input
stringlengths
33
5k
output
stringlengths
32
5k
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GroundingDINO', num_queries=900, with_box_refine=True, as_two_stage=True, data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=False, ), language_model=dict( type='BertModel', name=lang_model_name, pad_to_max=False, use_sub_sentence_represent=True, special_tokens_list=['[CLS]', '[SEP]', '.', '?'], add_pooling_layer=True, ), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='ChannelMapper', in_channels=[192, 384, 768], kernel_size=1, out_channels=256, act_cfg=None, bias=True, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), encoder=dict( num_layers=6, # visual layer config layer_cfg=dict( self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), # text layer config text_layer_cfg=dict( self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), # fusion layer config fusion_layer_cfg=dict( v_dim=256, l_dim=256, embed_dim=1024, num_heads=4, init_values=1e-4), ), decoder=dict( num_layers=6, return_intermediate=True, layer_cfg=dict( # query self attention layer self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to text cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to image cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), post_norm_cfg=None), positional_encoding=dict( num_feats=128, normalize=True, offset=0.0, temperature=20), bbox_head=dict( type='GroundingDINOHead', num_classes=80, sync_cls_avg_factor=True, contrastive_cfg=dict(max_text_len=256), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0)), dn_cfg=dict( # TODO: Move to model.train_cfg ? label_noise_scale=0.5, box_noise_scale=1.0, # 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), # TODO: half num_dn_queries # training and testing settings train_cfg=None, test_cfg=dict(max_per_img=300)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=None, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'custom_entities', 'tokens_positive')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GroundingDINO', num_queries=900, with_box_refine=True, as_two_stage=True, data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=False, ), language_model=dict( type='BertModel', name=lang_model_name, pad_to_max=False, use_sub_sentence_represent=True, special_tokens_list=['[CLS]', '[SEP]', '.', '?'], add_pooling_layer=True, ), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='ChannelMapper', in_channels=[192, 384, 768], kernel_size=1, out_channels=256, act_cfg=None, bias=True, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), encoder=dict( num_layers=6, # visual layer config layer_cfg=dict( self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), # text layer config text_layer_cfg=dict( self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), # fusion layer config fusion_layer_cfg=dict( v_dim=256, l_dim=256, embed_dim=1024, num_heads=4, init_values=1e-4), ), decoder=dict( num_layers=6, return_intermediate=True, layer_cfg=dict( # query self attention layer self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to text cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to image cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), post_norm_cfg=None), positional_encoding=dict( num_feats=128, normalize=True, offset=0.0, temperature=20), bbox_head=dict( type='GroundingDINOHead', num_classes=80, sync_cls_avg_factor=True, contrastive_cfg=dict(max_text_len=256), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0)), dn_cfg=dict( # TODO: Move to model.train_cfg ? label_noise_scale=0.5, box_noise_scale=1.0, # 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), # TODO: half num_dn_queries # training and testing settings train_cfg=None, test_cfg=dict(max_per_img=300)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=None, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'custom_entities')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader
_base_ = [ '../_base_/models/fast-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadProposals', num_max_proposals=2000), dict(type='LoadAnnotations', with_bbox=True), dict( type='ProposalBroadcaster', transforms=[ dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), ]), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadProposals', num_max_proposals=None), dict( type='ProposalBroadcaster', transforms=[ dict(type='Resize', scale=(1333, 800), keep_ratio=True), ]), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( proposal_file='proposals/rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( proposal_file='proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = [ '../_base_/models/fast-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=2000), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['proposals']), dict( type='ToDataContainer', fields=[dict(key='proposals', stack=False)]), dict(type='Collect', keys=['img', 'proposals']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline), val=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline), test=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline))
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" GGUF_FILE_EXTENSION = "gguf" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft") DECODE_ENDPOINT_SD_V1 = "https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_SD_XL = "https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_FLUX = "https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_HUNYUAN_VIDEO = "https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_SD_V1 = "https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_SD_XL = "https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_FLUX = "https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/"
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" GGUF_FILE_EXTENSION = "gguf" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft")
from langchain_core.tools import ( BaseTool, SchemaAnnotationError, StructuredTool, Tool, ToolException, create_schema_from_function, tool, ) __all__ = [ "BaseTool", "SchemaAnnotationError", "StructuredTool", "Tool", "ToolException", "create_schema_from_function", "tool", ]
from langchain_core.tools import ( BaseTool, SchemaAnnotationError, StructuredTool, Tool, ToolException, create_schema_from_function, tool, ) __all__ = [ "SchemaAnnotationError", "create_schema_from_function", "ToolException", "BaseTool", "Tool", "StructuredTool", "tool", ]
_base_ = ['co_dino_5scale_r50_8xb2_1x_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa load_from = 'https://download.openmmlab.com/mmdetection/v3.0/codetr/co_dino_5scale_swin_large_16e_o365tococo-614254c9.pth' # noqa # model settings model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), # Please only add indices that would be used # in FPN, otherwise some parameter will not be used with_cp=True, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[192, 384, 768, 1536]), query_head=dict( dn_cfg=dict(box_noise_scale=0.4, group_cfg=dict(num_dn_queries=500)), transformer=dict(encoder=dict(with_cp=6)))) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ] ]), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=1, num_workers=1, dataset=dict(pipeline=train_pipeline)) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1280), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader optim_wrapper = dict(optimizer=dict(lr=1e-4)) max_epochs = 16 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8], gamma=0.1) ]
_base_ = ['co_dino_5scale_r50_8xb2_1x_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa load_from = 'https://download.openmmlab.com/mmdetection/v3.0/codetr/co_dino_5scale_swin_large_22e_o365-0a33e247.pth' # noqa # model settings model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), # Please only add indices that would be used # in FPN, otherwise some parameter will not be used with_cp=True, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[192, 384, 768, 1536]), query_head=dict( dn_cfg=dict(box_noise_scale=0.4, group_cfg=dict(num_dn_queries=500)), transformer=dict(encoder=dict(with_cp=6)))) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ] ]), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=1, num_workers=1, dataset=dict(pipeline=train_pipeline)) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1280), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader optim_wrapper = dict(optimizer=dict(lr=1e-4)) max_epochs = 16 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8], gamma=0.1) ]
""" Initializer script that installs stuff to pip. """ from __future__ import annotations import argparse import logging import os import shutil import subprocess import sys import time def run_command(args: list[str]) -> subprocess.CompletedProcess[bytes]: logging.debug("$ %s", " ".join(args)) start_time = time.monotonic() try: return subprocess.run(args, check=True) finally: end_time = time.monotonic() logging.debug("took %dms", (end_time - start_time) * 1000) if __name__ == "__main__": parser = argparse.ArgumentParser(description="pip initializer") parser.add_argument( "packages", nargs="+", help="pip packages to install", ) parser.add_argument( "--verbose", action="store_true", help="verbose logging", ) parser.add_argument( "--dry-run", help="do not install anything, just print what would be done." ) parser.add_argument( "--no-black-binary", help="do not use pre-compiled binaries from pip for black.", action="store_true", ) args = parser.parse_args() logging.basicConfig( format="<%(threadName)s:%(levelname)s> %(message)s", level=logging.NOTSET if args.verbose else logging.DEBUG, stream=sys.stderr, ) uv_available = ( any(prefix in sys.base_prefix for prefix in ["uv/python", "uv\\python"]) and shutil.which("uv") is not None ) if uv_available: pip_args = ["uv", "pip", "install"] elif sys.executable: pip_args = [sys.executable, "-mpip", "install"] else: pip_args = ["pip3", "install"] # If we are in a global install, use `--user` to install so that you do not # need root access in order to initialize linters. # # However, `pip install --user` interacts poorly with virtualenvs (see: # https://bit.ly/3vD4kvl) and conda (see: https://bit.ly/3KG7ZfU). So in # these cases perform a regular installation. in_conda = os.environ.get("CONDA_PREFIX") is not None in_virtualenv = os.environ.get("VIRTUAL_ENV") is not None if not in_conda and not in_virtualenv: pip_args.append("--user") pip_args.extend(args.packages) for package in args.packages: package_name, _, version = package.partition("=") if version == "": raise RuntimeError( "Package {package_name} did not have a version specified. " "Please specify a version to produce a consistent linting experience." ) if args.no_black_binary and "black" in package_name: pip_args.append(f"--no-binary={package_name}") dry_run = args.dry_run == "1" if dry_run: print(f"Would have run: {pip_args}") sys.exit(0) run_command(pip_args)
""" Initializer script that installs stuff to pip. """ from __future__ import annotations import argparse import logging import os import shutil import subprocess import sys import time def run_command( args: list[str], env: dict[str, str] | None = None, ) -> subprocess.CompletedProcess[str]: logging.debug("$ %s", " ".join(args)) start_time = time.monotonic() try: return subprocess.run(args, env=env, text=True, encoding="utf-8", check=True) finally: end_time = time.monotonic() logging.debug("took %dms", (end_time - start_time) * 1000) def main() -> None: parser = argparse.ArgumentParser(description="pip initializer") parser.add_argument( "packages", nargs="+", help="pip packages to install", ) parser.add_argument( "--verbose", action="store_true", help="verbose logging", ) parser.add_argument( "--dry-run", help="do not install anything, just print what would be done." ) parser.add_argument( "--no-black-binary", help="do not use pre-compiled binaries from pip for black.", action="store_true", ) args = parser.parse_args() logging.basicConfig( format="<%(threadName)s:%(levelname)s> %(message)s", level=logging.NOTSET if args.verbose else logging.DEBUG, stream=sys.stderr, ) env: dict[str, str] = { **os.environ, "UV_PYTHON": sys.executable, "UV_PYTHON_DOWNLOADS": "never", "FORCE_COLOR": "1", "CLICOLOR_FORCE": "1", } uv_index_url = env.get("UV_INDEX_URL", env.get("PIP_EXTRA_INDEX_URL")) if uv_index_url: env["UV_INDEX_URL"] = uv_index_url uv: str | None = shutil.which("uv") if uv: pip_args = [uv, "pip", "install"] elif sys.executable: pip_args = [sys.executable, "-mpip", "install"] else: pip_args = ["pip3", "install"] # If we are in a global install, use `--user` to install so that you do not # need root access in order to initialize linters. # # However, `pip install --user` interacts poorly with virtualenvs (see: # https://bit.ly/3vD4kvl) and conda (see: https://bit.ly/3KG7ZfU). So in # these cases perform a regular installation. in_conda = os.environ.get("CONDA_PREFIX") is not None in_virtualenv = os.environ.get("VIRTUAL_ENV") is not None if not in_conda and not in_virtualenv: pip_args.append("--user") pip_args.extend(args.packages) for package in args.packages: package_name, _, version = package.partition("=") if version == "": raise RuntimeError( "Package {package_name} did not have a version specified. " "Please specify a version to produce a consistent linting experience." ) if args.no_black_binary and "black" in package_name: pip_args.append(f"--no-binary={package_name}") dry_run = args.dry_run == "1" if dry_run: print(f"Would have run: {pip_args}") sys.exit(0) run_command(pip_args, env=env) if __name__ == "__main__": main()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.host = self.runtime_args.host self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None # Standard Scale Jittering (SSJ) resizes and crops an image # with a resize range of 0.8 to 1.25 of the original image size. train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.25), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='InfiniteSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False, backend_args=backend_args) test_evaluator = val_evaluator # The model is trained by 270k iterations with batch_size 64, # which is roughly equivalent to 144 epochs. max_iters = 270000 train_cfg = dict( type='IterBasedTrainLoop', max_iters=max_iters, val_interval=10000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate policy # lr steps at [0.9, 0.95, 0.975] of the maximum iterations param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=270000, by_epoch=False, milestones=[243000, 256500, 263250], gamma=0.1) ] default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) log_processor = dict(by_epoch=False) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) file_client_args = dict(backend='disk') # comment out the code below to use different file client # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) # Standard Scale Jittering (SSJ) resizes and crops an image # with a resize range of 0.8 to 1.25 of the original image size. train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.25), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='InfiniteSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator # The model is trained by 270k iterations with batch_size 64, # which is roughly equivalent to 144 epochs. max_iters = 270000 train_cfg = dict( type='IterBasedTrainLoop', max_iters=max_iters, val_interval=10000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate policy # lr steps at [0.9, 0.95, 0.975] of the maximum iterations param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=270000, by_epoch=False, milestones=[243000, 256500, 263250], gamma=0.1) ] default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) log_processor = dict(by_epoch=False) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.6.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.5.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
from typing import Optional import torch from ..utils import logging logger = logging.get_logger(__name__) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def sdpa_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, is_causal: Optional[bool] = None, **kwargs, ) -> tuple[torch.Tensor, None]: if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None: logger.warning_once( "`sdpa` attention does not support `output_attentions=True` or `head_mask`." " Please set your attention to `eager` if you want any of these features." ) if hasattr(module, "num_key_value_groups"): key = repeat_kv(key, module.num_key_value_groups) value = repeat_kv(value, module.num_key_value_groups) if attention_mask is not None and attention_mask.ndim == 4: attention_mask = attention_mask[:, :, :, : key.shape[-2]] # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions # Reference: https://github.com/pytorch/pytorch/issues/112577. query = query.contiguous() key = key.contiguous() value = value.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool` if is_causal is None: # The last condition is for encoder (decoder) models which specify this by passing their own `is_causal` flag # This is mainly due to those models having mixed implementations for encoder, decoder, and encoder-decoder attns is_causal = query.shape[2] > 1 and attention_mask is None and getattr(module, "is_causal", True) # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor. # We convert it to a bool for the SDPA kernel that only accepts bools. if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor): is_causal = is_causal.item() attn_output = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=dropout, scale=scaling, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, None
from typing import Optional, Tuple import torch from ..utils import logging logger = logging.get_logger(__name__) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def sdpa_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, is_causal: Optional[bool] = None, **kwargs, ) -> Tuple[torch.Tensor, None]: if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None: logger.warning_once( "`sdpa` attention does not support `output_attentions=True` or `head_mask`." " Please set your attention to `eager` if you want any of these features." ) if hasattr(module, "num_key_value_groups"): key = repeat_kv(key, module.num_key_value_groups) value = repeat_kv(value, module.num_key_value_groups) if attention_mask is not None and attention_mask.ndim == 4: attention_mask = attention_mask[:, :, :, : key.shape[-2]] # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions # Reference: https://github.com/pytorch/pytorch/issues/112577. query = query.contiguous() key = key.contiguous() value = value.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool` if is_causal is None: # The last condition is for encoder (decoder) models which specify this by passing their own `is_causal` flag # This is mainly due to those models having mixed implementations for encoder, decoder, and encoder-decoder attns is_causal = query.shape[2] > 1 and attention_mask is None and getattr(module, "is_causal", True) # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor. # We convert it to a bool for the SDPA kernel that only accepts bools. if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor): is_causal = is_causal.item() attn_output = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=dropout, scale=scaling, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, None
"""Tracker for XGBoost collective.""" import ctypes import json import socket from enum import IntEnum, unique from typing import Dict, Optional, Union from .core import _LIB, _check_call, _deprecate_positional_args, make_jcargs def get_family(addr: str) -> int: """Get network family from address.""" return socket.getaddrinfo(addr, None)[0][0] class RabitTracker: """Tracker for the collective used in XGBoost, acting as a coordinator between workers. Parameters ---------- n_workers: The total number of workers in the communication group. host_ip: The IP address of the tracker node. XGBoost can try to guess one by probing with sockets. But it's best to explicitly pass an address. port: The port this tracker should listen to. XGBoost can query an available port from the OS, this configuration is useful for restricted network environments. sortby: How to sort the workers for rank assignment. The default is host, but users can set the `DMLC_TASK_ID` via arguments of :py:meth:`~xgboost.collective.init` and obtain deterministic rank assignment through sorting by task name. Available options are: - host - task timeout : Timeout for constructing (bootstrap) and shutting down the communication group, doesn't apply to communication when the group is up and running. The timeout value should take the time of data loading and pre-processing into account, due to potential lazy execution. By default the Tracker doesn't have any timeout to avoid pre-mature aborting. The :py:meth:`.wait_for` method has a different timeout parameter that can stop the tracker even if the tracker is still being used. A value error is raised when timeout is reached. Examples -------- .. code-block:: python from xgboost.tracker import RabitTracker from xgboost import collective as coll tracker = RabitTracker(host_ip="127.0.0.1", n_workers=2) tracker.start() with coll.CommunicatorContext(**tracker.worker_args()): ret = coll.broadcast("msg", 0) assert str(ret) == "msg" """ @unique class _SortBy(IntEnum): HOST = 0 TASK = 1 @_deprecate_positional_args def __init__( # pylint: disable=too-many-arguments self, n_workers: int, host_ip: Optional[str], port: int = 0, *, sortby: str = "host", timeout: int = 0, ) -> None: handle = ctypes.c_void_p() if sortby not in ("host", "task"): raise ValueError("Expecting either 'host' or 'task' for sortby.") if host_ip is not None: get_family(host_ip) # use python socket to stop early for invalid address args = make_jcargs( host=host_ip, n_workers=n_workers, port=port, dmlc_communicator="rabit", sortby=self._SortBy.HOST if sortby == "host" else self._SortBy.TASK, timeout=int(timeout), ) _check_call(_LIB.XGTrackerCreate(args, ctypes.byref(handle))) self.handle = handle def free(self) -> None: """Internal function for testing.""" if hasattr(self, "handle"): handle = self.handle del self.handle _check_call(_LIB.XGTrackerFree(handle)) def __del__(self) -> None: self.free() def start(self) -> None: """Start the tracker. Once started, the client still need to call the :py:meth:`wait_for` method in order to wait for it to finish (think of it as a thread). """ _check_call(_LIB.XGTrackerRun(self.handle, make_jcargs())) def wait_for(self, timeout: Optional[int] = None) -> None: """Wait for the tracker to finish all the work and shutdown. When timeout is reached, a value error is raised. By default we don't have timeout since we don't know how long it takes for the model to finish training. """ _check_call(_LIB.XGTrackerWaitFor(self.handle, make_jcargs(timeout=timeout))) def worker_args(self) -> Dict[str, Union[str, int]]: """Get arguments for workers.""" c_env = ctypes.c_char_p() _check_call(_LIB.XGTrackerWorkerArgs(self.handle, ctypes.byref(c_env))) assert c_env.value is not None env = json.loads(c_env.value) return env
"""Tracker for XGBoost collective.""" import ctypes import json import socket from enum import IntEnum, unique from typing import Dict, Optional, Union from .core import _LIB, _check_call, _deprecate_positional_args, make_jcargs def get_family(addr: str) -> int: """Get network family from address.""" return socket.getaddrinfo(addr, None)[0][0] class RabitTracker: """Tracker for the collective used in XGBoost, acting as a coordinator between workers. Parameters .......... sortby: How to sort the workers for rank assignment. The default is host, but users can set the `DMLC_TASK_ID` via RABIT initialization arguments and obtain deterministic rank assignment. Available options are: - host - task timeout : Timeout for constructing the communication group and waiting for the tracker to shutdown when it's instructed to, doesn't apply to communication when tracking is running. The timeout value should take the time of data loading and pre-processing into account, due to potential lazy execution. The :py:meth:`.wait_for` method has a different timeout parameter that can stop the tracker even if the tracker is still being used. A value error is raised when timeout is reached. """ @unique class _SortBy(IntEnum): HOST = 0 TASK = 1 @_deprecate_positional_args def __init__( # pylint: disable=too-many-arguments self, n_workers: int, host_ip: Optional[str], port: int = 0, *, sortby: str = "host", timeout: int = 0, ) -> None: handle = ctypes.c_void_p() if sortby not in ("host", "task"): raise ValueError("Expecting either 'host' or 'task' for sortby.") if host_ip is not None: get_family(host_ip) # use python socket to stop early for invalid address args = make_jcargs( host=host_ip, n_workers=n_workers, port=port, dmlc_communicator="rabit", sortby=self._SortBy.HOST if sortby == "host" else self._SortBy.TASK, timeout=int(timeout), ) _check_call(_LIB.XGTrackerCreate(args, ctypes.byref(handle))) self.handle = handle def free(self) -> None: """Internal function for testing.""" if hasattr(self, "handle"): handle = self.handle del self.handle _check_call(_LIB.XGTrackerFree(handle)) def __del__(self) -> None: self.free() def start(self) -> None: """Start the tracker. Once started, the client still need to call the :py:meth:`wait_for` method in order to wait for it to finish (think of it as a thread). """ _check_call(_LIB.XGTrackerRun(self.handle, make_jcargs())) def wait_for(self, timeout: Optional[int] = None) -> None: """Wait for the tracker to finish all the work and shutdown. When timeout is reached, a value error is raised. By default we don't have timeout since we don't know how long it takes for the model to finish training. """ _check_call(_LIB.XGTrackerWaitFor(self.handle, make_jcargs(timeout=timeout))) def worker_args(self) -> Dict[str, Union[str, int]]: """Get arguments for workers.""" c_env = ctypes.c_char_p() _check_call(_LIB.XGTrackerWorkerArgs(self.handle, ctypes.byref(c_env))) assert c_env.value is not None env = json.loads(c_env.value) return env
from typing import Any import torch import enum from torch._C import _from_dlpack from torch._C import _to_dlpack as to_dlpack __all__ = [ "DLDeviceType", "from_dlpack", "to_dlpack", ] class DLDeviceType(enum.IntEnum): # Enums as in DLPack specification (aten/src/ATen/dlpack.h) kDLCPU = 1, kDLGPU = 2, kDLCPUPinned = 3, kDLOpenCL = 4, kDLVulkan = 7, kDLMetal = 8, kDLVPI = 9, kDLROCM = 10, kDLExtDev = 12, kDLOneAPI = 14, torch._C._add_docstr(to_dlpack, r"""to_dlpack(tensor) -> PyCapsule Returns an opaque object (a "DLPack capsule") representing the tensor. .. note:: ``to_dlpack`` is a legacy DLPack interface. The capsule it returns cannot be used for anything in Python other than use it as input to ``from_dlpack``. The more idiomatic use of DLPack is to call ``from_dlpack`` directly on the tensor object - this works when that object has a ``__dlpack__`` method, which PyTorch and most other libraries indeed have now. .. warning:: Only call ``from_dlpack`` once per capsule produced with ``to_dlpack``. Behavior when a capsule is consumed multiple times is undefined. Args: tensor: a tensor to be exported The DLPack capsule shares the tensor's memory. """) # TODO: add a typing.Protocol to be able to tell Mypy that only objects with # __dlpack__ and __dlpack_device__ methods are accepted. def from_dlpack(ext_tensor: Any) -> 'torch.Tensor': """from_dlpack(ext_tensor) -> Tensor Converts a tensor from an external library into a ``torch.Tensor``. The returned PyTorch tensor will share the memory with the input tensor (which may have come from another library). Note that in-place operations will therefore also affect the data of the input tensor. This may lead to unexpected issues (e.g., other libraries may have read-only flags or immutable data structures), so the user should only do this if they know for sure that this is fine. Args: ext_tensor (object with ``__dlpack__`` attribute, or a DLPack capsule): The tensor or DLPack capsule to convert. If ``ext_tensor`` is a tensor (or ndarray) object, it must support the ``__dlpack__`` protocol (i.e., have a ``ext_tensor.__dlpack__`` method). Otherwise ``ext_tensor`` may be a DLPack capsule, which is an opaque ``PyCapsule`` instance, typically produced by a ``to_dlpack`` function or method. Examples:: >>> import torch.utils.dlpack >>> t = torch.arange(4) # Convert a tensor directly (supported in PyTorch >= 1.10) >>> t2 = torch.from_dlpack(t) >>> t2[:2] = -1 # show that memory is shared >>> t2 tensor([-1, -1, 2, 3]) >>> t tensor([-1, -1, 2, 3]) # The old-style DLPack usage, with an intermediate capsule object >>> capsule = torch.utils.dlpack.to_dlpack(t) >>> capsule <capsule object "dltensor" at ...> >>> t3 = torch.from_dlpack(capsule) >>> t3 tensor([-1, -1, 2, 3]) >>> t3[0] = -9 # now we're sharing memory between 3 tensors >>> t3 tensor([-9, -1, 2, 3]) >>> t2 tensor([-9, -1, 2, 3]) >>> t tensor([-9, -1, 2, 3]) """ if hasattr(ext_tensor, '__dlpack__'): device = ext_tensor.__dlpack_device__() # device is either CUDA or ROCm, we need to pass the current # stream if device[0] in (DLDeviceType.kDLGPU, DLDeviceType.kDLROCM): stream = torch.cuda.current_stream(f'cuda:{device[1]}') # cuda_stream is the pointer to the stream and it is a public # attribute, but it is not documented # The array API specify that the default legacy stream must be passed # with a value of 1 for CUDA # https://data-apis.org/array-api/latest/API_specification/array_object.html?dlpack-self-stream-none#dlpack-self-stream-none is_cuda = device[0] == DLDeviceType.kDLGPU # Since pytorch is not using PTDS by default, lets directly pass # the legacy stream stream_ptr = 1 if is_cuda and stream.cuda_stream == 0 else stream.cuda_stream dlpack = ext_tensor.__dlpack__(stream=stream_ptr) else: dlpack = ext_tensor.__dlpack__() else: # Old versions just call the converter dlpack = ext_tensor return _from_dlpack(dlpack)
