input
stringlengths
33
5k
output
stringlengths
32
5k
import json import re from typing import TypeVar import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import YAML_FORMAT_INSTRUCTIONS T = TypeVar("T", bound=BaseModel) class YamlOutputParser(BaseOutputParser[T]): """Parse YAML output using a pydantic model.""" pydantic_object: type[T] """The pydantic model to parse.""" pattern: re.Pattern = re.compile( r"^```(?:ya?ml)?(?P<yaml>[^`]*)", re.MULTILINE | re.DOTALL, ) """Regex pattern to match yaml code blocks within triple backticks with optional yaml or yml prefix.""" def parse(self, text: str) -> T: try: # Greedy search for 1st yaml candidate. match = re.search(self.pattern, text.strip()) # If no backticks were present, try to parse the entire output as yaml. yaml_str = match.group("yaml") if match else text json_object = yaml.safe_load(yaml_str) if hasattr(self.pydantic_object, "model_validate"): return self.pydantic_object.model_validate(json_object) return self.pydantic_object.parse_obj(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e def get_format_instructions(self) -> str: # Copy schema to avoid altering original Pydantic schema. schema = dict(self.pydantic_object.schema().items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure yaml in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return YAML_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "yaml" @property def OutputType(self) -> type[T]: return self.pydantic_object
import json import re from typing import TypeVar import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import YAML_FORMAT_INSTRUCTIONS T = TypeVar("T", bound=BaseModel) class YamlOutputParser(BaseOutputParser[T]): """Parse YAML output using a pydantic model.""" pydantic_object: type[T] """The pydantic model to parse.""" pattern: re.Pattern = re.compile( r"^```(?:ya?ml)?(?P<yaml>[^`]*)", re.MULTILINE | re.DOTALL ) """Regex pattern to match yaml code blocks within triple backticks with optional yaml or yml prefix.""" def parse(self, text: str) -> T: try: # Greedy search for 1st yaml candidate. match = re.search(self.pattern, text.strip()) # If no backticks were present, try to parse the entire output as yaml. yaml_str = match.group("yaml") if match else text json_object = yaml.safe_load(yaml_str) if hasattr(self.pydantic_object, "model_validate"): return self.pydantic_object.model_validate(json_object) return self.pydantic_object.parse_obj(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e def get_format_instructions(self) -> str: # Copy schema to avoid altering original Pydantic schema. schema = dict(self.pydantic_object.schema().items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure yaml in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return YAML_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "yaml" @property def OutputType(self) -> type[T]: return self.pydantic_object
# Copyright (c) Meta Platforms, Inc. and affiliates from llama_index.llms.meta.base import LlamaLLM __all__ = ["LlamaLLM"]
from llama_index.llms.meta.base import LlamaLLM __all__ = ["LlamaLLM"]
from jina import Client, Document, Executor, Flow, requests def validate_results(results): req = results[0] assert len(req.docs) == 1 assert len(req.docs[0].matches) == 5 assert len(req.docs[0].matches[0].matches) == 5 assert len(req.docs[0].matches[-1].matches) == 5 assert len(req.docs[0].matches[0].matches[0].matches) == 0 class MatchAdder(Executor): def __init__(self, traversal_paths='r', **kwargs): super().__init__(**kwargs) self._traversal_paths = traversal_paths @requests(on='index') def index(self, docs, **kwargs): for path_docs in docs.traverse(self._traversal_paths): for doc in path_docs: for i in range(5): doc.matches.append(Document()) def test_single_executor(port_generator): exposed_port = port_generator() f = Flow(port=exposed_port).add( uses={'jtype': 'MatchAdder', 'with': {'traversal_paths': 'r,m'}} ) with f: results = Client(port=exposed_port).post( on='index', inputs=Document(), return_responses=True ) validate_results(results) def test_multi_executor(port_generator): exposed_port = port_generator() f = ( Flow(port=exposed_port) .add(uses={'jtype': 'MatchAdder', 'with': {'traversal_paths': 'r'}}) .add(uses={'jtype': 'MatchAdder', 'with': {'traversal_paths': 'm'}}) ) with f: results = Client(port=exposed_port).post( on='index', inputs=Document(), return_responses=True ) validate_results(results)
from jina import Client, Document, Executor, Flow, requests exposed_port = 12345 def validate_results(results): req = results[0] assert len(req.docs) == 1 assert len(req.docs[0].matches) == 5 assert len(req.docs[0].matches[0].matches) == 5 assert len(req.docs[0].matches[-1].matches) == 5 assert len(req.docs[0].matches[0].matches[0].matches) == 0 class MatchAdder(Executor): def __init__(self, traversal_paths='r', **kwargs): super().__init__(**kwargs) self._traversal_paths = traversal_paths @requests(on='index') def index(self, docs, **kwargs): for path_docs in docs.traverse(self._traversal_paths): for doc in path_docs: for i in range(5): doc.matches.append(Document()) def test_single_executor(): f = Flow(port=exposed_port).add( uses={'jtype': 'MatchAdder', 'with': {'traversal_paths': 'r,m'}} ) with f: results = Client(port=exposed_port).post( on='index', inputs=Document(), return_responses=True ) validate_results(results) def test_multi_executor(): f = ( Flow(port=exposed_port) .add(uses={'jtype': 'MatchAdder', 'with': {'traversal_paths': 'r'}}) .add(uses={'jtype': 'MatchAdder', 'with': {'traversal_paths': 'm'}}) ) with f: results = Client(port=exposed_port).post( on='index', inputs=Document(), return_responses=True ) validate_results(results)
_base_ = './faster-rcnn_r50-caffe-dc5_ms-1x_coco.py' # MMEngine support the following two ways, users can choose # according to convenience # param_scheduler = [ # dict( # type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), # noqa # dict( # type='MultiStepLR', # begin=0, # end=12, # by_epoch=True, # milestones=[28, 34], # gamma=0.1) # ] _base_.param_scheduler[1].milestones = [28, 34] train_cfg = dict(max_epochs=36)
_base_ = './faster-rcnn_r50-caffe-dc5_ms-1x_coco.py' # learning policy lr_config = dict(step=[28, 34]) runner = dict(type='EpochBasedRunner', max_epochs=36)
import logging from typing import Any from autogpt_libs.utils.cache import thread_cached from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField from backend.util import json logger = logging.getLogger(__name__) @thread_cached def get_executor_manager_client(): from backend.executor import ExecutionManager from backend.util.service import get_service_client return get_service_client(ExecutionManager) @thread_cached def get_event_bus(): from backend.data.execution import RedisExecutionEventBus return RedisExecutionEventBus() class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") @classmethod def get_input_schema(cls, data: BlockInput) -> dict[str, Any]: return data.get("input_schema", {}) @classmethod def get_input_defaults(cls, data: BlockInput) -> BlockInput: return data.get("data", {}) @classmethod def get_missing_input(cls, data: BlockInput) -> set[str]: required_fields = cls.get_input_schema(data).get("required", []) return set(required_fields) - set(data) @classmethod def get_mismatch_error(cls, data: BlockInput) -> str | None: return json.validate_with_jsonschema(cls.get_input_schema(data), data) class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: executor_manager = get_executor_manager_client() event_bus = get_event_bus() graph_exec = executor_manager.add_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, data=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.graph_exec_id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.graph_exec_id ): logger.info( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.node_id: if event.status in [ ExecutionStatus.COMPLETED, ExecutionStatus.TERMINATED, ExecutionStatus.FAILED, ]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.info(f"Execution {log_id} produced {output_name}: {output_data}") yield output_name, output_data
import logging from typing import Any from autogpt_libs.utils.cache import thread_cached from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField from backend.util import json logger = logging.getLogger(__name__) @thread_cached def get_executor_manager_client(): from backend.executor import ExecutionManager from backend.util.service import get_service_client return get_service_client(ExecutionManager) @thread_cached def get_event_bus(): from backend.data.execution import RedisExecutionEventBus return RedisExecutionEventBus() class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") @classmethod def get_input_schema(cls, data: BlockInput) -> dict[str, Any]: return data.get("input_schema", {}) @classmethod def get_input_defaults(cls, data: BlockInput) -> BlockInput: return data.get("data", {}) @classmethod def get_missing_input(cls, data: BlockInput) -> set[str]: required_fields = cls.get_input_schema(data).get("required", []) return set(required_fields) - set(data) @classmethod def validate_data(cls, data: BlockInput) -> str | None: return json.validate_with_jsonschema(cls.get_input_schema(data), data) class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: executor_manager = get_executor_manager_client() event_bus = get_event_bus() graph_exec = executor_manager.add_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, data=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.graph_exec_id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.graph_exec_id ): logger.info( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.node_id: if event.status in [ ExecutionStatus.COMPLETED, ExecutionStatus.TERMINATED, ExecutionStatus.FAILED, ]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.info(f"Execution {log_id} produced {output_name}: {output_data}") yield output_name, output_data
from typing import Iterable, Dict from docarray.array.storage.annlite.helper import OffsetMapping from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray.array.memory import DocumentArrayInMemory from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Implement required and derived functions that power `getitem`, `setitem`, `delitem`""" # essential methods start def _get_doc_by_id(self, _id: str) -> 'Document': doc = self._annlite.get_doc_by_id(_id) if doc is None: raise KeyError(f'Can not find Document with id=`{_id}`') return doc def _set_doc_by_id(self, _id: str, value: 'Document'): if _id != value.id: self._del_doc_by_id(_id) value.embedding = self._map_embedding(value.embedding) docs = DocumentArrayInMemory([value]) self._annlite.update(docs) def _del_doc_by_id(self, _id: str): self._annlite.delete([_id]) def _clear_storage(self): self._annlite.clear() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): for _id, doc in zip(ids, docs): doc.embedding = self._map_embedding(doc.embedding) self._set_doc_by_id(_id, doc) def _del_docs_by_ids(self, ids): self._annlite.delete(ids) def _load_offset2ids(self): self._offsetmapping = OffsetMapping( data_path=self._config.data_path, in_memory=False ) self._offsetmapping.create_table() self._offset2ids = Offset2ID(self._offsetmapping.get_all_ids()) def _save_offset2ids(self): self._offsetmapping.drop() self._offsetmapping.create_table() self._offsetmapping._insert( [(i, doc_id) for i, doc_id in enumerate(self._offset2ids.ids)] )
from typing import Iterable, Dict from .helper import OffsetMapping from ..base.getsetdel import BaseGetSetDelMixin from ..base.helper import Offset2ID from ...memory import DocumentArrayInMemory from .... import Document class GetSetDelMixin(BaseGetSetDelMixin): """Implement required and derived functions that power `getitem`, `setitem`, `delitem`""" # essential methods start def _get_doc_by_id(self, _id: str) -> 'Document': doc = self._annlite.get_doc_by_id(_id) if doc is None: raise KeyError(f'Can not find Document with id=`{_id}`') return doc def _set_doc_by_id(self, _id: str, value: 'Document'): if _id != value.id: self._del_doc_by_id(_id) value.embedding = self._map_embedding(value.embedding) docs = DocumentArrayInMemory([value]) self._annlite.update(docs) def _del_doc_by_id(self, _id: str): self._annlite.delete([_id]) def _clear_storage(self): self._annlite.clear() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): for _id, doc in zip(ids, docs): doc.embedding = self._map_embedding(doc.embedding) self._set_doc_by_id(_id, doc) def _del_docs_by_ids(self, ids): self._annlite.delete(ids) def _load_offset2ids(self): self._offsetmapping = OffsetMapping( data_path=self._config.data_path, in_memory=False ) self._offsetmapping.create_table() self._offset2ids = Offset2ID(self._offsetmapping.get_all_ids()) def _save_offset2ids(self): self._offsetmapping.drop() self._offsetmapping.create_table() self._offsetmapping._insert( [(i, doc_id) for i, doc_id in enumerate(self._offset2ids.ids)] )
_base_ = './mask_rcnn_r101_fpn_1x_coco.py' preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './mask_rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='Resize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REDDIT = "reddit" REPLICATE = "replicate" REVID = "revid" SLANT3D = "slant3d" SMTP = "smtp" TWITTER = "twitter" UNREAL_SPEECH = "unreal_speech" # --8<-- [end:ProviderName]
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REPLICATE = "replicate" REVID = "revid" SLANT3D = "slant3d" TWITTER = "twitter" UNREAL_SPEECH = "unreal_speech" # --8<-- [end:ProviderName]
# mypy: allow-untyped-defs import functools from collections.abc import Hashable from dataclasses import dataclass, fields from typing import TypeVar from typing_extensions import dataclass_transform T = TypeVar("T", bound="_Union") class _UnionTag(str): __slots__ = ("_cls",) _cls: Hashable @staticmethod def create(t, cls): tag = _UnionTag(t) assert not hasattr(tag, "_cls") tag._cls = cls return tag def __eq__(self, cmp) -> bool: assert isinstance(cmp, str) other = str(cmp) assert other in _get_field_names(self._cls), ( f"{other} is not a valid tag for {self._cls}. Available tags: {_get_field_names(self._cls)}" ) return str(self) == other def __hash__(self): return hash(str(self)) @functools.cache def _get_field_names(cls) -> set[str]: return {f.name for f in fields(cls)} # If you turn a schema class that inherits from union into a dataclass, please use # this decorator to configure it. It's safe, faster and allows code sharing. # # For example, _union_dataclass customizes the __eq__ method to only check the type # and value property instead of default implmentation of dataclass which goes # through every field in the dataclass. @dataclass_transform(eq_default=False) def _union_dataclass(cls: type[T]) -> type[T]: assert issubclass(cls, _Union), f"{cls} must inheirt from {_Union}." return dataclass(repr=False, eq=False)(cls) class _Union: _type: _UnionTag @classmethod def create(cls, **kwargs): assert len(kwargs) == 1 obj = cls(**{**{f.name: None for f in fields(cls)}, **kwargs}) # type: ignore[arg-type] obj._type = _UnionTag.create(next(iter(kwargs.keys())), cls) return obj def __post_init__(self): assert not any( f.name in ("type", "_type", "create", "value") for f in fields(self) # type: ignore[arg-type, misc] ) @property def type(self) -> str: try: return self._type except AttributeError as e: raise RuntimeError( f"Please use {type(self).__name__}.create to instantiate the union type." ) from e @property def value(self): return getattr(self, self.type) def __getattribute__(self, name): attr = super().__getattribute__(name) if attr is None and name in _get_field_names(type(self)) and name != self.type: # type: ignore[arg-type] raise AttributeError(f"Field {name} is not set.") return attr def __eq__(self, other: object) -> bool: if not isinstance(other, _Union): return False return self.type == other.type and self.value == other.value def __str__(self): return self.__repr__() def __repr__(self): return f"{type(self).__name__}({self.type}={getattr(self, self.type)})"
# mypy: allow-untyped-defs import functools from collections.abc import Hashable from dataclasses import dataclass, fields from typing import TypeVar from typing_extensions import dataclass_transform T = TypeVar("T", bound="_Union") class _UnionTag(str): __slots__ = ("_cls",) _cls: Hashable @staticmethod def create(t, cls): tag = _UnionTag(t) assert not hasattr(tag, "_cls") tag._cls = cls return tag def __eq__(self, cmp) -> bool: assert isinstance(cmp, str) other = str(cmp) assert other in _get_field_names(self._cls), ( f"{other} is not a valid tag for {self._cls}. Available tags: {_get_field_names(self._cls)}" ) return str(self) == other def __hash__(self): return hash(str(self)) @functools.cache def _get_field_names(cls) -> set[str]: return {f.name for f in fields(cls)} # If you turn a schema class that inherits from union into a dataclass, please use # this decorator to configure it. It's safe, faster and allows code sharing. # # For example, _union_dataclass customizes the __eq__ method to only check the type # and value property instead of default implementation of dataclass which goes # through every field in the dataclass. @dataclass_transform(eq_default=False) def _union_dataclass(cls: type[T]) -> type[T]: assert issubclass(cls, _Union), f"{cls} must inheirt from {_Union}." return dataclass(repr=False, eq=False)(cls) class _Union: _type: _UnionTag @classmethod def create(cls, **kwargs): assert len(kwargs) == 1 obj = cls(**{**{f.name: None for f in fields(cls)}, **kwargs}) # type: ignore[arg-type] obj._type = _UnionTag.create(next(iter(kwargs.keys())), cls) return obj def __post_init__(self): assert not any( f.name in ("type", "_type", "create", "value") for f in fields(self) # type: ignore[arg-type, misc] ) @property def type(self) -> str: try: return self._type except AttributeError as e: raise RuntimeError( f"Please use {type(self).__name__}.create to instantiate the union type." ) from e @property def value(self): return getattr(self, self.type) def __getattribute__(self, name): attr = super().__getattribute__(name) if attr is None and name in _get_field_names(type(self)) and name != self.type: # type: ignore[arg-type] raise AttributeError(f"Field {name} is not set.") return attr def __eq__(self, other: object) -> bool: if not isinstance(other, _Union): return False return self.type == other.type and self.value == other.value def __str__(self): return self.__repr__() def __repr__(self): return f"{type(self).__name__}({self.type}={getattr(self, self.type)})"
"""Common structures for structured indices.""" from dataclasses import dataclass from typing import Dict, Optional from dataclasses_json import DataClassJsonMixin # TODO: migrate this to be a data_struct @dataclass class SQLContextContainer(DataClassJsonMixin): """ SQLContextContainer. A container interface to store context for a given table. Context can be built from unstructured documents (e.g. using SQLContextBuilder). Context can also be dumped to an underlying LlamaIndex data structure. Contains both the raw context_dict as well as any index_structure. Should be not be used directly - build one from SQLContextContainerBuilder instead. """ context_dict: Optional[Dict[str, str]] = None context_str: Optional[str] = None
"""Common structures for structured indices.""" from dataclasses import dataclass from typing import Dict, Optional from dataclasses_json import DataClassJsonMixin # TODO: migrate this to be a data_struct @dataclass class SQLContextContainer(DataClassJsonMixin): """ SQLContextContainer. A container interface to store context for a given table. Context can be built from unstructured documents (e.g. using SQLContextBuilder). Context can also be dumped to an underlying LlamaIndex data structure. Contains both the raw context_dict as well as any index_structure. Should be not be used directly - build one from SQLContextContainerBuilder instead. """ context_dict: Optional[Dict[str, str]] = None context_str: Optional[str] = None
# Owner(s): ["module: inductor"] from unittest.mock import patch import torch from torch._inductor import config from torch._inductor.async_compile import AsyncCompile, shutdown_compile_workers from torch._inductor.runtime.triton_compat import Config from torch._inductor.runtime.triton_heuristics import ( generate_lookup_hash_from_source_code, ) from torch._inductor.test_case import run_tests, TestCase from torch._inductor.utils import fresh_cache from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, ) from torch.testing._internal.inductor_utils import ( GPU_TYPE, requires_gpu, requires_triton, ) @instantiate_parametrized_tests class TestAsyncCompile(TestCase): @requires_gpu() @requires_triton() @parametrize("method", ("subprocess", "fork", "spawn")) def test_pool(self, method): def fn(x, y): return x + y x = torch.rand(10).to(GPU_TYPE) y = torch.rand(10).to(GPU_TYPE) with config.patch("worker_start_method", method): shutdown_compile_workers() AsyncCompile.wait_pool_ready() with fresh_cache(): compiled_fn = torch.compile(fn) self.assertEqual(fn(x, y), compiled_fn(x, y)) @requires_gpu() @requires_triton() @patch("torch._inductor.runtime.coordinate_descent_tuner.CoordescTuner.autotune") @parametrize("method", ("subprocess", "fork", "spawn")) def test_autotune_lookup_table(self, mock_autotune, method): def f(a, b): return (a @ b).to(torch.float32).sum(dim=1) # Fake name to make sure the lookup table is name agnostic func_def = """ def triton_fused_fake_name(in_ptr0, out_ptr0, xnumel, r0_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr): xnumel = 1024 r0_numel = 11776 rnumel = r0_numel RBLOCK: tl.constexpr = R0_BLOCK xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel r0_base = tl.arange(0, R0_BLOCK)[None, :] rbase = r0_base x0 = xindex _tmp3 = tl.full([XBLOCK, R0_BLOCK], 0, tl.float32) for r0_offset in range(0, r0_numel, R0_BLOCK): r0_index = r0_offset + r0_base r0_mask = r0_index < r0_numel roffset = r0_offset rindex = r0_index r0_1 = r0_index tmp0 = tl.load(in_ptr0 + (r0_1 + 11776*x0), r0_mask & xmask, eviction_policy='evict_first', other=0.0).to(tl.float32) tmp1 = tmp0.to(tl.float32) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, R0_BLOCK]) tmp4 = _tmp3 + tmp2 _tmp3 = tl.where(r0_mask & xmask, tmp4, _tmp3) tmp3 = tl.sum(_tmp3, 1)[:, None] tl.store(out_ptr0 + (x0), tmp3, xmask) """ fn_hash = generate_lookup_hash_from_source_code(func_def) block_configs = { "XBLOCK": 1, "R0_BLOCK": 128, } num_warps = 16 num_stages = 1 autotune_lookup_table = { fn_hash: {**block_configs, "num_warps": num_warps, "num_stages": num_stages} } autotune_config = Config( block_configs, num_warps=num_warps, num_stages=num_stages ) mock_autotune.return_value = autotune_config a = torch.randn(1152, 1024, device=GPU_TYPE, dtype=torch.float16).T b = torch.randn(1152, 11776, device=GPU_TYPE, dtype=torch.float16) compiled_f = torch.compile(f) with config.patch( { "autotune_lookup_table": autotune_lookup_table, "coordinate_descent_tuning": True, "worker_start_method": method, } ): shutdown_compile_workers() AsyncCompile.wait_pool_ready() with fresh_cache(): compiled_f(a, b) # Check that the input to coordinate descent (the resulting chosen config) # is the same as the one in the lookup table mock_autotune.assert_called_once() args, _ = mock_autotune.call_args self.assertTrue(isinstance(args[1], Config)) self.assertEqual(args[1].kwargs, autotune_config.kwargs) self.assertEqual(args[1].num_warps, autotune_config.num_warps) self.assertEqual(args[1].num_stages, autotune_config.num_stages) if __name__ == "__main__": run_tests()
# Owner(s): ["module: inductor"] import torch from torch._inductor import config from torch._inductor.async_compile import AsyncCompile, shutdown_compile_workers from torch._inductor.test_case import run_tests, TestCase from torch._inductor.utils import fresh_cache from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, ) from torch.testing._internal.inductor_utils import ( GPU_TYPE, requires_gpu, requires_triton, ) @instantiate_parametrized_tests class TestAsyncCompile(TestCase): @requires_gpu() @requires_triton() @parametrize("method", ("subprocess", "fork", "spawn")) def test_pool(self, method): def fn(x, y): return x + y x = torch.rand(10).to(GPU_TYPE) y = torch.rand(10).to(GPU_TYPE) with config.patch("worker_start_method", method): shutdown_compile_workers() AsyncCompile.wait_pool_ready() with fresh_cache(): compiled_fn = torch.compile(fn) self.assertEqual(fn(x, y), compiled_fn(x, y)) if __name__ == "__main__": run_tests()
import pytest from docarray import DocumentArray, Document from docarray.array.weaviate import DocumentArrayWeaviate import numpy as np @pytest.fixture() def docs(): return DocumentArray([Document(id=f'{i}') for i in range(1, 10)]) @pytest.mark.parametrize( 'to_delete', [ 0, 1, 4, -1, list(range(1, 4)), [2, 4, 7, 1, 1], slice(0, 2), slice(2, 4), slice(4, -1), [True, True, False], ..., ], ) def test_del_all(docs, to_delete): doc_to_delete = docs[to_delete] del docs[to_delete] assert doc_to_delete not in docs @pytest.mark.parametrize( 'to_delete, missing_id', [ ([True, False], ['1']), ([True, True, False], ['1', '2']), ([False, True], ['2']), ([False, False, True, True], ['3', '4']), ], ) def test_del_boolean_mask(docs, to_delete, missing_id): all_ids = docs[:, 'id'] # assert each missing_id is present before deleting for m_id in missing_id: assert m_id in docs[:, 'id'] del docs[to_delete] # assert each missing_id is NOT present AFTER deleting for m_id in missing_id: assert m_id not in docs[:, 'id'] for m_id in filter(lambda id: id not in missing_id, all_ids): assert m_id in docs[:, 'id'] @pytest.mark.parametrize( ['deleted_ids', 'expected_ids'], [ (['1', '2', '3', '4'], ['5', '6', '7', '8', '9']), (['2', '4', '7', '1'], ['3', '5', '6', '8', '9']), ], ) def test_del_by_multiple_idx(docs, deleted_ids, expected_ids): del docs[deleted_ids] assert docs[:, 'id'] == expected_ids @pytest.mark.parametrize( 'da_cls,config,persist', [ (DocumentArrayWeaviate, {'n_dim': 10}, False), (DocumentArrayWeaviate, {'name': 'Storage', 'n_dim': 10}, True), ], ) def test_del_da_persist(da_cls, config, persist, docs, start_storage): da = da_cls(docs, config=config) del da da2 = da_cls(config=config) if persist: assert len(da2) == len(docs) else: assert len(da2) == 0 def test_del_da_attribute(): da = DocumentArray( [ Document(embedding=np.array([1, 2, 3]), text='d1'), Document(embedding=np.array([1, 2, 3]), text='d2'), ] ) q = DocumentArray( [ Document(embedding=np.array([4, 5, 6]), text='q1'), Document(embedding=np.array([2, 3, 4]), text='q1'), ] ) da.match(q) del da[...][:, 'embedding'] for d in da: assert d.embedding is None @pytest.mark.parametrize( 'storage, config', [ ('memory', None), ('weaviate', {'n_dim': 3, 'distance': 'l2-squared'}), ('annlite', {'n_dim': 3, 'metric': 'Euclidean'}), ('qdrant', {'n_dim': 3, 'distance': 'euclidean'}), ('elasticsearch', {'n_dim': 3, 'distance': 'l2_norm'}), ('sqlite', dict()), ('redis', {'n_dim': 3, 'distance': 'L2', 'flush': True}), ], ) def test_del_subindex(storage, config): n_dim = 3 subindex_configs = ( {'@c': dict()} if storage in ['sqlite', 'memory'] else {'@c': {'n_dim': 2}} ) da = DocumentArray( storage=storage, config=config, subindex_configs=subindex_configs, ) with da: da.extend( [ Document( id=str(i), embedding=i * np.ones(n_dim), chunks=[ Document(id=str(i) + '_0', embedding=np.array([i, i])), Document(id=str(i) + '_1', embedding=np.array([i, i])), ], ) for i in range(10) ] ) del da['0'] assert len(da) == 9 assert len(da._subindices['@c']) == 18 del da[-2:] assert len(da) == 7 assert len(da._subindices['@c']) == 14 def test_del_subindex_annlite_multimodal(): from docarray import dataclass from docarray.typing import Text @dataclass class MMDoc: my_text: Text my_other_text: Text n_dim = 3 da = DocumentArray( storage='annlite', config={'n_dim': n_dim, 'metric': 'Euclidean'}, subindex_configs={'@.[my_text, my_other_text]': {'n_dim': 2}}, ) num_docs = 10 docs_to_add = DocumentArray( [ Document(MMDoc(my_text='hello', my_other_text='world')) for _ in range(num_docs) ] ) for i, d in enumerate(docs_to_add): d.id = str(i) d.embedding = i * np.ones(n_dim) d.my_text.id = str(i) + '_0' d.my_text.embedding = [i, i] d.my_other_text.id = str(i) + '_1' d.my_other_text.embedding = [i, i] with da: da.extend(docs_to_add) del da['0'] assert len(da) == 9 assert len(da._subindices['@.[my_text, my_other_text]']) == 18
