input
stringlengths
33
5k
output
stringlengths
32
5k
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GuardrailsOutputParser": "langchain_community.output_parsers.rail_parser", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GuardrailsOutputParser", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GuardrailsOutputParser": "langchain_community.output_parsers.rail_parser" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GuardrailsOutputParser", ]
# dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type='ConcatDataset', # VOCDataset will add different `dataset_type` in dataset.metainfo, # which will get error if using ConcatDataset. Adding # `ignore_keys` can avoid this error. ignore_keys=['dataset_type'], datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/test.txt', data_prefix=dict(sub_data_root='VOC2007/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL # VOC2012 defaults to use 'area'. val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator
# dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type='ConcatDataset', # VOCDataset will add different `DATASET_TYPE` in dataset.metainfo, # which will get error if using ConcatDataset. Adding # `ignore_keys` can avoid this error. ignore_keys=['DATASET_TYPE'], datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/test.txt', data_prefix=dict(sub_data_root='VOC2007/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL # VOC2012 defaults to use 'area'. val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator
# Copyright (c) OpenMMLab. All rights reserved. import bisect import os.path as osp import mmcv import torch.distributed as dist from mmcv.runner import DistEvalHook as BaseDistEvalHook from mmcv.runner import EvalHook as BaseEvalHook from torch.nn.modules.batchnorm import _BatchNorm def _calc_dynamic_intervals(start_interval, dynamic_interval_list): assert mmcv.is_list_of(dynamic_interval_list, tuple) dynamic_milestones = [0] dynamic_milestones.extend( [dynamic_interval[0] for dynamic_interval in dynamic_interval_list]) dynamic_intervals = [start_interval] dynamic_intervals.extend( [dynamic_interval[1] for dynamic_interval in dynamic_interval_list]) return dynamic_milestones, dynamic_intervals class EvalHook(BaseEvalHook): def __init__(self, *args, dynamic_intervals=None, **kwargs): super(EvalHook, self).__init__(*args, **kwargs) self.use_dynamic_intervals = dynamic_intervals is not None if self.use_dynamic_intervals: self.dynamic_milestones, self.dynamic_intervals = \ _calc_dynamic_intervals(self.interval, dynamic_intervals) def _decide_interval(self, runner): if self.use_dynamic_intervals: progress = runner.epoch if self.by_epoch else runner.iter step = bisect.bisect(self.dynamic_milestones, (progress + 1)) # Dynamically modify the evaluation interval self.interval = self.dynamic_intervals[step - 1] def before_train_epoch(self, runner): """Evaluate the model only at the start of training by epoch.""" self._decide_interval(runner) super().before_train_epoch(runner) def before_train_iter(self, runner): self._decide_interval(runner) super().before_train_iter(runner) def _do_evaluate(self, runner): """perform evaluation and save ckpt.""" if not self._should_evaluate(runner): return from mmdet.apis import single_gpu_test results = single_gpu_test(runner.model, self.dataloader, show=False) runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) key_score = self.evaluate(runner, results) if self.save_best: self._save_ckpt(runner, key_score) # Note: Considering that MMCV's EvalHook updated its interface in V1.3.16, # in order to avoid strong version dependency, we did not directly # inherit EvalHook but BaseDistEvalHook. class DistEvalHook(BaseDistEvalHook): def __init__(self, *args, dynamic_intervals=None, **kwargs): super(DistEvalHook, self).__init__(*args, **kwargs) self.use_dynamic_intervals = dynamic_intervals is not None if self.use_dynamic_intervals: self.dynamic_milestones, self.dynamic_intervals = \ _calc_dynamic_intervals(self.interval, dynamic_intervals) def _decide_interval(self, runner): if self.use_dynamic_intervals: progress = runner.epoch if self.by_epoch else runner.iter step = bisect.bisect(self.dynamic_milestones, (progress + 1)) # Dynamically modify the evaluation interval self.interval = self.dynamic_intervals[step - 1] def before_train_epoch(self, runner): """Evaluate the model only at the start of training by epoch.""" self._decide_interval(runner) super().before_train_epoch(runner) def before_train_iter(self, runner): self._decide_interval(runner) super().before_train_iter(runner) def _do_evaluate(self, runner): """perform evaluation and save ckpt.""" # Synchronization of BatchNorm's buffer (running_mean # and running_var) is not supported in the DDP of pytorch, # which may cause the inconsistent performance of models in # different ranks, so we broadcast BatchNorm's buffers # of rank 0 to other ranks to avoid this. if self.broadcast_bn_buffer: model = runner.model for name, module in model.named_modules(): if isinstance(module, _BatchNorm) and module.track_running_stats: dist.broadcast(module.running_var, 0) dist.broadcast(module.running_mean, 0) if not self._should_evaluate(runner): return tmpdir = self.tmpdir if tmpdir is None: tmpdir = osp.join(runner.work_dir, '.eval_hook') from mmdet.apis import multi_gpu_test results = multi_gpu_test( runner.model, self.dataloader, tmpdir=tmpdir, gpu_collect=self.gpu_collect) if runner.rank == 0: print('\n') runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) key_score = self.evaluate(runner, results) if self.save_best: self._save_ckpt(runner, key_score)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import torch.distributed as dist from mmcv.runner import DistEvalHook as BaseDistEvalHook from mmcv.runner import EvalHook as BaseEvalHook from torch.nn.modules.batchnorm import _BatchNorm class EvalHook(BaseEvalHook): def _do_evaluate(self, runner): """perform evaluation and save ckpt.""" if not self._should_evaluate(runner): return from mmdet.apis import single_gpu_test results = single_gpu_test(runner.model, self.dataloader, show=False) runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) key_score = self.evaluate(runner, results) if self.save_best: self._save_ckpt(runner, key_score) class DistEvalHook(BaseDistEvalHook): def _do_evaluate(self, runner): """perform evaluation and save ckpt.""" # Synchronization of BatchNorm's buffer (running_mean # and running_var) is not supported in the DDP of pytorch, # which may cause the inconsistent performance of models in # different ranks, so we broadcast BatchNorm's buffers # of rank 0 to other ranks to avoid this. if self.broadcast_bn_buffer: model = runner.model for name, module in model.named_modules(): if isinstance(module, _BatchNorm) and module.track_running_stats: dist.broadcast(module.running_var, 0) dist.broadcast(module.running_mean, 0) if not self._should_evaluate(runner): return tmpdir = self.tmpdir if tmpdir is None: tmpdir = osp.join(runner.work_dir, '.eval_hook') from mmdet.apis import multi_gpu_test results = multi_gpu_test( runner.model, self.dataloader, tmpdir=tmpdir, gpu_collect=self.gpu_collect) if runner.rank == 0: print('\n') runner.log_buffer.output['eval_iter_num'] = len(self.dataloader) key_score = self.evaluate(runner, results) if self.save_best: self._save_ckpt(runner, key_score)
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor', 'ImageTorchTensor'])
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor'])
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from docarray.document import DocumentSourceType from docarray.document.mixins.content import DocumentContentType from docarray import Document from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: 'GeneratorSourceType', request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ _kwargs = dict(extra_kwargs=kwargs) try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( _kwargs=kwargs, batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from docarray.document import DocumentSourceType from docarray.document.mixins.content import DocumentContentType from jina import Document from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: 'GeneratorSourceType', request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ _kwargs = dict(extra_kwargs=kwargs) try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( _kwargs=kwargs, batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Conversion script for the LDM checkpoints.""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNet2DConditionModel, UNet2DModel do_only_config = False do_only_weights = True do_only_renaming = False if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") args = parser.parse_args() config_parameters_to_change = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } key_parameters_to_change = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } subfolder = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: text = reader.read() config = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): model = UNet2DModel(**config) else: class_name = UNet2DConditionModel if "ldm-text2im-large-256" in args.repo_path else UNet2DModel model = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) config = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: config[value] = config[key] del config[key] config["down_block_types"] = [k.replace("UNetRes", "") for k in config["down_block_types"]] config["up_block_types"] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: state_dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) new_state_dict = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue has_changed = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: new_state_dict[".".join([new_key] + param_key.split(".")[1:])] = param_value has_changed = True if not has_changed: new_state_dict[param_key] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Conversion script for the LDM checkpoints.""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNet2DConditionModel, UNet2DModel do_only_config = False do_only_weights = True do_only_renaming = False if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") args = parser.parse_args() config_parameters_to_change = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } key_parameters_to_change = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } subfolder = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: text = reader.read() config = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): model = UNet2DModel(**config) else: class_name = UNet2DConditionModel if "ldm-text2im-large-256" in args.repo_path else UNet2DModel model = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) config = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: config[value] = config[key] del config[key] config["down_block_types"] = [k.replace("UNetRes", "") for k in config["down_block_types"]] config["up_block_types"] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: state_dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) new_state_dict = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue has_changed = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: new_state_dict[".".join([new_key] + param_key.split(".")[1:])] = param_value has_changed = True if not has_changed: new_state_dict[param_key] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
_base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict(type='AmpOptimWrapper')
_base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' # use FP16 fp16 = dict(loss_scale=512.)
from typing import Union import numpy as np import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.transforms import functional as _F @torch.jit.unused def to_image_tensor(inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> datapoints.Image: if isinstance(inpt, np.ndarray): output = torch.from_numpy(inpt).permute((2, 0, 1)).contiguous() elif isinstance(inpt, PIL.Image.Image): output = pil_to_tensor(inpt) elif isinstance(inpt, torch.Tensor): output = inpt else: raise TypeError(f"Input can either be a numpy array or a PIL image, but got {type(inpt)} instead.") return datapoints.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
from typing import Union import numpy as np import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_image_tensor(inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: if isinstance(inpt, np.ndarray): output = torch.from_numpy(inpt).permute((2, 0, 1)).contiguous() elif isinstance(inpt, PIL.Image.Image): output = pil_to_tensor(inpt) elif isinstance(inpt, torch.Tensor): output = inpt else: raise TypeError(f"Input can either be a numpy array or a PIL image, but got {type(inpt)} instead.") return features.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
_base_ = './mask-rcnn_r101_fpn_1x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
_base_ = './mask_rcnn_r101_fpn_1x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
from keras.src.utils.module_utils import tensorflow as tf def start_trace(logdir): tf.profiler.experimental.start(logdir=logdir) def stop_trace(save): tf.profiler.experimental.stop(save=save) def start_batch_trace(batch): batch_trace_context = tf.profiler.experimental.Trace( "Profiled batch", step_num=batch ) batch_trace_context.__enter__() return batch_trace_context def stop_batch_trace(batch_trace_context): batch_trace_context.__exit__(None, None, None)
import tensorflow as tf def start_trace(logdir): tf.profiler.experimental.start(logdir=logdir) def stop_trace(save): tf.profiler.experimental.stop(save=save)
"""Module to test base parser implementations.""" from langchain_core.exceptions import OutputParserException from langchain_core.language_models import GenericFakeChatModel from langchain_core.messages import AIMessage from langchain_core.output_parsers import ( BaseGenerationOutputParser, BaseTransformOutputParser, ) from langchain_core.outputs import ChatGeneration, Generation def test_base_generation_parser() -> None: """Test Base Generation Output Parser.""" class StrInvertCase(BaseGenerationOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore StrInvertCase.model_rebuild() model = GenericFakeChatModel(messages=iter([AIMessage(content="hEllo")])) chain = model | StrInvertCase() assert chain.invoke("") == "HeLLO" def test_base_transform_output_parser() -> None: """Test base transform output parser.""" class StrInvertCase(BaseTransformOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse(self, text: str) -> str: """Parse a single string into a specific format.""" raise NotImplementedError def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore model = GenericFakeChatModel(messages=iter([AIMessage(content="hello world")])) chain = model | StrInvertCase() # inputs to models are ignored, response is hard-coded in model definition chunks = list(chain.stream("")) assert chunks == ["HELLO", " ", "WORLD"]
"""Module to test base parser implementations.""" from typing import Optional as Optional from langchain_core.exceptions import OutputParserException from langchain_core.language_models import GenericFakeChatModel from langchain_core.messages import AIMessage from langchain_core.output_parsers import ( BaseGenerationOutputParser, BaseTransformOutputParser, ) from langchain_core.outputs import ChatGeneration, Generation def test_base_generation_parser() -> None: """Test Base Generation Output Parser.""" class StrInvertCase(BaseGenerationOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore StrInvertCase.model_rebuild() model = GenericFakeChatModel(messages=iter([AIMessage(content="hEllo")])) chain = model | StrInvertCase() assert chain.invoke("") == "HeLLO" def test_base_transform_output_parser() -> None: """Test base transform output parser.""" class StrInvertCase(BaseTransformOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse(self, text: str) -> str: """Parse a single string into a specific format.""" raise NotImplementedError def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore model = GenericFakeChatModel(messages=iter([AIMessage(content="hello world")])) chain = model | StrInvertCase() # inputs to models are ignored, response is hard-coded in model definition chunks = list(chain.stream("")) assert chunks == ["HELLO", " ", "WORLD"]
_base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
"""init.py.""" from llama_index.tools.code_interpreter.base import ( CodeInterpreterToolSpec, ) __all__ = ["CodeInterpreterToolSpec"]
"""init.py.""" from llama_index.tools.code_interpreter.base import ( CodeInterpreterToolSpec, ) __all__ = ["CodeInterpreterToolSpec"]
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( amplitude_to_DB, apply_beamforming, apply_codec, barkscale_fbanks, compute_deltas, compute_kaldi_pitch, create_dct, DB_to_amplitude, detect_pitch_frequency, edit_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "barkscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", ]
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, compute_kaldi_pitch, create_dct, DB_to_amplitude, detect_pitch_frequency, edit_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", ]
""" The pre-trained models produce embeddings of size 512 - 1024. However, when storing a large number of embeddings, this requires quite a lot of memory / storage. In this example, we reduce the dimensionality of the embeddings to e.g. 128 dimensions. This significantly reduces the required memory / storage while maintaining nearly the same performance. For dimensionality reduction, we compute embeddings for a large set of (representative) sentence. Then, we use PCA to find e.g. 128 principle components of our vector space. This allows us to maintain us much information as possible with only 128 dimensions. PCA gives us a matrix that down-projects vectors to 128 dimensions. We use this matrix and extend our original SentenceTransformer model with this linear downproject. Hence, the new SentenceTransformer model will produce directly embeddings with 128 dimensions without further changes needed. """ from datasets import load_dataset from sklearn.decomposition import PCA from sentence_transformers import SentenceTransformer, models import logging import random import numpy as np import torch from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Model for which we apply dimensionality reduction model_name = "all-MiniLM-L6-v2" model = SentenceTransformer(model_name) # New size for the embeddings new_dimension = 128 # We measure the performance of the original model # and later we will measure the performance with the reduces dimension size test_dataset = load_dataset("sentence-transformers/stsb", split="test") stsb_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], name="sts-test", ) logging.info("Original model performance:") stsb_evaluator(model) ######## Reduce the embedding dimensions ######## train_dataset = load_dataset("sentence-transformers/all-nli", "pair-score", split="train") nli_sentences = train_dataset["sentence1"] + train_dataset["sentence2"] random.shuffle(nli_sentences) # To determine the PCA matrix, we need some example sentence embeddings. # Here, we compute the embeddings for 20k random sentences from the AllNLI dataset pca_train_sentences = nli_sentences[0:20000] train_embeddings = model.encode(pca_train_sentences, convert_to_numpy=True) # Compute PCA on the train embeddings matrix pca = PCA(n_components=new_dimension) pca.fit(train_embeddings) pca_comp = np.asarray(pca.components_) # We add a dense layer to the model, so that it will produce directly embeddings with the new size dense = models.Dense( in_features=model.get_sentence_embedding_dimension(), out_features=new_dimension, bias=False, activation_function=torch.nn.Identity(), ) dense.linear.weight = torch.nn.Parameter(torch.tensor(pca_comp)) model.add_module("dense", dense) # Evaluate the model with the reduce embedding size logging.info("Model with {} dimensions:".format(new_dimension)) stsb_evaluator(model) # If you like, you can store the model on disc by uncommenting the following line model_name = model_name if "/" not in model_name else model_name.split("/")[-1] model.save(f"{model_name}-128dim") # You can then load the adapted model that produces 128 dimensional embeddings like this: # model = SentenceTransformer('models/my-128dim-model') # Or you can push the model to the Hugging Face Hub # model.push_to_hub(f'{model_name}-128dim')
""" The pre-trained models produce embeddings of size 512 - 1024. However, when storing a large number of embeddings, this requires quite a lot of memory / storage. In this example, we reduce the dimensionality of the embeddings to e.g. 128 dimensions. This significantly reduces the required memory / storage while maintaining nearly the same performance. For dimensionality reduction, we compute embeddings for a large set of (representative) sentence. Then, we use PCA to find e.g. 128 principle components of our vector space. This allows us to maintain us much information as possible with only 128 dimensions. PCA gives us a matrix that down-projects vectors to 128 dimensions. We use this matrix and extend our original SentenceTransformer model with this linear downproject. Hence, the new SentenceTransformer model will produce directly embeddings with 128 dimensions without further changes needed. """ from sklearn.decomposition import PCA from sentence_transformers import SentenceTransformer, LoggingHandler, util, evaluation, models, InputExample import logging import os import gzip import csv import random import numpy as np import torch #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Model for which we apply dimensionality reduction model = SentenceTransformer("all-MiniLM-L6-v2") # New size for the embeddings new_dimension = 128 # We use AllNLI as a source of sentences to compute PCA nli_dataset_path = "datasets/AllNLI.tsv.gz" # We use the STS benchmark dataset to see how much performance we loose by using the dimensionality reduction sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # We measure the performance of the original model # and later we will measure the performance with the reduces dimension size logger.info("Read STSbenchmark test dataset") eval_examples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "test": score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 eval_examples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) # Evaluate the original model on the STS benchmark dataset stsb_evaluator = evaluation.EmbeddingSimilarityEvaluator.from_input_examples(eval_examples, name="sts-benchmark-test") logger.info("Original model performance:") stsb_evaluator(model) ######## Reduce the embedding dimensions ######## # Read sentences from NLI dataset nli_sentences = set() with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: nli_sentences.add(row["sentence1"]) nli_sentences.add(row["sentence2"]) nli_sentences = list(nli_sentences) random.shuffle(nli_sentences) # To determine the PCA matrix, we need some example sentence embeddings. # Here, we compute the embeddings for 20k random sentences from the AllNLI dataset pca_train_sentences = nli_sentences[0:20000] train_embeddings = model.encode(pca_train_sentences, convert_to_numpy=True) # Compute PCA on the train embeddings matrix pca = PCA(n_components=new_dimension) pca.fit(train_embeddings) pca_comp = np.asarray(pca.components_) # We add a dense layer to the model, so that it will produce directly embeddings with the new size dense = models.Dense( in_features=model.get_sentence_embedding_dimension(), out_features=new_dimension, bias=False, activation_function=torch.nn.Identity(), ) dense.linear.weight = torch.nn.Parameter(torch.tensor(pca_comp)) model.add_module("dense", dense) # Evaluate the model with the reduce embedding size logger.info("Model with {} dimensions:".format(new_dimension)) stsb_evaluator(model) # If you like, you can store the model on disc by uncommenting the following line # model.save('models/my-128dim-model') # You can then load the adapted model that produces 128 dimensional embeddings like this: # model = SentenceTransformer('models/my-128dim-model')
import dataclasses from collections import defaultdict from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: # pragma: no cover from docarray.typing import T from docarray.document.strawberry_type import StrawberryDocument class StrawberryMixin: """Provide helper functions to convert to/from a Strawberry model""" def to_strawberry_type(self) -> 'StrawberryDocument': """Convert a Document object into a Strawberry type.""" from docarray.document.strawberry_type import StrawberryDocument as SD from docarray.document.strawberry_type import _NameScoreItem, _NamedScore _p_dict = {} for f in self.non_empty_fields: v = getattr(self, f) if f in ('matches', 'chunks'): _p_dict[f] = v.to_strawberry_type() elif f in ('scores', 'evaluations'): _p_dict[f] = [ _NameScoreItem(name=k, score=_NamedScore(**v.to_dict())) for k, v in v.items() ] else: _p_dict[f] = v return SD(**_p_dict) @classmethod def from_strawberry_type(cls: Type['T'], model) -> 'T': """Build a Document object from a Strawberry model :param model: the Strawberry data model object that represents a Document :return: a Document object """ from docarray import Document fields = {} _field_chunks, _field_matches = None, None if model.chunks: _field_chunks = [Document.from_strawberry_type(d) for d in model.chunks] if model.matches: _field_matches = [Document.from_strawberry_type(d) for d in model.matches] for field in dataclasses.fields(model): f_name = field.name value = getattr(model, f_name) if value is None: continue if f_name == 'scores' or f_name == 'evaluations': from docarray.score import NamedScore from docarray.document.strawberry_type import _NameScoreItem value: List[_NameScoreItem] fields[f_name] = defaultdict(NamedScore) for v in value: fields[f_name][v.name] = NamedScore(**dataclasses.asdict(v.score)) else: fields[f_name] = value d = Document(**fields) if _field_chunks: d.chunks = _field_chunks if _field_matches: d.matches = _field_matches return d
import dataclasses from collections import defaultdict from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: from docarray.typing import T from docarray.document.strawberry_type import StrawberryDocument class StrawberryMixin: """Provide helper functions to convert to/from a Strawberry model""" def to_strawberry_type(self) -> 'StrawberryDocument': """Convert a Document object into a Strawberry type.""" from docarray.document.strawberry_type import StrawberryDocument as SD from docarray.document.strawberry_type import _NameScoreItem, _NamedScore _p_dict = {} for f in self.non_empty_fields: v = getattr(self, f) if f in ('matches', 'chunks'): _p_dict[f] = v.to_strawberry_type() elif f in ('scores', 'evaluations'): _p_dict[f] = [ _NameScoreItem(name=k, score=_NamedScore(**v.to_dict())) for k, v in v.items() ] else: _p_dict[f] = v return SD(**_p_dict) @classmethod def from_strawberry_type(cls: Type['T'], model) -> 'T': """Build a Document object from a Strawberry model :param model: the Strawberry data model object that represents a Document :return: a Document object """ from docarray import Document fields = {} _field_chunks, _field_matches = None, None if model.chunks: _field_chunks = [Document.from_strawberry_type(d) for d in model.chunks] if model.matches: _field_matches = [Document.from_strawberry_type(d) for d in model.matches] for field in dataclasses.fields(model): f_name = field.name value = getattr(model, f_name) if value is None: continue if f_name == 'scores' or f_name == 'evaluations': from docarray.score import NamedScore from docarray.document.strawberry_type import _NameScoreItem value: List[_NameScoreItem] fields[f_name] = defaultdict(NamedScore) for v in value: fields[f_name][v.name] = NamedScore(**dataclasses.asdict(v.score)) else: fields[f_name] = value d = Document(**fields) if _field_chunks: d.chunks = _field_chunks if _field_matches: d.matches = _field_matches return d
_base_ = './tood_r50_fpn_1x_coco.py' max_epochs = 24 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # training schedule for 2x train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './tood_r50_fpn_1x_coco.py' max_epochs = 24 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # training schedule for 2x train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import io from typing import List import fitz import numpy as np import pdfplumber from jina import Document, DocumentArray, Executor, requests from jina.logging.logger import JinaLogger class PDFSegmenter(Executor): """ :class:`PDFCrafter` Extracts data (text and images) from PDF files. Stores images (`mime_type`=image/*) on chunk level ('c') and text segments (`mime_type`=text/plain) on chunk level ('c') in the root ('r') Document. """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) self.logger = JinaLogger(context=self.__class__.__name__) @requests def craft(self, docs: DocumentArray, **kwargs): """ Read PDF files. Extracts data from them. Checks if the input is a string of the filename, or if it's the file in bytes. It will then extract the data from the file, creating a list for images, and text. :param docs: Array of Documents. """ for doc in docs: pdf_img, pdf_text = self._parse_pdf(doc) if pdf_img is not None: images = self._extract_image(pdf_img) doc.chunks.extend( [Document(blob=img, mime_type='image/*') for img in images] ) if pdf_text is not None: texts = self._extract_text(pdf_text) doc.chunks.extend( [Document(text=t, mime_type='text/plain') for t in texts] ) def _parse_pdf(self, doc: Document): pdf_img = None pdf_text = None try: if doc.uri: pdf_img = fitz.open(doc.uri) pdf_text = pdfplumber.open(doc.uri) if doc.buffer: pdf_img = fitz.open(stream=doc.buffer, filetype='pdf') pdf_text = pdfplumber.open(io.BytesIO(doc.buffer)) except Exception as ex: self.logger.error(f'Failed to open due to: {ex}') return pdf_img, pdf_text def _extract_text(self, pdf_text) -> List[str]: # Extract text with pdf_text: texts = [] count = len(pdf_text.pages) for i in range(count): page = pdf_text.pages[i] texts.append(page.extract_text(x_tolerance=1, y_tolerance=1)) return texts def _extract_image(self, pdf_img) -> List['np.ndarray']: with pdf_img: images = [] for page in range(len(pdf_img)): for img in pdf_img.getPageImageList(page): xref = img[0] pix = fitz.Pixmap(pdf_img, xref) # read data from buffer and reshape the array into 3-d format np_arr = ( np.frombuffer(pix.samples, dtype=np.uint8) .reshape(pix.h, pix.w, pix.n) .astype('float32') ) if pix.n - pix.alpha < 4: # if gray or RGB if pix.n == 1: # convert gray to rgb images.append(np.concatenate((np_arr,) * 3, -1)) elif pix.n == 4: # remove transparency layer images.append(np_arr[..., :3]) else: images.append(np_arr) else: # if CMYK: pix = fitz.Pixmap(fitz.csRGB, pix) # Convert to RGB np_arr = ( np.frombuffer(pix.samples, dtype=np.uint8) .reshape(pix.h, pix.w, pix.n) .astype('float32') ) images.append(np_arr) return images