from typing import Any import torch import enum from torch._C import _to_dlpack as to_dlpack __all__ = [ "DLDeviceType", "from_dlpack", ] class DLDeviceType(enum.IntEnum): # Enums as in DLPack specification (aten/src/ATen/dlpack.h) kDLCPU = 1, kDLCUDA = 2, kDLCUDAHost = 3, kDLOpenCL = 4, kDLVulkan = 7, kDLMetal = 8, kDLVPI = 9, kDLROCM = 10, kDLROCMHost = 11, kDLExtDev = 12, kDLCUDAManaged = 13, kDLOneAPI = 14, kDLWebGPU = 15, kDLHexagon = 16, kDLMAIA = 17, torch._C._add_docstr(to_dlpack, r"""to_dlpack(tensor) -> PyCapsule Returns an opaque object (a "DLPack capsule") representing the tensor. .. note:: ``to_dlpack`` is a legacy DLPack interface. The capsule it returns cannot be used for anything in Python other than use it as input to ``from_dlpack``. The more idiomatic use of DLPack is to call ``from_dlpack`` directly on the tensor object - this works when that object has a ``__dlpack__`` method, which PyTorch and most other libraries indeed have now. .. warning:: Only call ``from_dlpack`` once per capsule produced with ``to_dlpack``. Behavior when a capsule is consumed multiple times is undefined. Args: tensor: a tensor to be exported The DLPack capsule shares the tensor's memory. """) # TODO: add a typing.Protocol to be able to tell Mypy that only objects with # __dlpack__ and __dlpack_device__ methods are accepted. def from_dlpack(ext_tensor: Any) -> 'torch.Tensor': """from_dlpack(ext_tensor) -> Tensor Converts a tensor from an external library into a ``torch.Tensor``. The returned PyTorch tensor will share the memory with the input tensor (which may have come from another library). Note that in-place operations will therefore also affect the data of the input tensor. This may lead to unexpected issues (e.g., other libraries may have read-only flags or immutable data structures), so the user should only do this if they know for sure that this is fine. Args: ext_tensor (object with ``__dlpack__`` attribute, or a DLPack capsule): The tensor or DLPack capsule to convert. If ``ext_tensor`` is a tensor (or ndarray) object, it must support the ``__dlpack__`` protocol (i.e., have a ``ext_tensor.__dlpack__`` method). Otherwise ``ext_tensor`` may be a DLPack capsule, which is an opaque ``PyCapsule`` instance, typically produced by a ``to_dlpack`` function or method. Examples:: >>> import torch.utils.dlpack >>> t = torch.arange(4) # Convert a tensor directly (supported in PyTorch >= 1.10) >>> t2 = torch.from_dlpack(t) >>> t2[:2] = -1 # show that memory is shared >>> t2 tensor([-1, -1, 2, 3]) >>> t tensor([-1, -1, 2, 3]) # The old-style DLPack usage, with an intermediate capsule object >>> capsule = torch.utils.dlpack.to_dlpack(t) >>> capsule <capsule object "dltensor" at ...> >>> t3 = torch.from_dlpack(capsule) >>> t3 tensor([-1, -1, 2, 3]) >>> t3[0] = -9 # now we're sharing memory between 3 tensors >>> t3 tensor([-9, -1, 2, 3]) >>> t2 tensor([-9, -1, 2, 3]) >>> t tensor([-9, -1, 2, 3]) """ if hasattr(ext_tensor, '__dlpack__'): kwargs: dict[str, Any] = {} kwargs["max_version"] = (1, 0) device = ext_tensor.__dlpack_device__() # device is either CUDA or ROCm, we need to pass the current # stream if device[0] in (DLDeviceType.kDLCUDA, DLDeviceType.kDLROCM): stream = torch.cuda.current_stream(f'cuda:{device[1]}') # cuda_stream is the pointer to the stream and it is a public # attribute, but it is not documented # The array API specify that the default legacy stream must be passed # with a value of 1 for CUDA # https://data-apis.org/array-api/latest/API_specification/array_object.html?dlpack-self-stream-none#dlpack-self-stream-none is_cuda = device[0] == DLDeviceType.kDLCUDA # Since pytorch is not using PTDS by default, lets directly pass # the legacy stream stream_ptr = 1 if is_cuda and stream.cuda_stream == 0 else stream.cuda_stream kwargs["stream"] = stream_ptr try: # Try running __dlpack__ while specifying `max_version` argument. dlpack = ext_tensor.__dlpack__(**kwargs) except TypeError: # If that doesn't work, try removing the `max_version` argument. kwargs.pop("max_version") dlpack = ext_tensor.__dlpack__(**kwargs) else: # Old versions just call the converter dlpack = ext_tensor return torch._C._from_dlpack(dlpack)
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "pandas": "pandas<2.3.0", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool as average_pool from keras.src.ops.nn import batch_normalization as batch_normalization from keras.src.ops.nn import binary_crossentropy as binary_crossentropy from keras.src.ops.nn import ( categorical_crossentropy as categorical_crossentropy, ) from keras.src.ops.nn import celu as celu from keras.src.ops.nn import conv as conv from keras.src.ops.nn import conv_transpose as conv_transpose from keras.src.ops.nn import ctc_decode as ctc_decode from keras.src.ops.nn import ctc_loss as ctc_loss from keras.src.ops.nn import depthwise_conv as depthwise_conv from keras.src.ops.nn import dot_product_attention as dot_product_attention from keras.src.ops.nn import elu as elu from keras.src.ops.nn import gelu as gelu from keras.src.ops.nn import glu as glu from keras.src.ops.nn import hard_shrink as hard_shrink from keras.src.ops.nn import hard_sigmoid as hard_sigmoid from keras.src.ops.nn import hard_silu as hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh as hard_tanh from keras.src.ops.nn import layer_normalization as layer_normalization from keras.src.ops.nn import leaky_relu as leaky_relu from keras.src.ops.nn import log_sigmoid as log_sigmoid from keras.src.ops.nn import log_softmax as log_softmax from keras.src.ops.nn import max_pool as max_pool from keras.src.ops.nn import moments as moments from keras.src.ops.nn import multi_hot as multi_hot from keras.src.ops.nn import normalize as normalize from keras.src.ops.nn import one_hot as one_hot from keras.src.ops.nn import polar as polar from keras.src.ops.nn import psnr as psnr from keras.src.ops.nn import relu as relu from keras.src.ops.nn import relu6 as relu6 from keras.src.ops.nn import rms_normalization as rms_normalization from keras.src.ops.nn import selu as selu from keras.src.ops.nn import separable_conv as separable_conv from keras.src.ops.nn import sigmoid as sigmoid from keras.src.ops.nn import silu as silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink as soft_shrink from keras.src.ops.nn import softmax as softmax from keras.src.ops.nn import softplus as softplus from keras.src.ops.nn import softsign as softsign from keras.src.ops.nn import ( sparse_categorical_crossentropy as sparse_categorical_crossentropy, ) from keras.src.ops.nn import sparse_plus as sparse_plus from keras.src.ops.nn import sparse_sigmoid as sparse_sigmoid from keras.src.ops.nn import sparsemax as sparsemax from keras.src.ops.nn import squareplus as squareplus from keras.src.ops.nn import tanh_shrink as tanh_shrink from keras.src.ops.nn import threshold as threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool as average_pool from keras.src.ops.nn import batch_normalization as batch_normalization from keras.src.ops.nn import binary_crossentropy as binary_crossentropy from keras.src.ops.nn import ( categorical_crossentropy as categorical_crossentropy, ) from keras.src.ops.nn import celu as celu from keras.src.ops.nn import conv as conv from keras.src.ops.nn import conv_transpose as conv_transpose from keras.src.ops.nn import ctc_decode as ctc_decode from keras.src.ops.nn import ctc_loss as ctc_loss from keras.src.ops.nn import depthwise_conv as depthwise_conv from keras.src.ops.nn import dot_product_attention as dot_product_attention from keras.src.ops.nn import elu as elu from keras.src.ops.nn import gelu as gelu from keras.src.ops.nn import glu as glu from keras.src.ops.nn import hard_shrink as hard_shrink from keras.src.ops.nn import hard_sigmoid as hard_sigmoid from keras.src.ops.nn import hard_silu as hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh as hard_tanh from keras.src.ops.nn import leaky_relu as leaky_relu from keras.src.ops.nn import log_sigmoid as log_sigmoid from keras.src.ops.nn import log_softmax as log_softmax from keras.src.ops.nn import max_pool as max_pool from keras.src.ops.nn import moments as moments from keras.src.ops.nn import multi_hot as multi_hot from keras.src.ops.nn import normalize as normalize from keras.src.ops.nn import one_hot as one_hot from keras.src.ops.nn import polar as polar from keras.src.ops.nn import psnr as psnr from keras.src.ops.nn import relu as relu from keras.src.ops.nn import relu6 as relu6 from keras.src.ops.nn import rms_normalization as rms_normalization from keras.src.ops.nn import selu as selu from keras.src.ops.nn import separable_conv as separable_conv from keras.src.ops.nn import sigmoid as sigmoid from keras.src.ops.nn import silu as silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink as soft_shrink from keras.src.ops.nn import softmax as softmax from keras.src.ops.nn import softplus as softplus from keras.src.ops.nn import softsign as softsign from keras.src.ops.nn import ( sparse_categorical_crossentropy as sparse_categorical_crossentropy, ) from keras.src.ops.nn import sparse_plus as sparse_plus from keras.src.ops.nn import sparse_sigmoid as sparse_sigmoid from keras.src.ops.nn import sparsemax as sparsemax from keras.src.ops.nn import squareplus as squareplus from keras.src.ops.nn import tanh_shrink as tanh_shrink from keras.src.ops.nn import threshold as threshold
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDoc): text: str tensor: NdArray da = DocList( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocList[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_any_doc_list_proto(): doc = AnyDoc(hello='world') pt = DocList([doc]).to_protobuf() docs = DocList.from_protobuf(pt) assert docs[0].hello == 'world' @pytest.mark.proto def test_any_nested_doc_list_proto(): from docarray import BaseDoc, DocList class TextDocWithId(BaseDoc): id: str text: str class ResultTestDoc(BaseDoc): matches: DocList[TextDocWithId] index_da = DocList[TextDocWithId]( [TextDocWithId(id=f'{i}', text=f'ID {i}') for i in range(10)] ) out_da = DocList[ResultTestDoc]([ResultTestDoc(matches=index_da[0:2])]) pb = out_da.to_protobuf() docs = DocList.from_protobuf(pb) assert docs[0].matches[0].id == '0' assert len(docs[0].matches) == 2 assert len(docs) == 1 @pytest.mark.proto def test_union_type_error(): from typing import Union class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): DocList[CustomDoc].from_protobuf(docs.to_protobuf()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_protobuf(docs_basic.to_protobuf()) assert docs_copy == docs_basic
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDoc): text: str tensor: NdArray da = DocList( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocList[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_any_doc_list_proto(): doc = AnyDoc(hello='world') pt = DocList([doc]).to_protobuf() docs = DocList.from_protobuf(pt) assert docs[0].dict()['hello'] == 'world' @pytest.mark.proto def test_any_nested_doc_list_proto(): from docarray import BaseDoc, DocList class TextDocWithId(BaseDoc): id: str text: str class ResultTestDoc(BaseDoc): matches: DocList[TextDocWithId] index_da = DocList[TextDocWithId]( [TextDocWithId(id=f'{i}', text=f'ID {i}') for i in range(10)] ) out_da = DocList[ResultTestDoc]([ResultTestDoc(matches=index_da[0:2])]) pb = out_da.to_protobuf() docs = DocList.from_protobuf(pb) assert docs[0].matches[0].id == '0' assert len(docs[0].matches) == 2 assert len(docs) == 1 @pytest.mark.proto def test_union_type_error(): from typing import Union class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): DocList[CustomDoc].from_protobuf(docs.to_protobuf()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_protobuf(docs_basic.to_protobuf()) assert docs_copy == docs_basic
_base_ = './solo_r50_fpn_1x_coco.py' # model settings model = dict( mask_head=dict( type='DecoupledSOLOHead', num_classes=80, in_channels=256, stacked_convs=7, feat_channels=256, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, loss_mask=dict( type='DiceLoss', use_sigmoid=True, activate=False, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
_base_ = [ './solo_r50_fpn_1x_coco.py', ] # model settings model = dict( mask_head=dict( type='DecoupledSOLOHead', num_classes=80, in_channels=256, stacked_convs=7, feat_channels=256, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, loss_mask=dict( type='DiceLoss', use_sigmoid=True, activate=False, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) optimizer = dict(type='SGD', lr=0.01)
from __future__ import annotations from .CSRLoss import CSRLoss from .CSRReconstructionLoss import CSRReconstructionLoss from .FlopsLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ]
from __future__ import annotations from sentence_transformers.sparse_encoder.losses.CSRLoss import CSRLoss from sentence_transformers.sparse_encoder.losses.CSRReconstructionLoss import ( CSRReconstructionLoss, ) from sentence_transformers.sparse_encoder.losses.FlopsLoss import FlopsLoss from sentence_transformers.sparse_encoder.losses.SparseAnglELoss import SparseAnglELoss from sentence_transformers.sparse_encoder.losses.SparseCachedGISTEmbedLoss import ( SparseCachedGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCachedMultipleNegativesRankingLoss import ( SparseCachedMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import ( SparseCoSENTLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCosineSimilarityLoss import ( SparseCosineSimilarityLoss, ) from sentence_transformers.sparse_encoder.losses.SparseDistillKLDivLoss import ( SparseDistillKLDivLoss, ) from sentence_transformers.sparse_encoder.losses.SparseGISTEmbedLoss import ( SparseGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseMarginMSELoss import ( SparseMarginMSELoss, ) from sentence_transformers.sparse_encoder.losses.SparseMSELoss import SparseMSELoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseTripletLoss import ( SparseTripletLoss, ) from sentence_transformers.sparse_encoder.losses.SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ]
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch def get_max_cuda_memory(device: Optional[torch.device] = None) -> int: """Returns the maximum GPU memory occupied by tensors in megabytes (MB) for a given device. By default, this returns the peak allocated memory since the beginning of this program. Args: device (torch.device, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if ``device`` is None. Defaults to None. Returns: int: The maximum GPU memory occupied by tensors in megabytes for a given device. """ mem = torch.cuda.max_memory_allocated(device=device) mem_mb = torch.tensor([int(mem) // (1024 * 1024)], dtype=torch.int, device=device) torch.cuda.reset_peak_memory_stats() return int(mem_mb.item()) def is_cuda_available() -> bool: """Returns True if cuda devices exist.""" return torch.cuda.is_available() def is_npu_available() -> bool: """Returns True if Ascend PyTorch and npu devices exist.""" try: import torch_npu # noqa: F401 except Exception: return False return hasattr(torch, 'npu') and torch.npu.is_available() def is_mlu_available() -> bool: """Returns True if Cambricon PyTorch and mlu devices exist.""" return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available() def is_mps_available() -> bool: """Return True if mps devices exist. It's specialized for mac m1 chips and require torch version 1.12 or higher. """ return hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() def get_device() -> str: """Returns the currently existing device type. Returns: str: cuda | npu | mlu | mps | cpu. """ if is_npu_available(): return 'npu' elif is_cuda_available(): return 'cuda' elif is_mlu_available(): return 'mlu' elif is_mps_available(): return 'mps' else: return 'cpu'
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch def get_max_cuda_memory(device: Optional[torch.device] = None) -> int: """Returns the maximum GPU memory occupied by tensors in megabytes (MB) for a given device. By default, this returns the peak allocated memory since the beginning of this program. Args: device (torch.device, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if ``device`` is None. Defaults to None. Returns: int: The maximum GPU memory occupied by tensors in megabytes for a given device. """ mem = torch.cuda.max_memory_allocated(device=device) mem_mb = torch.tensor([int(mem) // (1024 * 1024)], dtype=torch.int, device=device) torch.cuda.reset_peak_memory_stats() return int(mem_mb.item()) def is_cuda_available() -> bool: """Returns True if cuda devices exist.""" return torch.cuda.is_available() def is_mlu_available() -> bool: """Returns True if Cambricon PyTorch and mlu devices exist.""" return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available() def is_mps_available() -> bool: """Return True if mps devices exist. It's specialized for mac m1 chips and require torch version 1.12 or higher. """ return hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() def get_device() -> str: """Returns the currently existing device type. Returns: str: cuda | mlu | mps | cpu. """ if is_cuda_available(): return 'cuda' elif is_mlu_available(): return 'mlu' elif is_mps_available(): return 'mps' else: return 'cpu'
import itertools from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class GeneratorDataAdapter(DataAdapter): """Adapter for Python generators.""" def __init__(self, generator): first_batches, generator = peek_and_restore(generator) self.generator = generator self._first_batches = first_batches self._output_signature = None if not isinstance(first_batches[0], tuple): raise ValueError( "When passing a Python generator to a Keras model, " "the generator must return a tuple, either " "(input,) or (inputs, targets) or " "(inputs, targets, sample_weights). " f"Received: {first_batches[0]}" ) def get_numpy_iterator(self): return data_adapter_utils.get_numpy_iterator(self.generator) def get_jax_iterator(self): return data_adapter_utils.get_jax_iterator(self.generator) def get_tf_dataset(self): from keras.src.utils.module_utils import tensorflow as tf def convert_to_tf(x, spec): if data_adapter_utils.is_scipy_sparse(x): x = data_adapter_utils.scipy_sparse_to_tf_sparse(x) elif data_adapter_utils.is_jax_sparse(x): x = data_adapter_utils.jax_sparse_to_tf_sparse(x) if not spec.shape.is_compatible_with(x.shape): raise TypeError( f"Generator yielded an element of shape {x.shape} where " f"an element of shape {spec.shape} was expected. Your " "generator provides tensors with variable input " "dimensions other than the batch size. Make sure that the " "generator's first two batches do not have the same " "dimension value wherever there is a variable input " "dimension." ) return x def get_tf_iterator(): for batch in self.generator: batch = tree.map_structure( convert_to_tf, batch, self._output_signature ) yield batch if self._output_signature is None: self._output_signature = data_adapter_utils.get_tensor_spec( self._first_batches ) ds = tf.data.Dataset.from_generator( get_tf_iterator, output_signature=self._output_signature, ) ds = ds.prefetch(tf.data.AUTOTUNE) return ds def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self.generator) @property def num_batches(self): return None @property def batch_size(self): return None def peek_and_restore(generator): batches = list( itertools.islice( generator, data_adapter_utils.NUM_BATCHES_FOR_TENSOR_SPEC ) ) return batches, itertools.chain(batches, generator)
import itertools from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class GeneratorDataAdapter(DataAdapter): """Adapter for Python generators.""" def __init__(self, generator): first_batches, generator = peek_and_restore(generator) self.generator = generator self._first_batches = first_batches self._output_signature = None if not isinstance(first_batches[0], tuple): raise ValueError( "When passing a Python generator to a Keras model, " "the generator must return a tuple, either " "(input,) or (inputs, targets) or " "(inputs, targets, sample_weights). " f"Received: {first_batches[0]}" ) def get_numpy_iterator(self): return data_adapter_utils.get_numpy_iterator(self.generator) def get_jax_iterator(self): from keras.src.backend.jax.core import convert_to_tensor def convert_to_jax(x): if data_adapter_utils.is_scipy_sparse(x): return data_adapter_utils.scipy_sparse_to_jax_sparse(x) elif data_adapter_utils.is_tensorflow_sparse(x): return data_adapter_utils.tf_sparse_to_jax_sparse(x) return convert_to_tensor(x) for batch in self.generator: yield tree.map_structure(convert_to_jax, batch) def get_tf_dataset(self): from keras.src.utils.module_utils import tensorflow as tf def convert_to_tf(x, spec): if data_adapter_utils.is_scipy_sparse(x): x = data_adapter_utils.scipy_sparse_to_tf_sparse(x) elif data_adapter_utils.is_jax_sparse(x): x = data_adapter_utils.jax_sparse_to_tf_sparse(x) if not spec.shape.is_compatible_with(x.shape): raise TypeError( f"Generator yielded an element of shape {x.shape} where " f"an element of shape {spec.shape} was expected. Your " "generator provides tensors with variable input " "dimensions other than the batch size. Make sure that the " "generator's first two batches do not have the same " "dimension value wherever there is a variable input " "dimension." ) return x def get_tf_iterator(): for batch in self.generator: batch = tree.map_structure( convert_to_tf, batch, self._output_signature ) yield batch if self._output_signature is None: self._output_signature = data_adapter_utils.get_tensor_spec( self._first_batches ) ds = tf.data.Dataset.from_generator( get_tf_iterator, output_signature=self._output_signature, ) ds = ds.prefetch(tf.data.AUTOTUNE) return ds def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self.generator) @property def num_batches(self): return None @property def batch_size(self): return None def peek_and_restore(generator): batches = list( itertools.islice( generator, data_adapter_utils.NUM_BATCHES_FOR_TENSOR_SPEC ) ) return batches, itertools.chain(batches, generator)
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyCustomLoss, CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .ddq_detr_aux_loss import DDQAuxLoss from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalCustomLoss, FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, SIoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .l2_loss import L2Loss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .triplet_loss import TripletLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'SIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss', 'L2Loss', 'TripletLoss', 'DDQAuxLoss', 'CrossEntropyCustomLoss', 'FocalCustomLoss' ]
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .ddq_detr_aux_loss import DDQAuxLoss from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, SIoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .l2_loss import L2Loss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .triplet_loss import TripletLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'SIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss', 'L2Loss', 'TripletLoss', 'DDQAuxLoss' ]
_base_ = './detr_r50_8xb2-500e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[512]))
_base_ = './detr_r50_8xb2-500e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), bbox_head=dict(in_channels=512))
_base_ = './scnet_x101_64x4d_fpn_20e_coco.py' data = dict(samples_per_gpu=1, workers_per_gpu=1) optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
_base_ = './scnet_x101_64x4d_fpn_20e_coco.py' data = dict(samples_per_gpu=1, workers_per_gpu=1) optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
from typing import Optional, Union, Callable, Tuple, TYPE_CHECKING, Dict if TYPE_CHECKING: # pragma: no cover import numpy as np from docarray.typing import ArrayType from docarray import DocumentArray class MatchMixin: """A mixin that provides match functionality to DocumentArrays""" def match( self, darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, filter: Optional[Dict] = None, only_id: bool = False, use_scipy: bool = False, device: str = 'cpu', num_worker: Optional[int] = 1, on: Optional[str] = None, **kwargs, ) -> None: """Compute embedding based nearest neighbour in `another` for each Document in `self`, and store results in `matches`. .. note:: 'cosine', 'euclidean', 'sqeuclidean' are supported natively without extra dependency. You can use other distance metric provided by ``scipy``, such as `braycurtis`, `canberra`, `chebyshev`, `cityblock`, `correlation`, `cosine`, `dice`, `euclidean`, `hamming`, `jaccard`, `jensenshannon`, `kulsinski`, `mahalanobis`, `matching`, `minkowski`, `rogerstanimoto`, `russellrao`, `seuclidean`, `sokalmichener`, `sokalsneath`, `sqeuclidean`, `wminkowski`, `yule`. To use scipy metric, please set ``use_scipy=True``. - To make all matches values in [0, 1], use ``dA.match(dB, normalization=(0, 1))`` - To invert the distance as score and make all values in range [0, 1], use ``dA.match(dB, normalization=(1, 0))``. Note, how ``normalization`` differs from the previous. - If a custom metric distance is provided. Make sure that it returns scores as distances and not similarity, meaning the smaller the better. :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param filter: filter query used for pre-filtering :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param device: the computational device for ``.match()``, can be either `cpu` or `cuda`. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. :param on: specifies a subindex to search on. If set, the returned DocumentArray will be retrieved from the given subindex. :param kwargs: other kwargs. """ if not (self and darray): return for d in self: d.matches.clear() match_docs = darray.find( self, metric=metric, limit=limit, normalization=normalization, metric_name=metric_name, batch_size=batch_size, exclude_self=exclude_self, filter=filter, only_id=only_id, use_scipy=use_scipy, device=device, num_worker=num_worker, on=on, **kwargs, ) if not isinstance(match_docs, list): match_docs = [match_docs] for m, d in zip(match_docs, self): d.matches = m
from typing import Optional, Union, Callable, Tuple, TYPE_CHECKING, Dict if TYPE_CHECKING: import numpy as np from docarray.typing import ArrayType from docarray import DocumentArray class MatchMixin: """A mixin that provides match functionality to DocumentArrays""" def match( self, darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, filter: Optional[Dict] = None, only_id: bool = False, use_scipy: bool = False, device: str = 'cpu', num_worker: Optional[int] = 1, on: Optional[str] = None, **kwargs, ) -> None: """Compute embedding based nearest neighbour in `another` for each Document in `self`, and store results in `matches`. .. note:: 'cosine', 'euclidean', 'sqeuclidean' are supported natively without extra dependency. You can use other distance metric provided by ``scipy``, such as `braycurtis`, `canberra`, `chebyshev`, `cityblock`, `correlation`, `cosine`, `dice`, `euclidean`, `hamming`, `jaccard`, `jensenshannon`, `kulsinski`, `mahalanobis`, `matching`, `minkowski`, `rogerstanimoto`, `russellrao`, `seuclidean`, `sokalmichener`, `sokalsneath`, `sqeuclidean`, `wminkowski`, `yule`. To use scipy metric, please set ``use_scipy=True``. - To make all matches values in [0, 1], use ``dA.match(dB, normalization=(0, 1))`` - To invert the distance as score and make all values in range [0, 1], use ``dA.match(dB, normalization=(1, 0))``. Note, how ``normalization`` differs from the previous. - If a custom metric distance is provided. Make sure that it returns scores as distances and not similarity, meaning the smaller the better. :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param filter: filter query used for pre-filtering :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param device: the computational device for ``.match()``, can be either `cpu` or `cuda`. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. :param on: specifies a subindex to search on. If set, the returned DocumentArray will be retrieved from the given subindex. :param kwargs: other kwargs. """ if not (self and darray): return for d in self: d.matches.clear() match_docs = darray.find( self, metric=metric, limit=limit, normalization=normalization, metric_name=metric_name, batch_size=batch_size, exclude_self=exclude_self, filter=filter, only_id=only_id, use_scipy=use_scipy, device=device, num_worker=num_worker, on=on, **kwargs, ) if not isinstance(match_docs, list): match_docs = [match_docs] for m, d in zip(match_docs, self): d.matches = m
from typing import Union, Optional, Iterable from ..base.seqlike import BaseSequenceLikeMixin from .... import Document from ...memory import DocumentArrayInMemory class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods""" def _insert_doc_at_idx(self, doc, idx: Optional[int] = None): if idx is None: idx = len(self) self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, idx), ) self._offset2ids.insert(idx, doc.id) def _shift_index_right_backward(self, start: int): idx = len(self) - 1 while idx >= start: self._sql( f'UPDATE {self._table_name} SET item_order = ? WHERE item_order = ?', (idx + 1, idx), ) idx -= 1 def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ length = len(self) if index < 0: index = length + index index = max(0, min(length, index)) self._shift_index_right_backward(index) self._insert_doc_at_idx(doc=value, idx=index) self._commit() def append(self, doc: 'Document') -> None: self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, len(self)), ) self._offset2ids.append(doc.id) self._commit() def __del__(self) -> None: super().__del__() if not self._persist: self._sql( 'DELETE FROM metadata WHERE table_name=? AND container_type=?', (self._table_name, self.__class__.__name__), ) self._sql(f'DROP TABLE IF EXISTS {self._table_name}') self._commit() def __contains__(self, item: Union[str, 'Document']): if isinstance(item, str): r = self._sql(f'SELECT 1 FROM {self._table_name} WHERE doc_id=?', (item,)) return len(list(r)) > 0 elif isinstance(item, Document): return item.id in self # fall back to str check else: return False def __len__(self) -> int: request = self._sql(f'SELECT COUNT(*) FROM {self._table_name}') return request.fetchone()[0] def __repr__(self): return f'<DocumentArray[SQLite] (length={len(self)}) at {id(self)}>' def __eq__(self, other): """In sqlite backend, data are considered as identical if configs point to the same database source""" return ( type(self) is type(other) and type(self._config) is type(other._config) and self._config == other._config ) def extend(self, docs: Iterable['Document']) -> None: self_len = len(self) for doc in docs: self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, self_len), ) self._offset2ids.append(doc.id) self_len += 1 self._commit()
from typing import Union, Optional from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods""" def _insert_doc_at_idx(self, doc, idx: Optional[int] = None): if idx is None: idx = len(self) self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, idx), ) self._offset2ids.insert(idx, doc.id) def _shift_index_right_backward(self, start: int): idx = len(self) - 1 while idx >= start: self._sql( f'UPDATE {self._table_name} SET item_order = ? WHERE item_order = ?', (idx + 1, idx), ) idx -= 1 def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ length = len(self) if index < 0: index = length + index index = max(0, min(length, index)) self._shift_index_right_backward(index) self._insert_doc_at_idx(doc=value, idx=index) self._commit() def append(self, doc: 'Document') -> None: self._sql( f'INSERT INTO {self._table_name} (doc_id, serialized_value, item_order) VALUES (?, ?, ?)', (doc.id, doc, len(self)), ) self._offset2ids.append(doc.id) self._commit() def __del__(self) -> None: super().__del__() if not self._persist: self._sql( 'DELETE FROM metadata WHERE table_name=? AND container_type=?', (self._table_name, self.__class__.__name__), ) self._sql(f'DROP TABLE IF EXISTS {self._table_name}') self._commit() def __contains__(self, item: Union[str, 'Document']): if isinstance(item, str): r = self._sql(f'SELECT 1 FROM {self._table_name} WHERE doc_id=?', (item,)) return len(list(r)) > 0 elif isinstance(item, Document): return item.id in self # fall back to str check else: return False def __len__(self) -> int: r = self._sql(f'SELECT COUNT(*) FROM {self._table_name}') return r.fetchone()[0] def __repr__(self): return f'<DocumentArray[SQLite] (length={len(self)}) at {id(self)}>' def __eq__(self, other): """In sqlite backend, data are considered as identical if configs point to the same database source""" return ( type(self) is type(other) and type(self._config) is type(other._config) and self._config == other._config )