import pytest from docarray import DocumentArray, Document from docarray.array.weaviate import DocumentArrayWeaviate import numpy as np @pytest.fixture() def docs(): return DocumentArray([Document(id=f'{i}') for i in range(1, 10)]) @pytest.mark.parametrize( 'to_delete', [ 0, 1, 4, -1, list(range(1, 4)), [2, 4, 7, 1, 1], slice(0, 2), slice(2, 4), slice(4, -1), [True, True, False], ..., ], ) def test_del_all(docs, to_delete): doc_to_delete = docs[to_delete] del docs[to_delete] assert doc_to_delete not in docs @pytest.mark.parametrize( 'to_delete, missing_id', [ ([True, False], ['1']), ([True, True, False], ['1', '2']), ([False, True], ['2']), ([False, False, True, True], ['3', '4']), ], ) def test_del_boolean_mask(docs, to_delete, missing_id): # assert each missing_id is present before deleting for m_id in missing_id: assert m_id in docs[:, 'id'] del docs[to_delete] # assert each missing_id is NOT present AFTER deleting for m_id in missing_id: assert m_id not in docs[:, 'id'] @pytest.mark.parametrize( ['deleted_ids', 'expected_ids'], [ (['1', '2', '3', '4'], ['5', '6', '7', '8', '9']), (['2', '4', '7', '1'], ['3', '5', '6', '8', '9']), ], ) def test_del_by_multiple_idx(docs, deleted_ids, expected_ids): del docs[deleted_ids] assert docs[:, 'id'] == expected_ids @pytest.mark.parametrize( 'da_cls,config,persist', [ (DocumentArrayWeaviate, {'n_dim': 10}, False), (DocumentArrayWeaviate, {'name': 'Storage', 'n_dim': 10}, True), ], ) def test_del_da_persist(da_cls, config, persist, docs, start_storage): da = da_cls(docs, config=config) del da da2 = da_cls(config=config) if persist: assert len(da2) == len(docs) else: assert len(da2) == 0 def test_del_da_attribute(): da = DocumentArray( [ Document(embedding=np.array([1, 2, 3]), text='d1'), Document(embedding=np.array([1, 2, 3]), text='d2'), ] ) q = DocumentArray( [ Document(embedding=np.array([4, 5, 6]), text='q1'), Document(embedding=np.array([2, 3, 4]), text='q1'), ] ) da.match(q) del da[...][:, 'embedding'] for d in da: assert d.embedding is None @pytest.mark.parametrize( 'storage, config', [ ('memory', None), ('weaviate', {'n_dim': 3, 'distance': 'l2-squared'}), ('annlite', {'n_dim': 3, 'metric': 'Euclidean'}), ('qdrant', {'n_dim': 3, 'distance': 'euclidean'}), ('elasticsearch', {'n_dim': 3, 'distance': 'l2_norm'}), ('sqlite', dict()), ('redis', {'n_dim': 3, 'distance': 'L2', 'flush': True}), ], ) def test_del_subindex(storage, config): n_dim = 3 subindex_configs = ( {'@c': dict()} if storage in ['sqlite', 'memory'] else {'@c': {'n_dim': 2}} ) da = DocumentArray( storage=storage, config=config, subindex_configs=subindex_configs, ) with da: da.extend( [ Document( id=str(i), embedding=i * np.ones(n_dim), chunks=[ Document(id=str(i) + '_0', embedding=np.array([i, i])), Document(id=str(i) + '_1', embedding=np.array([i, i])), ], ) for i in range(10) ] ) del da['0'] assert len(da) == 9 assert len(da._subindices['@c']) == 18 del da[-2:] assert len(da) == 7 assert len(da._subindices['@c']) == 14 def test_del_subindex_annlite_multimodal(): from docarray import dataclass from docarray.typing import Text @dataclass class MMDoc: my_text: Text my_other_text: Text n_dim = 3 da = DocumentArray( storage='annlite', config={'n_dim': n_dim, 'metric': 'Euclidean'}, subindex_configs={'@.[my_text, my_other_text]': {'n_dim': 2}}, ) num_docs = 10 docs_to_add = DocumentArray( [ Document(MMDoc(my_text='hello', my_other_text='world')) for _ in range(num_docs) ] ) for i, d in enumerate(docs_to_add): d.id = str(i) d.embedding = i * np.ones(n_dim) d.my_text.id = str(i) + '_0' d.my_text.embedding = [i, i] d.my_other_text.id = str(i) + '_1' d.my_other_text.embedding = [i, i] with da: da.extend(docs_to_add) del da['0'] assert len(da) == 9 assert len(da._subindices['@.[my_text, my_other_text]']) == 18
"""Helper functions for managing the LangChain API. This module is only relevant for LangChain developers, not for users. .. warning:: This module and its submodules are for internal use only. Do not use them in your own code. We may change the API at any time with no warning. """ from .deprecation import ( LangChainDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) from .module_import import create_importer __all__ = [ "LangChainDeprecationWarning", "create_importer", "deprecated", "suppress_langchain_deprecation_warning", "surface_langchain_deprecation_warnings", "warn_deprecated", ]
"""Helper functions for managing the LangChain API. This module is only relevant for LangChain developers, not for users. .. warning:: This module and its submodules are for internal use only. Do not use them in your own code. We may change the API at any time with no warning. """ from .deprecation import ( LangChainDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) from .module_import import create_importer __all__ = [ "deprecated", "LangChainDeprecationWarning", "suppress_langchain_deprecation_warning", "surface_langchain_deprecation_warnings", "warn_deprecated", "create_importer", ]
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTorchTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_torch_tensor') class VideoTorchTensor(TorchTensor, VideoTensorMixin, metaclass=metaTorchAndNode): """ Subclass of [`TorchTensor`][docarray.typing.TorchTensor], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import torch from docarray import BaseDoc from docarray.typing import VideoTorchTensor, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTorchTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=torch.randn(size=(100, 224, 224, 3)), ) # doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = doc_2.url.load().video # doc_2.video_tensor.save(file_path='file_2.wav') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTorchTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_torch_tensor') class VideoTorchTensor(TorchTensor, VideoTensorMixin, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoTorchTensor, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTorchTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=torch.randn(size=(100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.wav') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoTorchTensor, doc_2.url.load()) doc_2.video_tensor.save(file_path='file_2.wav') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
# Copyright (c) OpenMMLab. All rights reserved. from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, deprecated_function, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .package_utils import (call_command, get_installed_path, install_package, is_installed) from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .progressbar import (ProgressBar, track_iter_progress, track_parallel_progress, track_progress) from .timer import Timer, TimerError, check_time from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_installed', 'call_command', 'get_installed_path', 'install_package', 'is_abs', 'is_method_overridden', 'has_method', 'digit_version', 'get_git_hash', 'ManagerMeta', 'ManagerMixin', 'Timer', 'check_time', 'TimerError', 'ProgressBar', 'track_iter_progress', 'track_parallel_progress', 'track_progress', 'deprecated_function' ]
# Copyright (c) OpenMMLab. All rights reserved. from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .package_utils import (call_command, get_installed_path, install_package, is_installed) from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .progressbar import (ProgressBar, track_iter_progress, track_parallel_progress, track_progress) from .timer import Timer, TimerError, check_time from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_installed', 'call_command', 'get_installed_path', 'install_package', 'is_abs', 'is_method_overridden', 'has_method', 'digit_version', 'get_git_hash', 'ManagerMeta', 'ManagerMixin', 'Timer', 'check_time', 'TimerError', 'ProgressBar', 'track_iter_progress', 'track_parallel_progress', 'track_progress' ]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth')))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth')))
from torchaudio._internal.module_utils import dropping_support from ._alignment import forced_align as _forced_align, merge_tokens, TokenSpan from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) forced_align = dropping_support(_forced_align) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, frechet_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss as _rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) rnnt_loss = dropping_support(_rnnt_loss) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "merge_tokens", "TokenSpan", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", "frechet_distance", ]
from ._alignment import forced_align, merge_tokens, TokenSpan from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, frechet_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "merge_tokens", "TokenSpan", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", "frechet_distance", ]
import warnings from typing import Any from langchain_core.memory import BaseMemory from pydantic import field_validator from langchain.memory.chat_memory import BaseChatMemory class CombinedMemory(BaseMemory): """Combining multiple memories' data together.""" memories: list[BaseMemory] """For tracking all the memories that should be accessed.""" @field_validator("memories") @classmethod def check_repeated_memory_variable( cls, value: list[BaseMemory], ) -> list[BaseMemory]: all_variables: set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: msg = ( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) raise ValueError(msg) all_variables |= set(val.memory_variables) return value @field_validator("memories") @classmethod def check_input_key(cls, value: list[BaseMemory]) -> list[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory) and val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}", ) return value @property def memory_variables(self) -> list[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]: """Load all vars from sub-memories.""" memory_data: dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) for key, value in data.items(): if key in memory_data: msg = f"The variable {key} is repeated in the CombinedMemory." raise ValueError(msg) memory_data[key] = value return memory_data def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear()
import warnings from typing import Any from langchain_core.memory import BaseMemory from pydantic import field_validator from langchain.memory.chat_memory import BaseChatMemory class CombinedMemory(BaseMemory): """Combining multiple memories' data together.""" memories: list[BaseMemory] """For tracking all the memories that should be accessed.""" @field_validator("memories") @classmethod def check_repeated_memory_variable( cls, value: list[BaseMemory] ) -> list[BaseMemory]: all_variables: set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: msg = ( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) raise ValueError(msg) all_variables |= set(val.memory_variables) return value @field_validator("memories") @classmethod def check_input_key(cls, value: list[BaseMemory]) -> list[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory) and val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> list[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]: """Load all vars from sub-memories.""" memory_data: dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) for key, value in data.items(): if key in memory_data: msg = f"The variable {key} is repeated in the CombinedMemory." raise ValueError(msg) memory_data[key] = value return memory_data def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear()
from typing import Dict, Optional, Union import pytest from docarray.typing import NdArray, TorchTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._typing import is_tensor_union, is_type_tensor from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: from docarray.typing import TensorFlowTensor else: TensorFlowTensor = None @pytest.mark.parametrize( 'type_, is_tensor', [ (int, False), (TorchTensor, True), (NdArray, True), (AbstractTensor, True), (Optional[TorchTensor], False), (Union[TorchTensor, NdArray], False), (None, False), (Dict, False), ], ) def test_is_type_tensor(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_tensor', [ (TensorFlowTensor, True), (Optional[TensorFlowTensor], False), ], ) def test_is_type_tensor_with_tf(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.parametrize( 'type_, is_union_tensor', [ (int, False), (TorchTensor, False), (NdArray, False), (Optional[TorchTensor], True), (Optional[NdArray], True), (Union[NdArray, TorchTensor], True), (Union[NdArray, TorchTensor, AbstractTensor], True), (Union[NdArray, TorchTensor, Optional[TorchTensor]], True), (Union[NdArray, TorchTensor, None], True), ], ) def test_is_union_type_tensor(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_union_tensor', [ (TensorFlowTensor, False), (Optional[TensorFlowTensor], True), (Union[NdArray, TorchTensor, TensorFlowTensor], True), (Union[NdArray, TorchTensor, Optional[TensorFlowTensor]], True), ], ) def test_is_union_type_tensor_with_tf(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor
from typing import Dict, Optional, Union import pytest from docarray.typing import NdArray, TorchTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._typing import is_tensor_union, is_type_tensor try: from docarray.typing import TensorFlowTensor except (ImportError, TypeError): TensorFlowTensor = None @pytest.mark.parametrize( 'type_, is_tensor', [ (int, False), (TorchTensor, True), (NdArray, True), (AbstractTensor, True), (Optional[TorchTensor], False), (Union[TorchTensor, NdArray], False), (None, False), (Dict, False), ], ) def test_is_type_tensor(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_tensor', [ (TensorFlowTensor, True), (Optional[TensorFlowTensor], False), ], ) def test_is_type_tensor_with_tf(type_, is_tensor): assert is_type_tensor(type_) == is_tensor @pytest.mark.parametrize( 'type_, is_union_tensor', [ (int, False), (TorchTensor, False), (NdArray, False), (Optional[TorchTensor], True), (Optional[NdArray], True), (Union[NdArray, TorchTensor], True), (Union[NdArray, TorchTensor, AbstractTensor], True), (Union[NdArray, TorchTensor, Optional[TorchTensor]], True), (Union[NdArray, TorchTensor, None], True), ], ) def test_is_union_type_tensor(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'type_, is_union_tensor', [ (TensorFlowTensor, False), (Optional[TensorFlowTensor], True), (Union[NdArray, TorchTensor, TensorFlowTensor], True), (Union[NdArray, TorchTensor, Optional[TensorFlowTensor]], True), ], ) def test_is_union_type_tensor_with_tf(type_, is_union_tensor): assert is_tensor_union(type_) == is_union_tensor
# Copyright (c) OpenMMLab. All rights reserved. import math import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule, auto_fp16 from mmdet.registry import MODELS @MODELS.register_module() class CTResNetNeck(BaseModule): """The neck used in `CenterNet <https://arxiv.org/abs/1904.07850>`_ for object classification and box regression. Args: in_channel (int): Number of input channels. num_deconv_filters (tuple[int]): Number of filters per stage. num_deconv_kernels (tuple[int]): Number of kernels per stage. use_dcn (bool): If True, use DCNv2. Default: True. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channel, num_deconv_filters, num_deconv_kernels, use_dcn=True, init_cfg=None): super(CTResNetNeck, self).__init__(init_cfg) assert len(num_deconv_filters) == len(num_deconv_kernels) self.fp16_enabled = False self.use_dcn = use_dcn self.in_channel = in_channel self.deconv_layers = self._make_deconv_layer(num_deconv_filters, num_deconv_kernels) def _make_deconv_layer(self, num_deconv_filters, num_deconv_kernels): """use deconv layers to upsample backbone's output.""" layers = [] for i in range(len(num_deconv_filters)): feat_channel = num_deconv_filters[i] conv_module = ConvModule( self.in_channel, feat_channel, 3, padding=1, conv_cfg=dict(type='DCNv2') if self.use_dcn else None, norm_cfg=dict(type='BN')) layers.append(conv_module) upsample_module = ConvModule( feat_channel, feat_channel, num_deconv_kernels[i], stride=2, padding=1, conv_cfg=dict(type='deconv'), norm_cfg=dict(type='BN')) layers.append(upsample_module) self.in_channel = feat_channel return nn.Sequential(*layers) def init_weights(self): for m in self.modules(): if isinstance(m, nn.ConvTranspose2d): # In order to be consistent with the source code, # reset the ConvTranspose2d initialization parameters m.reset_parameters() # Simulated bilinear upsampling kernel w = m.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * ( 1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # self.use_dcn is False elif not self.use_dcn and isinstance(m, nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() @auto_fp16() def forward(self, inputs): assert isinstance(inputs, (list, tuple)) outs = self.deconv_layers(inputs[-1]) return outs,
# Copyright (c) OpenMMLab. All rights reserved. import math import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.builder import NECKS @NECKS.register_module() class CTResNetNeck(BaseModule): """The neck used in `CenterNet <https://arxiv.org/abs/1904.07850>`_ for object classification and box regression. Args: in_channel (int): Number of input channels. num_deconv_filters (tuple[int]): Number of filters per stage. num_deconv_kernels (tuple[int]): Number of kernels per stage. use_dcn (bool): If True, use DCNv2. Default: True. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channel, num_deconv_filters, num_deconv_kernels, use_dcn=True, init_cfg=None): super(CTResNetNeck, self).__init__(init_cfg) assert len(num_deconv_filters) == len(num_deconv_kernels) self.fp16_enabled = False self.use_dcn = use_dcn self.in_channel = in_channel self.deconv_layers = self._make_deconv_layer(num_deconv_filters, num_deconv_kernels) def _make_deconv_layer(self, num_deconv_filters, num_deconv_kernels): """use deconv layers to upsample backbone's output.""" layers = [] for i in range(len(num_deconv_filters)): feat_channel = num_deconv_filters[i] conv_module = ConvModule( self.in_channel, feat_channel, 3, padding=1, conv_cfg=dict(type='DCNv2') if self.use_dcn else None, norm_cfg=dict(type='BN')) layers.append(conv_module) upsample_module = ConvModule( feat_channel, feat_channel, num_deconv_kernels[i], stride=2, padding=1, conv_cfg=dict(type='deconv'), norm_cfg=dict(type='BN')) layers.append(upsample_module) self.in_channel = feat_channel return nn.Sequential(*layers) def init_weights(self): for m in self.modules(): if isinstance(m, nn.ConvTranspose2d): # In order to be consistent with the source code, # reset the ConvTranspose2d initialization parameters m.reset_parameters() # Simulated bilinear upsampling kernel w = m.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * ( 1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # self.use_dcn is False elif not self.use_dcn and isinstance(m, nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() @auto_fp16() def forward(self, inputs): assert isinstance(inputs, (list, tuple)) outs = self.deconv_layers(inputs[-1]) return outs,
from __future__ import annotations from .CSRLoss import CSRLoss, CSRReconstructionLoss from .FlopsLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseMarginMSELoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
from __future__ import annotations from .CSRLoss import CSRLoss, CSRReconstructionLoss from .FlopsLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
"""Callback Handler that writes to a file.""" from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast(TextIO, Path(filename).open(mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] else: if serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
"""Callback Handler that writes to a file.""" from __future__ import annotations from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast(TextIO, open(filename, mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] else: if serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
__version__ = '0.30.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.30.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import NavigateTool from langchain_community.tools.playwright.navigate import NavigateToolInput # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "NavigateToolInput": "langchain_community.tools.playwright.navigate", "NavigateTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "NavigateTool", "NavigateToolInput", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import NavigateTool from langchain_community.tools.playwright.navigate import NavigateToolInput # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "NavigateToolInput": "langchain_community.tools.playwright.navigate", "NavigateTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "NavigateToolInput", "NavigateTool", ]
"""Dataset Module.""" from llama_index.core.llama_dataset.base import ( BaseLlamaDataExample, BaseLlamaDataset, BaseLlamaExamplePrediction, BaseLlamaPredictionDataset, CreatedBy, CreatedByType, ) from llama_index.core.llama_dataset.download import download_llama_dataset from llama_index.core.llama_dataset.evaluator_evaluation import ( EvaluatorExamplePrediction, EvaluatorPredictionDataset, LabeledEvaluatorDataExample, LabeledEvaluatorDataset, LabeledPairwiseEvaluatorDataExample, LabeledPairwiseEvaluatorDataset, LabelledEvaluatorDataExample, LabelledEvaluatorDataset, LabelledPairwiseEvaluatorDataExample, LabelledPairwiseEvaluatorDataset, PairwiseEvaluatorExamplePrediction, PairwiseEvaluatorPredictionDataset, ) from llama_index.core.llama_dataset.rag import ( LabeledRagDataExample, LabeledRagDataset, LabelledRagDataExample, LabelledRagDataset, RagExamplePrediction, RagPredictionDataset, ) __all__ = [ "BaseLlamaDataset", "BaseLlamaDataExample", "BaseLlamaExamplePrediction", "BaseLlamaPredictionDataset", "LabelledRagDataExample", "LabelledRagDataset", "LabeledRagDataExample", "LabeledRagDataset", "RagExamplePrediction", "RagPredictionDataset", "CreatedByType", "CreatedBy", "download_llama_dataset", "EvaluatorExamplePrediction", "EvaluatorPredictionDataset", "LabeledEvaluatorDataset", "LabelledEvaluatorDataset", "LabelledEvaluatorDataExample", "LabeledEvaluatorDataExample", "LabelledPairwiseEvaluatorDataExample", "LabelledPairwiseEvaluatorDataset", "LabeledPairwiseEvaluatorDataExample", "LabeledPairwiseEvaluatorDataset", "PairwiseEvaluatorExamplePrediction", "PairwiseEvaluatorPredictionDataset", ]
""" Dataset Module.""" from llama_index.core.llama_dataset.base import ( BaseLlamaDataExample, BaseLlamaDataset, BaseLlamaExamplePrediction, BaseLlamaPredictionDataset, CreatedBy, CreatedByType, ) from llama_index.core.llama_dataset.download import download_llama_dataset from llama_index.core.llama_dataset.evaluator_evaluation import ( EvaluatorExamplePrediction, EvaluatorPredictionDataset, LabeledEvaluatorDataExample, LabeledEvaluatorDataset, LabeledPairwiseEvaluatorDataExample, LabeledPairwiseEvaluatorDataset, LabelledEvaluatorDataExample, LabelledEvaluatorDataset, LabelledPairwiseEvaluatorDataExample, LabelledPairwiseEvaluatorDataset, PairwiseEvaluatorExamplePrediction, PairwiseEvaluatorPredictionDataset, ) from llama_index.core.llama_dataset.rag import ( LabeledRagDataExample, LabeledRagDataset, LabelledRagDataExample, LabelledRagDataset, RagExamplePrediction, RagPredictionDataset, ) __all__ = [ "BaseLlamaDataset", "BaseLlamaDataExample", "BaseLlamaExamplePrediction", "BaseLlamaPredictionDataset", "LabelledRagDataExample", "LabelledRagDataset", "LabeledRagDataExample", "LabeledRagDataset", "RagExamplePrediction", "RagPredictionDataset", "CreatedByType", "CreatedBy", "download_llama_dataset", "EvaluatorExamplePrediction", "EvaluatorPredictionDataset", "LabeledEvaluatorDataset", "LabelledEvaluatorDataset", "LabelledEvaluatorDataExample", "LabeledEvaluatorDataExample", "LabelledPairwiseEvaluatorDataExample", "LabelledPairwiseEvaluatorDataset", "LabeledPairwiseEvaluatorDataExample", "LabeledPairwiseEvaluatorDataset", "PairwiseEvaluatorExamplePrediction", "PairwiseEvaluatorPredictionDataset", ]
"""[DEPRECATED] Pipeline prompt template.""" from typing import Any from pydantic import model_validator from langchain_core._api.deprecation import deprecated from langchain_core.prompt_values import PromptValue from langchain_core.prompts.base import BasePromptTemplate from langchain_core.prompts.chat import BaseChatPromptTemplate def _get_inputs(inputs: dict, input_variables: list[str]) -> dict: return {k: inputs[k] for k in input_variables} @deprecated( since="0.3.22", removal="1.0", message=( "This class is deprecated. Please see the docstring below or at the link" " for a replacement option: " "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html" ), ) class PipelinePromptTemplate(BasePromptTemplate): """[DEPRECATED] Pipeline prompt template. This has been deprecated in favor of chaining individual prompts together in your code. E.g. using a for loop, you could do: .. code-block:: python my_input = {"key": "value"} for name, prompt in pipeline_prompts: my_input[name] = prompt.invoke(my_input).to_string() my_output = final_prompt.invoke(my_input) Prompt template for composing multiple prompt templates together. This can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts: - final_prompt: This is the final prompt that is returned - pipeline_prompts: This is a list of tuples, consisting of a string (`name`) and a Prompt Template. Each PromptTemplate will be formatted and then passed to future prompt templates as a variable with the same name as `name` """ final_prompt: BasePromptTemplate """The final prompt that is returned.""" pipeline_prompts: list[tuple[str, BasePromptTemplate]] """A list of tuples, consisting of a string (`name`) and a Prompt Template.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "pipeline"] @model_validator(mode="before") @classmethod def get_input_variables(cls, values: dict) -> Any: """Get input variables.""" created_variables = set() all_variables = set() for k, prompt in values["pipeline_prompts"]: created_variables.add(k) all_variables.update(prompt.input_variables) values["input_variables"] = list(all_variables.difference(created_variables)) return values def format_prompt(self, **kwargs: Any) -> PromptValue: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = prompt.format_messages(**inputs) else: kwargs[k] = prompt.format(**inputs) inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return self.final_prompt.format_prompt(**inputs) async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = await prompt.aformat_messages(**inputs) else: kwargs[k] = await prompt.aformat(**inputs) inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return await self.final_prompt.aformat_prompt(**inputs) def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return self.format_prompt(**kwargs).to_string() async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return (await self.aformat_prompt(**kwargs)).to_string() @property def _prompt_type(self) -> str: raise ValueError
"""[DEPRECATED] Pipeline prompt template.""" from typing import Any from pydantic import model_validator from langchain_core._api.deprecation import deprecated from langchain_core.prompt_values import PromptValue from langchain_core.prompts.base import BasePromptTemplate from langchain_core.prompts.chat import BaseChatPromptTemplate def _get_inputs(inputs: dict, input_variables: list[str]) -> dict: return {k: inputs[k] for k in input_variables} @deprecated( since="0.3.22", removal="1.0", message=( "This class is deprecated. Please see the docstring below or at the link" " for a replacement option: " "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html" ), ) class PipelinePromptTemplate(BasePromptTemplate): """[DEPRECATED] Pipeline prompt template. This has been deprecated in favor of chaining individual prompts together in your code. E.g. using a for loop, you could do: .. code-block:: python my_input = {"key": "value"} for name, prompt in pipeline_prompts: my_input[name] = prompt.invoke(my_input).to_string() my_output = final_prompt.invoke(my_input) Prompt template for composing multiple prompt templates together. This can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts: - final_prompt: This is the final prompt that is returned - pipeline_prompts: This is a list of tuples, consisting of a string (`name`) and a Prompt Template. Each PromptTemplate will be formatted and then passed to future prompt templates as a variable with the same name as `name` """ final_prompt: BasePromptTemplate """The final prompt that is returned.""" pipeline_prompts: list[tuple[str, BasePromptTemplate]] """A list of tuples, consisting of a string (`name`) and a Prompt Template.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "pipeline"] @model_validator(mode="before") @classmethod def get_input_variables(cls, values: dict) -> Any: """Get input variables.""" created_variables = set() all_variables = set() for k, prompt in values["pipeline_prompts"]: created_variables.add(k) all_variables.update(prompt.input_variables) values["input_variables"] = list(all_variables.difference(created_variables)) return values def format_prompt(self, **kwargs: Any) -> PromptValue: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = prompt.format_messages(**_inputs) else: kwargs[k] = prompt.format(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return self.final_prompt.format_prompt(**_inputs) async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = await prompt.aformat_messages(**_inputs) else: kwargs[k] = await prompt.aformat(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return await self.final_prompt.aformat_prompt(**_inputs) def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return self.format_prompt(**kwargs).to_string() async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return (await self.aformat_prompt(**kwargs)).to_string() @property def _prompt_type(self) -> str: raise ValueError
import itertools import os.path import pytest from docarray import Document, DocumentArray from jina import Client, Executor, Flow, requests from jina.helper import random_port PROTOCOLS = ['grpc', 'http', 'websocket'] cur_dir = os.path.dirname(__file__) class MyExecutor(Executor): @requests def foo(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = 'processed' @pytest.mark.parametrize( 'ports,protocols', [ *[ ([random_port(), random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=3) ], *[ ([random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=2) ], *[ ([random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=1) ], ], ) def test_flow_multiprotocol(ports, protocols): flow = Flow().config_gateway(port=ports, protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ list(protocols) for protocols in itertools.chain( itertools.combinations(PROTOCOLS, r=3), itertools.combinations(PROTOCOLS, r=2), ) ], ) def test_flow_multiprotocol_default_random_ports(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(flow.port, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ ['grpc'], ['http'], ['websocket'], ], ) def test_flow_single_protocol_default_random_port(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for protocol in protocols: client = Client(port=flow.port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_aliases(): ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway(ports=ports, protocols=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_yaml(): flow = Flow.load_config(os.path.join(cur_dir, 'yaml/multi-protocol.yml')) with flow: for port, protocol in zip([12345, 12344, 12343], ['grpc', 'http', 'websocket']): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()]) def test_flow_multiprotocol_ports_protocols_mismatch(): flow = Flow().config_gateway(port=[random_port()], protocol=['grpc', 'http']) with pytest.raises(ValueError) as err_info: with flow: pass assert ( 'You need to specify as much protocols as ports if you want to use a jina built-in gateway' in err_info.value.args[0] ) def test_flow_multiprotocol_with_monitoring(): ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway(port=ports, protocol=protocols, monitoring=True) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()])
