computing the loss. Defaults to :class:`~torch.nn.Identity`.
**kwargs: Additional keyword arguments passed to the underlying :class:`torch.nn.CrossEntropyLoss`.
References:
- :class:`torch.nn.CrossEntropyLoss`
Requirements:
1. Your model can be initialized with `num_labels > 1` to predict multiple classes.
2. The number of dataset classes should be equal to the number of model output labels (`model.num_labels`).
Inputs:
+-------------------------------------------------+--------+-------------------------------+
| Texts | Labels | Number of Model Output Labels |
+=================================================+========+===============================+
| (sentence_A, sentence_B) pairs | class | `num_classes` |
+-------------------------------------------------+--------+-------------------------------+
Example:
::
from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderTrainer, losses
from datasets import Dataset
model = CrossEncoder("microsoft/mpnet-base", num_labels=2)
train_dataset = Dataset.from_dict({
"sentence1": ["How can I be a good geologist?", "What is the capital of France?"],
"sentence2": ["What should I do to be a great geologist?", "What is the capital of Germany?"],
"label": [1, 0], # 1: duplicate, 0: not duplicate
})
loss = losses.CrossEntropyLoss(model)
trainer = CrossEncoderTrainer(
model=model,
train_dataset=train_dataset,
loss=loss,
)
trainer.train()
"""
super().__init__()
self.model = model
self.activation_fct = activation_fct
self.ce_loss = nn.CrossEntropyLoss(**kwargs)
if not isinstance(self.model, CrossEncoder):
raise ValueError(
f"{self.__class__.__name__} expects a model of type CrossEncoder, "
f"but got a model of type {type(self.model)}."
)
def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor:
if len(inputs) != 2:
raise ValueError(
f"CrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns."
)
pairs = list(zip(inputs[0], inputs[1]))
tokens = self.model.tokenizer(
pairs,
padding=True,
truncation=True,
return_tensors="pt",
)
tokens.to(self.model.device)
logits = self.model(**tokens)[0]
logits = self.activation_fct(logits)
loss = self.ce_loss(logits, labels)
return loss
|
from __future__ import annotations
from torch import Tensor, nn
from sentence_transformers.cross_encoder import CrossEncoder
# TODO: Consider the naming of this class
class CrossEntropyLoss(nn.Module):
def __init__(self, model: CrossEncoder, activation_fct: nn.Module = nn.Identity(), **kwargs) -> None:
super().__init__()
self.model = model
self.activation_fct = activation_fct
self.ce_loss = nn.CrossEntropyLoss(**kwargs)
def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor:
if len(inputs) != 2:
raise ValueError(
f"CrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns."
)
pairs = list(zip(inputs[0], inputs[1]))
tokens = self.model.tokenizer(
pairs,
padding=True,
truncation=True,
return_tensors="pt",
)
tokens.to(self.model.device)
logits = self.model(**tokens)[0]
logits = self.activation_fct(logits)
loss = self.ce_loss(logits, labels)
return loss
|
from typing import Any
import torch
import enum
from torch._C import _to_dlpack as to_dlpack
__all__ = [
"DLDeviceType",
"from_dlpack",
]
class DLDeviceType(enum.IntEnum):
# Enums as in DLPack specification (aten/src/ATen/dlpack.h)
kDLCPU = 1,
kDLCUDA = 2,
kDLCUDAHost = 3,
kDLOpenCL = 4,
kDLVulkan = 7,
kDLMetal = 8,
kDLVPI = 9,
kDLROCM = 10,
kDLROCMHost = 11,
kDLExtDev = 12,
kDLCUDAManaged = 13,
kDLOneAPI = 14,
kDLWebGPU = 15,
kDLHexagon = 16,
kDLMAIA = 17,
torch._C._add_docstr(to_dlpack, r"""to_dlpack(tensor) -> PyCapsule
Returns an opaque object (a "DLPack capsule") representing the tensor.
.. note::
``to_dlpack`` is a legacy DLPack interface. The capsule it returns
cannot be used for anything in Python other than use it as input to
``from_dlpack``. The more idiomatic use of DLPack is to call
``from_dlpack`` directly on the tensor object - this works when that
object has a ``__dlpack__`` method, which PyTorch and most other
libraries indeed have now.
.. warning::
Only call ``from_dlpack`` once per capsule produced with ``to_dlpack``.
Behavior when a capsule is consumed multiple times is undefined.
Args:
tensor: a tensor to be exported
The DLPack capsule shares the tensor's memory.
""")
# TODO: add a typing.Protocol to be able to tell Mypy that only objects with
# __dlpack__ and __dlpack_device__ methods are accepted.
def from_dlpack(ext_tensor: Any) -> 'torch.Tensor':
"""from_dlpack(ext_tensor) -> Tensor
Converts a tensor from an external library into a ``torch.Tensor``.
The returned PyTorch tensor will share the memory with the input tensor
(which may have come from another library). Note that in-place operations
will therefore also affect the data of the input tensor. This may lead to
unexpected issues (e.g., other libraries may have read-only flags or
immutable data structures), so the user should only do this if they know
for sure that this is fine.
Args:
ext_tensor (object with ``__dlpack__`` attribute, or a DLPack capsule):
The tensor or DLPack capsule to convert.
If ``ext_tensor`` is a tensor (or ndarray) object, it must support
the ``__dlpack__`` protocol (i.e., have a ``ext_tensor.__dlpack__``
method). Otherwise ``ext_tensor`` may be a DLPack capsule, which is
an opaque ``PyCapsule`` instance, typically produced by a
``to_dlpack`` function or method.
Examples::
>>> import torch.utils.dlpack
>>> t = torch.arange(4)
# Convert a tensor directly (supported in PyTorch >= 1.10)
>>> t2 = torch.from_dlpack(t)
>>> t2[:2] = -1 # show that memory is shared
>>> t2
tensor([-1, -1, 2, 3])
>>> t
tensor([-1, -1, 2, 3])
# The old-style DLPack usage, with an intermediate capsule object
>>> capsule = torch.utils.dlpack.to_dlpack(t)
>>> capsule
<capsule object "dltensor" at ...>
>>> t3 = torch.from_dlpack(capsule)
>>> t3
tensor([-1, -1, 2, 3])
>>> t3[0] = -9 # now we're sharing memory between 3 tensors
>>> t3
tensor([-9, -1, 2, 3])
>>> t2
tensor([-9, -1, 2, 3])
>>> t
tensor([-9, -1, 2, 3])
"""
if hasattr(ext_tensor, '__dlpack__'):
kwargs: dict[str, Any] = {}
kwargs["max_version"] = (1, 0)
device = ext_tensor.__dlpack_device__()
# device is either CUDA or ROCm, we need to pass the current
# stream
if device[0] in (DLDeviceType.kDLCUDA, DLDeviceType.kDLROCM):
stream = torch.cuda.current_stream(f'cuda:{device[1]}')
# cuda_stream is the pointer to the stream and it is a public
# attribute, but it is not documented
# The array API specify that the default legacy stream must be passed
# with a value of 1 for CUDA
# https://data-apis.org/array-api/latest/API_specification/array_object.html?dlpack-self-stream-none#dlpack-self-stream-none
is_cuda = device[0] == DLDeviceType.kDLCUDA
# Since pytorch is not using PTDS by default, lets directly pass
# the legacy stream
stream_ptr = 1 if is_cuda and stream.cuda_stream == 0 else stream.cuda_stream
kwargs["stream"] = stream_ptr
try:
# Try running __dlpack__ while specifying `max_version` argument.
dlpack = ext_tensor.__dlpack__(**kwargs)
except TypeError:
# If that doesn't work, try removing the `max_version` argument.
kwargs.pop("max_version")
dlpack = ext_tensor.__dlpack__(**kwargs)
else:
# Old versions just call the converter
dlpack = ext_tensor
return torch._C._from_dlpack(dlpack)
|
from typing import Any
import torch
import enum
from torch._C import _from_dlpack
from torch._C import _to_dlpack as to_dlpack
__all__ = [
"DLDeviceType",
"from_dlpack",
"to_dlpack",
]
class DLDeviceType(enum.IntEnum):
# Enums as in DLPack specification (aten/src/ATen/dlpack.h)
kDLCPU = 1,
kDLGPU = 2,
kDLCPUPinned = 3,
kDLOpenCL = 4,
kDLVulkan = 7,
kDLMetal = 8,
kDLVPI = 9,
kDLROCM = 10,
kDLExtDev = 12,
kDLOneAPI = 14,
torch._C._add_docstr(to_dlpack, r"""to_dlpack(tensor) -> PyCapsule
Returns an opaque object (a "DLPack capsule") representing the tensor.
.. note::
``to_dlpack`` is a legacy DLPack interface. The capsule it returns
cannot be used for anything in Python other than use it as input to
``from_dlpack``. The more idiomatic use of DLPack is to call
``from_dlpack`` directly on the tensor object - this works when that
object has a ``__dlpack__`` method, which PyTorch and most other
libraries indeed have now.
.. warning::
Only call ``from_dlpack`` once per capsule produced with ``to_dlpack``.
Behavior when a capsule is consumed multiple times is undefined.
Args:
tensor: a tensor to be exported
The DLPack capsule shares the tensor's memory.
""")
# TODO: add a typing.Protocol to be able to tell Mypy that only objects with
# __dlpack__ and __dlpack_device__ methods are accepted.
def from_dlpack(ext_tensor: Any) -> 'torch.Tensor':
"""from_dlpack(ext_tensor) -> Tensor
Converts a tensor from an external library into a ``torch.Tensor``.
The returned PyTorch tensor will share the memory with the input tensor
(which may have come from another library). Note that in-place operations
will therefore also affect the data of the input tensor. This may lead to
unexpected issues (e.g., other libraries may have read-only flags or
immutable data structures), so the user should only do this if they know
for sure that this is fine.
Args:
ext_tensor (object with ``__dlpack__`` attribute, or a DLPack capsule):
The tensor or DLPack capsule to convert.
If ``ext_tensor`` is a tensor (or ndarray) object, it must support
the ``__dlpack__`` protocol (i.e., have a ``ext_tensor.__dlpack__``
method). Otherwise ``ext_tensor`` may be a DLPack capsule, which is
an opaque ``PyCapsule`` instance, typically produced by a
``to_dlpack`` function or method.