from docarray import Document, DocumentArray import pytest @pytest.mark.filterwarnings('ignore::UserWarning') def test_add_ignore_existing_doc_id(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_add_ignore_existing_doc_id', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), ] ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[2, 2, 2]), Document(id='r6', embedding=[4, 4, 4]), ] ) indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc) == len(elastic_doc[:, 'embedding']) assert len(elastic_doc) == indexed_offset_count assert len(elastic_doc[:, 'embedding']) == 7 @pytest.mark.filterwarnings('ignore::UserWarning') def test_add_skip_wrong_data_type_and_fix_offset(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'index_name': 'test_add_skip_wrong_data_type_and_fix_offset', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='0', price=1000), Document(id='1', price=20000), Document(id='2', price=103000), ] ) with pytest.raises(IndexError): with elastic_doc: elastic_doc.extend( [ Document(id='0', price=10000), Document(id='1', price=20000), Document(id='3', price=30000), Document(id='4', price=100000000000), # overflow int32 Document(id='5', price=2000), Document(id='6', price=100000000000), # overflow int32 Document(id='7', price=30000), ] ) expected_ids = ['0', '1', '2', '3', '5', '7'] assert len(elastic_doc) == 6 assert len(elastic_doc[:, 'id']) == 6 assert elastic_doc[:, 'id'] == expected_ids assert elastic_doc._offset2ids.ids == expected_ids
from docarray import Document, DocumentArray import pytest def test_add_ignore_existing_doc_id(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_add_ignore_existing_doc_id', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), ] ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[2, 2, 2]), Document(id='r6', embedding=[4, 4, 4]), ] ) indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc) == len(elastic_doc[:, 'embedding']) assert len(elastic_doc) == indexed_offset_count assert len(elastic_doc[:, 'embedding']) == 7 def test_add_skip_wrong_data_type_and_fix_offset(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'index_name': 'test_add_skip_wrong_data_type_and_fix_offset', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='0', price=1000), Document(id='1', price=20000), Document(id='2', price=103000), ] ) with pytest.raises(IndexError): with elastic_doc: elastic_doc.extend( [ Document(id='0', price=10000), Document(id='1', price=20000), Document(id='3', price=30000), Document(id='4', price=100000000000), # overflow int32 Document(id='5', price=2000), Document(id='6', price=100000000000), # overflow int32 Document(id='7', price=30000), ] ) expected_ids = ['0', '1', '2', '3', '5', '7'] assert len(elastic_doc) == 6 assert len(elastic_doc[:, 'id']) == 6 assert elastic_doc[:, 'id'] == expected_ids assert elastic_doc._offset2ids.ids == expected_ids
from keras.src import backend from keras.src.api_export import keras_export from keras.src.dtype_policies import dtype_policy from keras.src.dtype_policies.dtype_policy import QUANTIZATION_MODES from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedFloat8DTypePolicy from keras.src.dtype_policies.dtype_policy_map import DTypePolicyMap ALL_OBJECTS = { DTypePolicy, FloatDTypePolicy, QuantizedDTypePolicy, QuantizedFloat8DTypePolicy, DTypePolicyMap, } ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS} @keras_export("keras.dtype_policies.serialize") def serialize(dtype_policy): """Serializes `DTypePolicy` instance. Args: dtype_policy: A Keras `DTypePolicy` instance. Returns: `DTypePolicy` configuration dictionary. """ from keras.src.saving import serialization_lib return serialization_lib.serialize_keras_object(dtype_policy) @keras_export("keras.dtype_policies.deserialize") def deserialize(config, custom_objects=None): """Deserializes a serialized `DTypePolicy` instance. Args: config: `DTypePolicy` configuration. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. Returns: A Keras `DTypePolicy` instance. """ from keras.src.saving import serialization_lib return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.dtype_policies.get") def get(identifier): """Retrieves a Keras `DTypePolicy` instance. The `identifier` may be the string name of a `DTypePolicy` class. >>> policy = dtype_policies.get("mixed_bfloat16") >>> type(policy) <class '...DTypePolicy'> You can also specify `config` of the dtype policy to this function by passing dict containing `class_name` and `config` as an identifier. Also note that the `class_name` must map to a `DTypePolicy` class >>> identifier = {"class_name": "DTypePolicy", ... "config": {"name": "float32"}} >>> policy = dtype_policies.get(identifier) >>> type(policy) <class '...DTypePolicy'> Args: identifier: A dtype policy identifier. One of `None` or string name of a `DTypePolicy` or `DTypePolicy` configuration dictionary or a `DTypePolicy` instance. Returns: A Keras `DTypePolicy` instance. """ from keras.src.dtype_policies.dtype_policy import ( _get_quantized_dtype_policy_by_str, ) if identifier is None: return dtype_policy.dtype_policy() if isinstance(identifier, DTypePolicy): return identifier if isinstance(identifier, dict): return deserialize(identifier) if isinstance(identifier, str): if identifier.startswith(QUANTIZATION_MODES): return _get_quantized_dtype_policy_by_str(identifier) else: return DTypePolicy(identifier) try: return DTypePolicy(backend.standardize_dtype(identifier)) except: raise ValueError( "Cannot interpret `dtype` argument. Expected a string " f"or an instance of DTypePolicy. Received: dtype={identifier}" )
from keras.src import backend from keras.src.api_export import keras_export from keras.src.dtype_policies import dtype_policy from keras.src.dtype_policies.dtype_policy import QUANTIZATION_MODES from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedFloat8DTypePolicy from keras.src.dtype_policies.dtype_policy_map import DTypePolicyMap ALL_OBJECTS = { DTypePolicy, FloatDTypePolicy, QuantizedDTypePolicy, QuantizedFloat8DTypePolicy, DTypePolicyMap, } ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS} @keras_export("keras.dtype_policies.serialize") def serialize(dtype_policy): """Serializes `DTypePolicy` instance. Args: dtype_policy: A Keras `DTypePolicy` instance. Returns: `DTypePolicy` configuration dictionary. """ from keras.src.saving import serialization_lib return serialization_lib.serialize_keras_object(dtype_policy) @keras_export("keras.dtype_policies.deserialize") def deserialize(config, custom_objects=None): """Deserializes a serialized `DTypePolicy` instance. Args: config: `DTypePolicy` configuration. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. Returns: A Keras `DTypePolicy` instance. """ from keras.src.saving import serialization_lib return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.dtype_policies.get") def get(identifier): """Retrieves a Keras `DTypePolicy` instance. The `identifier` may be the string name of a `DTypePolicy` class. >>> policy = dtype_policies.get("mixed_bfloat16") >>> type(policy) <class '...FloatDTypePolicy'> You can also specify `config` of the dtype policy to this function by passing dict containing `class_name` and `config` as an identifier. Also note that the `class_name` must map to a `DTypePolicy` class >>> identifier = {"class_name": "FloatDTypePolicy", ... "config": {"name": "float32"}} >>> policy = dtype_policies.get(identifier) >>> type(policy) <class '...FloatDTypePolicy'> Args: identifier: A dtype policy identifier. One of `None` or string name of a `DTypePolicy` or `DTypePolicy` configuration dictionary or a `DTypePolicy` instance. Returns: A Keras `DTypePolicy` instance. """ from keras.src.dtype_policies.dtype_policy import ( _get_quantized_dtype_policy_by_str, ) if identifier is None: return dtype_policy.dtype_policy() if isinstance(identifier, DTypePolicy): return identifier if isinstance(identifier, dict): return deserialize(identifier) if isinstance(identifier, str): if identifier.startswith(QUANTIZATION_MODES): return _get_quantized_dtype_policy_by_str(identifier) else: return FloatDTypePolicy(identifier) try: return FloatDTypePolicy(backend.standardize_dtype(identifier)) except: raise ValueError( "Cannot interpret `dtype` argument. Expected a string " f"or an instance of DTypePolicy. Received: dtype={identifier}" )
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import Image REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = Image(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(Image, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(Image, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(Image, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() def test_image_shortcut_doc(): class MyDoc(BaseDocument): image: Image image2: Image image3: Image doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = Image(url=REMOTE_JPG) img.bytes = img.url.load_bytes() @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = Image(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes = img.tensor.to_bytes() assert isinstance(img.bytes, bytes) assert len(img.bytes) > 0
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import Image REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = Image(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(Image, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(Image, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(Image, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() def test_image_shortcut_doc(): class MyDoc(BaseDocument): image: Image image2: Image image3: Image doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all()
from __future__ import annotations from sentence_transformers.sparse_encoder.losses.CSRLoss import CSRLoss from sentence_transformers.sparse_encoder.losses.CSRReconstructionLoss import ( CSRReconstructionLoss, ) from sentence_transformers.sparse_encoder.losses.SparseAnglELoss import SparseAnglELoss from sentence_transformers.sparse_encoder.losses.SparseCachedGISTEmbedLoss import ( SparseCachedGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCachedMultipleNegativesRankingLoss import ( SparseCachedMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import ( SparseCoSENTLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCosineSimilarityLoss import ( SparseCosineSimilarityLoss, ) from sentence_transformers.sparse_encoder.losses.SparseGISTEmbedLoss import ( SparseGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseMarginMSELoss import ( SparseMarginMSELoss, ) from sentence_transformers.sparse_encoder.losses.SparseMSELoss import SparseMSELoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseTripletLoss import ( SparseTripletLoss, ) __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", ]
from __future__ import annotations from sentence_transformers.sparse_encoder.losses.CSRLoss import CSRLoss from sentence_transformers.sparse_encoder.losses.CSRReconstructionLoss import ( CSRReconstructionLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCachedGISTEmbedLoss import ( SparseCachedGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCachedMultipleNegativesRankingLoss import ( SparseCachedMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import ( SparseCoSENTLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCosineSimilarityLoss import ( SparseCosineSimilarityLoss, ) from sentence_transformers.sparse_encoder.losses.SparseGISTEmbedLoss import ( SparseGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseMarginMSELoss import ( SparseMarginMSELoss, ) from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseTripletLoss import ( SparseTripletLoss, ) __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", ]
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py PATH_TO_TRANSFORMERS = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)` _re_checkpoint = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "TimmWrapperConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", "GraniteConfig", "GraniteMoeConfig", "GraniteMoeHybridConfig", "Qwen3MoeConfig", "GraniteSpeechConfig", } def get_checkpoint_from_config_class(config_class): checkpoint = None # source code of `config_class` config_source = inspect.getsource(config_class) checkpoints = _re_checkpoint.findall(config_source) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('google-bert/bert-base-uncased', 'https://huggingface.co/google-bert/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/"): ckpt_link = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link ckpt_link_from_name = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: checkpoint = ckpt_name break return checkpoint def check_config_docstrings_have_checkpoints(): configs_without_checkpoint = [] for config_class in list(CONFIG_MAPPING.values()): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue checkpoint = get_checkpoint_from_config_class(config_class) name = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(name) if len(configs_without_checkpoint) > 0: message = "\n".join(sorted(configs_without_checkpoint)) raise ValueError( f"The following configurations don't contain any valid checkpoint:\n{message}\n\n" "The requirement is to include a link pointing to one of the models of this architecture in the " "docstring of the config classes listed above. The link should have be a markdown format like " "[myorg/mymodel](https://huggingface.co/myorg/mymodel)." ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py PATH_TO_TRANSFORMERS = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)` _re_checkpoint = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "TimmWrapperConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", "GraniteConfig", "GraniteMoeConfig", "Qwen3MoeConfig", "GraniteSpeechConfig", } def get_checkpoint_from_config_class(config_class): checkpoint = None # source code of `config_class` config_source = inspect.getsource(config_class) checkpoints = _re_checkpoint.findall(config_source) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('google-bert/bert-base-uncased', 'https://huggingface.co/google-bert/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/"): ckpt_link = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link ckpt_link_from_name = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: checkpoint = ckpt_name break return checkpoint def check_config_docstrings_have_checkpoints(): configs_without_checkpoint = [] for config_class in list(CONFIG_MAPPING.values()): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue checkpoint = get_checkpoint_from_config_class(config_class) name = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(name) if len(configs_without_checkpoint) > 0: message = "\n".join(sorted(configs_without_checkpoint)) raise ValueError( f"The following configurations don't contain any valid checkpoint:\n{message}\n\n" "The requirement is to include a link pointing to one of the models of this architecture in the " "docstring of the config classes listed above. The link should have be a markdown format like " "[myorg/mymodel](https://huggingface.co/myorg/mymodel)." ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from ..builder import DETECTORS from .single_stage_instance_seg import SingleStageInstanceSegmentor @DETECTORS.register_module() class SOLOv2(SingleStageInstanceSegmentor): """`SOLOv2: Dynamic and Fast Instance Segmentation <https://arxiv.org/abs/2003.10152>`_ """ def __init__(self, backbone: ConfigType, neck: OptConfigType = None, bbox_head: OptConfigType = None, mask_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from ..builder import DETECTORS from .single_stage_instance_seg import SingleStageInstanceSegmentor @DETECTORS.register_module() class SOLOv2(SingleStageInstanceSegmentor): """`SOLOv2: Dynamic and Fast Instance Segmentation <https://arxiv.org/abs/2003.10152>`_ """ def __init__(self, backbone: ConfigType, neck: OptConfigType = None, bbox_head: OptConfigType = None, mask_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import SOLOV2Head from mmdet.structures.mask import BitmapMasks def _rand_masks(num_items, bboxes, img_w, img_h): rng = np.random.RandomState(0) masks = np.zeros((num_items, img_h, img_w)) for i, bbox in enumerate(bboxes): bbox = bbox.astype(np.int32) mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) > 0.3).astype(np.int64) masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask return BitmapMasks(masks, height=img_h, width=img_w) def _fake_mask_feature_head(): mask_feature_head = ConfigDict( feat_channels=128, start_level=0, end_level=3, out_channels=256, mask_stride=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)) return mask_feature_head class TestSOLOv2Head(TestCase): def test_solov2_head_loss(self): """Tests mask head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'ori_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) }] mask_feature_head = _fake_mask_feature_head() mask_head = SOLOV2Head( num_classes=4, in_channels=1, mask_feature_head=mask_feature_head) # SOLO head expects a multiple levels of features per image feats = [] for i in range(len(mask_head.strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))) feats = tuple(feats) mask_outs = mask_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty(0, 4) gt_instances.labels = torch.LongTensor([]) gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s) empty_gt_losses = mask_head.loss_by_feat( *mask_outs, batch_gt_instances=[gt_instances], batch_img_metas=img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_mask_loss = empty_gt_losses['loss_mask'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_mask_loss.item(), 0, 'there should be no mask loss when there are no true mask') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s) one_gt_losses = mask_head.loss_by_feat( *mask_outs, batch_gt_instances=[gt_instances], batch_img_metas=img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_mask_loss = one_gt_losses['loss_mask'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_mask_loss.item(), 0, 'mask loss should be non-zero') def test_solov2_head_empty_result(self): s = 256 img_metas = { 'img_shape': (s, s, 3), 'ori_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) } mask_feature_head = _fake_mask_feature_head() mask_head = SOLOV2Head( num_classes=4, in_channels=1, mask_feature_head=mask_feature_head) kernel_preds = torch.empty(0, 128) cls_scores = torch.empty(0, 80) mask_feats = torch.empty(0, 16, 16) test_cfg = ConfigDict( score_thr=0.1, mask_thr=0.5, ) results = mask_head._predict_by_feat_single( kernel_preds=kernel_preds, cls_scores=cls_scores, mask_feats=mask_feats, img_meta=img_metas, cfg=test_cfg) self.assertIsInstance(results, InstanceData) self.assertEqual(len(results), 0)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import SOLOV2Head from mmdet.structures.mask import BitmapMasks def _rand_masks(num_items, bboxes, img_w, img_h): rng = np.random.RandomState(0) masks = np.zeros((num_items, img_h, img_w)) for i, bbox in enumerate(bboxes): bbox = bbox.astype(np.int32) mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) > 0.3).astype(np.int) masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask return BitmapMasks(masks, height=img_h, width=img_w) def _fake_mask_feature_head(): mask_feature_head = ConfigDict( feat_channels=128, start_level=0, end_level=3, out_channels=256, mask_stride=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)) return mask_feature_head class TestSOLOv2Head(TestCase): def test_solov2_head_loss(self): """Tests mask head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'ori_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) }] mask_feature_head = _fake_mask_feature_head() mask_head = SOLOV2Head( num_classes=4, in_channels=1, mask_feature_head=mask_feature_head) # SOLO head expects a multiple levels of features per image feats = [] for i in range(len(mask_head.strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))) feats = tuple(feats) mask_outs = mask_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty(0, 4) gt_instances.labels = torch.LongTensor([]) gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s) empty_gt_losses = mask_head.loss_by_feat( *mask_outs, batch_gt_instances=[gt_instances], batch_img_metas=img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_mask_loss = empty_gt_losses['loss_mask'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_mask_loss.item(), 0, 'there should be no mask loss when there are no true mask') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s) one_gt_losses = mask_head.loss_by_feat( *mask_outs, batch_gt_instances=[gt_instances], batch_img_metas=img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_mask_loss = one_gt_losses['loss_mask'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_mask_loss.item(), 0, 'mask loss should be non-zero') def test_solov2_head_empty_result(self): s = 256 img_metas = { 'img_shape': (s, s, 3), 'ori_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) } mask_feature_head = _fake_mask_feature_head() mask_head = SOLOV2Head( num_classes=4, in_channels=1, mask_feature_head=mask_feature_head) kernel_preds = torch.empty(0, 128) cls_scores = torch.empty(0, 80) mask_feats = torch.empty(0, 16, 16) test_cfg = ConfigDict( score_thr=0.1, mask_thr=0.5, ) results = mask_head._predict_by_feat_single( kernel_preds=kernel_preds, cls_scores=cls_scores, mask_feats=mask_feats, img_meta=img_metas, cfg=test_cfg) self.assertIsInstance(results, InstanceData) self.assertEqual(len(results), 0)
from __future__ import annotations import logging from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator logger = logging.getLogger(__name__) class AzureAiServicesTextAnalyticsForHealthTool(BaseTool): """Tool that queries the Azure AI Services Text Analytics for Health API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/language-service/text-analytics-for-health/quickstart?pivots=programming-language-python """ azure_ai_services_key: str = "" #: :meta private: azure_ai_services_endpoint: str = "" #: :meta private: text_analytics_client: Any #: :meta private: name: str = "azure_ai_services_text_analytics_for_health" description: str = ( "A wrapper around Azure AI Services Text Analytics for Health. " "Useful for when you need to identify entities in healthcare data. " "Input should be text." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" ) azure_ai_services_endpoint = get_from_dict_or_env( values, "azure_ai_services_endpoint", "AZURE_AI_SERVICES_ENDPOINT" ) try: import azure.ai.textanalytics as sdk from azure.core.credentials import AzureKeyCredential values["text_analytics_client"] = sdk.TextAnalyticsClient( endpoint=azure_ai_services_endpoint, credential=AzureKeyCredential(azure_ai_services_key), ) except ImportError: raise ImportError( "azure-ai-textanalytics is not installed. " "Run `pip install azure-ai-textanalytics` to install." ) return values def _text_analysis(self, text: str) -> Dict: poller = self.text_analytics_client.begin_analyze_healthcare_entities( [{"id": "1", "language": "en", "text": text}] ) result = poller.result() res_dict = {} docs = [doc for doc in result if not doc.is_error] if docs is not None: res_dict["entities"] = [ f"{x.text} is a healthcare entity of type {x.category}" for y in docs for x in y.entities ] return res_dict def _format_text_analysis_result(self, text_analysis_result: Dict) -> str: formatted_result = [] if "entities" in text_analysis_result: formatted_result.append( f"""The text contains the following healthcare entities: { ", ".join(text_analysis_result["entities"]) }""".replace("\n", " ") ) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text_analysis_result = self._text_analysis(query) return self._format_text_analysis_result(text_analysis_result) except Exception as e: raise RuntimeError( f"Error while running AzureAiServicesTextAnalyticsForHealthTool: {e}" )
from __future__ import annotations import logging from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator logger = logging.getLogger(__name__) class AzureAiServicesTextAnalyticsForHealthTool(BaseTool): # type: ignore[override] """Tool that queries the Azure AI Services Text Analytics for Health API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/language-service/text-analytics-for-health/quickstart?pivots=programming-language-python """ azure_ai_services_key: str = "" #: :meta private: azure_ai_services_endpoint: str = "" #: :meta private: text_analytics_client: Any #: :meta private: name: str = "azure_ai_services_text_analytics_for_health" description: str = ( "A wrapper around Azure AI Services Text Analytics for Health. " "Useful for when you need to identify entities in healthcare data. " "Input should be text." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" ) azure_ai_services_endpoint = get_from_dict_or_env( values, "azure_ai_services_endpoint", "AZURE_AI_SERVICES_ENDPOINT" ) try: import azure.ai.textanalytics as sdk from azure.core.credentials import AzureKeyCredential values["text_analytics_client"] = sdk.TextAnalyticsClient( endpoint=azure_ai_services_endpoint, credential=AzureKeyCredential(azure_ai_services_key), ) except ImportError: raise ImportError( "azure-ai-textanalytics is not installed. " "Run `pip install azure-ai-textanalytics` to install." ) return values def _text_analysis(self, text: str) -> Dict: poller = self.text_analytics_client.begin_analyze_healthcare_entities( [{"id": "1", "language": "en", "text": text}] ) result = poller.result() res_dict = {} docs = [doc for doc in result if not doc.is_error] if docs is not None: res_dict["entities"] = [ f"{x.text} is a healthcare entity of type {x.category}" for y in docs for x in y.entities ] return res_dict def _format_text_analysis_result(self, text_analysis_result: Dict) -> str: formatted_result = [] if "entities" in text_analysis_result: formatted_result.append( f"""The text contains the following healthcare entities: { ", ".join(text_analysis_result["entities"]) }""".replace("\n", " ") ) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text_analysis_result = self._text_analysis(query) return self._format_text_analysis_result(text_analysis_result) except Exception as e: raise RuntimeError( f"Error while running AzureAiServicesTextAnalyticsForHealthTool: {e}" )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from jina_commons.batching import get_docs_batch_generator from laserembeddings import Laser class LaserEncoder(Executor): """ LaserEncoder is a text encoder based on Facebook Research's LASER encoder. :class:`LaserEncoder` is a encoder based on Facebook Research's LASER (Language-Agnostic SEntence Representations) to compute multilingual sentence embeddings: https://github.com/facebookresearch/LASER This encoder is suitable for producing multi-lingual sentence embeddings, enabling you to have sentences from multiple languages in the same latent space. """ def __init__( self, path_to_bpe_codes: Optional[str] = None, path_to_bpe_vocab: Optional[str] = None, path_to_encoder: Optional[str] = None, download_data: bool = True, language: str = 'en', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param path_to_bpe_codes: path to bpe codes from Laser. Defaults to ``Laser.DEFAULT_BPE_CODES_FILE.`` :param path_to_bpe_vocab: path to bpe vocabs from Laser. Defaults to ``Laser.DEFAULT_BPE_VOCAB_FILE``. :param path_to_encoder: path to the encoder from Laser. Defaults to ``Laser.DEFAULT_ENCODER_FILE``. :param download_data: Whether data should be downloaded on initialization. This is convenient when just trying out the encoder, but should be turned off in a production setting (where you should already have the data on disk), as it can lead to large startup times. :param language: The default language of the text. Can be overriden by a request parameter. The full list of possible values can be found at [LASER](https://github.com/facebookresearch/LASER#supported-languages) with the language code ([ISO 639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes)) :param traversal_paths: traversal path of the Documents, (e.g. 'r', 'c') :param batch_size: size of each batch :param device: Device string ('cpu'/'cuda'/'cuda:2') """ super().__init__(*args, **kwargs) self.logger = JinaLogger(self.__class__.__name__) self._path_to_bpe_codes = path_to_bpe_codes self._path_to_bpe_vocab = path_to_bpe_vocab self._path_to_encoder = path_to_encoder self.device = device self.batch_size = batch_size self.traversal_paths = traversal_paths self.language = language if download_data: self.logger.info("Downloading data for the Laser model") subprocess.run( ['python', '-m', 'laserembeddings', 'download-models'], check=True ) self.model = Laser( bpe_codes=self._path_to_bpe_codes, bpe_vocab=self._path_to_bpe_vocab, encoder=self._path_to_encoder, embedding_options={'cpu': self.device == 'cpu'}, ) self.device = torch.device(device) self.model.bpeSentenceEmbedding.encoder.encoder.to(self.device) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path``, the ``batch_size`` and ``language``. For example, ``{'traversal_paths': ['r'], 'batch_size': 10}``. This will override the default parameters set at init. """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), needs_attr='text', ) for document_batch in document_batches_generator: text_batch = [d.text for d in document_batch] language = parameters.get('language', self.language) embeddings = self.model.embed_sentences(text_batch, lang=language) for document, embedding in zip(document_batch, embeddings): document.embedding = embedding