import itertools import os.path import pytest from docarray import Document, DocumentArray from jina import Client, Executor, Flow, requests from jina.helper import random_port PROTOCOLS = ['grpc', 'http', 'websocket'] cur_dir = os.path.dirname(__file__) class MyExecutor(Executor): @requests def foo(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = 'processed' @pytest.mark.parametrize( 'ports,protocols', [ *[ ([random_port(), random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=3) ], *[ ([random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=2) ], *[ ([random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=1) ], ], ) def test_flow_multiprotocol(ports, protocols): flow = Flow().config_gateway(port=ports, protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ list(protocols) for protocols in itertools.chain( itertools.combinations(PROTOCOLS, r=3), itertools.combinations(PROTOCOLS, r=2), ) ], ) def test_flow_multiprotocol_default_random_ports(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(flow.port, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ ['grpc'], ['http'], ['websocket'], ], ) def test_flow_single_protocol_default_random_port(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for protocol in protocols: client = Client(port=flow.port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_aliases(): ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway(ports=ports, protocols=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_yaml(): flow = Flow.load_config(os.path.join(cur_dir, 'yaml/multi-protocol.yml')) with flow: for port, protocol in zip([12345, 12344, 12343], ['grpc', 'http', 'websocket']): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()]) def test_flow_multiprotocol_ports_protocols_mismatch(): flow = Flow().config_gateway(port=[random_port()], protocol=['grpc', 'http']) with pytest.raises(ValueError) as err_info: with flow: pass assert ( 'You need to specify as much protocols as ports if you want to use a jina built-in gateway' in err_info.value.args[0] )
# mypy: allow-untyped-defs from contextlib import contextmanager from typing import NoReturn try: from torch._C import _itt except ImportError: class _ITTStub: @staticmethod def _fail(*args, **kwargs) -> NoReturn: raise RuntimeError( "ITT functions not installed. Are you sure you have a ITT build?" ) @staticmethod def is_available() -> bool: return False rangePush = _fail rangePop = _fail mark = _fail _itt = _ITTStub() # type: ignore[assignment] __all__ = ["is_available", "range_push", "range_pop", "mark", "range"] def is_available(): """ Check if ITT feature is available or not """ return _itt.is_available() def range_push(msg): """ Pushes a range onto a stack of nested range span. Returns zero-based depth of the range that is started. Arguments: msg (str): ASCII message to associate with range """ return _itt.rangePush(msg) def range_pop(): """ Pops a range off of a stack of nested range spans. Returns the zero-based depth of the range that is ended. """ return _itt.rangePop() def mark(msg): """ Describe an instantaneous event that occurred at some point. Arguments: msg (str): ASCII message to associate with the event. """ return _itt.mark(msg) @contextmanager def range(msg, *args, **kwargs): """ Context manager / decorator that pushes an ITT range at the beginning of its scope, and pops it at the end. If extra arguments are given, they are passed as arguments to msg.format(). Args: msg (str): message to associate with the range """ range_push(msg.format(*args, **kwargs)) try: yield finally: range_pop()
# mypy: allow-untyped-defs from contextlib import contextmanager try: from torch._C import _itt except ImportError: class _ITTStub: @staticmethod def _fail(*args, **kwargs): raise RuntimeError( "ITT functions not installed. Are you sure you have a ITT build?" ) @staticmethod def is_available(): return False rangePush = _fail rangePop = _fail mark = _fail _itt = _ITTStub() # type: ignore[assignment] __all__ = ["is_available", "range_push", "range_pop", "mark", "range"] def is_available(): """ Check if ITT feature is available or not """ return _itt.is_available() def range_push(msg): """ Pushes a range onto a stack of nested range span. Returns zero-based depth of the range that is started. Arguments: msg (str): ASCII message to associate with range """ return _itt.rangePush(msg) def range_pop(): """ Pops a range off of a stack of nested range spans. Returns the zero-based depth of the range that is ended. """ return _itt.rangePop() def mark(msg): """ Describe an instantaneous event that occurred at some point. Arguments: msg (str): ASCII message to associate with the event. """ return _itt.mark(msg) @contextmanager def range(msg, *args, **kwargs): """ Context manager / decorator that pushes an ITT range at the beginning of its scope, and pops it at the end. If extra arguments are given, they are passed as arguments to msg.format(). Args: msg (str): message to associate with the range """ range_push(msg.format(*args, **kwargs)) try: yield finally: range_pop()
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDocument from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(BaseDocument): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save_to_wav_file(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save_to_wav_file(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from pydantic import parse_obj_as from docarray import Document from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(Document): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save_to_wav_file(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save_to_wav_file(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
""" Epub parser. Contains parsers for epub files. """ from pathlib import Path from typing import Dict, List, Optional import logging from fsspec import AbstractFileSystem from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class EpubReader(BaseReader): """Epub Parser.""" def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file.""" try: import ebooklib import html2text from ebooklib import epub except ImportError: raise ImportError( "Please install extra dependencies that are required for " "the EpubReader: " "`pip install EbookLib html2text`" ) if fs: logger.warning( "fs was specified but EpubReader doesn't support loading " "from fsspec filesystems. Will load from local filesystem instead." ) text_list = [] book = epub.read_epub(file, options={"ignore_ncx": True}) # Iterate through all chapters. for item in book.get_items(): # Chapters are typically located in epub documents items. if item.get_type() == ebooklib.ITEM_DOCUMENT: text_list.append( html2text.html2text(item.get_content().decode("utf-8")) ) text = "\n".join(text_list) return [Document(text=text, metadata=extra_info or {})]
"""Epub parser. Contains parsers for epub files. """ from pathlib import Path from typing import Dict, List, Optional import logging from fsspec import AbstractFileSystem from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class EpubReader(BaseReader): """Epub Parser.""" def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file.""" try: import ebooklib import html2text from ebooklib import epub except ImportError: raise ImportError( "Please install extra dependencies that are required for " "the EpubReader: " "`pip install EbookLib html2text`" ) if fs: logger.warning( "fs was specified but EpubReader doesn't support loading " "from fsspec filesystems. Will load from local filesystem instead." ) text_list = [] book = epub.read_epub(file, options={"ignore_ncx": True}) # Iterate through all chapters. for item in book.get_items(): # Chapters are typically located in epub documents items. if item.get_type() == ebooklib.ITEM_DOCUMENT: text_list.append( html2text.html2text(item.get_content().decode("utf-8")) ) text = "\n".join(text_list) return [Document(text=text, metadata=extra_info or {})]
import os from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar import orjson from pydantic import BaseModel, Field from rich.console import Console from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import IOMixin, UpdateMixin from docarray.typing import ID if TYPE_CHECKING: from docarray.array.stacked.column_storage import ColumnStorageView _console: Console = Console() T = TypeVar('T', bound='BaseDocument') class BaseDocument(BaseModel, IOMixin, UpdateMixin, BaseNode): """ The base class for Documents """ id: Optional[ID] = Field(default_factory=lambda: ID(os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def from_view(cls: Type[T], storage_view: 'ColumnStorageView') -> T: doc = cls.__new__(cls) object.__setattr__(doc, '__dict__', storage_view) object.__setattr__(doc, '__fields_set__', set(storage_view.keys())) doc._init_private_attributes() return doc @classmethod def _get_field_type(cls, field: str) -> Type: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self) -> str: with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self) -> None: """Displays the object in IPython as a summary""" self.summary() def is_view(self) -> bool: from docarray.array.stacked.column_storage import ColumnStorageView return isinstance(self.__dict__, ColumnStorageView) def __getattr__(self, item) -> Any: if item in self.__fields__.keys(): return self.__dict__[item] else: return super().__getattribute__(item) def __setattr__(self, field, value) -> None: if not self.is_view(): super().__setattr__(field, value) else: # here we first validate with pydantic # Then we apply the value to the remote dict, # and we change back the __dict__ value to the remote dict dict_ref = self.__dict__ super().__setattr__(field, value) for key, val in self.__dict__.items(): dict_ref[key] = val object.__setattr__(self, '__dict__', dict_ref)
import os from typing import Optional, Type import orjson from pydantic import BaseModel, Field from rich.console import Console from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import IOMixin, UpdateMixin from docarray.typing import ID _console: Console = Console() class BaseDocument(BaseModel, IOMixin, UpdateMixin, BaseNode): """ The base class for Documents """ id: Optional[ID] = Field(default_factory=lambda: ID(os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self): """Displays the object in IPython as a summary""" self.summary()
import os import sys from test_utils import DirectoryExcursion if len(sys.argv) != 4: print("Usage: {} [wheel to rename] [commit id] [platform tag]".format(sys.argv[0])) sys.exit(1) whl_path = sys.argv[1] commit_id = sys.argv[2] platform_tag = sys.argv[3] dirname, basename = os.path.dirname(whl_path), os.path.basename(whl_path) with DirectoryExcursion(dirname): tokens = basename.split("-") assert len(tokens) == 5 version = tokens[1].split("+")[0] keywords = { "pkg_name": tokens[0], "version": version, "commit_id": commit_id, "platform_tag": platform_tag, } new_name = "{pkg_name}-{version}+{commit_id}-py3-none-{platform_tag}.whl".format( **keywords ) print("Renaming {} to {}...".format(basename, new_name)) if os.path.isfile(new_name): os.remove(new_name) os.rename(basename, new_name) filesize = os.path.getsize(new_name) / 1024 / 1024 # MB print(f"Wheel size: {filesize}") msg = f"Limit of wheel size set by PyPI is exceeded. {new_name}: {filesize}" assert filesize <= 300, msg
import os import sys from contextlib import contextmanager @contextmanager def cd(path): path = os.path.normpath(path) cwd = os.getcwd() os.chdir(path) print("cd " + path) try: yield path finally: os.chdir(cwd) if len(sys.argv) != 4: print('Usage: {} [wheel to rename] [commit id] [platform tag]'.format(sys.argv[0])) sys.exit(1) whl_path = sys.argv[1] commit_id = sys.argv[2] platform_tag = sys.argv[3] dirname, basename = os.path.dirname(whl_path), os.path.basename(whl_path) with cd(dirname): tokens = basename.split('-') assert len(tokens) == 5 version = tokens[1].split('+')[0] keywords = {'pkg_name': tokens[0], 'version': version, 'commit_id': commit_id, 'platform_tag': platform_tag} new_name = '{pkg_name}-{version}+{commit_id}-py3-none-{platform_tag}.whl'.format(**keywords) print('Renaming {} to {}...'.format(basename, new_name)) if os.path.isfile(new_name): os.remove(new_name) os.rename(basename, new_name) filesize = os.path.getsize(new_name) / 1024 / 1024 # MB msg = f"Limit of wheel size set by PyPI is exceeded. {new_name}: {filesize}" assert filesize <= 300, msg
import importlib import os import re from pathlib import Path from typing import Type, TypeVar from backend.data.block import Block # Dynamically load all modules under backend.blocks AVAILABLE_MODULES = [] current_dir = Path(__file__).parent modules = [ str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".") for f in current_dir.rglob("*.py") if f.is_file() and f.name != "__init__.py" ] for module in modules: if not re.match("^[a-z0-9_.]+$", module): raise ValueError( f"Block module {module} error: module name must be lowercase, " "and contain only alphanumeric characters and underscores." ) importlib.import_module(f".{module}", package=__name__) AVAILABLE_MODULES.append(module) # Load all Block instances from the available modules AVAILABLE_BLOCKS: dict[str, Type[Block]] = {} T = TypeVar("T") def all_subclasses(cls: Type[T]) -> list[Type[T]]: subclasses = cls.__subclasses__() for subclass in subclasses: subclasses += all_subclasses(subclass) return subclasses for block_cls in all_subclasses(Block): name = block_cls.__name__ if block_cls.__name__.endswith("Base"): continue if not block_cls.__name__.endswith("Block"): raise ValueError( f"Block class {block_cls.__name__} does not end with 'Block', If you are creating an abstract class, please name the class with 'Base' at the end" ) block = block_cls.create() if not isinstance(block.id, str) or len(block.id) != 36: raise ValueError(f"Block ID {block.name} error: {block.id} is not a valid UUID") if block.id in AVAILABLE_BLOCKS: raise ValueError(f"Block ID {block.name} error: {block.id} is already in use") input_schema = block.input_schema.model_fields output_schema = block.output_schema.model_fields # Make sure `error` field is a string in the output schema if "error" in output_schema and output_schema["error"].annotation is not str: raise ValueError( f"{block.name} `error` field in output_schema must be a string" ) # Make sure all fields in input_schema and output_schema are annotated and has a value for field_name, field in [*input_schema.items(), *output_schema.items()]: if field.annotation is None: raise ValueError( f"{block.name} has a field {field_name} that is not annotated" ) if field.json_schema_extra is None: raise ValueError( f"{block.name} has a field {field_name} not defined as SchemaField" ) for field in block.input_schema.model_fields.values(): if field.annotation is bool and field.default not in (True, False): raise ValueError(f"{block.name} has a boolean field with no default value") if block.disabled: continue AVAILABLE_BLOCKS[block.id] = block_cls __all__ = ["AVAILABLE_MODULES", "AVAILABLE_BLOCKS"]
import importlib import os import re from pathlib import Path from typing import Type, TypeVar from backend.data.block import Block # Dynamically load all modules under backend.blocks AVAILABLE_MODULES = [] current_dir = Path(__file__).parent modules = [ str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".") for f in current_dir.rglob("*.py") if f.is_file() and f.name != "__init__.py" ] for module in modules: if not re.match("^[a-z_.]+$", module): raise ValueError( f"Block module {module} error: module name must be lowercase, " "separated by underscores, and contain only alphabet characters" ) importlib.import_module(f".{module}", package=__name__) AVAILABLE_MODULES.append(module) # Load all Block instances from the available modules AVAILABLE_BLOCKS: dict[str, Type[Block]] = {} T = TypeVar("T") def all_subclasses(cls: Type[T]) -> list[Type[T]]: subclasses = cls.__subclasses__() for subclass in subclasses: subclasses += all_subclasses(subclass) return subclasses for block_cls in all_subclasses(Block): name = block_cls.__name__ if block_cls.__name__.endswith("Base"): continue if not block_cls.__name__.endswith("Block"): raise ValueError( f"Block class {block_cls.__name__} does not end with 'Block', If you are creating an abstract class, please name the class with 'Base' at the end" ) block = block_cls.create() if not isinstance(block.id, str) or len(block.id) != 36: raise ValueError(f"Block ID {block.name} error: {block.id} is not a valid UUID") if block.id in AVAILABLE_BLOCKS: raise ValueError(f"Block ID {block.name} error: {block.id} is already in use") input_schema = block.input_schema.model_fields output_schema = block.output_schema.model_fields # Make sure `error` field is a string in the output schema if "error" in output_schema and output_schema["error"].annotation is not str: raise ValueError( f"{block.name} `error` field in output_schema must be a string" ) # Make sure all fields in input_schema and output_schema are annotated and has a value for field_name, field in [*input_schema.items(), *output_schema.items()]: if field.annotation is None: raise ValueError( f"{block.name} has a field {field_name} that is not annotated" ) if field.json_schema_extra is None: raise ValueError( f"{block.name} has a field {field_name} not defined as SchemaField" ) for field in block.input_schema.model_fields.values(): if field.annotation is bool and field.default not in (True, False): raise ValueError(f"{block.name} has a boolean field with no default value") if block.disabled: continue AVAILABLE_BLOCKS[block.id] = block_cls __all__ = ["AVAILABLE_MODULES", "AVAILABLE_BLOCKS"]
from datetime import datetime from typing import List from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.blocks.exa.helpers import ContentSettings from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class ExaSearchBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() query: str = SchemaField(description="The search query") use_auto_prompt: bool = SchemaField( description="Whether to use autoprompt", default=True, advanced=True, ) type: str = SchemaField( description="Type of search", default="", advanced=True, ) category: str = SchemaField( description="Category to search within", default="", advanced=True, ) number_of_results: int = SchemaField( description="Number of results to return", default=10, advanced=True, ) include_domains: List[str] = SchemaField( description="Domains to include in search", default_factory=list, ) exclude_domains: List[str] = SchemaField( description="Domains to exclude from search", default_factory=list, advanced=True, ) start_crawl_date: datetime = SchemaField( description="Start date for crawled content", ) end_crawl_date: datetime = SchemaField( description="End date for crawled content", ) start_published_date: datetime = SchemaField( description="Start date for published content", ) end_published_date: datetime = SchemaField( description="End date for published content", ) include_text: List[str] = SchemaField( description="Text patterns to include", default_factory=list, advanced=True, ) exclude_text: List[str] = SchemaField( description="Text patterns to exclude", default_factory=list, advanced=True, ) contents: ContentSettings = SchemaField( description="Content retrieval settings", default=ContentSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of search results", default_factory=list, ) def __init__(self): super().__init__( id="996cec64-ac40-4dde-982f-b0dc60a5824d", description="Searches the web using Exa's advanced search API", categories={BlockCategory.SEARCH}, input_schema=ExaSearchBlock.Input, output_schema=ExaSearchBlock.Output, ) def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/search" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "query": input_data.query, "useAutoprompt": input_data.use_auto_prompt, "numResults": input_data.number_of_results, "contents": input_data.contents.dict(), } date_field_mapping = { "start_crawl_date": "startCrawlDate", "end_crawl_date": "endCrawlDate", "start_published_date": "startPublishedDate", "end_published_date": "endPublishedDate", } # Add dates if they exist for input_field, api_field in date_field_mapping.items(): value = getattr(input_data, input_field, None) if value: payload[api_field] = value.strftime("%Y-%m-%dT%H:%M:%S.000Z") optional_field_mapping = { "type": "type", "category": "category", "include_domains": "includeDomains", "exclude_domains": "excludeDomains", "include_text": "includeText", "exclude_text": "excludeText", } # Add other fields for input_field, api_field in optional_field_mapping.items(): value = getattr(input_data, input_field) if value: # Only add non-empty values payload[api_field] = value try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() # Extract just the results array from the response yield "results", data.get("results", []) except Exception as e: yield "error", str(e) yield "results", []
from datetime import datetime from typing import List from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.blocks.exa.helpers import ContentSettings from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class ExaSearchBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() query: str = SchemaField(description="The search query") use_auto_prompt: bool = SchemaField( description="Whether to use autoprompt", default=True, advanced=True, ) type: str = SchemaField( description="Type of search", default="", advanced=True, ) category: str = SchemaField( description="Category to search within", default="", advanced=True, ) number_of_results: int = SchemaField( description="Number of results to return", default=10, advanced=True, ) include_domains: List[str] = SchemaField( description="Domains to include in search", default=[], ) exclude_domains: List[str] = SchemaField( description="Domains to exclude from search", default=[], advanced=True, ) start_crawl_date: datetime = SchemaField( description="Start date for crawled content", ) end_crawl_date: datetime = SchemaField( description="End date for crawled content", ) start_published_date: datetime = SchemaField( description="Start date for published content", ) end_published_date: datetime = SchemaField( description="End date for published content", ) include_text: List[str] = SchemaField( description="Text patterns to include", default=[], advanced=True, ) exclude_text: List[str] = SchemaField( description="Text patterns to exclude", default=[], advanced=True, ) contents: ContentSettings = SchemaField( description="Content retrieval settings", default=ContentSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of search results", default=[], ) def __init__(self): super().__init__( id="996cec64-ac40-4dde-982f-b0dc60a5824d", description="Searches the web using Exa's advanced search API", categories={BlockCategory.SEARCH}, input_schema=ExaSearchBlock.Input, output_schema=ExaSearchBlock.Output, ) def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/search" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "query": input_data.query, "useAutoprompt": input_data.use_auto_prompt, "numResults": input_data.number_of_results, "contents": input_data.contents.dict(), } date_field_mapping = { "start_crawl_date": "startCrawlDate", "end_crawl_date": "endCrawlDate", "start_published_date": "startPublishedDate", "end_published_date": "endPublishedDate", } # Add dates if they exist for input_field, api_field in date_field_mapping.items(): value = getattr(input_data, input_field, None) if value: payload[api_field] = value.strftime("%Y-%m-%dT%H:%M:%S.000Z") optional_field_mapping = { "type": "type", "category": "category", "include_domains": "includeDomains", "exclude_domains": "excludeDomains", "include_text": "includeText", "exclude_text": "excludeText", } # Add other fields for input_field, api_field in optional_field_mapping.items(): value = getattr(input_data, input_field) if value: # Only add non-empty values payload[api_field] = value try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() # Extract just the results array from the response yield "results", data.get("results", []) except Exception as e: yield "error", str(e) yield "results", []
try: import sklearn except ImportError: sklearn = None def _validate_data(estimator, *args, **kwargs): """Validate the input data. wrapper for sklearn.utils.validation.validate_data or BaseEstimator._validate_data depending on the scikit-learn version. TODO: remove when minimum scikit-learn version is 1.6 """ try: # scikit-learn >= 1.6 from sklearn.utils.validation import validate_data return validate_data(estimator, *args, **kwargs) except ImportError: return estimator._validate_data(*args, **kwargs) except: raise def type_of_target(y, input_name="", *, raise_unknown=False): def _raise_or_return(target_type): """Depending on the value of raise_unknown, either raise an error or return 'unknown'. """ if raise_unknown and target_type == "unknown": input = input_name if input_name else "data" raise ValueError(f"Unknown label type for {input}: {y!r}") else: return target_type target_type = sklearn.utils.multiclass.type_of_target( y, input_name=input_name ) return _raise_or_return(target_type) def _routing_enabled(): """Return whether metadata routing is enabled. Returns: enabled : bool Whether metadata routing is enabled. If the config is not set, it defaults to False. TODO: remove when the config key is no longer available in scikit-learn """ return sklearn.get_config().get("enable_metadata_routing", False) def _raise_for_params(params, owner, method): """Raise an error if metadata routing is not enabled and params are passed. Parameters: params : dict The metadata passed to a method. owner : object The object to which the method belongs. method : str The name of the method, e.g. "fit". Raises: ValueError If metadata routing is not enabled and params are passed. """ caller = ( f"{owner.__class__.__name__}.{method}" if method else owner.__class__.__name__ ) if not _routing_enabled() and params: raise ValueError( f"Passing extra keyword arguments to {caller} is only supported if" " enable_metadata_routing=True, which you can set using" " `sklearn.set_config`. See the User Guide" " <https://scikit-learn.org/stable/metadata_routing.html> for more" f" details. Extra parameters passed are: {set(params)}" )
import sklearn from packaging.version import parse as parse_version from sklearn import get_config sklearn_version = parse_version(parse_version(sklearn.__version__).base_version) if sklearn_version < parse_version("1.6"): def patched_more_tags(estimator, expected_failed_checks): import copy from sklearn.utils._tags import _safe_tags original_tags = copy.deepcopy(_safe_tags(estimator)) def patched_more_tags(self): original_tags.update({"_xfail_checks": expected_failed_checks}) return original_tags estimator.__class__._more_tags = patched_more_tags return estimator def parametrize_with_checks( estimators, *, legacy: bool = True, expected_failed_checks=None, ): # legacy is not supported and ignored from sklearn.utils.estimator_checks import parametrize_with_checks # noqa: F401, I001 estimators = [ patched_more_tags(estimator, expected_failed_checks(estimator)) for estimator in estimators ] return parametrize_with_checks(estimators) else: from sklearn.utils.estimator_checks import parametrize_with_checks # noqa: F401, I001 def _validate_data(estimator, *args, **kwargs): """Validate the input data. wrapper for sklearn.utils.validation.validate_data or BaseEstimator._validate_data depending on the scikit-learn version. TODO: remove when minimum scikit-learn version is 1.6 """ try: # scikit-learn >= 1.6 from sklearn.utils.validation import validate_data return validate_data(estimator, *args, **kwargs) except ImportError: return estimator._validate_data(*args, **kwargs) except: raise def type_of_target(y, input_name="", *, raise_unknown=False): # fix for raise_unknown which is introduced in scikit-learn 1.6 from sklearn.utils.multiclass import type_of_target def _raise_or_return(target_type): """Depending on the value of raise_unknown, either raise an error or return 'unknown'. """ if raise_unknown and target_type == "unknown": input = input_name if input_name else "data" raise ValueError(f"Unknown label type for {input}: {y!r}") else: return target_type target_type = type_of_target(y, input_name=input_name) return _raise_or_return(target_type) def _routing_enabled(): """Return whether metadata routing is enabled. Returns: enabled : bool Whether metadata routing is enabled. If the config is not set, it defaults to False. TODO: remove when the config key is no longer available in scikit-learn """ return get_config().get("enable_metadata_routing", False) def _raise_for_params(params, owner, method): """Raise an error if metadata routing is not enabled and params are passed. Parameters: params : dict The metadata passed to a method. owner : object The object to which the method belongs. method : str The name of the method, e.g. "fit". Raises: ValueError If metadata routing is not enabled and params are passed. """ caller = ( f"{owner.__class__.__name__}.{method}" if method else owner.__class__.__name__ ) if not _routing_enabled() and params: raise ValueError( f"Passing extra keyword arguments to {caller} is only supported if" " enable_metadata_routing=True, which you can set using" " `sklearn.set_config`. See the User Guide" " <https://scikit-learn.org/stable/metadata_routing.html> for more" f" details. Extra parameters passed are: {set(params)}" )