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import io from typing import List import fitz import numpy as np import pdfplumber from jina import Document, DocumentArray, Executor, requests from jina.logging.logger import JinaLogger class PDFSegmenter(Executor): """ :class:`PDFCrafter` Extracts data (text and images) from PDF files. Stores images (`mime_type`=image/*) on chunk level ('c') and text segments (`mime_type`=text/plain) on chunk level ('c') in the root ('r') Document. """ def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) self.logger = JinaLogger(context=self.__class__.__name__) @requests def craft(self, docs: DocumentArray, **kwargs): """ Read PDF files. Extracts data from them. Checks if the input is a string of the filename, or if it's the file in bytes. It will then extract the data from the file, creating a list for images, and text. :param docs: Array of Documents. """ for doc in docs: pdf_img, pdf_text = self._parse_pdf(doc) if pdf_img is not None: images = self._extract_image(pdf_img) doc.chunks.extend( [Document(blob=img, mime_type='image/*') for img in images] ) if pdf_text is not None: texts = self._extract_text(pdf_text) doc.chunks.extend( [Document(text=t, mime_type='text/plain') for t in texts] ) def _parse_pdf(self, doc: Document): pdf_img = None pdf_text = None try: if doc.uri: pdf_img = fitz.open(doc.uri) pdf_text = pdfplumber.open(doc.uri) if doc.buffer: pdf_img = fitz.open(stream=doc.buffer, filetype='pdf') pdf_text = pdfplumber.open(io.BytesIO(doc.buffer)) except Exception as ex: self.logger.error(f'Failed to open due to: {ex}') return pdf_img, pdf_text def _extract_text(self, pdf_text) -> List[str]: # Extract text with pdf_text: texts = [] count = len(pdf_text.pages) for i in range(count): page = pdf_text.pages[i] texts.append(page.extract_text(x_tolerance=1, y_tolerance=1)) return texts def _extract_image(self, pdf_img) -> List['np.ndarray']: with pdf_img: images = [] for page in range(len(pdf_img)): for img in pdf_img.getPageImageList(page): xref = img[0] pix = fitz.Pixmap(pdf_img, xref) # read data from buffer and reshape the array into 3-d format np_arr = ( np.frombuffer(pix.samples, dtype=np.uint8) .reshape(pix.h, pix.w, pix.n) .astype('float32') ) if pix.n - pix.alpha < 4: # if gray or RGB if pix.n == 1: # convert gray to rgb images.append(np.concatenate((np_arr,) * 3, -1)) elif pix.n == 4: # remove transparency layer images.append(np_arr[..., :3]) else: images.append(np_arr) else: # if CMYK: pix = fitz.Pixmap(fitz.csRGB, pix) # Convert to RGB np_arr = ( np.frombuffer(pix.samples, dtype=np.uint8) .reshape(pix.h, pix.w, pix.n) .astype('float32') ) images.append(np_arr) return images
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FSAF, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FSAF, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
import unittest import torch from mmengine.data import PixelData from mmengine.testing import assert_allclose from mmdet.models.seg_heads import PanopticFPNHead from mmdet.structures import DetDataSample class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=1, inner_channels=1) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
import unittest import torch from mmengine.data import PixelData from mmengine.testing import assert_allclose from mmdet.data_elements import DetDataSample from mmdet.models.seg_heads import PanopticFPNHead class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=1, inner_channels=1) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
import numpy as np from sklearn.datasets import make_classification import xgboost as xgb from xgboost.testing.updater import get_basescore def test_exp_family() -> None: X, y = make_classification(n_samples=128, n_classes=2, weights=[0.8, 0.2]) clf = xgb.train( {"objective": "binary:logistic"}, xgb.QuantileDMatrix(X, y), num_boost_round=1 ) reg = xgb.train( {"objective": "reg:logistic"}, xgb.QuantileDMatrix(X, y), num_boost_round=1 ) clf1 = xgb.train( {"objective": "binary:logitraw"}, xgb.QuantileDMatrix(X, y), num_boost_round=1 ) # The base score stored in the booster model is un-transformed np.testing.assert_allclose([get_basescore(m) for m in (reg, clf, clf1)], y.mean()) X, y = make_classification(weights=[0.8, 0.2], random_state=2025) clf = xgb.train( {"objective": "binary:logistic", "scale_pos_weight": 4.0}, xgb.QuantileDMatrix(X, y), num_boost_round=1, ) score = get_basescore(clf) np.testing.assert_allclose(score, 0.5, rtol=1e-3)
import numpy as np from sklearn.datasets import make_classification import xgboost as xgb from xgboost.testing.updater import get_basescore def test_exp_family() -> None: X, y = make_classification(n_samples=128, n_classes=2, weights=[0.8, 0.2]) clf = xgb.train( {"objective": "binary:logistic"}, xgb.QuantileDMatrix(X, y), num_boost_round=1 ) reg = xgb.train( {"objective": "reg:logistic"}, xgb.QuantileDMatrix(X, y), num_boost_round=1 ) clf1 = xgb.train( {"objective": "binary:logitraw"}, xgb.QuantileDMatrix(X, y), num_boost_round=1 ) # The base score stored in the booster model is un-transformed np.testing.assert_allclose([get_basescore(m) for m in (reg, clf, clf1)], y.mean())
import hashlib import logging from os import PathLike from pathlib import Path from typing import Union import torch from torchaudio._internal import download_url_to_file _LG = logging.getLogger(__name__) def _get_local_path(key): path = Path(torch.hub.get_dir()) / "torchaudio" / Path(key) path.parent.mkdir(parents=True, exist_ok=True) return path def _download(key, path, progress): url = f"https://download.pytorch.org/torchaudio/{key}" download_url_to_file(url, path, progress=progress) def _get_hash(path, hash, chunk_size=1028): m = hashlib.sha256() with open(path, "rb") as file: data = file.read(chunk_size) while data: m.update(data) data = file.read(chunk_size) return m.hexdigest() def download_asset( key: str, hash: str = "", path: Union[str, PathLike] = "", *, progress: bool = True, ) -> str: """Download and store torchaudio assets to local file system. If a file exists at the download path, then that path is returned with or without hash validation. Args: key (str): The asset identifier. hash (str, optional): The value of SHA256 hash of the asset. If provided, it is used to verify the downloaded / cached object. If not provided, then no hash validation is performed. This means if a file exists at the download path, then the path is returned as-is without verifying the identity of the file. path (path-like object, optional): By default, the downloaded asset is saved in a directory under :py:func:`torch.hub.get_dir` and intermediate directories based on the given `key` are created. This argument can be used to overwrite the target location. When this argument is provided, all the intermediate directories have to be created beforehand. progress (bool): Whether to show progress bar for downloading. Default: ``True``. Note: Currently the valid key values are the route on ``download.pytorch.org/torchaudio``, but this is an implementation detail. Returns: str: The path to the asset on the local file system. """ path = path or _get_local_path(key) if path.exists(): _LG.info("The local file (%s) exists. Skipping the download.", path) else: _LG.info("Downloading %s to %s", key, path) _download(key, path, progress=progress) if hash: _LG.info("Verifying the hash value.") digest = _get_hash(path, hash) if digest != hash: raise ValueError( f"The hash value of the downloaded file ({path}), '{digest}' does not match " f"the provided hash value, '{hash}'." ) _LG.info("Hash validated.") return str(path)
import hashlib import logging from os import PathLike from pathlib import Path from typing import Union import torch _LG = logging.getLogger(__name__) def _get_local_path(key): path = Path(torch.hub.get_dir()) / "torchaudio" / Path(key) path.parent.mkdir(parents=True, exist_ok=True) return path def _download(key, path, progress): url = f"https://download.pytorch.org/torchaudio/{key}" torch.hub.download_url_to_file(url, path, progress=progress) def _get_hash(path, hash, chunk_size=1028): m = hashlib.sha256() with open(path, "rb") as file: data = file.read(chunk_size) while data: m.update(data) data = file.read(chunk_size) return m.hexdigest() def download_asset( key: str, hash: str = "", path: Union[str, PathLike] = "", *, progress: bool = True, ) -> str: """Download and store torchaudio assets to local file system. If a file exists at the download path, then that path is returned with or without hash validation. Args: key (str): The asset identifier. hash (str, optional): The value of SHA256 hash of the asset. If provided, it is used to verify the downloaded / cached object. If not provided, then no hash validation is performed. This means if a file exists at the download path, then the path is returned as-is without verifying the identity of the file. path (path-like object, optional): By default, the downloaded asset is saved in a directory under :py:func:`torch.hub.get_dir` and intermediate directories based on the given `key` are created. This argument can be used to overwrite the target location. When this argument is provided, all the intermediate directories have to be created beforehand. progress (bool): Whether to show progress bar for downloading. Default: ``True``. Note: Currently the valid key values are the route on ``download.pytorch.org/torchaudio``, but this is an implementation detail. Returns: str: The path to the asset on the local file system. """ path = path or _get_local_path(key) if path.exists(): _LG.info("The local file (%s) exists. Skipping the download.", path) else: _LG.info("Downloading %s to %s", key, path) _download(key, path, progress=progress) if hash: _LG.info("Verifying the hash value.") digest = _get_hash(path, hash) if digest != hash: raise ValueError( f"The hash value of the downloaded file ({path}), '{digest}' does not match " f"the provided hash value, '{hash}'." ) _LG.info("Hash validated.") return str(path)
_base_ = '../rpn/rpn_r50_fpn_1x_coco.py' model = dict( rpn_head=dict( _delete_=True, type='GARPNHead', in_channels=256, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=8, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[8], strides=[4, 8, 16, 32, 64]), anchor_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.14, 0.14]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.11, 0.11]), loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), # model training and testing settings train_cfg=dict( rpn=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, center_ratio=0.2, ignore_ratio=0.5)), test_cfg=dict(rpn=dict(nms_post=1000))) optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
_base_ = '../rpn/rpn_r50_fpn_1x_coco.py' model = dict( rpn_head=dict( _delete_=True, type='GARPNHead', in_channels=256, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=8, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[8], strides=[4, 8, 16, 32, 64]), anchor_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.14, 0.14]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.07, 0.07, 0.11, 0.11]), loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), # model training and testing settings train_cfg=dict( rpn=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, center_ratio=0.2, ignore_ratio=0.5)), test_cfg=dict(rpn=dict(nms_post=1000))) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
from __future__ import annotations import csv import logging import os from typing import TYPE_CHECKING import torch from torch.utils.data import DataLoader from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator from sentence_transformers.util import batch_to_device if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer logger = logging.getLogger(__name__) class LabelAccuracyEvaluator(SentenceEvaluator): """ Evaluate a model based on its accuracy on a labeled dataset This requires a model with LossFunction.SOFTMAX The results are written in a CSV. If a CSV already exists, then values are appended. """ def __init__(self, dataloader: DataLoader, name: str = "", softmax_model=None, write_csv: bool = True): """ Constructs an evaluator for the given dataset Args: dataloader (DataLoader): the data for the evaluation """ super().__init__() self.dataloader = dataloader self.name = name self.softmax_model = softmax_model if name: name = "_" + name self.write_csv = write_csv self.csv_file = "accuracy_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "accuracy"] self.primary_metric = "accuracy" def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: model.eval() total = 0 correct = 0 if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("Evaluation on the " + self.name + " dataset" + out_txt) self.dataloader.collate_fn = model.smart_batching_collate for step, batch in enumerate(self.dataloader): features, label_ids = batch for idx in range(len(features)): features[idx] = batch_to_device(features[idx], model.device) label_ids = label_ids.to(model.device) with torch.no_grad(): _, prediction = self.softmax_model(features, labels=None) total += prediction.size(0) correct += torch.argmax(prediction, dim=1).eq(label_ids).sum().item() accuracy = correct / total logger.info("Accuracy: {:.4f} ({}/{})\n".format(accuracy, correct, total)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) if not os.path.isfile(csv_path): with open(csv_path, newline="", mode="w", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(self.csv_headers) writer.writerow([epoch, steps, accuracy]) else: with open(csv_path, newline="", mode="a", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow([epoch, steps, accuracy]) metrics = {"accuracy": accuracy} metrics = self.prefix_name_to_metrics(metrics, self.name) self.store_metrics_in_model_card_data(model, metrics) return metrics
import csv import logging import os from typing import TYPE_CHECKING, Dict import torch from torch.utils.data import DataLoader from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator from sentence_transformers.util import batch_to_device if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer logger = logging.getLogger(__name__) class LabelAccuracyEvaluator(SentenceEvaluator): """ Evaluate a model based on its accuracy on a labeled dataset This requires a model with LossFunction.SOFTMAX The results are written in a CSV. If a CSV already exists, then values are appended. """ def __init__(self, dataloader: DataLoader, name: str = "", softmax_model=None, write_csv: bool = True): """ Constructs an evaluator for the given dataset Args: dataloader (DataLoader): the data for the evaluation """ super().__init__() self.dataloader = dataloader self.name = name self.softmax_model = softmax_model if name: name = "_" + name self.write_csv = write_csv self.csv_file = "accuracy_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "accuracy"] self.primary_metric = "accuracy" def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: model.eval() total = 0 correct = 0 if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("Evaluation on the " + self.name + " dataset" + out_txt) self.dataloader.collate_fn = model.smart_batching_collate for step, batch in enumerate(self.dataloader): features, label_ids = batch for idx in range(len(features)): features[idx] = batch_to_device(features[idx], model.device) label_ids = label_ids.to(model.device) with torch.no_grad(): _, prediction = self.softmax_model(features, labels=None) total += prediction.size(0) correct += torch.argmax(prediction, dim=1).eq(label_ids).sum().item() accuracy = correct / total logger.info("Accuracy: {:.4f} ({}/{})\n".format(accuracy, correct, total)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) if not os.path.isfile(csv_path): with open(csv_path, newline="", mode="w", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(self.csv_headers) writer.writerow([epoch, steps, accuracy]) else: with open(csv_path, newline="", mode="a", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow([epoch, steps, accuracy]) metrics = {"accuracy": accuracy} metrics = self.prefix_name_to_metrics(metrics, self.name) self.store_metrics_in_model_card_data(model, metrics) return metrics
import torch import torch.nn.functional as F from ..utils import _log_api_usage_once def sigmoid_focal_loss( inputs: torch.Tensor, targets: torch.Tensor, alpha: float = 0.25, gamma: float = 2, reduction: str = "none", ) -> torch.Tensor: """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (Tensor): A float tensor of arbitrary shape. The predictions for each example. targets (Tensor): A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha (float): Weighting factor in range [0, 1] to balance positive vs negative examples or -1 for ignore. Default: ``0.25``. gamma (float): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Default: ``2``. reduction (string): ``'none'`` | ``'mean'`` | ``'sum'`` ``'none'``: No reduction will be applied to the output. ``'mean'``: The output will be averaged. ``'sum'``: The output will be summed. Default: ``'none'``. Returns: Loss tensor with the reduction option applied. """ # Original implementation from https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/focal_loss.py if not (0 <= alpha <= 1) or alpha != -1: raise ValueError(f"Invalid alpha value: {alpha}. alpha must be in the range [0,1] or -1 for ignore.") if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(sigmoid_focal_loss) p = torch.sigmoid(inputs) ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = p * targets + (1 - p) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss # Check reduction option and return loss accordingly if reduction == "none": pass elif reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() else: raise ValueError( f"Invalid Value for arg 'reduction': '{reduction} \n Supported reduction modes: 'none', 'mean', 'sum'" ) return loss
import torch import torch.nn.functional as F from ..utils import _log_api_usage_once def sigmoid_focal_loss( inputs: torch.Tensor, targets: torch.Tensor, alpha: float = 0.25, gamma: float = 2, reduction: str = "none", ) -> torch.Tensor: """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (Tensor): A float tensor of arbitrary shape. The predictions for each example. targets (Tensor): A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha (float): Weighting factor in range (0,1) to balance positive vs negative examples or -1 for ignore. Default: ``0.25``. gamma (float): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Default: ``2``. reduction (string): ``'none'`` | ``'mean'`` | ``'sum'`` ``'none'``: No reduction will be applied to the output. ``'mean'``: The output will be averaged. ``'sum'``: The output will be summed. Default: ``'none'``. Returns: Loss tensor with the reduction option applied. """ # Original implementation from https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/focal_loss.py if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(sigmoid_focal_loss) p = torch.sigmoid(inputs) ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = p * targets + (1 - p) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss # Check reduction option and return loss accordingly if reduction == "none": pass elif reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() else: raise ValueError( f"Invalid Value for arg 'reduction': '{reduction} \n Supported reduction modes: 'none', 'mean', 'sum'" ) return loss
from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("sparse-embedding/splade-distilbert-base-uncased-init") guide = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseCachedGISTEmbedLoss( model, guide, mini_batch_size=64, margin_strategy="relative", # or "relative" (e.g., margin=0.05 for max. 95% of positive similarity) margin=0.1, ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() # TODO: Investigate if it's working with a test, seems that the problem is hparam and not the cache part
from datasets import Dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseCachedGISTEmbedLoss, SparseEncoder, SparseEncoderTrainer, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create a small toy dataset train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) # Initialize the sparse loss with a guide model guide = SparseEncoder( modules=[ MLMTransformer("prithivida/Splade_PP_en_v1"), SpladePooling(pooling_strategy="max"), ], device="cuda:0", ) loss = SparseCachedGISTEmbedLoss(model, guide=guide) # Create the trainer trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) # Train the model trainer.train()
# Copyright (c) OpenMMLab. All rights reserved. from pathlib import Path import mmcv import torch from mmcv.runner import load_checkpoint from .. import build_detector from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class KnowledgeDistillationSingleStageDetector(SingleStageDetector): r"""Implementation of `Distilling the Knowledge in a Neural Network. <https://arxiv.org/abs/1503.02531>`_. Args: teacher_config (str | dict): Config file path or the config object of teacher model. teacher_ckpt (str, optional): Checkpoint path of teacher model. If left as None, the model will not load any weights. """ def __init__(self, backbone, neck, bbox_head, teacher_config, teacher_ckpt=None, eval_teacher=True, train_cfg=None, test_cfg=None, pretrained=None): super().__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained) self.eval_teacher = eval_teacher # Build teacher model if isinstance(teacher_config, (str, Path)): teacher_config = mmcv.Config.fromfile(teacher_config) self.teacher_model = build_detector(teacher_config['model']) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None): """ Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. img_metas (list[dict]): A List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. gt_bboxes (list[Tensor]): Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): Class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): Specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ x = self.extract_feat(img) with torch.no_grad(): teacher_x = self.teacher_model.extract_feat(img) out_teacher = self.teacher_model.bbox_head(teacher_x) losses = self.bbox_head.forward_train(x, out_teacher, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore) return losses def cuda(self, device=None): """Since teacher_model is registered as a plain object, it is necessary to put the teacher model to cuda when calling cuda function.""" self.teacher_model.cuda(device=device) return super().cuda(device=device) def train(self, mode=True): """Set the same train mode for teacher and student model.""" if self.eval_teacher: self.teacher_model.train(False) else: self.teacher_model.train(mode) super().train(mode) def __setattr__(self, name, value): """Set attribute, i.e. self.name = value This reloading prevent the teacher model from being registered as a nn.Module. The teacher module is registered as a plain object, so that the teacher parameters will not show up when calling ``self.parameters``, ``self.modules``, ``self.children`` methods. """ if name == 'teacher_model': object.__setattr__(self, name, value) else: super().__setattr__(name, value)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmcv.runner import load_checkpoint from .. import build_detector from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class KnowledgeDistillationSingleStageDetector(SingleStageDetector): r"""Implementation of `Distilling the Knowledge in a Neural Network. <https://arxiv.org/abs/1503.02531>`_. Args: teacher_config (str | dict): Config file path or the config object of teacher model. teacher_ckpt (str, optional): Checkpoint path of teacher model. If left as None, the model will not load any weights. """ def __init__(self, backbone, neck, bbox_head, teacher_config, teacher_ckpt=None, eval_teacher=True, train_cfg=None, test_cfg=None, pretrained=None): super().__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained) self.eval_teacher = eval_teacher # Build teacher model if isinstance(teacher_config, str): teacher_config = mmcv.Config.fromfile(teacher_config) self.teacher_model = build_detector(teacher_config['model']) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None): """ Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. img_metas (list[dict]): A List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. gt_bboxes (list[Tensor]): Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): Class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): Specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ x = self.extract_feat(img) with torch.no_grad(): teacher_x = self.teacher_model.extract_feat(img) out_teacher = self.teacher_model.bbox_head(teacher_x) losses = self.bbox_head.forward_train(x, out_teacher, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore) return losses def cuda(self, device=None): """Since teacher_model is registered as a plain object, it is necessary to put the teacher model to cuda when calling cuda function.""" self.teacher_model.cuda(device=device) return super().cuda(device=device) def train(self, mode=True): """Set the same train mode for teacher and student model.""" if self.eval_teacher: self.teacher_model.train(False) else: self.teacher_model.train(mode) super().train(mode) def __setattr__(self, name, value): """Set attribute, i.e. self.name = value This reloading prevent the teacher model from being registered as a nn.Module. The teacher module is registered as a plain object, so that the teacher parameters will not show up when calling ``self.parameters``, ``self.modules``, ``self.children`` methods. """ if name == 'teacher_model': object.__setattr__(self, name, value) else: super().__setattr__(name, value)
import torch import torchaudio.prototype.transforms as T from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class Transforms(TestBaseMixin): @nested_params( ["Convolve", "FFTConvolve"], ["full", "valid", "same"], ) def test_Convolve(self, cls, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) convolve = getattr(T, cls)(mode=mode).to(device=self.device, dtype=self.dtype) output = convolve(x, y) ts_output = torch_script(convolve)(x, y) self.assertEqual(ts_output, output) def test_Speed(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=self.dtype, device=self.device) speed = T.Speed(1000, 0.9).to(self.device, self.dtype) output = speed(waveform, lengths) ts_output = torch_script(speed)(waveform, lengths) self.assertEqual(ts_output, output) def test_SpeedPerturbation(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=self.dtype, device=self.device) speed = T.SpeedPerturbation(1000, [0.9]).to(self.device, self.dtype) output = speed(waveform, lengths) ts_output = torch_script(speed)(waveform, lengths) self.assertEqual(ts_output, output) @nested_params([True, False]) def test_AddNoise(self, use_lengths): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) if use_lengths: lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) else: lengths = None snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 add_noise = T.AddNoise().to(self.device, self.dtype) output = add_noise(waveform, noise, snr, lengths) ts_output = torch_script(add_noise)(waveform, noise, snr, lengths) self.assertEqual(ts_output, output) def test_Preemphasis(self): waveform = torch.rand(3, 4, 10, dtype=self.dtype, device=self.device) preemphasis = T.Preemphasis(coeff=0.97).to(dtype=self.dtype, device=self.device) output = preemphasis(waveform) ts_output = torch_script(preemphasis)(waveform) self.assertEqual(ts_output, output) def test_Deemphasis(self): waveform = torch.rand(3, 4, 10, dtype=self.dtype, device=self.device) deemphasis = T.Deemphasis(coeff=0.97).to(dtype=self.dtype, device=self.device) output = deemphasis(waveform) ts_output = torch_script(deemphasis)(waveform) self.assertEqual(ts_output, output)
import torch import torchaudio.prototype.transforms as T from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class Transforms(TestBaseMixin): @nested_params( ["Convolve", "FFTConvolve"], ["full", "valid", "same"], ) def test_Convolve(self, cls, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) convolve = getattr(T, cls)(mode=mode).to(device=self.device, dtype=self.dtype) output = convolve(x, y) ts_output = torch_script(convolve)(x, y) self.assertEqual(ts_output, output) def test_Speed(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=self.dtype, device=self.device) speed = T.Speed(1000, 0.9).to(self.device, self.dtype) output = speed(waveform, lengths) ts_output = torch_script(speed)(waveform, lengths) self.assertEqual(ts_output, output) def test_SpeedPerturbation(self): leading_dims = (3, 2) time = 200 waveform = torch.rand(*leading_dims, time, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, time, leading_dims, dtype=self.dtype, device=self.device) speed = T.SpeedPerturbation(1000, [0.9]).to(self.device, self.dtype) output = speed(waveform, lengths) ts_output = torch_script(speed)(waveform, lengths) self.assertEqual(ts_output, output) def test_AddNoise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 add_noise = T.AddNoise().to(self.device, self.dtype) output = add_noise(waveform, noise, lengths, snr) ts_output = torch_script(add_noise)(waveform, noise, lengths, snr) self.assertEqual(ts_output, output) def test_Preemphasis(self): waveform = torch.rand(3, 4, 10, dtype=self.dtype, device=self.device) preemphasis = T.Preemphasis(coeff=0.97).to(dtype=self.dtype, device=self.device) output = preemphasis(waveform) ts_output = torch_script(preemphasis)(waveform) self.assertEqual(ts_output, output) def test_Deemphasis(self): waveform = torch.rand(3, 4, 10, dtype=self.dtype, device=self.device) deemphasis = T.Deemphasis(coeff=0.97).to(dtype=self.dtype, device=self.device) output = deemphasis(waveform) ts_output = torch_script(deemphasis)(waveform) self.assertEqual(ts_output, output)
_base_ = './tood_r50_fpn_1x_coco.py' max_epochs = 24 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # training schedule for 2x train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './tood_r50_fpn_1x_coco.py' max_epochs = 24 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # training schedule for 2x train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
"""Test Bedrock multi-modal LLM.""" import json from io import BytesIO import pytest from unittest.mock import patch, AsyncMock from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.bedrock import BedrockMultiModal from llama_index.core.schema import ImageDocument def test_class_name(): """Test class name.""" llm = BedrockMultiModal() assert llm.class_name() == "bedrock_multi_modal_llm" def test_init(): """Test initialization.""" llm = BedrockMultiModal(max_tokens=400) assert llm.max_tokens == 400 assert llm.model == "anthropic.claude-3-sonnet-20240229-v1:0" def test_inheritance(): """Test inheritance.""" assert issubclass(BedrockMultiModal, MultiModalLLM) def test_model_validation(): """Test model validation.""" with pytest.raises(ValueError, match="Invalid model"): BedrockMultiModal(model="invalid-model") @patch("boto3.Session") def test_completion(mock_session): """Test completion.""" # Mock the invoke_model response mock_client = mock_session.return_value.client.return_value mock_response = { "body": BytesIO(json.dumps({"content": [{"text": "test response"}]}).encode()), "ResponseMetadata": { "HTTPHeaders": { "x-amzn-bedrock-input-token-count": "100", "x-amzn-bedrock-output-token-count": "50", } }, } mock_client.invoke_model.return_value = mock_response llm = BedrockMultiModal() image_doc = ImageDocument(image="base64_encoded_string") response = llm.complete(prompt="test prompt", image_documents=[image_doc]) assert response.text == "test response" assert response.additional_kwargs["input_tokens"] == "100" assert response.additional_kwargs["output_tokens"] == "50" # Verify the call was made with correct parameters mock_client.invoke_model.assert_called_once() @pytest.mark.asyncio @patch("aioboto3.Session") async def test_async_completion(mock_session): """Test async completion.""" # Mock the async client mock_client = mock_session.return_value.client.return_value.__aenter__.return_value mock_body = AsyncMock() mock_body.read.return_value = json.dumps( {"content": [{"text": "async test response"}]} ).encode() mock_response = { "body": mock_body, "ResponseMetadata": { "HTTPHeaders": { "x-amzn-bedrock-input-token-count": "100", "x-amzn-bedrock-output-token-count": "50", } }, } mock_client.invoke_model.return_value = mock_response llm = BedrockMultiModal() image_doc = ImageDocument(image="base64_encoded_string") response = await llm.acomplete(prompt="test prompt", image_documents=[image_doc]) assert response.text == "async test response" assert response.additional_kwargs["input_tokens"] == "100" assert response.additional_kwargs["output_tokens"] == "50" mock_body.read.assert_awaited_once()