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from jina_commons.batching import get_docs_batch_generator from laserembeddings import Laser class LaserEncoder(Executor): """ LaserEncoder is a text encoder based on Facebook Research's LASER encoder. :class:`LaserEncoder` is a encoder based on Facebook Research's LASER (Language-Agnostic SEntence Representations) to compute multilingual sentence embeddings: https://github.com/facebookresearch/LASER This encoder is suitable for producing multi-lingual sentence embeddings, enabling you to have sentences from multiple languages in the same latent space. """ def __init__( self, path_to_bpe_codes: Optional[str] = None, path_to_bpe_vocab: Optional[str] = None, path_to_encoder: Optional[str] = None, download_data: bool = True, default_language: str = 'en', default_batch_size: int = 32, default_traversal_paths: Iterable[str] = ('r',), device: str = 'cpu', *args, **kwargs, ): """ :param path_to_bpe_codes: path to bpe codes from Laser. Defaults to ``Laser.DEFAULT_BPE_CODES_FILE.`` :param path_to_bpe_vocab: path to bpe vocabs from Laser. Defaults to ``Laser.DEFAULT_BPE_VOCAB_FILE``. :param path_to_encoder: path to the encoder from Laser. Defaults to ``Laser.DEFAULT_ENCODER_FILE``. :param download_data: Whether data should be downloaded on initialization. This is convenient when just trying out the encoder, but should be turned off in a production setting (where you should already have the data on disk), as it can lead to large startup times. :param default_language: The default language of the text. Can be overriden by a request parameter. The full list of possible values can be found at [LASER](https://github.com/facebookresearch/LASER#supported-languages) with the language code ([ISO 639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes)) :param default_batch_size: size of each batch :param default_traversal_paths: traversal path of the Documents, (e.g. 'r', 'c') :param device: Device string ('cpu'/'cuda'/'cuda:2') """ super().__init__(*args, **kwargs) self.logger = JinaLogger(self.__class__.__name__) self._path_to_bpe_codes = path_to_bpe_codes self._path_to_bpe_vocab = path_to_bpe_vocab self._path_to_encoder = path_to_encoder self.device = device self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths self.default_language = default_language if download_data: self.logger.info("Downloading data for the Laser model") subprocess.run( ['python', '-m', 'laserembeddings', 'download-models'], check=True ) self.model = Laser( bpe_codes=self._path_to_bpe_codes, bpe_vocab=self._path_to_bpe_vocab, encoder=self._path_to_encoder, embedding_options={'cpu': self.device == 'cpu'}, ) self.device = torch.device(device) self.model.bpeSentenceEmbedding.encoder.encoder.to(self.device) @requests def encode(self, docs: Optional[DocumentArray], parameters: dict, **kwargs): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path``, the ``batch_size`` and ``language``. For example, ``{'traversal_paths': ['r'], 'batch_size': 10}``. This will override the default parameters set at init. """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ) for document_batch in document_batches_generator: text_batch = [d.text for d in document_batch] language = parameters.get('language', self.default_language) embeddings = self.model.embed_sentences(text_batch, lang=language) for document, embedding in zip(document_batch, embeddings): document.embedding = embedding
"""Tests for training continuation.""" import json from typing import Any, Dict, TypeVar import numpy as np import pytest import xgboost as xgb # pylint: disable=too-many-locals def run_training_continuation_model_output(device: str, tree_method: str) -> None: """Run training continuation test.""" datasets = pytest.importorskip("sklearn.datasets") n_samples = 64 n_features = 32 X, y = datasets.make_regression(n_samples, n_features, random_state=1) dtrain = xgb.DMatrix(X, y) params = { "tree_method": tree_method, "max_depth": "2", "gamma": "0.1", "alpha": "0.01", "device": device, } bst_0 = xgb.train(params, dtrain, num_boost_round=64) dump_0 = bst_0.get_dump(dump_format="json") bst_1 = xgb.train(params, dtrain, num_boost_round=32) bst_1 = xgb.train(params, dtrain, num_boost_round=32, xgb_model=bst_1) dump_1 = bst_1.get_dump(dump_format="json") T = TypeVar("T", Dict[str, Any], float, str, int, list) def recursive_compare(obj_0: T, obj_1: T) -> None: if isinstance(obj_0, float): assert np.isclose(obj_0, obj_1, atol=1e-6) elif isinstance(obj_0, str): assert obj_0 == obj_1 elif isinstance(obj_0, int): assert obj_0 == obj_1 elif isinstance(obj_0, dict): for i in range(len(obj_0.items())): assert list(obj_0.keys())[i] == list(obj_1.keys())[i] if list(obj_0.keys())[i] != "missing": recursive_compare(list(obj_0.values()), list(obj_1.values())) else: for i, lhs in enumerate(obj_0): rhs = obj_1[i] recursive_compare(lhs, rhs) assert len(dump_0) == len(dump_1) for i, lhs in enumerate(dump_0): obj_0 = json.loads(lhs) obj_1 = json.loads(dump_1[i]) recursive_compare(obj_0, obj_1)
"""Tests for training continuation.""" import json from typing import Any, Dict, TypeVar import numpy as np import pytest import xgboost as xgb # pylint: disable=too-many-locals def run_training_continuation_model_output(device: str, tree_method: str) -> None: """Run training continuation test.""" datasets = pytest.importorskip("sklearn.datasets") n_samples = 64 n_features = 32 X, y = datasets.make_regression(n_samples, n_features, random_state=1) dtrain = xgb.DMatrix(X, y) params = { "tree_method": tree_method, "max_depth": "2", "gamma": "0.1", "alpha": "0.01", "device": device, } bst_0 = xgb.train(params, dtrain, num_boost_round=64) dump_0 = bst_0.get_dump(dump_format="json") bst_1 = xgb.train(params, dtrain, num_boost_round=32) bst_1 = xgb.train(params, dtrain, num_boost_round=32, xgb_model=bst_1) dump_1 = bst_1.get_dump(dump_format="json") T = TypeVar("T", Dict[str, Any], float, str, int, list) def recursive_compare(obj_0: T, obj_1: T) -> None: if isinstance(obj_0, float): assert np.isclose(obj_0, obj_1, atol=1e-6) elif isinstance(obj_0, str): assert obj_0 == obj_1 elif isinstance(obj_0, int): assert obj_0 == obj_1 elif isinstance(obj_0, dict): for i in range(len(obj_0.items())): assert list(obj_0.keys())[i] == list(obj_1.keys())[i] if list(obj_0.keys())[i] != "missing": recursive_compare(list(obj_0.values()), list(obj_1.values())) else: for i, lhs in enumerate(obj_0): rhs = obj_1[i] recursive_compare(lhs, rhs) assert len(dump_0) == len(dump_1) for i, lhs in enumerate(dump_0): obj_0 = json.loads(lhs) obj_1 = json.loads(dump_1[i]) recursive_compare(obj_0, obj_1)
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.backbones import ResNet from mmdet.models.utils import ResLayer as _ResLayer from mmdet.registry import MODELS @MODELS.register_module() class ResLayer(BaseModule): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None): super(ResLayer, self).__init__(init_cfg) self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = _ResLayer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module(f'layer{stage + 1}', res_layer) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be specified at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is a deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, f'layer{self.stage + 1}') out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.backbones import ResNet from mmdet.models.builder import SHARED_HEADS from mmdet.models.utils import ResLayer as _ResLayer @SHARED_HEADS.register_module() class ResLayer(BaseModule): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None): super(ResLayer, self).__init__(init_cfg) self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = _ResLayer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module(f'layer{stage + 1}', res_layer) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be specified at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is a deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, f'layer{self.stage + 1}') out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
""" Official evaluation script for v1.1 of the SQuAD dataset. """ import argparse import json import re import string import sys from collections import Counter def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article["paragraphs"]: for qa in paragraph["qas"]: total += 1 if qa["id"] not in predictions: message = "Unanswered question " + qa["id"] + " will receive score 0." print(message, file=sys.stderr) continue ground_truths = [x["text"] for x in qa["answers"]] prediction = predictions[qa["id"]] exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {"exact_match": exact_match, "f1": f1} if __name__ == "__main__": expected_version = "1.1" parser = argparse.ArgumentParser(description="Evaluation for SQuAD " + expected_version) parser.add_argument("dataset_file", help="Dataset file") parser.add_argument("prediction_file", help="Prediction File") args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if dataset_json["version"] != expected_version: print( "Evaluation expects v-" + expected_version + ", but got dataset with v-" + dataset_json["version"], file=sys.stderr, ) dataset = dataset_json["data"] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
""" Official evaluation script for v1.1 of the SQuAD dataset. """ import argparse import json import re import string import sys from collections import Counter def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article["paragraphs"]: for qa in paragraph["qas"]: total += 1 if qa["id"] not in predictions: message = "Unanswered question " + qa["id"] + " will receive score 0." print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x["text"], qa["answers"])) prediction = predictions[qa["id"]] exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {"exact_match": exact_match, "f1": f1} if __name__ == "__main__": expected_version = "1.1" parser = argparse.ArgumentParser(description="Evaluation for SQuAD " + expected_version) parser.add_argument("dataset_file", help="Dataset file") parser.add_argument("prediction_file", help="Prediction File") args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if dataset_json["version"] != expected_version: print( "Evaluation expects v-" + expected_version + ", but got dataset with v-" + dataset_json["version"], file=sys.stderr, ) dataset = dataset_json["data"] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess from pathlib import Path import pytest TEST_DIR = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='session', autouse=True) def create_model_weights(): path_to_model = os.path.join(TEST_DIR, 'model', 'model_state_dict.pth') if not os.path.isfile(path_to_model): os.system(f'python {os.path.join(TEST_DIR, "model", "external_model.py")}') yield if os.path.exists(path_to_model): os.remove(path_to_model) @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name @pytest.fixture(scope='session') def build_docker_image_gpu(docker_image_name: str) -> str: image_name = f'{docker_image_name}:gpu' subprocess.run( ['docker', 'build', '-t', image_name, '-f', 'Dockerfile.gpu', '.'], check=True ) return image_name
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import pytest TEST_DIR = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='session', autouse=True) def create_model_weights(): path_to_model = os.path.join(TEST_DIR, 'model', 'model_state_dict.pth') if not os.path.isfile(path_to_model): os.system(f'python {os.path.join(TEST_DIR, "model", "external_model.py")}') yield if os.path.exists(path_to_model): os.remove(path_to_model)
""" Wrapper script to run a command inside a Docker container """ import argparse import grp import itertools import os import pathlib import pwd import subprocess import sys import textwrap OPS_DIR = pathlib.Path(__file__).expanduser().resolve().parent PROJECT_ROOT_DIR = OPS_DIR.parent LINEWIDTH = 88 TEXT_WRAPPER = textwrap.TextWrapper( width=LINEWIDTH, initial_indent="", subsequent_indent=" ", break_long_words=False, break_on_hyphens=False, ) def parse_run_args(*, raw_run_args: str) -> list[str]: return [x for x in raw_run_args.split() if x] def get_user_ids() -> dict[str, str]: uid = os.getuid() gid = os.getgid() return { "CI_BUILD_UID": str(uid), "CI_BUILD_USER": pwd.getpwuid(uid).pw_name, "CI_BUILD_GID": str(gid), "CI_BUILD_GROUP": grp.getgrgid(gid).gr_name, } def fancy_print_cli_args(*, cli_args: list[str]) -> None: print( "=" * LINEWIDTH + "\n" + " \\\n".join(TEXT_WRAPPER.wrap(" ".join(cli_args))) + "\n" + "=" * LINEWIDTH + "\n", flush=True, ) def docker_run( *, image_uri: str, command_args: list[str], use_gpus: bool, workdir: pathlib.Path, user_ids: dict[str, str], extra_args: list[str], ) -> None: # Command-line arguments to be passed to `docker run` docker_run_cli_args = ["--rm", "--pid=host"] if use_gpus: docker_run_cli_args.extend(["--gpus", "all"]) docker_run_cli_args.extend(["-v", f"{workdir}:/workspace", "-w", "/workspace"]) docker_run_cli_args.extend( itertools.chain.from_iterable([["-e", f"{k}={v}"] for k, v in user_ids.items()]) ) docker_run_cli_args.extend(extra_args) docker_run_cli_args.append(image_uri) docker_run_cli_args.extend(command_args) cli_args = ["docker", "run"] + docker_run_cli_args fancy_print_cli_args(cli_args=cli_args) subprocess.run(cli_args, check=True, encoding="utf-8") def main(*, args: argparse.Namespace) -> None: run_args = parse_run_args(raw_run_args=args.run_args) user_ids = get_user_ids() if args.use_gpus: print("Using NVIDIA GPUs for `docker run`") if args.interactive: print("Using interactive mode for `docker run`") run_args.append("-it") docker_run( image_uri=args.image_uri, command_args=args.command_args, use_gpus=args.use_gpus, workdir=args.workdir, user_ids=user_ids, extra_args=run_args, ) if __name__ == "__main__": parser = argparse.ArgumentParser( usage=( f"{sys.argv[0]} --image-uri IMAGE_URI [--use-gpus] [--interactive] " "[--workdir WORKDIR] [--run-args RUN_ARGS] -- COMMAND_ARG " "[COMMAND_ARG ...]" ), description="Run tasks inside a Docker container", ) parser.add_argument( "--image-uri", type=str, required=True, help=( "Fully qualified image URI to identify the container, e.g. " "492475357299.dkr.ecr.us-west-2.amazonaws.com/xgb-ci.gpu:main" ), ) parser.add_argument( "--use-gpus", action="store_true", help=( "Grant the container access to NVIDIA GPUs; requires the NVIDIA " "Container Toolkit." ), ) parser.add_argument( "--interactive", action="store_true", help=( "Run the container in the interactive mode; requires an interactive shell " "(TTY). With this flag, you can use Ctrl-C to interrupt an long-running " "command." ), ) parser.add_argument( "--workdir", type=lambda p: pathlib.Path(p).expanduser().resolve(), default=PROJECT_ROOT_DIR, help="Path to working directory; if unset, use the project's root", ) parser.add_argument( "--run-args", type=str, default="", help=( "Argument(s) to be passed to `docker run`. When passing multiple " "arguments, use single quotes to wrap them. Example: " "--run-args '--cap-add SYS_PTRACE --shm-size=4g'" ), ) parser.add_argument( "command_args", metavar="COMMAND_ARG", type=str, nargs="+", help=( "Argument(s) for the command to execute. NOTE. Make sure to specify " "double-dash (--) to clearly distinguish between the command and the " "preceding parameters. Example: --run-args '--cap-add SYS_PTRACE " "--shm-size=4g' -- ./myprog" ), ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) parsed_args = parser.parse_args() main(args=parsed_args)
""" Wrapper script to run a command inside a Docker container """ import argparse import grp import itertools import os import pathlib import pwd import subprocess import sys import textwrap OPS_DIR = pathlib.Path(__file__).expanduser().resolve().parent PROJECT_ROOT_DIR = OPS_DIR.parent LINEWIDTH = 88 TEXT_WRAPPER = textwrap.TextWrapper( width=LINEWIDTH, initial_indent="", subsequent_indent=" ", break_long_words=False, break_on_hyphens=False, ) def parse_run_args(*, raw_run_args: str) -> list[str]: return [x for x in raw_run_args.split() if x] def get_user_ids() -> dict[str, str]: uid = os.getuid() gid = os.getgid() return { "CI_BUILD_UID": str(uid), "CI_BUILD_USER": pwd.getpwuid(uid).pw_name, "CI_BUILD_GID": str(gid), "CI_BUILD_GROUP": grp.getgrgid(gid).gr_name, } def fancy_print_cli_args(*, cli_args: list[str]) -> None: print( "=" * LINEWIDTH + "\n" + " \\\n".join(TEXT_WRAPPER.wrap(" ".join(cli_args))) + "\n" + "=" * LINEWIDTH + "\n", flush=True, ) def docker_run( *, container_tag: str, command_args: list[str], use_gpus: bool, workdir: pathlib.Path, user_ids: dict[str, str], extra_args: list[str], ) -> None: # Command-line arguments to be passed to `docker run` docker_run_cli_args = ["--rm", "--pid=host"] if use_gpus: docker_run_cli_args.extend(["--gpus", "all"]) docker_run_cli_args.extend(["-v", f"{workdir}:/workspace", "-w", "/workspace"]) docker_run_cli_args.extend( itertools.chain.from_iterable([["-e", f"{k}={v}"] for k, v in user_ids.items()]) ) docker_run_cli_args.extend(extra_args) docker_run_cli_args.append(container_tag) docker_run_cli_args.extend(command_args) cli_args = ["docker", "run"] + docker_run_cli_args fancy_print_cli_args(cli_args=cli_args) subprocess.run(cli_args, check=True, encoding="utf-8") def main(*, args: argparse.Namespace) -> None: run_args = parse_run_args(raw_run_args=args.run_args) user_ids = get_user_ids() if args.use_gpus: print("Using NVIDIA GPUs for `docker run`") if args.interactive: print("Using interactive mode for `docker run`") run_args.append("-it") docker_run( container_tag=args.container_tag, command_args=args.command_args, use_gpus=args.use_gpus, workdir=args.workdir, user_ids=user_ids, extra_args=run_args, ) if __name__ == "__main__": parser = argparse.ArgumentParser( usage=( f"{sys.argv[0]} --container-tag CONTAINER_TAG [--use-gpus] [--interactive] " "[--workdir WORKDIR] [--run-args RUN_ARGS] -- COMMAND_ARG " "[COMMAND_ARG ...]" ), description="Run tasks inside a Docker container", ) parser.add_argument( "--container-tag", type=str, required=True, help=( "Container tag to identify the container, e.g. " "492475357299.dkr.ecr.us-west-2.amazonaws.com/xgb-ci.gpu:main" ), ) parser.add_argument( "--use-gpus", action="store_true", help=( "Grant the container access to NVIDIA GPUs; requires the NVIDIA " "Container Toolkit." ), ) parser.add_argument( "--interactive", action="store_true", help=( "Run the container in the interactive mode; requires an interactive shell " "(TTY). With this flag, you can use Ctrl-C to interrupt an long-running " "command." ), ) parser.add_argument( "--workdir", type=lambda p: pathlib.Path(p).expanduser().resolve(), default=PROJECT_ROOT_DIR, help="Path to working directory; if unset, use the project's root", ) parser.add_argument( "--run-args", type=str, default="", help=( "Argument(s) to be passed to `docker run`. When passing multiple " "arguments, use single quotes to wrap them. Example: " "--run-args '--cap-add SYS_PTRACE --shm-size=4g'" ), ) parser.add_argument( "command_args", metavar="COMMAND_ARG", type=str, nargs="+", help=( "Argument(s) for the command to execute. NOTE. Make sure to specify " "double-dash (--) to clearly distinguish between the command and the " "preceding parameters. Example: --run-args '--cap-add SYS_PTRACE " "--shm-size=4g' -- ./myprog" ), ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) parsed_args = parser.parse_args() main(args=parsed_args)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.roi_heads.mask_heads import (DynamicMaskHead, FCNMaskHead, MaskIoUHead) from .utils import _dummy_bbox_sampling def test_mask_head_loss(): """Test mask head loss when mask target is empty.""" self = FCNMaskHead( num_convs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, num_classes=8) # Dummy proposals proposal_list = [ torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]), ] gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels) # create dummy mask import numpy as np from mmdet.core import BitmapMasks dummy_mask = np.random.randint(0, 2, (1, 160, 240), dtype=np.uint8) gt_masks = [BitmapMasks(dummy_mask, 160, 240)] # create dummy train_cfg train_cfg = mmcv.Config(dict(mask_size=12, mask_thr_binary=0.5)) # Create dummy features "extracted" for each sampled bbox num_sampled = sum(len(res.bboxes) for res in sampling_results) dummy_feats = torch.rand(num_sampled, 8, 6, 6) mask_pred = self.forward(dummy_feats) mask_targets = self.get_targets(sampling_results, gt_masks, train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.loss(mask_pred, mask_targets, pos_labels) onegt_mask_loss = sum(loss_mask['loss_mask']) assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' # test mask_iou_head mask_iou_head = MaskIoUHead( num_convs=1, num_fcs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, fc_out_channels=8, num_classes=8) pos_mask_pred = mask_pred[range(mask_pred.size(0)), pos_labels] mask_iou_pred = mask_iou_head(dummy_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_targets = mask_iou_head.get_targets(sampling_results, gt_masks, pos_mask_pred, mask_targets, train_cfg) loss_mask_iou = mask_iou_head.loss(pos_mask_iou_pred, mask_iou_targets) onegt_mask_iou_loss = loss_mask_iou['loss_mask_iou'].sum() assert onegt_mask_iou_loss.item() >= 0 # test dynamic_mask_head dummy_proposal_feats = torch.rand(num_sampled, 8) dynamic_mask_head = DynamicMaskHead( dynamic_conv_cfg=dict( type='DynamicConv', in_channels=8, feat_channels=8, out_channels=8, input_feat_shape=6, with_proj=False, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN')), num_convs=1, num_classes=8, in_channels=8, roi_feat_size=6) mask_pred = dynamic_mask_head(dummy_feats, dummy_proposal_feats) mask_target = dynamic_mask_head.get_targets(sampling_results, gt_masks, train_cfg) loss_mask = dynamic_mask_head.loss(mask_pred, mask_target, pos_labels) loss_mask = loss_mask['loss_mask'].sum() assert loss_mask.item() >= 0
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.roi_heads.mask_heads import (DynamicMaskHead, FCNMaskHead, MaskIoUHead) from .utils import _dummy_bbox_sampling def test_mask_head_loss(): """Test mask head loss when mask target is empty.""" self = FCNMaskHead( num_convs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, num_classes=8) # Dummy proposals proposal_list = [ torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]), ] gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels) # create dummy mask import numpy as np from mmdet.core import BitmapMasks dummy_mask = np.random.randint(0, 2, (1, 160, 240), dtype=np.uint8) gt_masks = [BitmapMasks(dummy_mask, 160, 240)] # create dummy train_cfg train_cfg = mmcv.Config(dict(mask_size=12, mask_thr_binary=0.5)) # Create dummy features "extracted" for each sampled bbox num_sampled = sum(len(res.bboxes) for res in sampling_results) dummy_feats = torch.rand(num_sampled, 8, 6, 6) mask_pred = self.forward(dummy_feats) mask_targets = self.get_targets(sampling_results, gt_masks, train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.loss(mask_pred, mask_targets, pos_labels) onegt_mask_loss = sum(loss_mask['loss_mask']) assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' # test mask_iou_head mask_iou_head = MaskIoUHead( num_convs=1, num_fcs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, fc_out_channels=8, num_classes=8) pos_mask_pred = mask_pred[range(mask_pred.size(0)), pos_labels] mask_iou_pred = mask_iou_head(dummy_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_targets = mask_iou_head.get_targets(sampling_results, gt_masks, pos_mask_pred, mask_targets, train_cfg) loss_mask_iou = mask_iou_head.loss(pos_mask_iou_pred, mask_iou_targets) onegt_mask_iou_loss = loss_mask_iou['loss_mask_iou'].sum() assert onegt_mask_iou_loss.item() >= 0 # test dynamic_mask_head dummy_proposal_feats = torch.rand(num_sampled, 8) dynamic_mask_head = DynamicMaskHead( dynamic_conv_cfg=dict( type='DynamicConv', in_channels=8, feat_channels=8, out_channels=8, input_feat_shape=6, with_proj=False, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN')), num_convs=1, num_classes=8, in_channels=8, roi_feat_size=6) mask_pred = dynamic_mask_head(dummy_feats, dummy_proposal_feats) mask_target = dynamic_mask_head.get_targets(sampling_results, gt_masks, train_cfg) loss_mask = dynamic_mask_head.loss(mask_pred, mask_target, pos_labels) loss_mask = loss_mask['loss_mask'].sum() assert loss_mask.item() >= 0
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock, patch from mmdet.engine.hooks import YOLOXModeSwitchHook class TestYOLOXModeSwitchHook(TestCase): @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_is_model_wrapper_and_persistent_workers_on( self, mock_is_model_wrapper): mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.detector.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.detector.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertTrue(runner.train_dataloader._DataLoader__initialized) def test_not_model_wrapper_and_persistent_workers_off(self): runner = Mock() runner.model = Mock() runner.model.detector.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = False runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.model.detector.bbox_head.use_l1) self.assertTrue(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.train_dataloader._DataLoader__initialized) @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_initialize_after_switching(self, mock_is_model_wrapper): # This simulates the resumption after the switching. mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 285 runner.max_epochs = 300 # epoch + 1 > max_epochs - num_last_epochs . hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock, patch from mmdet.engine.hooks import YOLOXModeSwitchHook class TestYOLOXModeSwitchHook(TestCase): @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_is_model_wrapper_and_persistent_workers_on( self, mock_is_model_wrapper): mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertTrue(runner.train_dataloader._DataLoader__initialized) def test_not_model_wrapper_and_persistent_workers_off(self): runner = Mock() runner.model = Mock() runner.model.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = False runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.model.bbox_head.use_l1) self.assertTrue(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.train_dataloader._DataLoader__initialized) @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_initialize_after_switching(self, mock_is_model_wrapper): # This simulates the resumption after the switching. mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 285 runner.max_epochs = 300 # epoch + 1 > max_epochs - num_last_epochs . hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized)
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(fn, (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller"))
import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(fn, (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr))
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import TextDoc def test_simple_init(): t = TextDoc(text='hello') assert t.text == 'hello' def test_str_init(): t = parse_obj_as(TextDoc, 'hello') assert t.text == 'hello' def test_doc(): class MyDoc(BaseDoc): text1: TextDoc text2: TextDoc doc = MyDoc(text1='hello', text2=TextDoc(text='world')) assert doc.text1.text == 'hello' assert doc.text2.text == 'world'
from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import TextDoc def test_simple_init(): t = TextDoc(text='hello') assert t.text == 'hello' def test_str_init(): t = parse_obj_as(TextDoc, 'hello') assert t.text == 'hello' def test_doc(): class MyDoc(BaseDoc): text1: TextDoc text2: TextDoc doc = MyDoc(text1='hello', text2=TextDoc(text='world')) assert doc.text1.text == 'hello' assert doc.text2.text == 'world'
import os import subprocess directory = os.path.dirname(os.path.realpath(__file__)) def run(*command: str) -> None: print(f">>>>> Running poetry run {' '.join(command)}") subprocess.run(["poetry", "run"] + list(command), cwd=directory, check=True) def lint(): try: run("ruff", "check", ".", "--exit-zero") run("isort", "--diff", "--check", "--profile", "black", ".") run("black", "--diff", "--check", ".") run("pyright") except subprocess.CalledProcessError as e: print("Lint failed, try running `poetry run format` to fix the issues: ", e) raise e def populate_database(): import glob import json import pathlib import requests import market.model templates = pathlib.Path(__file__).parent.parent / "graph_templates" all_files = glob.glob(str(templates / "*.json")) for file in all_files: with open(file, "r") as f: data = f.read() req = market.model.AddAgentRequest( graph=json.loads(data), author="Populate DB", categories=["Pre-Populated"], keywords=["test"], ) response = requests.post( "http://localhost:8015/api/v1/market/admin/agent", json=req.model_dump() ) print(response.text) def format(): run("ruff", "check", "--fix", ".") run("isort", "--profile", "black", ".") run("black", ".") run("pyright", ".") def app(): port = os.getenv("PORT", "8015") run("uvicorn", "market.app:app", "--reload", "--port", port, "--host", "0.0.0.0") def setup(): run("prisma", "generate") run("prisma", "migrate", "deploy")
import os import subprocess directory = os.path.dirname(os.path.realpath(__file__)) def run(*command: str) -> None: print(f">>>>> Running poetry run {' '.join(command)}") subprocess.run(["poetry", "run"] + list(command), cwd=directory, check=True) def lint(): try: run("ruff", "check", ".", "--exit-zero") run("isort", "--diff", "--check", "--profile", "black", ".") run("black", "--diff", "--check", ".") run("pyright") except subprocess.CalledProcessError as e: print("Lint failed, try running `poetry run format` to fix the issues: ", e) raise e def populate_database(): import glob import json import pathlib import requests import market.model templates = pathlib.Path(__file__).parent.parent / "backend" / "graph_templates" all_files = glob.glob(str(templates / "*.json")) for file in all_files: with open(file, "r") as f: data = f.read() req = market.model.AddAgentRequest( graph=json.loads(data), author="Populate DB", categories=["Pre-Populated"], keywords=["test"], ) response = requests.post( "http://localhost:8015/api/v1/market/admin/agent", json=req.model_dump() ) print(response.text) def format(): run("ruff", "check", "--fix", ".") run("isort", "--profile", "black", ".") run("black", ".") run("pyright", ".") def app(): port = os.getenv("PORT", "8015") run("uvicorn", "market.app:app", "--reload", "--port", port, "--host", "0.0.0.0") def setup(): run("prisma", "generate") run("prisma", "migrate", "deploy")
# We follow the original implementation which # adopts the Caffe pre-trained backbone. _base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings preprocess_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( type='AutoAssign', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, num_outs=5, relu_before_extra_convs=True, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')), bbox_head=dict( type='AutoAssignHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_bbox=dict(type='GIoULoss', loss_weight=5.0)), train_cfg=None, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( optimizer=dict(lr=0.01), paramwise_cfg=dict(norm_decay_mult=0.))
# We follow the original implementation which # adopts the Caffe pre-trained backbone. _base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings preprocess_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( type='AutoAssign', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, num_outs=5, relu_before_extra_convs=True, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')), bbox_head=dict( type='AutoAssignHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_bbox=dict(type='GIoULoss', loss_weight=5.0)), train_cfg=None, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( optimizer=dict(lr=0.01, paramwise_cfg=dict(norm_decay_mult=0.)))