Examples::
>>> import torch.utils.dlpack
>>> t = torch.arange(4)
# Convert a tensor directly (supported in PyTorch >= 1.10)
>>> t2 = torch.from_dlpack(t)
>>> t2[:2] = -1 # show that memory is shared
>>> t2
tensor([-1, -1, 2, 3])
>>> t
tensor([-1, -1, 2, 3])
# The old-style DLPack usage, with an intermediate capsule object
>>> capsule = torch.utils.dlpack.to_dlpack(t)
>>> capsule
<capsule object "dltensor" at ...>
>>> t3 = torch.from_dlpack(capsule)
>>> t3
tensor([-1, -1, 2, 3])
>>> t3[0] = -9 # now we're sharing memory between 3 tensors
>>> t3
tensor([-9, -1, 2, 3])
>>> t2
tensor([-9, -1, 2, 3])
>>> t
tensor([-9, -1, 2, 3])
"""
if hasattr(ext_tensor, '__dlpack__'):
device = ext_tensor.__dlpack_device__()
# device is either CUDA or ROCm, we need to pass the current
# stream
if device[0] in (DLDeviceType.kDLGPU, DLDeviceType.kDLROCM):
stream = torch.cuda.current_stream(f'cuda:{device[1]}')
# cuda_stream is the pointer to the stream and it is a public
# attribute, but it is not documented
# The array API specify that the default legacy stream must be passed
# with a value of 1 for CUDA
# https://data-apis.org/array-api/latest/API_specification/array_object.html?dlpack-self-stream-none#dlpack-self-stream-none
is_cuda = device[0] == DLDeviceType.kDLGPU
# Since pytorch is not using PTDS by default, lets directly pass
# the legacy stream
stream_ptr = 1 if is_cuda and stream.cuda_stream == 0 else stream.cuda_stream
dlpack = ext_tensor.__dlpack__(stream=stream_ptr)
else:
dlpack = ext_tensor.__dlpack__()
else:
# Old versions just call the converter
dlpack = ext_tensor
return _from_dlpack(dlpack)
|
from __future__ import annotations
from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator
from sentence_transformers.sparse_encoder.evaluation import (
SparseBinaryClassificationEvaluator,
SparseEmbeddingSimilarityEvaluator,
SparseInformationRetrievalEvaluator,
SparseMSEEvaluator,
SparseNanoBEIREvaluator,
SparseRerankingEvaluator,
SparseTranslationEvaluator,
SparseTripletEvaluator,
)
from sentence_transformers.sparse_encoder.losses import (
CSRLoss,
CSRReconstructionLoss,
FlopsLoss,
SparseAnglELoss,
SparseCachedGISTEmbedLoss,
SparseCachedMultipleNegativesRankingLoss,
SparseCoSENTLoss,
SparseCosineSimilarityLoss,
SparseDistillKLDivLoss,
SparseGISTEmbedLoss,
SparseMarginMSELoss,
SparseMSELoss,
SparseMultipleNegativesRankingLoss,
SparseTripletLoss,
SpladeLoss,
)
from sentence_transformers.sparse_encoder.model_card import SparseEncoderModelCardData
from sentence_transformers.sparse_encoder.models import CSRSparsity, MLMTransformer, SpladePooling
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer
from sentence_transformers.sparse_encoder.training_args import (
SparseEncoderTrainingArguments,
)
__all__ = [
# Core components
"SparseEncoder",
"SparseEncoderDataCollator",
"SparseEncoderTrainer",
"SparseEncoderTrainingArguments",
# Models
"CSRSparsity",
"MLMTransformer",
"SpladePooling",
# Losses
"CSRLoss",
"CSRReconstructionLoss",
"SparseMultipleNegativesRankingLoss",
"SparseCoSENTLoss",
"SparseTripletLoss",
"SparseCachedMultipleNegativesRankingLoss",
"SparseMarginMSELoss",
"SparseGISTEmbedLoss",
"SparseCachedGISTEmbedLoss",
"SparseCosineSimilarityLoss",
"SparseMSELoss",
"SparseAnglELoss",
"SparseDistillKLDivLoss",
"FlopsLoss",
"SpladeLoss",
# Evaluators
"SparseBinaryClassificationEvaluator",
"SparseEmbeddingSimilarityEvaluator",
"SparseInformationRetrievalEvaluator",
"SparseMSEEvaluator",
"SparseNanoBEIREvaluator",
"SparseTranslationEvaluator",
"SparseRerankingEvaluator",
"SparseTripletEvaluator",
# Model card
"SparseEncoderModelCardData",
]
# TODO : Complete the SparseEncoder class
# TODO : Add tests for all the components
# TODO : Add the equivalent of the quantization file for the sparse encoder
|
from __future__ import annotations
from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator
from sentence_transformers.sparse_encoder.evaluation import (
SparseBinaryClassificationEvaluator,
SparseEmbeddingSimilarityEvaluator,
SparseInformationRetrievalEvaluator,
SparseMSEEvaluator,
SparseNanoBEIREvaluator,
SparseRerankingEvaluator,
SparseTranslationEvaluator,
SparseTripletEvaluator,
)
from sentence_transformers.sparse_encoder.losses import (
CSRLoss,
CSRReconstructionLoss,
FlopsLoss,
SparseAnglELoss,
SparseCachedGISTEmbedLoss,
SparseCachedMultipleNegativesRankingLoss,
SparseCoSENTLoss,
SparseCosineSimilarityLoss,
SparseDistillKLDivLoss,
SparseGISTEmbedLoss,
SparseMarginMSELoss,
SparseMSELoss,
SparseMultipleNegativesRankingLoss,
SparseTripletLoss,
SpladeLoss,
)
from sentence_transformers.sparse_encoder.models import (
CSRSparsity,
MLMTransformer,
SpladePooling,
)
from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder
from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer
from sentence_transformers.sparse_encoder.training_args import (
SparseEncoderTrainingArguments,
)
__all__ = [
# Core components
"SparseEncoder",
"SparseEncoderDataCollator",
"SparseEncoderTrainer",
"SparseEncoderTrainingArguments",
# Models
"CSRSparsity",
"MLMTransformer",
"SpladePooling",
# Losses
"CSRLoss",
"CSRReconstructionLoss",
"SparseMultipleNegativesRankingLoss",
"SparseCoSENTLoss",
"SparseTripletLoss",
"SparseCachedMultipleNegativesRankingLoss",
"SparseMarginMSELoss",
"SparseGISTEmbedLoss",
"SparseCachedGISTEmbedLoss",
"SparseCosineSimilarityLoss",
"SparseMSELoss",
"SparseAnglELoss",
"SparseDistillKLDivLoss",
"FlopsLoss",
"SpladeLoss",
# Evaluators
"SparseBinaryClassificationEvaluator",
"SparseEmbeddingSimilarityEvaluator",
"SparseInformationRetrievalEvaluator",
"SparseMSEEvaluator",
"SparseNanoBEIREvaluator",
"SparseTranslationEvaluator",
"SparseRerankingEvaluator",
"SparseTripletEvaluator",
]
# TODO : Complete the SparseEncoder class
# TODO : Add tests for all the components
# TODO : Add the equivalent of the quantization file for the sparse encoder
|
from typing import TYPE_CHECKING, Any
from langchain._api import create_importer
if TYPE_CHECKING:
from langchain_community.chains.graph_qa.neptune_sparql import (
INTERMEDIATE_STEPS_KEY,
SPARQL_GENERATION_TEMPLATE,
NeptuneSparqlQAChain,
extract_sparql,
)
# Create a way to dynamically look up deprecated imports.
# Used to consolidate logic for raising deprecation warnings and
# handling optional imports.
DEPRECATED_LOOKUP = {
"INTERMEDIATE_STEPS_KEY": "langchain_community.chains.graph_qa.neptune_sparql",
"NeptuneSparqlQAChain": "langchain_community.chains.graph_qa.neptune_sparql",
"SPARQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.neptune_sparql",
"extract_sparql": "langchain_community.chains.graph_qa.neptune_sparql",
}
_import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP)
def __getattr__(name: str) -> Any:
"""Look up attributes dynamically."""
return _import_attribute(name)
__all__ = [
"INTERMEDIATE_STEPS_KEY",
"SPARQL_GENERATION_TEMPLATE",
"NeptuneSparqlQAChain",
"extract_sparql",
]
|
from typing import TYPE_CHECKING, Any
from langchain._api import create_importer
if TYPE_CHECKING:
from langchain_community.chains.graph_qa.neptune_sparql import (
INTERMEDIATE_STEPS_KEY,
SPARQL_GENERATION_TEMPLATE,
NeptuneSparqlQAChain,
extract_sparql,
)
# Create a way to dynamically look up deprecated imports.
# Used to consolidate logic for raising deprecation warnings and
# handling optional imports.
DEPRECATED_LOOKUP = {
"INTERMEDIATE_STEPS_KEY": "langchain_community.chains.graph_qa.neptune_sparql",
"NeptuneSparqlQAChain": "langchain_community.chains.graph_qa.neptune_sparql",
"SPARQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.neptune_sparql",
"extract_sparql": "langchain_community.chains.graph_qa.neptune_sparql",
}
_import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP)
def __getattr__(name: str) -> Any:
"""Look up attributes dynamically."""
return _import_attribute(name)
__all__ = [
"INTERMEDIATE_STEPS_KEY",
"NeptuneSparqlQAChain",
"SPARQL_GENERATION_TEMPLATE",
"extract_sparql",
]
|
__version__ = '0.14.7'
import os
from docarray.document import Document
from docarray.array import DocumentArray
from docarray.dataclasses import dataclass, field
if 'DA_RICH_HANDLER' in os.environ:
from rich.traceback import install
install()
|
__version__ = '0.14.6'
import os
from docarray.document import Document
from docarray.array import DocumentArray
from docarray.dataclasses import dataclass, field
if 'DA_RICH_HANDLER' in os.environ:
from rich.traceback import install
install()
|
# Copyright (c) OpenMMLab. All rights reserved.
from .atss import ATSS
from .autoassign import AutoAssign
from .base import BaseDetector
from .cascade_rcnn import CascadeRCNN
from .centernet import CenterNet
from .cornernet import CornerNet
from .ddod import DDOD
from .deformable_detr import DeformableDETR
from .detr import DETR
from .fast_rcnn import FastRCNN
from .faster_rcnn import FasterRCNN
from .fcos import FCOS
from .fovea import FOVEA
from .fsaf import FSAF
from .gfl import GFL
from .grid_rcnn import GridRCNN
from .htc import HybridTaskCascade
from .kd_one_stage import KnowledgeDistillationSingleStageDetector
from .lad import LAD
from .mask2former import Mask2Former
from .mask_rcnn import MaskRCNN
from .mask_scoring_rcnn import MaskScoringRCNN
from .maskformer import MaskFormer
from .nasfcos import NASFCOS
from .paa import PAA
from .panoptic_fpn import PanopticFPN
from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor
from .point_rend import PointRend
from .queryinst import QueryInst
from .reppoints_detector import RepPointsDetector
from .retinanet import RetinaNet
from .rpn import RPN
from .scnet import SCNet
from .single_stage import SingleStageDetector
from .solo import SOLO
from .solov2 import SOLOv2
from .sparse_rcnn import SparseRCNN
from .tood import TOOD
from .trident_faster_rcnn import TridentFasterRCNN
from .two_stage import TwoStageDetector
from .vfnet import VFNet
from .yolact import YOLACT
from .yolo import YOLOV3
from .yolof import YOLOF
from .yolox import YOLOX
__all__ = [
'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN',
'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN',
'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS',
'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF',
'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT',
'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO',
'SOLOv2', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX',
'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD',
'MaskFormer', 'DDOD', 'Mask2Former'
]
|
# Copyright (c) OpenMMLab. All rights reserved.
from .atss import ATSS
from .autoassign import AutoAssign
from .base import BaseDetector
from .cascade_rcnn import CascadeRCNN
from .centernet import CenterNet
from .cornernet import CornerNet
from .ddod import DDOD
from .deformable_detr import DeformableDETR
from .detr import DETR
from .fast_rcnn import FastRCNN
from .faster_rcnn import FasterRCNN
from .fcos import FCOS
from .fovea import FOVEA
from .fsaf import FSAF
from .gfl import GFL
from .grid_rcnn import GridRCNN
from .htc import HybridTaskCascade
from .kd_one_stage import KnowledgeDistillationSingleStageDetector
from .lad import LAD
from .mask2former import Mask2Former
from .mask_rcnn import MaskRCNN
from .mask_scoring_rcnn import MaskScoringRCNN
from .maskformer import MaskFormer
from .nasfcos import NASFCOS
from .paa import PAA
from .panoptic_fpn import PanopticFPN
from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor
from .point_rend import PointRend
from .queryinst import QueryInst
from .reppoints_detector import RepPointsDetector
from .retinanet import RetinaNet
from .rpn import RPN
from .scnet import SCNet
from .single_stage import SingleStageDetector
from .solo import SOLO
from .sparse_rcnn import SparseRCNN
from .tood import TOOD
from .trident_faster_rcnn import TridentFasterRCNN
from .two_stage import TwoStageDetector
from .vfnet import VFNet
from .yolact import YOLACT
from .yolo import YOLOV3
from .yolof import YOLOF
from .yolox import YOLOX
__all__ = [
'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN',
'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN',
'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS',
'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF',
'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT',
'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO',
'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX',
'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD',
'MaskFormer', 'DDOD', 'Mask2Former'
]
|
import json
import pytest
from langchain.chains import OpenAIModerationChain
from langchain.chains.openai_functions.openapi import get_openapi_chain
api_spec = {
"openapi": "3.0.0",
"info": {"title": "JSONPlaceholder API", "version": "1.0.0"},
"servers": [{"url": "https://jsonplaceholder.typicode.com"}],
"paths": {
"/posts": {
"get": {
"summary": "Get posts",
"parameters": [
{
"name": "_limit",
"in": "query",
"required": False,
"schema": {"type": "integer", "example": 2},
"description": "Limit the number of results",
},
],
},
},
},
}
@pytest.mark.requires("openapi_pydantic")
@pytest.mark.requires("langchain_openai")
def test_openai_openapi_chain() -> None:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
chain = get_openapi_chain(json.dumps(api_spec), llm)
output = chain.invoke({"query": "Fetch the top two posts."})
assert len(output["response"]) == 2
@pytest.mark.requires("openai")
def test_openai_moderation_chain_instantiation() -> None:
"""Test OpenAIModerationChain."""
api_key = "foo"
moderation = OpenAIModerationChain(openai_api_key=api_key)
assert isinstance(moderation, OpenAIModerationChain)
|
import json
import pytest
from langchain.chains import OpenAIModerationChain
from langchain.chains.openai_functions.openapi import get_openapi_chain
api_spec = {
"openapi": "3.0.0",
"info": {"title": "JSONPlaceholder API", "version": "1.0.0"},
"servers": [{"url": "https://jsonplaceholder.typicode.com"}],
"paths": {
"/posts": {
"get": {
"summary": "Get posts",
"parameters": [
{
"name": "_limit",
"in": "query",
"required": False,
"schema": {"type": "integer", "example": 2},
"description": "Limit the number of results",
},
],
}
}
},
}
@pytest.mark.requires("openapi_pydantic")
@pytest.mark.requires("langchain_openai")
def test_openai_openapi_chain() -> None:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
chain = get_openapi_chain(json.dumps(api_spec), llm)
output = chain.invoke({"query": "Fetch the top two posts."})
assert len(output["response"]) == 2
@pytest.mark.requires("openai")
def test_openai_moderation_chain_instantiation() -> None:
"""Test OpenAIModerationChain."""
api_key = "foo"
moderation = OpenAIModerationChain(openai_api_key=api_key)
assert isinstance(moderation, OpenAIModerationChain)
|
_base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
train_cfg = dict(max_epochs=24)
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
|
_base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 23])
runner = dict(type='EpochBasedRunner', max_epochs=24)
|
"""XGBoost Experimental Federated Learning related API."""
import ctypes
from threading import Thread
from typing import Any, Dict, Optional
from .core import _LIB, _check_call, make_jcargs
from .tracker import RabitTracker
class FederatedTracker(RabitTracker):
"""Tracker for federated training.