"""Test Bedrock multi-modal LLM.""" import json from io import BytesIO import pytest from unittest.mock import patch, AsyncMock from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.bedrock import BedrockMultiModal from llama_index.core.schema import ImageDocument def test_class_name(): """Test class name.""" llm = BedrockMultiModal() assert llm.class_name() == "bedrock_multi_modal_llm" def test_init(): """Test initialization.""" llm = BedrockMultiModal(max_tokens=400) assert llm.max_tokens == 400 assert llm.model == "anthropic.claude-3-sonnet-20240229-v1:0" def test_inheritance(): """Test inheritance.""" assert issubclass(BedrockMultiModal, MultiModalLLM) def test_model_validation(): """Test model validation.""" with pytest.raises(ValueError, match="Invalid model"): BedrockMultiModal(model="invalid-model") @patch("boto3.Session") def test_completion(mock_session): """Test completion.""" # Mock the invoke_model response mock_client = mock_session.return_value.client.return_value mock_response = { "body": BytesIO(json.dumps({"content": [{"text": "test response"}]}).encode()), "ResponseMetadata": { "HTTPHeaders": { "x-amzn-bedrock-input-token-count": "100", "x-amzn-bedrock-output-token-count": "50", } }, } mock_client.invoke_model.return_value = mock_response llm = BedrockMultiModal() image_doc = ImageDocument(image="base64_encoded_string") response = llm.complete(prompt="test prompt", image_documents=[image_doc]) assert response.text == "test response" assert response.additional_kwargs["input_tokens"] == "100" assert response.additional_kwargs["output_tokens"] == "50" # Verify the call was made with correct parameters mock_client.invoke_model.assert_called_once() @pytest.mark.asyncio @patch("aioboto3.Session") async def test_async_completion(mock_session): """Test async completion.""" # Mock the async client mock_client = mock_session.return_value.client.return_value.__aenter__.return_value mock_body = AsyncMock() mock_body.read.return_value = json.dumps( {"content": [{"text": "async test response"}]} ).encode() mock_response = { "body": mock_body, "ResponseMetadata": { "HTTPHeaders": { "x-amzn-bedrock-input-token-count": "100", "x-amzn-bedrock-output-token-count": "50", } }, } mock_client.invoke_model.return_value = mock_response llm = BedrockMultiModal() image_doc = ImageDocument(image="base64_encoded_string") response = await llm.acomplete(prompt="test prompt", image_documents=[image_doc]) assert response.text == "async test response" assert response.additional_kwargs["input_tokens"] == "100" assert response.additional_kwargs["output_tokens"] == "50" mock_body.read.assert_awaited_once()
import os from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class DirectoryListingInput(BaseModel): """Input for ListDirectoryTool.""" dir_path: str = Field(default=".", description="Subdirectory to list.") class ListDirectoryTool(BaseFileToolMixin, BaseTool): """Tool that lists files and directories in a specified folder.""" name: str = "list_directory" args_schema: Type[BaseModel] = DirectoryListingInput description: str = "List files and directories in a specified folder" def _run( self, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) try: entries = os.listdir(dir_path_) if entries: return "\n".join(entries) else: return f"No files found in directory {dir_path}" except Exception as e: return "Error: " + str(e) # TODO: Add aiofiles method
import os from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class DirectoryListingInput(BaseModel): """Input for ListDirectoryTool.""" dir_path: str = Field(default=".", description="Subdirectory to list.") class ListDirectoryTool(BaseFileToolMixin, BaseTool): # type: ignore[override, override] """Tool that lists files and directories in a specified folder.""" name: str = "list_directory" args_schema: Type[BaseModel] = DirectoryListingInput description: str = "List files and directories in a specified folder" def _run( self, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) try: entries = os.listdir(dir_path_) if entries: return "\n".join(entries) else: return f"No files found in directory {dir_path}" except Exception as e: return "Error: " + str(e) # TODO: Add aiofiles method
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.typing import Tensor def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item = NodeProto(tensor=nd_proto) tensor = Tensor.from_protobuf(nested_item.tensor) assert (tensor == original_tensor).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item2 = NodeProto(tensor=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.typing import Tensor def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item = NodeProto(tensor=nd_proto) tensor = Tensor._read_from_proto(nested_item.tensor) assert (tensor == original_tensor).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item2 = NodeProto(tensor=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Tuple, Union from torch import Tensor from mmdet.registry import MODELS from .convfc_bbox_head import ConvFCBBoxHead @MODELS.register_module() class SCNetBBoxHead(ConvFCBBoxHead): """BBox head for `SCNet <https://arxiv.org/abs/2012.10150>`_. This inherits ``ConvFCBBoxHead`` with modified forward() function, allow us to get intermediate shared feature. """ def _forward_shared(self, x: Tensor) -> Tensor: """Forward function for shared part. Args: x (Tensor): Input feature. Returns: Tensor: Shared feature. """ if self.num_shared_convs > 0: for conv in self.shared_convs: x = conv(x) if self.num_shared_fcs > 0: if self.with_avg_pool: x = self.avg_pool(x) x = x.flatten(1) for fc in self.shared_fcs: x = self.relu(fc(x)) return x def _forward_cls_reg(self, x: Tensor) -> Tuple[Tensor]: """Forward function for classification and regression parts. Args: x (Tensor): Input feature. Returns: tuple[Tensor]: - cls_score (Tensor): classification prediction. - bbox_pred (Tensor): bbox prediction. """ x_cls = x x_reg = x for conv in self.cls_convs: x_cls = conv(x_cls) if x_cls.dim() > 2: if self.with_avg_pool: x_cls = self.avg_pool(x_cls) x_cls = x_cls.flatten(1) for fc in self.cls_fcs: x_cls = self.relu(fc(x_cls)) for conv in self.reg_convs: x_reg = conv(x_reg) if x_reg.dim() > 2: if self.with_avg_pool: x_reg = self.avg_pool(x_reg) x_reg = x_reg.flatten(1) for fc in self.reg_fcs: x_reg = self.relu(fc(x_reg)) cls_score = self.fc_cls(x_cls) if self.with_cls else None bbox_pred = self.fc_reg(x_reg) if self.with_reg else None return cls_score, bbox_pred def forward( self, x: Tensor, return_shared_feat: bool = False) -> Union[Tensor, Tuple[Tensor]]: """Forward function. Args: x (Tensor): input features return_shared_feat (bool): If True, return cls-reg-shared feature. Return: out (tuple[Tensor]): contain ``cls_score`` and ``bbox_pred``, if ``return_shared_feat`` is True, append ``x_shared`` to the returned tuple. """ x_shared = self._forward_shared(x) out = self._forward_cls_reg(x_shared) if return_shared_feat: out += (x_shared, ) return out
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .convfc_bbox_head import ConvFCBBoxHead @MODELS.register_module() class SCNetBBoxHead(ConvFCBBoxHead): """BBox head for `SCNet <https://arxiv.org/abs/2012.10150>`_. This inherits ``ConvFCBBoxHead`` with modified forward() function, allow us to get intermediate shared feature. """ def _forward_shared(self, x): """Forward function for shared part.""" if self.num_shared_convs > 0: for conv in self.shared_convs: x = conv(x) if self.num_shared_fcs > 0: if self.with_avg_pool: x = self.avg_pool(x) x = x.flatten(1) for fc in self.shared_fcs: x = self.relu(fc(x)) return x def _forward_cls_reg(self, x): """Forward function for classification and regression parts.""" x_cls = x x_reg = x for conv in self.cls_convs: x_cls = conv(x_cls) if x_cls.dim() > 2: if self.with_avg_pool: x_cls = self.avg_pool(x_cls) x_cls = x_cls.flatten(1) for fc in self.cls_fcs: x_cls = self.relu(fc(x_cls)) for conv in self.reg_convs: x_reg = conv(x_reg) if x_reg.dim() > 2: if self.with_avg_pool: x_reg = self.avg_pool(x_reg) x_reg = x_reg.flatten(1) for fc in self.reg_fcs: x_reg = self.relu(fc(x_reg)) cls_score = self.fc_cls(x_cls) if self.with_cls else None bbox_pred = self.fc_reg(x_reg) if self.with_reg else None return cls_score, bbox_pred def forward(self, x, return_shared_feat=False): """Forward function. Args: x (Tensor): input features return_shared_feat (bool): If True, return cls-reg-shared feature. Return: out (tuple[Tensor]): contain ``cls_score`` and ``bbox_pred``, if ``return_shared_feat`` is True, append ``x_shared`` to the returned tuple. """ x_shared = self._forward_shared(x) out = self._forward_cls_reg(x_shared) if return_shared_feat: out += (x_shared, ) return out
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import List, Optional, Sequence import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradients of each parameter. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.message_hub.update_scalar('train/grad_norm', float(grad_norm)) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import List, Optional, Sequence import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradients of each parameter. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.dense_heads.autoassign_head import AutoAssignHead from mmdet.models.dense_heads.paa_head import levels_to_images def test_autoassign_head_loss(): """Tests autoassign head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict(assigner=None, allowed_border=-1, pos_weight=-1, debug=False)) self = AutoAssignHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] self.init_weights() cls_scores, bbox_preds, objectnesses = self(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_pos_loss = empty_gt_losses['loss_pos'] empty_neg_loss = empty_gt_losses['loss_neg'] empty_center_loss = empty_gt_losses['loss_center'] assert empty_neg_loss.item() > 0, 'cls loss should be non-zero' assert empty_pos_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_center_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_pos_loss = one_gt_losses['loss_pos'] onegt_neg_loss = one_gt_losses['loss_neg'] onegt_center_loss = one_gt_losses['loss_center'] assert onegt_pos_loss.item() > 0, 'cls loss should be non-zero' assert onegt_neg_loss.item() > 0, 'box loss should be non-zero' assert onegt_center_loss.item() > 0, 'box loss should be non-zero' n, c, h, w = 10, 4, 20, 20 mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)] results = levels_to_images(mlvl_tensor) assert len(results) == n assert results[0].size() == (h * w * 5, c) cls_scores = [torch.ones(2, 4, 5, 5)] bbox_preds = [torch.ones(2, 4, 5, 5)] iou_preds = [torch.ones(2, 1, 5, 5)] mlvl_anchors = [torch.ones(5 * 5, 2)] img_shape = None scale_factor = [0.5, 0.5] cfg = mmcv.Config( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) rescale = False self._get_bboxes( cls_scores, bbox_preds, iou_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=rescale)
import mmcv import torch from mmdet.models.dense_heads.autoassign_head import AutoAssignHead from mmdet.models.dense_heads.paa_head import levels_to_images def test_autoassign_head_loss(): """Tests autoassign head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict(assigner=None, allowed_border=-1, pos_weight=-1, debug=False)) self = AutoAssignHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] self.init_weights() cls_scores, bbox_preds, objectnesses = self(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_pos_loss = empty_gt_losses['loss_pos'] empty_neg_loss = empty_gt_losses['loss_neg'] empty_center_loss = empty_gt_losses['loss_center'] assert empty_neg_loss.item() > 0, 'cls loss should be non-zero' assert empty_pos_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_center_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_pos_loss = one_gt_losses['loss_pos'] onegt_neg_loss = one_gt_losses['loss_neg'] onegt_center_loss = one_gt_losses['loss_center'] assert onegt_pos_loss.item() > 0, 'cls loss should be non-zero' assert onegt_neg_loss.item() > 0, 'box loss should be non-zero' assert onegt_center_loss.item() > 0, 'box loss should be non-zero' n, c, h, w = 10, 4, 20, 20 mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)] results = levels_to_images(mlvl_tensor) assert len(results) == n assert results[0].size() == (h * w * 5, c) cls_scores = [torch.ones(2, 4, 5, 5)] bbox_preds = [torch.ones(2, 4, 5, 5)] iou_preds = [torch.ones(2, 1, 5, 5)] mlvl_anchors = [torch.ones(5 * 5, 2)] img_shape = None scale_factor = [0.5, 0.5] cfg = mmcv.Config( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) rescale = False self._get_bboxes( cls_scores, bbox_preds, iou_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=rescale)
from __future__ import annotations from dataclasses import dataclass from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): """ SparseEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. """
from __future__ import annotations from dataclasses import dataclass from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): """ SparseEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: """
#!/usr/bin/env python3 import numbers import random import warnings from torchvision.transforms import RandomCrop, RandomResizedCrop from . import _functional_video as F __all__ = [ "RandomCropVideo", "RandomResizedCropVideo", "CenterCropVideo", "NormalizeVideo", "ToTensorVideo", "RandomHorizontalFlipVideo", ] warnings.warn( "The 'torchvision.transforms._transforms_video' module is deprecated since 0.12 and will be removed in the future. " "Please use the 'torchvision.transforms' module instead." ) class RandomCropVideo(RandomCrop): def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) Returns: torch.tensor: randomly cropped/resized video clip. size is (C, T, OH, OW) """ i, j, h, w = self.get_params(clip, self.size) return F.crop(clip, i, j, h, w) def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size})" class RandomResizedCropVideo(RandomResizedCrop): def __init__( self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation_mode="bilinear", ): if isinstance(size, tuple): if len(size) != 2: raise ValueError(f"size should be tuple (height, width), instead got {size}") self.size = size else: self.size = (size, size) self.interpolation_mode = interpolation_mode self.scale = scale self.ratio = ratio def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) Returns: torch.tensor: randomly cropped/resized video clip. size is (C, T, H, W) """ i, j, h, w = self.get_params(clip, self.scale, self.ratio) return F.resized_crop(clip, i, j, h, w, self.size, self.interpolation_mode) def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}, scale={self.scale}, ratio={self.ratio})" class CenterCropVideo: def __init__(self, crop_size): if isinstance(crop_size, numbers.Number): self.crop_size = (int(crop_size), int(crop_size)) else: self.crop_size = crop_size def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) Returns: torch.tensor: central cropping of video clip. Size is (C, T, crop_size, crop_size) """ return F.center_crop(clip, self.crop_size) def __repr__(self) -> str: return f"{self.__class__.__name__}(crop_size={self.crop_size})" class NormalizeVideo: """ Normalize the video clip by mean subtraction and division by standard deviation Args: mean (3-tuple): pixel RGB mean std (3-tuple): pixel RGB standard deviation inplace (boolean): whether do in-place normalization """ def __init__(self, mean, std, inplace=False): self.mean = mean self.std = std self.inplace = inplace def __call__(self, clip): """ Args: clip (torch.tensor): video clip to be normalized. Size is (C, T, H, W) """ return F.normalize(clip, self.mean, self.std, self.inplace) def __repr__(self) -> str: return f"{self.__class__.__name__}(mean={self.mean}, std={self.std}, inplace={self.inplace})" class ToTensorVideo: """ Convert tensor data type from uint8 to float, divide value by 255.0 and permute the dimensions of clip tensor """ def __init__(self): pass def __call__(self, clip): """ Args: clip (torch.tensor, dtype=torch.uint8): Size is (T, H, W, C) Return: clip (torch.tensor, dtype=torch.float): Size is (C, T, H, W) """ return F.to_tensor(clip) def __repr__(self) -> str: return self.__class__.__name__ class RandomHorizontalFlipVideo: """ Flip the video clip along the horizontal direction with a given probability Args: p (float): probability of the clip being flipped. Default value is 0.5 """ def __init__(self, p=0.5): self.p = p def __call__(self, clip): """ Args: clip (torch.tensor): Size is (C, T, H, W) Return: clip (torch.tensor): Size is (C, T, H, W) """ if random.random() < self.p: clip = F.hflip(clip) return clip def __repr__(self) -> str: return f"{self.__class__.__name__}(p={self.p})"
#!/usr/bin/env python3 import numbers import random import warnings from torchvision.transforms import RandomCrop, RandomResizedCrop from . import _functional_video as F __all__ = [ "RandomCropVideo", "RandomResizedCropVideo", "CenterCropVideo", "NormalizeVideo", "ToTensorVideo", "RandomHorizontalFlipVideo", ] warnings.warn( "The 'torchvision.transforms._transforms_video' module is deprecated since 0.12 and will be removed in the future. " "Please use the 'torchvision.transforms' module instead." ) class RandomCropVideo(RandomCrop): def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) Returns: torch.tensor: randomly cropped/resized video clip. size is (C, T, OH, OW) """ i, j, h, w = self.get_params(clip, self.size) return F.crop(clip, i, j, h, w) def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size})" class RandomResizedCropVideo(RandomResizedCrop): def __init__( self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation_mode="bilinear", ): if isinstance(size, tuple): if len(size) != 2: raise ValueError(f"size should be tuple (height, width), instead got {size}") self.size = size else: self.size = (size, size) self.interpolation_mode = interpolation_mode self.scale = scale self.ratio = ratio def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) Returns: torch.tensor: randomly cropped/resized video clip. size is (C, T, H, W) """ i, j, h, w = self.get_params(clip, self.scale, self.ratio) return F.resized_crop(clip, i, j, h, w, self.size, self.interpolation_mode) def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}, scale={self.scale}, ratio={self.ratio})" class CenterCropVideo: def __init__(self, crop_size): if isinstance(crop_size, numbers.Number): self.crop_size = (int(crop_size), int(crop_size)) else: self.crop_size = crop_size def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W) Returns: torch.tensor: central cropping of video clip. Size is (C, T, crop_size, crop_size) """ return F.center_crop(clip, self.crop_size) def __repr__(self) -> str: return f"{self.__class__.__name__}(crop_size={self.crop_size})" class NormalizeVideo: """ Normalize the video clip by mean subtraction and division by standard deviation Args: mean (3-tuple): pixel RGB mean std (3-tuple): pixel RGB standard deviation inplace (boolean): whether do in-place normalization """ def __init__(self, mean, std, inplace=False): self.mean = mean self.std = std self.inplace = inplace def __call__(self, clip): """ Args: clip (torch.tensor): video clip to be normalized. Size is (C, T, H, W) """ return F.normalize(clip, self.mean, self.std, self.inplace) def __repr__(self) -> str: return f"{self.__class__.__name__}(mean={self.mean}, std={self.std}, inplace={self.inplace})" class ToTensorVideo: """ Convert tensor data type from uint8 to float, divide value by 255.0 and permute the dimensions of clip tensor """ def __init__(self): pass def __call__(self, clip): """ Args: clip (torch.tensor, dtype=torch.uint8): Size is (T, H, W, C) Return: clip (torch.tensor, dtype=torch.float): Size is (C, T, H, W) """ return F.to_tensor(clip) def __repr__(self) -> str: return self.__class__.__name__ class RandomHorizontalFlipVideo: """ Flip the video clip along the horizonal direction with a given probability Args: p (float): probability of the clip being flipped. Default value is 0.5 """ def __init__(self, p=0.5): self.p = p def __call__(self, clip): """ Args: clip (torch.tensor): Size is (C, T, H, W) Return: clip (torch.tensor): Size is (C, T, H, W) """ if random.random() < self.p: clip = F.hflip(clip) return clip def __repr__(self) -> str: return f"{self.__class__.__name__}(p={self.p})"
from typing import Any, Dict, Sequence from llama_index.core.base.llms.types import ChatMessage LLAMA_MODELS = { "llama-2-13b-chat": 4096, "llama-2-70b-chat": 4096, } MISTRAL_MODELS = { "mistral-7b-instruct-v0-2": 32768, "mixtral-8x7b-instruct-v0-1": 32768, } GEMMA_MODELS = { "gemma-7b-it": 8192, } ALL_AVAILABLE_MODELS = { **LLAMA_MODELS, **MISTRAL_MODELS, **GEMMA_MODELS, } def friendli_modelname_to_contextsize(modelname: str) -> int: """ Get a context size of a model from its name. Args: modelname (str): The name of model. Returns: int: Context size of the model. """ context_size = ALL_AVAILABLE_MODELS.get(modelname) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid Friendli model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def get_chat_request(messages: Sequence[ChatMessage]) -> Dict[str, Any]: """Get messages for the Friendli chat request.""" return { "messages": [ {"role": message.role.value, "content": message.content} for message in messages ] }
from typing import Any, Dict, Sequence from llama_index.core.base.llms.types import ChatMessage LLAMA_MODELS = { "llama-2-13b-chat": 4096, "llama-2-70b-chat": 4096, } MISTRAL_MODELS = { "mistral-7b-instruct-v0-2": 32768, "mixtral-8x7b-instruct-v0-1": 32768, } GEMMA_MODELS = { "gemma-7b-it": 8192, } ALL_AVAILABLE_MODELS = { **LLAMA_MODELS, **MISTRAL_MODELS, **GEMMA_MODELS, } def friendli_modelname_to_contextsize(modelname: str) -> int: """Get a context size of a model from its name. Args: modelname (str): The name of model. Returns: int: Context size of the model. """ context_size = ALL_AVAILABLE_MODELS.get(modelname) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid Friendli model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def get_chat_request(messages: Sequence[ChatMessage]) -> Dict[str, Any]: """Get messages for the Friendli chat request.""" return { "messages": [ {"role": message.role.value, "content": message.content} for message in messages ] }
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`SparseCosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, SparseCoSENTLoss may be used as a drop-in replacement for :class:`SparseCosineSimilarityLoss` in any training script. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than SparseCoSENTLoss. In our experiments, SparseCoSENTLoss is recommended. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseCoSENTLoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCoSENTLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`SparseCosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, SparseCoSENTLoss may be used as a drop-in replacement for :class:`SparseCosineSimilarityLoss` in any training script. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than SparseCoSENTLoss. In our experiments, SparseCoSENTLoss is recommended. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseCoSENTLoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, scale=scale, similarity_fct=similarity_fct)
from typing import Union import numpy as np import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms import functional as _F @torch.jit.unused def to_image(inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> tv_tensors.Image: """[BETA] See :class:`~torchvision.transforms.v2.ToImage` for details.""" if isinstance(inpt, np.ndarray): output = torch.from_numpy(inpt).permute((2, 0, 1)).contiguous() elif isinstance(inpt, PIL.Image.Image): output = pil_to_tensor(inpt) elif isinstance(inpt, torch.Tensor): output = inpt else: raise TypeError( f"Input can either be a pure Tensor, a numpy array, or a PIL image, but got {type(inpt)} instead." ) return tv_tensors.Image(output) to_pil_image = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor
from typing import Union import numpy as np import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms import functional as _F @torch.jit.unused def to_image(inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> tv_tensors.Image: """[BETA] See :class:`~torchvision.transforms.v2.ToImage` for details.""" if isinstance(inpt, np.ndarray): output = torch.from_numpy(inpt).permute((2, 0, 1)).contiguous() elif isinstance(inpt, PIL.Image.Image): output = pil_to_tensor(inpt) elif isinstance(inpt, torch.Tensor): output = inpt else: raise TypeError(f"Input can either be a numpy array or a PIL image, but got {type(inpt)} instead.") return tv_tensors.Image(output) to_pil_image = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor
from jina.serve.runtimes.gateway.grpc.gateway import GRPCGateway
import os from jina import __default_host__ from jina.excepts import PortAlreadyUsed from jina.helper import is_port_free from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.grpc.gateway import GRPCGateway __all__ = ['GRPCGatewayRuntime'] class GRPCGatewayRuntime(GatewayRuntime): """Gateway Runtime for gRPC.""" async def async_setup(self): """ The async method to setup. Create the gRPC server and expose the port for communication. """ if not self.args.proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') if not (is_port_free(__default_host__, self.args.port)): raise PortAlreadyUsed(f'port:{self.args.port}') self.gateway = GRPCGateway( name=self.name, grpc_server_options=self.args.grpc_server_options, port=self.args.port, ssl_keyfile=self.args.ssl_keyfile, ssl_certfile=self.args.ssl_certfile, ) self.gateway.set_streamer( args=self.args, timeout_send=self.timeout_send, metrics_registry=self.metrics_registry, runtime_name=self.name, ) await self.gateway.setup_server() async def async_teardown(self): """Close the connection pool""" # usually async_cancel should already have been called, but then its a noop # if the runtime is stopped without a sigterm (e.g. as a context manager, this can happen) await self.gateway.teardown() await self.async_cancel() async def async_cancel(self): """The async method to stop server.""" await self.gateway.stop_server() async def async_run_forever(self): """The async running of server.""" await self.gateway.run_server()
from __future__ import annotations import logging from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator logger = logging.getLogger(__name__) class AzureCogsTextAnalyticsHealthTool(BaseTool): """Tool that queries the Azure Cognitive Services Text Analytics for Health API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/language-service/text-analytics-for-health/quickstart?tabs=windows&pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_endpoint: str = "" #: :meta private: text_analytics_client: Any #: :meta private: name: str = "azure_cognitive_services_text_analyics_health" description: str = ( "A wrapper around Azure Cognitive Services Text Analytics for Health. " "Useful for when you need to identify entities in healthcare data. " "Input should be text." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" ) azure_cogs_endpoint = get_from_dict_or_env( values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT" ) try: import azure.ai.textanalytics as sdk from azure.core.credentials import AzureKeyCredential values["text_analytics_client"] = sdk.TextAnalyticsClient( endpoint=azure_cogs_endpoint, credential=AzureKeyCredential(azure_cogs_key), ) except ImportError: raise ImportError( "azure-ai-textanalytics is not installed. " "Run `pip install azure-ai-textanalytics` to install." ) return values def _text_analysis(self, text: str) -> Dict: poller = self.text_analytics_client.begin_analyze_healthcare_entities( [{"id": "1", "language": "en", "text": text}] ) result = poller.result() res_dict = {} docs = [doc for doc in result if not doc.is_error] if docs is not None: res_dict["entities"] = [ f"{x.text} is a healthcare entity of type {x.category}" for y in docs for x in y.entities ] return res_dict def _format_text_analysis_result(self, text_analysis_result: Dict) -> str: formatted_result = [] if "entities" in text_analysis_result: formatted_result.append( f"""The text contains the following healthcare entities: { ", ".join(text_analysis_result["entities"]) }""".replace("\n", " ") ) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text_analysis_result = self._text_analysis(query) return self._format_text_analysis_result(text_analysis_result) except Exception as e: raise RuntimeError( f"Error while running AzureCogsTextAnalyticsHealthTool: {e}" )
from __future__ import annotations import logging from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator logger = logging.getLogger(__name__) class AzureCogsTextAnalyticsHealthTool(BaseTool): # type: ignore[override] """Tool that queries the Azure Cognitive Services Text Analytics for Health API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/language-service/text-analytics-for-health/quickstart?tabs=windows&pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_endpoint: str = "" #: :meta private: text_analytics_client: Any #: :meta private: name: str = "azure_cognitive_services_text_analyics_health" description: str = ( "A wrapper around Azure Cognitive Services Text Analytics for Health. " "Useful for when you need to identify entities in healthcare data. " "Input should be text." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" ) azure_cogs_endpoint = get_from_dict_or_env( values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT" ) try: import azure.ai.textanalytics as sdk from azure.core.credentials import AzureKeyCredential values["text_analytics_client"] = sdk.TextAnalyticsClient( endpoint=azure_cogs_endpoint, credential=AzureKeyCredential(azure_cogs_key), ) except ImportError: raise ImportError( "azure-ai-textanalytics is not installed. " "Run `pip install azure-ai-textanalytics` to install." ) return values def _text_analysis(self, text: str) -> Dict: poller = self.text_analytics_client.begin_analyze_healthcare_entities( [{"id": "1", "language": "en", "text": text}] ) result = poller.result() res_dict = {} docs = [doc for doc in result if not doc.is_error] if docs is not None: res_dict["entities"] = [ f"{x.text} is a healthcare entity of type {x.category}" for y in docs for x in y.entities ] return res_dict def _format_text_analysis_result(self, text_analysis_result: Dict) -> str: formatted_result = [] if "entities" in text_analysis_result: formatted_result.append( f"""The text contains the following healthcare entities: { ", ".join(text_analysis_result["entities"]) }""".replace("\n", " ") ) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text_analysis_result = self._text_analysis(query) return self._format_text_analysis_result(text_analysis_result) except Exception as e: raise RuntimeError( f"Error while running AzureCogsTextAnalyticsHealthTool: {e}" )
import pathlib from typing import Any, Dict, List, Union import torch from torchdata.datapipes.iter import CSVDictParser, IterDataPipe, Mapper from torchvision.datapoints import Image from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, KaggleDownloadResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from .._api import register_dataset, register_info NAME = "fer2013" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=("angry", "disgust", "fear", "happy", "sad", "surprise", "neutral")) @register_dataset(NAME) class FER2013(Dataset): """FER 2013 Dataset homepage="https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _CHECKSUMS = { "train": "a2b7c9360cc0b38d21187e5eece01c2799fce5426cdeecf746889cc96cda2d10", "test": "dec8dfe8021e30cd6704b85ec813042b4a5d99d81cb55e023291a94104f575c3", } def _resources(self) -> List[OnlineResource]: archive = KaggleDownloadResource( "https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge", file_name=f"{self._split}.csv.zip", sha256=self._CHECKSUMS[self._split], ) return [archive] def _prepare_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: label_id = data.get("emotion") return dict( image=Image(torch.tensor([int(idx) for idx in data["pixels"].split()], dtype=torch.uint8).reshape(48, 48)), label=Label(int(label_id), categories=self._categories) if label_id is not None else None, ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = CSVDictParser(dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 28_709 if self._split == "train" else 3_589