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDoc, DocList from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDoc): """ This Document is the LegacyDocument. It follows the same schema as in DocList v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocAray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. .. code-block:: python from docarray import DocList from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocList[Document]([Document() for _ in range(10)]) doc.chunks = DocList[Document]([Document() for _ in range(10)]) """ tensor: Optional[AnyTensor] chunks: Optional[DocList[LegacyDocument]] matches: Optional[DocList[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDoc, DocArray from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDoc): """ This Document is the LegacyDocument. It follows the same schema as in DocArray v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocAray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. .. code-block:: python from docarray import DocArray from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocArray[Document]([Document() for _ in range(10)]) doc.chunks = DocArray[Document]([Document() for _ in range(10)]) """ tensor: Optional[AnyTensor] chunks: Optional[DocArray[LegacyDocument]] matches: Optional[DocArray[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
import logging from fastapi import Request from backend.data import integrations from backend.data.model import APIKeyCredentials, Credentials from backend.integrations.providers import ProviderName from backend.integrations.webhooks._base import BaseWebhooksManager from backend.util.request import Requests logger = logging.getLogger(__name__) class Slant3DWebhooksManager(BaseWebhooksManager): """Manager for Slant3D webhooks""" PROVIDER_NAME = ProviderName.SLANT3D BASE_URL = "https://www.slant3dapi.com/api" async def _register_webhook( self, credentials: Credentials, webhook_type: str, resource: str, events: list[str], ingress_url: str, secret: str, ) -> tuple[str, dict]: """Register a new webhook with Slant3D""" if not isinstance(credentials, APIKeyCredentials): raise ValueError("API key is required to register a webhook") headers = { "api-key": credentials.api_key.get_secret_value(), "Content-Type": "application/json", } # Slant3D's API doesn't use events list, just register for all order updates payload = {"endPoint": ingress_url} response = await Requests().post( f"{self.BASE_URL}/customer/webhookSubscribe", headers=headers, json=payload ) if not response.ok: error = response.json().get("error", "Unknown error") raise RuntimeError(f"Failed to register webhook: {error}") webhook_config = { "endpoint": ingress_url, "provider": self.PROVIDER_NAME, "events": ["order.shipped"], # Currently the only supported event "type": webhook_type, } return "", webhook_config @classmethod async def validate_payload( cls, webhook: integrations.Webhook, request: Request ) -> tuple[dict, str]: """Validate incoming webhook payload from Slant3D""" payload = await request.json() # Validate required fields from Slant3D API spec required_fields = ["orderId", "status", "trackingNumber", "carrierCode"] missing_fields = [field for field in required_fields if field not in payload] if missing_fields: raise ValueError(f"Missing required fields: {', '.join(missing_fields)}") # Normalize payload structure normalized_payload = { "orderId": payload["orderId"], "status": payload["status"], "trackingNumber": payload["trackingNumber"], "carrierCode": payload["carrierCode"], } # Currently Slant3D only sends shipping notifications # Convert status to lowercase for event format compatibility event_type = f"order.{payload['status'].lower()}" return normalized_payload, event_type async def _deregister_webhook( self, webhook: integrations.Webhook, credentials: Credentials ) -> None: """ Note: Slant3D API currently doesn't provide a deregistration endpoint. This would need to be handled through support. """ # Log warning since we can't properly deregister logger.warning( f"Warning: Manual deregistration required for webhook {webhook.id}" ) pass
import logging from fastapi import Request from backend.data import integrations from backend.data.model import APIKeyCredentials, Credentials from backend.integrations.providers import ProviderName from backend.integrations.webhooks._base import BaseWebhooksManager from backend.util.request import Requests logger = logging.getLogger(__name__) class Slant3DWebhooksManager(BaseWebhooksManager): """Manager for Slant3D webhooks""" PROVIDER_NAME = ProviderName.SLANT3D BASE_URL = "https://www.slant3dapi.com/api" async def _register_webhook( self, credentials: Credentials, webhook_type: str, resource: str, events: list[str], ingress_url: str, secret: str, ) -> tuple[str, dict]: """Register a new webhook with Slant3D""" if not isinstance(credentials, APIKeyCredentials): raise ValueError("API key is required to register a webhook") headers = { "api-key": credentials.api_key.get_secret_value(), "Content-Type": "application/json", } # Slant3D's API doesn't use events list, just register for all order updates payload = {"endPoint": ingress_url} response = Requests().post( f"{self.BASE_URL}/customer/webhookSubscribe", headers=headers, json=payload ) if not response.ok: error = response.json().get("error", "Unknown error") raise RuntimeError(f"Failed to register webhook: {error}") webhook_config = { "endpoint": ingress_url, "provider": self.PROVIDER_NAME, "events": ["order.shipped"], # Currently the only supported event "type": webhook_type, } return "", webhook_config @classmethod async def validate_payload( cls, webhook: integrations.Webhook, request: Request ) -> tuple[dict, str]: """Validate incoming webhook payload from Slant3D""" payload = await request.json() # Validate required fields from Slant3D API spec required_fields = ["orderId", "status", "trackingNumber", "carrierCode"] missing_fields = [field for field in required_fields if field not in payload] if missing_fields: raise ValueError(f"Missing required fields: {', '.join(missing_fields)}") # Normalize payload structure normalized_payload = { "orderId": payload["orderId"], "status": payload["status"], "trackingNumber": payload["trackingNumber"], "carrierCode": payload["carrierCode"], } # Currently Slant3D only sends shipping notifications # Convert status to lowercase for event format compatibility event_type = f"order.{payload['status'].lower()}" return normalized_payload, event_type async def _deregister_webhook( self, webhook: integrations.Webhook, credentials: Credentials ) -> None: """ Note: Slant3D API currently doesn't provide a deregistration endpoint. This would need to be handled through support. """ # Log warning since we can't properly deregister logger.warning( f"Warning: Manual deregistration required for webhook {webhook.id}" ) pass
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.ports[0] self.grpc_port = self.ports[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) jina_pb2_grpc.add_JinaSingleDataRequestRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, jina_pb2.DESCRIPTOR.services_by_name['JinaSingleDataRequestRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.ports[0] self.grpc_port = self.ports[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
from typing import Union, List class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
from typing import Union, List class InputExample: """ Structure for one input example with texts, the label and a unique id """ def __init__(self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label :param guid id for the example :param texts the texts for the example. :param label the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import patch from mmengine.testing import RunnerTestCase class TestEmptyCacheHook(RunnerTestCase): def test_with_runner(self): with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg = self.epoch_based_cfg cfg.custom_hooks = [dict(type='EmptyCacheHook')] cfg.train_cfg.val_interval = 1e6 # disable validation during training # noqa: E501 runner = self.build_runner(cfg) runner.train() runner.test() runner.val() # Call `torch.cuda.empty_cache` after each epoch: # runner.train: `max_epochs` times. # runner.val: `1` time. # runner.test: `1` time. target_called_times = runner.max_epochs + 2 self.assertEqual(mock_empty_cache.call_count, target_called_times) with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg.custom_hooks = [dict(type='EmptyCacheHook', before_epoch=True)] runner = self.build_runner(cfg) runner.train() runner.val() runner.test() # Call `torch.cuda.empty_cache` after/before each epoch: # runner.train: `max_epochs*2` times. # runner.val: `1*2` times. # runner.test: `1*2` times. target_called_times = runner.max_epochs * 2 + 4 self.assertEqual(mock_empty_cache.call_count, target_called_times) with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg.custom_hooks = [ dict( type='EmptyCacheHook', after_iter=True, before_epoch=True) ] runner = self.build_runner(cfg) runner.train() runner.val() runner.test() # Call `torch.cuda.empty_cache` after/before each epoch, # after each iteration: # runner.train: `max_epochs*2 + len(dataloader)*max_epochs` times. # noqa: E501 # runner.val: `1*2 + len(val_dataloader)` times. # runner.test: `1*2 + len(val_dataloader)` times. target_called_times = \ runner.max_epochs * 2 + 4 + \ len(runner.train_dataloader) * runner.max_epochs + \ len(runner.val_dataloader) + \ len(runner.test_dataloader) self.assertEqual(mock_empty_cache.call_count, target_called_times)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import EmptyCacheHook class TestEmptyCacheHook: def test_emtpy_cache_hook(self): hook = EmptyCacheHook(True, True, True) runner = Mock() hook._after_iter(runner, 0) hook._before_epoch(runner) hook._after_epoch(runner)
# coding: utf-8 from pathlib import Path import pandas as pd from sklearn.metrics import mean_squared_error import lightgbm as lgb print("Loading data...") # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / "regression" df_train = pd.read_csv(str(regression_example_dir / "regression.train"), header=None, sep="\t") df_test = pd.read_csv(str(regression_example_dir / "regression.test"), header=None, sep="\t") y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { "boosting_type": "gbdt", "objective": "regression", "metric": {"l2", "l1"}, "num_leaves": 31, "learning_rate": 0.05, "feature_fraction": 0.9, "bagging_fraction": 0.8, "bagging_freq": 5, "verbose": 0, } print("Starting training...") # train gbm = lgb.train( params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, callbacks=[lgb.early_stopping(stopping_rounds=5)] ) print("Saving model...") # save model to file gbm.save_model("model.txt") print("Starting predicting...") # predict y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # eval rmse_test = mean_squared_error(y_test, y_pred) ** 0.5 print(f"The RMSE of prediction is: {rmse_test}")
# coding: utf-8 from pathlib import Path import pandas as pd from sklearn.metrics import mean_squared_error import lightgbm as lgb print('Loading data...') # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / 'regression' df_train = pd.read_csv(str(regression_example_dir / 'regression.train'), header=None, sep='\t') df_test = pd.read_csv(str(regression_example_dir / 'regression.test'), header=None, sep='\t') y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': {'l2', 'l1'}, 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'verbose': 0 } print('Starting training...') # train gbm = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, callbacks=[lgb.early_stopping(stopping_rounds=5)]) print('Saving model...') # save model to file gbm.save_model('model.txt') print('Starting predicting...') # predict y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # eval rmse_test = mean_squared_error(y_test, y_pred) ** 0.5 print(f'The RMSE of prediction is: {rmse_test}')
"""Init params.""" from llama_index.readers.huggingface_fs.base import HuggingFaceFSReader __all__ = ["HuggingFaceFSReader"]
"""Init params.""" from llama_index.readers.huggingface_fs.base import HuggingFaceFSReader __all__ = ["HuggingFaceFSReader"]
import os import time import pytest from jina import Flow, Executor class SlowExecutor(Executor): def close(self) -> None: with open( os.path.join(self.metas.workspace, 'test'), 'w', encoding='utf-8' ) as f: time.sleep(10) f.write('x') @pytest.mark.slow def test_slow_executor_close(tmpdir): with Flow().add( uses={'jtype': 'SlowExecutor', 'with': {}, 'metas': {'workspace': str(tmpdir)}} ) as f: pass assert os.path.exists(os.path.join(tmpdir, 'test'))
import os import time import pytest from jina import Flow, Executor class SlowExecutor(Executor): def close(self) -> None: with open(os.path.join(self.metas.workspace, 'test'), 'w', encoding='utf-8') as f: time.sleep(10) f.write('x') @pytest.mark.slow def test_slow_executor_close(tmpdir): with Flow().add( uses={'jtype': 'SlowExecutor', 'with': {}, 'metas': {'workspace': str(tmpdir)}} ) as f: pass assert os.path.exists(os.path.join(tmpdir, 'test'))
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import RerankingEvaluator from sentence_transformers.util import cos_sim if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseRerankingEvaluator(RerankingEvaluator): def __init__( self, samples: list[dict[str, str | list[str]]], at_k: int = 10, name: str = "", write_csv: bool = True, similarity_fct: Callable[[Tensor, Tensor], Tensor] = cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True, truncate_dim: int | None = None, mrr_at_k: int | None = None, ): return super().__init__( samples=samples, at_k=at_k, name=name, write_csv=write_csv, similarity_fct=similarity_fct, batch_size=batch_size, show_progress_bar=show_progress_bar, use_batched_encoding=use_batched_encoding, truncate_dim=truncate_dim, mrr_at_k=mrr_at_k, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def compute_metrices(self, model: SparseEncoder): return super().compute_metrices(model) def compute_metrices_batched(self, model: SparseEncoder): return super().compute_metrices_batched(model) def compute_metrices_individual(self, model: SparseEncoder): return super().compute_metrices_individual(model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, show_progress_bar: bool | None = None, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=show_progress_bar, convert_to_sparse_tensor=True, convert_to_tensor=False, # as we are using slicing on sparse tensors that is not supported so we want to keep a list of sparse tensors **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import RerankingEvaluator from sentence_transformers.util import cos_sim if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseRerankingEvaluator(RerankingEvaluator): def __init__( self, samples: list[dict[str, str | list[str]]], at_k: int = 10, name: str = "", write_csv: bool = True, similarity_fct: Callable[[Tensor, Tensor], Tensor] = cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True, truncate_dim: int | None = None, mrr_at_k: int | None = None, ): return super().__init__( samples=samples, at_k=at_k, name=name, write_csv=write_csv, similarity_fct=similarity_fct, batch_size=batch_size, show_progress_bar=show_progress_bar, use_batched_encoding=use_batched_encoding, truncate_dim=truncate_dim, mrr_at_k=mrr_at_k, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def compute_metrices(self, model: SparseEncoder): return super().compute_metrices(model) def compute_metrices_batched(self, model: SparseEncoder): return super().compute_metrices_batched(model) def compute_metrices_individual(self, model: SparseEncoder): return super().compute_metrices_individual(model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, show_progress_bar: bool | None = None, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=show_progress_bar, convert_to_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
import logging from typing import Annotated from autogpt_libs.auth.middleware import APIKeyValidator from fastapi import APIRouter, Body, Depends, Query from fastapi.responses import JSONResponse from backend.data.user import ( get_user_by_email, set_user_email_verification, unsubscribe_user_by_token, ) from backend.server.v2.postmark.models import ( PostmarkBounceEnum, PostmarkBounceWebhook, PostmarkClickWebhook, PostmarkDeliveryWebhook, PostmarkOpenWebhook, PostmarkSpamComplaintWebhook, PostmarkSubscriptionChangeWebhook, PostmarkWebhook, ) from backend.util.settings import Settings settings = Settings() postmark_validator = APIKeyValidator( "X-Postmark-Webhook-Token", settings.secrets.postmark_webhook_token, ) router = APIRouter() logger = logging.getLogger(__name__) @router.post("/unsubscribe") async def unsubscribe_via_one_click(token: Annotated[str, Query()]): logger.info(f"Received unsubscribe request from One Click Unsubscribe: {token}") try: await unsubscribe_user_by_token(token) except Exception as e: logger.error(f"Failed to unsubscribe user by token {token}: {e}") raise e return JSONResponse(status_code=200, content={"status": "ok"}) @router.post("/", dependencies=[Depends(postmark_validator.get_dependency())]) async def postmark_webhook_handler( webhook: Annotated[ PostmarkWebhook, Body(discriminator="RecordType"), ] ): logger.info(f"Received webhook from Postmark: {webhook}") match webhook: case PostmarkDeliveryWebhook(): delivery_handler(webhook) case PostmarkBounceWebhook(): await bounce_handler(webhook) case PostmarkSpamComplaintWebhook(): spam_handler(webhook) case PostmarkOpenWebhook(): open_handler(webhook) case PostmarkClickWebhook(): click_handler(webhook) case PostmarkSubscriptionChangeWebhook(): subscription_handler(webhook) case _: logger.warning(f"Unknown webhook type: {type(webhook)}") return async def bounce_handler(event: PostmarkBounceWebhook): logger.info(f"Bounce handler {event=}") if event.TypeCode in [ PostmarkBounceEnum.Transient, PostmarkBounceEnum.SoftBounce, PostmarkBounceEnum.DnsError, ]: logger.info( f"Softish bounce: {event.TypeCode} for {event.Email}, not setting email verification to false" ) return logger.info(f"{event.Email=}") user = await get_user_by_email(event.Email) if not user: logger.error(f"User not found for email: {event.Email}") return await set_user_email_verification(user.id, False) logger.debug(f"Setting email verification to false for user: {user.id}") def spam_handler(event: PostmarkSpamComplaintWebhook): logger.info("Spam handler") pass def delivery_handler(event: PostmarkDeliveryWebhook): logger.info("Delivery handler") pass def open_handler(event: PostmarkOpenWebhook): logger.info("Open handler") pass def click_handler(event: PostmarkClickWebhook): logger.info("Click handler") pass def subscription_handler(event: PostmarkSubscriptionChangeWebhook): logger.info("Subscription handler") pass
import logging from typing import Annotated from autogpt_libs.auth.middleware import APIKeyValidator from fastapi import APIRouter, Body, Depends from backend.data.user import get_user_by_email, set_user_email_verification from backend.server.v2.postmark.models import ( PostmarkBounceEnum, PostmarkBounceWebhook, PostmarkClickWebhook, PostmarkDeliveryWebhook, PostmarkOpenWebhook, PostmarkSpamComplaintWebhook, PostmarkSubscriptionChangeWebhook, PostmarkWebhook, ) from backend.util.settings import Settings settings = Settings() postmark_validator = APIKeyValidator( "X-Postmark-Webhook-Token", settings.secrets.postmark_webhook_token, ) router = APIRouter(dependencies=[Depends(postmark_validator.get_dependency())]) logger = logging.getLogger(__name__) @router.post("/") async def postmark_webhook_handler( webhook: Annotated[ PostmarkWebhook, Body(discriminator="RecordType"), ] ): logger.info(f"Received webhook from Postmark: {webhook}") match webhook: case PostmarkDeliveryWebhook(): delivery_handler(webhook) case PostmarkBounceWebhook(): await bounce_handler(webhook) case PostmarkSpamComplaintWebhook(): spam_handler(webhook) case PostmarkOpenWebhook(): open_handler(webhook) case PostmarkClickWebhook(): click_handler(webhook) case PostmarkSubscriptionChangeWebhook(): subscription_handler(webhook) case _: logger.warning(f"Unknown webhook type: {type(webhook)}") return async def bounce_handler(event: PostmarkBounceWebhook): logger.info(f"Bounce handler {event=}") if event.TypeCode in [ PostmarkBounceEnum.Transient, PostmarkBounceEnum.SoftBounce, PostmarkBounceEnum.DnsError, ]: logger.info( f"Softish bounce: {event.TypeCode} for {event.Email}, not setting email verification to false" ) return logger.info(f"{event.Email=}") user = await get_user_by_email(event.Email) if not user: logger.error(f"User not found for email: {event.Email}") return await set_user_email_verification(user.id, False) logger.debug(f"Setting email verification to false for user: {user.id}") def spam_handler(event: PostmarkSpamComplaintWebhook): logger.info("Spam handler") pass def delivery_handler(event: PostmarkDeliveryWebhook): logger.info("Delivery handler") pass def open_handler(event: PostmarkOpenWebhook): logger.info("Open handler") pass def click_handler(event: PostmarkClickWebhook): logger.info("Click handler") pass def subscription_handler(event: PostmarkSubscriptionChangeWebhook): logger.info("Subscription handler") pass
import collections import json import os import string from typing import Iterable, List from .WordTokenizer import ENGLISH_STOP_WORDS, WordTokenizer class WhitespaceTokenizer(WordTokenizer): """ Simple and fast white-space tokenizer. Splits sentence based on white spaces. Punctuation are stripped from tokens. """ def __init__( self, vocab: Iterable[str] = [], stop_words: Iterable[str] = ENGLISH_STOP_WORDS, do_lower_case: bool = False ): self.stop_words = set(stop_words) self.do_lower_case = do_lower_case self.set_vocab(vocab) def get_vocab(self): return self.vocab def set_vocab(self, vocab: Iterable[str]): self.vocab = vocab self.word2idx = collections.OrderedDict([(word, idx) for idx, word in enumerate(vocab)]) def tokenize(self, text: str, **kwargs) -> List[int]: if self.do_lower_case: text = text.lower() tokens = text.split() tokens_filtered = [] for token in tokens: if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.strip(string.punctuation) if token in self.stop_words: continue elif len(token) > 0 and token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.lower() if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue return tokens_filtered def save(self, output_path: str): with open(os.path.join(output_path, "whitespacetokenizer_config.json"), "w") as fOut: json.dump( { "vocab": list(self.word2idx.keys()), "stop_words": list(self.stop_words), "do_lower_case": self.do_lower_case, }, fOut, ) @staticmethod def load(input_path: str): with open(os.path.join(input_path, "whitespacetokenizer_config.json"), "r") as fIn: config = json.load(fIn) return WhitespaceTokenizer(**config)
from typing import List, Iterable import collections import string import os import json from .WordTokenizer import WordTokenizer, ENGLISH_STOP_WORDS class WhitespaceTokenizer(WordTokenizer): """ Simple and fast white-space tokenizer. Splits sentence based on white spaces. Punctuation are stripped from tokens. """ def __init__( self, vocab: Iterable[str] = [], stop_words: Iterable[str] = ENGLISH_STOP_WORDS, do_lower_case: bool = False ): self.stop_words = set(stop_words) self.do_lower_case = do_lower_case self.set_vocab(vocab) def get_vocab(self): return self.vocab def set_vocab(self, vocab: Iterable[str]): self.vocab = vocab self.word2idx = collections.OrderedDict([(word, idx) for idx, word in enumerate(vocab)]) def tokenize(self, text: str, **kwargs) -> List[int]: if self.do_lower_case: text = text.lower() tokens = text.split() tokens_filtered = [] for token in tokens: if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.strip(string.punctuation) if token in self.stop_words: continue elif len(token) > 0 and token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.lower() if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue return tokens_filtered def save(self, output_path: str): with open(os.path.join(output_path, "whitespacetokenizer_config.json"), "w") as fOut: json.dump( { "vocab": list(self.word2idx.keys()), "stop_words": list(self.stop_words), "do_lower_case": self.do_lower_case, }, fOut, ) @staticmethod def load(input_path: str): with open(os.path.join(input_path, "whitespacetokenizer_config.json"), "r") as fIn: config = json.load(fIn) return WhitespaceTokenizer(**config)
import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, loader: Callable[[str], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.loader = loader if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = self.loader(filename) if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = Image.open(filename).convert("RGB") if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
_base_ = ['faster-rcnn_r50_fpn_32xb2-1x_openimages.py'] model = dict( roi_head=dict(bbox_head=dict(num_classes=500)), test_cfg=dict(rcnn=dict(score_thr=0.01))) # dataset settings dataset_type = 'OpenImagesChallengeDataset' train_dataloader = dict( dataset=dict( type=dataset_type, ann_file='challenge2019/challenge-2019-train-detection-bbox.txt', label_file='challenge2019/cls-label-description.csv', hierarchy_file='challenge2019/class_label_tree.np', meta_file='challenge2019/challenge-2019-train-metas.pkl')) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='challenge2019/challenge-2019-validation-detection-bbox.txt', data_prefix=dict(img='OpenImages/'), label_file='challenge2019/cls-label-description.csv', hierarchy_file='challenge2019/class_label_tree.np', meta_file='challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file='challenge2019/challenge-2019-validation-' 'detection-human-imagelabels.csv')) test_dataloader = dict( dataset=dict( type=dataset_type, ann_file='challenge2019/challenge-2019-validation-detection-bbox.txt', label_file='challenge2019/cls-label-description.csv', hierarchy_file='challenge2019/class_label_tree.np', meta_file='challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file='challenge2019/challenge-2019-validation-' 'detection-human-imagelabels.csv')) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = ['faster-rcnn_r50_fpn_32xb2-1x_openimages.py'] model = dict( roi_head=dict(bbox_head=dict(num_classes=500)), test_cfg=dict(rcnn=dict(score_thr=0.01))) # dataset settings dataset_type = 'OpenImagesChallengeDataset' train_dataloader = dict( dataset=dict( type=dataset_type, ann_file='challenge2019/challenge-2019-train-detection-bbox.txt', label_file='challenge2019/cls-label-description.csv', hierarchy_file='challenge2019/class_label_tree.np', meta_file='challenge2019/challenge-2019-train-metas.pkl')) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='challenge2019/challenge-2019-validation-detection-bbox.txt', label_file='challenge2019/cls-label-description.csv', hierarchy_file='challenge2019/class_label_tree.np', meta_file='challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file='challenge2019/challenge-2019-validation-' 'detection-human-imagelabels.csv')) test_dataloader = dict( dataset=dict( type=dataset_type, ann_file='challenge2019/challenge-2019-validation-detection-bbox.txt', label_file='challenge2019/cls-label-description.csv', hierarchy_file='challenge2019/class_label_tree.np', meta_file='challenge2019/challenge-2019-validation-metas.pkl', image_level_ann_file='challenge2019/challenge-2019-validation-' 'detection-human-imagelabels.csv')) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
from datasets import load_dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, losses, ) from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction from sentence_transformers.training_args import BatchSamplers # 1. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli, 10k samples train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train[:10000]") eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # 2. Create an evaluator to perform useful HPO stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 3. Define the Hyperparameter Search Space def hpo_search_space(trial): return { "num_train_epochs": trial.suggest_int("num_train_epochs", 1, 2), "per_device_train_batch_size": trial.suggest_int("per_device_train_batch_size", 32, 128), "warmup_ratio": trial.suggest_float("warmup_ratio", 0, 0.3), "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), } # 4. Define the Model Initialization def hpo_model_init(trial): return SentenceTransformer("distilbert-base-uncased") # 5. Define the Loss Initialization def hpo_loss_init(model): return losses.MultipleNegativesRankingLoss(model) # 6. Define the Objective Function def hpo_compute_objective(metrics): """ Valid keys are: 'eval_loss', 'eval_sts-dev_pearson_cosine', 'eval_sts-dev_spearman_cosine', 'eval_sts-dev_pearson_manhattan', 'eval_sts-dev_spearman_manhattan', 'eval_sts-dev_pearson_euclidean', 'eval_sts-dev_spearman_euclidean', 'eval_sts-dev_pearson_dot', 'eval_sts-dev_spearman_dot', 'eval_sts-dev_pearson_max', 'eval_sts-dev_spearman_max', 'eval_runtime', 'eval_samples_per_second', 'eval_steps_per_second', 'epoch' due to the evaluator that we're using. """ return metrics["eval_sts-dev_spearman_cosine"] # 7. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir="checkpoints", # Optional training parameters: # max_steps=10000, # We might want to limit the number of steps for HPO fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="no", # We don't need to evaluate/save during HPO save_strategy="no", logging_steps=10, run_name="hpo", # Will be used in W&B if `wandb` is installed ) # 8. Create the trainer with model_init rather than model trainer = SentenceTransformerTrainer( model=None, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, evaluator=dev_evaluator, model_init=hpo_model_init, loss=hpo_loss_init, ) # 9. Perform the HPO best_trial = trainer.hyperparameter_search( hp_space=hpo_search_space, compute_objective=hpo_compute_objective, n_trials=20, direction="maximize", backend="optuna", ) print(best_trial) # Alternatively, to just train normally: # trainer.train() # print(dev_evaluator(trainer.model))
from sentence_transformers import losses from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction from sentence_transformers.training_args import BatchSamplers from datasets import load_dataset # 1. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli, 10k samples train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train[:10000]") eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # 2. Create an evaluator to perform useful HPO stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 3. Define the Hyperparameter Search Space def hpo_search_space(trial): return { "num_train_epochs": trial.suggest_int("num_train_epochs", 1, 2), "per_device_train_batch_size": trial.suggest_int("per_device_train_batch_size", 32, 128), "warmup_ratio": trial.suggest_float("warmup_ratio", 0, 0.3), "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), } # 4. Define the Model Initialization def hpo_model_init(trial): return SentenceTransformer("distilbert-base-uncased") # 5. Define the Loss Initialization def hpo_loss_init(model): return losses.MultipleNegativesRankingLoss(model) # 6. Define the Objective Function def hpo_compute_objective(metrics): """ Valid keys are: 'eval_loss', 'eval_sts-dev_pearson_cosine', 'eval_sts-dev_spearman_cosine', 'eval_sts-dev_pearson_manhattan', 'eval_sts-dev_spearman_manhattan', 'eval_sts-dev_pearson_euclidean', 'eval_sts-dev_spearman_euclidean', 'eval_sts-dev_pearson_dot', 'eval_sts-dev_spearman_dot', 'eval_sts-dev_pearson_max', 'eval_sts-dev_spearman_max', 'eval_runtime', 'eval_samples_per_second', 'eval_steps_per_second', 'epoch' due to the evaluator that we're using. """ return metrics["eval_sts-dev_spearman_cosine"] # 7. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir="checkpoints", # Optional training parameters: # max_steps=10000, # We might want to limit the number of steps for HPO fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="no", # We don't need to evaluate/save during HPO save_strategy="no", logging_steps=10, run_name="hpo", # Will be used in W&B if `wandb` is installed ) # 8. Create the trainer with model_init rather than model trainer = SentenceTransformerTrainer( model=None, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, evaluator=dev_evaluator, model_init=hpo_model_init, loss=hpo_loss_init, ) # 9. Perform the HPO best_trial = trainer.hyperparameter_search( hp_space=hpo_search_space, compute_objective=hpo_compute_objective, n_trials=20, direction="maximize", backend="optuna", ) print(best_trial) # Alternatively, to just train normally: # trainer.train() # print(dev_evaluator(trainer.model))
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .fileio import * from .registry import * from .utils import *
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .fileio import * from .utils import *