from typing import Any, Dict, Union import torch from torchvision import datapoints, transforms as _transforms from torchvision.transforms.v2 import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.convert_format_bounding_box(inpt, new_format=self.format) # type: ignore[return-value] class ConvertDtype(Transform): """[BETA] Convert a tensor image/box/mask to the given ``dtype`` and scale the values accordingly .. betastatus:: ConvertDtype transform This function does not support PIL Image. Args: dtype (torch.dtype): Desired data type of the output .. note:: When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly. If converted back and forth, this mismatch has no effect. Raises: RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range of the integer ``dtype``. """ _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints._TensorImageType, datapoints._TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints._TensorImageType, datapoints._TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBox(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
from typing import Any, Dict, Union import torch from torchvision import datapoints, transforms as _transforms from torchvision.transforms.v2 import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.convert_format_bounding_box(inpt, new_format=self.format) # type: ignore[return-value] class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints._TensorImageType, datapoints._TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints._TensorImageType, datapoints._TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBox(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
import time from jina import Flow from tests.integration.instrumentation import ExecutorTestWithTracing, get_traces def test_span_order(jaeger_port, otlp_collector, otlp_receiver_port): f = Flow( tracing=True, traces_exporter_host='http://localhost', traces_exporter_port=otlp_receiver_port, ).add(uses=ExecutorTestWithTracing) with f: from docarray import DocumentArray f.post(f'/search', DocumentArray.empty(), continue_on_error=True) # give some time for the tracing and metrics exporters to finish exporting. # the client is slow to export the data time.sleep(8) traces = get_traces(jaeger_port, 'executor0/rep-0') process_single_data_span_ids = set() search_request_parent_span_ids = set() for trace in traces: for span in trace['spans']: if ( span['operationName'] == '/jina.JinaSingleDataRequestRPC/process_single_data' ): process_single_data_span_ids.add(span['spanID']) if span['operationName'] == '/search': references = span.get('references', []) for ref in references: search_request_parent_span_ids.add(ref.get('spanID', '')) assert any( [ search_span in process_single_data_span_ids for search_span in search_request_parent_span_ids ] )
import time from jina import Flow from tests.integration.instrumentation import ExecutorTestWithTracing, get_traces def test_span_order(jaeger_port, otlp_collector, otlp_receiver_port): f = Flow( tracing=True, traces_exporter_host='http://localhost', traces_exporter_port=otlp_receiver_port, ).add(uses=ExecutorTestWithTracing) with f: from jina import DocumentArray f.post(f'/search', DocumentArray.empty(), continue_on_error=True) # give some time for the tracing and metrics exporters to finish exporting. # the client is slow to export the data time.sleep(8) traces = get_traces(jaeger_port, 'executor0/rep-0') process_single_data_span_ids = set() search_request_parent_span_ids = set() for trace in traces: for span in trace['spans']: if ( span['operationName'] == '/jina.JinaSingleDataRequestRPC/process_single_data' ): process_single_data_span_ids.add(span['spanID']) if span['operationName'] == '/search': references = span.get('references', []) for ref in references: search_request_parent_span_ids.add(ref.get('spanID', '')) assert any( [ search_span in process_single_data_span_ids for search_span in search_request_parent_span_ids ] )
from torch import nn, Tensor __all__ = [ "Wav2Letter", ] class Wav2Letter(nn.Module): r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech Recognition System* [:footcite:`collobert2016wav2letter`]. :math:`\text{padding} = \frac{\text{ceil}(\text{kernel} - \text{stride})}{2}` Args: num_classes (int, optional): Number of classes to be classified. (Default: ``40``) input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum`` or ``mfcc`` (Default: ``waveform``). num_features (int, optional): Number of input features that the network will receive (Default: ``1``). """ def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None: super(Wav2Letter, self).__init__() acoustic_num_features = 250 if input_type == "waveform" else num_features acoustic_model = nn.Sequential( nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), ) if input_type == "waveform": waveform_model = nn.Sequential( nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45), nn.ReLU(inplace=True), ) self.acoustic_model = nn.Sequential(waveform_model, acoustic_model) if input_type in ["power_spectrum", "mfcc"]: self.acoustic_model = acoustic_model def forward(self, x: Tensor) -> Tensor: r""" Args: x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length). Returns: Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length). """ x = self.acoustic_model(x) x = nn.functional.log_softmax(x, dim=1) return x
from torch import Tensor from torch import nn __all__ = [ "Wav2Letter", ] class Wav2Letter(nn.Module): r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech Recognition System* [:footcite:`collobert2016wav2letter`]. :math:`\text{padding} = \frac{\text{ceil}(\text{kernel} - \text{stride})}{2}` Args: num_classes (int, optional): Number of classes to be classified. (Default: ``40``) input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum`` or ``mfcc`` (Default: ``waveform``). num_features (int, optional): Number of input features that the network will receive (Default: ``1``). """ def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None: super(Wav2Letter, self).__init__() acoustic_num_features = 250 if input_type == "waveform" else num_features acoustic_model = nn.Sequential( nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), ) if input_type == "waveform": waveform_model = nn.Sequential( nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45), nn.ReLU(inplace=True), ) self.acoustic_model = nn.Sequential(waveform_model, acoustic_model) if input_type in ["power_spectrum", "mfcc"]: self.acoustic_model = acoustic_model def forward(self, x: Tensor) -> Tensor: r""" Args: x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length). Returns: Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length). """ x = self.acoustic_model(x) x = nn.functional.log_softmax(x, dim=1) return x
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.25.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.25.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
import types from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, celu, elu, selu, softplus, softsign, squareplus, soft_shrink, sparse_plus, silu, gelu, glu, tanh, tanh_shrink, sigmoid, exponential, hard_sigmoid, hard_silu, hard_tanh, hard_shrink, linear, mish, log_softmax, log_sigmoid, sparsemax, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
import types from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, celu, elu, selu, softplus, softsign, squareplus, soft_shrink, sparse_plus, silu, gelu, glu, tanh, tanh_shrink, sigmoid, exponential, hard_sigmoid, hard_silu, hard_tanh, hard_shrink, linear, mish, log_softmax, log_sigmoid, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model from backend.data.execution import ( GraphExecution, NodeExecutionResult, RedisExecutionEventBus, create_graph_execution, get_graph_execution, get_incomplete_node_executions, get_latest_node_execution, get_node_execution_results, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, update_node_execution_status, update_node_execution_status_batch, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_all_batches_by_type, get_user_notification_batch, get_user_notification_oldest_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_user_email_by_id, get_user_email_verification, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits( user_id: str, cost: int, metadata: UsageTransactionMetadata ) -> int: return await _user_credit_model.spend_credits(user_id, cost, metadata) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.execution_event_bus = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update( self, execution_result: GraphExecution | NodeExecutionResult ): self.execution_event_bus.publish(execution_result) # Executions get_graph_execution = exposed_run_and_wait(get_graph_execution) create_graph_execution = exposed_run_and_wait(create_graph_execution) get_node_execution_results = exposed_run_and_wait(get_node_execution_results) get_incomplete_node_executions = exposed_run_and_wait( get_incomplete_node_executions ) get_latest_node_execution = exposed_run_and_wait(get_latest_node_execution) update_node_execution_status = exposed_run_and_wait(update_node_execution_status) update_node_execution_status_batch = exposed_run_and_wait( update_node_execution_status_batch ) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) # User Comms - async get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_email_verification = exposed_run_and_wait(get_user_email_verification) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) # Notifications - async create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_all_batches_by_type = exposed_run_and_wait(get_all_batches_by_type) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch) get_user_notification_oldest_message_in_batch = exposed_run_and_wait( get_user_notification_oldest_message_in_batch )
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model from backend.data.execution import ( GraphExecutionMeta, NodeExecutionResult, RedisExecutionEventBus, create_graph_execution, get_incomplete_node_executions, get_latest_node_execution, get_node_execution_results, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, update_node_execution_status, update_node_execution_status_batch, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_all_batches_by_type, get_user_notification_batch, get_user_notification_oldest_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_user_email_by_id, get_user_email_verification, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits( user_id: str, cost: int, metadata: UsageTransactionMetadata ) -> int: return await _user_credit_model.spend_credits(user_id, cost, metadata) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.execution_event_bus = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update( self, execution_result: GraphExecutionMeta | NodeExecutionResult ): self.execution_event_bus.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_node_execution_results = exposed_run_and_wait(get_node_execution_results) get_incomplete_node_executions = exposed_run_and_wait( get_incomplete_node_executions ) get_latest_node_execution = exposed_run_and_wait(get_latest_node_execution) update_node_execution_status = exposed_run_and_wait(update_node_execution_status) update_node_execution_status_batch = exposed_run_and_wait( update_node_execution_status_batch ) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) # User Comms - async get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_email_verification = exposed_run_and_wait(get_user_email_verification) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) # Notifications - async create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_all_batches_by_type = exposed_run_and_wait(get_all_batches_by_type) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch) get_user_notification_oldest_message_in_batch = exposed_run_and_wait( get_user_notification_oldest_message_in_batch )
"""Various utilities to help with development.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import platform import warnings from collections.abc import Sequence import numpy as np from ..exceptions import DataConversionWarning from . import _joblib, metadata_routing from ._bunch import Bunch from ._chunking import gen_batches, gen_even_slices from ._estimator_html_repr import estimator_html_repr # Make _safe_indexing importable from here for backward compat as this particular # helper is considered semi-private and typically very useful for third-party # libraries that want to comply with scikit-learn's estimator API. In particular, # _safe_indexing was included in our public API documentation despite the leading # `_` in its name. from ._indexing import ( _safe_indexing, # noqa resample, shuffle, ) from ._mask import safe_mask from ._tags import ( ClassifierTags, InputTags, RegressorTags, Tags, TargetTags, TransformerTags, get_tags, ) from .class_weight import compute_class_weight, compute_sample_weight from .deprecation import deprecated from .discovery import all_estimators from .extmath import safe_sqr from .murmurhash import murmurhash3_32 from .validation import ( as_float_array, assert_all_finite, check_array, check_consistent_length, check_random_state, check_scalar, check_symmetric, check_X_y, column_or_1d, indexable, ) # TODO(1.7): remove parallel_backend and register_parallel_backend msg = "deprecated in 1.5 to be removed in 1.7. Use joblib.{} instead." register_parallel_backend = deprecated(msg)(_joblib.register_parallel_backend) # if a class, deprecated will change the object in _joblib module so we need to subclass @deprecated(msg) class parallel_backend(_joblib.parallel_backend): pass __all__ = [ "murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "check_consistent_length", "check_X_y", "check_scalar", "indexable", "check_symmetric", "deprecated", "parallel_backend", "register_parallel_backend", "resample", "shuffle", "all_estimators", "DataConversionWarning", "estimator_html_repr", "Bunch", "metadata_routing", "safe_sqr", "safe_mask", "gen_batches", "gen_even_slices", "Tags", "InputTags", "TargetTags", "ClassifierTags", "RegressorTags", "TransformerTags", "get_tags", ] # TODO(1.7): remove def __getattr__(name): if name == "IS_PYPY": warnings.warn( "IS_PYPY is deprecated and will be removed in 1.7.", FutureWarning, ) return platform.python_implementation() == "PyPy" raise AttributeError(f"module {__name__} has no attribute {name}") # TODO(1.7): remove tosequence @deprecated("tosequence was deprecated in 1.5 and will be removed in 1.7") def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible. Parameters ---------- x : iterable The iterable to be converted. Returns ------- x : Sequence If `x` is a NumPy array, it returns it as a `ndarray`. If `x` is a `Sequence`, `x` is returned as-is. If `x` is from any other type, `x` is returned casted as a list. """ if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x)
"""Various utilities to help with development.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import platform import warnings from collections.abc import Sequence import numpy as np from ..exceptions import DataConversionWarning from . import _joblib, metadata_routing from ._bunch import Bunch from ._chunking import gen_batches, gen_even_slices from ._estimator_html_repr import estimator_html_repr # Make _safe_indexing importable from here for backward compat as this particular # helper is considered semi-private and typically very useful for third-party # libraries that want to comply with scikit-learn's estimator API. In particular, # _safe_indexing was included in our public API documentation despite the leading # `_` in its name. from ._indexing import ( _safe_indexing, # noqa resample, shuffle, ) from ._mask import safe_mask from ._tags import ( ClassifierTags, InputTags, RegressorTags, Tags, TargetTags, TransformerTags, default_tags, get_tags, ) from .class_weight import compute_class_weight, compute_sample_weight from .deprecation import deprecated from .discovery import all_estimators from .extmath import safe_sqr from .murmurhash import murmurhash3_32 from .validation import ( as_float_array, assert_all_finite, check_array, check_consistent_length, check_random_state, check_scalar, check_symmetric, check_X_y, column_or_1d, indexable, ) # TODO(1.7): remove parallel_backend and register_parallel_backend msg = "deprecated in 1.5 to be removed in 1.7. Use joblib.{} instead." register_parallel_backend = deprecated(msg)(_joblib.register_parallel_backend) # if a class, deprecated will change the object in _joblib module so we need to subclass @deprecated(msg) class parallel_backend(_joblib.parallel_backend): pass __all__ = [ "murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "check_consistent_length", "check_X_y", "check_scalar", "indexable", "check_symmetric", "deprecated", "parallel_backend", "register_parallel_backend", "resample", "shuffle", "all_estimators", "DataConversionWarning", "estimator_html_repr", "Bunch", "metadata_routing", "safe_sqr", "safe_mask", "gen_batches", "gen_even_slices", "Tags", "InputTags", "TargetTags", "ClassifierTags", "RegressorTags", "TransformerTags", "default_tags", "get_tags", ] # TODO(1.7): remove def __getattr__(name): if name == "IS_PYPY": warnings.warn( "IS_PYPY is deprecated and will be removed in 1.7.", FutureWarning, ) return platform.python_implementation() == "PyPy" raise AttributeError(f"module {__name__} has no attribute {name}") # TODO(1.7): remove tosequence @deprecated("tosequence was deprecated in 1.5 and will be removed in 1.7") def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible. Parameters ---------- x : iterable The iterable to be converted. Returns ------- x : Sequence If `x` is a NumPy array, it returns it as a `ndarray`. If `x` is a `Sequence`, `x` is returned as-is. If `x` is from any other type, `x` is returned casted as a list. """ if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x)
from langchain_core.example_selectors.semantic_similarity import ( MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, sorted_values, ) __all__ = [ "MaxMarginalRelevanceExampleSelector", "SemanticSimilarityExampleSelector", "sorted_values", ]
from langchain_core.example_selectors.semantic_similarity import ( MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, sorted_values, ) __all__ = [ "sorted_values", "SemanticSimilarityExampleSelector", "MaxMarginalRelevanceExampleSelector", ]
import sys import traceback from importlib.machinery import SourceFileLoader if __name__ == "__main__": files = sys.argv[1:] has_failure = False for file in files: try: SourceFileLoader("x", file).load_module() except Exception: has_failure = True traceback.print_exc() sys.exit(1 if has_failure else 0)
import sys import traceback from importlib.machinery import SourceFileLoader if __name__ == "__main__": files = sys.argv[1:] has_failure = False for file in files: try: SourceFileLoader("x", file).load_module() except Exception: has_faillure = True traceback.print_exc() sys.exit(1 if has_failure else 0)
# Copyright (c) OpenMMLab. All rights reserved. """This file holding some environment constant for sharing by other files.""" import os.path as osp import subprocess import sys from collections import OrderedDict, defaultdict from distutils import errors import cv2 import numpy as np import torch import mmengine from .parrots_wrapper import TORCH_VERSION, get_build_config, is_rocm_pytorch def _get_cuda_home(): if TORCH_VERSION == 'parrots': from parrots.utils.build_extension import CUDA_HOME else: if is_rocm_pytorch(): from torch.utils.cpp_extension import ROCM_HOME CUDA_HOME = ROCM_HOME else: from torch.utils.cpp_extension import CUDA_HOME return CUDA_HOME def collect_env(): """Collect the information of the running environments. Returns: dict: The environment information. The following fields are contained. - sys.platform: The variable of ``sys.platform``. - Python: Python version. - CUDA available: Bool, indicating if CUDA is available. - GPU devices: Device type of each GPU. - CUDA_HOME (optional): The env var ``CUDA_HOME``. - NVCC (optional): NVCC version. - GCC: GCC version, "n/a" if GCC is not installed. - MSVC: Microsoft Virtual C++ Compiler version, Windows only. - PyTorch: PyTorch version. - PyTorch compiling details: The output of \ ``torch.__config__.show()``. - TorchVision (optional): TorchVision version. - OpenCV (optional): OpenCV version. - MMENGINE: MMENGINE version. """ env_info = OrderedDict() env_info['sys.platform'] = sys.platform env_info['Python'] = sys.version.replace('\n', '') cuda_available = torch.cuda.is_available() env_info['CUDA available'] = cuda_available env_info['numpy_random_seed'] = np.random.get_state()[1][0] if cuda_available: devices = defaultdict(list) for k in range(torch.cuda.device_count()): devices[torch.cuda.get_device_name(k)].append(str(k)) for name, device_ids in devices.items(): env_info['GPU ' + ','.join(device_ids)] = name CUDA_HOME = _get_cuda_home() env_info['CUDA_HOME'] = CUDA_HOME if CUDA_HOME is not None and osp.isdir(CUDA_HOME): try: nvcc = osp.join(CUDA_HOME, 'bin/nvcc') nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True) nvcc = nvcc.decode('utf-8').strip() release = nvcc.rfind('Cuda compilation tools') build = nvcc.rfind('Build ') nvcc = nvcc[release:build].strip() except subprocess.SubprocessError: nvcc = 'Not Available' env_info['NVCC'] = nvcc try: # Check C++ Compiler. # For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...', # indicating the compiler used, we use this to get the compiler name import sysconfig cc = sysconfig.get_config_var('CC') if cc: cc = osp.basename(cc.split()[0]) cc_info = subprocess.check_output(f'{cc} --version', shell=True) env_info['GCC'] = cc_info.decode('utf-8').partition( '\n')[0].strip() else: # on Windows, cl.exe is not in PATH. We need to find the path. # distutils.ccompiler.new_compiler() returns a msvccompiler # object and after initialization, path to cl.exe is found. import locale import os from distutils.ccompiler import new_compiler ccompiler = new_compiler() ccompiler.initialize() cc = subprocess.check_output( f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True) encoding = os.device_encoding( sys.stdout.fileno()) or locale.getpreferredencoding() env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip() env_info['GCC'] = 'n/a' except (subprocess.CalledProcessError, errors.DistutilsPlatformError): env_info['GCC'] = 'n/a' env_info['PyTorch'] = torch.__version__ env_info['PyTorch compiling details'] = get_build_config() try: import torchvision env_info['TorchVision'] = torchvision.__version__ except ModuleNotFoundError: pass env_info['OpenCV'] = cv2.__version__ env_info['MMEngine'] = mmengine.__version__ return env_info
# Copyright (c) OpenMMLab. All rights reserved. """This file holding some environment constant for sharing by other files.""" import os.path as osp import subprocess import sys from collections import OrderedDict, defaultdict import cv2 import numpy as np import torch import mmengine from .parrots_wrapper import TORCH_VERSION, get_build_config, is_rocm_pytorch def _get_cuda_home(): if TORCH_VERSION == 'parrots': from parrots.utils.build_extension import CUDA_HOME else: if is_rocm_pytorch(): from torch.utils.cpp_extension import ROCM_HOME CUDA_HOME = ROCM_HOME else: from torch.utils.cpp_extension import CUDA_HOME return CUDA_HOME def collect_env(): """Collect the information of the running environments. Returns: dict: The environment information. The following fields are contained. - sys.platform: The variable of ``sys.platform``. - Python: Python version. - CUDA available: Bool, indicating if CUDA is available. - GPU devices: Device type of each GPU. - CUDA_HOME (optional): The env var ``CUDA_HOME``. - NVCC (optional): NVCC version. - GCC: GCC version, "n/a" if GCC is not installed. - MSVC: Microsoft Virtual C++ Compiler version, Windows only. - PyTorch: PyTorch version. - PyTorch compiling details: The output of \ ``torch.__config__.show()``. - TorchVision (optional): TorchVision version. - OpenCV (optional): OpenCV version. - MMENGINE: MMENGINE version. """ env_info = OrderedDict() env_info['sys.platform'] = sys.platform env_info['Python'] = sys.version.replace('\n', '') cuda_available = torch.cuda.is_available() env_info['CUDA available'] = cuda_available env_info['numpy_random_seed'] = np.random.get_state()[1][0] if cuda_available: devices = defaultdict(list) for k in range(torch.cuda.device_count()): devices[torch.cuda.get_device_name(k)].append(str(k)) for name, device_ids in devices.items(): env_info['GPU ' + ','.join(device_ids)] = name CUDA_HOME = _get_cuda_home() env_info['CUDA_HOME'] = CUDA_HOME if CUDA_HOME is not None and osp.isdir(CUDA_HOME): try: nvcc = osp.join(CUDA_HOME, 'bin/nvcc') nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True) nvcc = nvcc.decode('utf-8').strip() release = nvcc.rfind('Cuda compilation tools') build = nvcc.rfind('Build ') nvcc = nvcc[release:build].strip() except subprocess.SubprocessError: nvcc = 'Not Available' env_info['NVCC'] = nvcc try: # Check C++ Compiler. # For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...', # indicating the compiler used, we use this to get the compiler name import sysconfig cc = sysconfig.get_config_var('CC') if cc: cc = osp.basename(cc.split()[0]) cc_info = subprocess.check_output(f'{cc} --version', shell=True) env_info['GCC'] = cc_info.decode('utf-8').partition( '\n')[0].strip() else: # on Windows, cl.exe is not in PATH. We need to find the path. # distutils.ccompiler.new_compiler() returns a msvccompiler # object and after initialization, path to cl.exe is found. import locale import os from distutils.ccompiler import new_compiler ccompiler = new_compiler() ccompiler.initialize() cc = subprocess.check_output( f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True) encoding = os.device_encoding( sys.stdout.fileno()) or locale.getpreferredencoding() env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip() env_info['GCC'] = 'n/a' except subprocess.CalledProcessError: env_info['GCC'] = 'n/a' env_info['PyTorch'] = torch.__version__ env_info['PyTorch compiling details'] = get_build_config() try: import torchvision env_info['TorchVision'] = torchvision.__version__ except ModuleNotFoundError: pass env_info['OpenCV'] = cv2.__version__ env_info['MMEngine'] = mmengine.__version__ return env_info
# Copyright (c) OpenMMLab. All rights reserved. from .vis_backend import (BaseVisBackend, ClearMLVisBackend, DVCLiveVisBackend, LocalVisBackend, MLflowVisBackend, NeptuneVisBackend, TensorboardVisBackend, WandbVisBackend) from .visualizer import Visualizer __all__ = [ 'Visualizer', 'BaseVisBackend', 'LocalVisBackend', 'WandbVisBackend', 'TensorboardVisBackend', 'MLflowVisBackend', 'ClearMLVisBackend', 'NeptuneVisBackend', 'DVCLiveVisBackend' ]
# Copyright (c) OpenMMLab. All rights reserved. from .vis_backend import (BaseVisBackend, ClearMLVisBackend, LocalVisBackend, MLflowVisBackend, NeptuneVisBackend, TensorboardVisBackend, WandbVisBackend) from .visualizer import Visualizer __all__ = [ 'Visualizer', 'BaseVisBackend', 'LocalVisBackend', 'WandbVisBackend', 'TensorboardVisBackend', 'MLflowVisBackend', 'ClearMLVisBackend', 'NeptuneVisBackend' ]
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] # model settings model = dict( type='CornerNet', backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CornerHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=1, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_embedding=dict( type='AssociativeEmbeddingLoss', pull_weight=0.10, push_weight=0.10), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, **img_norm_cfg), dict(type='Resize', img_scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict( type='MultiScaleFlipAug', scale_factor=1.0, flip=True, transforms=[ dict(type='Resize'), dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], **img_norm_cfg), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict( type='Collect', keys=['img'], meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'img_norm_cfg', 'border')), ]) ] data = dict( samples_per_gpu=5, workers_per_gpu=3, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[180]) runner = dict(type='EpochBasedRunner', max_epochs=210) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (10 GPUs) x (5 samples per GPU) auto_scale_lr = dict(base_batch_size=50)
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] # model settings model = dict( type='CornerNet', backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CornerHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=1, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_embedding=dict( type='AssociativeEmbeddingLoss', pull_weight=0.10, push_weight=0.10), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, **img_norm_cfg), dict(type='Resize', img_scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict( type='MultiScaleFlipAug', scale_factor=1.0, flip=True, transforms=[ dict(type='Resize'), dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], **img_norm_cfg), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict( type='Collect', keys=['img'], meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'img_norm_cfg', 'border')), ]) ] data = dict( samples_per_gpu=5, workers_per_gpu=3, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[180]) runner = dict(type='EpochBasedRunner', max_epochs=210)
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseTripletLoss(model), corpus_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseTripletLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseTripletLoss(model), lambda_corpus=3e-5, lambda_query=5e-5) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseTripletLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True))) fp16 = dict(loss_scale=512.)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True))) fp16 = dict(loss_scale=512.)