import pathlib from typing import Any, Dict, List, Union import torch from torchdata.datapipes.iter import CSVDictParser, IterDataPipe, Mapper from torchvision.prototype.datapoints import Image, Label from torchvision.prototype.datasets.utils import Dataset, KaggleDownloadResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from .._api import register_dataset, register_info NAME = "fer2013" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=("angry", "disgust", "fear", "happy", "sad", "surprise", "neutral")) @register_dataset(NAME) class FER2013(Dataset): """FER 2013 Dataset homepage="https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _CHECKSUMS = { "train": "a2b7c9360cc0b38d21187e5eece01c2799fce5426cdeecf746889cc96cda2d10", "test": "dec8dfe8021e30cd6704b85ec813042b4a5d99d81cb55e023291a94104f575c3", } def _resources(self) -> List[OnlineResource]: archive = KaggleDownloadResource( "https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge", file_name=f"{self._split}.csv.zip", sha256=self._CHECKSUMS[self._split], ) return [archive] def _prepare_sample(self, data: Dict[str, Any]) -> Dict[str, Any]: label_id = data.get("emotion") return dict( image=Image(torch.tensor([int(idx) for idx in data["pixels"].split()], dtype=torch.uint8).reshape(48, 48)), label=Label(int(label_id), categories=self._categories) if label_id is not None else None, ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = CSVDictParser(dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 28_709 if self._split == "train" else 3_589
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmengine.model import BaseModule from mmdet.registry import MODELS @MODELS.register_module() class SSDNeck(BaseModule): """Extra layers of SSD backbone to generate multi-scale feature maps. Args: in_channels (Sequence[int]): Number of input channels per scale. out_channels (Sequence[int]): Number of output channels per scale. level_strides (Sequence[int]): Stride of 3x3 conv per level. level_paddings (Sequence[int]): Padding size of 3x3 conv per level. l2_norm_scale (float|None): L2 normalization layer init scale. If None, not use L2 normalization on the first input feature. last_kernel_size (int): Kernel size of the last conv layer. Default: 3. use_depthwise (bool): Whether to use DepthwiseSeparableConv. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20., last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), init_cfg=[ dict( type='Xavier', distribution='uniform', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), ]): super(SSDNeck, self).__init__(init_cfg) assert len(out_channels) > len(in_channels) assert len(out_channels) - len(in_channels) == len(level_strides) assert len(level_strides) == len(level_paddings) assert in_channels == out_channels[:len(in_channels)] if l2_norm_scale: self.l2_norm = L2Norm(in_channels[0], l2_norm_scale) self.init_cfg += [ dict( type='Constant', val=self.l2_norm.scale, override=dict(name='l2_norm')) ] self.extra_layers = nn.ModuleList() extra_layer_channels = out_channels[len(in_channels):] second_conv = DepthwiseSeparableConvModule if \ use_depthwise else ConvModule for i, (out_channel, stride, padding) in enumerate( zip(extra_layer_channels, level_strides, level_paddings)): kernel_size = last_kernel_size \ if i == len(extra_layer_channels) - 1 else 3 per_lvl_convs = nn.Sequential( ConvModule( out_channels[len(in_channels) - 1 + i], out_channel // 2, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), second_conv( out_channel // 2, out_channel, kernel_size, stride=stride, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.extra_layers.append(per_lvl_convs) def forward(self, inputs): """Forward function.""" outs = [feat for feat in inputs] if hasattr(self, 'l2_norm'): outs[0] = self.l2_norm(outs[0]) feat = outs[-1] for layer in self.extra_layers: feat = layer(feat) outs.append(feat) return tuple(outs) class L2Norm(nn.Module): def __init__(self, n_dims, scale=20., eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2Norm, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, x): """Forward function.""" # normalization layer convert to FP32 in FP16 training x_float = x.float() norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps return (self.weight[None, :, None, None].float().expand_as(x_float) * x_float / norm).type_as(x)
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmcv.runner import BaseModule from mmdet.registry import MODELS @MODELS.register_module() class SSDNeck(BaseModule): """Extra layers of SSD backbone to generate multi-scale feature maps. Args: in_channels (Sequence[int]): Number of input channels per scale. out_channels (Sequence[int]): Number of output channels per scale. level_strides (Sequence[int]): Stride of 3x3 conv per level. level_paddings (Sequence[int]): Padding size of 3x3 conv per level. l2_norm_scale (float|None): L2 normalization layer init scale. If None, not use L2 normalization on the first input feature. last_kernel_size (int): Kernel size of the last conv layer. Default: 3. use_depthwise (bool): Whether to use DepthwiseSeparableConv. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20., last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), init_cfg=[ dict( type='Xavier', distribution='uniform', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), ]): super(SSDNeck, self).__init__(init_cfg) assert len(out_channels) > len(in_channels) assert len(out_channels) - len(in_channels) == len(level_strides) assert len(level_strides) == len(level_paddings) assert in_channels == out_channels[:len(in_channels)] if l2_norm_scale: self.l2_norm = L2Norm(in_channels[0], l2_norm_scale) self.init_cfg += [ dict( type='Constant', val=self.l2_norm.scale, override=dict(name='l2_norm')) ] self.extra_layers = nn.ModuleList() extra_layer_channels = out_channels[len(in_channels):] second_conv = DepthwiseSeparableConvModule if \ use_depthwise else ConvModule for i, (out_channel, stride, padding) in enumerate( zip(extra_layer_channels, level_strides, level_paddings)): kernel_size = last_kernel_size \ if i == len(extra_layer_channels) - 1 else 3 per_lvl_convs = nn.Sequential( ConvModule( out_channels[len(in_channels) - 1 + i], out_channel // 2, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), second_conv( out_channel // 2, out_channel, kernel_size, stride=stride, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.extra_layers.append(per_lvl_convs) def forward(self, inputs): """Forward function.""" outs = [feat for feat in inputs] if hasattr(self, 'l2_norm'): outs[0] = self.l2_norm(outs[0]) feat = outs[-1] for layer in self.extra_layers: feat = layer(feat) outs.append(feat) return tuple(outs) class L2Norm(nn.Module): def __init__(self, n_dims, scale=20., eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2Norm, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, x): """Forward function.""" # normalization layer convert to FP32 in FP16 training x_float = x.float() norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps return (self.weight[None, :, None, None].float().expand_as(x_float) * x_float / norm).type_as(x)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] model = dict(data_preprocessor=dict(batch_augments=batch_augments)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.02 * 4, momentum=0.9, weight_decay=0.00004)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] model = dict(data_preprocessor=dict(batch_augments=batch_augments)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.02 * 4, momentum=0.9, weight_decay=0.00004)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
import dataclasses from collections import defaultdict from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: from docarray.typing import T from docarray.document.strawberry_type import StrawberryDocument class StrawberryMixin: """Provide helper functions to convert to/from a Strawberry model""" def to_strawberry_type(self) -> 'StrawberryDocument': """Convert a Document object into a Strawberry type.""" from docarray.document.strawberry_type import StrawberryDocument as SD from docarray.document.strawberry_type import _NameScoreItem, _NamedScore _p_dict = {} for f in self.non_empty_fields: v = getattr(self, f) if f in ('matches', 'chunks'): _p_dict[f] = v.to_strawberry_type() elif f in ('scores', 'evaluations'): _p_dict[f] = [ _NameScoreItem(name=k, score=_NamedScore(**v.to_dict())) for k, v in v.items() ] else: _p_dict[f] = v return SD(**_p_dict) @classmethod def from_strawberry_type(cls: Type['T'], model) -> 'T': """Build a Document object from a Strawberry model :param model: the Strawberry data model object that represents a Document :return: a Document object """ from docarray import Document fields = {} _field_chunks, _field_matches = None, None if model.chunks: _field_chunks = [Document.from_strawberry_type(d) for d in model.chunks] if model.matches: _field_matches = [Document.from_strawberry_type(d) for d in model.matches] for field in dataclasses.fields(model): f_name = field.name value = getattr(model, f_name) if value is None: continue if f_name == 'scores' or f_name == 'evaluations': from docarray.score import NamedScore from docarray.document.strawberry_type import _NameScoreItem value: List[_NameScoreItem] fields[f_name] = defaultdict(NamedScore) for v in value: fields[f_name][v.name] = NamedScore(**dataclasses.asdict(v.score)) else: fields[f_name] = value d = Document(**fields) if _field_chunks: d.chunks = _field_chunks if _field_matches: d.matches = _field_matches return d
import dataclasses from collections import defaultdict from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: from docarray.typing import T from docarray.document.strawberry_type import StrawberryDocument class StrawberryMixin: """Provide helper functions to convert to/from a Strawberry model""" def to_strawberry_type(self) -> 'StrawberryDocument': """Convert a Document object into a Strawberry type.""" from docarray.document.strawberry_type import StrawberryDocument as SD from docarray.document.strawberry_type import _NameScoreItem, _NamedScore _p_dict = {} for f in self.non_empty_fields: v = getattr(self, f) if f in ('matches', 'chunks'): _p_dict[f] = v.to_strawberry_type() elif f in ('scores', 'evaluations'): _p_dict[f] = [ _NameScoreItem(k, _NamedScore(**v.to_dict())) for k, v in v.items() ] else: _p_dict[f] = v return SD(**_p_dict) @classmethod def from_strawberry_type(cls: Type['T'], model) -> 'T': """Build a Document object from a Strawberry model :param model: the Strawberry data model object that represents a Document :return: a Document object """ from docarray import Document fields = {} _field_chunks, _field_matches = None, None if model.chunks: _field_chunks = [Document.from_strawberry_type(d) for d in model.chunks] if model.matches: _field_matches = [Document.from_strawberry_type(d) for d in model.matches] for field in dataclasses.fields(model): f_name = field.name value = getattr(model, f_name) if value is None: continue if f_name == 'scores' or f_name == 'evaluations': from docarray.score import NamedScore from docarray.document.strawberry_type import _NameScoreItem value: List[_NameScoreItem] fields[f_name] = defaultdict(NamedScore) for v in value: fields[f_name][v.name] = NamedScore(**dataclasses.asdict(v.score)) else: fields[f_name] = value d = Document(**fields) if _field_chunks: d.chunks = _field_chunks if _field_matches: d.matches = _field_matches return d
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/MOT17/' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args, to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=(1088, 1088), ratio_range=(0.8, 1.2), keep_ratio=True, clip_object_border=False), dict(type='PhotoMetricDistortion'), dict(type='RandomCrop', crop_size=(1088, 1088), bbox_clip_border=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1088, 1088), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-train_cocoformat.json', data_prefix=dict(img='train/'), metainfo=dict(classes=('pedestrian', )), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-val_cocoformat.json', data_prefix=dict(img='train/'), metainfo=dict(classes=('pedestrian', )), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/half-val_cocoformat.json', metric='bbox', format_only=False) test_evaluator = val_evaluator
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/MOT17/' train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=(1088, 1088), ratio_range=(0.8, 1.2), keep_ratio=True, clip_object_border=False), dict(type='PhotoMetricDistortion'), dict(type='RandomCrop', crop_size=(1088, 1088), bbox_clip_border=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(1088, 1088), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-train_cocoformat.json', data_prefix=dict(img='train/'), metainfo=dict(classes=('pedestrian', )), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-val_cocoformat.json', data_prefix=dict(img='train/'), metainfo=dict(classes=('pedestrian', )), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/half-val_cocoformat.json', metric='bbox', format_only=False) test_evaluator = val_evaluator
import os import pathlib import sys def get_frontend_path() -> pathlib.Path: if getattr(sys, "frozen", False): # The application is frozen datadir = pathlib.Path(os.path.dirname(sys.executable)) / "example_files" else: # The application is not frozen # Change this bit to match where you store your data files: filedir = os.path.dirname(__file__) datadir = pathlib.Path(filedir).parent.parent.parent / "example_files" return pathlib.Path(datadir) def get_data_path() -> pathlib.Path: if getattr(sys, "frozen", False): # The application is frozen datadir = os.path.dirname(sys.executable) else: # The application is not frozen # Change this bit to match where you store your data files: filedir = os.path.dirname(__file__) datadir = pathlib.Path(filedir).parent.parent return pathlib.Path(datadir)
import os import pathlib import sys def get_secrets_path() -> pathlib.Path: return get_data_path() / "secrets" def get_config_path() -> pathlib.Path: return get_data_path() def get_frontend_path() -> pathlib.Path: if getattr(sys, "frozen", False): # The application is frozen datadir = pathlib.Path(os.path.dirname(sys.executable)) / "example_files" else: # The application is not frozen # Change this bit to match where you store your data files: filedir = os.path.dirname(__file__) datadir = pathlib.Path(filedir).parent.parent.parent / "example_files" return pathlib.Path(datadir) def get_data_path() -> pathlib.Path: if getattr(sys, "frozen", False): # The application is frozen datadir = os.path.dirname(sys.executable) else: # The application is not frozen # Change this bit to match where you store your data files: filedir = os.path.dirname(__file__) datadir = pathlib.Path(filedir).parent.parent return pathlib.Path(datadir)
import os from pathlib import Path from typing import List, Optional, Tuple import requests def get_file_content(url: str, path: str) -> Tuple[str, int]: """Get the content of a file from the GitHub REST API.""" resp = requests.get(url + path) return resp.text, resp.status_code def get_file_content_bytes(url: str, path: str) -> Tuple[bytes, int]: """Get the content of a file from the GitHub REST API.""" resp = requests.get(url + path) return resp.content, resp.status_code def get_exports(raw_content: str) -> List: """ Read content of a Python file and returns a list of exported class names. For example: ```python from .a import A from .b import B __all__ = ["A", "B"] ``` will return `["A", "B"]`. Args: - raw_content: The content of a Python file as a string. Returns: A list of exported class names. """ exports = [] for line in raw_content.splitlines(): line = line.strip() if line.startswith("__all__"): exports = line.split("=")[1].strip().strip("[").strip("]").split(",") exports = [export.strip().strip("'").strip('"') for export in exports] return exports def rewrite_exports(exports: List[str], dirpath: str) -> None: """ Write the `__all__` variable to the `__init__.py` file in the modules dir. Removes the line that contains `__all__` and appends a new line with the updated `__all__` variable. Args: - exports: A list of exported class names. """ init_path = f"{dirpath}/__init__.py" with open(init_path) as f: lines = f.readlines() with open(init_path, "w") as f: for line in lines: line = line.strip() if line.startswith("__all__"): continue f.write(line + os.linesep) f.write(f"__all__ = {list(set(exports))}" + os.linesep) def initialize_directory( custom_path: Optional[str] = None, custom_dir: Optional[str] = None ) -> Path: """Initialize directory.""" if custom_path is not None and custom_dir is not None: raise ValueError( "You cannot specify both `custom_path` and `custom_dir` at the same time." ) custom_dir = custom_dir or "llamadatasets" if custom_path is not None: dirpath = Path(custom_path) else: dirpath = Path(__file__).parent / custom_dir if not os.path.exists(dirpath): # Create a new directory because it does not exist os.makedirs(dirpath) return dirpath def get_source_files_list(source_tree_url: str, path: str) -> List[str]: """Get the list of source files to download.""" resp = requests.get( source_tree_url + path + "?recursive=1", headers={"Accept": "application/json"} ) payload = resp.json()["payload"] return [item["name"] for item in payload["tree"]["items"]] def recursive_tree_traverse( tree_urls: List[str], acc: List[str], source_tree_url: str ) -> List[str]: """Recursively traversge Github trees to get all file paths in a folder.""" if not tree_urls: return acc else: url = tree_urls[0] try: res = requests.get(url, headers={"Accept": "application/json"}) tree_elements = res.json()["payload"]["tree"]["items"] except Exception: raise ValueError("Failed to traverse github tree source.") new_trees = [ source_tree_url + "/" + el["path"] for el in tree_elements if el["contentType"] == "directory" ] acc += [ el["path"].replace("llama-index-packs/", "/") for el in tree_elements if el["contentType"] == "file" ] return recursive_tree_traverse( tree_urls=tree_urls[1:] + new_trees, acc=acc, source_tree_url=source_tree_url, ) def get_source_files_recursive(source_tree_url: str, path: str) -> List[str]: """Get source files of a Github folder recursively.""" initial_url = source_tree_url + path + "?recursive=1" initial_tree_urls = [initial_url] return recursive_tree_traverse(initial_tree_urls, [], source_tree_url) class ChangeDirectory: """Context manager for changing the current working directory.""" def __init__(self, new_path: str): self.new_path = os.path.expanduser(new_path) def __enter__(self) -> None: self.saved_path = os.getcwd() os.chdir(self.new_path) def __exit__(self, etype: object, value: object, traceback: object) -> None: os.chdir(self.saved_path)
import os from pathlib import Path from typing import List, Optional, Tuple import requests def get_file_content(url: str, path: str) -> Tuple[str, int]: """Get the content of a file from the GitHub REST API.""" resp = requests.get(url + path) return resp.text, resp.status_code def get_file_content_bytes(url: str, path: str) -> Tuple[bytes, int]: """Get the content of a file from the GitHub REST API.""" resp = requests.get(url + path) return resp.content, resp.status_code def get_exports(raw_content: str) -> List: """Read content of a Python file and returns a list of exported class names. For example: ```python from .a import A from .b import B __all__ = ["A", "B"] ``` will return `["A", "B"]`. Args: - raw_content: The content of a Python file as a string. Returns: A list of exported class names. """ exports = [] for line in raw_content.splitlines(): line = line.strip() if line.startswith("__all__"): exports = line.split("=")[1].strip().strip("[").strip("]").split(",") exports = [export.strip().strip("'").strip('"') for export in exports] return exports def rewrite_exports(exports: List[str], dirpath: str) -> None: """Write the `__all__` variable to the `__init__.py` file in the modules dir. Removes the line that contains `__all__` and appends a new line with the updated `__all__` variable. Args: - exports: A list of exported class names. """ init_path = f"{dirpath}/__init__.py" with open(init_path) as f: lines = f.readlines() with open(init_path, "w") as f: for line in lines: line = line.strip() if line.startswith("__all__"): continue f.write(line + os.linesep) f.write(f"__all__ = {list(set(exports))}" + os.linesep) def initialize_directory( custom_path: Optional[str] = None, custom_dir: Optional[str] = None ) -> Path: """Initialize directory.""" if custom_path is not None and custom_dir is not None: raise ValueError( "You cannot specify both `custom_path` and `custom_dir` at the same time." ) custom_dir = custom_dir or "llamadatasets" if custom_path is not None: dirpath = Path(custom_path) else: dirpath = Path(__file__).parent / custom_dir if not os.path.exists(dirpath): # Create a new directory because it does not exist os.makedirs(dirpath) return dirpath def get_source_files_list(source_tree_url: str, path: str) -> List[str]: """Get the list of source files to download.""" resp = requests.get( source_tree_url + path + "?recursive=1", headers={"Accept": "application/json"} ) payload = resp.json()["payload"] return [item["name"] for item in payload["tree"]["items"]] def recursive_tree_traverse( tree_urls: List[str], acc: List[str], source_tree_url: str ) -> List[str]: """Recursively traversge Github trees to get all file paths in a folder.""" if not tree_urls: return acc else: url = tree_urls[0] try: res = requests.get(url, headers={"Accept": "application/json"}) tree_elements = res.json()["payload"]["tree"]["items"] except Exception: raise ValueError("Failed to traverse github tree source.") new_trees = [ source_tree_url + "/" + el["path"] for el in tree_elements if el["contentType"] == "directory" ] acc += [ el["path"].replace("llama-index-packs/", "/") for el in tree_elements if el["contentType"] == "file" ] return recursive_tree_traverse( tree_urls=tree_urls[1:] + new_trees, acc=acc, source_tree_url=source_tree_url, ) def get_source_files_recursive(source_tree_url: str, path: str) -> List[str]: """Get source files of a Github folder recursively.""" initial_url = source_tree_url + path + "?recursive=1" initial_tree_urls = [initial_url] return recursive_tree_traverse(initial_tree_urls, [], source_tree_url) class ChangeDirectory: """Context manager for changing the current working directory.""" def __init__(self, new_path: str): self.new_path = os.path.expanduser(new_path) def __enter__(self) -> None: self.saved_path = os.getcwd() os.chdir(self.new_path) def __exit__(self, etype: object, value: object, traceback: object) -> None: os.chdir(self.saved_path)
from typing import Any, Dict, Optional, Type from jina.jaml.parsers.base import BaseLegacyParser from jina.serve.gateway import BaseGateway class GatewayLegacyParser(BaseLegacyParser): """Legacy parser for gateway.""" def parse( self, cls: Type['BaseGateway'], data: Dict, runtime_args: Optional[Dict[str, Any]] = None, ) -> 'BaseGateway': """ :param cls: target class type to parse into, must be a :class:`JAMLCompatible` type :param data: gateway yaml file loaded as python dict :param runtime_args: Optional runtime_args to be directly passed without being parsed into a yaml config :return: the Gateway YAML parser given the syntax version number """ from jina.logging.predefined import default_logger data['metas'] = {} cls._init_from_yaml = True # tmp_p = {kk: expand_env_var(vv) for kk, vv in data.get('with', {}).items()} obj = cls( **data.get('with', {}), metas=data.get('metas', {}), requests=data.get('requests', {}), runtime_args=runtime_args, ) cls._init_from_yaml = False obj.is_updated = False return obj def dump(self, data: 'BaseGateway') -> Dict: """ :param data: versioned gateway object :return: the dictionary given a versioned gateway object """ a = {k: v for k, v in data._init_kwargs_dict.items()} r = {} if a: r['with'] = a return r
from typing import Any, Dict, Optional, Type from jina.jaml.parsers.base import BaseLegacyParser from jina.serve.gateway import BaseGateway class GatewayLegacyParser(BaseLegacyParser): """Legacy parser for gateway.""" def parse( self, cls: Type['BaseGateway'], data: Dict, runtime_args: Optional[Dict[str, Any]] = None, ) -> 'BaseGateway': """ :param cls: target class type to parse into, must be a :class:`JAMLCompatible` type :param data: flow yaml file loaded as python dict :param runtime_args: Optional runtime_args to be directly passed without being parsed into a yaml config :return: the Flow YAML parser given the syntax version number """ from jina.logging.predefined import default_logger data['metas'] = {} cls._init_from_yaml = True # tmp_p = {kk: expand_env_var(vv) for kk, vv in data.get('with', {}).items()} obj = cls( **data.get('with', {}), metas=data.get('metas', {}), requests=data.get('requests', {}), runtime_args=runtime_args, ) cls._init_from_yaml = False obj.is_updated = False return obj def dump(self, data: 'BaseGateway') -> Dict: """ :param data: versioned gateway object :return: the dictionary given a versioned flow object """ a = {k: v for k, v in data._init_kwargs_dict.items()} r = {} if a: r['with'] = a return r
""" Feature engineering pipeline for categorical data ================================================= The script showcases how to keep the categorical data encoding consistent across training and inference. There are many ways to attain the same goal, this script can be used as a starting point. See Also -------- - :doc:`Tutorial </tutorials/categorical>` - :ref:`sphx_glr_python_examples_categorical.py` - :ref:`sphx_glr_python_examples_cat_in_the_dat.py` """ from typing import List, Tuple import numpy as np import pandas as pd from sklearn.compose import make_column_selector, make_column_transformer from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder import xgboost as xgb def make_example_data() -> Tuple[pd.DataFrame, pd.Series, List[str]]: """Generate data for demo.""" n_samples = 2048 rng = np.random.default_rng(1994) # We have three categorical features, while the rest are numerical. categorical_features = ["brand_id", "retailer_id", "category_id"] df = pd.DataFrame( np.random.randint(32, 96, size=(n_samples, 3)), columns=categorical_features, ) df["price"] = rng.integers(100, 200, size=(n_samples,)) df["stock_status"] = rng.choice([True, False], n_samples) df["on_sale"] = rng.choice([True, False], n_samples) df["label"] = rng.normal(loc=0.0, scale=1.0, size=n_samples) X = df.drop(["label"], axis=1) y = df["label"] return X, y, categorical_features def native() -> None: """Using the native XGBoost interface.""" X, y, cat_feats = make_example_data() X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=1994, test_size=0.2 ) # Create an encoder based on training data. enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan) enc.set_output(transform="pandas") enc = enc.fit(X_train[cat_feats]) def enc_transform(X: pd.DataFrame) -> pd.DataFrame: # don't make change inplace so that we can have demonstrations for encoding X = X.copy() cat_cols = enc.transform(X[cat_feats]) for i, name in enumerate(cat_feats): # create pd.Series based on the encoder cat_cols[name] = pd.Categorical.from_codes( codes=cat_cols[name].astype(np.int32), categories=enc.categories_[i] ) X[cat_feats] = cat_cols return X # Encode the data based on fitted encoder. X_train_enc = enc_transform(X_train) X_test_enc = enc_transform(X_test) # Train XGBoost model using the native interface. Xy_train = xgb.QuantileDMatrix(X_train_enc, y_train, enable_categorical=True) Xy_test = xgb.QuantileDMatrix( X_test_enc, y_test, enable_categorical=True, ref=Xy_train ) booster = xgb.train({}, Xy_train) booster.predict(Xy_test) # Following shows that data are encoded consistently. # We first obtain result from newly encoded data predt0 = booster.inplace_predict(enc_transform(X_train.head(16))) # then we obtain result from already encoded data from training. predt1 = booster.inplace_predict(X_train_enc.head(16)) np.testing.assert_allclose(predt0, predt1) def pipeline() -> None: """Using the sklearn pipeline.""" X, y, cat_feats = make_example_data() X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=3, test_size=0.2 ) enc = make_column_transformer( ( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan), # all categorical feature names end with "_id" make_column_selector(pattern=".*_id"), ), remainder="passthrough", verbose_feature_names_out=False, ) # No need to set pandas output, we use `feature_types` to indicate the type of # features. # enc.set_output(transform="pandas") feature_types = ["c" if fn in cat_feats else "q" for fn in X_train.columns] reg = xgb.XGBRegressor( feature_types=feature_types, enable_categorical=True, n_estimators=10 ) p = make_pipeline(enc, reg) p.fit(X_train, y_train) # check XGBoost is using the feature type correctly. model_types = reg.get_booster().feature_types assert model_types is not None for a, b in zip(model_types, feature_types): assert a == b # Following shows that data are encoded consistently. # We first create a slice of data that doesn't contain all the categories predt0 = p.predict(X_train.iloc[:16, :]) # Then we use the dataframe that contains all the categories predt1 = p.predict(X_train)[:16] # The resulting encoding is the same np.testing.assert_allclose(predt0, predt1) if __name__ == "__main__": pipeline() native()
""" Feature engineering pipeline for categorical data ================================================= The script showcases how to keep the categorical data encoding consistent across training and inference. There are many ways to attain the same goal, this script can be used as a starting point. See Also -------- - :doc:`Tutorial </tutorials/categorical>` - :ref:`sphx_glr_python_examples_categorical.py` - :ref:`sphx_glr_python_examples_cat_in_the_dat.py` """ from typing import List, Tuple import numpy as np import pandas as pd from sklearn.compose import make_column_selector, make_column_transformer from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder import xgboost as xgb def make_example_data() -> Tuple[pd.DataFrame, pd.Series, List[str]]: """Generate data for demo.""" n_samples = 2048 rng = np.random.default_rng(1994) # We have three categorical features, while the rest are numerical. categorical_features = ["brand_id", "retailer_id", "category_id"] df = pd.DataFrame( np.random.randint(32, 96, size=(n_samples, 3)), columns=categorical_features, ) df["price"] = rng.integers(100, 200, size=(n_samples,)) df["stock_status"] = rng.choice([True, False], n_samples) df["on_sale"] = rng.choice([True, False], n_samples) df["label"] = rng.normal(loc=0.0, scale=1.0, size=n_samples) X = df.drop(["label"], axis=1) y = df["label"] return X, y, categorical_features def native() -> None: """Using the native XGBoost interface.""" X, y, cat_feats = make_example_data() X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=1994, test_size=0.2 ) # Create an encoder based on training data. enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan) enc.set_output(transform="pandas") enc = enc.fit(X_train[cat_feats]) def enc_transform(X: pd.DataFrame) -> pd.DataFrame: # don't make change inplace so that we can have demonstrations for encoding X = X.copy() cat_cols = enc.transform(X[cat_feats]) for i, name in enumerate(cat_feats): # create pd.Series based on the encoder cat_cols[name] = pd.Categorical.from_codes( codes=cat_cols[name].astype(np.int32), categories=enc.categories_[i] ) X[cat_feats] = cat_cols return X # Encode the data based on fitted encoder. X_train_enc = enc_transform(X_train) X_test_enc = enc_transform(X_test) # Train XGBoost model using the native interface. Xy_train = xgb.QuantileDMatrix(X_train_enc, y_train, enable_categorical=True) Xy_test = xgb.QuantileDMatrix( X_test_enc, y_test, enable_categorical=True, ref=Xy_train ) booster = xgb.train({}, Xy_train) booster.predict(Xy_test) # Following shows that data are encoded consistently. # We first obtain result from newly encoded data predt0 = booster.inplace_predict(enc_transform(X_train.head(16))) # then we obtain result from already encoded data from training. predt1 = booster.inplace_predict(X_train_enc.head(16)) np.testing.assert_allclose(predt0, predt1) def pipeline() -> None: """Using the sklearn pipeline.""" X, y, cat_feats = make_example_data() X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=3, test_size=0.2 ) enc = make_column_transformer( ( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan), # all categorical feature names end with "_id" make_column_selector(pattern=".*_id"), ), remainder="passthrough", verbose_feature_names_out=False, ) # No need to set pandas output, we use `feature_types` to indicate the type of # features. # enc.set_output(transform="pandas") feature_types = ["c" if fn in cat_feats else "q" for fn in X_train.columns] reg = xgb.XGBRegressor( feature_types=feature_types, enable_categorical=True, n_estimators=10 ) p = make_pipeline(enc, reg) p.fit(X_train, y_train) # check XGBoost is using the feature type correctly. model_types = reg.get_booster().feature_types assert model_types is not None for a, b in zip(model_types, feature_types): assert a == b # Following shows that data are encoded consistently. # We first create a slice of data that doesn't contain all the categories predt0 = p.predict(X_train.iloc[:16, :]) # Then we use the dataframe that contains all the categories predt1 = p.predict(X_train)[:16] # The resulting encoding is the same np.testing.assert_allclose(predt0, predt1) if __name__ == "__main__": pipeline() native()