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( type='RepeatDataset', times=10, dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[16, 20]) checkpoint_config = dict(interval=1) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=24) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( type='RepeatDataset', times=10, dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[16, 20]) checkpoint_config = dict(interval=1) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=24)
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .consisid_transformer_3d import ConsisIDTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .sana_transformer import SanaTransformer2DModel from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_cogview4 import CogView4Transformer2DModel from .transformer_cosmos import CosmosTransformer3DModel from .transformer_easyanimate import EasyAnimateTransformer3DModel from .transformer_flux import FluxTransformer2DModel from .transformer_hidream_image import HiDreamImageTransformer2DModel from .transformer_hunyuan_video import HunyuanVideoTransformer3DModel from .transformer_hunyuan_video_framepack import HunyuanVideoFramepackTransformer3DModel from .transformer_ltx import LTXVideoTransformer3DModel from .transformer_lumina2 import Lumina2Transformer2DModel from .transformer_mochi import MochiTransformer3DModel from .transformer_omnigen import OmniGenTransformer2DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel from .transformer_wan import WanTransformer3DModel from .transformer_wan_vace import WanVACETransformer3DModel
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .consisid_transformer_3d import ConsisIDTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .sana_transformer import SanaTransformer2DModel from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_cogview4 import CogView4Transformer2DModel from .transformer_cosmos import CosmosTransformer3DModel from .transformer_easyanimate import EasyAnimateTransformer3DModel from .transformer_flux import FluxTransformer2DModel from .transformer_hidream_image import HiDreamImageTransformer2DModel from .transformer_hunyuan_video import HunyuanVideoTransformer3DModel from .transformer_hunyuan_video_framepack import HunyuanVideoFramepackTransformer3DModel from .transformer_ltx import LTXVideoTransformer3DModel from .transformer_lumina2 import Lumina2Transformer2DModel from .transformer_mochi import MochiTransformer3DModel from .transformer_omnigen import OmniGenTransformer2DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel from .transformer_wan import WanTransformer3DModel
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.models import CSRSparsity, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Ask Update to TOM on loss to implement # TODO : Add the equivalent of the quantization file for the sparse encoder
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, ReconstructionLoss, SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.models import CSRSparsity, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "ReconstructionLoss", "SparseMultipleNegativesRankingLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Add in models the possibility to have the MLM head(for splade) # TODO : Check for every loss if compatible with the SparseEncoder but should have some minor modifications for the ones not using the utils similarity function # TODO : Same for the evaluator # TODO : Add the equivalent of the quantization file for the sparse encoder
import csv import os from pathlib import Path from typing import Tuple, Union from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import _load_waveform SAMPLE_RATE = 16000 class FluentSpeechCommands(Dataset): """Create *Fluent Speech Commands* :cite:`fluent` Dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [`"train"`, `"valid"`, `"test"`]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): if subset not in ["train", "valid", "test"]: raise ValueError("`subset` must be one of ['train', 'valid', 'test']") root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def get_metadata(self, n: int) -> Tuple[str, int, str, int, str, str, str, str]: """Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, but otherwise returns the same fields as :py:func:`__getitem__`. Args: n (int): The index of the sample to be loaded Returns: (str, int, str, int, str, str, str, str): ``(filepath, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] file_path = os.path.join("wavs", "speakers", speaker_id, f"{file_name}.wav") return file_path, SAMPLE_RATE, file_name, speaker_id, transcription, action, obj, location def __len__(self) -> int: return len(self.data) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, str, str, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, str, str, str, str): ``(waveform, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ metadata = self.get_metadata(n) waveform = _load_waveform(self._path, metadata[0], metadata[1]) return (waveform,) + metadata[1:]
import csv import os from pathlib import Path from typing import Union import torchaudio from torch.utils.data import Dataset class FluentSpeechCommands(Dataset): """Create *Fluent Speech Commands* :cite:`fluent` Dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [`"train"`, `"valid"`, `"test"`]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): if subset not in ["train", "valid", "test"]: raise ValueError("`subset` must be one of ['train', 'valid', 'test']") root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def __len__(self): return len(self.data) def __getitem__(self, n: int): """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, str, str, str, str): ``(waveform, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] wav_path = os.path.join(self._path, "wavs", "speakers", speaker_id, f"{file_name}.wav") wav, sample_rate = torchaudio.load(wav_path) return wav, sample_rate, file_name, speaker_id, transcription, action, obj, location
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.dense_heads import ATSSHead def test_atss_head_loss(): """Tests atss head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) self = ATSSHead( num_classes=4, in_channels=1, train_cfg=train_cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds, centernesses = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, centernesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_centerness_loss = sum(empty_gt_losses['loss_centerness']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_centerness_loss.item() == 0, ( 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, centernesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) onegt_centerness_loss = sum(one_gt_losses['loss_centerness']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' assert onegt_centerness_loss.item() > 0, ( 'centerness loss should be non-zero')
import mmcv import torch from mmdet.models.dense_heads import ATSSHead def test_atss_head_loss(): """Tests atss head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) self = ATSSHead( num_classes=4, in_channels=1, train_cfg=train_cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds, centernesses = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, centernesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_centerness_loss = sum(empty_gt_losses['loss_centerness']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_centerness_loss.item() == 0, ( 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, centernesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) onegt_centerness_loss = sum(one_gt_losses['loss_centerness']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' assert onegt_centerness_loss.item() > 0, ( 'centerness loss should be non-zero')
from abc import ABC from collections import namedtuple from dataclasses import is_dataclass, asdict from typing import Dict, Optional, TYPE_CHECKING if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType TypeMap = namedtuple('TypeMap', ['type', 'converter']) class BaseBackendMixin(ABC): TYPE_MAP: Dict[str, TypeMap] def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, copy: bool = False, *args, **kwargs ): self._load_offset2ids() def _get_storage_infos(self) -> Optional[Dict]: if hasattr(self, '_config') and is_dataclass(self._config): return {k: str(v) for k, v in asdict(self._config).items()} def _map_id(self, _id: str) -> str: return _id def _map_column(self, value, col_type) -> str: return self.TYPE_MAP[col_type].converter(value) def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': from docarray.math.ndarray import to_numpy_array return to_numpy_array(embedding) def _map_type(self, col_type: str) -> str: return self.TYPE_MAP[col_type].type def _normalize_columns(self, columns): if columns is None: return [] return columns
from abc import ABC from collections import namedtuple from dataclasses import is_dataclass, asdict from typing import Dict, Optional, TYPE_CHECKING if TYPE_CHECKING: from ....typing import DocumentArraySourceType, ArrayType TypeMap = namedtuple('TypeMap', ['type', 'converter']) class BaseBackendMixin(ABC): TYPE_MAP: Dict[str, TypeMap] def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, copy: bool = False, *args, **kwargs ): self._load_offset2ids() def _get_storage_infos(self) -> Optional[Dict]: if hasattr(self, '_config') and is_dataclass(self._config): return {k: str(v) for k, v in asdict(self._config).items()} def _map_id(self, _id: str) -> str: return _id def _map_column(self, value, col_type) -> str: return self.TYPE_MAP[col_type].converter(value) def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': from ....math.ndarray import to_numpy_array return to_numpy_array(embedding) def _map_type(self, col_type: str) -> str: return self.TYPE_MAP[col_type].type def _normalize_columns(self, columns): if columns is None: return [] return columns
from typing import Any from io import StringIO def md_to_df(md_str: str) -> Any: """Convert Markdown to dataframe.""" try: import pandas as pd except ImportError: raise ImportError( "You must install the `pandas` package to use this node parser." ) # Replace " by "" in md_str md_str = md_str.replace('"', '""') # Replace markdown pipe tables with commas md_str = md_str.replace("|", '","') # Remove the second line (table header separator) lines = md_str.split("\n") md_str = "\n".join(lines[:1] + lines[2:]) # Remove the first and last second char of the line (the pipes, transformed to ",") lines = md_str.split("\n") md_str = "\n".join([line[2:-2] for line in lines]) # Check if the table is empty if len(md_str) == 0: return None # Use pandas to read the CSV string into a DataFrame try: return pd.read_csv(StringIO(md_str)) except pd.errors.ParserError: return None def html_to_df(html_str: str) -> Any: """Convert HTML to dataframe.""" try: from lxml import html except ImportError: raise ImportError( "You must install the `lxml` package to use this node parser." ) try: import pandas as pd except ImportError: raise ImportError( "You must install the `pandas` package to use this node parser." ) tree = html.fromstring(html_str) table_element = tree.xpath("//table")[0] rows = table_element.xpath(".//tr") data = [] for row in rows: cols = row.xpath(".//td") cols = [c.text.strip() if c.text is not None else "" for c in cols] data.append(cols) # Check if the table is empty if len(data) == 0: return None # Check if the all rows have the same number of columns if not all(len(row) == len(data[0]) for row in data): return None return pd.DataFrame(data[1:], columns=data[0])
from typing import Any from io import StringIO def md_to_df(md_str: str) -> Any: """Convert Markdown to dataframe.""" try: import pandas as pd except ImportError: raise ImportError( "You must install the `pandas` package to use this node parser." ) # Replace " by "" in md_str md_str = md_str.replace('"', '""') # Replace markdown pipe tables with commas md_str = md_str.replace("|", '","') # Remove the second line (table header separator) lines = md_str.split("\n") md_str = "\n".join(lines[:1] + lines[2:]) # Remove the first and last second char of the line (the pipes, transformed to ",") lines = md_str.split("\n") md_str = "\n".join([line[2:-2] for line in lines]) # Check if the table is empty if len(md_str) == 0: return None # Use pandas to read the CSV string into a DataFrame return pd.read_csv(StringIO(md_str)) def html_to_df(html_str: str) -> Any: """Convert HTML to dataframe.""" try: from lxml import html except ImportError: raise ImportError( "You must install the `lxml` package to use this node parser." ) try: import pandas as pd except ImportError: raise ImportError( "You must install the `pandas` package to use this node parser." ) tree = html.fromstring(html_str) table_element = tree.xpath("//table")[0] rows = table_element.xpath(".//tr") data = [] for row in rows: cols = row.xpath(".//td") cols = [c.text.strip() if c.text is not None else "" for c in cols] data.append(cols) # Check if the table is empty if len(data) == 0: return None # Check if the all rows have the same number of columns if not all(len(row) == len(data[0]) for row in data): return None return pd.DataFrame(data[1:], columns=data[0])
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'SOLOHead', 'DecoupledSOLOHead', 'CenterNetHead', 'YOLOXHead', 'DecoupledSOLOLightHead', 'LADHead', 'TOODHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .ssd_head import SSDHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'SOLOHead', 'DecoupledSOLOHead', 'CenterNetHead', 'YOLOXHead', 'DecoupledSOLOLightHead', 'LADHead' ]
import functools from typing import TYPE_CHECKING if TYPE_CHECKING: from ..providers import ProviderName from ._base import BaseWebhooksManager # --8<-- [start:load_webhook_managers] @functools.cache def load_webhook_managers() -> dict["ProviderName", type["BaseWebhooksManager"]]: webhook_managers = {} from .compass import CompassWebhookManager from .generic import GenericWebhooksManager from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager webhook_managers.update( { handler.PROVIDER_NAME: handler for handler in [ CompassWebhookManager, GithubWebhooksManager, Slant3DWebhooksManager, GenericWebhooksManager, ] } ) return webhook_managers # --8<-- [end:load_webhook_managers] def get_webhook_manager(provider_name: "ProviderName") -> "BaseWebhooksManager": return load_webhook_managers()[provider_name]() def supports_webhooks(provider_name: "ProviderName") -> bool: return provider_name in load_webhook_managers() __all__ = ["get_webhook_manager", "supports_webhooks"]
from typing import TYPE_CHECKING if TYPE_CHECKING: from ..providers import ProviderName from ._base import BaseWebhooksManager _WEBHOOK_MANAGERS: dict["ProviderName", type["BaseWebhooksManager"]] = {} # --8<-- [start:load_webhook_managers] def load_webhook_managers() -> dict["ProviderName", type["BaseWebhooksManager"]]: if _WEBHOOK_MANAGERS: return _WEBHOOK_MANAGERS from .compass import CompassWebhookManager from .generic import GenericWebhooksManager from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager _WEBHOOK_MANAGERS.update( { handler.PROVIDER_NAME: handler for handler in [ CompassWebhookManager, GithubWebhooksManager, Slant3DWebhooksManager, GenericWebhooksManager, ] } ) return _WEBHOOK_MANAGERS # --8<-- [end:load_webhook_managers] def get_webhook_manager(provider_name: "ProviderName") -> "BaseWebhooksManager": return load_webhook_managers()[provider_name]() def supports_webhooks(provider_name: "ProviderName") -> bool: return provider_name in load_webhook_managers() __all__ = ["get_webhook_manager", "supports_webhooks"]
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_epoch(self, runner) -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.data_loader.sampler, 'set_epoch'): # in case the data loader uses `SequentialSampler` in Pytorch runner.data_loader.sampler.set_epoch(runner.epoch) elif hasattr(runner.data_loader.batch_sampler.sampler, 'set_epoch'): # batch sampler in pytorch warps the sampler as its attributes. runner.data_loader.batch_sampler.sampler.set_epoch(runner.epoch)
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_epoch(self, runner: object) -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.data_loader.sampler, 'set_epoch'): # type: ignore # in case the data loader uses `SequentialSampler` in Pytorch runner.data_loader.sampler.set_epoch(runner.epoch) # type: ignore elif hasattr( runner.data_loader.batch_sampler.sampler, # type: ignore 'set_epoch'): # batch sampler in pytorch warps the sampler as its attributes. runner.data_loader.batch_sampler.sampler.set_epoch( # type: ignore runner.epoch) # type: ignore
# Copyright (c) OpenMMLab. All rights reserved. import argparse import mmengine def parse_args(): parser = argparse.ArgumentParser(description='Override Category') parser.add_argument('data_root') return parser.parse_args() def main(): args = parse_args() ChessPieces = [{ 'id': 1, 'name': ' ', 'supercategory': 'pieces' }, { 'id': 2, 'name': 'black bishop', 'supercategory': 'pieces' }, { 'id': 3, 'name': 'black king', 'supercategory': 'pieces' }, { 'id': 4, 'name': 'black knight', 'supercategory': 'pieces' }, { 'id': 5, 'name': 'black pawn', 'supercategory': 'pieces' }, { 'id': 6, 'name': 'black queen', 'supercategory': 'pieces' }, { 'id': 7, 'name': 'black rook', 'supercategory': 'pieces' }, { 'id': 8, 'name': 'white bishop', 'supercategory': 'pieces' }, { 'id': 9, 'name': 'white king', 'supercategory': 'pieces' }, { 'id': 10, 'name': 'white knight', 'supercategory': 'pieces' }, { 'id': 11, 'name': 'white pawn', 'supercategory': 'pieces' }, { 'id': 12, 'name': 'white queen', 'supercategory': 'pieces' }, { 'id': 13, 'name': 'white rook', 'supercategory': 'pieces' }] _data_root = args.data_root + 'ChessPieces/Chess Pieces.v23-raw.coco/' json_data = mmengine.load(_data_root + 'valid/annotations_without_background.json') json_data['categories'] = ChessPieces mmengine.dump(json_data, _data_root + 'valid/new_annotations_without_background.json') CottontailRabbits = [{ 'id': 1, 'name': 'rabbit', 'supercategory': 'Cottontail-Rabbit' }] _data_root = args.data_root + 'CottontailRabbits/' json_data = mmengine.load(_data_root + 'valid/annotations_without_background.json') json_data['categories'] = CottontailRabbits mmengine.dump(json_data, _data_root + 'valid/new_annotations_without_background.json') NorthAmericaMushrooms = [{ 'id': 1, 'name': 'flat mushroom', 'supercategory': 'mushroom' }, { 'id': 2, 'name': 'yellow mushroom', 'supercategory': 'mushroom' }] _data_root = args.data_root + 'NorthAmericaMushrooms/North American Mushrooms.v1-416x416.coco/' # noqa json_data = mmengine.load(_data_root + 'valid/annotations_without_background.json') json_data['categories'] = NorthAmericaMushrooms mmengine.dump(json_data, _data_root + 'valid/new_annotations_without_background.json') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import mmengine def parse_args(): parser = argparse.ArgumentParser(description='Override Category') parser.add_argument('data_root') return parser.parse_args() def main(): args = parse_args() ChessPieces = [{ 'id': 1, 'name': ' ', 'supercategory': 'pieces' }, { 'id': 2, 'name': 'black bishop', 'supercategory': 'pieces' }, { 'id': 3, 'name': 'black king', 'supercategory': 'pieces' }, { 'id': 4, 'name': 'black knight', 'supercategory': 'pieces' }, { 'id': 5, 'name': 'black pawn', 'supercategory': 'pieces' }, { 'id': 6, 'name': 'black queen', 'supercategory': 'pieces' }, { 'id': 7, 'name': 'black rook', 'supercategory': 'pieces' }, { 'id': 8, 'name': 'white bishop', 'supercategory': 'pieces' }, { 'id': 9, 'name': 'white king', 'supercategory': 'pieces' }, { 'id': 10, 'name': 'white knight', 'supercategory': 'pieces' }, { 'id': 11, 'name': 'white pawn', 'supercategory': 'pieces' }, { 'id': 12, 'name': 'white queen', 'supercategory': 'pieces' }, { 'id': 13, 'name': 'white rook', 'supercategory': 'pieces' }] _data_root = args.data_root + 'ChessPieces/Chess Pieces.v23-raw.coco/' json_data = mmengine.load(_data_root + 'valid/annotations_without_background.json') json_data['categories'] = ChessPieces mmengine.dump(json_data, _data_root + 'valid/new_annotations_without_background.json') NorthAmericaMushrooms = [{ 'id': 1, 'name': 'flat mushroom', 'supercategory': 'mushroom' }, { 'id': 2, 'name': 'yellow mushroom', 'supercategory': 'mushroom' }] _data_root = args.data_root + 'NorthAmericaMushrooms/North American Mushrooms.v1-416x416.coco/' # noqa json_data = mmengine.load(_data_root + 'valid/annotations_without_background.json') json_data['categories'] = NorthAmericaMushrooms mmengine.dump(json_data, _data_root + 'valid/new_annotations_without_background.json') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import warnings from abc import ABCMeta, abstractmethod from typing import Any, List, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataElement from mmengine.dist import (broadcast_object_list, collect_results, is_main_process) class BaseEvaluator(metaclass=ABCMeta): """Base class for an evaluator. The evaluator first processes each batch of data_samples and predictions, and appends the processed results in to the results list. Then it collects all results together from all ranks if distributed training is used. Finally, it computes the metrics of the entire dataset. A subclass of class:`BaseEvaluator` should assign a meaningful value to the class attribute `default_prefix`. See the argument `prefix` for details. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None """ default_prefix: Optional[str] = None def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.results: List[Any] = [] self.prefix = prefix or self.default_prefix if self.prefix is None: warnings.warn('The prefix is not set in evaluator class ' f'{self.__class__.__name__}.') @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta @abstractmethod def process(self, data_batch: Sequence[Tuple[Any, BaseDataElement]], predictions: Sequence[BaseDataElement]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, BaseDataElement]]): A batch of data from the dataloader. predictions (Sequence[BaseDataElement]): A batch of outputs from the model. """ @abstractmethod def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ def evaluate(self, size: int) -> dict: """Evaluate the model performance of the whole dataset after processing all batches. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data base on this size. Returns: dict: Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results. """ if len(self.results) == 0: warnings.warn( f'{self.__class__.__name__} got empty `self._results`. Please ' 'ensure that the processed results are properly added into ' '`self._results` in `process` method.') results = collect_results(self.results, size, self.collect_device) if is_main_process(): _metrics = self.compute_metrics(results) # type: ignore # Add prefix to metric names if self.prefix: _metrics = { '/'.join((self.prefix, k)): v for k, v in _metrics.items() } metrics = [_metrics] else: metrics = [None] # type: ignore broadcast_object_list(metrics) # reset the results list self.results.clear() return metrics[0]
# Copyright (c) OpenMMLab. All rights reserved. import warnings from abc import ABCMeta, abstractmethod from typing import Any, List, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataSample from mmengine.dist import (broadcast_object_list, collect_results, is_main_process) class BaseEvaluator(metaclass=ABCMeta): """Base class for an evaluator. The evaluator first processes each batch of data_samples and predictions, and appends the processed results in to the results list. Then it collects all results together from all ranks if distributed training is used. Finally, it computes the metrics of the entire dataset. A subclass of class:`BaseEvaluator` should assign a meaningful value to the class attribute `default_prefix`. See the argument `prefix` for details. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None """ default_prefix: Optional[str] = None def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.results: List[Any] = [] self.prefix = prefix or self.default_prefix if self.prefix is None: warnings.warn('The prefix is not set in evaluator class ' f'{self.__class__.__name__}.') @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta @abstractmethod def process(self, data_batch: Sequence[Tuple[Any, BaseDataSample]], predictions: Sequence[BaseDataSample]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, BaseDataSample]]): A batch of data from the dataloader. predictions (Sequence[BaseDataSample]): A batch of outputs from the model. """ @abstractmethod def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ def evaluate(self, size: int) -> dict: """Evaluate the model performance of the whole dataset after processing all batches. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data base on this size. Returns: dict: Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results. """ if len(self.results) == 0: warnings.warn( f'{self.__class__.__name__} got empty `self._results`. Please ' 'ensure that the processed results are properly added into ' '`self._results` in `process` method.') results = collect_results(self.results, size, self.collect_device) if is_main_process(): _metrics = self.compute_metrics(results) # type: ignore # Add prefix to metric names if self.prefix: _metrics = { '/'.join((self.prefix, k)): v for k, v in _metrics.items() } metrics = [_metrics] else: metrics = [None] # type: ignore broadcast_object_list(metrics) # reset the results list self.results.clear() return metrics[0]
import warnings from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.filetypes import AUDIO_FILE_FORMATS from docarray.utils._internal.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to a audio file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: import os from urllib.parse import urlparse url = super().validate(value, field, config) # basic url validation path = urlparse(url).path ext = os.path.splitext(path)[1][1:].lower() # pass test if extension is valid or no extension has_audio_extension = ext in AUDIO_FILE_FORMATS or ext == '' if not has_audio_extension: raise ValueError('Audio URL must have a valid extension') return cls(str(url), scheme=None) def load(self: T) -> Tuple[np.ndarray, int]: """ Load the data from the url into an AudioNdArray. --- ```python from typing import Optional from docarray import BaseDoc import numpy as np from docarray.typing import AudioUrl, AudioNdArray class MyDoc(BaseDoc): audio_url: AudioUrl audio_tensor: Optional[AudioNdArray] doc = MyDoc(audio_url='https://www.kozco.com/tech/piano2.wav') doc.audio_tensor, _ = doc.audio_url.load() assert isinstance(doc.audio_tensor, np.ndarray) ``` --- :return: AudioNdArray representing the audio file content. """ bytes_ = AudioBytes(self.load_bytes()) return bytes_.load() def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
import warnings from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.filetypes import AUDIO_FILE_FORMATS from docarray.utils._internal.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AudioUrl') @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to a audio file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: import os from urllib.parse import urlparse url = super().validate(value, field, config) # basic url validation path = urlparse(url).path ext = os.path.splitext(path)[1][1:].lower() # pass test if extension is valid or no extension has_audio_extension = ext in AUDIO_FILE_FORMATS or ext == '' if not has_audio_extension: raise ValueError('Audio URL must have a valid extension') return cls(str(url), scheme=None) def load(self: T) -> Tuple[np.ndarray, int]: """ Load the data from the url into an AudioNdArray. :return: AudioNdArray representing the audio file content. EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc import numpy as np from docarray.typing import AudioUrl class MyDoc(Document): audio_url: AudioUrl audio_tensor: AudioNdArray doc = MyDoc(audio_url="toydata/hello.wav") doc.audio_tensor, doc.frame_rate = doc.audio_url.load() assert isinstance(doc.audio_tensor, np.ndarray) """ bytes_ = AudioBytes(self.load_bytes()) return bytes_.load() def display(self): """ Play the audio sound from url in notebook. """ if is_notebook(): from IPython.display import Audio, display remote_url = True if self.startswith('http') else False if remote_url: display(Audio(data=self)) else: display(Audio(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # TODO: delete custom_imports after mmcls supports auto import # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) model = dict( backbone=dict( _delete_=True, type='mmcls.TIMMBackbone', model_name='efficientnet_b1', features_only=True, pretrained=True, out_indices=(1, 2, 3, 4)), neck=dict(in_channels=[24, 40, 112, 320])) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # please install mmcls>=0.20.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) model = dict( backbone=dict( _delete_=True, type='mmcls.TIMMBackbone', model_name='efficientnet_b1', features_only=True, pretrained=True, out_indices=(1, 2, 3, 4)), neck=dict(in_channels=[24, 40, 112, 320])) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01))
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.base_doc.any_doc import AnyDoc from docarray.base_doc.base_node import BaseNode from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) __all__ = ['AnyDoc', 'BaseDoc', 'BaseNode'] def __getattr__(name: str): if name == 'DocArrayResponse': import_library('fastapi', raise_error=True) from docarray.base_doc.docarray_response import DocArrayResponse if name not in __all__: __all__.append(name) return DocArrayResponse else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
from docarray.base_doc.any_doc import AnyDoc from docarray.base_doc.base_node import BaseNode from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) __all__ = ['AnyDoc', 'BaseDoc', 'BaseNode'] def __getattr__(name: str): if name == 'DocArrayResponse': import_library('fastapi', raise_error=True) from docarray.base_doc.docarray_response import DocArrayResponse if name not in __all__: __all__.append(name) return DocArrayResponse else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
def get_doc_value(): return 'MyExecutorBeforeReload'
def get_doc_value(): return 'MyExecutorBeforeReload'
import os import sys from pathlib import Path import pytest from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node from .utils import execute_subprocess_async, get_torch_dist_unique_port, require_torch def test_split_dataset_by_node_map_style(): full_ds = Dataset.from_dict({"i": range(17)}) full_size = len(full_ds) world_size = 3 datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(ds) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_split_dataset_by_node_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 3 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size @pytest.mark.parametrize("shards_per_node", [1, 2, 3]) def test_split_dataset_by_node_iterable_sharded(shards_per_node): def gen(shards): for shard in shards: yield from ({"i": i, "shard": shard} for i in range(17)) world_size = 3 num_shards = shards_per_node * world_size gen_kwargs = {"shards": [f"shard_{shard_idx}.txt" for shard_idx in range(num_shards)]} full_ds = IterableDataset.from_generator(gen, gen_kwargs=gen_kwargs) full_size = len(list(full_ds)) assert full_ds.n_shards == world_size * shards_per_node datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert [ds.n_shards for ds in datasets_per_rank] == [shards_per_node] * world_size assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_distributed_shuffle_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 2 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) ds_rank0 = split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle(seed=42) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle() ds_rank0 = split_dataset_by_node(full_ds.shuffle(seed=42), rank=0, world_size=world_size) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds.shuffle(), rank=0, world_size=world_size) @pytest.mark.parametrize("streaming", [False, True]) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_launch(streaming): nproc_per_node = 2 master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "test_torch_distributed_launch.py" distributed_args = f""" -m torch.distributed.launch --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy()) @pytest.mark.parametrize( "nproc_per_node, num_workers", [ (2, 2), # each node has 2 shards and each worker has 1 shards (3, 2), # each node uses all the shards but skips examples, and each worker has 2 shards ], ) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_launch_streaming_with_num_workers(nproc_per_node, num_workers): streaming = True master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "test_torch_distributed_launch.py" distributed_args = f""" -m torch.distributed.launch --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} --num_workers={num_workers} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy())