Parameters
----------
n_workers :
The number of federated workers.
port :
The port to listen on.
secure :
Whether this is a secure instance. If True, then the following arguments for SSL
must be provided.
server_key_path :
Path to the server private key file.
server_cert_path :
Path to the server certificate file.
client_cert_path :
Path to the client certificate file.
"""
def __init__( # pylint: disable=R0913, W0231
self,
n_workers: int,
port: int,
secure: bool,
server_key_path: str = "",
server_cert_path: str = "",
client_cert_path: str = "",
timeout: int = 300,
) -> None:
handle = ctypes.c_void_p()
args = make_jcargs(
n_workers=n_workers,
port=port,
dmlc_communicator="federated",
federated_secure=secure,
server_key_path=server_key_path,
server_cert_path=server_cert_path,
client_cert_path=client_cert_path,
timeout=int(timeout),
)
_check_call(_LIB.XGTrackerCreate(args, ctypes.byref(handle)))
self.handle = handle
def run_federated_server( # pylint: disable=too-many-arguments
n_workers: int,
port: int,
server_key_path: Optional[str] = None,
server_cert_path: Optional[str] = None,
client_cert_path: Optional[str] = None,
timeout: int = 300,
) -> Dict[str, Any]:
"""See :py:class:`~xgboost.federated.FederatedTracker` for more info."""
args: Dict[str, Any] = {"n_workers": n_workers}
secure = all(
path is not None
for path in [server_key_path, server_cert_path, client_cert_path]
)
tracker = FederatedTracker(
n_workers=n_workers, port=port, secure=secure, timeout=timeout
)
tracker.start()
thread = Thread(target=tracker.wait_for)
thread.daemon = True
thread.start()
args.update(tracker.worker_args())
return args
|
"""XGBoost Federated Learning related API."""
from .core import _LIB, XGBoostError, _check_call, build_info, c_str
def run_federated_server(
port: int,
world_size: int,
server_key_path: str = "",
server_cert_path: str = "",
client_cert_path: str = "",
) -> None:
"""Run the Federated Learning server.
Parameters
----------
port : int
The port to listen on.
world_size: int
The number of federated workers.
server_key_path: str
Path to the server private key file. SSL is turned off if empty.
server_cert_path: str
Path to the server certificate file. SSL is turned off if empty.
client_cert_path: str
Path to the client certificate file. SSL is turned off if empty.
"""
if build_info()["USE_FEDERATED"]:
if not server_key_path or not server_cert_path or not client_cert_path:
_check_call(_LIB.XGBRunInsecureFederatedServer(port, world_size))
else:
_check_call(
_LIB.XGBRunFederatedServer(
port,
world_size,
c_str(server_key_path),
c_str(server_cert_path),
c_str(client_cert_path),
)
)
else:
raise XGBoostError(
"XGBoost needs to be built with the federated learning plugin "
"enabled in order to use this module"
)
|
from typing import Any, Dict, List, Tuple, Type, cast
from docarray import BaseDoc, DocList
from docarray.index.abstract import BaseDocIndex
from docarray.utils.filter import filter_docs
from docarray.utils.find import FindResult
def _collect_query_args(method_name: str): # TODO: use partialmethod instead
def inner(self, *args, **kwargs):
if args:
raise ValueError(
f'Positional arguments are not supported for '
f'`{type(self)}.{method_name}`.'
f' Use keyword arguments instead.'
)
updated_query = self._queries + [(method_name, kwargs)]
return type(self)(updated_query)
return inner
def _execute_find_and_filter_query(
doc_index: BaseDocIndex, query: List[Tuple[str, Dict]]
) -> FindResult:
"""
Executes all find calls from query first using `doc_index.find()`,
and filtering queries after that using DocArray's `filter_docs()`.
Text search is not supported.
"""
docs_found = DocList.__class_getitem__(cast(Type[BaseDoc], doc_index._schema))([])
filter_conditions = []
filter_limit = None
doc_to_score: Dict[BaseDoc, Any] = {}
for op, op_kwargs in query:
if op == 'find':
docs, scores = doc_index.find(**op_kwargs)
docs_found.extend(docs)
doc_to_score.update(zip(docs.__getattribute__('id'), scores))
elif op == 'filter':
filter_conditions.append(op_kwargs['filter_query'])
filter_limit = op_kwargs.get('limit')
else:
raise ValueError(f'Query operation is not supported: {op}')
doc_index._logger.debug(f'Executing query {query}')
docs_filtered = docs_found
for cond in filter_conditions:
docs_cls = DocList.__class_getitem__(cast(Type[BaseDoc], doc_index._schema))
docs_filtered = docs_cls(filter_docs(docs_filtered, cond))
if filter_limit:
docs_filtered = docs_filtered[:filter_limit]
doc_index._logger.debug(f'{len(docs_filtered)} results found')
docs_and_scores = zip(
docs_filtered, (doc_to_score[doc.id] for doc in docs_filtered)
)
docs_sorted = sorted(docs_and_scores, key=lambda x: x[1])
out_docs, out_scores = zip(*docs_sorted)
return FindResult(documents=out_docs, scores=out_scores)
|
from typing import Any, Dict, List, Tuple, Type, cast
from docarray import BaseDoc, DocList
from docarray.index.abstract import BaseDocIndex
from docarray.utils.filter import filter_docs
from docarray.utils.find import FindResult
def _collect_query_args(method_name: str): # TODO: use partialmethod instead
def inner(self, *args, **kwargs):
if args:
raise ValueError(
f'Positional arguments are not supported for '
f'`{type(self)}.{method_name}`.'
f' Use keyword arguments instead.'
)
updated_query = self._queries + [(method_name, kwargs)]
return type(self)(updated_query)
return inner
def _execute_find_and_filter_query(
doc_index: BaseDocIndex, query: List[Tuple[str, Dict]]
) -> FindResult:
"""
Executes all find calls from query first using `doc_index.find()`,
and filtering queries after that using DocArray's `filter_docs()`.
Text search is not supported.
"""
docs_found = DocList.__class_getitem__(cast(Type[BaseDoc], doc_index._schema))([])
filter_conditions = []
doc_to_score: Dict[BaseDoc, Any] = {}
for op, op_kwargs in query:
if op == 'find':
docs, scores = doc_index.find(**op_kwargs)
docs_found.extend(docs)
doc_to_score.update(zip(docs.__getattribute__('id'), scores))
elif op == 'filter':
filter_conditions.append(op_kwargs['filter_query'])
else:
raise ValueError(f'Query operation is not supported: {op}')
doc_index._logger.debug(f'Executing query {query}')
docs_filtered = docs_found
for cond in filter_conditions:
docs_cls = DocList.__class_getitem__(cast(Type[BaseDoc], doc_index._schema))
docs_filtered = docs_cls(filter_docs(docs_filtered, cond))
doc_index._logger.debug(f'{len(docs_filtered)} results found')
docs_and_scores = zip(
docs_filtered, (doc_to_score[doc.id] for doc in docs_filtered)
)
docs_sorted = sorted(docs_and_scores, key=lambda x: x[1])
out_docs, out_scores = zip(*docs_sorted)
return FindResult(documents=out_docs, scores=out_scores)
|
"""Standard LangChain interface tests"""
from typing import Type
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_core.tools import BaseTool
from langchain_tests.integration_tests import (
ChatModelIntegrationTests,
)
from langchain_groq import ChatGroq
rate_limiter = InMemoryRateLimiter(requests_per_second=0.2)
class BaseTestGroq(ChatModelIntegrationTests):
@property
def chat_model_class(self) -> Type[BaseChatModel]:
return ChatGroq
@pytest.mark.xfail(reason="Not yet implemented.")
def test_tool_message_histories_list_content(
self, model: BaseChatModel, my_adder_tool: BaseTool
) -> None:
super().test_tool_message_histories_list_content(model, my_adder_tool)
@property
def supports_json_mode(self) -> bool:
return True
class TestGroqLlama(BaseTestGroq):
@property
def chat_model_params(self) -> dict:
return {
"model": "llama-3.1-8b-instant",
"temperature": 0,
"rate_limiter": rate_limiter,
}
@property
def supports_json_mode(self) -> bool:
return True
|
"""Standard LangChain interface tests"""
from typing import Optional, Type
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_core.tools import BaseTool
from langchain_tests.integration_tests import (
ChatModelIntegrationTests,
)
from langchain_groq import ChatGroq
rate_limiter = InMemoryRateLimiter(requests_per_second=0.2)
class BaseTestGroq(ChatModelIntegrationTests):
@property
def chat_model_class(self) -> Type[BaseChatModel]:
return ChatGroq
@pytest.mark.xfail(reason="Not yet implemented.")
def test_tool_message_histories_list_content(
self, model: BaseChatModel, my_adder_tool: BaseTool
) -> None:
super().test_tool_message_histories_list_content(model, my_adder_tool)
@property
def supports_json_mode(self) -> bool:
return True
class TestGroqLlama(BaseTestGroq):
@property
def chat_model_params(self) -> dict:
return {
"model": "llama-3.1-8b-instant",
"temperature": 0,
"rate_limiter": rate_limiter,
}
@property
def tool_choice_value(self) -> Optional[str]:
"""Value to use for tool choice when used in tests."""
return "any"
@property
def supports_json_mode(self) -> bool:
return True
|
"""Logic for converting internal query language to a valid Chroma query."""
from typing import Tuple, Union
from langchain_core.structured_query import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
Visitor,
)
COMPARATOR_TO_TQL = {
Comparator.EQ: "==",
Comparator.GT: ">",
Comparator.GTE: ">=",
Comparator.LT: "<",
Comparator.LTE: "<=",
}
OPERATOR_TO_TQL = {
Operator.AND: "and",
Operator.OR: "or",
Operator.NOT: "NOT",
}
def can_cast_to_float(string: str) -> bool:
"""Check if a string can be cast to a float."""
try:
float(string)
return True
except ValueError:
return False
class DeepLakeTranslator(Visitor):
"""Translate `DeepLake` internal query language elements to valid filters."""
allowed_operators = [Operator.AND, Operator.OR, Operator.NOT]
"""Subset of allowed logical operators."""
allowed_comparators = [
Comparator.EQ,
Comparator.GT,
Comparator.GTE,
Comparator.LT,
Comparator.LTE,
]
"""Subset of allowed logical comparators."""
def _format_func(self, func: Union[Operator, Comparator]) -> str:
self._validate_func(func)
if isinstance(func, Operator):
value = OPERATOR_TO_TQL[func.value] # type: ignore[index]
elif isinstance(func, Comparator):
value = COMPARATOR_TO_TQL[func.value] # type: ignore[index]
return f"{value}"
def visit_operation(self, operation: Operation) -> str:
args = [arg.accept(self) for arg in operation.arguments]
operator = self._format_func(operation.operator)
return "(" + (" " + operator + " ").join(args) + ")"
def visit_comparison(self, comparison: Comparison) -> str:
comparator = self._format_func(comparison.comparator)
values = comparison.value
if isinstance(values, list):
tql = []
for value in values:
comparison.value = value
tql.append(self.visit_comparison(comparison))
return "(" + (" or ").join(tql) + ")"
if not can_cast_to_float(comparison.value):
values = f"'{values}'"
return f"metadata['{comparison.attribute}'] {comparator} {values}"
def visit_structured_query(
self, structured_query: StructuredQuery
) -> Tuple[str, dict]:
if structured_query.filter is None:
kwargs = {}
else:
tqL = f"SELECT * WHERE {structured_query.filter.accept(self)}"
kwargs = {"tql": tqL}
return structured_query.query, kwargs
|
"""Logic for converting internal query language to a valid Chroma query."""
from typing import Tuple, Union
from langchain_core.structured_query import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
Visitor,
)
COMPARATOR_TO_TQL = {
Comparator.EQ: "==",
Comparator.GT: ">",
Comparator.GTE: ">=",
Comparator.LT: "<",
Comparator.LTE: "<=",
}
OPERATOR_TO_TQL = {
Operator.AND: "and",
Operator.OR: "or",
Operator.NOT: "NOT",
}
def can_cast_to_float(string: str) -> bool:
"""Check if a string can be cast to a float."""
try:
float(string)
return True
except ValueError:
return False
class DeepLakeTranslator(Visitor):
"""Translate `DeepLake` internal query language elements to valid filters."""
allowed_operators = [Operator.AND, Operator.OR, Operator.NOT]
"""Subset of allowed logical operators."""