"""Weaviate reader.""" from typing import Any, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class WeaviateReader(BaseReader): """ Weaviate reader. Retrieves documents from Weaviate through vector lookup. Allows option to concatenate retrieved documents into one Document, or to return separate Document objects per document. Args: host (str): host. auth_client_secret (Optional[weaviate.auth.AuthCredentials]): auth_client_secret. """ def __init__( self, host: str, auth_client_secret: Optional[Any] = None, ) -> None: """Initialize with parameters.""" try: import weaviate # noqa from weaviate import Client from weaviate.auth import AuthCredentials # noqa except ImportError: raise ImportError( "`weaviate` package not found, please run `pip install weaviate-client`" ) self.client: Client = Client(host, auth_client_secret=auth_client_secret) def load_data( self, class_name: Optional[str] = None, properties: Optional[List[str]] = None, graphql_query: Optional[str] = None, separate_documents: Optional[bool] = True, ) -> List[Document]: """ Load data from Weaviate. If `graphql_query` is not found in load_kwargs, we assume that `class_name` and `properties` are provided. Args: class_name (Optional[str]): class_name to retrieve documents from. properties (Optional[List[str]]): properties to retrieve from documents. graphql_query (Optional[str]): Raw GraphQL Query. We assume that the query is a Get query. separate_documents (Optional[bool]): Whether to return separate documents. Defaults to True. Returns: List[Document]: A list of documents. """ if class_name is not None and properties is not None: props_txt = "\n".join(properties) graphql_query = f""" {{ Get {{ {class_name} {{ {props_txt} }} }} }} """ elif graphql_query is not None: pass else: raise ValueError( "Either `class_name` and `properties` must be specified, " "or `graphql_query` must be specified." ) response = self.client.query.raw(graphql_query) if "errors" in response: raise ValueError("Invalid query, got errors: {}".format(response["errors"])) data_response = response["data"] if "Get" not in data_response: raise ValueError("Invalid query response, must be a Get query.") if class_name is None: # infer class_name if only graphql_query was provided class_name = next(iter(data_response["Get"].keys())) entries = data_response["Get"][class_name] documents = [] for entry in entries: embedding: Optional[List[float]] = None # for each entry, join properties into <property>:<value> # separated by newlines text_list = [] for k, v in entry.items(): if k == "_additional": if "vector" in v: embedding = v["vector"] continue text_list.append(f"{k}: {v}") text = "\n".join(text_list) documents.append(Document(text=text, embedding=embedding)) if not separate_documents: # join all documents into one text_list = [doc.get_content() for doc in documents] text = "\n\n".join(text_list) documents = [Document(text=text)] return documents
"""Weaviate reader.""" from typing import Any, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class WeaviateReader(BaseReader): """Weaviate reader. Retrieves documents from Weaviate through vector lookup. Allows option to concatenate retrieved documents into one Document, or to return separate Document objects per document. Args: host (str): host. auth_client_secret (Optional[weaviate.auth.AuthCredentials]): auth_client_secret. """ def __init__( self, host: str, auth_client_secret: Optional[Any] = None, ) -> None: """Initialize with parameters.""" try: import weaviate # noqa from weaviate import Client from weaviate.auth import AuthCredentials # noqa except ImportError: raise ImportError( "`weaviate` package not found, please run `pip install weaviate-client`" ) self.client: Client = Client(host, auth_client_secret=auth_client_secret) def load_data( self, class_name: Optional[str] = None, properties: Optional[List[str]] = None, graphql_query: Optional[str] = None, separate_documents: Optional[bool] = True, ) -> List[Document]: """Load data from Weaviate. If `graphql_query` is not found in load_kwargs, we assume that `class_name` and `properties` are provided. Args: class_name (Optional[str]): class_name to retrieve documents from. properties (Optional[List[str]]): properties to retrieve from documents. graphql_query (Optional[str]): Raw GraphQL Query. We assume that the query is a Get query. separate_documents (Optional[bool]): Whether to return separate documents. Defaults to True. Returns: List[Document]: A list of documents. """ if class_name is not None and properties is not None: props_txt = "\n".join(properties) graphql_query = f""" {{ Get {{ {class_name} {{ {props_txt} }} }} }} """ elif graphql_query is not None: pass else: raise ValueError( "Either `class_name` and `properties` must be specified, " "or `graphql_query` must be specified." ) response = self.client.query.raw(graphql_query) if "errors" in response: raise ValueError("Invalid query, got errors: {}".format(response["errors"])) data_response = response["data"] if "Get" not in data_response: raise ValueError("Invalid query response, must be a Get query.") if class_name is None: # infer class_name if only graphql_query was provided class_name = next(iter(data_response["Get"].keys())) entries = data_response["Get"][class_name] documents = [] for entry in entries: embedding: Optional[List[float]] = None # for each entry, join properties into <property>:<value> # separated by newlines text_list = [] for k, v in entry.items(): if k == "_additional": if "vector" in v: embedding = v["vector"] continue text_list.append(f"{k}: {v}") text = "\n".join(text_list) documents.append(Document(text=text, embedding=embedding)) if not separate_documents: # join all documents into one text_list = [doc.get_content() for doc in documents] text = "\n\n".join(text_list) documents = [Document(text=text)] return documents
from typing import Sequence, cast import prisma.enums import prisma.types AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "Nodes": {"include": AGENT_NODE_INCLUDE} } EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": True, "Output": True, "Node": True, "GraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { "include": { "Input": True, "Output": True, "Node": True, "GraphExecution": True, }, "order_by": [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ], "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } def graph_execution_include( include_block_ids: Sequence[str], ) -> prisma.types.AgentGraphExecutionInclude: return { "NodeExecutions": { **cast( prisma.types.FindManyAgentNodeExecutionArgsFromAgentGraphExecution, GRAPH_EXECUTION_INCLUDE_WITH_NODES["NodeExecutions"], # type: ignore ), "where": { "Node": { "is": {"AgentBlock": {"is": {"id": {"in": include_block_ids}}}} }, "NOT": [ {"executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE} ], }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": {"include": AGENT_NODE_INCLUDE} } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "AgentGraph": { "include": { **AGENT_GRAPH_INCLUDE, "Executions": {"where": {"userId": user_id}}, } }, "Creator": True, }
from typing import cast import prisma.enums import prisma.types from backend.blocks.io import IO_BLOCK_IDs AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "Nodes": {"include": AGENT_NODE_INCLUDE} } EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": True, "Output": True, "Node": True, "GraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { "include": { "Input": True, "Output": True, "Node": True, "GraphExecution": True, }, "order_by": [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ], "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } GRAPH_EXECUTION_INCLUDE: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { **cast( prisma.types.FindManyAgentNodeExecutionArgsFromAgentGraphExecution, GRAPH_EXECUTION_INCLUDE_WITH_NODES["NodeExecutions"], ), "where": { "Node": {"is": {"AgentBlock": {"is": {"id": {"in": IO_BLOCK_IDs}}}}}, "NOT": [{"executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE}], }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": {"include": AGENT_NODE_INCLUDE} } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "AgentGraph": { "include": { **AGENT_GRAPH_INCLUDE, "Executions": {"where": {"userId": user_id}}, } }, "Creator": True, }
from typing import Any, List, Optional, Tuple import numpy as np import pytest from docarray import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.typing import NdArray from docarray.utils._internal.pydantic import is_pydantic_v2 def test_base_document_init(): doc = BaseDoc() assert doc.id is not None def test_update(): class MyDocument(BaseDoc): content: str title: Optional[str] = None tags_: List doc1 = MyDocument( content='Core content of the document', title='Title', tags_=['python', 'AI'] ) doc2 = MyDocument(content='Core content updated', tags_=['docarray']) doc1.update(doc2) assert doc1.content == 'Core content updated' assert doc1.title == 'Title' assert doc1.tags_ == ['python', 'AI', 'docarray'] def test_equal_nested_docs(): import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: DocList[SimpleDoc] nested_docs = NestedDoc( docs=DocList[SimpleDoc]([SimpleDoc(simple_tens=np.ones(10)) for j in range(2)]), ) assert nested_docs == nested_docs @pytest.fixture def nested_docs(): class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: DocList[SimpleDoc] hello: str = 'world' nested_docs = NestedDoc( docs=DocList[SimpleDoc]([SimpleDoc(simple_tens=np.ones(10)) for j in range(2)]), ) return nested_docs @pytest.fixture def nested_docs_docvec(): class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: DocVec[SimpleDoc] hello: str = 'world' nested_docs = NestedDoc( docs=DocList[SimpleDoc]([SimpleDoc(simple_tens=np.ones(10)) for j in range(2)]), ) return nested_docs def test_nested_to_dict(nested_docs): d = nested_docs.dict() assert (d['docs'][0]['simple_tens'] == np.ones(10)).all() assert isinstance(d['docs'], list) assert not isinstance(d['docs'], DocList) def test_nested_docvec_to_dict(nested_docs_docvec): d = nested_docs_docvec.dict() assert (d['docs'][0]['simple_tens'] == np.ones(10)).all() def test_nested_to_dict_exclude(nested_docs): d = nested_docs.dict(exclude={'docs'}) assert 'docs' not in d.keys() def test_nested_to_dict_exclude_set(nested_docs): d = nested_docs.dict(exclude={'hello'}) assert 'hello' not in d.keys() def test_nested_to_dict_exclude_dict(nested_docs): d = nested_docs.dict(exclude={'hello': True}) assert 'hello' not in d.keys() def test_nested_to_json(nested_docs): d = nested_docs.json() nested_docs.__class__.parse_raw(d) @pytest.fixture def nested_none_docs(): class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: Optional[DocList[SimpleDoc]] = None hello: str = 'world' nested_docs = NestedDoc() return nested_docs def test_nested_none_to_dict(nested_none_docs): d = nested_none_docs.dict() assert d == {'docs': None, 'hello': 'world', 'id': nested_none_docs.id} def test_nested_none_to_json(nested_none_docs): d = nested_none_docs.json() d = nested_none_docs.__class__.parse_raw(d) assert d.dict() == {'docs': None, 'hello': 'world', 'id': nested_none_docs.id} def test_get_get_field_inner_type(): class MyDoc(BaseDoc): tuple_: Tuple field_type = MyDoc._get_field_inner_type("tuple_") assert field_type == Any
from typing import Any, List, Optional, Tuple import numpy as np import pytest from docarray import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.typing import NdArray from docarray.utils._internal.pydantic import is_pydantic_v2 def test_base_document_init(): doc = BaseDoc() assert doc.id is not None def test_update(): class MyDocument(BaseDoc): content: str title: Optional[str] = None tags_: List doc1 = MyDocument( content='Core content of the document', title='Title', tags_=['python', 'AI'] ) doc2 = MyDocument(content='Core content updated', tags_=['docarray']) doc1.update(doc2) assert doc1.content == 'Core content updated' assert doc1.title == 'Title' assert doc1.tags_ == ['python', 'AI', 'docarray'] def test_equal_nested_docs(): import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: DocList[SimpleDoc] nested_docs = NestedDoc( docs=DocList[SimpleDoc]([SimpleDoc(simple_tens=np.ones(10)) for j in range(2)]), ) assert nested_docs == nested_docs @pytest.fixture def nested_docs(): class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: DocList[SimpleDoc] hello: str = 'world' nested_docs = NestedDoc( docs=DocList[SimpleDoc]([SimpleDoc(simple_tens=np.ones(10)) for j in range(2)]), ) return nested_docs @pytest.fixture def nested_docs_docvec(): class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: DocVec[SimpleDoc] hello: str = 'world' nested_docs = NestedDoc( docs=DocList[SimpleDoc]([SimpleDoc(simple_tens=np.ones(10)) for j in range(2)]), ) return nested_docs def test_nested_to_dict(nested_docs): d = nested_docs.dict() assert (d['docs'][0]['simple_tens'] == np.ones(10)).all() assert isinstance(d['docs'], list) assert not isinstance(d['docs'], DocList) def test_nested_docvec_to_dict(nested_docs_docvec): d = nested_docs_docvec.dict() assert (d['docs'][0]['simple_tens'] == np.ones(10)).all() def test_nested_to_dict_exclude(nested_docs): d = nested_docs.dict(exclude={'docs'}) assert 'docs' not in d.keys() def test_nested_to_dict_exclude_set(nested_docs): d = nested_docs.dict(exclude={'hello'}) assert 'hello' not in d.keys() def test_nested_to_dict_exclude_dict(nested_docs): d = nested_docs.dict(exclude={'hello': True}) assert 'hello' not in d.keys() @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_nested_to_json(nested_docs): d = nested_docs.json() nested_docs.__class__.parse_raw(d) @pytest.fixture def nested_none_docs(): class SimpleDoc(BaseDoc): simple_tens: NdArray[10] class NestedDoc(BaseDoc): docs: Optional[DocList[SimpleDoc]] = None hello: str = 'world' nested_docs = NestedDoc() return nested_docs def test_nested_none_to_dict(nested_none_docs): d = nested_none_docs.dict() assert d == {'docs': None, 'hello': 'world', 'id': nested_none_docs.id} def test_nested_none_to_json(nested_none_docs): d = nested_none_docs.json() d = nested_none_docs.__class__.parse_raw(d) assert d.dict() == {'docs': None, 'hello': 'world', 'id': nested_none_docs.id} def test_get_get_field_inner_type(): class MyDoc(BaseDoc): tuple_: Tuple field_type = MyDoc._get_field_inner_type("tuple_") assert field_type == Any
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = './solov2_r50_fpn_ms-3x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict(checkpoint='torchvision://resnet101')))
_base_ = 'solov2_r50_fpn_mstrain_3x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict(checkpoint='torchvision://resnet101')))
# ReAct agent formatter import logging from abc import abstractmethod from typing import List, Optional, Sequence from llama_index.core.agent.react.prompts import ( CONTEXT_REACT_CHAT_SYSTEM_HEADER, REACT_CHAT_SYSTEM_HEADER, ) from llama_index.core.agent.react.types import ( BaseReasoningStep, ObservationReasoningStep, ) from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.bridge.pydantic import BaseModel, ConfigDict, Field from llama_index.core.tools import BaseTool logger = logging.getLogger(__name__) def get_react_tool_descriptions(tools: Sequence[BaseTool]) -> List[str]: """Tool.""" tool_descs = [] for tool in tools: tool_desc = ( f"> Tool Name: {tool.metadata.name}\n" f"Tool Description: {tool.metadata.description}\n" f"Tool Args: {tool.metadata.fn_schema_str}\n" ) tool_descs.append(tool_desc) return tool_descs # TODO: come up with better name class BaseAgentChatFormatter(BaseModel): """Base chat formatter.""" model_config = ConfigDict(arbitrary_types_allowed=True) @abstractmethod def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" class ReActChatFormatter(BaseAgentChatFormatter): """ReAct chat formatter.""" system_header: str = REACT_CHAT_SYSTEM_HEADER # default context: str = "" # not needed w/ default observation_role: MessageRole = Field( default=MessageRole.USER, description=( "Message role of tool outputs. If the LLM you use supports function/tool " "calling, you may set it to `MessageRole.TOOL` to avoid the tool outputs " "being misinterpreted as new user messages." ), ) def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" current_reasoning = current_reasoning or [] format_args = { "tool_desc": "\n".join(get_react_tool_descriptions(tools)), "tool_names": ", ".join([tool.metadata.get_name() for tool in tools]), } if self.context: format_args["context"] = self.context fmt_sys_header = self.system_header.format(**format_args) # format reasoning history as alternating user and assistant messages # where the assistant messages are thoughts and actions and the tool # messages are observations reasoning_history = [] for reasoning_step in current_reasoning: if isinstance(reasoning_step, ObservationReasoningStep): message = ChatMessage( role=self.observation_role, content=reasoning_step.get_content(), ) else: message = ChatMessage( role=MessageRole.ASSISTANT, content=reasoning_step.get_content(), ) reasoning_history.append(message) return [ ChatMessage(role=MessageRole.SYSTEM, content=fmt_sys_header), *chat_history, *reasoning_history, ] @classmethod def from_defaults( cls, system_header: Optional[str] = None, context: Optional[str] = None, observation_role: MessageRole = MessageRole.USER, ) -> "ReActChatFormatter": """Create ReActChatFormatter from defaults.""" if not system_header: system_header = ( REACT_CHAT_SYSTEM_HEADER if not context else CONTEXT_REACT_CHAT_SYSTEM_HEADER ) return ReActChatFormatter( system_header=system_header, context=context or "", observation_role=observation_role, ) @classmethod def from_context(cls, context: str) -> "ReActChatFormatter": """ Create ReActChatFormatter from context. NOTE: deprecated """ logger.warning( "ReActChatFormatter.from_context is deprecated, please use `from_defaults` instead." ) return ReActChatFormatter.from_defaults( system_header=CONTEXT_REACT_CHAT_SYSTEM_HEADER, context=context )
# ReAct agent formatter import logging from abc import abstractmethod from typing import List, Optional, Sequence from llama_index.core.agent.react.prompts import ( CONTEXT_REACT_CHAT_SYSTEM_HEADER, REACT_CHAT_SYSTEM_HEADER, ) from llama_index.core.agent.react.types import ( BaseReasoningStep, ObservationReasoningStep, ) from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.bridge.pydantic import BaseModel, ConfigDict, Field from llama_index.core.tools import BaseTool logger = logging.getLogger(__name__) def get_react_tool_descriptions(tools: Sequence[BaseTool]) -> List[str]: """Tool.""" tool_descs = [] for tool in tools: tool_desc = ( f"> Tool Name: {tool.metadata.name}\n" f"Tool Description: {tool.metadata.description}\n" f"Tool Args: {tool.metadata.fn_schema_str}\n" ) tool_descs.append(tool_desc) return tool_descs # TODO: come up with better name class BaseAgentChatFormatter(BaseModel): """Base chat formatter.""" model_config = ConfigDict(arbitrary_types_allowed=True) @abstractmethod def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" class ReActChatFormatter(BaseAgentChatFormatter): """ReAct chat formatter.""" system_header: str = REACT_CHAT_SYSTEM_HEADER # default context: str = "" # not needed w/ default observation_role: MessageRole = Field( default=MessageRole.USER, description=( "Message role of tool outputs. If the LLM you use supports function/tool " "calling, you may set it to `MessageRole.TOOL` to avoid the tool outputs " "being misinterpreted as new user messages." ), ) def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" current_reasoning = current_reasoning or [] format_args = { "tool_desc": "\n".join(get_react_tool_descriptions(tools)), "tool_names": ", ".join([tool.metadata.get_name() for tool in tools]), } if self.context: format_args["context"] = self.context fmt_sys_header = self.system_header.format(**format_args) # format reasoning history as alternating user and assistant messages # where the assistant messages are thoughts and actions and the tool # messages are observations reasoning_history = [] for reasoning_step in current_reasoning: if isinstance(reasoning_step, ObservationReasoningStep): message = ChatMessage( role=self.observation_role, content=reasoning_step.get_content(), ) else: message = ChatMessage( role=MessageRole.ASSISTANT, content=reasoning_step.get_content(), ) reasoning_history.append(message) return [ ChatMessage(role=MessageRole.SYSTEM, content=fmt_sys_header), *chat_history, *reasoning_history, ] @classmethod def from_defaults( cls, system_header: Optional[str] = None, context: Optional[str] = None, observation_role: MessageRole = MessageRole.USER, ) -> "ReActChatFormatter": """Create ReActChatFormatter from defaults.""" if not system_header: system_header = ( REACT_CHAT_SYSTEM_HEADER if not context else CONTEXT_REACT_CHAT_SYSTEM_HEADER ) return ReActChatFormatter( system_header=system_header, context=context or "", observation_role=observation_role, ) @classmethod def from_context(cls, context: str) -> "ReActChatFormatter": """Create ReActChatFormatter from context. NOTE: deprecated """ logger.warning( "ReActChatFormatter.from_context is deprecated, please use `from_defaults` instead." ) return ReActChatFormatter.from_defaults( system_header=CONTEXT_REACT_CHAT_SYSTEM_HEADER, context=context )
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import ImageBytes, ImageNdArray, ImageTensor, ImageTorchTensor from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.computation.tensorflow_backend import tnp from docarray.typing.tensor.image import ImageTensorFlowTensor @pytest.mark.parametrize( 'cls_tensor,tensor', [ (ImageTorchTensor, torch.zeros((224, 224, 3))), (ImageNdArray, np.zeros((224, 224, 3))), ], ) def test_save_image_tensor_to_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.jpg') image_tensor = parse_obj_as(cls_tensor, tensor) image_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.tensorflow def test_save_image_tensorflow_tensor_to_file(tmpdir): tmp_file = str(tmpdir / 'tmp.jpg') image_tensor = parse_obj_as(ImageTensorFlowTensor, tf.zeros((224, 224, 3))) image_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.parametrize( 'image_tensor', [ parse_obj_as(ImageTorchTensor, torch.zeros(224, 224, 3)), parse_obj_as(ImageNdArray, np.zeros((224, 224, 3))), ], ) def test_save_image_tensor_to_bytes(image_tensor): b = image_tensor.to_bytes() isinstance(b, bytes) isinstance(b, ImageBytes) @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), ImageTorchTensor, torch.Tensor), (np.zeros((1000, 2)), ImageNdArray, np.ndarray), ], ) def test_torch_ndarray_to_image_tensor(tensor, cls_audio_tensor, cls_tensor): class MyImageDoc(BaseDoc): tensor: ImageTensor doc = MyImageDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_tensorflow_to_image_tensor(): class MyImageDoc(BaseDoc): tensor: ImageTensor doc = MyImageDoc(tensor=tf.zeros((1000, 2))) assert isinstance(doc.tensor, ImageTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1000, 2)))
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray.typing import ImageBytes, ImageNdArray, ImageTorchTensor from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.image import ImageTensorFlowTensor @pytest.mark.parametrize( 'cls_tensor,tensor', [ (ImageTorchTensor, torch.zeros((224, 224, 3))), (ImageNdArray, np.zeros((224, 224, 3))), ], ) def test_save_image_tensor_to_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.jpg') image_tensor = parse_obj_as(cls_tensor, tensor) image_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.tensorflow def test_save_image_tensorflow_tensor_to_file(tmpdir): tmp_file = str(tmpdir / 'tmp.jpg') image_tensor = parse_obj_as(ImageTensorFlowTensor, tf.zeros((224, 224, 3))) image_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.parametrize( 'image_tensor', [ parse_obj_as(ImageTorchTensor, torch.zeros(224, 224, 3)), parse_obj_as(ImageNdArray, np.zeros((224, 224, 3))), ], ) def test_save_image_tensor_to_bytes(image_tensor): b = image_tensor.to_bytes() isinstance(b, bytes) isinstance(b, ImageBytes)
_base_ = './yolox_s_8x8_300e_coco.py' # model settings model = dict( random_size_range=(10, 20), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # height, width train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Resize', img_scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(416, 416), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] train_dataset = dict(pipeline=train_pipeline) data = dict( train=train_dataset, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = './yolox_s_8x8_300e_coco.py' # model settings model = dict( random_size_range=(10, 20), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Resize', img_scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(416, 416), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] train_dataset = dict(pipeline=train_pipeline) data = dict( train=train_dataset, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from .conv_emformer import ConvEmformer from .conv_tasnet import conv_tasnet_base from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "conv_tasnet_base", "ConvEmformer", ]
from .conv_emformer import ConvEmformer from .conv_tasnet import conv_tasnet_base from .hdemucs import HDemucs, hdemucs_high, hdemucs_low, hdemucs_medium from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "conv_tasnet_base", "ConvEmformer", "HDemucs", "hdemucs_high", "hdemucs_medium", "hdemucs_low", ]