import os import sys from pathlib import Path import pytest from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node from .utils import execute_subprocess_async, get_torch_dist_unique_port, require_torch def test_split_dataset_by_node_map_style(): full_ds = Dataset.from_dict({"i": range(17)}) full_size = len(full_ds) world_size = 3 datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(ds) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_split_dataset_by_node_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 3 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size @pytest.mark.parametrize("shards_per_node", [1, 2, 3]) def test_split_dataset_by_node_iterable_sharded(shards_per_node): def gen(shards): for shard in shards: yield from ({"i": i, "shard": shard} for i in range(17)) world_size = 3 num_shards = shards_per_node * world_size gen_kwargs = {"shards": [f"shard_{shard_idx}.txt" for shard_idx in range(num_shards)]} full_ds = IterableDataset.from_generator(gen, gen_kwargs=gen_kwargs) full_size = len(list(full_ds)) assert full_ds.n_shards == world_size * shards_per_node datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert [ds.n_shards for ds in datasets_per_rank] == [shards_per_node] * world_size assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size @pytest.mark.parametrize("streaming", [False, True]) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_launch(streaming): nproc_per_node = 2 master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "test_torch_distributed_launch.py" distributed_args = f""" -m torch.distributed.launch --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy()) @pytest.mark.parametrize( "nproc_per_node, num_workers", [ (2, 2), # each node has 2 shards and each worker has 1 shards (3, 2), # each node uses all the shards but skips examples, and each worker has 2 shards ], ) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_launch_streaming_with_num_workers(nproc_per_node, num_workers): streaming = True master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "test_torch_distributed_launch.py" distributed_args = f""" -m torch.distributed.launch --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} --num_workers={num_workers} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy())
import os import time import uuid from contextlib import contextmanager from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, RepositoryNotFoundError CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def set_ci_hub_access_token(ci_hub_config): old_environ = dict(os.environ) os.environ["HF_TOKEN"] = CI_HUB_USER_TOKEN yield os.environ.clear() os.environ.update(old_environ) @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file_content): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=text_file_content.encode(), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import os import time import uuid from contextlib import contextmanager from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, RepositoryNotFoundError CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def set_ci_hub_access_token(ci_hub_config): old_environ = dict(os.environ) os.environ["HF_TOKEN"] = CI_HUB_USER_TOKEN yield os.environ.clear() os.environ.update(old_environ) @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule, Linear from mmcv.runner import ModuleList, auto_fp16 from mmdet.registry import MODELS from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class CoarseMaskHead(FCNMaskHead): """Coarse mask head used in PointRend. Compared with standard ``FCNMaskHead``, ``CoarseMaskHead`` will downsample the input feature map instead of upsample it. Args: num_convs (int): Number of conv layers in the head. Default: 0. num_fcs (int): Number of fc layers in the head. Default: 2. fc_out_channels (int): Number of output channels of fc layer. Default: 1024. downsample_factor (int): The factor that feature map is downsampled by. Default: 2. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs=0, num_fcs=2, fc_out_channels=1024, downsample_factor=2, init_cfg=dict( type='Xavier', override=[ dict(name='fcs'), dict(type='Constant', val=0.001, name='fc_logits') ]), *arg, **kwarg): super(CoarseMaskHead, self).__init__( *arg, num_convs=num_convs, upsample_cfg=dict(type=None), init_cfg=None, **kwarg) self.init_cfg = init_cfg self.num_fcs = num_fcs assert self.num_fcs > 0 self.fc_out_channels = fc_out_channels self.downsample_factor = downsample_factor assert self.downsample_factor >= 1 # remove conv_logit delattr(self, 'conv_logits') if downsample_factor > 1: downsample_in_channels = ( self.conv_out_channels if self.num_convs > 0 else self.in_channels) self.downsample_conv = ConvModule( downsample_in_channels, self.conv_out_channels, kernel_size=downsample_factor, stride=downsample_factor, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) else: self.downsample_conv = None self.output_size = (self.roi_feat_size[0] // downsample_factor, self.roi_feat_size[1] // downsample_factor) self.output_area = self.output_size[0] * self.output_size[1] last_layer_dim = self.conv_out_channels * self.output_area self.fcs = ModuleList() for i in range(num_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) self.fcs.append(Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels output_channels = self.num_classes * self.output_area self.fc_logits = Linear(last_layer_dim, output_channels) def init_weights(self): super(FCNMaskHead, self).init_weights() @auto_fp16() def forward(self, x): for conv in self.convs: x = conv(x) if self.downsample_conv is not None: x = self.downsample_conv(x) x = x.flatten(1) for fc in self.fcs: x = self.relu(fc(x)) mask_pred = self.fc_logits(x).view( x.size(0), self.num_classes, *self.output_size) return mask_pred
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule, Linear from mmcv.runner import ModuleList, auto_fp16 from mmdet.models.builder import HEADS from .fcn_mask_head import FCNMaskHead @HEADS.register_module() class CoarseMaskHead(FCNMaskHead): """Coarse mask head used in PointRend. Compared with standard ``FCNMaskHead``, ``CoarseMaskHead`` will downsample the input feature map instead of upsample it. Args: num_convs (int): Number of conv layers in the head. Default: 0. num_fcs (int): Number of fc layers in the head. Default: 2. fc_out_channels (int): Number of output channels of fc layer. Default: 1024. downsample_factor (int): The factor that feature map is downsampled by. Default: 2. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs=0, num_fcs=2, fc_out_channels=1024, downsample_factor=2, init_cfg=dict( type='Xavier', override=[ dict(name='fcs'), dict(type='Constant', val=0.001, name='fc_logits') ]), *arg, **kwarg): super(CoarseMaskHead, self).__init__( *arg, num_convs=num_convs, upsample_cfg=dict(type=None), init_cfg=None, **kwarg) self.init_cfg = init_cfg self.num_fcs = num_fcs assert self.num_fcs > 0 self.fc_out_channels = fc_out_channels self.downsample_factor = downsample_factor assert self.downsample_factor >= 1 # remove conv_logit delattr(self, 'conv_logits') if downsample_factor > 1: downsample_in_channels = ( self.conv_out_channels if self.num_convs > 0 else self.in_channels) self.downsample_conv = ConvModule( downsample_in_channels, self.conv_out_channels, kernel_size=downsample_factor, stride=downsample_factor, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) else: self.downsample_conv = None self.output_size = (self.roi_feat_size[0] // downsample_factor, self.roi_feat_size[1] // downsample_factor) self.output_area = self.output_size[0] * self.output_size[1] last_layer_dim = self.conv_out_channels * self.output_area self.fcs = ModuleList() for i in range(num_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) self.fcs.append(Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels output_channels = self.num_classes * self.output_area self.fc_logits = Linear(last_layer_dim, output_channels) def init_weights(self): super(FCNMaskHead, self).init_weights() @auto_fp16() def forward(self, x): for conv in self.convs: x = conv(x) if self.downsample_conv is not None: x = self.downsample_conv(x) x = x.flatten(1) for fc in self.fcs: x = self.relu(fc(x)) mask_pred = self.fc_logits(x).view( x.size(0), self.num_classes, *self.output_size) return mask_pred
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth' # noqa preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, type='LAD', # student backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(optimizer=dict(lr=0.01)) # TODO: MMEngine does not support fp16 yet. # fp16 = dict(loss_scale=512.) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth' # noqa model = dict( type='LAD', # student backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) data = dict(samples_per_gpu=8, workers_per_gpu=4) optimizer = dict(lr=0.01) fp16 = dict(loss_scale=512.) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
""" Develop installable templates. """ import re import shutil import subprocess from pathlib import Path from typing import Annotated, Optional import typer from langchain_cli.utils.packages import get_langserve_export, get_package_root package_cli = typer.Typer(no_args_is_help=True, add_completion=False) @package_cli.command() def new( name: Annotated[str, typer.Argument(help="The name of the folder to create")], with_poetry: Annotated[ bool, typer.Option("--with-poetry/--no-poetry", help="Don't run poetry install"), ] = False, ): """ Creates a new template package. """ computed_name = name if name != "." else Path.cwd().name destination_dir = Path.cwd() / name if name != "." else Path.cwd() # copy over template from ../package_template project_template_dir = Path(__file__).parents[1] / "package_template" shutil.copytree(project_template_dir, destination_dir, dirs_exist_ok=name == ".") package_name_split = computed_name.split("/") package_name = ( package_name_split[-2] if len(package_name_split) > 1 and package_name_split[-1] == "" else package_name_split[-1] ) module_name = re.sub( r"[^a-zA-Z0-9_]", "_", package_name, ) # generate app route code chain_name = f"{module_name}_chain" app_route_code = ( f"from {module_name} import chain as {chain_name}\n\n" f'add_routes(app, {chain_name}, path="/{package_name}")' ) # replace template strings pyproject = destination_dir / "pyproject.toml" pyproject_contents = pyproject.read_text() pyproject.write_text( pyproject_contents.replace("__package_name__", package_name).replace( "__module_name__", module_name ) ) # move module folder package_dir = destination_dir / module_name shutil.move(destination_dir / "package_template", package_dir) # update init init = package_dir / "__init__.py" init_contents = init.read_text() init.write_text(init_contents.replace("__module_name__", module_name)) # replace readme readme = destination_dir / "README.md" readme_contents = readme.read_text() readme.write_text( readme_contents.replace("__package_name__", package_name).replace( "__app_route_code__", app_route_code ) ) # poetry install if with_poetry: subprocess.run(["poetry", "install"], cwd=destination_dir) @package_cli.command() def serve( *, port: Annotated[ Optional[int], typer.Option(help="The port to run the server on") ] = None, host: Annotated[ Optional[str], typer.Option(help="The host to run the server on") ] = None, configurable: Annotated[ Optional[bool], typer.Option( "--configurable/--no-configurable", help="Whether to include a configurable route", ), ] = None, # defaults to `not chat_playground` chat_playground: Annotated[ bool, typer.Option( "--chat-playground/--no-chat-playground", help="Whether to include a chat playground route", ), ] = False, ) -> None: """ Starts a demo app for this template. """ # load pyproject.toml project_dir = get_package_root() pyproject = project_dir / "pyproject.toml" # get langserve export - throws KeyError if invalid get_langserve_export(pyproject) host_str = host if host is not None else "127.0.0.1" script = ( "langchain_cli.dev_scripts:create_demo_server_chat" if chat_playground else ( "langchain_cli.dev_scripts:create_demo_server_configurable" if configurable else "langchain_cli.dev_scripts:create_demo_server" ) ) import uvicorn uvicorn.run( script, factory=True, reload=True, port=port if port is not None else 8000, host=host_str, ) @package_cli.command() def list(contains: Annotated[Optional[str], typer.Argument()] = None) -> None: """ List all or search for available templates. """ from langchain_cli.utils.github import list_packages packages = list_packages(contains=contains) for package in packages: typer.echo(package)
""" Develop installable templates. """ import re import shutil import subprocess from pathlib import Path from typing import Optional import typer from typing_extensions import Annotated from langchain_cli.utils.packages import get_langserve_export, get_package_root package_cli = typer.Typer(no_args_is_help=True, add_completion=False) @package_cli.command() def new( name: Annotated[str, typer.Argument(help="The name of the folder to create")], with_poetry: Annotated[ bool, typer.Option("--with-poetry/--no-poetry", help="Don't run poetry install"), ] = False, ): """ Creates a new template package. """ computed_name = name if name != "." else Path.cwd().name destination_dir = Path.cwd() / name if name != "." else Path.cwd() # copy over template from ../package_template project_template_dir = Path(__file__).parents[1] / "package_template" shutil.copytree(project_template_dir, destination_dir, dirs_exist_ok=name == ".") package_name_split = computed_name.split("/") package_name = ( package_name_split[-2] if len(package_name_split) > 1 and package_name_split[-1] == "" else package_name_split[-1] ) module_name = re.sub( r"[^a-zA-Z0-9_]", "_", package_name, ) # generate app route code chain_name = f"{module_name}_chain" app_route_code = ( f"from {module_name} import chain as {chain_name}\n\n" f'add_routes(app, {chain_name}, path="/{package_name}")' ) # replace template strings pyproject = destination_dir / "pyproject.toml" pyproject_contents = pyproject.read_text() pyproject.write_text( pyproject_contents.replace("__package_name__", package_name).replace( "__module_name__", module_name ) ) # move module folder package_dir = destination_dir / module_name shutil.move(destination_dir / "package_template", package_dir) # update init init = package_dir / "__init__.py" init_contents = init.read_text() init.write_text(init_contents.replace("__module_name__", module_name)) # replace readme readme = destination_dir / "README.md" readme_contents = readme.read_text() readme.write_text( readme_contents.replace("__package_name__", package_name).replace( "__app_route_code__", app_route_code ) ) # poetry install if with_poetry: subprocess.run(["poetry", "install"], cwd=destination_dir) @package_cli.command() def serve( *, port: Annotated[ Optional[int], typer.Option(help="The port to run the server on") ] = None, host: Annotated[ Optional[str], typer.Option(help="The host to run the server on") ] = None, configurable: Annotated[ Optional[bool], typer.Option( "--configurable/--no-configurable", help="Whether to include a configurable route", ), ] = None, # defaults to `not chat_playground` chat_playground: Annotated[ bool, typer.Option( "--chat-playground/--no-chat-playground", help="Whether to include a chat playground route", ), ] = False, ) -> None: """ Starts a demo app for this template. """ # load pyproject.toml project_dir = get_package_root() pyproject = project_dir / "pyproject.toml" # get langserve export - throws KeyError if invalid get_langserve_export(pyproject) host_str = host if host is not None else "127.0.0.1" script = ( "langchain_cli.dev_scripts:create_demo_server_chat" if chat_playground else ( "langchain_cli.dev_scripts:create_demo_server_configurable" if configurable else "langchain_cli.dev_scripts:create_demo_server" ) ) import uvicorn uvicorn.run( script, factory=True, reload=True, port=port if port is not None else 8000, host=host_str, ) @package_cli.command() def list(contains: Annotated[Optional[str], typer.Argument()] = None) -> None: """ List all or search for available templates. """ from langchain_cli.utils.github import list_packages packages = list_packages(contains=contains) for package in packages: typer.echo(package)
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_caption_metric import COCOCaptionMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dod_metric import DODCocoMetric from .dump_det_results import DumpDetResults from .dump_odvg_results import DumpODVGResults from .dump_proposals_metric import DumpProposals from .flickr30k_metric import Flickr30kMetric from .grefcoco_metric import gRefCOCOMetric from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .refexp_metric import RefExpMetric from .refseg_metric import RefSegMetric from .reid_metric import ReIDMetrics from .semseg_metric import SemSegMetric from .voc_metric import VOCMetric from .youtube_vis_metric import YouTubeVISMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric', 'ReIDMetrics', 'YouTubeVISMetric', 'COCOCaptionMetric', 'SemSegMetric', 'RefSegMetric', 'RefExpMetric', 'gRefCOCOMetric', 'DODCocoMetric', 'DumpODVGResults', 'Flickr30kMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_caption_metric import COCOCaptionMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_det_results import DumpDetResults from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .refseg_metric import RefSegMetric from .reid_metric import ReIDMetrics from .semseg_metric import SemSegMetric from .voc_metric import VOCMetric from .youtube_vis_metric import YouTubeVISMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric', 'ReIDMetrics', 'YouTubeVISMetric', 'COCOCaptionMetric', 'SemSegMetric', 'RefSegMetric' ]
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain a VideoUrl (`VideoDoc.url`), an Audio Document (`VideoDoc.audio`), a VideoTensor (`VideoDoc.tensor`), an AnyTensor representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) and an AnyEmbedding (`VideoDoc.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() """ url: Optional[VideoUrl] audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain a VideoUrl (`VideoDoc.url`), an Audio Document (`VideoDoc.audio`), a VideoTensor (`VideoDoc.tensor`), an AnyTensor representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) and an AnyEmbedding (`VideoDoc.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() """ url: Optional[VideoUrl] audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from __future__ import annotations from typing import Any, Optional, Union import PIL.Image import torch from ._tv_tensor import TVTensor class Image(TVTensor): """:class:`torch.Tensor` subclass for images. .. note:: In the :ref:`transforms <transforms>`, ``Image`` instances are largely interchangeable with pure :class:`torch.Tensor`. See :ref:`this note <passthrough_heuristic>` for more details. Args: data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as well as PIL images. dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the image is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Image: if isinstance(data, PIL.Image.Image): from torchvision.transforms.v2 import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if tensor.ndim < 2: raise ValueError elif tensor.ndim == 2: tensor = tensor.unsqueeze(0) return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr()
from __future__ import annotations from typing import Any, Optional, Union import PIL.Image import torch from ._tv_tensor import TVTensor class Image(TVTensor): """[BETA] :class:`torch.Tensor` subclass for images. .. note:: In the :ref:`transforms <transforms>`, ``Image`` instances are largely interchangeable with pure :class:`torch.Tensor`. See :ref:`this note <passthrough_heuristic>` for more details. Args: data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as well as PIL images. dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the image is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Image: if isinstance(data, PIL.Image.Image): from torchvision.transforms.v2 import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if tensor.ndim < 2: raise ValueError elif tensor.ndim == 2: tensor = tensor.unsqueeze(0) return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr()
import importlib from types import ModuleType import pytest from ...utils import needs_py39, needs_py310 @pytest.fixture( name="test_module", params=[ "app_b.test_main", pytest.param("app_b_py310.test_main", marks=needs_py310), "app_b_an.test_main", pytest.param("app_b_an_py39.test_main", marks=needs_py39), pytest.param("app_b_an_py310.test_main", marks=needs_py310), ], ) def get_test_module(request: pytest.FixtureRequest) -> ModuleType: mod: ModuleType = importlib.import_module(f"docs_src.app_testing.{request.param}") return mod def test_app(test_module: ModuleType): test_main = test_module test_main.test_create_existing_item() test_main.test_create_item() test_main.test_create_item_bad_token() test_main.test_read_nonexistent_item() test_main.test_read_item() test_main.test_read_item_bad_token()
from docs_src.app_testing.app_b import test_main def test_app(): test_main.test_create_existing_item() test_main.test_create_item() test_main.test_create_item_bad_token() test_main.test_read_nonexistent_item() test_main.test_read_item() test_main.test_read_item_bad_token()
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.0.1" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.0.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
import os # type: ignore[import-not-found] from exa_py import Exa from langchain_core.utils import convert_to_secret_str def initialize_client(values: dict) -> dict: """Initialize the client.""" exa_api_key = values.get("exa_api_key") or os.environ.get("EXA_API_KEY") or "" values["exa_api_key"] = convert_to_secret_str(exa_api_key) args = { "api_key": values["exa_api_key"].get_secret_value(), } if values.get("exa_base_url"): args["base_url"] = values["exa_base_url"] values["client"] = Exa(**args) return values
import os # type: ignore[import-not-found] from exa_py import Exa # type: ignore from langchain_core.utils import convert_to_secret_str def initialize_client(values: dict) -> dict: """Initialize the client.""" exa_api_key = values.get("exa_api_key") or os.environ.get("EXA_API_KEY") or "" values["exa_api_key"] = convert_to_secret_str(exa_api_key) args = { "api_key": values["exa_api_key"].get_secret_value(), } if values.get("exa_base_url"): args["base_url"] = values["exa_base_url"] values["client"] = Exa(**args) return values
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) 2019 Western Digital Corporation or its affiliates. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class YOLOV3(SingleStageDetector): r"""Implementation of `Yolov3: An incremental improvement <https://arxiv.org/abs/1804.02767>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of YOLOX. Default: None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of YOLOX. Default: None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Model preprocessing config for processing the input data. it usually includes ``to_rgb``, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) 2019 Western Digital Corporation or its affiliates. from mmdet.core.utils.typing import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class YOLOV3(SingleStageDetector): r"""Implementation of `Yolov3: An incremental improvement <https://arxiv.org/abs/1804.02767>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of YOLOX. Default: None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of YOLOX. Default: None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Model preprocessing config for processing the input data. it usually includes ``to_rgb``, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
import os import torch import torchaudio.prototype.transforms as T import torchaudio.transforms as transforms from torchaudio_unittest.common_utils import nested_params, TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): def assert_batch_consistency(self, transform, batch, *args, atol=1e-8, rtol=1e-5, seed=42, **kwargs): n = batch.size(0) # Compute items separately, then batch the result torch.random.manual_seed(seed) items_input = batch.clone() items_result = torch.stack([transform(items_input[i], *args, **kwargs) for i in range(n)]) # Batch the input and run torch.random.manual_seed(seed) batch_input = batch.clone() batch_result = transform(batch_input, *args, **kwargs) self.assertEqual(items_input, batch_input, rtol=rtol, atol=atol) self.assertEqual(items_result, batch_result, rtol=rtol, atol=atol) @nested_params( [T.Convolve, T.FFTConvolve], ["full", "valid", "same"], ) def test_Convolve(self, cls, mode): leading_dims = (2, 3) L_x, L_y = 89, 43 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) convolve = cls(mode=mode) actual = convolve(x, y) expected = torch.stack( [ torch.stack( [convolve(x[i, j].unsqueeze(0), y[i, j].unsqueeze(0)).squeeze(0) for j in range(leading_dims[1])] ) for i in range(leading_dims[0]) ] ) self.assertEqual(expected, actual) def test_batch_BarkScale(self): specgram = torch.randn(3, 2, 201, 256) atol = 1e-6 if os.name == "nt" else 1e-8 transform = T.BarkScale() self.assert_batch_consistency(transform, specgram, atol=atol) def test_batch_InverseBarkScale(self): n_barks = 32 n_stft = 5 bark_spec = torch.randn(3, 2, n_barks, 32) ** 2 transform = transforms.InverseMelScale(n_stft, n_barks) # Because InverseBarkScale runs SGD on randomly initialized values so they do not yield # exactly same result. For this reason, tolerance is very relaxed here. self.assert_batch_consistency(transform, bark_spec, atol=1.0, rtol=1e-5)
import torch import torchaudio.prototype.transforms as T from torchaudio_unittest.common_utils import nested_params, TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): @nested_params( [T.Convolve, T.FFTConvolve], ["full", "valid", "same"], ) def test_Convolve(self, cls, mode): leading_dims = (2, 3) L_x, L_y = 89, 43 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) convolve = cls(mode=mode) actual = convolve(x, y) expected = torch.stack( [ torch.stack( [convolve(x[i, j].unsqueeze(0), y[i, j].unsqueeze(0)).squeeze(0) for j in range(leading_dims[1])] ) for i in range(leading_dims[0]) ] ) self.assertEqual(expected, actual)
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import tensorflow as tf class TFFormatter(TensorFormatter[Mapping, "tf.Tensor", Mapping]): def __init__(self, features=None, **tf_tensor_kwargs): super().__init__(features=features) self.tf_tensor_kwargs = tf_tensor_kwargs import tensorflow as tf # noqa: import tf at initialization def _consolidate(self, column): import tensorflow as tf if isinstance(column, list) and column: if all( isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return tf.stack(column) elif all( isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype for x in column ): # only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated return tf.ragged.stack(column) return column def _tensorize(self, value): import tensorflow as tf if value is None: return value default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": tf.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": tf.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import tensorflow as tf # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, tf.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "tf.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import Formatter if TYPE_CHECKING: import tensorflow as tf class TFFormatter(Formatter[Mapping, "tf.Tensor", Mapping]): def __init__(self, features=None, **tf_tensor_kwargs): super().__init__(features=features) self.tf_tensor_kwargs = tf_tensor_kwargs import tensorflow as tf # noqa: import tf at initialization def _consolidate(self, column): import tensorflow as tf if isinstance(column, list) and column: if all( isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return tf.stack(column) elif all( isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype for x in column ): # only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated return tf.ragged.stack(column) return column def _tensorize(self, value): import tensorflow as tf if value is None: return value default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": tf.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": tf.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs}) def _recursive_tensorize(self, data_struct: dict): # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "tf.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import WanTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin enable_full_determinism() class WanTransformer3DTests(ModelTesterMixin, TorchCompileTesterMixin, unittest.TestCase): model_class = WanTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 1 num_channels = 4 num_frames = 2 height = 16 width = 16 text_encoder_embedding_dim = 16 sequence_length = 12 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 1, 16, 16) @property def output_shape(self): return (4, 1, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": (1, 2, 2), "num_attention_heads": 2, "attention_head_dim": 12, "in_channels": 4, "out_channels": 4, "text_dim": 16, "freq_dim": 256, "ffn_dim": 32, "num_layers": 2, "cross_attn_norm": True, "qk_norm": "rms_norm_across_heads", "rope_max_seq_len": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"WanTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import WanTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, is_torch_compile, require_torch_2, require_torch_gpu, slow, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase): model_class = WanTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 1 num_channels = 4 num_frames = 2 height = 16 width = 16 text_encoder_embedding_dim = 16 sequence_length = 12 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 1, 16, 16) @property def output_shape(self): return (4, 1, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": (1, 2, 2), "num_attention_heads": 2, "attention_head_dim": 12, "in_channels": 4, "out_channels": 4, "text_dim": 16, "freq_dim": 256, "ffn_dim": 32, "num_layers": 2, "cross_attn_norm": True, "qk_norm": "rms_norm_across_heads", "rope_max_seq_len": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"WanTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @require_torch_gpu @require_torch_2 @is_torch_compile @slow def test_torch_compile_recompilation_and_graph_break(self): torch._dynamo.reset() init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict).to(torch_device) model = torch.compile(model, fullgraph=True) with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad(): _ = model(**inputs_dict) _ = model(**inputs_dict)