allowed_comparators = [
Comparator.EQ,
Comparator.GT,
Comparator.GTE,
Comparator.LT,
Comparator.LTE,
]
"""Subset of allowed logical comparators."""
def _format_func(self, func: Union[Operator, Comparator]) -> str:
self._validate_func(func)
if isinstance(func, Operator):
value = OPERATOR_TO_TQL[func.value] # type: ignore
elif isinstance(func, Comparator):
value = COMPARATOR_TO_TQL[func.value] # type: ignore
return f"{value}"
def visit_operation(self, operation: Operation) -> str:
args = [arg.accept(self) for arg in operation.arguments]
operator = self._format_func(operation.operator)
return "(" + (" " + operator + " ").join(args) + ")"
def visit_comparison(self, comparison: Comparison) -> str:
comparator = self._format_func(comparison.comparator)
values = comparison.value
if isinstance(values, list):
tql = []
for value in values:
comparison.value = value
tql.append(self.visit_comparison(comparison))
return "(" + (" or ").join(tql) + ")"
if not can_cast_to_float(comparison.value):
values = f"'{values}'"
return f"metadata['{comparison.attribute}'] {comparator} {values}"
def visit_structured_query(
self, structured_query: StructuredQuery
) -> Tuple[str, dict]:
if structured_query.filter is None:
kwargs = {}
else:
tqL = f"SELECT * WHERE {structured_query.filter.accept(self)}"
kwargs = {"tql": tqL}
return structured_query.query, kwargs
|
# model settings
model = dict(
type='MaskRCNN',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_mask=True,
pad_size_divisor=32),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
|
# model settings
model = dict(
type='MaskRCNN',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
|
"""
Python polyfills for sys
"""
from __future__ import annotations
import sys
from ..decorators import substitute_in_graph
__all__ = [
"intern",
"getrecursionlimit",
]
@substitute_in_graph(sys.intern, can_constant_fold_through=True)
def intern(string: str, /) -> str:
return string
@substitute_in_graph(sys.getrecursionlimit, can_constant_fold_through=True)
def getrecursionlimit() -> int:
return sys.getrecursionlimit()
@substitute_in_graph(sys.get_int_max_str_digits, can_constant_fold_through=True)
def get_int_max_str_digits() -> int:
return sys.get_int_max_str_digits()
|
"""
Python polyfills for sys
"""
from __future__ import annotations
import sys
from ..decorators import substitute_in_graph
__all__ = [
"intern",
"getrecursionlimit",
]
@substitute_in_graph(sys.intern, can_constant_fold_through=True)
def intern(string: str, /) -> str:
return string
@substitute_in_graph(sys.getrecursionlimit, can_constant_fold_through=True)
def getrecursionlimit() -> int:
return sys.getrecursionlimit()
|
"""
In this example we train a semantic search model to search through Wikipedia
articles about programming articles & technologies.
We use the text paragraphs from the following Wikipedia articles:
Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js
In:
1_programming_query_generation.py - We generate queries for all paragraphs from these articles
2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for semantic search (for the given Wikipedia articles).
3_programming_semantic_search.py - Shows how the trained model can be used for semantic search
"""
from sentence_transformers import SentenceTransformer, InputExample, losses, models, datasets
import os
train_examples = []
with open("generated_queries.tsv") as fIn:
for line in fIn:
query, paragraph = line.strip().split("\t", maxsplit=1)
train_examples.append(InputExample(texts=[query, paragraph]))
# For the MultipleNegativesRankingLoss, it is important
# that the batch does not contain duplicate entries, i.e.
# no two equal queries and no two equal paragraphs.
# To ensure this, we use a special data loader
train_dataloader = datasets.NoDuplicatesDataLoader(train_examples, batch_size=64)
# Now we create a SentenceTransformer model from scratch
word_emb = models.Transformer("distilbert-base-uncased")
pooling = models.Pooling(word_emb.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_emb, pooling])
# MultipleNegativesRankingLoss requires input pairs (query, relevant_passage)
# and trains the model so that is is suitable for semantic search
train_loss = losses.MultipleNegativesRankingLoss(model)
# Tune the model
num_epochs = 3
warmup_steps = int(len(train_dataloader) * num_epochs * 0.1)
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=num_epochs,
warmup_steps=warmup_steps,
show_progress_bar=True,
)
os.makedirs("output", exist_ok=True)
model.save("output/programming-model")
|
"""
In this example we train a semantic search model to search through Wikipedia
articles about programming articles & technologies.
We use the text paragraphs from the following Wikipedia articles:
Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js
In:
1_programming_query_generation.py - We generate queries for all paragraphs from these articles
2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for semantic search (for the given Wikipedia articles).
3_programming_semantic_search.py - Shows how the trained model can be used for semantic search
"""
from sentence_transformers import SentenceTransformer, InputExample, losses, models, datasets
import os
train_examples = []
with open("generated_queries.tsv") as fIn:
for line in fIn:
query, paragraph = line.strip().split("\t", maxsplit=1)
train_examples.append(InputExample(texts=[query, paragraph]))
# For the MultipleNegativesRankingLoss, it is important
# that the batch does not contain duplicate entries, i.e.
# no two equal queries and no two equal paragraphs.
# To ensure this, we use a special data loader
train_dataloader = datasets.NoDuplicatesDataLoader(train_examples, batch_size=64)
# Now we create a SentenceTransformer model from scratch
word_emb = models.Transformer("distilbert-base-uncased")
pooling = models.Pooling(word_emb.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_emb, pooling])
# MultipleNegativesRankingLoss requires input pairs (query, relevant_passage)
# and trains the model so that is is suitable for semantic search
train_loss = losses.MultipleNegativesRankingLoss(model)
# Tune the model
num_epochs = 3
warmup_steps = int(len(train_dataloader) * num_epochs * 0.1)
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=num_epochs,
warmup_steps=warmup_steps,
show_progress_bar=True,
)
os.makedirs("output", exist_ok=True)
model.save("output/programming-model")
|
"""Example selectors.
**Example selector** implements logic for selecting examples to include them in prompts.
This allows us to select examples that are most relevant to the input.
"""
from importlib import import_module
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from langchain_core.example_selectors.base import BaseExampleSelector
from langchain_core.example_selectors.length_based import (
LengthBasedExampleSelector,
)
from langchain_core.example_selectors.semantic_similarity import (
MaxMarginalRelevanceExampleSelector,
SemanticSimilarityExampleSelector,
sorted_values,
)
__all__ = [
"BaseExampleSelector",
"LengthBasedExampleSelector",
"MaxMarginalRelevanceExampleSelector",
"SemanticSimilarityExampleSelector",
"sorted_values",
]
_dynamic_imports = {
"BaseExampleSelector": "base",
"LengthBasedExampleSelector": "length_based",
"MaxMarginalRelevanceExampleSelector": "semantic_similarity",
"SemanticSimilarityExampleSelector": "semantic_similarity",
"sorted_values": "semantic_similarity",
}
def __getattr__(attr_name: str) -> object:
module_name = _dynamic_imports.get(attr_name)
package = __spec__.parent
if module_name == "__module__" or module_name is None:
result = import_module(f".{attr_name}", package=package)
else:
module = import_module(f".{module_name}", package=package)
result = getattr(module, attr_name)
globals()[attr_name] = result
return result
def __dir__() -> list[str]:
return list(__all__)
|
"""Example selectors.
**Example selector** implements logic for selecting examples to include them in prompts.
This allows us to select examples that are most relevant to the input.
"""
from importlib import import_module
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from langchain_core.example_selectors.base import BaseExampleSelector
from langchain_core.example_selectors.length_based import (
LengthBasedExampleSelector,
)
from langchain_core.example_selectors.semantic_similarity import (
MaxMarginalRelevanceExampleSelector,
SemanticSimilarityExampleSelector,
sorted_values,
)
__all__ = [
"BaseExampleSelector",
"LengthBasedExampleSelector",
"MaxMarginalRelevanceExampleSelector",
"SemanticSimilarityExampleSelector",
"sorted_values",
]
_dynamic_imports = {
"BaseExampleSelector": "base",
"LengthBasedExampleSelector": "length_based",
"MaxMarginalRelevanceExampleSelector": "semantic_similarity",
"SemanticSimilarityExampleSelector": "semantic_similarity",
"sorted_values": "semantic_similarity",
}
def __getattr__(attr_name: str) -> object:
module_name = _dynamic_imports.get(attr_name)
package = __spec__.parent # type: ignore[name-defined]
if module_name == "__module__" or module_name is None:
result = import_module(f".{attr_name}", package=package)
else:
module = import_module(f".{module_name}", package=package)
result = getattr(module, attr_name)
globals()[attr_name] = result
return result
def __dir__() -> list[str]:
return list(__all__)
|
import numpy as np
import pytest
from pydantic.tools import parse_obj_as, schema_json_of
from docarray.base_document.io.json import orjson_dumps
from docarray.typing import NdArray, PointCloud3DUrl
from tests import TOYDATA_DIR
MESH_FILES = {
'obj': str(TOYDATA_DIR / 'tetrahedron.obj'),
'glb': str(TOYDATA_DIR / 'test.glb'),
'ply': str(TOYDATA_DIR / 'cube.ply'),
}
REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj'
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize(
'file_format, file_path',
[
('obj', MESH_FILES['obj']),
('glb', MESH_FILES['glb']),
('ply', MESH_FILES['ply']),
('remote-obj', REMOTE_OBJ_FILE),
],
)
def test_load(file_format, file_path):
n_samples = 100
url = parse_obj_as(PointCloud3DUrl, file_path)
point_cloud = url.load(samples=n_samples)
assert isinstance(point_cloud, np.ndarray)
assert isinstance(point_cloud, NdArray)
assert point_cloud.shape == (n_samples, 3)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize(
'file_format, file_path',
[
('obj', MESH_FILES['obj']),
('glb', MESH_FILES['glb']),
('ply', MESH_FILES['ply']),
('remote-obj', REMOTE_OBJ_FILE),
],
)
def test_load_with_multiple_geometries_true(file_format, file_path):
n_samples = 100
url = parse_obj_as(PointCloud3DUrl, file_path)
point_cloud = url.load(samples=n_samples, multiple_geometries=True)
assert isinstance(point_cloud, np.ndarray)
assert len(point_cloud.shape) == 3
assert point_cloud.shape[1:] == (100, 3)
def test_json_schema():
schema_json_of(PointCloud3DUrl)
def test_dump_json():
url = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE)
orjson_dumps(url)
@pytest.mark.parametrize(
'file_format,path_to_file',
[
('obj', MESH_FILES['obj']),
('glb', MESH_FILES['glb']),
('ply', MESH_FILES['ply']),
('obj', REMOTE_OBJ_FILE),
('illegal', 'illegal'),
('illegal', 'https://www.google.com'),
('illegal', 'my/local/text/file.txt'),
('illegal', 'my/local/text/file.png'),
],
)
def test_validation(file_format, path_to_file):
if file_format == 'illegal':
with pytest.raises(ValueError, match='PointCloud3DUrl'):
parse_obj_as(PointCloud3DUrl, path_to_file)
else:
url = parse_obj_as(PointCloud3DUrl, path_to_file)
assert isinstance(url, PointCloud3DUrl)
assert isinstance(url, str)
@pytest.mark.proto
def test_proto_point_cloud_url():
uri = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE)
uri._to_node_protobuf()
|
import numpy as np
import pytest
from pydantic.tools import parse_obj_as, schema_json_of
from docarray.base_document.io.json import orjson_dumps
from docarray.typing import NdArray, PointCloud3DUrl
from tests import TOYDATA_DIR
MESH_FILES = {
'obj': str(TOYDATA_DIR / 'tetrahedron.obj'),
'glb': str(TOYDATA_DIR / 'test.glb'),
'ply': str(TOYDATA_DIR / 'cube.ply'),
}
REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj'