from __future__ import annotations from typing import TYPE_CHECKING, Any from langchain_core.callbacks import Callbacks from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, ParentRunManager, RunManager, ahandle_event, atrace_as_chain_group, handle_event, trace_as_chain_group, ) from langchain_core.tracers.context import ( collect_runs, tracing_enabled, tracing_v2_enabled, ) from langchain_core.utils.env import env_var_is_set from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.manager import ( get_openai_callback, wandb_tracing_enabled, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "get_openai_callback": "langchain_community.callbacks.manager", "wandb_tracing_enabled": "langchain_community.callbacks.manager", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ahandle_event", "AsyncCallbackManagerForChainGroup", "AsyncCallbackManagerForChainRun", "AsyncCallbackManagerForLLMRun", "AsyncCallbackManagerForRetrieverRun", "AsyncCallbackManagerForToolRun", "AsyncParentRunManager", "AsyncRunManager", "atrace_as_chain_group", "BaseRunManager", "CallbackManager", "CallbackManagerForChainGroup", "CallbackManagerForChainRun", "CallbackManagerForLLMRun", "CallbackManagerForRetrieverRun", "CallbackManagerForToolRun", "Callbacks", "AsyncCallbackManager", "collect_runs", "env_var_is_set", "get_openai_callback", "handle_event", "ParentRunManager", "RunManager", "trace_as_chain_group", "tracing_enabled", "tracing_v2_enabled", "wandb_tracing_enabled", ]
from __future__ import annotations from typing import TYPE_CHECKING, Any from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, Callbacks, ParentRunManager, RunManager, ahandle_event, atrace_as_chain_group, handle_event, trace_as_chain_group, ) from langchain_core.tracers.context import ( collect_runs, tracing_enabled, tracing_v2_enabled, ) from langchain_core.utils.env import env_var_is_set from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.manager import ( get_openai_callback, wandb_tracing_enabled, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "get_openai_callback": "langchain_community.callbacks.manager", "wandb_tracing_enabled": "langchain_community.callbacks.manager", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ahandle_event", "AsyncCallbackManagerForChainGroup", "AsyncCallbackManagerForChainRun", "AsyncCallbackManagerForLLMRun", "AsyncCallbackManagerForRetrieverRun", "AsyncCallbackManagerForToolRun", "AsyncParentRunManager", "AsyncRunManager", "atrace_as_chain_group", "BaseRunManager", "CallbackManager", "CallbackManagerForChainGroup", "CallbackManagerForChainRun", "CallbackManagerForLLMRun", "CallbackManagerForRetrieverRun", "CallbackManagerForToolRun", "Callbacks", "AsyncCallbackManager", "collect_runs", "env_var_is_set", "get_openai_callback", "handle_event", "ParentRunManager", "RunManager", "trace_as_chain_group", "tracing_enabled", "tracing_v2_enabled", "wandb_tracing_enabled", ]
from sentence_transformers import SentenceTransformer from contextlib import nullcontext from sentence_transformers.evaluation import SentenceEvaluator import logging import os import csv from typing import Dict, List, Optional logger = logging.getLogger(__name__) class MSEEvaluator(SentenceEvaluator): """ Computes the mean squared error (x100) between the computed sentence embedding and some target sentence embedding. The MSE is computed between ||teacher.encode(source_sentences) - student.encode(target_sentences)||. For multilingual knowledge distillation (https://arxiv.org/abs/2004.09813), source_sentences are in English and target_sentences are in a different language like German, Chinese, Spanish... :param source_sentences: Source sentences are embedded with the teacher model :param target_sentences: Target sentences are ambedding with the student model. :param show_progress_bar: Show progress bar when computing embeddings :param batch_size: Batch size to compute sentence embeddings :param name: Name of the evaluator :param write_csv: Write results to CSV file :param truncate_dim: The dimension to truncate sentence embeddings to. `None` uses the model's current truncation dimension. Defaults to None. """ def __init__( self, source_sentences: List[str], target_sentences: List[str], teacher_model=None, show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: Optional[int] = None, ): super().__init__() self.truncate_dim = truncate_dim with nullcontext() if self.truncate_dim is None else teacher_model.truncate_sentence_embeddings( self.truncate_dim ): self.source_embeddings = teacher_model.encode( source_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, convert_to_numpy=True ) self.target_sentences = target_sentences self.show_progress_bar = show_progress_bar self.batch_size = batch_size self.name = name self.csv_file = "mse_evaluation_" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "MSE"] self.write_csv = write_csv self.primary_metric = "negative_mse" def __call__(self, model: SentenceTransformer, output_path, epoch=-1, steps=-1) -> Dict[str, float]: if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}" else: out_txt = f" in epoch {epoch} after {steps} steps" else: out_txt = "" if self.truncate_dim is not None: out_txt += f" (truncated to {self.truncate_dim})" with nullcontext() if self.truncate_dim is None else model.truncate_sentence_embeddings(self.truncate_dim): target_embeddings = model.encode( self.target_sentences, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, convert_to_numpy=True, ) mse = ((self.source_embeddings - target_embeddings) ** 2).mean() mse *= 100 logger.info(f"MSE evaluation (lower = better) on the {self.name} dataset{out_txt}:") logger.info("MSE (*100):\t{:4f}".format(mse)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, newline="", mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mse]) # Return negative score as SentenceTransformers maximizes the performance metrics = {"negative_mse": -mse} metrics = self.prefix_name_to_metrics(metrics, self.name) self.store_metrics_in_model_card_data(model, metrics) return metrics @property def description(self) -> str: return "Knowledge Distillation"
from sentence_transformers import SentenceTransformer from contextlib import nullcontext from sentence_transformers.evaluation import SentenceEvaluator import logging import os import csv from typing import List, Optional logger = logging.getLogger(__name__) class MSEEvaluator(SentenceEvaluator): """ Computes the mean squared error (x100) between the computed sentence embedding and some target sentence embedding. The MSE is computed between ||teacher.encode(source_sentences) - student.encode(target_sentences)||. For multilingual knowledge distillation (https://arxiv.org/abs/2004.09813), source_sentences are in English and target_sentences are in a different language like German, Chinese, Spanish... :param source_sentences: Source sentences are embedded with the teacher model :param target_sentences: Target sentences are ambedding with the student model. :param show_progress_bar: Show progress bar when computing embeddings :param batch_size: Batch size to compute sentence embeddings :param name: Name of the evaluator :param write_csv: Write results to CSV file :param truncate_dim: The dimension to truncate sentence embeddings to. `None` uses the model's current truncation dimension. Defaults to None. """ def __init__( self, source_sentences: List[str], target_sentences: List[str], teacher_model=None, show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: Optional[int] = None, ): self.truncate_dim = truncate_dim with nullcontext() if self.truncate_dim is None else teacher_model.truncate_sentence_embeddings( self.truncate_dim ): self.source_embeddings = teacher_model.encode( source_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, convert_to_numpy=True ) self.target_sentences = target_sentences self.show_progress_bar = show_progress_bar self.batch_size = batch_size self.name = name self.csv_file = "mse_evaluation_" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "MSE"] self.write_csv = write_csv def __call__(self, model: SentenceTransformer, output_path, epoch=-1, steps=-1): if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}" else: out_txt = f" in epoch {epoch} after {steps} steps" else: out_txt = "" if self.truncate_dim is not None: out_txt += f" (truncated to {self.truncate_dim})" with nullcontext() if self.truncate_dim is None else model.truncate_sentence_embeddings(self.truncate_dim): target_embeddings = model.encode( self.target_sentences, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, convert_to_numpy=True, ) mse = ((self.source_embeddings - target_embeddings) ** 2).mean() mse *= 100 logger.info(f"MSE evaluation (lower = better) on the {self.name} dataset{out_txt}:") logger.info("MSE (*100):\t{:4f}".format(mse)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, newline="", mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mse]) return -mse # Return negative score as SentenceTransformers maximizes the performance
from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class TFDatasetAdapter(DataAdapter): """Adapter that handles `tf.data.Dataset`.""" def __init__(self, dataset, class_weight=None, distribution=None): """Initialize the TFDatasetAdapter. Args: dataset: The input `tf.data.Dataset` instance. class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`. distribution: A `keras.distribution.Distribution` instance. Used to shard the input dataset into per worker/process dataset instance. """ from keras.src.utils.module_utils import tensorflow as tf if not isinstance( dataset, (tf.data.Dataset, tf.distribute.DistributedDataset) ): raise ValueError( "Expected argument `dataset` to be a tf.data.Dataset. " f"Received: {dataset}" ) if class_weight is not None: dataset = dataset.map( make_class_weight_map_fn(class_weight) ).prefetch(tf.data.AUTOTUNE) if distribution is not None: dataset = distribution.distribute_dataset(dataset) self._dataset = dataset def get_numpy_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy for batch in self._dataset: yield tree.map_structure(convert_to_numpy, batch) def get_jax_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy from keras.src.utils.module_utils import tensorflow as tf def convert_to_jax(x): if isinstance(x, tf.SparseTensor): return data_adapter_utils.tf_sparse_to_jax_sparse(x) else: # We use numpy as an intermediary because it is faster. return convert_to_numpy(x) for batch in self._dataset: yield tree.map_structure(convert_to_jax, batch) def get_tf_dataset(self): return self._dataset def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self._dataset) @property def num_batches(self): cardinality = self._dataset.cardinality if callable(cardinality): # `dataset.cardinality` is normally expected to be a callable. cardinality = int(self._dataset.cardinality()) else: # However, in the case of `DistributedDataset`, it's a np.int64. cardinality = int(cardinality) # Return None for Unknown and Infinite cardinality datasets if cardinality < 0: return None return cardinality @property def batch_size(self): first_element_spec = tree.flatten(self._dataset.element_spec)[0] return first_element_spec.shape[0] @property def has_partial_batch(self): return None @property def partial_batch_size(self): return None def make_class_weight_map_fn(class_weight): """Applies class weighting to a `Dataset`. The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where `y` must be a single `Tensor`. Args: class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` Returns: A function that can be used with `tf.data.Dataset.map` to apply class weighting. """ from keras.src.utils.module_utils import tensorflow as tf class_weight_tensor = tf.convert_to_tensor( [ class_weight.get(int(c), 1.0) for c in range(max(class_weight.keys()) + 1) ] ) def class_weights_map_fn(*data): """Convert `class_weight` to `sample_weight`.""" x, y, sw = data_adapter_utils.unpack_x_y_sample_weight(data) if sw is not None: raise ValueError( "You cannot `class_weight` and `sample_weight` " "at the same time." ) if tree.is_nested(y): raise ValueError( "`class_weight` is only supported for Models with a single " "output." ) if y.shape.rank >= 2: y_classes = tf.__internal__.smart_cond.smart_cond( tf.shape(y)[-1] > 1, lambda: tf.argmax(y, axis=-1, output_type=tf.int32), lambda: tf.cast(tf.round(tf.squeeze(y, axis=-1)), tf.int32), ) else: # Special casing for rank 1, where we can guarantee sparse encoding. y_classes = tf.cast(tf.round(y), tf.int32) cw = tf.gather(class_weight_tensor, y_classes) return x, y, cw return class_weights_map_fn
from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class TFDatasetAdapter(DataAdapter): """Adapter that handles `tf.data.Dataset`.""" def __init__(self, dataset, class_weight=None, distribution=None): """Initialize the TFDatasetAdapter. Args: dataset: The input `tf.data.Dataset` instance. class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`. distribution: A `keras.distribution.Distribution` instance. Used to shard the input dataset into per worker/process dataset instance. """ from keras.src.utils.module_utils import tensorflow as tf if not isinstance( dataset, (tf.data.Dataset, tf.distribute.DistributedDataset) ): raise ValueError( "Expected argument `dataset` to be a tf.data.Dataset. " f"Received: {dataset}" ) if class_weight is not None: dataset = dataset.map( make_class_weight_map_fn(class_weight) ).prefetch(tf.data.AUTOTUNE) if distribution is not None: dataset = distribution.distribute_dataset(dataset) self._dataset = dataset def get_numpy_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy for batch in self._dataset: yield tree.map_structure(convert_to_numpy, batch) def get_jax_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy from keras.src.utils.module_utils import tensorflow as tf def convert_to_jax(x): if isinstance(x, tf.SparseTensor): return data_adapter_utils.tf_sparse_to_jax_sparse(x) else: # We use numpy as an intermediary because it is faster. return convert_to_numpy(x) for batch in self._dataset: yield tree.map_structure(convert_to_jax, batch) def get_tf_dataset(self): return self._dataset def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self._dataset) @property def num_batches(self): cardinality = self._dataset.cardinality if callable(cardinality): # `dataset.cardinality` is normally expected to be a callable. cardinality = int(self._dataset.cardinality()) else: # However, in the case of `DistributedDataset`, it's a np.int64. cardinality = int(cardinality) # Return None for Unknown and Infinite cardinality datasets if cardinality < 0: return None return cardinality @property def batch_size(self): first_element_spec = tree.flatten(self._dataset.element_spec)[0] return first_element_spec.shape[0] @property def has_partial_batch(self): return None @property def partial_batch_size(self): return None def make_class_weight_map_fn(class_weight): """Applies class weighting to a `Dataset`. The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where `y` must be a single `Tensor`. Args: class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` Returns: A function that can be used with `tf.data.Dataset.map` to apply class weighting. """ from keras.src.utils.module_utils import tensorflow as tf class_weight_tensor = tf.convert_to_tensor( [ class_weight.get(int(c), 1.0) for c in range(max(class_weight.keys()) + 1) ] ) def class_weights_map_fn(*data): """Convert `class_weight` to `sample_weight`.""" x, y, sw = data_adapter_utils.unpack_x_y_sample_weight(data) if sw is not None: raise ValueError( "You cannot `class_weight` and `sample_weight` " "at the same time." ) if tree.is_nested(y): raise ValueError( "`class_weight` is only supported for Models with a single " "output." ) if y.shape.rank >= 2: y_classes = tf.__internal__.smart_cond.smart_cond( tf.shape(y)[-1] > 1, lambda: tf.argmax(y, axis=-1), lambda: tf.cast(tf.round(tf.squeeze(y, axis=-1)), tf.int32), ) else: # Special casing for rank 1, where we can guarantee sparse encoding. y_classes = tf.cast(tf.round(y), tf.int32) cw = tf.gather(class_weight_tensor, y_classes) return x, y, cw return class_weights_map_fn
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model = CrossEncoder("distilroberta-base", num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # We might want to remap labels from the dataset, you can do that like so: mapping = {0: 1, 1: 2, 2: 0} eval_dataset = eval_dataset.map(lambda x: {"label": mapping[x["label"]]}) test_dataset = test_dataset.map(lambda x: {"label": mapping[x["label"]]}) # 3. Define our training loss: loss = CrossEntropyLoss(model) # During training, we use CESoftmaxAccuracyEvaluator and CEF1Evaluator to measure the performance on the dev set dev_cls_evaluator = CEClassificationEvaluator( list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), eval_dataset["label"], name="AllNLI-dev" ) dev_cls_evaluator(model) # 5. Define the training arguments args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name="ce-nli-v1", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CEClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test" ) test_cls_evaluator(model) # 8. Evaluate the final model and save it final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir)
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model = CrossEncoder("distilroberta-base", num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # We might want to remap labels from the dataset, you can do that like so: mapping = {0: 1, 1: 2, 2: 0} eval_dataset = eval_dataset.map(lambda x: {"label": mapping[x["label"]]}) test_dataset = test_dataset.map(lambda x: {"label": mapping[x["label"]]}) # 3. Define our training loss: loss = CrossEntropyLoss(model) # During training, we use CESoftmaxAccuracyEvaluator and CEF1Evaluator to measure the performance on the dev set dev_cls_evaluator = CEClassificationEvaluator( list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), eval_dataset["label"], name="AllNLI-dev" ) dev_cls_evaluator(model) # 5. Define the training arguments args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name="ce-nli-v1", # Will be used in W&B if `wandb` is installed ) # # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CEClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test" ) test_cls_evaluator(model) # 8. Evaluate the final model and save it final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth'))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
import os import shutil import subprocess import sys def _get_run_args(print_args: bool = True): from jina.helper import get_rich_console from jina.parsers import get_main_parser console = get_rich_console() silent_print = {'help', 'hub', 'export', 'auth'} parser = get_main_parser() if len(sys.argv) > 1: from argparse import _StoreAction, _StoreTrueAction from rich import box from rich.table import Table args, unknown = parser.parse_known_args() if unknown: from jina.helper import warn_unknown_args unknown = list(filter(lambda x: x.startswith('--'), unknown)) warn_unknown_args(unknown) if args.cli not in silent_print and print_args: from jina import __resources_path__ p = parser._actions[-1].choices[sys.argv[1]] default_args = { a.dest: a.default for a in p._actions if isinstance(a, (_StoreAction, _StoreTrueAction)) } with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() param_str = Table( title=' '.join(sys.argv), box=box.ROUNDED, highlight=True, title_justify='left', ) param_str.add_column('Argument', justify='right') param_str.add_column('Value', justify='left') for k, v in sorted(vars(args).items()): param = k.replace('_', '-') value = str(v) if not default_args.get(k, None) == v: value = f'[b]{value}[/]' param_str.add_row(param, value) if 'JINA_LOG_NO_COLOR' not in os.environ: print(f'\n{logo_str}\n') console.print(param_str) return args else: parser.print_help() exit() def _quick_ac_lookup(): from jina_cli.autocomplete import ac_table if len(sys.argv) > 1: if sys.argv[1] == 'commands': for k in ac_table['commands']: print(k) exit() elif sys.argv[1] == 'completions': # search with the longest shared prefix for j in range(len(sys.argv), 2, -1): _input = ' '.join(sys.argv[2:j]).strip() if _input in ac_table['completions']: compl = ac_table['completions'][_input] for k in compl: if k not in sys.argv: print(k) break exit() def _try_plugin_command(): """Tries to call the CLI of an external Jina project. :return: if the plugin has been found (locally or among the known plugins) """ argv = sys.argv if len(argv) < 2: # no command given return False from jina_cli.autocomplete import ac_table if argv[1] in ac_table['commands']: # native command can't be plugin command return False def _cmd_exists(cmd): return shutil.which(cmd) is not None subcommand = argv[1] cmd = 'jina-' + subcommand if _cmd_exists(cmd): subprocess.run([cmd] + argv[2:]) return True from jina_cli.known_plugins import plugin_info if subcommand in plugin_info: from jina.helper import get_rich_console cmd_info = plugin_info[subcommand] project, package = cmd_info['display-name'], cmd_info['pip-package'] console = get_rich_console() console.print( f"It seems like [yellow]{project}[/yellow] is not installed in your environment." f"To use it via the [green]'jina {subcommand}'[/green] command, " f"install it first: [green]'pip install {package}'[/green]." ) return True return False def main(): """The main entrypoint of the CLI""" found_plugin = _try_plugin_command() if not found_plugin: _quick_ac_lookup() from jina_cli import api args = _get_run_args() getattr(api, args.cli.replace('-', '_'))(args)
import os import shutil import subprocess import sys def _get_run_args(print_args: bool = True): from jina.helper import get_rich_console from jina.parsers import get_main_parser console = get_rich_console() silent_print = {'help', 'hub', 'export'} parser = get_main_parser() if len(sys.argv) > 1: from argparse import _StoreAction, _StoreTrueAction from rich import box from rich.table import Table args, unknown = parser.parse_known_args() if unknown: from jina.helper import warn_unknown_args unknown = list(filter(lambda x: x.startswith('--'), unknown)) warn_unknown_args(unknown) if args.cli not in silent_print and print_args: from jina import __resources_path__ p = parser._actions[-1].choices[sys.argv[1]] default_args = { a.dest: a.default for a in p._actions if isinstance(a, (_StoreAction, _StoreTrueAction)) } with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() param_str = Table( title=' '.join(sys.argv), box=box.ROUNDED, highlight=True, title_justify='left', ) param_str.add_column('Argument', justify='right') param_str.add_column('Value', justify='left') for k, v in sorted(vars(args).items()): param = k.replace('_', '-') value = str(v) if not default_args.get(k, None) == v: value = f'[b]{value}[/]' param_str.add_row(param, value) if 'JINA_LOG_NO_COLOR' not in os.environ: print(f'\n{logo_str}\n') console.print(param_str) return args else: parser.print_help() exit() def _quick_ac_lookup(): from jina_cli.autocomplete import ac_table if len(sys.argv) > 1: if sys.argv[1] == 'commands': for k in ac_table['commands']: print(k) exit() elif sys.argv[1] == 'completions': # search with the longest shared prefix for j in range(len(sys.argv), 2, -1): _input = ' '.join(sys.argv[2:j]).strip() if _input in ac_table['completions']: compl = ac_table['completions'][_input] for k in compl: if k not in sys.argv: print(k) break exit() def _try_plugin_command(): """Tries to call the CLI of an external Jina project. :return: if the plugin has been found (locally or among the known plugins) """ argv = sys.argv if len(argv) < 2: # no command given return False from jina_cli.autocomplete import ac_table if argv[1] in ac_table['commands']: # native command can't be plugin command return False def _cmd_exists(cmd): return shutil.which(cmd) is not None subcommand = argv[1] cmd = 'jina-' + subcommand if _cmd_exists(cmd): subprocess.run([cmd] + argv[2:]) return True from jina_cli.known_plugins import plugin_info if subcommand in plugin_info: from jina.helper import get_rich_console cmd_info = plugin_info[subcommand] project, package = cmd_info['display-name'], cmd_info['pip-package'] console = get_rich_console() console.print( f"It seems like [yellow]{project}[/yellow] is not installed in your environment." f"To use it via the [green]'jina {subcommand}'[/green] command, " f"install it first: [green]'pip install {package}'[/green]." ) return True return False def main(): """The main entrypoint of the CLI""" found_plugin = _try_plugin_command() if not found_plugin: _quick_ac_lookup() from jina_cli import api args = _get_run_args() getattr(api, args.cli.replace('-', '_'))(args)