# -*- coding: utf-8 -*- """ Audio Datasets ============== **Author**: `Moto Hira <[email protected]>`__ ``torchaudio`` provides easy access to common, publicly accessible datasets. Please refer to the official documentation for the list of available datasets. """ # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio import torch import torchaudio print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Preparing data and utility functions (skip this section) # -------------------------------------------------------- # # @title Prepare data and utility functions. {display-mode: "form"} # @markdown # @markdown You do not need to look into this cell. # @markdown Just execute once and you are good to go. # ------------------------------------------------------------------------------- # Preparation of data and helper functions. # ------------------------------------------------------------------------------- import os import matplotlib.pyplot as plt from IPython.display import Audio, display _SAMPLE_DIR = "_assets" YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no") os.makedirs(YESNO_DATASET_PATH, exist_ok=True) def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None): waveform = waveform.numpy() num_channels, _ = waveform.shape figure, axes = plt.subplots(num_channels, 1) if num_channels == 1: axes = [axes] for c in range(num_channels): axes[c].specgram(waveform[c], Fs=sample_rate) if num_channels > 1: axes[c].set_ylabel(f"Channel {c+1}") if xlim: axes[c].set_xlim(xlim) figure.suptitle(title) plt.show(block=False) def play_audio(waveform, sample_rate): waveform = waveform.numpy() num_channels, _ = waveform.shape if num_channels == 1: display(Audio(waveform[0], rate=sample_rate)) elif num_channels == 2: display(Audio((waveform[0], waveform[1]), rate=sample_rate)) else: raise ValueError("Waveform with more than 2 channels are not supported.") ###################################################################### # Here, we show how to use the # :py:class:`torchaudio.datasets.YESNO` dataset. # dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True) for i in [1, 3, 5]: waveform, sample_rate, label = dataset[i] plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}") play_audio(waveform, sample_rate)
# -*- coding: utf-8 -*- """ Audio Datasets ============== ``torchaudio`` provides easy access to common, publicly accessible datasets. Please refer to the official documentation for the list of available datasets. """ # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio import torch import torchaudio print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Preparing data and utility functions (skip this section) # -------------------------------------------------------- # # @title Prepare data and utility functions. {display-mode: "form"} # @markdown # @markdown You do not need to look into this cell. # @markdown Just execute once and you are good to go. # ------------------------------------------------------------------------------- # Preparation of data and helper functions. # ------------------------------------------------------------------------------- import os import matplotlib.pyplot as plt from IPython.display import Audio, display _SAMPLE_DIR = "_assets" YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no") os.makedirs(YESNO_DATASET_PATH, exist_ok=True) def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None): waveform = waveform.numpy() num_channels, _ = waveform.shape figure, axes = plt.subplots(num_channels, 1) if num_channels == 1: axes = [axes] for c in range(num_channels): axes[c].specgram(waveform[c], Fs=sample_rate) if num_channels > 1: axes[c].set_ylabel(f"Channel {c+1}") if xlim: axes[c].set_xlim(xlim) figure.suptitle(title) plt.show(block=False) def play_audio(waveform, sample_rate): waveform = waveform.numpy() num_channels, _ = waveform.shape if num_channels == 1: display(Audio(waveform[0], rate=sample_rate)) elif num_channels == 2: display(Audio((waveform[0], waveform[1]), rate=sample_rate)) else: raise ValueError("Waveform with more than 2 channels are not supported.") ###################################################################### # Here, we show how to use the # :py:class:`torchaudio.datasets.YESNO` dataset. # dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True) for i in [1, 3, 5]: waveform, sample_rate, label = dataset[i] plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}") play_audio(waveform, sample_rate)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_auto_round_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class AutoRoundQuantizer(HfQuantizer): """ Quantizer of the AutoRound method. (https://huggingface.co/papers/2309.05516) """ # AutoRound requires data calibration - we support only inference requires_calibration = True required_packages = ["auto_round"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, *args, **kwargs): self.device_map = kwargs.get("device_map", None) if not is_auto_round_available(): raise ImportError( "Loading an AutoRound quantized model requires auto-round library (`pip install 'auto-round>=0.5'`)" ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.bfloat16 logger.info("Loading the model in `torch.bfloat16`. To overwrite it, set `torch_dtype` manually.") return torch_dtype def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): if model.__class__.main_input_name != "input_ids": logger.warning("AutoRound offers only limited support for models that are not strictly text-based.") from auto_round.inference.convert_model import convert_hf_model, infer_target_device if self.pre_quantized: target_device = infer_target_device(self.device_map) model, used_backends = convert_hf_model(model, target_device) self.used_backends = used_backends def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): if self.pre_quantized: from auto_round.inference.convert_model import post_init post_init(model, self.used_backends) else: raise ValueError("AutoRound only sports pre-quantized models.") @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): ## for gptq/awq models, the quantization config will be changed return True
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_auto_round_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class AutoRoundQuantizer(HfQuantizer): """ Quantizer of the AutoRound method. (https://arxiv.org/pdf/2309.05516) """ # AutoRound requires data calibration - we support only inference requires_calibration = True required_packages = ["auto_round"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, *args, **kwargs): self.device_map = kwargs.get("device_map", None) if not is_auto_round_available(): raise ImportError( "Loading an AutoRound quantized model requires auto-round library (`pip install 'auto-round>=0.5'`)" ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.bfloat16 logger.info("Loading the model in `torch.bfloat16`. To overwrite it, set `torch_dtype` manually.") return torch_dtype def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): if model.__class__.main_input_name != "input_ids": logger.warning("AutoRound offers only limited support for models that are not strictly text-based.") from auto_round.inference.convert_model import convert_hf_model, infer_target_device if self.pre_quantized: target_device = infer_target_device(self.device_map) model, used_backends = convert_hf_model(model, target_device) self.used_backends = used_backends def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): if self.pre_quantized: from auto_round.inference.convert_model import post_init post_init(model, self.used_backends) else: raise ValueError("AutoRound only sports pre-quantized models.") @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): ## for gptq/awq models, the quantization config will be changed return True
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MGT-STR CHAR.""" import json import os from typing import Optional from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} class MgpstrTokenizer(PreTrainedTokenizer): """ Construct a MGP-STR char tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str`, *optional*, defaults to `"[GO]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"[GO]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[s]"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. """ vocab_files_names = VOCAB_FILES_NAMES def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) self.decoder = {v: k for k, v in self.vocab.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): vocab = dict(self.vocab).copy() vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Tokenize a string.""" char_tokens = [] for s in text: char_tokens.extend(s) return char_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,) __all__ = ["MgpstrTokenizer"]
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MGT-STR CHAR.""" import json import os from typing import Optional from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} class MgpstrTokenizer(PreTrainedTokenizer): """ Construct a MGP-STR char tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str`, *optional*, defaults to `"[GO]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"[GO]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[s]"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. """ vocab_files_names = VOCAB_FILES_NAMES def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) self.decoder = {v: k for k, v in self.vocab.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): vocab = dict(self.vocab).copy() vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Tokenize a string.""" char_tokens = [] for s in text: char_tokens.extend(s) return char_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,) __all__ = ["MgpstrTokenizer"]
"""Query Understanding agent pack.""" from typing import Any, Dict, List, Optional from llama_index.core.agent import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.llms.llm import LLM from llama_index.core.tools.types import BaseTool from llama_index.llms.openai import OpenAI from .step import QueryUnderstandingAgentWorker class QueryUnderstandingAgentPack(BaseLlamaPack): """ LLMCompilerAgent pack. Args: tools (List[BaseTool]): List of tools to use. llm (Optional[LLM]): LLM to use. """ def __init__( self, tools: List[BaseTool], llm: Optional[LLM] = None, callback_manager: Optional[CallbackManager] = None, agent_worker_kwargs: Optional[Dict[str, Any]] = None, agent_runner_kwargs: Optional[Dict[str, Any]] = None, ) -> None: """Init params.""" self.llm = llm or OpenAI(model="gpt-4") self.callback_manager = callback_manager or self.llm.callback_manager self.agent_worker = QueryUnderstandingAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=self.callback_manager, **(agent_worker_kwargs or {}), ) self.agent = AgentRunner( self.agent_worker, callback_manager=self.callback_manager, **(agent_runner_kwargs or {}), ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "callback_manager": self.callback_manager, "agent_worker": self.agent_worker, "agent": self.agent, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
"""Query Understanding agent pack.""" from typing import Any, Dict, List, Optional from llama_index.core.agent import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.llms.llm import LLM from llama_index.core.tools.types import BaseTool from llama_index.llms.openai import OpenAI from .step import QueryUnderstandingAgentWorker class QueryUnderstandingAgentPack(BaseLlamaPack): """ LLMCompilerAgent pack. Args: tools (List[BaseTool]): List of tools to use. llm (Optional[LLM]): LLM to use. """ def __init__( self, tools: List[BaseTool], llm: Optional[LLM] = None, callback_manager: Optional[CallbackManager] = None, agent_worker_kwargs: Optional[Dict[str, Any]] = None, agent_runner_kwargs: Optional[Dict[str, Any]] = None, ) -> None: """Init params.""" self.llm = llm or OpenAI(model="gpt-4") self.callback_manager = callback_manager or self.llm.callback_manager self.agent_worker = QueryUnderstandingAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=self.callback_manager, **(agent_worker_kwargs or {}) ) self.agent = AgentRunner( self.agent_worker, callback_manager=self.callback_manager, **(agent_runner_kwargs or {}) ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "callback_manager": self.callback_manager, "agent_worker": self.agent_worker, "agent": self.agent, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
"""Helpers for interfacing array like objects.""" import copy import ctypes import json from typing import Literal, Optional, Protocol, Tuple, Type, TypedDict, Union, cast import numpy as np from ._typing import CNumericPtr, DataType, NumpyOrCupy from .compat import import_cupy class _ArrayLikeArg(Protocol): @property def __array_interface__(self) -> "ArrayInf": ... class TransformedDf(Protocol): """Protocol class for storing transformed dataframe.""" def array_interface(self) -> bytes: """Get a JSON-encoded list of array interfaces.""" @property def shape(self) -> Tuple[int, int]: """Return the shape of the dataframe.""" ArrayInf = TypedDict( "ArrayInf", { "data": Tuple[int, bool], "typestr": str, "version": Literal[3], "strides": Optional[Tuple[int, ...]], "shape": Tuple[int, ...], "mask": Union["ArrayInf", None, _ArrayLikeArg], }, ) def array_hasobject(data: DataType) -> bool: """Whether the numpy array has object dtype.""" return hasattr(data.dtype, "hasobject") and data.dtype.hasobject def cuda_array_interface(data: DataType) -> bytes: """Make cuda array interface str.""" if array_hasobject(data): raise ValueError("Input data contains `object` dtype. Expecting numeric data.") interface = data.__cuda_array_interface__ if "mask" in interface: interface["mask"] = interface["mask"].__cuda_array_interface__ interface_str = bytes(json.dumps(interface), "utf-8") return interface_str def from_array_interface(interface: ArrayInf, zero_copy: bool = False) -> NumpyOrCupy: """Convert array interface to numpy or cupy array""" class Array: """Wrapper type for communicating with numpy and cupy.""" _interface: Optional[ArrayInf] = None @property def __array_interface__(self) -> Optional[ArrayInf]: return self._interface @__array_interface__.setter def __array_interface__(self, interface: ArrayInf) -> None: self._interface = copy.copy(interface) # Convert some fields to tuple as required by numpy self._interface["shape"] = tuple(self._interface["shape"]) self._interface["data"] = ( self._interface["data"][0], self._interface["data"][1], ) strides = self._interface.get("strides", None) if strides is not None: self._interface["strides"] = tuple(strides) @property def __cuda_array_interface__(self) -> Optional[ArrayInf]: return self.__array_interface__ @__cuda_array_interface__.setter def __cuda_array_interface__(self, interface: ArrayInf) -> None: self.__array_interface__ = interface arr = Array() if "stream" in interface: # CUDA stream is presented, this is a __cuda_array_interface__. arr.__cuda_array_interface__ = interface out = import_cupy().array(arr, copy=not zero_copy) else: arr.__array_interface__ = interface out = np.array(arr, copy=not zero_copy) return out def make_array_interface( ptr: Union[CNumericPtr, int], shape: Tuple[int, ...], dtype: Type[np.number], is_cuda: bool, ) -> ArrayInf: """Make an __(cuda)_array_interface__ from a pointer.""" # Use an empty array to handle typestr and descr if is_cuda: empty = import_cupy().empty(shape=(0,), dtype=dtype) array = empty.__cuda_array_interface__ # pylint: disable=no-member else: empty = np.empty(shape=(0,), dtype=dtype) array = empty.__array_interface__ # pylint: disable=no-member if not isinstance(ptr, int): addr = ctypes.cast(ptr, ctypes.c_void_p).value else: addr = ptr length = int(np.prod(shape)) # Handle empty dataset. assert addr is not None or length == 0 if addr is None: return array array["data"] = (addr, True) if is_cuda: array["stream"] = 2 array["shape"] = shape array["strides"] = None return array def array_interface_dict(data: np.ndarray) -> ArrayInf: """Convert array interface into a Python dictionary.""" if array_hasobject(data): raise ValueError("Input data contains `object` dtype. Expecting numeric data.") arrinf = data.__array_interface__ if "mask" in arrinf: arrinf["mask"] = arrinf["mask"].__array_interface__ return cast(ArrayInf, arrinf) def array_interface(data: np.ndarray) -> bytes: """Make array interface str.""" interface = array_interface_dict(data) interface_str = bytes(json.dumps(interface), "utf-8") return interface_str
"""Helpers for interfacing array like objects.""" import copy import ctypes import json from typing import Literal, Optional, Protocol, Tuple, Type, TypedDict, Union, cast import numpy as np from ._typing import CNumericPtr, DataType, NumpyOrCupy from .compat import import_cupy class _ArrayLikeArg(Protocol): @property def __array_interface__(self) -> "ArrayInf": ... ArrayInf = TypedDict( "ArrayInf", { "data": Tuple[int, bool], "typestr": str, "version": Literal[3], "strides": Optional[Tuple[int, ...]], "shape": Tuple[int, ...], "mask": Union["ArrayInf", None, _ArrayLikeArg], }, ) def array_hasobject(data: DataType) -> bool: """Whether the numpy array has object dtype.""" return hasattr(data.dtype, "hasobject") and data.dtype.hasobject def cuda_array_interface(data: DataType) -> bytes: """Make cuda array interface str.""" if array_hasobject(data): raise ValueError("Input data contains `object` dtype. Expecting numeric data.") interface = data.__cuda_array_interface__ if "mask" in interface: interface["mask"] = interface["mask"].__cuda_array_interface__ interface_str = bytes(json.dumps(interface), "utf-8") return interface_str def from_array_interface(interface: ArrayInf, zero_copy: bool = False) -> NumpyOrCupy: """Convert array interface to numpy or cupy array""" class Array: """Wrapper type for communicating with numpy and cupy.""" _interface: Optional[ArrayInf] = None @property def __array_interface__(self) -> Optional[ArrayInf]: return self._interface @__array_interface__.setter def __array_interface__(self, interface: ArrayInf) -> None: self._interface = copy.copy(interface) # Convert some fields to tuple as required by numpy self._interface["shape"] = tuple(self._interface["shape"]) self._interface["data"] = ( self._interface["data"][0], self._interface["data"][1], ) strides = self._interface.get("strides", None) if strides is not None: self._interface["strides"] = tuple(strides) @property def __cuda_array_interface__(self) -> Optional[ArrayInf]: return self.__array_interface__ @__cuda_array_interface__.setter def __cuda_array_interface__(self, interface: ArrayInf) -> None: self.__array_interface__ = interface arr = Array() if "stream" in interface: # CUDA stream is presented, this is a __cuda_array_interface__. arr.__cuda_array_interface__ = interface out = import_cupy().array(arr, copy=not zero_copy) else: arr.__array_interface__ = interface out = np.array(arr, copy=not zero_copy) return out def make_array_interface( ptr: CNumericPtr, shape: Tuple[int, ...], dtype: Type[np.number], is_cuda: bool ) -> ArrayInf: """Make an __(cuda)_array_interface__ from a pointer.""" # Use an empty array to handle typestr and descr if is_cuda: empty = import_cupy().empty(shape=(0,), dtype=dtype) array = empty.__cuda_array_interface__ # pylint: disable=no-member else: empty = np.empty(shape=(0,), dtype=dtype) array = empty.__array_interface__ # pylint: disable=no-member addr = ctypes.cast(ptr, ctypes.c_void_p).value length = int(np.prod(shape)) # Handle empty dataset. assert addr is not None or length == 0 if addr is None: return array array["data"] = (addr, True) if is_cuda: array["stream"] = 2 array["shape"] = shape array["strides"] = None return array def array_interface_dict(data: np.ndarray) -> ArrayInf: """Convert array interface into a Python dictionary.""" if array_hasobject(data): raise ValueError("Input data contains `object` dtype. Expecting numeric data.") arrinf = data.__array_interface__ if "mask" in arrinf: arrinf["mask"] = arrinf["mask"].__array_interface__ return cast(ArrayInf, arrinf) def array_interface(data: np.ndarray) -> bytes: """Make array interface str.""" interface = array_interface_dict(data) interface_str = bytes(json.dumps(interface), "utf-8") return interface_str
# flake8: noqa import numpy as np from keras.src import backend from keras.src import ops from keras.src import testing from keras.src.optimizers.nadam import Nadam class NadamTest(testing.TestCase): def test_config(self): optimizer = Nadam( learning_rate=0.5, beta_1=0.5, beta_2=0.67, epsilon=1e-5, ) self.run_class_serialization_test(optimizer) def test_build_with_empty_var_list(self): optimizer = Nadam() optimizer.build([]) self.assertEqual(optimizer._u_product.dtype, backend.floatx()) def test_single_step(self): optimizer = Nadam(learning_rate=0.5) grads = ops.array([1.0, 6.0, 7.0, 2.0]) vars = backend.Variable([1.0, 2.0, 3.0, 4.0]) optimizer.apply_gradients(zip([grads], [vars])) self.assertAllClose( vars, [0.4686, 1.4686, 2.4686, 3.4686], rtol=1e-4, atol=1e-4 ) def test_weight_decay(self): grads, var1, var2, var3 = ( ops.zeros(()), backend.Variable(2.0), backend.Variable(2.0, name="exclude"), backend.Variable(2.0), ) optimizer_1 = Nadam(learning_rate=1.0, weight_decay=0.004) optimizer_1.apply_gradients(zip([grads], [var1])) optimizer_2 = Nadam(learning_rate=1.0, weight_decay=0.004) optimizer_2.exclude_from_weight_decay(var_names=["exclude"]) optimizer_2.apply_gradients(zip([grads, grads], [var1, var2])) optimizer_3 = Nadam(learning_rate=1.0, weight_decay=0.004) optimizer_3.exclude_from_weight_decay(var_list=[var3]) optimizer_3.apply_gradients(zip([grads, grads], [var1, var3])) self.assertAlmostEqual(var1.numpy(), 1.9760959, decimal=6) self.assertAlmostEqual(var2.numpy(), 2.0, decimal=6) self.assertAlmostEqual(var3.numpy(), 2.0, decimal=6) def test_correctness_with_golden(self): optimizer = Nadam( learning_rate=0.5, beta_1=0.5, beta_2=0.67, epsilon=1e-5, ) x = backend.Variable(np.ones([10])) grads = ops.arange(0.1, 1.1, 0.1) first_grads = ops.full((10,), 0.01) # fmt: off golden = np.array( [[0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281], [-0.1738, -0.1731, -0.1726, -0.1723, -0.1721, -0.172, -0.1719, -0.1718, -0.1718, -0.1717], [-0.7115, -0.7103, -0.7096, -0.7092, -0.709, -0.7088, -0.7086, -0.7085, -0.7085, -0.7084], [-1.2335, -1.2322, -1.2313, -1.2309, -1.2306, -1.2304, -1.2302, -1.2301, -1.23, -1.2299], [-1.7492, -1.7478, -1.7469, -1.7464, -1.7461, -1.7459, -1.7457, -1.7456, -1.7455, -1.7454]] ) # fmt: on optimizer.apply_gradients(zip([first_grads], [x])) for i in range(5): self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4) optimizer.apply_gradients(zip([grads], [x])) def test_clip_norm(self): optimizer = Nadam(clipnorm=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) def test_clip_value(self): optimizer = Nadam(clipvalue=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [1.0, 1.0])
# flake8: noqa import numpy as np from keras.src import backend from keras.src import ops from keras.src import testing from keras.src.optimizers.nadam import Nadam class NadamTest(testing.TestCase): def test_config(self): optimizer = Nadam( learning_rate=0.5, beta_1=0.5, beta_2=0.67, epsilon=1e-5, ) self.run_class_serialization_test(optimizer) def test_single_step(self): optimizer = Nadam(learning_rate=0.5) grads = ops.array([1.0, 6.0, 7.0, 2.0]) vars = backend.Variable([1.0, 2.0, 3.0, 4.0]) optimizer.apply_gradients(zip([grads], [vars])) self.assertAllClose( vars, [0.4686, 1.4686, 2.4686, 3.4686], rtol=1e-4, atol=1e-4 ) def test_weight_decay(self): grads, var1, var2, var3 = ( ops.zeros(()), backend.Variable(2.0), backend.Variable(2.0, name="exclude"), backend.Variable(2.0), ) optimizer_1 = Nadam(learning_rate=1.0, weight_decay=0.004) optimizer_1.apply_gradients(zip([grads], [var1])) optimizer_2 = Nadam(learning_rate=1.0, weight_decay=0.004) optimizer_2.exclude_from_weight_decay(var_names=["exclude"]) optimizer_2.apply_gradients(zip([grads, grads], [var1, var2])) optimizer_3 = Nadam(learning_rate=1.0, weight_decay=0.004) optimizer_3.exclude_from_weight_decay(var_list=[var3]) optimizer_3.apply_gradients(zip([grads, grads], [var1, var3])) self.assertAlmostEqual(var1.numpy(), 1.9760959, decimal=6) self.assertAlmostEqual(var2.numpy(), 2.0, decimal=6) self.assertAlmostEqual(var3.numpy(), 2.0, decimal=6) def test_correctness_with_golden(self): optimizer = Nadam( learning_rate=0.5, beta_1=0.5, beta_2=0.67, epsilon=1e-5, ) x = backend.Variable(np.ones([10])) grads = ops.arange(0.1, 1.1, 0.1) first_grads = ops.full((10,), 0.01) # fmt: off golden = np.array( [[0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281, 0.4281], [-0.1738, -0.1731, -0.1726, -0.1723, -0.1721, -0.172, -0.1719, -0.1718, -0.1718, -0.1717], [-0.7115, -0.7103, -0.7096, -0.7092, -0.709, -0.7088, -0.7086, -0.7085, -0.7085, -0.7084], [-1.2335, -1.2322, -1.2313, -1.2309, -1.2306, -1.2304, -1.2302, -1.2301, -1.23, -1.2299], [-1.7492, -1.7478, -1.7469, -1.7464, -1.7461, -1.7459, -1.7457, -1.7456, -1.7455, -1.7454]] ) # fmt: on optimizer.apply_gradients(zip([first_grads], [x])) for i in range(5): self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4) optimizer.apply_gradients(zip([grads], [x])) def test_clip_norm(self): optimizer = Nadam(clipnorm=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) def test_clip_value(self): optimizer = Nadam(clipvalue=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [1.0, 1.0])
"""Documents module. **Document** module is a collection of classes that handle documents and their transformations. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from .base import Document from .compressor import BaseDocumentCompressor from .transformers import BaseDocumentTransformer __all__ = ["Document", "BaseDocumentTransformer", "BaseDocumentCompressor"] _dynamic_imports = { "Document": "base", "BaseDocumentCompressor": "compressor", "BaseDocumentTransformer": "transformers", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Documents module. **Document** module is a collection of classes that handle documents and their transformations. """ from langchain_core.documents.base import Document from langchain_core.documents.compressor import BaseDocumentCompressor from langchain_core.documents.transformers import BaseDocumentTransformer __all__ = ["Document", "BaseDocumentTransformer", "BaseDocumentCompressor"]
import sys from absl import logging from keras.src.api_export import keras_export from keras.src.backend.common import global_state @keras_export( [ "keras.config.enable_interactive_logging", "keras.utils.enable_interactive_logging", ] ) def enable_interactive_logging(): """Turn on interactive logging. When interactive logging is enabled, Keras displays logs via stdout. This provides the best experience when using Keras in an interactive environment such as a shell or a notebook. """ global_state.set_global_attribute("interactive_logging", True) @keras_export( [ "keras.config.disable_interactive_logging", "keras.utils.disable_interactive_logging", ] ) def disable_interactive_logging(): """Turn off interactive logging. When interactive logging is disabled, Keras sends logs to `absl.logging`. This is the best option when using Keras in a non-interactive way, such as running a training or inference job on a server. """ global_state.set_global_attribute("interactive_logging", False) @keras_export( [ "keras.config.is_interactive_logging_enabled", "keras.utils.is_interactive_logging_enabled", ] ) def is_interactive_logging_enabled(): """Check if interactive logging is enabled. To switch between writing logs to stdout and `absl.logging`, you may use `keras.config.enable_interactive_logging()` and `keras.config.disable_interactive_logging()`. Returns: Boolean, `True` if interactive logging is enabled, and `False` otherwise. """ return global_state.get_global_attribute("interactive_logging", True) def set_logging_verbosity(level): """Sets the verbosity level for logging. Supported log levels are as follows: - `"FATAL"` (least verbose) - `"ERROR"` - `"WARNING"` - `"INFO"` - `"DEBUG"` (most verbose) Args: level: A string corresponding to the level of verbosity for logging. """ valid_levels = { "FATAL": logging.FATAL, "ERROR": logging.ERROR, "WARNING": logging.WARNING, "INFO": logging.INFO, "DEBUG": logging.DEBUG, } verbosity = valid_levels.get(level) if verbosity is None: raise ValueError( "Please pass a valid level for logging verbosity. " f"Expected one of: {set(valid_levels.keys())}. " f"Received: {level}" ) logging.set_verbosity(verbosity) def print_msg(message, line_break=True): """Print the message to absl logging or stdout.""" message = str(message) if is_interactive_logging_enabled(): message = message + "\n" if line_break else message try: sys.stdout.write(message) except UnicodeEncodeError: # If the encoding differs from UTF-8, `sys.stdout.write` may fail. # To address this, replace special unicode characters in the # message, and then encode and decode using the target encoding. message = _replace_special_unicode_character(message) message_bytes = message.encode(sys.stdout.encoding, errors="ignore") message = message_bytes.decode(sys.stdout.encoding) sys.stdout.write(message) sys.stdout.flush() else: logging.info(message) def ask_to_proceed_with_overwrite(filepath): """Produces a prompt asking about overwriting a file. Args: filepath: the path to the file to be overwritten. Returns: True if we can proceed with overwrite, False otherwise. """ overwrite = ( input(f"[WARNING] {filepath} already exists - overwrite? [y/n]") .strip() .lower() ) while overwrite not in ("y", "n"): overwrite = ( input('Enter "y" (overwrite) or "n" (cancel).').strip().lower() ) if overwrite == "n": return False print_msg("[TIP] Next time specify overwrite=True!") return True def _replace_special_unicode_character(message): message = str(message).replace("━", "=") # Fall back to Keras2 behavior. return message
import sys from absl import logging from keras.src.api_export import keras_export from keras.src.backend.common import global_state @keras_export( [ "keras.config.enable_interactive_logging", "keras.utils.enable_interactive_logging", ] ) def enable_interactive_logging(): """Turn on interactive logging. When interactive logging is enabled, Keras displays logs via stdout. This provides the best experience when using Keras in an interactive environment such as a shell or a notebook. """ global_state.set_global_attribute("interactive_logging", True) @keras_export( [ "keras.config.disable_interactive_logging", "keras.utils.disable_interactive_logging", ] ) def disable_interactive_logging(): """Turn off interactive logging. When interactive logging is disabled, Keras sends logs to `absl.logging`. This is the best option when using Keras in a non-interactive way, such as running a training or inference job on a server. """ global_state.set_global_attribute("interactive_logging", False) @keras_export( [ "keras.config.is_interactive_logging_enabled", "keras.utils.is_interactive_logging_enabled", ] ) def is_interactive_logging_enabled(): """Check if interactive logging is enabled. To switch between writing logs to stdout and `absl.logging`, you may use `keras.config.enable_interactive_logging()` and `keras.config.disable_interactive_logging()`. Returns: Boolean, `True` if interactive logging is enabled, and `False` otherwise. """ return global_state.get_global_attribute("interactive_logging", True) def set_logging_verbosity(level): """Sets the verbosity level for logging. Supported log levels are as follows: - `"FATAL"` (least verbose) - `"ERROR"` - `"WARNING"` - `"INFO"` - `"DEBUG"` (most verbose) Args: level: A string corresponding to the level of verbosity for logging. """ valid_levels = { "FATAL": logging.FATAL, "ERROR": logging.ERROR, "WARNING": logging.WARNING, "INFO": logging.INFO, "DEBUG": logging.DEBUG, } verbosity = valid_levels.get(level) if verbosity is None: raise ValueError( "Please pass a valid level for logging verbosity. " f"Expected one of: {set(valid_levels.keys())}. " f"Received: {level}" ) logging.set_verbosity(verbosity) def print_msg(message, line_break=True): """Print the message to absl logging or stdout.""" if is_interactive_logging_enabled(): if line_break: sys.stdout.write(message + "\n") else: sys.stdout.write(message) sys.stdout.flush() else: logging.info(message) def ask_to_proceed_with_overwrite(filepath): """Produces a prompt asking about overwriting a file. Args: filepath: the path to the file to be overwritten. Returns: True if we can proceed with overwrite, False otherwise. """ overwrite = ( input(f"[WARNING] {filepath} already exists - overwrite? [y/n]") .strip() .lower() ) while overwrite not in ("y", "n"): overwrite = ( input('Enter "y" (overwrite) or "n" (cancel).').strip().lower() ) if overwrite == "n": return False print_msg("[TIP] Next time specify overwrite=True!") return True
"""Language models. **Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import ( BaseChatModel, SimpleChatModel, ) from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = [ "BaseLanguageModel", "BaseChatModel", "SimpleChatModel", "BaseLLM", "LLM", "LanguageModelInput", "get_tokenizer", "LangSmithParams", "LanguageModelOutput", "LanguageModelLike", "FakeListLLM", "FakeStreamingListLLM", "FakeListChatModel", "FakeMessagesListChatModel", "GenericFakeChatModel", "ParrotFakeChatModel", ] _dynamic_imports = { "BaseLanguageModel": "base", "LangSmithParams": "base", "LanguageModelInput": "base", "LanguageModelLike": "base", "LanguageModelOutput": "base", "get_tokenizer": "base", "BaseChatModel": "chat_models", "SimpleChatModel": "chat_models", "FakeListLLM": "fake", "FakeStreamingListLLM": "fake", "FakeListChatModel": "fake_chat_models", "FakeMessagesListChatModel": "fake_chat_models", "GenericFakeChatModel": "fake_chat_models", "ParrotFakeChatModel": "fake_chat_models", "LLM": "llms", "BaseLLM": "llms", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Language models. **Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import ( BaseChatModel, SimpleChatModel, ) from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = [ "BaseLanguageModel", "BaseChatModel", "SimpleChatModel", "BaseLLM", "LLM", "LanguageModelInput", "get_tokenizer", "LangSmithParams", "LanguageModelOutput", "LanguageModelLike", "FakeListLLM", "FakeStreamingListLLM", "FakeListChatModel", "FakeMessagesListChatModel", "GenericFakeChatModel", "ParrotFakeChatModel", ] _dynamic_imports = { "BaseLanguageModel": "base", "LangSmithParams": "base", "LanguageModelInput": "base", "LanguageModelLike": "base", "LanguageModelOutput": "base", "get_tokenizer": "base", "BaseChatModel": "chat_models", "SimpleChatModel": "chat_models", "FakeListLLM": "fake", "FakeStreamingListLLM": "fake", "FakeListChatModel": "fake_chat_models", "FakeMessagesListChatModel": "fake_chat_models", "GenericFakeChatModel": "fake_chat_models", "ParrotFakeChatModel": "fake_chat_models", "LLM": "llms", "BaseLLM": "llms", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005))
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) img_norm_cfg = dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)