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize(
'file_format, file_path',
[
('obj', MESH_FILES['obj']),
('glb', MESH_FILES['glb']),
('ply', MESH_FILES['ply']),
('remote-obj', REMOTE_OBJ_FILE),
],
)
def test_load(file_format, file_path):
n_samples = 100
url = parse_obj_as(PointCloud3DUrl, file_path)
point_cloud = url.load(samples=n_samples)
assert isinstance(point_cloud, np.ndarray)
assert isinstance(point_cloud, NdArray)
assert point_cloud.shape == (n_samples, 3)
@pytest.mark.slow
@pytest.mark.internet
@pytest.mark.parametrize(
'file_format, file_path',
[
('obj', MESH_FILES['obj']),
('glb', MESH_FILES['glb']),
('ply', MESH_FILES['ply']),
('remote-obj', REMOTE_OBJ_FILE),
],
)
def test_load_with_multiple_geometries_true(file_format, file_path):
n_samples = 100
url = parse_obj_as(PointCloud3DUrl, file_path)
point_cloud = url.load(samples=n_samples, multiple_geometries=True)
assert isinstance(point_cloud, np.ndarray)
assert len(point_cloud.shape) == 3
assert point_cloud.shape[1:] == (100, 3)
def test_json_schema():
schema_json_of(PointCloud3DUrl)
def test_dump_json():
url = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE)
orjson_dumps(url)
@pytest.mark.parametrize(
'file_format,path_to_file',
[
('obj', MESH_FILES['obj']),
('glb', MESH_FILES['glb']),
('ply', MESH_FILES['ply']),
('obj', REMOTE_OBJ_FILE),
('illegal', 'illegal'),
('illegal', 'https://www.google.com'),
('illegal', 'my/local/text/file.txt'),
('illegal', 'my/local/text/file.png'),
],
)
def test_validation(file_format, path_to_file):
if file_format == 'illegal':
with pytest.raises(ValueError, match='PointCloud3DUrl'):
parse_obj_as(PointCloud3DUrl, path_to_file)
else:
url = parse_obj_as(PointCloud3DUrl, path_to_file)
assert isinstance(url, PointCloud3DUrl)
assert isinstance(url, str)
def test_proto_point_cloud_url():
uri = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE)
uri._to_node_protobuf()
|
from typing import Optional
from docarray import Document, DocumentArray
from pydantic import BaseModel
from uvicorn import Config, Server
from jina import Gateway, __default_host__
from jina.clients.request import request_generator
class DummyResponseModel(BaseModel):
arg1: Optional[str]
arg2: Optional[str]
arg3: Optional[str]
class ProcessedResponseModel(BaseModel):
text: str
tags: Optional[dict]
class DummyGateway(Gateway):
def __init__(
self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs
):
super().__init__(**kwargs)
self.arg1 = arg1
self.arg2 = arg2
self.arg3 = arg3
async def setup_server(self):
from fastapi import FastAPI
app = FastAPI(
title='Dummy Server',
)
@app.get(path='/', response_model=DummyResponseModel)
def _get_response():
return {
'arg1': self.arg1,
'arg2': self.arg2,
'arg3': self.arg3,
}
@app.get(
path='/stream',
response_model=ProcessedResponseModel,
)
async def _process(text: str):
doc = None
async for req in self.streamer.stream(
request_generator(
exec_endpoint='/',
data=DocumentArray([Document(text=text)]),
)
):
doc = req.to_dict()['data'][0]
return {'text': doc['text'], 'tags': doc['tags']}
self.server = Server(Config(app, host=self.host, port=self.port))
async def run_server(self):
await self.server.serve()
async def shutdown(self):
self.server.should_exit = True
await self.server.shutdown()
|
from typing import Optional
from docarray import Document, DocumentArray
from pydantic import BaseModel
from uvicorn import Config, Server
from jina import Gateway, __default_host__
from jina.clients.request import request_generator
class DummyResponseModel(BaseModel):
arg1: Optional[str]
arg2: Optional[str]
arg3: Optional[str]
class ProcessedResponseModel(BaseModel):
text: str
tags: Optional[dict]
class DummyGateway(Gateway):
def __init__(
self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs
):
super().__init__(**kwargs)
self.port = self.runtime_args.port[0]
self.host = self.runtime_args.host
self.arg1 = arg1
self.arg2 = arg2
self.arg3 = arg3
async def setup_server(self):
from fastapi import FastAPI
app = FastAPI(
title='Dummy Server',
)
@app.get(path='/', response_model=DummyResponseModel)
def _get_response():
return {
'arg1': self.arg1,
'arg2': self.arg2,
'arg3': self.arg3,
}
@app.get(
path='/stream',
response_model=ProcessedResponseModel,
)
async def _process(text: str):
doc = None
async for req in self.streamer.stream(
request_generator(
exec_endpoint='/',
data=DocumentArray([Document(text=text)]),
)
):
doc = req.to_dict()['data'][0]
return {'text': doc['text'], 'tags': doc['tags']}
self.server = Server(Config(app, host=self.host, port=self.port))
async def run_server(self):
await self.server.serve()
async def shutdown(self):
self.server.should_exit = True
await self.server.shutdown()
|
import os as _os
import sys as _sys
from pathlib import Path as _Path
import datetime as _datetime
__windows__ = _sys.platform == 'win32'
__uptime__ = _datetime.datetime.now().isoformat()
# update on MacOS 1. clean this tuple, 2. grep -rohEI --exclude-dir=jina/hub --exclude-dir=tests --include \*.py
# "\'JINA_.*?\'" jina | sort -u | sed "s/$/,/g" 3. copy all lines EXCEPT the first (which is the grep command in the
# last line)
__jina_env__ = (
'JINA_DEFAULT_HOST',
'JINA_DEFAULT_TIMEOUT_CTRL',
'JINA_DEPLOYMENT_NAME',
'JINA_DISABLE_UVLOOP',
'JINA_EARLY_STOP',
'JINA_FULL_CLI',
'JINA_GATEWAY_IMAGE',
'JINA_GRPC_RECV_BYTES',
'JINA_GRPC_SEND_BYTES',
'JINA_HUB_NO_IMAGE_REBUILD',
'JINA_LOG_CONFIG',
'JINA_LOG_LEVEL',
'JINA_LOG_NO_COLOR',
'JINA_MP_START_METHOD',
'JINA_OPTOUT_TELEMETRY',
'JINA_RANDOM_PORT_MAX',
'JINA_RANDOM_PORT_MIN',
'JINA_LOCKS_ROOT',
'JINA_OPTOUT_TELEMETRY',
'JINA_K8S_ACCESS_MODES',
'JINA_K8S_STORAGE_CLASS_NAME',
'JINA_K8S_STORAGE_CAPACITY',
'JINA_STREAMER_ARGS',
)
__default_host__ = _os.environ.get(
'JINA_DEFAULT_HOST', '127.0.0.1' if __windows__ else '0.0.0.0'
)
__docker_host__ = 'host.docker.internal'
__default_executor__ = 'BaseExecutor'
__default_gateway__ = 'BaseGateway'
__default_http_gateway__ = 'HTTPGateway'
__default_composite_gateway__ = 'CompositeGateway'
__default_websocket_gateway__ = 'WebSocketGateway'
__default_grpc_gateway__ = 'GRPCGateway'
__default_endpoint__ = '/default'
__ready_msg__ = 'ready and listening'
__stop_msg__ = 'terminated'
__unset_msg__ = '(unset)'
__args_executor_func__ = {
'docs',
'parameters',
'docs_matrix',
}
__args_executor_init__ = {'metas', 'requests', 'runtime_args'}
__resources_path__ = _os.path.join(
_os.path.dirname(_sys.modules['jina'].__file__), 'resources'
)
__cache_path__ = f'{_os.path.expanduser("~")}/.cache/{__package__}'
if not _Path(__cache_path__).exists():
_Path(__cache_path__).mkdir(parents=True, exist_ok=True)
_names_with_underscore = [
'__version__',
'__proto_version__',
'__default_host__',
'__ready_msg__',
'__stop_msg__',
'__jina_env__',
'__uptime__',
'__default_endpoint__',
'__default_executor__',
'__unset_msg__',
'__windows__',
]
__all__ = [_s for _s in dir() if not _s.startswith('_')]
__all__.extend(_names_with_underscore)
RAFT_TO_EXECUTOR_PORT = 100
|
import os as _os
import sys as _sys
from pathlib import Path as _Path
import datetime as _datetime
__windows__ = _sys.platform == 'win32'
__uptime__ = _datetime.datetime.now().isoformat()
# update on MacOS 1. clean this tuple, 2. grep -rohEI --exclude-dir=jina/hub --exclude-dir=tests --include \*.py
# "\'JINA_.*?\'" jina | sort -u | sed "s/$/,/g" 3. copy all lines EXCEPT the first (which is the grep command in the
# last line)
__jina_env__ = (
'JINA_DEFAULT_HOST',
'JINA_DEFAULT_TIMEOUT_CTRL',
'JINA_DEPLOYMENT_NAME',
'JINA_DISABLE_UVLOOP',
'JINA_EARLY_STOP',
'JINA_FULL_CLI',
'JINA_GATEWAY_IMAGE',
'JINA_GRPC_RECV_BYTES',
'JINA_GRPC_SEND_BYTES',
'JINA_HUB_NO_IMAGE_REBUILD',
'JINA_LOG_CONFIG',
'JINA_LOG_LEVEL',
'JINA_LOG_NO_COLOR',
'JINA_MP_START_METHOD',
'JINA_OPTOUT_TELEMETRY',
'JINA_RANDOM_PORT_MAX',
'JINA_RANDOM_PORT_MIN',
'JINA_LOCKS_ROOT',
'JINA_OPTOUT_TELEMETRY',
'JINA_K8S_ACCESS_MODES',
'JINA_K8S_STORAGE_CLASS_NAME',
'JINA_K8S_STORAGE_CAPACITY',
'JINA_STREAMER_ARGS',
)
__default_host__ = _os.environ.get(
'JINA_DEFAULT_HOST', '127.0.0.1' if __windows__ else '0.0.0.0'
)
__docker_host__ = 'host.docker.internal'
__default_executor__ = 'BaseExecutor'
__default_gateway__ = 'BaseGateway'
__default_http_gateway__ = 'HTTPGateway'
__default_composite_gateway__ = 'CompositeGateway'
__default_websocket_gateway__ = 'WebSocketGateway'
__default_grpc_gateway__ = 'GRPCGateway'
__default_endpoint__ = '/default'
__ready_msg__ = 'ready and listening'
__stop_msg__ = 'terminated'
__unset_msg__ = '(unset)'
__args_executor_func__ = {
'docs',
'parameters',
'docs_matrix',
}
__args_executor_init__ = {'metas', 'requests', 'runtime_args'}
__resources_path__ = _os.path.join(
_os.path.dirname(_sys.modules['jina'].__file__), 'resources'
)
__cache_path__ = f'{_os.path.expanduser("~")}/.cache/{__package__}'
if not _Path(__cache_path__).exists():
_Path(__cache_path__).mkdir(parents=True, exist_ok=True)
_names_with_underscore = [
'__version__',
'__proto_version__',
'__default_host__',
'__ready_msg__',
'__stop_msg__',
'__jina_env__',
'__uptime__',
'__default_endpoint__',
'__default_executor__',
'__unset_msg__',
'__windows__',
]
__all__ = [_s for _s in dir() if not _s.startswith('_')]
__all__.extend(_names_with_underscore)
|
"""
Computes embeddings
"""
from typing import Optional
import numpy as np
import pytest
from sentence_transformers import SentenceTransformer
@pytest.mark.parametrize("normalize_embeddings", (False, True))
@pytest.mark.parametrize("prompt_name", (None, "retrieval"))
def test_encode_multi_process(
stsb_bert_tiny_model: SentenceTransformer, normalize_embeddings: bool, prompt_name: Optional[str]
) -> None:
model = stsb_bert_tiny_model
model.prompts = {"retrieval": "Represent this sentence for searching relevant passages: "}
sentences = ["This is sentence {}".format(i) for i in range(40)]
# Start the multi-process pool on e.g. two CPU devices & compute the embeddings using the pool
pool = model.start_multi_process_pool(["cpu", "cpu"])
emb = model.encode_multi_process(
sentences, pool, chunk_size=10, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name
)
model.stop_multi_process_pool(pool)
assert emb.shape == (len(sentences), 128)
# Make sure the embeddings aren't just all 0
assert emb.sum() != 0.0
# Compare against normal embeddings
emb_normal = model.encode(sentences, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name)
diff = np.max(np.abs(emb - emb_normal))
assert diff < 0.001
# Ensure that after normalizing, the means are all almost 0, and otherwise not
assert np.all(np.abs(emb.mean(1)) < 0.01) == normalize_embeddings
|
"""
Computes embeddings
"""
import unittest
from sentence_transformers import SentenceTransformer
import numpy as np
class ComputeMultiProcessTest(unittest.TestCase):
def setUp(self):
self.model = SentenceTransformer('paraphrase-distilroberta-base-v1')
def test_multi_gpu_encode(self):
# Start the multi-process pool on all available CUDA devices
pool = self.model.start_multi_process_pool(['cpu', 'cpu'])
sentences = ["This is sentence {}".format(i) for i in range(1000)]
# Compute the embeddings using the multi-process pool
emb = self.model.encode_multi_process(sentences, pool, chunk_size=50)
assert emb.shape == (len(sentences), 768)
emb_normal = self.model.encode(sentences)
diff = np.max(np.abs(emb - emb_normal))
print("Max multi proc diff", diff)
assert diff < 0.001
|
from __future__ import annotations
import logging
import torch
from torch import Tensor, nn
from sentence_transformers.models.Module import Module
logger = logging.getLogger(__name__)
class WordWeights(Module):
"""This model can weight word embeddings, for example, with idf-values."""
config_keys: list[str] = ["vocab", "word_weights", "unknown_word_weight"]
def __init__(self, vocab: list[str], word_weights: dict[str, float], unknown_word_weight: float = 1):
"""
Initializes the WordWeights class.
Args:
vocab (List[str]): Vocabulary of the tokenizer.
word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied
by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values).
unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup.