# Copyright (c) OpenMMLab. All rights reserved. """copy from https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" import torch from torch import Tensor from mmdet.core.bbox.assigners import AssignResult from .sampling_result import SamplingResult class MaskSamplingResult(SamplingResult): """Mask sampling result.""" def __init__(self, pos_inds: Tensor, neg_inds: Tensor, masks: Tensor, gt_masks: Tensor, assign_result: AssignResult, gt_flags: Tensor, avg_factor_with_neg: bool = True) -> None: self.pos_inds = pos_inds self.neg_inds = neg_inds self.num_pos = max(pos_inds.numel(), 1) self.num_neg = max(neg_inds.numel(), 1) self.avg_factor = self.num_pos + self.num_neg \ if avg_factor_with_neg else self.num_pos self.pos_masks = masks[pos_inds] self.neg_masks = masks[neg_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_masks.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 if gt_masks.numel() == 0: # hack for index error case assert self.pos_assigned_gt_inds.numel() == 0 self.pos_gt_masks = torch.empty_like(gt_masks) else: self.pos_gt_masks = gt_masks[self.pos_assigned_gt_inds, :] @property def masks(self) -> Tensor: """torch.Tensor: concatenated positive and negative masks.""" return torch.cat([self.pos_masks, self.neg_masks]) def __nice__(self) -> str: data = self.info.copy() data['pos_masks'] = data.pop('pos_masks').shape data['neg_masks'] = data.pop('neg_masks').shape parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] body = ' ' + ',\n '.join(parts) return '{\n' + body + '\n}' @property def info(self) -> dict: """Returns a dictionary of info about the object.""" return { 'pos_inds': self.pos_inds, 'neg_inds': self.neg_inds, 'pos_masks': self.pos_masks, 'neg_masks': self.neg_masks, 'pos_is_gt': self.pos_is_gt, 'num_gts': self.num_gts, 'pos_assigned_gt_inds': self.pos_assigned_gt_inds, }
# Copyright (c) OpenMMLab. All rights reserved. """copy from https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" import torch from .sampling_result import SamplingResult class MaskSamplingResult(SamplingResult): """Mask sampling result.""" def __init__(self, pos_inds, neg_inds, masks, gt_masks, assign_result, gt_flags): self.pos_inds = pos_inds self.neg_inds = neg_inds self.pos_masks = masks[pos_inds] self.neg_masks = masks[neg_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_masks.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 if gt_masks.numel() == 0: # hack for index error case assert self.pos_assigned_gt_inds.numel() == 0 self.pos_gt_masks = torch.empty_like(gt_masks) else: self.pos_gt_masks = gt_masks[self.pos_assigned_gt_inds, :] if assign_result.labels is not None: self.pos_gt_labels = assign_result.labels[pos_inds] else: self.pos_gt_labels = None @property def masks(self): """torch.Tensor: concatenated positive and negative boxes""" return torch.cat([self.pos_masks, self.neg_masks]) def __nice__(self): data = self.info.copy() data['pos_masks'] = data.pop('pos_masks').shape data['neg_masks'] = data.pop('neg_masks').shape parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] body = ' ' + ',\n '.join(parts) return '{\n' + body + '\n}' @property def info(self): """Returns a dictionary of info about the object.""" return { 'pos_inds': self.pos_inds, 'neg_inds': self.neg_inds, 'pos_masks': self.pos_masks, 'neg_masks': self.neg_masks, 'pos_is_gt': self.pos_is_gt, 'num_gts': self.num_gts, 'pos_assigned_gt_inds': self.pos_assigned_gt_inds, }
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json")) as fIn: config = json.load(fIn) model = CNN(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json")) as fIn: config = json.load(fIn) model = CNN(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.datasets.fashion_mnist import load_data as load_data
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.datasets.fashion_mnist import load_data
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg, preprocess_cfg=preprocess_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Union from mmengine.config import ConfigDict from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, preprocess_cfg: Optional[Union[ConfigDict, dict]] = None, pretrained: Optional[str] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, preprocess_cfg=preprocess_cfg)
"""Pydantic v1 compatibility shim.""" from langchain_core._api import warn_deprecated try: from pydantic.v1.dataclasses import * # noqa: F403 except ImportError: from pydantic.dataclasses import * # type: ignore[no-redef] # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
"""Pydantic v1 compatibility shim.""" from langchain_core._api import warn_deprecated try: from pydantic.v1.dataclasses import * # noqa: F403 except ImportError: from pydantic.dataclasses import * # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import List, Optional, Union from mmengine.config import ConfigDict from mmengine.data import InstanceData from ..bbox.samplers import SamplingResult from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] SampleList = List[DetDataSample] OptSampleList = Optional[SampleList] SamplingResultList = List[SamplingResult]
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import List, Optional, Union from mmengine.config import ConfigDict from mmengine.data import InstanceData from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] # List of InstanceData InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] # List of DetDataSample SampleList = List[DetDataSample] OptSampleList = Optional[SampleList]
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import testing from keras.src.utils import backend_utils class BackendUtilsTest(testing.TestCase): @parameterized.named_parameters( ("numpy", "numpy"), ("jax", "jax"), ("tensorflow", "tensorflow"), ("torch", "torch"), ) def test_dynamic_backend(self, name): dynamic_backend = backend_utils.DynamicBackend() x = np.random.uniform(size=[1, 2, 3]).astype("float32") if name == "numpy": dynamic_backend.set_backend(name) if backend.backend() != "numpy": with self.assertRaisesRegex( NotImplementedError, "Currently, we cannot dynamically import the numpy backend", ): y = dynamic_backend.numpy.log10(x) else: y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, np.ndarray) elif name == "jax": import jax dynamic_backend.set_backend(name) y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, jax.Array) elif name == "tensorflow": import tensorflow as tf dynamic_backend.set_backend(name) y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, tf.Tensor) elif name == "torch": import torch dynamic_backend.set_backend(name) y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, torch.Tensor) def test_dynamic_backend_invalid_name(self): dynamic_backend = backend_utils.DynamicBackend() with self.assertRaisesRegex(ValueError, "Available backends are"): dynamic_backend.set_backend("abc")
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import testing from keras.src.utils import backend_utils class BackendUtilsTest(testing.TestCase): @parameterized.named_parameters( ("numpy", "numpy"), ("jax", "jax"), ("tensorflow", "tensorflow"), ("torch", "torch"), ) def test_dynamic_backend(self, name): dynamic_backend = backend_utils.DynamicBackend() x = np.random.uniform(size=[1, 2, 3]) if name == "numpy": dynamic_backend.set_backend(name) if backend.backend() != "numpy": with self.assertRaisesRegex( NotImplementedError, "Currently, we cannot dynamically import the numpy backend", ): y = dynamic_backend.numpy.log10(x) else: y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, np.ndarray) elif name == "jax": import jax dynamic_backend.set_backend(name) y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, jax.Array) elif name == "tensorflow": import tensorflow as tf dynamic_backend.set_backend(name) y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, tf.Tensor) elif name == "torch": import torch dynamic_backend.set_backend(name) y = dynamic_backend.numpy.log10(x) self.assertIsInstance(y, torch.Tensor) def test_dynamic_backend_invalid_name(self): dynamic_backend = backend_utils.DynamicBackend() with self.assertRaisesRegex(ValueError, "Available backends are"): dynamic_backend.set_backend("abc")
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch import torch.nn.functional as F from mmcv.cnn import constant_init from mmdet.models.utils import DyReLU, SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) def test_dyrelu(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 DyReLU(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict DyReLU(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test DyReLU forward layer = DyReLU(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) # DyReLU should act as standard (static) ReLU # when eliminating the effect of SE-like module layer = DyReLU(channels=32) constant_init(layer.conv2.conv, 0) layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) relu_out = F.relu(x) assert torch.equal(x_out, relu_out)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.utils import SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10))
_base_ = './solo_r50_fpn_8xb8-lsj-200e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
_base_ = './solo_r50_fpn_lsj_200e_8x8_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.runner import Runner from mmdet.registry import HOOKS @HOOKS.register_module() class MemoryProfilerHook(Hook): """Memory profiler hook recording memory information including virtual memory, swap memory, and the memory of the current process. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval: int = 50) -> None: try: from psutil import swap_memory, virtual_memory self._swap_memory = swap_memory self._virtual_memory = virtual_memory except ImportError: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') try: from memory_profiler import memory_usage self._memory_usage = memory_usage except ImportError: raise ImportError( 'memory_profiler is not installed, please install it by: ' 'pip install memory_profiler') self.interval = interval def _after_iter(self, runner: Runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs: Optional[Union[Sequence[BaseDataElement], dict]] = None, mode: str = 'train') -> None: """Regularly record memory information. Args: runner (:obj:`Runner`): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Union[Sequence[:obj:`BaseDataElement`], dict], optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self.interval): # in Byte virtual_memory = self._virtual_memory() swap_memory = self._swap_memory() # in MB process_memory = self._memory_usage()[0] factor = 1024 * 1024 runner.logger.info( 'Memory information ' 'available_memory: ' f'{round(virtual_memory.available / factor)} MB, ' 'used_memory: ' f'{round(virtual_memory.used / factor)} MB, ' f'memory_utilization: {virtual_memory.percent} %, ' 'available_swap_memory: ' f'{round((swap_memory.total - swap_memory.used) / factor)}' ' MB, ' f'used_swap_memory: {round(swap_memory.used / factor)} MB, ' f'swap_memory_utilization: {swap_memory.percent} %, ' 'current_process_memory: ' f'{round(process_memory)} MB')
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.runner.hooks import Hook from mmdet.registry import HOOKS @HOOKS.register_module() class MemoryProfilerHook(Hook): """Memory profiler hook recording memory information including virtual memory, swap memory, and the memory of the current process. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): try: from psutil import swap_memory, virtual_memory self._swap_memory = swap_memory self._virtual_memory = virtual_memory except ImportError: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') try: from memory_profiler import memory_usage self._memory_usage = memory_usage except ImportError: raise ImportError( 'memory_profiler is not installed, please install it by: ' 'pip install memory_profiler') self.interval = interval def after_iter(self, runner): if self.every_n_iters(runner, self.interval): # in Byte virtual_memory = self._virtual_memory() swap_memory = self._swap_memory() # in MB process_memory = self._memory_usage()[0] factor = 1024 * 1024 runner.logger.info( 'Memory information ' 'available_memory: ' f'{round(virtual_memory.available / factor)} MB, ' 'used_memory: ' f'{round(virtual_memory.used / factor)} MB, ' f'memory_utilization: {virtual_memory.percent} %, ' 'available_swap_memory: ' f'{round((swap_memory.total - swap_memory.used) / factor)}' ' MB, ' f'used_swap_memory: {round(swap_memory.used / factor)} MB, ' f'swap_memory_utilization: {swap_memory.percent} %, ' 'current_process_memory: ' f'{round(process_memory)} MB')
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, compute_kaldi_pitch, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", ]
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, compute_kaldi_pitch, create_dct, DB_to_amplitude, detect_pitch_frequency, edit_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", ]
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ]
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ]
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) """ Average Queries: 49.92307692307692 Average Corpus: 4334.7692307692305 Aggregated for Score Function: dot Accuracy@1: 58.72% Accuracy@3: 75.37% Accuracy@5: 80.76% Accuracy@10: 87.07% Precision@1: 58.72% Recall@1: 35.61% Precision@3: 36.31% Recall@3: 50.84% Precision@5: 27.72% Recall@5: 56.55% Precision@10: 19.18% Recall@10: 64.21% MRR@10: 0.6822 NDCG@10: 0.6204 Model Query Sparsity: Active Dimensions: 74.9, Sparsity Ratio: 0.9975 Model Corpus Sparsity: Active Dimensions: 174.8, Sparsity Ratio: 0.9943 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6204
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) """ Average Queries: 49.92307692307692 Average Corpus: 4334.7692307692305 Aggregated for Score Function: dot Accuracy@1: 58.72% Accuracy@3: 75.37% Accuracy@5: 80.76% Accuracy@10: 87.07% Precision@1: 58.72% Recall@1: 35.61% Precision@3: 36.31% Recall@3: 50.84% Precision@5: 27.72% Recall@5: 56.55% Precision@10: 19.18% Recall@10: 64.21% MRR@10: 0.6822 NDCG@10: 0.6204 Model Sparsity Stats Query : Row Non-Zero Mean: 74.93406589214618, Row Sparsity Mean: 0.9975449305314285 Model Sparsity Stats Corpus : Row Non-Zero Mean: 174.8070262028621, Row Sparsity Mean: 0.9942727547425491 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6204
# Copyright (c) OpenMMLab. All rights reserved. from typing import Sequence from torch.utils.data import BatchSampler, Sampler from mmdet.datasets.samplers.track_img_sampler import TrackImgSampler from mmdet.registry import DATA_SAMPLERS # TODO: maybe replace with a data_loader wrapper @DATA_SAMPLERS.register_module() class AspectRatioBatchSampler(BatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __init__(self, sampler: Sampler, batch_size: int, drop_last: bool = False) -> None: if not isinstance(sampler, Sampler): raise TypeError('sampler should be an instance of ``Sampler``, ' f'but got {sampler}') if not isinstance(batch_size, int) or batch_size <= 0: raise ValueError('batch_size should be a positive integer value, ' f'but got batch_size={batch_size}') self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last # two groups for w < h and w >= h self._aspect_ratio_buckets = [[] for _ in range(2)] def __iter__(self) -> Sequence[int]: for idx in self.sampler: data_info = self.sampler.dataset.get_data_info(idx) width, height = data_info['width'], data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:] def __len__(self) -> int: if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size @DATA_SAMPLERS.register_module() class TrackAspectRatioBatchSampler(AspectRatioBatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __iter__(self) -> Sequence[int]: for idx in self.sampler: # hard code to solve TrackImgSampler if isinstance(self.sampler, TrackImgSampler): video_idx, _ = idx else: video_idx = idx # video_idx data_info = self.sampler.dataset.get_data_info(video_idx) # data_info {video_id, images, video_length} img_data_info = data_info['images'][0] width, height = img_data_info['width'], img_data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:]
# Copyright (c) OpenMMLab. All rights reserved. from typing import Sequence from torch.utils.data import BatchSampler, Sampler from mmdet.registry import DATA_SAMPLERS # TODO: maybe replace with a data_loader wrapper @DATA_SAMPLERS.register_module() class AspectRatioBatchSampler(BatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __init__(self, sampler: Sampler, batch_size: int, drop_last: bool = False) -> None: if not isinstance(sampler, Sampler): raise TypeError('sampler should be an instance of ``Sampler``, ' f'but got {sampler}') if not isinstance(batch_size, int) or batch_size <= 0: raise ValueError('batch_size should be a positive integer value, ' f'but got batch_size={batch_size}') self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last # two groups for w < h and w >= h self._aspect_ratio_buckets = [[] for _ in range(2)] def __iter__(self) -> Sequence[int]: for idx in self.sampler: data_info = self.sampler.dataset.get_data_info(idx) width, height = data_info['width'], data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:] def __len__(self) -> int: if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size
from __future__ import annotations import re from typing import Optional from langchain_core.output_parsers import BaseOutputParser class RegexDictParser(BaseOutputParser[dict[str, str]]): """Parse the output of an LLM call into a Dictionary using a regex.""" regex_pattern: str = r"{}:\s?([^.'\n']*)\.?" # : :meta private: """The regex pattern to use to parse the output.""" output_key_to_format: dict[str, str] """The keys to use for the output.""" no_update_value: Optional[str] = None """The default key to use for the output.""" @property def _type(self) -> str: """Return the type key.""" return "regex_dict_parser" def parse(self, text: str) -> dict[str, str]: """Parse the output of an LLM call.""" result = {} for output_key, expected_format in self.output_key_to_format.items(): specific_regex = self.regex_pattern.format(re.escape(expected_format)) matches = re.findall(specific_regex, text) if not matches: raise ValueError( f"No match found for output key: {output_key} with expected format \ {expected_format} on text {text}" ) elif len(matches) > 1: raise ValueError( f"Multiple matches found for output key: {output_key} with \ expected format {expected_format} on text {text}" ) elif ( self.no_update_value is not None and matches[0] == self.no_update_value ): continue else: result[output_key] = matches[0] return result
from __future__ import annotations import re from typing import Dict, Optional from langchain_core.output_parsers import BaseOutputParser class RegexDictParser(BaseOutputParser[Dict[str, str]]): """Parse the output of an LLM call into a Dictionary using a regex.""" regex_pattern: str = r"{}:\s?([^.'\n']*)\.?" # : :meta private: """The regex pattern to use to parse the output.""" output_key_to_format: Dict[str, str] """The keys to use for the output.""" no_update_value: Optional[str] = None """The default key to use for the output.""" @property def _type(self) -> str: """Return the type key.""" return "regex_dict_parser" def parse(self, text: str) -> Dict[str, str]: """Parse the output of an LLM call.""" result = {} for output_key, expected_format in self.output_key_to_format.items(): specific_regex = self.regex_pattern.format(re.escape(expected_format)) matches = re.findall(specific_regex, text) if not matches: raise ValueError( f"No match found for output key: {output_key} with expected format \ {expected_format} on text {text}" ) elif len(matches) > 1: raise ValueError( f"Multiple matches found for output key: {output_key} with \ expected format {expected_format} on text {text}" ) elif ( self.no_update_value is not None and matches[0] == self.no_update_value ): continue else: result[output_key] = matches[0] return result
import os import subprocess import sys import pytest from xgboost import testing as tm DEMO_DIR = tm.demo_dir(__file__) PYTHON_DEMO_DIR = os.path.join(DEMO_DIR, "guide-python") @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(PYTHON_DEMO_DIR, "quantile_data_iterator.py") cmd = ["python", script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(PYTHON_DEMO_DIR, "update_process.py") cmd = ["python", script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(PYTHON_DEMO_DIR, "categorical.py") cmd = ["python", script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) def test_external_memory_demo(): script = os.path.join(PYTHON_DEMO_DIR, "external_memory.py") cmd = ["python", script, "--device=cuda"] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) def test_distributed_extmem_basic_demo(): script = os.path.join(PYTHON_DEMO_DIR, "distributed_extmem_basic.py") cmd = ["python", script, "--device=cuda"] subprocess.check_call(cmd)
import os import subprocess import sys import pytest from xgboost import testing as tm DEMO_DIR = tm.demo_dir(__file__) PYTHON_DEMO_DIR = os.path.join(DEMO_DIR, "guide-python") @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(PYTHON_DEMO_DIR, "quantile_data_iterator.py") cmd = ["python", script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(PYTHON_DEMO_DIR, "update_process.py") cmd = ["python", script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(PYTHON_DEMO_DIR, "categorical.py") cmd = ["python", script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) def test_external_memory_demo(): script = os.path.join(PYTHON_DEMO_DIR, "external_memory.py") cmd = ["python", script] subprocess.check_call(cmd)
from __future__ import annotations import math import random class NoDuplicatesDataLoader: def __init__(self, train_examples, batch_size): """ A special data loader to be used with MultipleNegativesRankingLoss. The data loader ensures that there are no duplicate sentences within the same batch """ self.batch_size = batch_size self.data_pointer = 0 self.collate_fn = None self.train_examples = train_examples random.shuffle(self.train_examples) def __iter__(self): for _ in range(self.__len__()): batch = [] texts_in_batch = set() while len(batch) < self.batch_size: example = self.train_examples[self.data_pointer] valid_example = True for text in example.texts: if text.strip().lower() in texts_in_batch: valid_example = False break if valid_example: batch.append(example) for text in example.texts: texts_in_batch.add(text.strip().lower()) self.data_pointer += 1 if self.data_pointer >= len(self.train_examples): self.data_pointer = 0 random.shuffle(self.train_examples) yield self.collate_fn(batch) if self.collate_fn is not None else batch def __len__(self): return math.floor(len(self.train_examples) / self.batch_size)
import math import random class NoDuplicatesDataLoader: def __init__(self, train_examples, batch_size): """ A special data loader to be used with MultipleNegativesRankingLoss. The data loader ensures that there are no duplicate sentences within the same batch """ self.batch_size = batch_size self.data_pointer = 0 self.collate_fn = None self.train_examples = train_examples random.shuffle(self.train_examples) def __iter__(self): for _ in range(self.__len__()): batch = [] texts_in_batch = set() while len(batch) < self.batch_size: example = self.train_examples[self.data_pointer] valid_example = True for text in example.texts: if text.strip().lower() in texts_in_batch: valid_example = False break if valid_example: batch.append(example) for text in example.texts: texts_in_batch.add(text.strip().lower()) self.data_pointer += 1 if self.data_pointer >= len(self.train_examples): self.data_pointer = 0 random.shuffle(self.train_examples) yield self.collate_fn(batch) if self.collate_fn is not None else batch def __len__(self): return math.floor(len(self.train_examples) / self.batch_size)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Optional, Sequence, Tuple, Union import torch from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataSample]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Optional, Sequence, Tuple, Union import torch from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataSample]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
import pytest import torch from docarray.computation.torch_backend import TorchCompBackend def test_to_device(): t = torch.rand(10, 3) assert t.device == torch.device('cpu') t = TorchCompBackend.to_device(t, 'meta') assert t.device == torch.device('meta') @pytest.mark.parametrize( 'array,result', [ (torch.zeros((5)), 1), (torch.zeros((1, 5)), 2), (torch.zeros((5, 5)), 2), (torch.zeros(()), 0), ], ) def test_n_dim(array, result): assert TorchCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (torch.zeros((10,)), (10,)), (torch.zeros((5, 5)), (5, 5)), (torch.zeros(()), ()), ], ) def test_shape(array, result): shape = TorchCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_empty(): tensor = TorchCompBackend.empty((10, 3)) assert tensor.shape == (10, 3) def test_empty_dtype(): tensor = TorchCompBackend.empty((10, 3), dtype=torch.int32) assert tensor.shape == (10, 3) assert tensor.dtype == torch.int32 def test_empty_device(): tensor = TorchCompBackend.empty((10, 3), device='meta') assert tensor.shape == (10, 3) assert tensor.device == torch.device('meta') def test_squeeze(): tensor = torch.zeros(size=(1, 1, 3, 1)) squeezed = TorchCompBackend.squeeze(tensor) assert squeezed.shape == (3,) @pytest.mark.parametrize( 'array,t_range,x_range,result', [ ( torch.tensor([0, 1, 2, 3, 4, 5]), (0, 10), None, torch.tensor([0, 2, 4, 6, 8, 10]), ), ( torch.tensor([0, 1, 2, 3, 4, 5]), (0, 10), (0, 10), torch.tensor([0, 1, 2, 3, 4, 5]), ), ( torch.tensor([[0.0, 1.0], [0.0, 1.0]]), (0, 10), None, torch.tensor([[0.0, 10.0], [0.0, 10.0]]), ), ], ) def test_minmax_normalize(array, t_range, x_range, result): output = TorchCompBackend.minmax_normalize( tensor=array, t_range=t_range, x_range=x_range ) assert torch.allclose(output, result)