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: docarray.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n\x0e\x64ocarray.proto\x12\x08\x64ocarray\x1a\x1cgoogle/protobuf/struct.proto\"A\n\x11\x44\x65nseNdArrayProto\x12\x0e\n\x06\x62uffer\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\r\x12\r\n\x05\x64type\x18\x03 \x01(\t\"g\n\x0cNdArrayProto\x12*\n\x05\x64\x65nse\x18\x01 \x01(\x0b\x32\x1b.docarray.DenseNdArrayProto\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\"\x9e\x02\n\tNodeProto\x12\x0e\n\x04\x62lob\x18\x01 \x01(\x0cH\x00\x12(\n\x06tensor\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x0e\n\x04text\x18\x03 \x01(\tH\x00\x12)\n\x06nested\x18\x04 \x01(\x0b\x32\x17.docarray.DocumentProtoH\x00\x12.\n\x06\x63hunks\x18\x05 \x01(\x0b\x32\x1c.docarray.DocumentArrayProtoH\x00\x12+\n\tembedding\x18\x06 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x11\n\x07\x61ny_url\x18\x07 \x01(\tH\x00\x12\x13\n\timage_url\x18\x08 \x01(\tH\x00\x12\x0c\n\x02id\x18\t \x01(\tH\x00\x42\t\n\x07\x63ontent\"\x82\x01\n\rDocumentProto\x12/\n\x04\x64\x61ta\x18\x01 \x03(\x0b\x32!.docarray.DocumentProto.DataEntry\x1a@\n\tDataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.docarray.NodeProto:\x02\x38\x01\";\n\x12\x44ocumentArrayProto\x12%\n\x04\x64ocs\x18\x01 \x03(\x0b\x32\x17.docarray.DocumentProtob\x06proto3' ) _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'docarray_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _DOCUMENTPROTO_DATAENTRY._options = None _DOCUMENTPROTO_DATAENTRY._serialized_options = b'8\001' _DENSENDARRAYPROTO._serialized_start = 58 _DENSENDARRAYPROTO._serialized_end = 123 _NDARRAYPROTO._serialized_start = 125 _NDARRAYPROTO._serialized_end = 228 _NODEPROTO._serialized_start = 231 _NODEPROTO._serialized_end = 517 _DOCUMENTPROTO._serialized_start = 520 _DOCUMENTPROTO._serialized_end = 650 _DOCUMENTPROTO_DATAENTRY._serialized_start = 586 _DOCUMENTPROTO_DATAENTRY._serialized_end = 650 _DOCUMENTARRAYPROTO._serialized_start = 652 _DOCUMENTARRAYPROTO._serialized_end = 711 # @@protoc_insertion_point(module_scope)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: docarray.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0e\x64ocarray.proto\x12\x08\x64ocarray\x1a\x1cgoogle/protobuf/struct.proto\"A\n\x11\x44\x65nseNdArrayProto\x12\x0e\n\x06\x62uffer\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\r\x12\r\n\x05\x64type\x18\x03 \x01(\t\"g\n\x0cNdArrayProto\x12*\n\x05\x64\x65nse\x18\x01 \x01(\x0b\x32\x1b.docarray.DenseNdArrayProto\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\"\xbb\x01\n\tNodeProto\x12\x0e\n\x04\x62lob\x18\x01 \x01(\x0cH\x00\x12(\n\x06tensor\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x0e\n\x04text\x18\x03 \x01(\tH\x00\x12)\n\x06nested\x18\x04 \x01(\x0b\x32\x17.docarray.DocumentProtoH\x00\x12.\n\x06\x63hunks\x18\x05 \x01(\x0b\x32\x1c.docarray.DocumentArrayProtoH\x00\x42\t\n\x07\x63ontent\"\x82\x01\n\rDocumentProto\x12/\n\x04\x64\x61ta\x18\x01 \x03(\x0b\x32!.docarray.DocumentProto.DataEntry\x1a@\n\tDataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.docarray.NodeProto:\x02\x38\x01\";\n\x12\x44ocumentArrayProto\x12%\n\x04\x64ocs\x18\x01 \x03(\x0b\x32\x17.docarray.DocumentProtob\x06proto3') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'docarray_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _DOCUMENTPROTO_DATAENTRY._options = None _DOCUMENTPROTO_DATAENTRY._serialized_options = b'8\001' _DENSENDARRAYPROTO._serialized_start=58 _DENSENDARRAYPROTO._serialized_end=123 _NDARRAYPROTO._serialized_start=125 _NDARRAYPROTO._serialized_end=228 _NODEPROTO._serialized_start=231 _NODEPROTO._serialized_end=418 _DOCUMENTPROTO._serialized_start=421 _DOCUMENTPROTO._serialized_end=551 _DOCUMENTPROTO_DATAENTRY._serialized_start=487 _DOCUMENTPROTO_DATAENTRY._serialized_end=551 _DOCUMENTARRAYPROTO._serialized_start=553 _DOCUMENTARRAYPROTO._serialized_end=612 # @@protoc_insertion_point(module_scope)
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "pandas": "pandas<2.3.0", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "pandas": "pandas<2.3.0", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
_base_ = './cascade-mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1.py' # noqa: E501 model = dict( roi_head=dict( mask_head=dict( predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
_base_ = './cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py' # noqa: E501 model = dict( roi_head=dict( mask_head=dict( predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
from typing import List, Union class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
from typing import Union, List class InputExample: """ Structure for one input example with texts, the label and a unique id """ def __init__(self, guid: str = '', texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label :param guid id for the example :param texts the texts for the example. :param label the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def teardown(self): await super().teardown() await self.server.shutdown() async def stop_server(self): self.server.should_exit = True
import importlib.util from typing import List, Dict, Optional from llama_index.core.tools.tool_spec.base import BaseToolSpec class DuckDuckGoSearchToolSpec(BaseToolSpec): """DuckDuckGoSearch tool spec.""" spec_functions = ["duckduckgo_instant_search", "duckduckgo_full_search"] def __init__(self) -> None: if not importlib.util.find_spec("duckduckgo_search"): raise ImportError( "DuckDuckGoSearchToolSpec requires the duckduckgo_search package to be installed." ) super().__init__() def duckduckgo_instant_search(self, query: str) -> List[Dict]: """ Make a query to DuckDuckGo api to receive an instant answer. Args: query (str): The query to be passed to DuckDuckGo. """ from duckduckgo_search import DDGS with DDGS() as ddg: return list(ddg.answers(query)) def duckduckgo_full_search( self, query: str, region: Optional[str] = "wt-wt", max_results: Optional[int] = 10, ) -> List[Dict]: """ Make a query to DuckDuckGo search to receive a full search results. Args: query (str): The query to be passed to DuckDuckGo. region (Optional[str]): The region to be used for the search in [country-language] convention, ex us-en, uk-en, ru-ru, etc... max_results (Optional[int]): The maximum number of results to be returned. """ from duckduckgo_search import DDGS params = { "keywords": query, "region": region, "max_results": max_results, } with DDGS() as ddg: return list(ddg.text(**params))
import importlib.util from typing import List, Dict, Optional from llama_index.core.tools.tool_spec.base import BaseToolSpec class DuckDuckGoSearchToolSpec(BaseToolSpec): """DuckDuckGoSearch tool spec.""" spec_functions = ["duckduckgo_instant_search", "duckduckgo_full_search"] def __init__(self) -> None: if not importlib.util.find_spec("duckduckgo_search"): raise ImportError( "DuckDuckGoSearchToolSpec requires the duckduckgo_search package to be installed." ) super().__init__() def duckduckgo_instant_search(self, query: str) -> List[Dict]: """ Make a query to DuckDuckGo api to receive an instant answer. Args: query (str): The query to be passed to DuckDuckGo. """ from duckduckgo_search import DDGS with DDGS() as ddg: return list(ddg.answers(query)) def duckduckgo_full_search( self, query: str, region: Optional[str] = "wt-wt", max_results: Optional[int] = 10, ) -> List[Dict]: """ Make a query to DuckDuckGo search to receive a full search results. Args: query (str): The query to be passed to DuckDuckGo. region (Optional[str]): The region to be used for the search in [country-language] convention, ex us-en, uk-en, ru-ru, etc... max_results (Optional[int]): The maximum number of results to be returned. """ from duckduckgo_search import DDGS params = { "keywords": query, "region": region, "max_results": max_results, } with DDGS() as ddg: return list(ddg.text(**params))
from typing import Any, Union from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform from torchvision.tv_tensors._bounding_boxes import CLAMPING_MODE_TYPE class ConvertBoundingBoxFormat(Transform): """Convert bounding box coordinates to the given ``format``, eg from "CXCYWH" to "XYXY". Args: format (str or tv_tensors.BoundingBoxFormat): output bounding box format. Possible values are defined by :class:`~torchvision.tv_tensors.BoundingBoxFormat` and string values match the enums, e.g. "XYXY" or "XYWH" etc. """ _transformed_types = (tv_tensors.BoundingBoxes,) def __init__(self, format: Union[str, tv_tensors.BoundingBoxFormat]) -> None: super().__init__() self.format = format def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.convert_bounding_box_format(inpt, new_format=self.format) # type: ignore[return-value, arg-type] class ClampBoundingBoxes(Transform): """Clamp bounding boxes to their corresponding image dimensions. The clamping is done according to the bounding boxes' ``canvas_size`` meta-data. Args: clamping_mode: TODOBB more docs. Default is None which relies on the input box' clamping_mode attribute. """ def __init__(self, clamping_mode: Union[CLAMPING_MODE_TYPE, str] = "auto") -> None: super().__init__() self.clamping_mode = clamping_mode _transformed_types = (tv_tensors.BoundingBoxes,) def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.clamp_bounding_boxes(inpt, clamping_mode=self.clamping_mode) # type: ignore[return-value] class ClampKeyPoints(Transform): """Clamp keypoints to their corresponding image dimensions. The clamping is done according to the keypoints' ``canvas_size`` meta-data. """ _transformed_types = (tv_tensors.KeyPoints,) def transform(self, inpt: tv_tensors.KeyPoints, params: dict[str, Any]) -> tv_tensors.KeyPoints: return F.clamp_keypoints(inpt) # type: ignore[return-value] class SetClampingMode(Transform): """TODOBB""" def __init__(self, clamping_mode: CLAMPING_MODE_TYPE) -> None: super().__init__() self.clamping_mode = clamping_mode if self.clamping_mode not in (None, "soft", "hard"): raise ValueError(f"clamping_mode must be soft, hard or None, got {clamping_mode}") _transformed_types = (tv_tensors.BoundingBoxes,) def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: out: tv_tensors.BoundingBoxes = inpt.clone() # type: ignore[assignment] out.clamping_mode = self.clamping_mode return out
from typing import Any, Union from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform from torchvision.tv_tensors._bounding_boxes import CLAMPING_MODE_TYPE class ConvertBoundingBoxFormat(Transform): """Convert bounding box coordinates to the given ``format``, eg from "CXCYWH" to "XYXY". Args: format (str or tv_tensors.BoundingBoxFormat): output bounding box format. Possible values are defined by :class:`~torchvision.tv_tensors.BoundingBoxFormat` and string values match the enums, e.g. "XYXY" or "XYWH" etc. """ _transformed_types = (tv_tensors.BoundingBoxes,) def __init__(self, format: Union[str, tv_tensors.BoundingBoxFormat]) -> None: super().__init__() self.format = format def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.convert_bounding_box_format(inpt, new_format=self.format) # type: ignore[return-value, arg-type] class ClampBoundingBoxes(Transform): """Clamp bounding boxes to their corresponding image dimensions. The clamping is done according to the bounding boxes' ``canvas_size`` meta-data. Args: clamping_mode: TODOBB more docs. Default is None which relies on the input box' clamping_mode attribute. """ # TODOBB consider "auto" to be a Literal, make sur torchscript is still happy # TODOBB validate clamping_mode def __init__(self, clamping_mode: Union[CLAMPING_MODE_TYPE, str] = "auto") -> None: super().__init__() self.clamping_mode = clamping_mode _transformed_types = (tv_tensors.BoundingBoxes,) def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: return F.clamp_bounding_boxes(inpt, clamping_mode=self.clamping_mode) # type: ignore[return-value] class ClampKeyPoints(Transform): """Clamp keypoints to their corresponding image dimensions. The clamping is done according to the keypoints' ``canvas_size`` meta-data. """ _transformed_types = (tv_tensors.KeyPoints,) def transform(self, inpt: tv_tensors.KeyPoints, params: dict[str, Any]) -> tv_tensors.KeyPoints: return F.clamp_keypoints(inpt) # type: ignore[return-value] class SetClampingMode(Transform): """TODOBB""" def __init__(self, clamping_mode: CLAMPING_MODE_TYPE) -> None: super().__init__() # TODOBB validate mode self.clamping_mode = clamping_mode _transformed_types = (tv_tensors.BoundingBoxes,) def transform(self, inpt: tv_tensors.BoundingBoxes, params: dict[str, Any]) -> tv_tensors.BoundingBoxes: out: tv_tensors.BoundingBoxes = inpt.clone() # type: ignore[assignment] out.clamping_mode = self.clamping_mode return out
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import (ConvModule, caffe2_xavier_init, constant_init, is_norm, normal_init) from torch.nn import BatchNorm2d from ..builder import NECKS class Bottleneck(nn.Module): """Bottleneck block for DilatedEncoder used in `YOLOF. <https://arxiv.org/abs/2103.09460>`. The Bottleneck contains three ConvLayers and one residual connection. Args: in_channels (int): The number of input channels. mid_channels (int): The number of middle output channels. dilation (int): Dilation rate. norm_cfg (dict): Dictionary to construct and config norm layer. """ def __init__(self, in_channels, mid_channels, dilation, norm_cfg=dict(type='BN', requires_grad=True)): super(Bottleneck, self).__init__() self.conv1 = ConvModule( in_channels, mid_channels, 1, norm_cfg=norm_cfg) self.conv2 = ConvModule( mid_channels, mid_channels, 3, padding=dilation, dilation=dilation, norm_cfg=norm_cfg) self.conv3 = ConvModule( mid_channels, in_channels, 1, norm_cfg=norm_cfg) def forward(self, x): identity = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) out = out + identity return out @NECKS.register_module() class DilatedEncoder(nn.Module): """Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`. This module contains two types of components: - the original FPN lateral convolution layer and fpn convolution layer, which are 1x1 conv + 3x3 conv - the dilated residual block Args: in_channels (int): The number of input channels. out_channels (int): The number of output channels. block_mid_channels (int): The number of middle block output channels num_residual_blocks (int): The number of residual blocks. block_dilations (list): The list of residual blocks dilation. """ def __init__(self, in_channels, out_channels, block_mid_channels, num_residual_blocks, block_dilations): super(DilatedEncoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.block_mid_channels = block_mid_channels self.num_residual_blocks = num_residual_blocks self.block_dilations = block_dilations self._init_layers() def _init_layers(self): self.lateral_conv = nn.Conv2d( self.in_channels, self.out_channels, kernel_size=1) self.lateral_norm = BatchNorm2d(self.out_channels) self.fpn_conv = nn.Conv2d( self.out_channels, self.out_channels, kernel_size=3, padding=1) self.fpn_norm = BatchNorm2d(self.out_channels) encoder_blocks = [] for i in range(self.num_residual_blocks): dilation = self.block_dilations[i] encoder_blocks.append( Bottleneck( self.out_channels, self.block_mid_channels, dilation=dilation)) self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) def init_weights(self): caffe2_xavier_init(self.lateral_conv) caffe2_xavier_init(self.fpn_conv) for m in [self.lateral_norm, self.fpn_norm]: constant_init(m, 1) for m in self.dilated_encoder_blocks.modules(): if isinstance(m, nn.Conv2d): normal_init(m, mean=0, std=0.01) if is_norm(m): constant_init(m, 1) def forward(self, feature): out = self.lateral_norm(self.lateral_conv(feature[-1])) out = self.fpn_norm(self.fpn_conv(out)) return self.dilated_encoder_blocks(out),
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import (ConvModule, caffe2_xavier_init, constant_init, is_norm, normal_init) from torch.nn import BatchNorm2d from ..builder import NECKS class Bottleneck(nn.Module): """Bottleneck block for DilatedEncoder used in `YOLOF. <https://arxiv.org/abs/2103.09460>`. The Bottleneck contains three ConvLayers and one residual connection. Args: in_channels (int): The number of input channels. mid_channels (int): The number of middle output channels. dilation (int): Dilation rate. norm_cfg (dict): Dictionary to construct and config norm layer. """ def __init__(self, in_channels, mid_channels, dilation, norm_cfg=dict(type='BN', requires_grad=True)): super(Bottleneck, self).__init__() self.conv1 = ConvModule( in_channels, mid_channels, 1, norm_cfg=norm_cfg) self.conv2 = ConvModule( mid_channels, mid_channels, 3, padding=dilation, dilation=dilation, norm_cfg=norm_cfg) self.conv3 = ConvModule( mid_channels, in_channels, 1, norm_cfg=norm_cfg) def forward(self, x): identity = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) out = out + identity return out @NECKS.register_module() class DilatedEncoder(nn.Module): """Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`. This module contains two types of components: - the original FPN lateral convolution layer and fpn convolution layer, which are 1x1 conv + 3x3 conv - the dilated residual block Args: in_channels (int): The number of input channels. out_channels (int): The number of output channels. block_mid_channels (int): The number of middle block output channels num_residual_blocks (int): The number of residual blocks. """ def __init__(self, in_channels, out_channels, block_mid_channels, num_residual_blocks): super(DilatedEncoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.block_mid_channels = block_mid_channels self.num_residual_blocks = num_residual_blocks self.block_dilations = [2, 4, 6, 8] self._init_layers() def _init_layers(self): self.lateral_conv = nn.Conv2d( self.in_channels, self.out_channels, kernel_size=1) self.lateral_norm = BatchNorm2d(self.out_channels) self.fpn_conv = nn.Conv2d( self.out_channels, self.out_channels, kernel_size=3, padding=1) self.fpn_norm = BatchNorm2d(self.out_channels) encoder_blocks = [] for i in range(self.num_residual_blocks): dilation = self.block_dilations[i] encoder_blocks.append( Bottleneck( self.out_channels, self.block_mid_channels, dilation=dilation)) self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) def init_weights(self): caffe2_xavier_init(self.lateral_conv) caffe2_xavier_init(self.fpn_conv) for m in [self.lateral_norm, self.fpn_norm]: constant_init(m, 1) for m in self.dilated_encoder_blocks.modules(): if isinstance(m, nn.Conv2d): normal_init(m, mean=0, std=0.01) if is_norm(m): constant_init(m, 1) def forward(self, feature): out = self.lateral_norm(self.lateral_conv(feature[-1])) out = self.fpn_norm(self.fpn_conv(out)) return self.dilated_encoder_blocks(out),
import os from typing import Dict, List, Optional import torch from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from jina_commons.batching import get_docs_batch_generator from transformers import CLIPTokenizer, CLIPModel class CLIPTextEncoder(Executor): """Encode text into embeddings using a CLIP model. :param pretrained_model_name_or_path: Can be either: - A string, the model id of a pretrained CLIP model hosted inside a model repo on huggingface.co, e.g., 'openai/clip-vit-base-patch32' - A path to a directory containing model weights saved, e.g., ./my_model_directory/ :param base_tokenizer_model: Base tokenizer model. Defaults to ``pretrained_model_name_or_path`` if None :param max_length: Max length argument for the tokenizer. All CLIP models use 77 as the max length :param device: Device to be used. Use 'cuda' for GPU. :param default_traversal_paths: Default traversal paths for encoding, used if the traversal path is not passed as a parameter with the request. :param default_batch_size: Default batch size for encoding, used if the batch size is not passed as a parameter with the request. :param args: Arguments :param kwargs: Keyword Arguments """ def __init__( self, pretrained_model_name_or_path: str = 'openai/clip-vit-base-patch32', base_tokenizer_model: Optional[str] = None, max_length: Optional[int] = 77, device: str = 'cpu', default_traversal_paths: List[str] = ['r'], default_batch_size: int = 32, *args, **kwargs, ): super().__init__(*args, **kwargs) self.default_traversal_paths = default_traversal_paths self.default_batch_size = default_batch_size self.pretrained_model_name_or_path = pretrained_model_name_or_path self.base_tokenizer_model = ( base_tokenizer_model or pretrained_model_name_or_path ) self.max_length = max_length self.logger = JinaLogger(self.__class__.__name__) if device.startswith('cuda') and not torch.cuda.is_available(): self.logger.warning( 'You tried to use GPU but torch did not detect your' 'GPU correctly. Defaulting to CPU. Check your CUDA installation!' ) device = 'cpu' self.device = device self.tokenizer = CLIPTokenizer.from_pretrained(self.base_tokenizer_model) self.model = CLIPModel.from_pretrained(self.pretrained_model_name_or_path) self.model.eval().to(torch.device(device)) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode text data into a ndarray of `D` as dimension, and fill the embedding attribute of the docs. :param docs: DocumentArray containing text :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ for document_batch in get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ): text_batch = document_batch.get_attributes('text') with torch.no_grad(): input_tokens = self._generate_input_tokens(text_batch) embedding_batch = self.model.get_text_features(**input_tokens) numpy_embedding_batch = embedding_batch.cpu().numpy() for document, numpy_embedding in zip( document_batch, numpy_embedding_batch ): document.embedding = numpy_embedding def _generate_input_tokens(self, texts): input_tokens = self.tokenizer( texts, max_length=self.max_length, padding='longest', truncation=True, return_tensors='pt', ) input_tokens = { k: v.to(torch.device(self.device)) for k, v in input_tokens.items() } return input_tokens
from jina import DocumentArray, Executor, requests import torch import clip from typing import Iterable, Optional, List from jina_commons.batching import get_docs_batch_generator class CLIPTextEncoder(Executor): """Encode text into embeddings using a CLIP model. :param model_name: The name of one of the pre-trained CLIP models. Can also be a path to a local checkpoint (a ``.pt`` file). :param default_batch_size: Default batch size for encoding, used if the batch size is not passed as a parameter with the request. :param default_traversal_paths: Default traversal paths for encoding, used if the traversal path is not passed as a parameter with the request. :param default_device: The device (cpu or gpu) that the model should be on. :param jit: Whether a JIT version of the model should be loaded. """ def __init__( self, model_name: str = 'ViT-B/32', default_batch_size: int = 32, default_traversal_paths: List[str] = ['r'], default_device: str = 'cpu', jit: bool = True, *args, **kwargs ): super().__init__(*args, **kwargs) self.device = default_device self.model, _ = clip.load(model_name, self.device, jit) self.default_traversal_paths = default_traversal_paths self.default_batch_size = default_batch_size @requests def encode(self, docs: Optional[DocumentArray], parameters: dict, **kwargs): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have text. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ) self._create_embeddings(document_batches_generator) def _create_embeddings(self, document_batches_generator: Iterable): with torch.no_grad(): for document_batch in document_batches_generator: text_batch = [d.text for d in document_batch] tensor = clip.tokenize(text_batch).to(self.device) embedding_batch = self.model.encode_text(tensor) numpy_embedding_batch = embedding_batch.cpu().numpy() for document, numpy_embedding in zip( document_batch, numpy_embedding_batch ): document.embedding = numpy_embedding
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.framework._py_context_manager.""" from tensorflow.python.framework import _py_context_manager from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class TestContextManager(object): def __init__(self, behavior="basic"): self.log = [] self.behavior = behavior def __enter__(self): self.log.append("__enter__()") if self.behavior == "raise_from_enter": raise ValueError("exception in __enter__") return "var" def __exit__(self, ex_type, ex_value, ex_tb): self.log.append("__exit__(%s, %s, %s)" % (ex_type, ex_value, ex_tb)) if self.behavior == "raise_from_exit": raise ValueError("exception in __exit__") if self.behavior == "suppress_exception": return True # Expected log when the body doesn't raise an exception. NO_EXCEPTION_LOG = """\ __enter__() body('var') __exit__(None, None, None)""" # Expected log when the body does raise an exception. (Regular expression.) EXCEPTION_LOG = """\ __enter__\\(\\) body\\('var'\\) __exit__\\(<class 'ValueError'>, Foo, <traceback object.*>\\)""" class OpDefUtilTest(test_util.TensorFlowTestCase): def testBasic(self): cm = TestContextManager() def body(var): cm.log.append("body(%r)" % var) _py_context_manager.test_py_context_manager(cm, body) self.assertEqual("\n".join(cm.log), NO_EXCEPTION_LOG) def testBodyRaisesException(self): cm = TestContextManager() def body(var): cm.log.append("body(%r)" % var) raise ValueError("Foo") with self.assertRaisesRegex(ValueError, "Foo"): _py_context_manager.test_py_context_manager(cm, body) self.assertRegex("\n".join(cm.log), EXCEPTION_LOG) def testEnterRaisesException(self): cm = TestContextManager("raise_from_enter") def body(var): cm.log.append("body(%r)" % var) with self.assertRaisesRegex(ValueError, "exception in __enter__"): _py_context_manager.test_py_context_manager(cm, body) self.assertEqual("\n".join(cm.log), "__enter__()") # Test behavior in unsupported case where __exit__ raises an exception. def testExitRaisesException(self): cm = TestContextManager("raise_from_exit") def body(var): cm.log.append("body(%r)" % var) # Note: this does *not* raise an exception (but does log a warning): _py_context_manager.test_py_context_manager(cm, body) self.assertEqual("\n".join(cm.log), NO_EXCEPTION_LOG) # Test behavior in unsupported case where __exit__ suppresses exception. def testExitSuppressesException(self): cm = TestContextManager("suppress_exception") def body(var): cm.log.append("body(%r)" % var) raise ValueError("Foo") with self.assertRaisesRegex( ValueError, "tensorflow::PyContextManager::Enter does not support " "context managers that suppress exception"): _py_context_manager.test_py_context_manager(cm, body) self.assertRegex("\n".join(cm.log), EXCEPTION_LOG) if __name__ == "__main__": googletest.main()
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.framework._py_context_manager.""" from tensorflow.python.framework import _py_context_manager from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class TestContextManager(object): def __init__(self, behavior="basic"): self.log = [] self.behavior = behavior def __enter__(self): self.log.append("__enter__()") if self.behavior == "raise_from_enter": raise ValueError("exception in __enter__") return "var" def __exit__(self, ex_type, ex_value, ex_tb): self.log.append("__exit__(%s, %s, %s)" % (ex_type, ex_value, ex_tb)) if self.behavior == "raise_from_exit": raise ValueError("exception in __exit__") if self.behavior == "suppress_exception": return True # Expected log when the body doesn't raise an exception. NO_EXCEPTION_LOG = """\ __enter__() body('var') __exit__(None, None, None)""" # Expected log when the body does raise an exception. (Regular expression.) EXCEPTION_LOG = """\ __enter__\\(\\) body\\('var'\\) __exit__\\(<class 'ValueError'>, Foo, <traceback object.*>\\)""" class OpDefUtilTest(test_util.TensorFlowTestCase): def testBasic(self): cm = TestContextManager() def body(var): cm.log.append("body(%r)" % var) _py_context_manager.test_py_context_manager(cm, body) self.assertEqual("\n".join(cm.log), NO_EXCEPTION_LOG) def testBodyRaisesException(self): cm = TestContextManager() def body(var): cm.log.append("body(%r)" % var) raise ValueError("Foo") with self.assertRaisesRegexp(ValueError, "Foo"): _py_context_manager.test_py_context_manager(cm, body) self.assertRegex("\n".join(cm.log), EXCEPTION_LOG) def testEnterRaisesException(self): cm = TestContextManager("raise_from_enter") def body(var): cm.log.append("body(%r)" % var) with self.assertRaisesRegexp(ValueError, "exception in __enter__"): _py_context_manager.test_py_context_manager(cm, body) self.assertEqual("\n".join(cm.log), "__enter__()") # Test behavior in unsupported case where __exit__ raises an exception. def testExitRaisesException(self): cm = TestContextManager("raise_from_exit") def body(var): cm.log.append("body(%r)" % var) # Note: this does *not* raise an exception (but does log a warning): _py_context_manager.test_py_context_manager(cm, body) self.assertEqual("\n".join(cm.log), NO_EXCEPTION_LOG) # Test behavior in unsupported case where __exit__ suppresses exception. def testExitSuppressesException(self): cm = TestContextManager("suppress_exception") def body(var): cm.log.append("body(%r)" % var) raise ValueError("Foo") with self.assertRaisesRegexp( ValueError, "tensorflow::PyContextManager::Enter does not support " "context managers that suppress exception"): _py_context_manager.test_py_context_manager(cm, body) self.assertRegex("\n".join(cm.log), EXCEPTION_LOG) if __name__ == "__main__": googletest.main()