These can be, for example, rare words in the vocab where no weight exists. Defaults to 1.
"""
super().__init__()
self.vocab = vocab
self.word_weights = word_weights
self.unknown_word_weight = unknown_word_weight
weights = []
num_unknown_words = 0
for word in vocab:
weight = unknown_word_weight
if word in word_weights:
weight = word_weights[word]
elif word.lower() in word_weights:
weight = word_weights[word.lower()]
else:
num_unknown_words += 1
weights.append(weight)
logger.info(
f"{num_unknown_words} of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}"
)
self.emb_layer = nn.Embedding(len(vocab), 1)
self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)})
def forward(self, features: dict[str, Tensor]):
attention_mask = features["attention_mask"]
token_embeddings = features["token_embeddings"]
# Compute a weight value for each token
token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1)
token_weights = token_weights_raw * attention_mask.float()
token_weights_sum = torch.sum(token_weights, 1)
# Multiply embedding by token weight value
token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size())
token_embeddings = token_embeddings * token_weights_expanded
features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum})
return features
def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None:
self.save_config(output_path)
|
from __future__ import annotations
import json
import logging
import os
import torch
from torch import Tensor, nn
logger = logging.getLogger(__name__)
class WordWeights(nn.Module):
"""This model can weight word embeddings, for example, with idf-values."""
def __init__(self, vocab: list[str], word_weights: dict[str, float], unknown_word_weight: float = 1):
"""
Initializes the WordWeights class.
Args:
vocab (List[str]): Vocabulary of the tokenizer.
word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied
by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values).
unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup.
These can be, for example, rare words in the vocab where no weight exists. Defaults to 1.
"""
super().__init__()
self.config_keys = ["vocab", "word_weights", "unknown_word_weight"]
self.vocab = vocab
self.word_weights = word_weights
self.unknown_word_weight = unknown_word_weight
weights = []
num_unknown_words = 0
for word in vocab:
weight = unknown_word_weight
if word in word_weights:
weight = word_weights[word]
elif word.lower() in word_weights:
weight = word_weights[word.lower()]
else:
num_unknown_words += 1
weights.append(weight)
logger.info(
f"{num_unknown_words} of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}"
)
self.emb_layer = nn.Embedding(len(vocab), 1)
self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)})
def forward(self, features: dict[str, Tensor]):
attention_mask = features["attention_mask"]
token_embeddings = features["token_embeddings"]
# Compute a weight value for each token
token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1)
token_weights = token_weights_raw * attention_mask.float()
token_weights_sum = torch.sum(token_weights, 1)
# Multiply embedding by token weight value
token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size())
token_embeddings = token_embeddings * token_weights_expanded
features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum})
return features
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path):
with open(os.path.join(output_path, "config.json"), "w") as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
@staticmethod
def load(input_path):
with open(os.path.join(input_path, "config.json")) as fIn:
config = json.load(fIn)
return WordWeights(**config)
|
_base_ = '../common/lsj-200e_coco-detection.py'
image_size = (1024, 1024)
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)]
model = dict(
type='ATSS',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32,
batch_augments=batch_augments),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5),
bbox_head=dict(
type='ATSSHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
# training and testing settings
train_cfg=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
train_dataloader = dict(batch_size=8, num_workers=4)
# Enable automatic-mixed-precision training with AmpOptimWrapper.
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(
type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004))
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (8 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)
|
_base_ = '../common/lsj_200e_coco_detection.py'
image_size = (1024, 1024)
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)]
model = dict(
type='ATSS',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32,
batch_augments=batch_augments),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5),
bbox_head=dict(
type='ATSSHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
# training and testing settings
train_cfg=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
train_dataloader = dict(batch_size=8, num_workers=4)
# Enable automatic-mixed-precision training with AmpOptimWrapper.
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(
type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004))
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (8 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)
|
from jina.serve.runtimes.servers import BaseServer
from aiohttp import web
class LoadBalancingServer(BaseServer):
"""Base FastAPI server. Implement this abstract class in-case you want to build a fastapi-based server by
implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting
a server and serving the application using that server."""
def __init__(
self,
**kwargs
):
"""Initialize the LoadBalancingServer
:param kwargs: keyword args
"""
super().__init__(**kwargs)
# get server list from args
self._server_exit = False
async def handle_request(self, request):
"""Method called to handle requests coming to the LoadBalancer
:param request: request to handle
:return: the response to the request
"""
return await self._request_handler._load_balance(request)
async def setup_server(self):
"""
Initialize and return server
"""
self.logger.debug(f'Setting up LoadBalancer server')
self.app = web.Application()
self.app.router.add_route('*', '/{path:.*}', self.handle_request)
self.logger.debug(f'LoadBalancer server setup successful')
async def run_server(self):
"""Run HTTP server forever"""
await web._run_app(
app=self.app,
host=self.host,
port=self.port,
)
async def shutdown(self):
"""Shutdown the server and free other allocated resources, e.g, streamer object, health check service, ..."""
self.logger.debug(f'Shutting down server')
self._server_exit = True
await super().shutdown()
await self._request_handler.close()
self.logger.debug(f'Server shutdown finished')
@property
def _should_exit(self):
"""Property describing if server is ready to exit
:return: boolean indicating if Server ready to exit
"""
return self._server_exit
@property
def should_exit(self):
"""Property describing if server is ready to exit
:return: boolean indicating if Server ready to exit
"""
return self._should_exit
|
from jina.serve.runtimes.servers import BaseServer
from aiohttp import web
class LoadBalancingServer(BaseServer):
"""Base FastAPI server. Implement this abstract class in-case you want to build a fastapi-based server by
implementing the `app` property. This property should return a fastapi app. The base Gateway will handle starting
a server and serving the application using that server."""
def __init__(
self,
**kwargs
):
"""Initialize the LoadBalancingServer
:param kwargs: keyword args
"""
super().__init__(**kwargs)
# get server list from args
self._server_exit = False
async def handle_request(self, request):
"""Method called to handle requests coming to the LoadBalancer
:param request: request to handle
:return: the response to the request
"""
return await self._request_handler._load_balance(request)
async def setup_server(self):
"""
Initialize and return server
"""
self.app = web.Application()
self.app.router.add_route('*', '/{path:.*}', self.handle_request)
async def run_server(self):
"""Run HTTP server forever"""
await web._run_app(
app=self.app,
host=self.host,
port=self.port,
)
async def shutdown(self):
"""Shutdown the server and free other allocated resources, e.g, streamer object, health check service, ..."""
self._server_exit = True
await super().shutdown()
await self._request_handler.close()
@property
def _should_exit(self):
"""Property describing if server is ready to exit
:return: boolean indicating if Server ready to exit
"""
return self._server_exit
@property
def should_exit(self):
"""Property describing if server is ready to exit
:return: boolean indicating if Server ready to exit
"""
return self._should_exit
|
import logging
from datasets import load_dataset
from sentence_transformers import SparseEncoder
from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator
logging.basicConfig(format="%(message)s", level=logging.INFO)
# Initialize the SPLADE model
model = SparseEncoder("naver/splade-cocondenser-ensembledistil")
# Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]")
# Initialize the evaluator
binary_acc_evaluator = SparseBinaryClassificationEvaluator(
sentences1=eval_dataset["sentence1"],
sentences2=eval_dataset["sentence2"],
labels=eval_dataset["label"],
name="quora_duplicates_dev",
show_progress_bar=True,
similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"],
)
results = binary_acc_evaluator(model)
"""
Accuracy with Cosine-Similarity: 75.00 (Threshold: 0.8668)
F1 with Cosine-Similarity: 67.22 (Threshold: 0.5974)
Precision with Cosine-Similarity: 54.18
Recall with Cosine-Similarity: 88.51
Average Precision with Cosine-Similarity: 67.81
Matthews Correlation with Cosine-Similarity: 49.56
Accuracy with Dot-Product: 76.50 (Threshold: 23.4236)
F1 with Dot-Product: 67.00 (Threshold: 19.0095)
Precision with Dot-Product: 55.93
Recall with Dot-Product: 83.54
Average Precision with Dot-Product: 65.89
Matthews Correlation with Dot-Product: 48.88
Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0041)
F1 with Euclidean-Distance: 48.60 (Threshold: -0.1876)
Precision with Euclidean-Distance: 32.13
Recall with Euclidean-Distance: 99.69
Average Precision with Euclidean-Distance: 20.52
Matthews Correlation with Euclidean-Distance: -4.59
Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.0263)
F1 with Manhattan-Distance: 48.60 (Threshold: -0.8532)
Precision with Manhattan-Distance: 32.13
Recall with Manhattan-Distance: 99.69
Average Precision with Manhattan-Distance: 21.05
Matthews Correlation with Manhattan-Distance: -4.59
Model Sparsity: Active Dimensions: 61.2, Sparsity Ratio: 0.9980
"""
# Print the results
print(f"Primary metric: {binary_acc_evaluator.primary_metric}")
# => Primary metric: quora_duplicates_dev_max_ap
print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}")
# => Primary metric value: 0.6781
|
import logging
from datasets import load_dataset
from sentence_transformers import SparseEncoder
from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator
logging.basicConfig(format="%(message)s", level=logging.INFO)
# Initialize the SPLADE model
model = SparseEncoder("naver/splade-cocondenser-ensembledistil")
# Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]")
# Initialize the evaluator
binary_acc_evaluator = SparseBinaryClassificationEvaluator(
sentences1=eval_dataset["sentence1"],
sentences2=eval_dataset["sentence2"],
labels=eval_dataset["label"],
name="quora_duplicates_dev",
show_progress_bar=True,
similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"],
)
results = binary_acc_evaluator(model)
"""
Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668)
F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959)
Precision with Cosine-Similarity: 54.15
Recall with Cosine-Similarity: 89.13
Average Precision with Cosine-Similarity: 67.81
Matthews Correlation with Cosine-Similarity: 49.89
Accuracy with Dot-Product: 76.50 (Threshold: 24.3460)
F1 with Dot-Product: 66.93 (Threshold: 20.0762)
Precision with Dot-Product: 57.62
Recall with Dot-Product: 79.81
Average Precision with Dot-Product: 65.94
Matthews Correlation with Dot-Product: 48.82
Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062)
F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346)
Precision with Euclidean-Distance: 32.13
Recall with Euclidean-Distance: 99.69
Average Precision with Euclidean-Distance: 20.52
Matthews Correlation with Euclidean-Distance: -4.59
Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993)
F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565)
Precision with Manhattan-Distance: 32.13
Recall with Manhattan-Distance: 99.69
Average Precision with Manhattan-Distance: 21.05
Matthews Correlation with Manhattan-Distance: -4.59
Model Sparsity: Active Dimensions: 63.1, Sparsity Ratio: 0.9979
"""
# Print the results
print(f"Primary metric: {binary_acc_evaluator.primary_metric}")
# => Primary metric: quora_duplicates_dev_max_ap
print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}")
# => Primary metric value: 0.6781
|
# flake8: noqa
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__version__ = "2.13.1"
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("3.7"):
raise ImportWarning(
"To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"
"If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
_arrow_dataset.concatenate_datasets = concatenate_datasets
_utils.DownloadConfig = DownloadConfig
_utils.DownloadManager = DownloadManager
_utils.DownloadMode = DownloadMode
_deprecated_download_manager.DownloadConfig = DownloadConfig
_deprecated_download_manager.DownloadMode = DownloadMode
_deprecated_download_manager.DownloadManager = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
|
# flake8: noqa
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__version__ = "2.13.1.dev0"
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("3.7"):
raise ImportWarning(
"To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"
"If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
_arrow_dataset.concatenate_datasets = concatenate_datasets