import pytest import torch from docarray.computation.torch_backend import TorchCompBackend def test_to_device(): t = torch.rand(10, 3) assert t.device == torch.device('cpu') t = TorchCompBackend.to_device(t, 'meta') assert t.device == torch.device('meta') @pytest.mark.parametrize( 'array,result', [ (torch.zeros((5)), 1), (torch.zeros((1, 5)), 2), (torch.zeros((5, 5)), 2), (torch.zeros(()), 0), ], ) def test_n_dim(array, result): assert TorchCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (torch.zeros((10,)), (10,)), (torch.zeros((5, 5)), (5, 5)), (torch.zeros(()), ()), ], ) def test_shape(array, result): shape = TorchCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_empty(): tensor = TorchCompBackend.empty((10, 3)) assert tensor.shape == (10, 3) def test_empty_dtype(): tensor = TorchCompBackend.empty((10, 3), dtype=torch.int32) assert tensor.shape == (10, 3) assert tensor.dtype == torch.int32 def test_empty_device(): tensor = TorchCompBackend.empty((10, 3), device='meta') assert tensor.shape == (10, 3) assert tensor.device == torch.device('meta')
"""Tool for the OpenAI DALLE V1 Image Generation SDK.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper class OpenAIDALLEImageGenerationTool(BaseTool): """Tool that generates an image using OpenAI DALLE.""" name: str = "openai_dalle" description: str = ( "A wrapper around OpenAI DALLE Image Generation. " "Useful for when you need to generate an image of" "people, places, paintings, animals, or other subjects. " "Input should be a text prompt to generate an image." ) api_wrapper: DallEAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the OpenAI DALLE Image Generation tool.""" return self.api_wrapper.run(query)
"""Tool for the OpenAI DALLE V1 Image Generation SDK.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper class OpenAIDALLEImageGenerationTool(BaseTool): # type: ignore[override] """Tool that generates an image using OpenAI DALLE.""" name: str = "openai_dalle" description: str = ( "A wrapper around OpenAI DALLE Image Generation. " "Useful for when you need to generate an image of" "people, places, paintings, animals, or other subjects. " "Input should be a text prompt to generate an image." ) api_wrapper: DallEAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the OpenAI DALLE Image Generation tool.""" return self.api_wrapper.run(query)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock, patch from mmdet.engine.hooks import YOLOXModeSwitchHook class TestYOLOXModeSwitchHook(TestCase): @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_is_model_wrapper_and_persistent_workers_on( self, mock_is_model_wrapper): mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.detector.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.detector.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertTrue(runner.train_dataloader._DataLoader__initialized) def test_not_model_wrapper_and_persistent_workers_off(self): runner = Mock() runner.model = Mock() runner.model.detector.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = False runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.model.detector.bbox_head.use_l1) self.assertTrue(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.train_dataloader._DataLoader__initialized) @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_initialize_after_switching(self, mock_is_model_wrapper): # This simulates the resumption after the switching. mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 285 runner.max_epochs = 300 # epoch + 1 > max_epochs - num_last_epochs . hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.detector.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock, patch from mmdet.engine.hooks import YOLOXModeSwitchHook class TestYOLOXModeSwitchHook(TestCase): @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_is_model_wrapper_and_persistent_workers_on( self, mock_is_model_wrapper): mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.detector.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.detector.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertTrue(runner.train_dataloader._DataLoader__initialized) def test_not_model_wrapper_and_persistent_workers_off(self): runner = Mock() runner.model = Mock() runner.model.detector.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = False runner.train_dataloader._DataLoader__initialized = True runner.epoch = 284 runner.max_epochs = 300 hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.model.detector.bbox_head.use_l1) self.assertTrue(runner.train_dataloader._DataLoader__initialized) runner.epoch = 285 hook.before_train_epoch(runner) self.assertFalse(hook._restart_dataloader) self.assertTrue(runner.train_dataloader._DataLoader__initialized) @patch('mmdet.engine.hooks.yolox_mode_switch_hook.is_model_wrapper') def test_initialize_after_switching(self, mock_is_model_wrapper): # This simulates the resumption after the switching. mock_is_model_wrapper.return_value = True runner = Mock() runner.model = Mock() runner.model.module = Mock() runner.model.module.bbox_head.use_l1 = False runner.train_dataloader = Mock() runner.train_dataloader.persistent_workers = True runner.train_dataloader._DataLoader__initialized = True runner.epoch = 285 runner.max_epochs = 300 # epoch + 1 > max_epochs - num_last_epochs . hook = YOLOXModeSwitchHook(num_last_epochs=15) hook.before_train_epoch(runner) self.assertTrue(hook._restart_dataloader) self.assertTrue(runner.model.module.bbox_head.use_l1) self.assertFalse(runner.train_dataloader._DataLoader__initialized)
_base_ = './retinanet_r50_fpn_8xb8-amp-lsj-200e_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './retinanet_r50_fpn_lsj_200e_8x8_fp16_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
import pytest from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp from docarray.computation.tensorflow_backend import TensorFlowCompBackend from docarray.typing import TensorFlowTensor @pytest.mark.tensorflow def test_top_k_descending_false(): top_k = TensorFlowCompBackend.Retrieval.top_k a = TensorFlowTensor(tf.constant([1, 4, 2, 7, 4, 9, 2])) vals, indices = top_k(a, 3, descending=False) assert vals.tensor.shape == (1, 3) assert indices.tensor.shape == (1, 3) assert tnp.allclose(tnp.squeeze(vals.tensor), tf.constant([1, 2, 2])) assert tnp.allclose(tnp.squeeze(indices.tensor), tf.constant([0, 2, 6])) or ( tnp.allclose(tnp.squeeze.indices.tensor), tf.constant([0, 6, 2]), ) a = TensorFlowTensor(tf.constant([[1, 4, 2, 7, 4, 9, 2], [11, 6, 2, 7, 3, 10, 4]])) vals, indices = top_k(a, 3, descending=False) assert vals.tensor.shape == (2, 3) assert indices.tensor.shape == (2, 3) assert tnp.allclose(vals.tensor[0], tf.constant([1, 2, 2])) assert tnp.allclose(indices.tensor[0], tf.constant([0, 2, 6])) or tnp.allclose( indices.tensor[0], tf.constant([0, 6, 2]) ) assert tnp.allclose(vals.tensor[1], tf.constant([2, 3, 4])) assert tnp.allclose(indices.tensor[1], tf.constant([2, 4, 6])) @pytest.mark.tensorflow def test_top_k_descending_true(): top_k = TensorFlowCompBackend.Retrieval.top_k a = TensorFlowTensor(tf.constant([1, 4, 2, 7, 4, 9, 2])) vals, indices = top_k(a, 3, descending=True) assert vals.tensor.shape == (1, 3) assert indices.tensor.shape == (1, 3) assert tnp.allclose(tnp.squeeze(vals.tensor), tf.constant([9, 7, 4])) assert tnp.allclose(tnp.squeeze(indices.tensor), tf.constant([5, 3, 1])) a = TensorFlowTensor(tf.constant([[1, 4, 2, 7, 4, 9, 2], [11, 6, 2, 7, 3, 10, 4]])) vals, indices = top_k(a, 3, descending=True) assert vals.tensor.shape == (2, 3) assert indices.tensor.shape == (2, 3) assert tnp.allclose(vals.tensor[0], tf.constant([9, 7, 4])) assert tnp.allclose(indices.tensor[0], tf.constant([5, 3, 1])) assert tnp.allclose(vals.tensor[1], tf.constant([11, 10, 7])) assert tnp.allclose(indices.tensor[1], tf.constant([0, 5, 3]))
import pytest try: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp from docarray.computation.tensorflow_backend import TensorFlowCompBackend from docarray.typing import TensorFlowTensor except (ImportError, TypeError): pass @pytest.mark.tensorflow def test_top_k_descending_false(): top_k = TensorFlowCompBackend.Retrieval.top_k a = TensorFlowTensor(tf.constant([1, 4, 2, 7, 4, 9, 2])) vals, indices = top_k(a, 3, descending=False) assert vals.tensor.shape == (1, 3) assert indices.tensor.shape == (1, 3) assert tnp.allclose(tnp.squeeze(vals.tensor), tf.constant([1, 2, 2])) assert tnp.allclose(tnp.squeeze(indices.tensor), tf.constant([0, 2, 6])) or ( tnp.allclose(tnp.squeeze.indices.tensor), tf.constant([0, 6, 2]), ) a = TensorFlowTensor(tf.constant([[1, 4, 2, 7, 4, 9, 2], [11, 6, 2, 7, 3, 10, 4]])) vals, indices = top_k(a, 3, descending=False) assert vals.tensor.shape == (2, 3) assert indices.tensor.shape == (2, 3) assert tnp.allclose(vals.tensor[0], tf.constant([1, 2, 2])) assert tnp.allclose(indices.tensor[0], tf.constant([0, 2, 6])) or tnp.allclose( indices.tensor[0], tf.constant([0, 6, 2]) ) assert tnp.allclose(vals.tensor[1], tf.constant([2, 3, 4])) assert tnp.allclose(indices.tensor[1], tf.constant([2, 4, 6])) @pytest.mark.tensorflow def test_top_k_descending_true(): top_k = TensorFlowCompBackend.Retrieval.top_k a = TensorFlowTensor(tf.constant([1, 4, 2, 7, 4, 9, 2])) vals, indices = top_k(a, 3, descending=True) assert vals.tensor.shape == (1, 3) assert indices.tensor.shape == (1, 3) assert tnp.allclose(tnp.squeeze(vals.tensor), tf.constant([9, 7, 4])) assert tnp.allclose(tnp.squeeze(indices.tensor), tf.constant([5, 3, 1])) a = TensorFlowTensor(tf.constant([[1, 4, 2, 7, 4, 9, 2], [11, 6, 2, 7, 3, 10, 4]])) vals, indices = top_k(a, 3, descending=True) assert vals.tensor.shape == (2, 3) assert indices.tensor.shape == (2, 3) assert tnp.allclose(vals.tensor[0], tf.constant([9, 7, 4])) assert tnp.allclose(indices.tensor[0], tf.constant([5, 3, 1])) assert tnp.allclose(vals.tensor[1], tf.constant([11, 10, 7])) assert tnp.allclose(indices.tensor[1], tf.constant([0, 5, 3]))
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'Mask2Former' ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer' ]
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import SyncBuffersHook class TestSyncBuffersHook: def test_sync_buffers_hook(self): Runner = Mock() Runner.model = Mock() Hook = SyncBuffersHook() Hook._after_epoch(Runner)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import SyncBuffersHook class TestSyncBuffersHook: def test_sync_buffers_hook(self): Runner = Mock() Runner.model = Mock() Hook = SyncBuffersHook() Hook.after_epoch(Runner)
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmdet.core.mask import BitmapMasks, PolygonMasks def _check_fields(results, pipeline_results, keys): """Check data in fields from two results are same.""" for key in keys: if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert np.equal(results[key].to_ndarray(), pipeline_results[key].to_ndarray()).all() else: assert np.equal(results[key], pipeline_results[key]).all() assert results[key].dtype == pipeline_results[key].dtype def check_result_same(results, pipeline_results): """Check whether the `pipeline_results` is the same with the predefined `results`. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. """ # check image _check_fields(results, pipeline_results, results.get('img_fields', ['img'])) # check bboxes _check_fields(results, pipeline_results, results.get('bbox_fields', [])) # check masks _check_fields(results, pipeline_results, results.get('mask_fields', [])) # check segmentations _check_fields(results, pipeline_results, results.get('seg_fields', [])) # check gt_labels if 'gt_labels' in results: assert np.equal(results['gt_labels'], pipeline_results['gt_labels']).all() def construct_toy_data(poly2mask=True): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() # image results['img'] = img results['img_shape'] = img.shape results['img_fields'] = ['img'] # bboxes results['bbox_fields'] = ['gt_bboxes', 'gt_bboxes_ignore'] results['gt_bboxes'] = np.array([[0., 0., 2., 1.]], dtype=np.float32) results['gt_bboxes_ignore'] = np.array([[2., 0., 3., 1.]], dtype=np.float32) # labels results['gt_labels'] = np.array([1], dtype=np.int64) # masks results['mask_fields'] = ['gt_masks'] if poly2mask: gt_masks = np.array([[0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 2, 4) else: raw_masks = [[np.array([0, 0, 2, 0, 2, 1, 0, 1], dtype=np.float)]] results['gt_masks'] = PolygonMasks(raw_masks, 2, 4) # segmentations results['seg_fields'] = ['gt_semantic_seg'] results['gt_semantic_seg'] = img[..., 0] return results def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes def create_full_masks(gt_bboxes, img_w, img_h): xmin, ymin = gt_bboxes[:, 0:1], gt_bboxes[:, 1:2] xmax, ymax = gt_bboxes[:, 2:3], gt_bboxes[:, 3:4] gt_masks = np.zeros((len(gt_bboxes), img_h, img_w), dtype=np.uint8) for i in range(len(gt_bboxes)): gt_masks[i, int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1 gt_masks = BitmapMasks(gt_masks, img_h, img_w) return gt_masks
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmdet.core.mask import BitmapMasks, PolygonMasks def _check_fields(results, pipeline_results, keys): """Check data in fields from two results are same.""" for key in keys: if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert np.equal(results[key].to_ndarray(), pipeline_results[key].to_ndarray()).all() else: assert np.equal(results[key], pipeline_results[key]).all() assert results[key].dtype == pipeline_results[key].dtype def check_result_same(results, pipeline_results): """Check whether the `pipeline_results` is the same with the predefined `results`. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. """ # check image _check_fields(results, pipeline_results, results.get('img_fields', ['img'])) # check bboxes _check_fields(results, pipeline_results, results.get('bbox_fields', [])) # check masks _check_fields(results, pipeline_results, results.get('mask_fields', [])) # check segmentations _check_fields(results, pipeline_results, results.get('seg_fields', [])) # check gt_labels if 'gt_labels' in results: assert np.equal(results['gt_labels'], pipeline_results['gt_labels']).all() def construct_toy_data(poly2mask=True): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() # image results['img'] = img results['img_shape'] = img.shape results['img_fields'] = ['img'] # bboxes results['bbox_fields'] = ['gt_bboxes', 'gt_bboxes_ignore'] results['gt_bboxes'] = np.array([[0., 0., 2., 1.]], dtype=np.float32) results['gt_bboxes_ignore'] = np.array([[2., 0., 3., 1.]], dtype=np.float32) # labels results['gt_labels'] = np.array([1], dtype=np.int64) # masks results['mask_fields'] = ['gt_masks'] if poly2mask: gt_masks = np.array([[0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 2, 4) else: raw_masks = [[np.array([0, 0, 2, 0, 2, 1, 0, 1], dtype=np.float)]] results['gt_masks'] = PolygonMasks(raw_masks, 2, 4) # segmentations results['seg_fields'] = ['gt_semantic_seg'] results['gt_semantic_seg'] = img[..., 0] return results def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes
_base_ = './retinanet_r50_fpn_crop640-50e_coco.py' # model settings model = dict( # `pad_size_divisor=128` ensures the feature maps sizes # in `NAS_FPN` won't mismatch. data_preprocessor=dict(pad_size_divisor=128), neck=dict( _delete_=True, type='NASFPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, stack_times=7, start_level=1, norm_cfg=dict(type='BN', requires_grad=True)))
_base_ = './retinanet_r50_fpn_crop640_50e_coco.py' # model settings model = dict( # `pad_size_divisor=128` ensures the feature maps sizes # in `NAS_FPN` won't mismatch. data_preprocessor=dict(pad_size_divisor=128), neck=dict( _delete_=True, type='NASFPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, stack_times=7, start_level=1, norm_cfg=dict(type='BN', requires_grad=True)))
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.7.1' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.7.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
__version__ = '0.13.1' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install() if 'NO_VERSION_CHECK' not in os.environ: from .helper import is_latest_version is_latest_version()
__version__ = '0.13.0' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install() if 'NO_VERSION_CHECK' not in os.environ: from .helper import is_latest_version is_latest_version()
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_lumina"] = ["LuminaPipeline", "LuminaText2ImgPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_lumina import LuminaPipeline, LuminaText2ImgPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_lumina"] = ["LuminaText2ImgPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_lumina import LuminaText2ImgPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Backbone models""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class TimmBackboneConfig(PretrainedConfig): r""" This is the configuration class to store the configuration for a timm backbone [`TimmBackbone`]. It is used to instantiate a timm backbone model according to the specified arguments, defining the model. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone (`str`, *optional*): The timm checkpoint to load. num_channels (`int`, *optional*, defaults to 3): The number of input channels. features_only (`bool`, *optional*, defaults to `True`): Whether to output only the features or also the logits. use_pretrained_backbone (`bool`, *optional*, defaults to `True`): Whether to use a pretrained backbone. out_indices (`list[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). Will default to the last stage if unset. freeze_batch_norm_2d (`bool`, *optional*, defaults to `False`): Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. Example: ```python >>> from transformers import TimmBackboneConfig, TimmBackbone >>> # Initializing a timm backbone >>> configuration = TimmBackboneConfig("resnet50") >>> # Initializing a model from the configuration >>> model = TimmBackbone(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "timm_backbone" def __init__( self, backbone=None, num_channels=3, features_only=True, use_pretrained_backbone=True, out_indices=None, freeze_batch_norm_2d=False, **kwargs, ): super().__init__(**kwargs) self.backbone = backbone self.num_channels = num_channels self.features_only = features_only self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = True self.out_indices = out_indices if out_indices is not None else [-1] self.freeze_batch_norm_2d = freeze_batch_norm_2d __all__ = ["TimmBackboneConfig"]
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Backbone models""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class TimmBackboneConfig(PretrainedConfig): r""" This is the configuration class to store the configuration for a timm backbone [`TimmBackbone`]. It is used to instantiate a timm backbone model according to the specified arguments, defining the model. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone (`str`, *optional*): The timm checkpoint to load. num_channels (`int`, *optional*, defaults to 3): The number of input channels. features_only (`bool`, *optional*, defaults to `True`): Whether to output only the features or also the logits. use_pretrained_backbone (`bool`, *optional*, defaults to `True`): Whether to use a pretrained backbone. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). Will default to the last stage if unset. freeze_batch_norm_2d (`bool`, *optional*, defaults to `False`): Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. Example: ```python >>> from transformers import TimmBackboneConfig, TimmBackbone >>> # Initializing a timm backbone >>> configuration = TimmBackboneConfig("resnet50") >>> # Initializing a model from the configuration >>> model = TimmBackbone(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "timm_backbone" def __init__( self, backbone=None, num_channels=3, features_only=True, use_pretrained_backbone=True, out_indices=None, freeze_batch_norm_2d=False, **kwargs, ): super().__init__(**kwargs) self.backbone = backbone self.num_channels = num_channels self.features_only = features_only self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = True self.out_indices = out_indices if out_indices is not None else [-1] self.freeze_batch_norm_2d = freeze_batch_norm_2d __all__ = ["TimmBackboneConfig"]
from __future__ import annotations from pathlib import Path from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data, tmp_path: Path): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model, output_path=str(tmp_path)) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model, tmp_path: Path): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model, output_path=str(tmp_path)) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
from __future__ import annotations from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray import BaseDoc from docarray.typing import ImageUrl def test_set_image_url(): class MyDocument(BaseDoc): image_url: ImageUrl d = MyDocument(image_url="https://jina.ai/img.png") assert isinstance(d.image_url, ImageUrl) assert d.image_url == "https://jina.ai/img.png"
from docarray import BaseDoc from docarray.typing import ImageUrl def test_set_image_url(): class MyDocument(BaseDoc): image_url: ImageUrl d = MyDocument(image_url="https://jina.ai/img.png") assert isinstance(d.image_url, ImageUrl) assert d.image_url == "https://jina.ai/img.png"
from typing import TYPE_CHECKING if TYPE_CHECKING: from docarray import Document def image_getter(doc: 'Document'): if doc._metadata['image_type'] == 'uri': return doc.uri elif doc._metadata['image_type'] == 'PIL': from PIL import Image return Image.fromarray(doc.tensor) elif doc._metadata['image_type'] == 'ndarray': return doc.tensor def text_getter(doc: 'Document'): return doc.text def uri_getter(doc: 'Document'): return doc.uri def audio_getter(doc: 'Document'): return doc.uri or doc.tensor def video_getter(doc: 'Document'): return doc.uri or doc.tensor def mesh_getter(doc: 'Document'): return doc.uri or doc.tensor def tabular_getter(doc: 'Document'): return doc.uri def blob_getter(doc: 'Document'): return doc.uri or doc.blob def json_getter(doc: 'Document'): return doc.tags
from typing import TYPE_CHECKING if TYPE_CHECKING: from docarray import Document def image_getter(doc: 'Document'): if doc._metadata['image_type'] == 'uri': return doc.uri elif doc._metadata['image_type'] == 'PIL': from PIL import Image return Image.fromarray(doc.tensor) elif doc._metadata['image_type'] == 'ndarray': return doc.tensor def text_getter(doc: 'Document'): return doc.text def audio_getter(doc: 'Document'): return doc.uri or doc.tensor def video_getter(doc: 'Document'): return doc.uri or doc.tensor def mesh_getter(doc: 'Document'): return doc.uri or doc.tensor def tabular_getter(doc: 'Document'): return doc.uri def blob_getter(doc: 'Document'): return doc.uri or doc.blob def json_getter(doc: 'Document'): return doc.tags
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import CogVideoXTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class CogVideoXTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogVideoXTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True model_split_percents = [0.7, 0.7, 0.8] @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 1 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (1, 4, 8, 8) @property def output_shape(self): return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "time_embed_dim": 2, "text_embed_dim": 8, "num_layers": 2, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "patch_size": 2, "patch_size_t": None, "temporal_compression_ratio": 4, "max_text_seq_length": 8, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CogVideoXTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) class CogVideoX1_5TransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogVideoXTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (1, 4, 8, 8) @property def output_shape(self): return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "time_embed_dim": 2, "text_embed_dim": 8, "num_layers": 2, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "patch_size": 2, "patch_size_t": 2, "temporal_compression_ratio": 4, "max_text_seq_length": 8, "use_rotary_positional_embeddings": True, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CogVideoXTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import CogVideoXTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class CogVideoXTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogVideoXTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True model_split_percents = [0.7, 0.7, 0.8] @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 1 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (1, 4, 8, 8) @property def output_shape(self): return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "time_embed_dim": 2, "text_embed_dim": 8, "num_layers": 2, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "patch_size": 2, "patch_size_t": None, "temporal_compression_ratio": 4, "max_text_seq_length": 8, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CogVideoXTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) class CogVideoX1_5TransformerTests(ModelTesterMixin, unittest.TestCase): model_class = CogVideoXTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (1, 4, 8, 8) @property def output_shape(self): return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings. "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "time_embed_dim": 2, "text_embed_dim": 8, "num_layers": 2, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "patch_size": 2, "patch_size_t": 2, "temporal_compression_ratio": 4, "max_text_seq_length": 8, "use_rotary_positional_embeddings": True, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CogVideoXTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)