import os import shutil import subprocess import sys def _get_run_args(print_args: bool = True): from jina.helper import get_rich_console from jina.parsers import get_main_parser console = get_rich_console() silent_print = {'help', 'hub', 'export', 'auth', 'cloud', 'ping'} parser = get_main_parser() if len(sys.argv) > 1: from argparse import _StoreAction, _StoreTrueAction from rich import box from rich.table import Table args, unknown = parser.parse_known_args() if unknown: from jina.helper import warn_unknown_args unknown = list(filter(lambda x: x.startswith('--'), unknown)) warn_unknown_args(unknown) if args.cli not in silent_print and print_args: from jina.constants import __resources_path__ p = parser._actions[-1].choices[sys.argv[1]] default_args = { a.dest: a.default for a in p._actions if isinstance(a, (_StoreAction, _StoreTrueAction)) } with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() param_str = Table( title=' '.join(sys.argv), box=box.ROUNDED, highlight=True, title_justify='left', ) param_str.add_column('Argument', justify='right') param_str.add_column('Value', justify='left') for k, v in sorted(vars(args).items()): param = k.replace('_', '-') value = str(v) if not default_args.get(k, None) == v: value = f'[b]{value}[/]' param_str.add_row(param, value) if 'JINA_LOG_NO_COLOR' not in os.environ: print(f'\n{logo_str}\n') console.print(param_str) return args else: parser.print_help() exit() def _quick_ac_lookup(): from jina_cli.autocomplete import ac_table if len(sys.argv) > 1: if sys.argv[1] == 'commands': for k in ac_table['commands']: print(k) exit() elif sys.argv[1] == 'completions': # search with the longest shared prefix for j in range(len(sys.argv), 2, -1): _input = ' '.join(sys.argv[2:j]).strip() if _input in ac_table['completions']: compl = ac_table['completions'][_input] for k in compl: if k not in sys.argv: print(k) break exit() def _try_plugin_command(): """Tries to call the CLI of an external Jina project. :return: if the plugin has been found (locally or among the known plugins) """ argv = sys.argv if len(argv) < 2: # no command given return False from jina_cli.autocomplete import ac_table if argv[1] in ac_table['commands']: # native command can't be plugin command return False def _cmd_exists(cmd): return shutil.which(cmd) is not None subcommand = argv[1] cmd = 'jina-' + subcommand if _cmd_exists(cmd): subprocess.run([cmd] + argv[2:]) return True from jina_cli.known_plugins import plugin_info if subcommand in plugin_info: from jina.helper import get_rich_console cmd_info = plugin_info[subcommand] project, package = cmd_info['display-name'], cmd_info['pip-package'] console = get_rich_console() console.print( f"It seems like [yellow]{project}[/yellow] is not installed in your environment." f"To use it via the [green]'jina {subcommand}'[/green] command, " f"install it first: [green]'pip install {package}'[/green]." ) return True return False def main(): """The main entrypoint of the CLI""" found_plugin = _try_plugin_command() if not found_plugin: _quick_ac_lookup() from jina_cli import api args = _get_run_args() getattr(api, args.cli.replace('-', '_'))(args)
import os import shutil import subprocess import sys def _get_run_args(print_args: bool = True): from jina.helper import get_rich_console from jina.parsers import get_main_parser console = get_rich_console() silent_print = {'help', 'hub', 'export', 'auth', 'cloud', 'ping'} parser = get_main_parser() if len(sys.argv) > 1: from argparse import _StoreAction, _StoreTrueAction from rich import box from rich.table import Table args, unknown = parser.parse_known_args() if unknown: from jina.helper import warn_unknown_args unknown = list(filter(lambda x: x.startswith('--'), unknown)) warn_unknown_args(unknown) if args.cli not in silent_print and print_args: from jina import __resources_path__ p = parser._actions[-1].choices[sys.argv[1]] default_args = { a.dest: a.default for a in p._actions if isinstance(a, (_StoreAction, _StoreTrueAction)) } with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() param_str = Table( title=' '.join(sys.argv), box=box.ROUNDED, highlight=True, title_justify='left', ) param_str.add_column('Argument', justify='right') param_str.add_column('Value', justify='left') for k, v in sorted(vars(args).items()): param = k.replace('_', '-') value = str(v) if not default_args.get(k, None) == v: value = f'[b]{value}[/]' param_str.add_row(param, value) if 'JINA_LOG_NO_COLOR' not in os.environ: print(f'\n{logo_str}\n') console.print(param_str) return args else: parser.print_help() exit() def _quick_ac_lookup(): from jina_cli.autocomplete import ac_table if len(sys.argv) > 1: if sys.argv[1] == 'commands': for k in ac_table['commands']: print(k) exit() elif sys.argv[1] == 'completions': # search with the longest shared prefix for j in range(len(sys.argv), 2, -1): _input = ' '.join(sys.argv[2:j]).strip() if _input in ac_table['completions']: compl = ac_table['completions'][_input] for k in compl: if k not in sys.argv: print(k) break exit() def _try_plugin_command(): """Tries to call the CLI of an external Jina project. :return: if the plugin has been found (locally or among the known plugins) """ argv = sys.argv if len(argv) < 2: # no command given return False from jina_cli.autocomplete import ac_table if argv[1] in ac_table['commands']: # native command can't be plugin command return False def _cmd_exists(cmd): return shutil.which(cmd) is not None subcommand = argv[1] cmd = 'jina-' + subcommand if _cmd_exists(cmd): subprocess.run([cmd] + argv[2:]) return True from jina_cli.known_plugins import plugin_info if subcommand in plugin_info: from jina.helper import get_rich_console cmd_info = plugin_info[subcommand] project, package = cmd_info['display-name'], cmd_info['pip-package'] console = get_rich_console() console.print( f"It seems like [yellow]{project}[/yellow] is not installed in your environment." f"To use it via the [green]'jina {subcommand}'[/green] command, " f"install it first: [green]'pip install {package}'[/green]." ) return True return False def main(): """The main entrypoint of the CLI""" found_plugin = _try_plugin_command() if not found_plugin: _quick_ac_lookup() from jina_cli import api args = _get_run_args() getattr(api, args.cli.replace('-', '_'))(args)
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.backbones import ResNet from mmdet.models.builder import SHARED_HEADS from mmdet.models.utils import ResLayer as _ResLayer @SHARED_HEADS.register_module() class ResLayer(BaseModule): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None): super(ResLayer, self).__init__(init_cfg) self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = _ResLayer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module(f'layer{stage + 1}', res_layer) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be specified at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is a deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, f'layer{self.stage + 1}') out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.backbones import ResNet from mmdet.models.builder import SHARED_HEADS from mmdet.models.utils import ResLayer as _ResLayer @SHARED_HEADS.register_module() class ResLayer(BaseModule): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None): super(ResLayer, self).__init__(init_cfg) self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = _ResLayer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module(f'layer{stage + 1}', res_layer) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be setting at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is a deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, f'layer{self.stage + 1}') out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Dataset preparation # ------------------- # # We start by uniformly generating 20 points in a 2D space. import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.decomposition import PCA from sklearn.metrics import euclidean_distances # Generate the data EPSILON = np.finfo(np.float32).eps n_samples = 20 rng = np.random.RandomState(seed=3) X_true = rng.randint(0, 20, 2 * n_samples).astype(float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() # %% # Now we compute pairwise distances between all points and add # a small amount of noise to the distance matrix. We make sure # to keep the noisy distance matrix symmetric. # Compute pairwise Euclidean distances distances = euclidean_distances(X_true) # Add noise to the distances noise = rng.rand(n_samples, n_samples) noise = noise + noise.T np.fill_diagonal(noise, 0) distances += noise # %% # Here we compute metric and non-metric MDS of the noisy distance matrix. mds = manifold.MDS( n_components=2, max_iter=3000, eps=1e-9, n_init=1, random_state=42, dissimilarity="precomputed", n_jobs=1, ) X_mds = mds.fit(distances).embedding_ nmds = manifold.MDS( n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=42, n_jobs=1, n_init=1, ) X_nmds = nmds.fit_transform(distances) # %% # Rescaling the non-metric MDS solution to match the spread of the original data. X_nmds *= np.sqrt((X_true**2).sum()) / np.sqrt((X_nmds**2).sum()) # %% # To make the visual comparisons easier, we rotate the original data and both MDS # solutions to their PCA axes. And flip horizontal and vertical MDS axes, if needed, # to match the original data orientation. # Rotate the data pca = PCA(n_components=2) X_true = pca.fit_transform(X_true) X_mds = pca.fit_transform(X_mds) X_nmds = pca.fit_transform(X_nmds) # Align the sign of PCs for i in [0, 1]: if np.corrcoef(X_mds[:, i], X_true[:, i])[0, 1] < 0: X_mds[:, i] *= -1 if np.corrcoef(X_nmds[:, i], X_true[:, i])[0, 1] < 0: X_nmds[:, i] *= -1 # %% # Finally, we plot the original data and both MDS reconstructions. fig = plt.figure(1) ax = plt.axes([0.0, 0.0, 1.0, 1.0]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color="navy", s=s, lw=0, label="True Position") plt.scatter(X_mds[:, 0], X_mds[:, 1], color="turquoise", s=s, lw=0, label="MDS") plt.scatter(X_nmds[:, 0], X_nmds[:, 1], color="darkorange", s=s, lw=0, label="NMDS") plt.legend(scatterpoints=1, loc="best", shadow=False) # Plot the edges start_idx, end_idx = X_mds.nonzero() # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [ [X_true[i, :], X_true[j, :]] for i in range(len(X_true)) for j in range(len(X_true)) ] edges = distances.max() / (distances + EPSILON) * 100 np.fill_diagonal(edges, 0) edges = np.abs(edges) lc = LineCollection( segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, edges.max()) ) lc.set_array(edges.flatten()) lc.set_linewidths(np.full(len(segments), 0.5)) ax.add_collection(lc) plt.show()
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.decomposition import PCA from sklearn.metrics import euclidean_distances # Generate the data EPSILON = np.finfo(np.float32).eps n_samples = 20 rng = np.random.RandomState(seed=3) X_true = rng.randint(0, 20, 2 * n_samples).astype(float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() # Compute pairwise Euclidean distances distances = euclidean_distances(X_true) # Add noise to the distances noise = rng.rand(n_samples, n_samples) noise = noise + noise.T np.fill_diagonal(noise, 0) distances += noise mds = manifold.MDS( n_components=2, max_iter=3000, eps=1e-9, random_state=42, dissimilarity="precomputed", n_jobs=1, ) X_mds = mds.fit(distances).embedding_ nmds = manifold.MDS( n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=42, n_jobs=1, n_init=1, ) X_nmds = nmds.fit_transform(distances) # Rescale the data X_mds *= np.sqrt((X_true**2).sum()) / np.sqrt((X_mds**2).sum()) X_nmds *= np.sqrt((X_true**2).sum()) / np.sqrt((X_nmds**2).sum()) # Rotate the data pca = PCA(n_components=2) X_true = pca.fit_transform(X_true) X_mds = pca.fit_transform(X_mds) X_nmds = pca.fit_transform(X_nmds) # Align the sign of PCs for i in [0, 1]: if np.corrcoef(X_mds[:, i], X_true[:, i])[0, 1] < 0: X_mds[:, i] *= -1 if np.corrcoef(X_nmds[:, i], X_true[:, i])[0, 1] < 0: X_nmds[:, i] *= -1 fig = plt.figure(1) ax = plt.axes([0.0, 0.0, 1.0, 1.0]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color="navy", s=s, lw=0, label="True Position") plt.scatter(X_mds[:, 0], X_mds[:, 1], color="turquoise", s=s, lw=0, label="MDS") plt.scatter(X_nmds[:, 0], X_nmds[:, 1], color="darkorange", s=s, lw=0, label="NMDS") plt.legend(scatterpoints=1, loc="best", shadow=False) # Plot the edges start_idx, end_idx = X_mds.nonzero() # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [ [X_true[i, :], X_true[j, :]] for i in range(len(X_true)) for j in range(len(X_true)) ] edges = distances.max() / (distances + EPSILON) * 100 np.fill_diagonal(edges, 0) edges = np.abs(edges) lc = LineCollection( segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, edges.max()) ) lc.set_array(edges.flatten()) lc.set_linewidths(np.full(len(segments), 0.5)) ax.add_collection(lc) plt.show()
from collections import defaultdict import torch import transforms as reference_transforms def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.transforms.v2 import torchvision.tv_tensors return torchvision.transforms.v2, torchvision.tv_tensors else: return reference_transforms, None class DetectionPresetTrain: # Note: this transform assumes that the input to forward() are always PIL # images, regardless of the backend parameter. def __init__( self, *, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0), backend="pil", use_v2=False, ): T, tv_tensors = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tv_tensor": transforms.append(T.ToImage()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}") if data_augmentation == "hflip": transforms += [T.RandomHorizontalFlip(p=hflip_prob)] elif data_augmentation == "lsj": transforms += [ T.ScaleJitter(target_size=(1024, 1024), antialias=True), # TODO: FixedSizeCrop below doesn't work on tensors! reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "multiscale": transforms += [ T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssd": fill = defaultdict(lambda: mean, {tv_tensors.Mask: 0}) if use_v2 else list(mean) transforms += [ T.RandomPhotometricDistort(), T.RandomZoomOut(fill=fill), T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssdlite": transforms += [ T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] else: raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"') if backend == "pil": # Note: we could just convert to pure tensors even in v2. transforms += [T.ToImage() if use_v2 else T.PILToTensor()] transforms += [T.ToDtype(torch.float, scale=True)] if use_v2: transforms += [ T.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.XYXY), T.SanitizeBoundingBoxes(), T.ToPureTensor(), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class DetectionPresetEval: def __init__(self, backend="pil", use_v2=False): T, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImage() if use_v2 else T.PILToTensor()] elif backend == "tensor": transforms += [T.PILToTensor()] elif backend == "tv_tensor": transforms += [T.ToImage()] else: raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}") transforms += [T.ToDtype(torch.float, scale=True)] if use_v2: transforms += [T.ToPureTensor()] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
from collections import defaultdict import torch import transforms as reference_transforms def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 return torchvision.transforms.v2, torchvision.datapoints else: return reference_transforms, None class DetectionPresetTrain: # Note: this transform assumes that the input to forward() are always PIL # images, regardless of the backend parameter. def __init__( self, *, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0), backend="pil", use_v2=False, ): T, datapoints = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImage()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if data_augmentation == "hflip": transforms += [T.RandomHorizontalFlip(p=hflip_prob)] elif data_augmentation == "lsj": transforms += [ T.ScaleJitter(target_size=(1024, 1024), antialias=True), # TODO: FixedSizeCrop below doesn't work on tensors! reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "multiscale": transforms += [ T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssd": fill = defaultdict(lambda: mean, {datapoints.Mask: 0}) if use_v2 else list(mean) transforms += [ T.RandomPhotometricDistort(), T.RandomZoomOut(fill=fill), T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssdlite": transforms += [ T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] else: raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"') if backend == "pil": # Note: we could just convert to pure tensors even in v2. transforms += [T.ToImage() if use_v2 else T.PILToTensor()] transforms += [T.ToDtype(torch.float, scale=True)] if use_v2: transforms += [ T.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.XYXY), T.SanitizeBoundingBoxes(), T.ToPureTensor(), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class DetectionPresetEval: def __init__(self, backend="pil", use_v2=False): T, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImage() if use_v2 else T.PILToTensor()] elif backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImage()] else: raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.ToDtype(torch.float, scale=True)] if use_v2: transforms += [T.ToPureTensor()] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
"""Dict prompt template.""" import warnings from functools import cached_property from typing import Any, Literal, Optional from typing_extensions import override from langchain_core.load import dumpd from langchain_core.prompts.string import ( DEFAULT_FORMATTER_MAPPING, get_template_variables, ) from langchain_core.runnables import RunnableConfig, RunnableSerializable from langchain_core.runnables.config import ensure_config class DictPromptTemplate(RunnableSerializable[dict, dict]): """Template represented by a dict. Recognizes variables in f-string or mustache formatted string dict values. Does NOT recognize variables in dict keys. Applies recursively. """ template: dict[str, Any] template_format: Literal["f-string", "mustache"] @property def input_variables(self) -> list[str]: """Template input variables.""" return _get_input_variables(self.template, self.template_format) def format(self, **kwargs: Any) -> dict[str, Any]: """Format the prompt with the inputs.""" return _insert_input_variables(self.template, kwargs, self.template_format) async def aformat(self, **kwargs: Any) -> dict[str, Any]: """Format the prompt with the inputs.""" return self.format(**kwargs) @override def invoke( self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> dict: """Invoke the prompt.""" return self._call_with_config( lambda x: self.format(**x), input, ensure_config(config), run_type="prompt", serialized=self._serialized, **kwargs, ) @property def _prompt_type(self) -> str: return "dict-prompt" @cached_property def _serialized(self) -> dict[str, Any]: return dumpd(self) @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable. Returns: True. """ return True @classmethod def get_lc_namespace(cls) -> list[str]: """Serialization namespace.""" return ["langchain_core", "prompts", "dict"] def pretty_repr(self, *, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ raise NotImplementedError def _get_input_variables( template: dict, template_format: Literal["f-string", "mustache"] ) -> list[str]: input_variables = [] for v in template.values(): if isinstance(v, str): input_variables += get_template_variables(v, template_format) elif isinstance(v, dict): input_variables += _get_input_variables(v, template_format) elif isinstance(v, (list, tuple)): for x in v: if isinstance(x, str): input_variables += get_template_variables(x, template_format) elif isinstance(x, dict): input_variables += _get_input_variables(x, template_format) return list(set(input_variables)) def _insert_input_variables( template: dict[str, Any], inputs: dict[str, Any], template_format: Literal["f-string", "mustache"], ) -> dict[str, Any]: formatted = {} formatter = DEFAULT_FORMATTER_MAPPING[template_format] for k, v in template.items(): if isinstance(v, str): formatted[k] = formatter(v, **inputs) elif isinstance(v, dict): if k == "image_url" and "path" in v: msg = ( "Specifying image inputs via file path in environments with " "user-input paths is a security vulnerability. Out of an abundance " "of caution, the utility has been removed to prevent possible " "misuse." ) warnings.warn(msg, stacklevel=2) formatted[k] = _insert_input_variables(v, inputs, template_format) elif isinstance(v, (list, tuple)): formatted_v = [] for x in v: if isinstance(x, str): formatted_v.append(formatter(x, **inputs)) elif isinstance(x, dict): formatted_v.append( _insert_input_variables(x, inputs, template_format) ) formatted[k] = type(v)(formatted_v) else: formatted[k] = v return formatted
"""Dict prompt template.""" import warnings from functools import cached_property from typing import Any, Literal, Optional from typing_extensions import override from langchain_core.load import dumpd from langchain_core.prompts.string import ( DEFAULT_FORMATTER_MAPPING, get_template_variables, ) from langchain_core.runnables import RunnableConfig, RunnableSerializable from langchain_core.runnables.config import ensure_config class DictPromptTemplate(RunnableSerializable[dict, dict]): """Template represented by a dict. Recognizes variables in f-string or mustache formatted string dict values. Does NOT recognize variables in dict keys. Applies recursively. """ template: dict[str, Any] template_format: Literal["f-string", "mustache"] @property def input_variables(self) -> list[str]: """Template input variables.""" return _get_input_variables(self.template, self.template_format) def format(self, **kwargs: Any) -> dict[str, Any]: """Format the prompt with the inputs.""" return _insert_input_variables(self.template, kwargs, self.template_format) async def aformat(self, **kwargs: Any) -> dict[str, Any]: """Format the prompt with the inputs.""" return self.format(**kwargs) @override def invoke( self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> dict: """Invoke the prompt.""" return self._call_with_config( lambda x: self.format(**x), input, ensure_config(config), run_type="prompt", serialized=self._serialized, **kwargs, ) @property def _prompt_type(self) -> str: return "dict-prompt" @cached_property def _serialized(self) -> dict[str, Any]: return dumpd(self) @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable. Returns: True. """ return True @classmethod def get_lc_namespace(cls) -> list[str]: """Serialization namespace.""" return ["langchain_core", "prompts", "dict"] def pretty_repr(self, *, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ raise NotImplementedError def _get_input_variables( template: dict, template_format: Literal["f-string", "mustache"] ) -> list[str]: input_variables = [] for v in template.values(): if isinstance(v, str): input_variables += get_template_variables(v, template_format) elif isinstance(v, dict): input_variables += _get_input_variables(v, template_format) elif isinstance(v, (list, tuple)): for x in v: if isinstance(x, str): input_variables += get_template_variables(x, template_format) elif isinstance(x, dict): input_variables += _get_input_variables(x, template_format) else: pass return list(set(input_variables)) def _insert_input_variables( template: dict[str, Any], inputs: dict[str, Any], template_format: Literal["f-string", "mustache"], ) -> dict[str, Any]: formatted = {} formatter = DEFAULT_FORMATTER_MAPPING[template_format] for k, v in template.items(): if isinstance(v, str): formatted[k] = formatter(v, **inputs) elif isinstance(v, dict): if k == "image_url" and "path" in v: msg = ( "Specifying image inputs via file path in environments with " "user-input paths is a security vulnerability. Out of an abundance " "of caution, the utility has been removed to prevent possible " "misuse." ) warnings.warn(msg, stacklevel=2) formatted[k] = _insert_input_variables(v, inputs, template_format) elif isinstance(v, (list, tuple)): formatted_v = [] for x in v: if isinstance(x, str): formatted_v.append(formatter(x, **inputs)) elif isinstance(x, dict): formatted_v.append( _insert_input_variables(x, inputs, template_format) ) formatted[k] = type(v)(formatted_v) else: formatted[k] = v return formatted
from jina import Document, Flow from sentencizer import Sentencizer def test_exec(): f = Flow().add(uses=Sentencizer) with f: resp = f.post( on='/test', inputs=Document(text='Hello. World! Go? Back'), return_results=True, ) assert resp[0].docs[0].chunks[0].text == 'Hello.' assert resp[0].docs[0].chunks[1].text == 'World!' assert resp[0].docs[0].chunks[2].text == 'Go?' assert resp[0].docs[0].chunks[3].text == 'Back'
from jina import Document, Flow from ...sentencizer import Sentencizer def test_exec(): f = Flow().add(uses=Sentencizer) with f: resp = f.post( on='/test', inputs=Document(text='Hello. World! Go? Back'), return_results=True, ) assert resp[0].docs[0].chunks[0].text == 'Hello.' assert resp[0].docs[0].chunks[1].text == 'World!' assert resp[0].docs[0].chunks[2].text == 'Go?' assert resp[0].docs[0].chunks[3].text == 'Back'
from typing import Callable, TypeVar, ParamSpec import threading P = ParamSpec("P") R = TypeVar("R") def thread_cached(func: Callable[P, R]) -> Callable[P, R]: thread_local = threading.local() def wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} key = (args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return wrapper
import threading from functools import wraps from typing import Callable, ParamSpec, TypeVar T = TypeVar("T") P = ParamSpec("P") R = TypeVar("R") def thread_cached(func: Callable[P, R]) -> Callable[P, R]: thread_local = threading.local() @wraps(func) def wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} key = (args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return wrapper def thread_cached_property(func: Callable[[T], R]) -> property: return property(thread_cached(func))
"""Code Interpreter tool spec.""" import subprocess import sys from llama_index.core.tools.tool_spec.base import BaseToolSpec class CodeInterpreterToolSpec(BaseToolSpec): """ Code Interpreter tool spec. WARNING: This tool provides the Agent access to the `subprocess.run` command. Arbitrary code execution is possible on the machine running this tool. This tool is not recommended to be used in a production setting, and would require heavy sandboxing or virtual machines """ spec_functions = ["code_interpreter"] def code_interpreter(self, code: str): """ A function to execute python code, and return the stdout and stderr. You should import any libraries that you wish to use. You have access to any libraries the user has installed. The code passed to this function is executed in isolation. It should be complete at the time it is passed to this function. You should interpret the output and errors returned from this function, and attempt to fix any problems. If you cannot fix the error, show the code to the user and ask for help It is not possible to return graphics or other complicated data from this function. If the user cannot see the output, save it to a file and tell the user. """ result = subprocess.run([sys.executable, "-c", code], capture_output=True) return f"StdOut:\n{result.stdout}\nStdErr:\n{result.stderr}"
"""Code Interpreter tool spec.""" import subprocess import sys from llama_index.core.tools.tool_spec.base import BaseToolSpec class CodeInterpreterToolSpec(BaseToolSpec): """Code Interpreter tool spec. WARNING: This tool provides the Agent access to the `subprocess.run` command. Arbitrary code execution is possible on the machine running this tool. This tool is not recommended to be used in a production setting, and would require heavy sandboxing or virtual machines """ spec_functions = ["code_interpreter"] def code_interpreter(self, code: str): """ A function to execute python code, and return the stdout and stderr. You should import any libraries that you wish to use. You have access to any libraries the user has installed. The code passed to this function is executed in isolation. It should be complete at the time it is passed to this function. You should interpret the output and errors returned from this function, and attempt to fix any problems. If you cannot fix the error, show the code to the user and ask for help It is not possible to return graphics or other complicated data from this function. If the user cannot see the output, save it to a file and tell the user. """ result = subprocess.run([sys.executable, "-c", code], capture_output=True) return f"StdOut:\n{result.stdout}\nStdErr:\n{result.stderr}"
import warnings from typing import List, Optional, Type from jina.excepts import BadYAMLVersion from jina.jaml import JAMLCompatible from jina.jaml.parsers.base import VersionedYAMLParser from jina.serve.gateway import BaseGateway def _get_all_parser(cls: Type['JAMLCompatible']): """Get all parsers and legacy parser of a class :param cls: target class :return: a tuple of two elements; first is a list of all parsers, second is the legacy parser for default fallback """ from jina.orchestrate.flow.base import Flow from jina.serve.executors import BaseExecutor if issubclass(cls, Flow): return _get_flow_parser() elif issubclass(cls, BaseExecutor): return _get_exec_parser() elif issubclass(cls, BaseGateway): return _get_gateway_parser() else: return _get_default_parser() def _get_flow_parser(): from jina.jaml.parsers.flow.v1 import V1Parser return [V1Parser], V1Parser def _get_exec_parser(): from jina.jaml.parsers.executor.legacy import ExecutorLegacyParser return [ExecutorLegacyParser], ExecutorLegacyParser def _get_gateway_parser(): from jina.jaml.parsers.gateway.legacy import GatewayLegacyParser return [GatewayLegacyParser], GatewayLegacyParser def _get_default_parser(): from jina.jaml.parsers.default.v1 import V1Parser return [V1Parser], V1Parser def get_parser( cls: Type['JAMLCompatible'], version: Optional[str] ) -> 'VersionedYAMLParser': """ .. # noqa: DAR401 :param cls: the target class to parse :param version: yaml version number in "MAJOR[.MINOR]" format :return: parser given the YAML version """ all_parsers, legacy_parser = _get_all_parser(cls) if version: if isinstance(version, (float, int)): version = str(version) for p in all_parsers: if p.version == version: return p() for p in all_parsers: # fallback to major if version.split('.')[0] == p.version: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to parser for version: {p.version}', UserWarning, ) return p() raise BadYAMLVersion(f'{version} is not a valid version number') else: if version is not None: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to legacy parser. ' f'this usually mean you are using a deprecated YAML format.', DeprecationWarning, ) # fallback to legacy parser return legacy_parser() def get_supported_versions(cls) -> List[str]: """List all supported versions :param cls: the class to check :return: supported versions sorted alphabetically """ all_parsers, _ = _get_all_parser(cls) return list(sorted(p.version for p in all_parsers))
import warnings from typing import List, Optional, Type from jina.excepts import BadYAMLVersion from jina.jaml import JAMLCompatible from jina.jaml.parsers.base import VersionedYAMLParser def _get_all_parser(cls: Type['JAMLCompatible']): """Get all parsers and legacy parser of a class :param cls: target class :return: a tuple of two elements; first is a list of all parsers, second is the legacy parser for default fallback """ from jina.orchestrate.flow.base import Flow from jina.serve.executors import BaseExecutor if issubclass(cls, Flow): return _get_flow_parser() elif issubclass(cls, BaseExecutor): return _get_exec_parser() else: return _get_default_parser() def _get_flow_parser(): from jina.jaml.parsers.flow.v1 import V1Parser return [V1Parser], V1Parser def _get_exec_parser(): from jina.jaml.parsers.executor.legacy import LegacyParser return [LegacyParser], LegacyParser def _get_default_parser(): from jina.jaml.parsers.default.v1 import V1Parser return [V1Parser], V1Parser def get_parser( cls: Type['JAMLCompatible'], version: Optional[str] ) -> 'VersionedYAMLParser': """ .. # noqa: DAR401 :param cls: the target class to parse :param version: yaml version number in "MAJOR[.MINOR]" format :return: parser given the YAML version """ all_parsers, legacy_parser = _get_all_parser(cls) if version: if isinstance(version, (float, int)): version = str(version) for p in all_parsers: if p.version == version: return p() for p in all_parsers: # fallback to major if version.split('.')[0] == p.version: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to parser for version: {p.version}', UserWarning, ) return p() raise BadYAMLVersion(f'{version} is not a valid version number') else: if version is not None: warnings.warn( f'can not find parser for version: {version}, ' f'fallback to legacy parser. ' f'this usually mean you are using a deprecated YAML format.', DeprecationWarning, ) # fallback to legacy parser return legacy_parser() def get_supported_versions(cls) -> List[str]: """List all supported versions :param cls: the class to check :return: supported versions sorted alphabetically """ all_parsers, _ = _get_all_parser(cls) return list(sorted(p.version for p in all_parsers))