_utils.DownloadConfig = DownloadConfig
_utils.DownloadManager = DownloadManager
_utils.DownloadMode = DownloadMode
_deprecated_download_manager.DownloadConfig = DownloadConfig
_deprecated_download_manager.DownloadMode = DownloadMode
_deprecated_download_manager.DownloadManager = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
|
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import shutil
import time
from unittest import TestCase
from unittest.mock import Mock
import torch
from mmengine.structures import InstanceData
from mmdet.engine.hooks import DetVisualizationHook, TrackVisualizationHook
from mmdet.structures import DetDataSample, TrackDataSample
from mmdet.visualization import DetLocalVisualizer, TrackLocalVisualizer
def _rand_bboxes(num_boxes, h, w):
cx, cy, bw, bh = torch.rand(num_boxes, 4).T
tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w)
tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h)
br_x = ((cx * w) + (w * bw / 2)).clamp(0, w)
br_y = ((cy * h) + (h * bh / 2)).clamp(0, h)
bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T
return bboxes
class TestVisualizationHook(TestCase):
def setUp(self) -> None:
DetLocalVisualizer.get_instance('current_visualizer')
pred_instances = InstanceData()
pred_instances.bboxes = _rand_bboxes(5, 10, 12)
pred_instances.labels = torch.randint(0, 2, (5, ))
pred_instances.scores = torch.rand((5, ))
pred_det_data_sample = DetDataSample()
pred_det_data_sample.set_metainfo({
'img_path':
osp.join(osp.dirname(__file__), '../../data/color.jpg')
})
pred_det_data_sample.pred_instances = pred_instances
self.outputs = [pred_det_data_sample] * 2
def test_after_val_iter(self):
runner = Mock()
runner.iter = 1
hook = DetVisualizationHook()
hook.after_val_iter(runner, 1, {}, self.outputs)
def test_after_test_iter(self):
runner = Mock()
runner.iter = 1
hook = DetVisualizationHook(draw=True)
hook.after_test_iter(runner, 1, {}, self.outputs)
self.assertEqual(hook._test_index, 2)
# test
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
test_out_dir = timestamp + '1'
runner.work_dir = timestamp
runner.timestamp = '1'
hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir)
hook.after_test_iter(runner, 1, {}, self.outputs)
self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}'))
hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir)
hook.after_test_iter(runner, 1, {}, self.outputs)
self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}'))
shutil.rmtree(f'{timestamp}')
class TestTrackVisualizationHook(TestCase):
def setUp(self) -> None:
TrackLocalVisualizer.get_instance('visualizer')
# pseudo data_batch
self.data_batch = dict(data_samples=None, inputs=None)
pred_instances_data = dict(
bboxes=torch.tensor([[100, 100, 200, 200], [150, 150, 400, 200]]),
instances_id=torch.tensor([1, 2]),
labels=torch.tensor([0, 1]),
scores=torch.tensor([0.955, 0.876]))
pred_instances = InstanceData(**pred_instances_data)
img_data_sample = DetDataSample()
img_data_sample.pred_track_instances = pred_instances
img_data_sample.gt_instances = pred_instances
img_data_sample.set_metainfo(
dict(
img_path=osp.join(
osp.dirname(__file__), '../../data/color.jpg'),
scale_factor=(1.0, 1.0)))
track_data_sample = TrackDataSample()
track_data_sample.video_data_samples = [img_data_sample]
track_data_sample.set_metainfo(dict(ori_length=1))
self.outputs = [track_data_sample]
def test_after_val_iter_image(self):
runner = Mock()
runner.iter = 1
hook = TrackVisualizationHook(frame_interval=10, draw=True)
hook.after_val_iter(runner, 9, self.data_batch, self.outputs)
def test_after_test_iter(self):
runner = Mock()
runner.iter = 1
hook = TrackVisualizationHook(frame_interval=10, draw=True)
hook.after_val_iter(runner, 9, self.data_batch, self.outputs)
# test test_out_dir
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
test_out_dir = timestamp + '1'
runner.work_dir = timestamp
runner.timestamp = '1'
hook = TrackVisualizationHook(
frame_interval=10, draw=True, test_out_dir=test_out_dir)
hook.after_test_iter(runner, 9, self.data_batch, self.outputs)
self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}'))
shutil.rmtree(f'{timestamp}')
|
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import shutil
import time
from unittest import TestCase
from unittest.mock import Mock
import torch
from mmengine.structures import InstanceData
from mmdet.engine.hooks import DetVisualizationHook
from mmdet.structures import DetDataSample
from mmdet.visualization import DetLocalVisualizer
def _rand_bboxes(num_boxes, h, w):
cx, cy, bw, bh = torch.rand(num_boxes, 4).T
tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w)
tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h)
br_x = ((cx * w) + (w * bw / 2)).clamp(0, w)
br_y = ((cy * h) + (h * bh / 2)).clamp(0, h)
bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T
return bboxes
class TestVisualizationHook(TestCase):
def setUp(self) -> None:
DetLocalVisualizer.get_instance('current_visualizer')
pred_instances = InstanceData()
pred_instances.bboxes = _rand_bboxes(5, 10, 12)
pred_instances.labels = torch.randint(0, 2, (5, ))
pred_instances.scores = torch.rand((5, ))
pred_det_data_sample = DetDataSample()
pred_det_data_sample.set_metainfo({
'img_path':
osp.join(osp.dirname(__file__), '../../data/color.jpg')
})
pred_det_data_sample.pred_instances = pred_instances
self.outputs = [pred_det_data_sample] * 2
def test_after_val_iter(self):
runner = Mock()
runner.iter = 1
hook = DetVisualizationHook()
hook.after_val_iter(runner, 1, {}, self.outputs)
def test_after_test_iter(self):
runner = Mock()
runner.iter = 1
hook = DetVisualizationHook(draw=True)
hook.after_test_iter(runner, 1, {}, self.outputs)
self.assertEqual(hook._test_index, 2)
# test
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
test_out_dir = timestamp + '1'
runner.work_dir = timestamp
runner.timestamp = '1'
hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir)
hook.after_test_iter(runner, 1, {}, self.outputs)
self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}'))
hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir)
hook.after_test_iter(runner, 1, {}, self.outputs)
self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}'))
shutil.rmtree(f'{timestamp}')
|
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmdet.models.backbones import ResNeSt
from mmdet.models.backbones.resnest import Bottleneck as BottleneckS
def test_resnest_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
BottleneckS(64, 64, radix=2, reduction_factor=4, style='tensorflow')
# Test ResNeSt Bottleneck structure
block = BottleneckS(
64, 256, radix=2, reduction_factor=4, stride=2, style='pytorch')
assert block.avd_layer.stride == 2
assert block.conv2.channels == 256
# Test ResNeSt Bottleneck forward
block = BottleneckS(64, 16, radix=2, reduction_factor=4)
x = torch.randn(2, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([2, 64, 56, 56])
def test_resnest_backbone():
with pytest.raises(KeyError):
# ResNeSt depth should be in [50, 101, 152, 200]
ResNeSt(depth=18)
# Test ResNeSt with radix 2, reduction_factor 4
model = ResNeSt(
depth=50, radix=2, reduction_factor=4, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(2, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([2, 256, 56, 56])
assert feat[1].shape == torch.Size([2, 512, 28, 28])
assert feat[2].shape == torch.Size([2, 1024, 14, 14])
assert feat[3].shape == torch.Size([2, 2048, 7, 7])
|
import pytest
import torch
from mmdet.models.backbones import ResNeSt
from mmdet.models.backbones.resnest import Bottleneck as BottleneckS
def test_resnest_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
BottleneckS(64, 64, radix=2, reduction_factor=4, style='tensorflow')
# Test ResNeSt Bottleneck structure
block = BottleneckS(
64, 256, radix=2, reduction_factor=4, stride=2, style='pytorch')
assert block.avd_layer.stride == 2
assert block.conv2.channels == 256
# Test ResNeSt Bottleneck forward
block = BottleneckS(64, 16, radix=2, reduction_factor=4)
x = torch.randn(2, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([2, 64, 56, 56])
def test_resnest_backbone():
with pytest.raises(KeyError):
# ResNeSt depth should be in [50, 101, 152, 200]
ResNeSt(depth=18)
# Test ResNeSt with radix 2, reduction_factor 4
model = ResNeSt(
depth=50, radix=2, reduction_factor=4, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(2, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([2, 256, 56, 56])
assert feat[1].shape == torch.Size([2, 512, 28, 28])
assert feat[2].shape == torch.Size([2, 1024, 14, 14])
assert feat[3].shape == torch.Size([2, 2048, 7, 7])
|
_base_ = [
'../_base_/models/mask_rcnn_r50_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
backbone=dict(
frozen_stages=-1,
zero_init_residual=False,
norm_cfg=norm_cfg,
init_cfg=None),
neck=dict(norm_cfg=norm_cfg),
roi_head=dict(
bbox_head=dict(
type='Shared4Conv1FCBBoxHead',
conv_out_channels=256,
norm_cfg=norm_cfg),
mask_head=dict(norm_cfg=norm_cfg)))
optim_wrapper = dict(paramwise_cfg=dict(norm_decay_mult=0.))
max_epochs = 73
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[65, 71],
gamma=0.1)
]
train_cfg = dict(max_epochs=max_epochs)
# only keep latest 3 checkpoints
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
|
_base_ = [
'../_base_/models/mask_rcnn_r50_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
backbone=dict(
frozen_stages=-1,
zero_init_residual=False,
norm_cfg=norm_cfg,
init_cfg=None),
neck=dict(norm_cfg=norm_cfg),
roi_head=dict(
bbox_head=dict(
type='Shared4Conv1FCBBoxHead',
conv_out_channels=256,
norm_cfg=norm_cfg),
mask_head=dict(norm_cfg=norm_cfg)))
# optimizer
optimizer = dict(paramwise_cfg=dict(norm_decay_mult=0))
optimizer_config = dict(_delete_=True, grad_clip=None)
# learning policy
lr_config = dict(warmup_ratio=0.1, step=[65, 71])
runner = dict(type='EpochBasedRunner', max_epochs=73)
|
import copy
import json
try:
import difflib
except ImportError:
difflib = None
from keras.src.api_export import keras_export
@keras_export("keras.utils.Config")
class Config:
"""A Config is a dict-like container for named values.
It offers a few advantages over a plain dict:
- Setting and retrieving values via attribute setting / getting.
- Ability to freeze the config to ensure no accidental config modifications
occur past a certain point in your program.
- Easy serialization of the whole config as JSON.
Examples:
```python
# Create a config via constructor arguments
config = Config("learning_rate"=0.1, "momentum"=0.9)
# Then keep adding to it via attribute-style setting
config.use_ema = True
config.ema_overwrite_frequency = 100
# You can also add attributes via dict-like access
config["seed"] = 123
# You can retrieve entries both via attribute-style
# access and dict-style access
assert config.seed == 100
assert config["learning_rate"] == 0.1
```
A config behaves like a dict:
```python
config = Config("learning_rate"=0.1, "momentum"=0.9)
for k, v in config.items():
print(f"{k}={v}")
print(f"keys: {list(config.keys())}")
print(f"values: {list(config.values())}")
```
In fact, it can be turned into one:
```python
config = Config("learning_rate"=0.1, "momentum"=0.9)
dict_config = config.as_dict()
```
You can easily serialize a config to JSON:
```python
config = Config("learning_rate"=0.1, "momentum"=0.9)
json_str = config.to_json()
```
You can also freeze a config to prevent further changes:
```python
config = Config()
config.optimizer = "adam"
config.seed = 123
# Freeze the config to prevent changes.
config.freeze()
assert config.frozen
config.foo = "bar" # This will raise an error.
```
"""
__attrs__ = None
def __init__(self, **kwargs):
self._config = kwargs
self._frozen = False
self.__attrs__ = set(dir(self))
@property
def frozen(self):
"""Returns True if the config is frozen."""
return self._frozen
def freeze(self):
"""Marks the config as frozen, preventing any ulterior modification."""
self._frozen = True
def unfreeze(self):
self._frozen = False
def _raise_if_frozen(self):
if self._frozen:
raise ValueError(
"Cannot mutate attribute(s) because the config is frozen."
)
def as_dict(self):
return copy.copy(self._config)
def to_json(self):
return json.dumps(self._config)
def keys(self):
return self._config.keys()
def values(self):
return self._config.values()
def items(self):
return self._config.items()
def pop(self, *args):
self._raise_if_frozen()
return self._config.pop(*args)
def update(self, *args, **kwargs):
self._raise_if_frozen()
return self._config.update(*args, **kwargs)
def get(self, keyname, value=None):
return self._config.get(keyname, value)
def __setattr__(self, name, value):
attrs = object.__getattribute__(self, "__attrs__")
if attrs is None or name in attrs:
return object.__setattr__(self, name, value)
self._raise_if_frozen()
self._config[name] = value
def __getattr__(self, name):
attrs = object.__getattribute__(self, "__attrs__")
if attrs is None or name in attrs:
return object.__getattribute__(self, name)
if name in self._config:
return self._config[name]
msg = f"Unknown attribute: '{name}'."
if difflib is not None:
closest_matches = difflib.get_close_matches(
name, self._config.keys(), n=1, cutoff=0.7
)
if closest_matches:
msg += f" Did you mean '{closest_matches[0]}'?"
raise AttributeError(msg)
def __setitem__(self, key, item):
self._raise_if_frozen()
self._config[key] = item
def __getitem__(self, key):
return self._config[key]
def __repr__(self):
return f"<Config {self._config}>"
def __iter__(self):
keys = sorted(self._config.keys())
for k in keys:
yield k
def __len__(self):
return len(self._config)
def __delitem__(self, key):
self._raise_if_frozen()
del self._config[key]
def __contains__(self, item):
return item in self._config
|
import copy
import json
try:
import difflib
except ImportError:
difflib = None
from keras.src.api_export import keras_export
@keras_export("keras.utils.Config")
class Config:
"""A Config is a dict-like container for named values.
It offers a few advantages over a plain dict:
- Setting and retrieving values via attribute setting / getting.
- Ability to freeze the config to ensure no accidental config modifications
occur past a certain point in your program.
- Easy serialization of the whole config as JSON.