_base_ = './ga-retinanet_r101-caffe_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './ga-retinanet_r101-caffe_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
"""Standard LangChain interface tests.""" from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests.chat_models import ( ChatModelUnitTests, ) from langchain_groq import ChatGroq class TestGroqStandard(ChatModelUnitTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatGroq @property def chat_model_params(self) -> dict: return {"model": "llama-3.1-8b-instant"}
"""Standard LangChain interface tests""" from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests.chat_models import ( ChatModelUnitTests, ) from langchain_groq import ChatGroq class TestGroqStandard(ChatModelUnitTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatGroq @property def chat_model_params(self) -> dict: return {"model": "llama-3.1-8b-instant"}
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import HybridTaskCascadeRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestHTCRoIHead(TestCase): @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): """Test init htc RoI head.""" # Normal HTC RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask assert roi_head.with_semantic @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_htc_roi_head_loss(self, cfg_file): """Tests htc roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [(3, s, s) for _ in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, with_semantic=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # When there is no truth, the cls loss should be nonzero but # there should be no box and mask loss. proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[0], num_classes=4, with_mask=True, with_semantic=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss_cls' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') elif 'loss_bbox' in name or 'loss_mask' in name: self.assertEqual(value.sum(), 0) @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_htc_roi_head_predict(self, cfg_file): if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) img_shape_list = [(3, s, s) for _ in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) results = roi_head.predict( feats, proposal_list, batch_data_samples, rescale=True) self.assertEqual(results[0].masks.shape[-2:], (s, s))
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import HybridTaskCascadeRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestHTCRoIHead(TestCase): @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): """Test init htc RoI head.""" # Normal HTC RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask assert roi_head.with_semantic @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_htc_roi_head_loss(self, cfg_file): """Tests htc roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [img_meta['img_shape'] for img_meta in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100) packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(s, s, 3)], num_items=[1], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # When there is no truth, the cls loss should be nonzero but # there should be no box and mask loss. proposal_list = demo_mm_proposals(img_shape_list, 100) packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(s, s, 3)], num_items=[0], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss_cls' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') elif 'loss_bbox' in name or 'loss_mask' in name: self.assertEqual(value.sum(), 0) @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_htc_roi_head_predict(self, cfg_file): if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) img_shape_list = [img_meta['img_shape'] for img_meta in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100) packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(s, s, 3)], num_items=[1], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) results = roi_head.predict( feats, proposal_list, batch_data_samples, rescale=True) self.assertEqual(results[0].masks.shape[-2:], (s, s))
import json from jina.orchestrate.flow.base import Flow from jina.orchestrate.deployments import Deployment from jina.jaml import JAML from jina.logging.predefined import default_logger from jina.schemas import get_full_schema from jina_cli.export import api_to_dict def export_kubernetes(args): """Export to k8s yaml files :param args: args from CLI """ from jina.jaml import JAMLCompatible obj = JAMLCompatible.load_config(args.config_path) if isinstance(obj, (Flow, Deployment)): obj.to_kubernetes_yaml( output_base_path=args.outpath, k8s_namespace=args.k8s_namespace ) else: raise NotImplementedError(f'Object of class {obj.__class__.__name__} cannot be exported to Kubernetes') def export_docker_compose(args): """Export to Docker compose yaml files :param args: args from CLI """ from jina.jaml import JAMLCompatible obj = JAMLCompatible.load_config(args.config_path) if isinstance(obj, (Flow, Deployment)): obj.to_docker_compose_yaml( output_path=args.outpath, network_name=args.network_name ) else: raise NotImplementedError(f'Object of class {obj.__class__.__name__} cannot be exported to Docker Compose') def export_flowchart(args): """Export to flowchart file :param args: args from CLI """ Flow.load_config(args.config_path).plot( args.outpath, vertical_layout=args.vertical_layout ) def export_schema(args): """Export to JSON Schemas :param args: args from CLI """ from jina import __version__ if args.yaml_path: dump_api = api_to_dict() for yp in args.yaml_path: f_name = (yp % __version__) if '%s' in yp else yp with open(f_name, 'w', encoding='utf-8') as fp: JAML.dump(dump_api, fp) default_logger.info(f'API is exported to {f_name}') if args.json_path: dump_api = api_to_dict() for jp in args.json_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf-8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}') if args.schema_path: dump_api = get_full_schema() for jp in args.schema_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf-8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}')
import json from jina.orchestrate.flow.base import Flow from jina.orchestrate.deployments import Deployment from jina.jaml import JAML from jina.logging.predefined import default_logger from jina.schemas import get_full_schema from jina_cli.export import api_to_dict def export_kubernetes(args): """Export to k8s yaml files :param args: args from CLI """ from jina.jaml import JAMLCompatible obj = JAMLCompatible.load_config(args.config_path) if isinstance(obj, (Flow, Deployment)): obj.to_kubernetes_yaml( output_base_path=args.outpath, k8s_namespace=args.k8s_namespace ) else: raise NotImplementedError(f'Object of class {obj.__class__.__name__} cannot be exported to Kubernetes') def export_docker_compose(args): """Export to Docker compose yaml files :param args: args from CLI """ from jina.jaml import JAMLCompatible obj = JAMLCompatible.load_config(args.config_path) if isinstance(obj, (Flow, Deployment)): obj.to_docker_compose_yaml( output_path=args.outpath, network_name=args.network_name ) else: raise NotImplementedError(f'Object of class {obj.__class__.__name__} cannot be exported to Docker Compose') def export_flowchart(args): """Export to flowchart file :param args: args from CLI """ Flow.load_config(args.config_path).plot( args.outpath, vertical_layout=args.vertical_layout ) def export_schema(args): """Export to JSON Schemas :param args: args from CLI """ from jina import __version__ if args.yaml_path: dump_api = api_to_dict() for yp in args.yaml_path: f_name = (yp % __version__) if '%s' in yp else yp with open(f_name, 'w', encoding='utf8') as fp: JAML.dump(dump_api, fp) default_logger.info(f'API is exported to {f_name}') if args.json_path: dump_api = api_to_dict() for jp in args.json_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}') if args.schema_path: dump_api = get_full_schema() for jp in args.schema_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}')
# Copyright (c) OpenMMLab. All rights reserved. from .bfp import BFP from .channel_mapper import ChannelMapper from .cspnext_pafpn import CSPNeXtPAFPN from .ct_resnet_neck import CTResNetNeck from .dilated_encoder import DilatedEncoder from .dyhead import DyHead from .fpg import FPG from .fpn import FPN from .fpn_carafe import FPN_CARAFE from .fpn_dropblock import FPN_DropBlock from .hrfpn import HRFPN from .nas_fpn import NASFPN from .nasfcos_fpn import NASFCOS_FPN from .pafpn import PAFPN from .rfp import RFP from .ssd_neck import SSDNeck from .ssh import SSH from .yolo_neck import YOLOV3Neck from .yolox_pafpn import YOLOXPAFPN __all__ = [ 'FPN', 'BFP', 'ChannelMapper', 'HRFPN', 'NASFPN', 'FPN_CARAFE', 'PAFPN', 'NASFCOS_FPN', 'RFP', 'YOLOV3Neck', 'FPG', 'DilatedEncoder', 'CTResNetNeck', 'SSDNeck', 'YOLOXPAFPN', 'DyHead', 'CSPNeXtPAFPN', 'SSH', 'FPN_DropBlock' ]
# Copyright (c) OpenMMLab. All rights reserved. from .bfp import BFP from .channel_mapper import ChannelMapper from .cspnext_pafpn import CSPNeXtPAFPN from .ct_resnet_neck import CTResNetNeck from .dilated_encoder import DilatedEncoder from .dyhead import DyHead from .fpg import FPG from .fpn import FPN from .fpn_carafe import FPN_CARAFE from .hrfpn import HRFPN from .nas_fpn import NASFPN from .nasfcos_fpn import NASFCOS_FPN from .pafpn import PAFPN from .rfp import RFP from .ssd_neck import SSDNeck from .ssh import SSH from .yolo_neck import YOLOV3Neck from .yolox_pafpn import YOLOXPAFPN __all__ = [ 'FPN', 'BFP', 'ChannelMapper', 'HRFPN', 'NASFPN', 'FPN_CARAFE', 'PAFPN', 'NASFCOS_FPN', 'RFP', 'YOLOV3Neck', 'FPG', 'DilatedEncoder', 'CTResNetNeck', 'SSDNeck', 'YOLOXPAFPN', 'DyHead', 'CSPNeXtPAFPN', 'SSH' ]
"""langchain-core version information and utilities.""" VERSION = "0.3.53"
"""langchain-core version information and utilities.""" VERSION = "0.3.52"
import os import pathlib from typing import Any, Callable, Optional, Union from .folder import default_loader from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class DTD(VisionDataset): """`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``. .. note:: The partition only changes which split each image belongs to. Thus, regardless of the selected partition, combining all splits will result in all images. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz" _MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1" def __init__( self, root: Union[str, pathlib.Path], split: str = "train", partition: int = 1, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[Union[str, pathlib.Path]], Any] = default_loader, ) -> None: self._split = verify_str_arg(split, "split", ("train", "val", "test")) if not isinstance(partition, int) and not (1 <= partition <= 10): raise ValueError( f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, " f"but got {partition} instead" ) self._partition = partition super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower() self._data_folder = self._base_folder / "dtd" self._meta_folder = self._data_folder / "labels" self._images_folder = self._data_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._image_files = [] classes = [] with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file: for line in file: cls, name = line.strip().split("/") self._image_files.append(self._images_folder.joinpath(cls, name)) classes.append(cls) self.classes = sorted(set(classes)) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._labels = [self.class_to_idx[cls] for cls in classes] self.loader = loader def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = self.loader(image_file) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}, partition={self._partition}" def _check_exists(self) -> bool: return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)
import os import pathlib from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class DTD(VisionDataset): """`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``. .. note:: The partition only changes which split each image belongs to. Thus, regardless of the selected partition, combining all splits will result in all images. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz" _MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1" def __init__( self, root: Union[str, pathlib.Path], split: str = "train", partition: int = 1, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[Union[str, pathlib.Path]], Any] = default_loader, ) -> None: self._split = verify_str_arg(split, "split", ("train", "val", "test")) if not isinstance(partition, int) and not (1 <= partition <= 10): raise ValueError( f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, " f"but got {partition} instead" ) self._partition = partition super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower() self._data_folder = self._base_folder / "dtd" self._meta_folder = self._data_folder / "labels" self._images_folder = self._data_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._image_files = [] classes = [] with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file: for line in file: cls, name = line.strip().split("/") self._image_files.append(self._images_folder.joinpath(cls, name)) classes.append(cls) self.classes = sorted(set(classes)) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._labels = [self.class_to_idx[cls] for cls in classes] self.loader = loader def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = self.loader(image_file) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}, partition={self._partition}" def _check_exists(self) -> bool: return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) assert model.embedding.weight.shape == (29528, 32) @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from __future__ import annotations from pathlib import Path import numpy as np import pytest from tokenizers import Tokenizer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) assert model.embedding.weight.shape == (29528, 32) @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256)
# Copyright (c) OpenMMLab. All rights reserved. import torch from ..builder import BBOX_SAMPLERS from ..transforms import bbox2roi from .base_sampler import BaseSampler @BBOX_SAMPLERS.register_module() class OHEMSampler(BaseSampler): r"""Online Hard Example Mining Sampler described in `Training Region-based Object Detectors with Online Hard Example Mining <https://arxiv.org/abs/1604.03540>`_. """ def __init__(self, num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, loss_key='loss_cls', **kwargs): super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.context = context if not hasattr(self.context, 'num_stages'): self.bbox_head = self.context.bbox_head else: self.bbox_head = self.context.bbox_head[self.context.current_stage] self.loss_key = loss_key def hard_mining(self, inds, num_expected, bboxes, labels, feats): with torch.no_grad(): rois = bbox2roi([bboxes]) if not hasattr(self.context, 'num_stages'): bbox_results = self.context._bbox_forward(feats, rois) else: bbox_results = self.context._bbox_forward( self.context.current_stage, feats, rois) cls_score = bbox_results['cls_score'] loss = self.bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=rois, labels=labels, label_weights=cls_score.new_ones(cls_score.size(0)), bbox_targets=None, bbox_weights=None, reduction_override='none')[self.loss_key] _, topk_loss_inds = loss.topk(num_expected) return inds[topk_loss_inds] def _sample_pos(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample positive boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected positive samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of positive samples """ # Sample some hard positive samples pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds], assign_result.labels[pos_inds], feats) def _sample_neg(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample negative boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected negative samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of negative samples """ # Sample some hard negative samples neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: neg_labels = assign_result.labels.new_empty( neg_inds.size(0)).fill_(self.bbox_head.num_classes) return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds], neg_labels, feats)
# Copyright (c) OpenMMLab. All rights reserved. import torch from ..builder import BBOX_SAMPLERS from ..transforms import bbox2roi from .base_sampler import BaseSampler @BBOX_SAMPLERS.register_module() class OHEMSampler(BaseSampler): r"""Online Hard Example Mining Sampler described in `Training Region-based Object Detectors with Online Hard Example Mining <https://arxiv.org/abs/1604.03540>`_. """ def __init__(self, num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.context = context if not hasattr(self.context, 'num_stages'): self.bbox_head = self.context.bbox_head else: self.bbox_head = self.context.bbox_head[self.context.current_stage] def hard_mining(self, inds, num_expected, bboxes, labels, feats): with torch.no_grad(): rois = bbox2roi([bboxes]) if not hasattr(self.context, 'num_stages'): bbox_results = self.context._bbox_forward(feats, rois) else: bbox_results = self.context._bbox_forward( self.context.current_stage, feats, rois) cls_score = bbox_results['cls_score'] loss = self.bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=rois, labels=labels, label_weights=cls_score.new_ones(cls_score.size(0)), bbox_targets=None, bbox_weights=None, reduction_override='none')['loss_cls'] _, topk_loss_inds = loss.topk(num_expected) return inds[topk_loss_inds] def _sample_pos(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample positive boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected positive samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of positive samples """ # Sample some hard positive samples pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds], assign_result.labels[pos_inds], feats) def _sample_neg(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample negative boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected negative samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of negative samples """ # Sample some hard negative samples neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: neg_labels = assign_result.labels.new_empty( neg_inds.size(0)).fill_(self.bbox_head.num_classes) return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds], neg_labels, feats)
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .profiler_hook import ProfilerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook', 'ProfilerHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook' ]
import types from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, celu, elu, selu, softplus, softsign, silu, gelu, tanh, sigmoid, exponential, hard_sigmoid, hard_silu, linear, mish, log_softmax, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
import types from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, elu, selu, softplus, softsign, silu, gelu, tanh, sigmoid, exponential, hard_sigmoid, hard_silu, linear, mish, log_softmax, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
import os import urllib.parse from typing import Dict, Union, Optional from llama_index.core.base.llms.generic_utils import ( get_from_param_or_env, ) # Import SecretStr directly from pydantic # since there is not one in llama_index.core.bridge.pydantic from pydantic import SecretStr def resolve_watsonx_credentials( *, url: Optional[str] = None, apikey: Optional[str] = None, token: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, instance_id: Optional[str] = None, ) -> Dict[str, SecretStr]: """ Resolve watsonx.ai credentials. If the value of given param is None then tries to find corresponding environment variable. :raises ValueError: raises when value of required attribute is not found :return: Dictionary with resolved credentials items :rtype: Dict[str, SecretStr] """ creds = {} creds["url"] = convert_to_secret_str( get_from_param_or_env("url", url, "WATSONX_URL") ) parsed_url = urllib.parse.urlparse(creds["url"].get_secret_value()) if parsed_url.netloc.endswith(".cloud.ibm.com"): if not (apikey or "WATSONX_APIKEY" in os.environ) and not ( token or "WATSONX_TOKEN" in os.environ ): raise ValueError( "Did not find 'apikey' or 'token'," " please add an environment variable" " `WATSONX_APIKEY` or 'WATSONX_TOKEN' " "which contains it," " or pass 'apikey' or 'token'" " as a named parameter." ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) else: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) else: if ( not token and "WATSONX_TOKEN" not in os.environ and not password and "WATSONX_PASSWORD" not in os.environ and not apikey and "WATSONX_APIKEY" not in os.environ ): raise ValueError( "Did not find 'token', 'password' or 'apikey'," " please add an environment variable" " `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' " "which contains it," " or pass 'token', 'password' or 'apikey'" " as a named parameter." ) elif token or "WATSONX_TOKEN" in os.environ: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) elif password or "WATSONX_PASSWORD" in os.environ: creds["password"] = convert_to_secret_str( get_from_param_or_env("password", password, "WATSONX_PASSWORD") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) if not instance_id or "WATSONX_INSTANCE_ID" not in os.environ: creds["instance_id"] = convert_to_secret_str( get_from_param_or_env("instance_id", instance_id, "WATSONX_INSTANCE_ID") ) return creds def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr: """Convert a string to a SecretStr.""" if isinstance(value, SecretStr): return value return SecretStr(value)
import os import urllib.parse from typing import Dict, Union, Optional from llama_index.core.base.llms.generic_utils import ( get_from_param_or_env, ) # Import SecretStr directly from pydantic # since there is not one in llama_index.core.bridge.pydantic from pydantic import SecretStr def resolve_watsonx_credentials( *, url: Optional[str] = None, apikey: Optional[str] = None, token: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, instance_id: Optional[str] = None ) -> Dict[str, SecretStr]: """ Resolve watsonx.ai credentials. If the value of given param is None then tries to find corresponding environment variable. :raises ValueError: raises when value of required attribute is not found :return: Dictionary with resolved credentials items :rtype: Dict[str, SecretStr] """ creds = {} creds["url"] = convert_to_secret_str( get_from_param_or_env("url", url, "WATSONX_URL") ) parsed_url = urllib.parse.urlparse(creds["url"].get_secret_value()) if parsed_url.netloc.endswith(".cloud.ibm.com"): if not (apikey or "WATSONX_APIKEY" in os.environ) and not ( token or "WATSONX_TOKEN" in os.environ ): raise ValueError( "Did not find 'apikey' or 'token'," " please add an environment variable" " `WATSONX_APIKEY` or 'WATSONX_TOKEN' " "which contains it," " or pass 'apikey' or 'token'" " as a named parameter." ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) else: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) else: if ( not token and "WATSONX_TOKEN" not in os.environ and not password and "WATSONX_PASSWORD" not in os.environ and not apikey and "WATSONX_APIKEY" not in os.environ ): raise ValueError( "Did not find 'token', 'password' or 'apikey'," " please add an environment variable" " `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' " "which contains it," " or pass 'token', 'password' or 'apikey'" " as a named parameter." ) elif token or "WATSONX_TOKEN" in os.environ: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) elif password or "WATSONX_PASSWORD" in os.environ: creds["password"] = convert_to_secret_str( get_from_param_or_env("password", password, "WATSONX_PASSWORD") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) if not instance_id or "WATSONX_INSTANCE_ID" not in os.environ: creds["instance_id"] = convert_to_secret_str( get_from_param_or_env("instance_id", instance_id, "WATSONX_INSTANCE_ID") ) return creds def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr: """Convert a string to a SecretStr.""" if isinstance(value, SecretStr): return value return SecretStr(value)
"""Test formatting functionality.""" from typing import Union import pytest from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.documents import Document from langchain_core.messages import ( AIMessage, AIMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ToolMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, Generation from langchain_core.prompt_values import ChatPromptValueConcrete, StringPromptValue from pydantic import RootModel, ValidationError @pytest.mark.xfail(reason="TODO: FIX BEFORE 0.3 RELEASE") def test_serialization_of_wellknown_objects() -> None: """Test that pydantic is able to serialize and deserialize well known objects.""" well_known_lc_object = RootModel[ Union[ Document, HumanMessage, SystemMessage, ChatMessage, FunctionMessage, FunctionMessageChunk, AIMessage, HumanMessageChunk, SystemMessageChunk, ChatMessageChunk, AIMessageChunk, StringPromptValue, ChatPromptValueConcrete, AgentFinish, AgentAction, AgentActionMessageLog, ChatGeneration, Generation, ChatGenerationChunk, ] ] lc_objects = [ HumanMessage(content="human"), HumanMessageChunk(content="human"), AIMessage(content="ai"), AIMessageChunk(content="ai"), SystemMessage(content="sys"), SystemMessageChunk(content="sys"), FunctionMessage( name="func", content="func", ), FunctionMessageChunk( name="func", content="func", ), ChatMessage( role="human", content="human", ), ChatMessageChunk( role="human", content="human", ), StringPromptValue(text="hello"), ChatPromptValueConcrete(messages=[AIMessage(content="foo")]), ChatPromptValueConcrete(messages=[HumanMessage(content="human")]), ChatPromptValueConcrete( messages=[ToolMessage(content="foo", tool_call_id="bar")], ), ChatPromptValueConcrete(messages=[SystemMessage(content="foo")]), Document(page_content="hello"), AgentFinish(return_values={}, log=""), AgentAction(tool="tool", tool_input="input", log=""), AgentActionMessageLog( tool="tool", tool_input="input", log="", message_log=[HumanMessage(content="human")], ), Generation( text="hello", generation_info={"info": "info"}, ), ChatGeneration( message=HumanMessage(content="human"), ), ChatGenerationChunk( message=HumanMessageChunk(content="cat"), ), ] for lc_object in lc_objects: d = lc_object.model_dump() assert "type" in d, f"Missing key `type` for {type(lc_object)}" obj1 = well_known_lc_object.model_validate(d) assert type(obj1.root) is type(lc_object), f"failed for {type(lc_object)}" with pytest.raises((TypeError, ValidationError)): # Make sure that specifically validation error is raised well_known_lc_object.model_validate({})
"""Test formatting functionality.""" from typing import Union import pytest from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.documents import Document from langchain_core.messages import ( AIMessage, AIMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ToolMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, Generation from langchain_core.prompt_values import ChatPromptValueConcrete, StringPromptValue from pydantic import RootModel, ValidationError @pytest.mark.xfail(reason="TODO: FIX BEFORE 0.3 RELEASE") def test_serialization_of_wellknown_objects() -> None: """Test that pydantic is able to serialize and deserialize well known objects.""" well_known_lc_object = RootModel[ Union[ Document, HumanMessage, SystemMessage, ChatMessage, FunctionMessage, FunctionMessageChunk, AIMessage, HumanMessageChunk, SystemMessageChunk, ChatMessageChunk, AIMessageChunk, StringPromptValue, ChatPromptValueConcrete, AgentFinish, AgentAction, AgentActionMessageLog, ChatGeneration, Generation, ChatGenerationChunk, ] ] lc_objects = [ HumanMessage(content="human"), HumanMessageChunk(content="human"), AIMessage(content="ai"), AIMessageChunk(content="ai"), SystemMessage(content="sys"), SystemMessageChunk(content="sys"), FunctionMessage( name="func", content="func", ), FunctionMessageChunk( name="func", content="func", ), ChatMessage( role="human", content="human", ), ChatMessageChunk( role="human", content="human", ), StringPromptValue(text="hello"), ChatPromptValueConcrete(messages=[AIMessage(content="foo")]), ChatPromptValueConcrete(messages=[HumanMessage(content="human")]), ChatPromptValueConcrete( messages=[ToolMessage(content="foo", tool_call_id="bar")] ), ChatPromptValueConcrete(messages=[SystemMessage(content="foo")]), Document(page_content="hello"), AgentFinish(return_values={}, log=""), AgentAction(tool="tool", tool_input="input", log=""), AgentActionMessageLog( tool="tool", tool_input="input", log="", message_log=[HumanMessage(content="human")], ), Generation( text="hello", generation_info={"info": "info"}, ), ChatGeneration( message=HumanMessage(content="human"), ), ChatGenerationChunk( message=HumanMessageChunk(content="cat"), ), ] for lc_object in lc_objects: d = lc_object.model_dump() assert "type" in d, f"Missing key `type` for {type(lc_object)}" obj1 = well_known_lc_object.model_validate(d) assert type(obj1.root) is type(lc_object), f"failed for {type(lc_object)}" with pytest.raises((TypeError, ValidationError)): # Make sure that specifically validation error is raised well_known_lc_object.model_validate({})
SYSTEM_MESSAGE_PREFIX = """Answer the following questions as best you can. You have access to the following tools:""" # noqa: E501 FORMAT_INSTRUCTIONS = """The way you use the tools is by specifying a json blob. Specifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here). The only values that should be in the "action" field are: {tool_names} The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB: ``` {{{{ "action": $TOOL_NAME, "action_input": $INPUT }}}} ``` ALWAYS use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: ``` $JSON_BLOB ``` Observation: the result of the action ... (this Thought/Action/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question""" # noqa: E501 SYSTEM_MESSAGE_SUFFIX = """Begin! Reminder to always use the exact characters `Final Answer` when responding.""" # noqa: E501 HUMAN_MESSAGE = "{input}\n\n{agent_scratchpad}"
# flake8: noqa SYSTEM_MESSAGE_PREFIX = """Answer the following questions as best you can. You have access to the following tools:""" FORMAT_INSTRUCTIONS = """The way you use the tools is by specifying a json blob. Specifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here). The only values that should be in the "action" field are: {tool_names} The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB: ``` {{{{ "action": $TOOL_NAME, "action_input": $INPUT }}}} ``` ALWAYS use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: ``` $JSON_BLOB ``` Observation: the result of the action ... (this Thought/Action/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question""" SYSTEM_MESSAGE_SUFFIX = """Begin! Reminder to always use the exact characters `Final Answer` when responding.""" HUMAN_MESSAGE = "{input}\n\n{agent_scratchpad}"
# Copyright (c) OpenMMLab. All rights reserved. from .base_det_dataset import BaseDetDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_det_dataset import BaseDetDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset' ]
""" Tests the correct computation of evaluation scores from BinaryClassificationEvaluator """ from __future__ import annotations import csv import gzip import os from pathlib import Path import pytest from torch.utils.data import DataLoader from sentence_transformers import ( InputExample, SentenceTransformer, evaluation, losses, util, ) @pytest.mark.skip(reason="This test is rather slow, and the LabelAccuracyEvaluator is not commonly used.") def test_LabelAccuracyEvaluator(paraphrase_distilroberta_base_v1_model: SentenceTransformer, tmp_path: Path) -> None: """Tests that the LabelAccuracyEvaluator can be loaded correctly""" model = paraphrase_distilroberta_base_v1_model nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) if len(dev_samples) >= 100: break train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int), ) dev_dataloader = DataLoader(dev_samples, shuffle=False, batch_size=16) evaluator = evaluation.LabelAccuracyEvaluator(dev_dataloader, softmax_model=train_loss) metrics = evaluator(model, output_path=str(tmp_path)) assert "accuracy" in metrics assert metrics["accuracy"] > 0.2