Examples:
```python
# Create a config via constructor arguments
config = Config("learning_rate"=0.1, "momentum"=0.9)
# Then keep adding to it via attribute-style setting
config.use_ema = True
config.ema_overwrite_frequency = 100
# You can also add attributes via dict-like access
config["seed"] = 123
# You can retrieve entries both via attribute-style
# access and dict-style access
assert config.seed == 100
assert config["learning_rate"] == 0.1
```
A config behaves like a dict:
```python
config = Config("learning_rate"=0.1, "momentum"=0.9)
for k, v in config.items():
print(f"{k}={v}")
print(f"keys: {list(config.keys())}")
print(f"values: {list(config.values())}")
```
In fact, it can be turned into one:
```python
config = Config("learning_rate"=0.1, "momentum"=0.9)
dict_config = config.as_dict()
```
You can easily serialize a config to JSON:
```python
config = Config("learning_rate"=0.1, "momentum"=0.9)
json_str = config.to_json()
```
You can also freeze a config to prevent further changes:
```python
config = Config()
config.optimizer = "adam"
config.seed = 123
# Freeze the config to prevent changes.
config.freeze()
assert config.frozen
config.foo = "bar" # This will raise an error.
```
"""
__attrs__ = None
def __init__(self, **kwargs):
self._config = kwargs
self._frozen = False
self.__attrs__ = set(dir(self))
@property
def frozen(self):
"""Returns True if the config is frozen."""
return self._frozen
def freeze(self):
"""Marks the config as frozen, preventing any ulterior modification."""
self._frozen = True
def unfreeze(self):
self._frozen = False
def _raise_if_frozen(self):
if self._frozen:
raise ValueError(
"Cannot mutate attribute(s) because the config is frozen."
)
def as_dict(self):
return copy.copy(self._config)
def to_json(self):
return json.dumps(self._config)
def keys(self):
return self._config.keys()
def values(self):
return self._config.values()
def items(self):
return self._config.items()
def pop(self, *args):
self._raise_if_frozen()
return self._config.pop(*args)
def update(self, *args, **kwargs):
self._raise_if_frozen()
return self._config.update(*args, **kwargs)
def __setattr__(self, name, value):
attrs = object.__getattribute__(self, "__attrs__")
if attrs is None or name in attrs:
return object.__setattr__(self, name, value)
self._raise_if_frozen()
self._config[name] = value
def __getattr__(self, name):
attrs = object.__getattribute__(self, "__attrs__")
if attrs is None or name in attrs:
return object.__getattribute__(self, name)
if name in self._config:
return self._config[name]
msg = f"Unknown attribute: '{name}'."
if difflib is not None:
closest_matches = difflib.get_close_matches(
name, self._config.keys(), n=1, cutoff=0.7
)
if closest_matches:
msg += f" Did you mean '{closest_matches[0]}'?"
raise AttributeError(msg)
def __setitem__(self, key, item):
self._raise_if_frozen()
self._config[key] = item
def __getitem__(self, key):
return self._config[key]
def __repr__(self):
return f"<Config {self._config}>"
def __iter__(self):
keys = sorted(self._config.keys())
for k in keys:
yield k
def __len__(self):
return len(self._config)
def __delitem__(self, key):
self._raise_if_frozen()
del self._config[key]
def __contains__(self, item):
return item in self._config
|
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import WanTransformer3DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
is_torch_compile,
require_torch_2,
require_torch_gpu,
slow,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = WanTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 1, 16, 16)
@property
def output_shape(self):
return (4, 1, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
"in_channels": 4,
"out_channels": 4,
"text_dim": 16,
"freq_dim": 256,
"ffn_dim": 32,
"num_layers": 2,
"cross_attn_norm": True,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
@require_torch_gpu
@require_torch_2
@is_torch_compile
@slow
def test_torch_compile_recompilation_and_graph_break(self):
torch._dynamo.reset()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict).to(torch_device)
model = torch.compile(model, fullgraph=True)
with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
_ = model(**inputs_dict)
_ = model(**inputs_dict)
|
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import WanTransformer3DModel
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = WanTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 1, 16, 16)
@property
def output_shape(self):
return (4, 1, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
"in_channels": 4,
"out_channels": 4,
"text_dim": 16,
"freq_dim": 256,
"ffn_dim": 32,
"num_layers": 2,
"cross_attn_norm": True,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
import torch
from torch import nn, Tensor
from typing import Iterable, Dict
class MSELoss(nn.Module):
def __init__(self, model):
"""
Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss
is used when extending sentence embeddings to new languages as described in our publication
Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation.
For an example, see `the distillation documentation <../../examples/training/distillation/README.html>`_ on extending language models to new languages.
:param model: SentenceTransformerModel
References:
- Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813
- `Training > Model Distillation <../../examples/training/distillation/README.html>`_
- `Training > Multilingual Models <../../examples/training/multilingual/README.html>`_
Requirements:
1. Usually uses a finetuned teacher M in a knowledge distillation setup
Relations:
- :class:`MarginMSELoss` is equivalent to this loss, but with a margin through a negative pair.
Input:
+-----------------------------------------+-----------------------------+
| Texts | Labels |
+=========================================+=============================+
| sentence | model sentence embeddings |
+-----------------------------------------+-----------------------------+
| sentence_1, sentence_2, ..., sentence_N | model sentence embeddings |
+-----------------------------------------+-----------------------------+
Example::
from sentence_transformers import SentenceTransformer, InputExample, losses
from torch.utils.data import DataLoader
model_en = SentenceTransformer('bert-base-cased')
model_fr = SentenceTransformer('flaubert/flaubert_base_cased')
examples_en = ['The first sentence', 'The second sentence', 'The third sentence', 'The fourth sentence']
examples_fr = ['La première phrase', 'La deuxième phrase', 'La troisième phrase', 'La quatrième phrase']
train_batch_size = 2
labels_en_en = model_en.encode(examples_en)
examples_en_fr = [InputExample(texts=[x], label=labels_en_en[i]) for i, x in enumerate(examples_en)]
loader_en_fr = DataLoader(examples_en_fr, batch_size=train_batch_size)
examples_fr_fr = [InputExample(texts=[x], label=labels_en_en[i]) for i, x in enumerate(examples_fr)]
loader_fr_fr = DataLoader(examples_fr_fr, batch_size=train_batch_size)
train_loss = losses.MSELoss(model=model_fr)
model_fr.fit(
[(loader_en_fr, train_loss), (loader_fr_fr, train_loss)],
epochs=10,
)
"""
super(MSELoss, self).__init__()
self.model = model
self.loss_fct = nn.MSELoss()
def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor):
# Concatenate multiple inputs on the batch dimension
if len(sentence_features) > 1:
embeddings = torch.cat([self.model(inputs)["sentence_embedding"] for inputs in sentence_features], dim=0)
# Repeat the labels for each input
return self.loss_fct(embeddings, labels.repeat(len(sentence_features), 1))
embeddings = self.model(sentence_features[0])["sentence_embedding"]
return self.loss_fct(embeddings, labels)
@property
def citation(self) -> str:
return """
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
"""
|
import torch
from torch import nn, Tensor
from typing import Iterable, Dict
class MSELoss(nn.Module):
def __init__(self, model):
"""
Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss
is used when extending sentence embeddings to new languages as described in our publication
Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation.
For an example, see `the distillation documentation <../../examples/training/distillation/README.html>`_ on extending language models to new languages.
:param model: SentenceTransformerModel
References:
- Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813
- `Training > Model Distillation <../../examples/training/distillation/README.html>`_
- `Training > Multilingual Models <../../examples/training/multilingual/README.html>`_
Requirements:
1. Usually uses a finetuned teacher M in a knowledge distillation setup
Relations:
- :class:`MarginMSELoss` is equivalent to this loss, but with a margin through a negative pair.
Input:
+-----------------------------------------+-----------------------------+
| Texts | Labels |
+=========================================+=============================+
| sentence | model sentence embeddings |
+-----------------------------------------+-----------------------------+
| sentence_1, sentence_2, ..., sentence_N | model sentence embeddings |
+-----------------------------------------+-----------------------------+
Example::
from sentence_transformers import SentenceTransformer, InputExample, losses
from torch.utils.data import DataLoader
model_en = SentenceTransformer('bert-base-cased')
model_fr = SentenceTransformer('flaubert/flaubert_base_cased')
examples_en = ['The first sentence', 'The second sentence', 'The third sentence', 'The fourth sentence']
examples_fr = ['La première phrase', 'La deuxième phrase', 'La troisième phrase', 'La quatrième phrase']
train_batch_size = 2
labels_en_en = model_en.encode(examples_en)
examples_en_fr = [InputExample(texts=[x], label=labels_en_en[i]) for i, x in enumerate(examples_en)]
loader_en_fr = DataLoader(examples_en_fr, batch_size=train_batch_size)
examples_fr_fr = [InputExample(texts=[x], label=labels_en_en[i]) for i, x in enumerate(examples_fr)]
loader_fr_fr = DataLoader(examples_fr_fr, batch_size=train_batch_size)
train_loss = losses.MSELoss(model=model_fr)
model_fr.fit(
[(loader_en_fr, train_loss), (loader_fr_fr, train_loss)],
epochs=10,
)
"""
super(MSELoss, self).__init__()
self.model = model
self.loss_fct = nn.MSELoss()
def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor):
# Concatenate multiple inputs on the batch dimension
embeddings = torch.cat([self.model(inputs)["sentence_embedding"] for inputs in sentence_features], dim=0)
if len(sentence_features) > 1:
# Repeat the labels for each input
labels = labels.repeat(len(sentence_features), 1)
return self.loss_fct(embeddings, labels)
@property
def citation(self) -> str:
return """
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
"""
|
import asyncio
from typing import AsyncIterator, Iterator, Optional, Union
from jina.helper import get_or_reuse_loop
class RequestsCounter:
"""Class used to wrap a count integer so that it can be updated inside methods.
.. code-block:: python
def count_increment(i: int, rc: RequestCounter):
i += 1
rc.count += 1
c_int = 0
c_rc = RequestsCounter()
count_increment(c_int, c_rc)
assert c_int == 0
assert c_rc.count == 1
"""
count = 0
class AsyncRequestsIterator:
"""Iterator to allow async iteration of blocking/non-blocking iterator from the Client"""
def __init__(
self,
iterator: Union[Iterator, AsyncIterator],
request_counter: Optional[RequestsCounter] = None,
prefetch: int = 0,
) -> None:
"""Async request iterator
:param iterator: request iterator
:param request_counter: counter of the numbers of request being handled at a given moment
:param prefetch: The max amount of requests to be handled at a given moment (0 disables feature)
"""
self.iterator = iterator
self._request_counter = request_counter
self._prefetch = prefetch
def iterator__next__(self):
"""
Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception.
"StopIteration interacts badly with generators and cannot be raised into a Future"
:return: next request or None
"""
try:
return self.iterator.__next__()
except StopIteration:
return None
def __aiter__(self):
return self
async def __anext__(self):
if self._prefetch > 0:
while self._request_counter.count >= self._prefetch:
await asyncio.sleep(0)
if isinstance(self.iterator, Iterator):
"""
An `Iterator` indicates "blocking" code, which might block all tasks in the event loop.
Hence we iterate in the default executor provided by asyncio.
"""
request = await get_or_reuse_loop().run_in_executor(
None, self.iterator__next__
)
"""
`iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor,
which raises the following exception while chaining states in futures.
"StopIteration interacts badly with generators and cannot be raised into a Future"
To avoid that, we handle the raise by a `return None`
"""
if request is None:
raise StopAsyncIteration
elif isinstance(self.iterator, AsyncIterator):
# we assume that `AsyncIterator` doesn't block the event loop
request = await self.iterator.__anext__()
return request
|
from typing import Iterator, AsyncIterator, Union
from jina.helper import get_or_reuse_loop
class AsyncRequestsIterator:
"""Iterator to allow async iteration of blocking/non-blocking iterator from the Client"""
def __init__(self, iterator: Union[Iterator, AsyncIterator]) -> None:
"""Async request iterator
TODO (Deepankar): accept `num_req`
:param iterator: request iterator
"""
self.iterator = iterator
def iterator__next__(self):
"""
Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception.
"StopIteration interacts badly with generators and cannot be raised into a Future"
:return: next request or None
"""
try:
return self.iterator.__next__()
except StopIteration:
return None
def __aiter__(self):
return self
async def __anext__(self):
if isinstance(self.iterator, Iterator):
"""
An `Iterator` indicates "blocking" code, which might block all tasks in the event loop.
Hence we iterate in the default executor provided by asyncio.
"""
request = await get_or_reuse_loop().run_in_executor(
None, self.iterator__next__
)
"""
`iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor,
which raises the following exception while chaining states in futures.
"StopIteration interacts badly with generators and cannot be raised into a Future"
To avoid that, we handle the raise by a `return None`
"""
if request is None:
raise StopAsyncIteration
elif isinstance(self.iterator, AsyncIterator):
# we assume that `AsyncIterator` doesn't block the event loop
request = await self.iterator.__anext__()
return request
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.