""" Tests the correct computation of evaluation scores from BinaryClassificationEvaluator """ from __future__ import annotations import csv import gzip import os from pathlib import Path from torch.utils.data import DataLoader from sentence_transformers import ( InputExample, SentenceTransformer, evaluation, losses, util, ) def test_LabelAccuracyEvaluator(paraphrase_distilroberta_base_v1_model: SentenceTransformer, tmp_path: Path) -> None: """Tests that the LabelAccuracyEvaluator can be loaded correctly""" model = paraphrase_distilroberta_base_v1_model nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) if len(dev_samples) >= 100: break train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int), ) dev_dataloader = DataLoader(dev_samples, shuffle=False, batch_size=16) evaluator = evaluation.LabelAccuracyEvaluator(dev_dataloader, softmax_model=train_loss) metrics = evaluator(model, output_path=str(tmp_path)) assert "accuracy" in metrics assert metrics["accuracy"] > 0.2
""" Internal helpers """ from collections.abc import Callable from functools import wraps from inspect import signature from types import ModuleType from typing import TypeVar _T = TypeVar("_T") def get_xp(xp: ModuleType) -> Callable[[Callable[..., _T]], Callable[..., _T]]: """ Decorator to automatically replace xp with the corresponding array module. Use like import numpy as np @get_xp(np) def func(x, /, xp, kwarg=None): return xp.func(x, kwarg=kwarg) Note that xp must be a keyword argument and come after all non-keyword arguments. """ def inner(f: Callable[..., _T], /) -> Callable[..., _T]: @wraps(f) def wrapped_f(*args: object, **kwargs: object) -> object: return f(*args, xp=xp, **kwargs) sig = signature(f) new_sig = sig.replace( parameters=[par for i, par in sig.parameters.items() if i != "xp"] ) if wrapped_f.__doc__ is None: wrapped_f.__doc__ = f"""\ Array API compatibility wrapper for {f.__name__}. See the corresponding documentation in NumPy/CuPy and/or the array API specification for more details. """ wrapped_f.__signature__ = new_sig # pyright: ignore[reportAttributeAccessIssue] return wrapped_f # pyright: ignore[reportReturnType] return inner __all__ = ["get_xp"] def __dir__() -> list[str]: return __all__
""" Internal helpers """ from functools import wraps from inspect import signature def get_xp(xp): """ Decorator to automatically replace xp with the corresponding array module. Use like import numpy as np @get_xp(np) def func(x, /, xp, kwarg=None): return xp.func(x, kwarg=kwarg) Note that xp must be a keyword argument and come after all non-keyword arguments. """ def inner(f): @wraps(f) def wrapped_f(*args, **kwargs): return f(*args, xp=xp, **kwargs) sig = signature(f) new_sig = sig.replace( parameters=[sig.parameters[i] for i in sig.parameters if i != "xp"] ) if wrapped_f.__doc__ is None: wrapped_f.__doc__ = f"""\ Array API compatibility wrapper for {f.__name__}. See the corresponding documentation in NumPy/CuPy and/or the array API specification for more details. """ wrapped_f.__signature__ = new_sig return wrapped_f return inner
from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Optional from pydantic import BaseModel from langchain_core.runnables import run_in_executor if TYPE_CHECKING: from collections.abc import Sequence from langchain_core.callbacks import Callbacks from langchain_core.documents import Document class BaseDocumentCompressor(BaseModel, ABC): """Base class for document compressors. This abstraction is primarily used for post-processing of retrieved documents. Documents matching a given query are first retrieved. Then the list of documents can be further processed. For example, one could re-rank the retrieved documents using an LLM. **Note** users should favor using a RunnableLambda instead of sub-classing from this interface. """ @abstractmethod def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress retrieved documents given the query context. Args: documents: The retrieved documents. query: The query context. callbacks: Optional callbacks to run during compression. Returns: The compressed documents. """ async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Async compress retrieved documents given the query context. Args: documents: The retrieved documents. query: The query context. callbacks: Optional callbacks to run during compression. Returns: The compressed documents. """ return await run_in_executor( None, self.compress_documents, documents, query, callbacks )
from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import Sequence from typing import Optional from pydantic import BaseModel from langchain_core.callbacks import Callbacks from langchain_core.documents import Document from langchain_core.runnables import run_in_executor class BaseDocumentCompressor(BaseModel, ABC): """Base class for document compressors. This abstraction is primarily used for post-processing of retrieved documents. Documents matching a given query are first retrieved. Then the list of documents can be further processed. For example, one could re-rank the retrieved documents using an LLM. **Note** users should favor using a RunnableLambda instead of sub-classing from this interface. """ @abstractmethod def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress retrieved documents given the query context. Args: documents: The retrieved documents. query: The query context. callbacks: Optional callbacks to run during compression. Returns: The compressed documents. """ async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Async compress retrieved documents given the query context. Args: documents: The retrieved documents. query: The query context. callbacks: Optional callbacks to run during compression. Returns: The compressed documents. """ return await run_in_executor( None, self.compress_documents, documents, query, callbacks )
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") stats = model.sparsity(embeddings) print(f"Embedding sparsity: {stats}") print(f"Average non-zero dimensions: {stats['active_dims']:.2f}") print(f"Sparsity percentage: {stats['sparsity_ratio']:.2%}") """ Embedding dim: 30522 Embedding sparsity: {'active_dims': 56.66666793823242, 'sparsity_ratio': 0.9981433749198914} Average non-zero dimensions: 56.67 Sparsity percentage: 99.81% """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k) print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """ # Example of using max_active_dims during encoding print("\n--- Using max_active_dims during encoding ---") # Generate embeddings with limited active dimensions embeddings_limited = model.encode(sentences, max_active_dims=32) stats_limited = model.sparsity(embeddings_limited) print(f"Limited embedding sparsity: {stats_limited}") print(f"Average non-zero dimensions: {stats_limited['active_dims']:.2f}") print(f"Sparsity percentage: {stats_limited['sparsity_ratio']:.2%}") """ --- Using max_active_dims during encoding --- Limited embedding sparsity: {'active_dims': 32.0, 'sparsity_ratio': 0.9989516139030457} Average non-zero dimensions: 32.00 Sparsity percentage: 99.90% """ # Comparing memory usage print("\n--- Comparing memory usage ---") def get_memory_size(tensor): if tensor.is_sparse: # For sparse tensors, only count non-zero elements return ( tensor._values().element_size() * tensor._values().nelement() + tensor._indices().element_size() * tensor._indices().nelement() ) else: return tensor.element_size() * tensor.nelement() print(f"Original embeddings memory: {get_memory_size(embeddings) / 1024:.2f} KB") print(f"Embeddings with max_active_dims=32 memory: {get_memory_size(embeddings_limited) / 1024:.2f} KB") """ --- Comparing memory usage --- Original embeddings memory: 3.32 KB Embeddings with max_active_dims=32 memory: 1.88 KB """
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") stats = model.get_sparsity_stats(embeddings) print(f"Embedding sparsity: {stats}") print(f"Average non-zero dimensions: {stats['row_non_zero_mean']:.2f}") print(f"Sparsity percentage: {stats['row_sparsity_mean']:.2%}") """ Embedding dim: 30522 Embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 56.66666793823242, 'row_sparsity_mean': 0.9981433749198914} Average non-zero dimensions: 56.67 Sparsity percentage: 99.81% """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k) print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """ # Example of using max_active_dims during encoding print("\n--- Using max_active_dims during encoding ---") # Generate embeddings with limited active dimensions embeddings_limited = model.encode(sentences, max_active_dims=32) stats_limited = model.get_sparsity_stats(embeddings_limited) print(f"Limited embedding sparsity: {stats_limited}") print(f"Average non-zero dimensions: {stats_limited['row_non_zero_mean']:.2f}") print(f"Sparsity percentage: {stats_limited['row_sparsity_mean']:.2%}") """ --- Using max_active_dims during encoding --- Limited embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 32.0, 'row_sparsity_mean': 0.9989516139030457} Average non-zero dimensions: 32.00 Sparsity percentage: 99.90% """ # Comparing memory usage print("\n--- Comparing memory usage ---") def get_memory_size(tensor): if tensor.is_sparse: # For sparse tensors, only count non-zero elements return ( tensor._values().element_size() * tensor._values().nelement() + tensor._indices().element_size() * tensor._indices().nelement() ) else: return tensor.element_size() * tensor.nelement() print(f"Original embeddings memory: {get_memory_size(embeddings) / 1024:.2f} KB") print(f"Embeddings with max_active_dims=32 memory: {get_memory_size(embeddings_limited) / 1024:.2f} KB") """ --- Comparing memory usage --- Original embeddings memory: 3.32 KB Embeddings with max_active_dims=32 memory: 1.88 KB """
import pytest from llama_index.core import MockEmbedding from llama_index.core.chat_engine.context import ( ContextChatEngine, ) from llama_index.core.indices import VectorStoreIndex from llama_index.core.llms.mock import MockLLM from llama_index.core.schema import Document SYSTEM_PROMPT = "Talk like a pirate." @pytest.fixture() def chat_engine() -> ContextChatEngine: index = VectorStoreIndex.from_documents( [Document.example()], embed_model=MockEmbedding(embed_dim=3) ) retriever = index.as_retriever() return ContextChatEngine.from_defaults( retriever, llm=MockLLM(), system_prompt=SYSTEM_PROMPT ) def test_chat(chat_engine: ContextChatEngine): response = chat_engine.chat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.chat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 def test_chat_stream(chat_engine: ContextChatEngine): response = chat_engine.stream_chat("Hello World!") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.stream_chat("What is the capital of the moon?") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio async def test_achat(chat_engine: ContextChatEngine): response = await chat_engine.achat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.achat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio async def test_chat_astream(chat_engine: ContextChatEngine): response = await chat_engine.astream_chat("Hello World!") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.astream_chat("What is the capital of the moon?") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4
import pytest from llama_index.core import MockEmbedding from llama_index.core.chat_engine.context import ( ContextChatEngine, ) from llama_index.core.indices import VectorStoreIndex from llama_index.core.llms.mock import MockLLM from llama_index.core.schema import Document SYSTEM_PROMPT = "Talk like a pirate." @pytest.fixture() def chat_engine() -> ContextChatEngine: index = VectorStoreIndex.from_documents( [Document.example()], embed_model=MockEmbedding(embed_dim=3) ) retriever = index.as_retriever() return ContextChatEngine.from_defaults( retriever, llm=MockLLM(), system_prompt=SYSTEM_PROMPT ) def test_chat(chat_engine: ContextChatEngine): response = chat_engine.chat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.chat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 def test_chat_stream(chat_engine: ContextChatEngine): response = chat_engine.stream_chat("Hello World!") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.stream_chat("What is the capital of the moon?") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio() async def test_achat(chat_engine: ContextChatEngine): response = await chat_engine.achat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.achat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio() async def test_chat_astream(chat_engine: ContextChatEngine): response = await chat_engine.astream_chat("Hello World!") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.astream_chat("What is the capital of the moon?") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4
import pytest from llama_index.llms.nvidia import NVIDIA as Interface from llama_index.llms.nvidia.base import BASE_URL from pytest_httpx import HTTPXMock UNKNOWN_URLS = [ "https://test_url/v1", "https://test_url/v1/", "http://test_url/v1", "http://test_url/v1/", ] @pytest.fixture() def mock_unknown_urls(httpx_mock: HTTPXMock, base_url: str) -> None: mock_response = { "data": [ { "id": "meta/llama3-8b-instruct", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } base_url = base_url.rstrip("/") httpx_mock.add_response( url=f"{base_url}/models", method="GET", json=mock_response, status_code=200, ) def test_mode_switch_nvidia_throws_without_key_deprecated(masked_env_var: str): x = Interface() with pytest.raises(ValueError): with pytest.warns(DeprecationWarning): x.mode("nvidia") def test_mode_switch_nvidia_with_key_deprecated(masked_env_var: str): with pytest.warns(DeprecationWarning): Interface().mode("nvidia", api_key="test") def test_mode_switch_nim_throws_without_url_deprecated(): instance = Interface() with pytest.raises(ValueError): with pytest.warns(DeprecationWarning): instance.mode("nim") def test_mode_switch_nim_with_url_deprecated(): with pytest.warns(DeprecationWarning): Interface().mode("nim", base_url="test") @pytest.mark.parametrize("base_url", ["https://test_url/v1/"]) def test_mode_switch_param_setting_deprecated(base_url): instance = Interface(model="meta/llama3-8b-instruct") with pytest.warns(DeprecationWarning): instance1 = instance.mode("nim", base_url=base_url) assert instance1.model == "meta/llama3-8b-instruct" assert str(instance1.api_base) == base_url with pytest.warns(DeprecationWarning): instance2 = instance1.mode( "nvidia", api_key="test", model="meta/llama3-15b-instruct" ) assert instance2.model == "meta/llama3-15b-instruct" assert str(instance2.api_base) == BASE_URL assert instance2.api_key == "test" @pytest.mark.parametrize("base_url", UNKNOWN_URLS) def test_mode_switch_unknown_base_url_without_key( mock_unknown_urls, masked_env_var: str, base_url: str ): Interface(base_url=base_url) @pytest.mark.parametrize("base_url", UNKNOWN_URLS) @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_mode_switch_unknown_base_url_with_key( mock_unknown_urls, masked_env_var: str, param: str, base_url: str ): Interface(base_url=base_url, **{param: "test"}) @pytest.mark.parametrize("base_url", [BASE_URL]) def test_mode_switch_known_base_url_without_key(masked_env_var: str, base_url: str): with pytest.warns(UserWarning): cls = Interface(base_url=base_url) assert cls._is_hosted @pytest.mark.parametrize("base_url", [BASE_URL]) @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_mode_switch_known_base_url_with_key( masked_env_var: str, base_url: str, param: str ): Interface(base_url=base_url, **{param: "test"})
import pytest from llama_index.llms.nvidia import NVIDIA as Interface from llama_index.llms.nvidia.base import BASE_URL, KNOWN_URLS from pytest_httpx import HTTPXMock UNKNOWN_URLS = [ "https://test_url/v1", "https://test_url/v1/", "http://test_url/v1", "http://test_url/v1/", ] @pytest.fixture() def mock_unknown_urls(httpx_mock: HTTPXMock, base_url: str): mock_response = { "data": [ { "id": "meta/llama3-8b-instruct", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } if base_url.endswith("/"): base_url = base_url[:-1] httpx_mock.add_response( url=f"{base_url}/models", method="GET", json=mock_response, status_code=200, ) def test_mode_switch_nvidia_throws_without_key_deprecated(masked_env_var: str): x = Interface() with pytest.raises(ValueError): with pytest.warns(DeprecationWarning): x.mode("nvidia") def test_mode_switch_nvidia_with_key_deprecated(masked_env_var: str): with pytest.warns(DeprecationWarning): Interface().mode("nvidia", api_key="test") def test_mode_switch_nim_throws_without_url_deprecated(): instance = Interface() with pytest.raises(ValueError): with pytest.warns(DeprecationWarning): instance.mode("nim") def test_mode_switch_nim_with_url_deprecated(): with pytest.warns(DeprecationWarning): Interface().mode("nim", base_url="test") @pytest.mark.parametrize("base_url", ["https://test_url/v1/"]) def test_mode_switch_param_setting_deprecated(base_url): instance = Interface(model="meta/llama3-8b-instruct") with pytest.warns(DeprecationWarning): instance1 = instance.mode("nim", base_url=base_url) assert instance1.model == "meta/llama3-8b-instruct" assert str(instance1.api_base) == base_url with pytest.warns(DeprecationWarning): instance2 = instance1.mode( "nvidia", api_key="test", model="meta/llama3-15b-instruct" ) assert instance2.model == "meta/llama3-15b-instruct" assert str(instance2.api_base) == BASE_URL assert instance2.api_key == "test" @pytest.mark.parametrize("base_url", UNKNOWN_URLS) def test_mode_switch_unknown_base_url_without_key( mock_unknown_urls, masked_env_var: str, base_url: str ): Interface(base_url=base_url) @pytest.mark.parametrize("base_url", UNKNOWN_URLS) @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_mode_switch_unknown_base_url_with_key( mock_unknown_urls, masked_env_var: str, param: str, base_url: str ): Interface(base_url=base_url, **{param: "test"}) @pytest.mark.parametrize("base_url", KNOWN_URLS) def test_mode_switch_known_base_url_without_key(masked_env_var: str, base_url: str): with pytest.warns(UserWarning): Interface(base_url=base_url) @pytest.mark.parametrize("base_url", KNOWN_URLS) @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_mode_switch_known_base_url_with_key( masked_env_var: str, base_url: str, param: str ): Interface(base_url=base_url, **{param: "test"})
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .detr import DETR @DETECTORS.register_module() class DeformableDETR(DETR): def __init__(self, *args, **kwargs): super(DETR, self).__init__(*args, **kwargs)
from ..builder import DETECTORS from .detr import DETR @DETECTORS.register_module() class DeformableDETR(DETR): def __init__(self, *args, **kwargs): super(DETR, self).__init__(*args, **kwargs)
import os from unittest.mock import patch import pytest from langchain_openai import OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = "foo" def test_openai_invalid_model_kwargs() -> None: with pytest.raises(ValueError): OpenAIEmbeddings(model_kwargs={"model": "foo"}) def test_openai_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = OpenAIEmbeddings(foo="bar") # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"} def test_embed_documents_with_custom_chunk_size() -> None: embeddings = OpenAIEmbeddings(chunk_size=2) texts = ["text1", "text2", "text3", "text4"] custom_chunk_size = 3 with patch.object(embeddings.client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]}, {"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]}, ] result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size) _, tokens, __ = embeddings._tokenize(texts, custom_chunk_size) mock_create.call_args mock_create.assert_any_call(input=tokens[0:3], **embeddings._invocation_params) mock_create.assert_any_call(input=tokens[3:4], **embeddings._invocation_params) assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]] def test_embed_documents_with_custom_chunk_size_no_check_ctx_length() -> None: embeddings = OpenAIEmbeddings(chunk_size=2, check_embedding_ctx_length=False) texts = ["text1", "text2", "text3", "text4"] custom_chunk_size = 3 with patch.object(embeddings.client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]}, {"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]}, ] result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size) mock_create.call_args mock_create.assert_any_call(input=texts[0:3], **embeddings._invocation_params) mock_create.assert_any_call(input=texts[3:4], **embeddings._invocation_params) assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]] def test_embed_with_kwargs() -> None: embeddings = OpenAIEmbeddings( model="text-embedding-3-small", check_embedding_ctx_length=False ) texts = ["text1", "text2"] with patch.object(embeddings.client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2, 0.3]}, {"embedding": [0.4, 0.5, 0.6]}]} ] result = embeddings.embed_documents(texts, dimensions=3) mock_create.assert_any_call( input=texts, dimensions=3, **embeddings._invocation_params ) assert result == [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]] async def test_embed_with_kwargs_async() -> None: embeddings = OpenAIEmbeddings( model="text-embedding-3-small", check_embedding_ctx_length=False, dimensions=4, # also check that runtime kwargs take precedence ) texts = ["text1", "text2"] with patch.object(embeddings.async_client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2, 0.3]}, {"embedding": [0.4, 0.5, 0.6]}]} ] result = await embeddings.aembed_documents(texts, dimensions=3) client_kwargs = embeddings._invocation_params.copy() assert client_kwargs["dimensions"] == 4 client_kwargs["dimensions"] = 3 mock_create.assert_any_call(input=texts, **client_kwargs) assert result == [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
import os from unittest.mock import patch import pytest from langchain_openai import OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = "foo" def test_openai_invalid_model_kwargs() -> None: with pytest.raises(ValueError): OpenAIEmbeddings(model_kwargs={"model": "foo"}) def test_openai_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = OpenAIEmbeddings(foo="bar") # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"} def test_embed_documents_with_custom_chunk_size() -> None: embeddings = OpenAIEmbeddings(chunk_size=2) texts = ["text1", "text2", "text3", "text4"] custom_chunk_size = 3 with patch.object(embeddings.client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]}, {"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]}, ] result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size) _, tokens, __ = embeddings._tokenize(texts, custom_chunk_size) mock_create.call_args mock_create.assert_any_call(input=tokens[0:3], **embeddings._invocation_params) mock_create.assert_any_call(input=tokens[3:4], **embeddings._invocation_params) assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]] def test_embed_documents_with_custom_chunk_size_no_check_ctx_length() -> None: embeddings = OpenAIEmbeddings(chunk_size=2, check_embedding_ctx_length=False) texts = ["text1", "text2", "text3", "text4"] custom_chunk_size = 3 with patch.object(embeddings.client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]}, {"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]}, ] result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size) mock_create.call_args mock_create.assert_any_call(input=texts[0:3], **embeddings._invocation_params) mock_create.assert_any_call(input=texts[3:4], **embeddings._invocation_params) assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]]
"""Simple Reader that reads transcript of youtube video.""" import re from typing import Any, List, Optional from youtube_transcript_api import YouTubeTranscriptApi from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from llama_index.readers.youtube_transcript.utils import YOUTUBE_URL_PATTERNS class YoutubeTranscriptReader(BasePydanticReader): """Youtube Transcript reader.""" is_remote: bool = True @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "YoutubeTranscriptReader" def load_data( self, ytlinks: List[str], languages: Optional[List[str]] = ["en"], **load_kwargs: Any, ) -> List[Document]: """ Load data from the input directory. Args: pages (List[str]): List of youtube links \ for which transcripts are to be read. """ results = [] for link in ytlinks: video_id = self._extract_video_id(link) if not video_id: raise ValueError( f"Supplied url {link} is not a supported youtube URL." "Supported formats include:" " youtube.com/watch?v=\\{video_id\\} " "(with or without 'www.')\n" " youtube.com/embed?v=\\{video_id\\} " "(with or without 'www.')\n" " youtu.be/{video_id\\} (never includes www subdomain)" ) transcript_chunks = YouTubeTranscriptApi.get_transcript( video_id, languages=languages ) chunk_text = [chunk["text"] for chunk in transcript_chunks] transcript = "\n".join(chunk_text) results.append( Document( text=transcript, id_=video_id, extra_info={"video_id": video_id} ) ) return results @staticmethod def _extract_video_id(yt_link) -> Optional[str]: for pattern in YOUTUBE_URL_PATTERNS: match = re.search(pattern, yt_link) if match: return match.group(1) # return None if no match is found return None
"""Simple Reader that reads transcript of youtube video.""" import re from typing import Any, List, Optional from youtube_transcript_api import YouTubeTranscriptApi from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from llama_index.readers.youtube_transcript.utils import YOUTUBE_URL_PATTERNS class YoutubeTranscriptReader(BasePydanticReader): """Youtube Transcript reader.""" is_remote: bool = True @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "YoutubeTranscriptReader" def load_data( self, ytlinks: List[str], languages: Optional[List[str]] = ["en"], **load_kwargs: Any, ) -> List[Document]: """Load data from the input directory. Args: pages (List[str]): List of youtube links \ for which transcripts are to be read. """ results = [] for link in ytlinks: video_id = self._extract_video_id(link) if not video_id: raise ValueError( f"Supplied url {link} is not a supported youtube URL." "Supported formats include:" " youtube.com/watch?v=\\{video_id\\} " "(with or without 'www.')\n" " youtube.com/embed?v=\\{video_id\\} " "(with or without 'www.')\n" " youtu.be/{video_id\\} (never includes www subdomain)" ) transcript_chunks = YouTubeTranscriptApi.get_transcript( video_id, languages=languages ) chunk_text = [chunk["text"] for chunk in transcript_chunks] transcript = "\n".join(chunk_text) results.append( Document( text=transcript, id_=video_id, extra_info={"video_id": video_id} ) ) return results @staticmethod def _extract_video_id(yt_link) -> Optional[str]: for pattern in YOUTUBE_URL_PATTERNS: match = re.search(pattern, yt_link) if match: return match.group(1) # return None if no match is found return None
"""Test the criteria eval chain.""" import pytest from langchain.evaluation.criteria.eval_chain import ( _SUPPORTED_CRITERIA, Criteria, CriteriaEvalChain, CriteriaResultOutputParser, LabeledCriteriaEvalChain, ) from langchain.evaluation.schema import StringEvaluator from tests.unit_tests.llms.fake_llm import FakeLLM def test_resolve_criteria_str() -> None: assert CriteriaEvalChain.resolve_criteria("helpfulness") == { "helpfulness": _SUPPORTED_CRITERIA[Criteria.HELPFULNESS], } assert CriteriaEvalChain.resolve_criteria("correctness") == { "correctness": _SUPPORTED_CRITERIA[Criteria.CORRECTNESS], } @pytest.mark.parametrize( "text,want", [ ("Y", {"reasoning": "", "value": "Y", "score": 1}), ( """Here is my step-by-step reasoning for the given criteria: The criterion is: "Do you like cake?" I like cake. Y""", { "reasoning": """Here is my step-by-step reasoning for the given criteria: The criterion is: "Do you like cake?" I like cake.""", # noqa: E501 "value": "Y", "score": 1, }, ), ( " NThe submission N is correct, accurate, and factual. It accurately" " identifies the specific effects of knowledge and interest on" " these factors. Therefore, the submission Y meets the criteria. Y", { "reasoning": "NThe submission N is correct, accurate, and factual. It" " accurately identifies the specific effects of knowledge and interest" " on these factors. Therefore, the submission Y meets the criteria.", "value": "Y", "score": 1, }, ), ], ) def test_CriteriaResultOutputParser_parse(text: str, want: dict) -> None: output_parser = CriteriaResultOutputParser() got = output_parser.parse(text) assert got.get("reasoning") == want["reasoning"] assert got.get("value") == want["value"] assert got.get("score") == want["score"] @pytest.mark.parametrize("criterion", list(Criteria)) def test_resolve_criteria_enum(criterion: Criteria) -> None: assert CriteriaEvalChain.resolve_criteria(criterion) == { criterion.value: _SUPPORTED_CRITERIA[criterion], } def test_criteria_eval_chain() -> None: chain = CriteriaEvalChain.from_llm( llm=FakeLLM( queries={"text": "The meaning of life\nY"}, sequential_responses=True, ), criteria={"my criterion": "my criterion description"}, ) with pytest.warns(UserWarning, match=chain._skip_reference_warning): result = chain.evaluate_strings( prediction="my prediction", reference="my reference", input="my input", ) assert result["reasoning"] == "The meaning of life" def test_criteria_eval_chain_missing_reference() -> None: chain = LabeledCriteriaEvalChain.from_llm( llm=FakeLLM( queries={"text": "The meaning of life\nY"}, sequential_responses=True, ), criteria={"my criterion": "my criterion description"}, ) with pytest.raises(ValueError): chain.evaluate_strings(prediction="my prediction", input="my input") def test_implements_string_protocol() -> None: assert issubclass(CriteriaEvalChain, StringEvaluator)
"""Test the criteria eval chain.""" import pytest from langchain.evaluation.criteria.eval_chain import ( _SUPPORTED_CRITERIA, Criteria, CriteriaEvalChain, CriteriaResultOutputParser, LabeledCriteriaEvalChain, ) from langchain.evaluation.schema import StringEvaluator from tests.unit_tests.llms.fake_llm import FakeLLM def test_resolve_criteria_str() -> None: assert CriteriaEvalChain.resolve_criteria("helpfulness") == { "helpfulness": _SUPPORTED_CRITERIA[Criteria.HELPFULNESS] } assert CriteriaEvalChain.resolve_criteria("correctness") == { "correctness": _SUPPORTED_CRITERIA[Criteria.CORRECTNESS] } @pytest.mark.parametrize( "text,want", [ ("Y", {"reasoning": "", "value": "Y", "score": 1}), ( """Here is my step-by-step reasoning for the given criteria: The criterion is: "Do you like cake?" I like cake. Y""", { "reasoning": """Here is my step-by-step reasoning for the given criteria: The criterion is: "Do you like cake?" I like cake.""", # noqa: E501 "value": "Y", "score": 1, }, ), ( " NThe submission N is correct, accurate, and factual. It accurately" " identifies the specific effects of knowledge and interest on" " these factors. Therefore, the submission Y meets the criteria. Y", { "reasoning": "NThe submission N is correct, accurate, and factual. It" " accurately identifies the specific effects of knowledge and interest" " on these factors. Therefore, the submission Y meets the criteria.", "value": "Y", "score": 1, }, ), ], ) def test_CriteriaResultOutputParser_parse(text: str, want: dict) -> None: output_parser = CriteriaResultOutputParser() got = output_parser.parse(text) assert got.get("reasoning") == want["reasoning"] assert got.get("value") == want["value"] assert got.get("score") == want["score"] @pytest.mark.parametrize("criterion", list(Criteria)) def test_resolve_criteria_enum(criterion: Criteria) -> None: assert CriteriaEvalChain.resolve_criteria(criterion) == { criterion.value: _SUPPORTED_CRITERIA[criterion] } def test_criteria_eval_chain() -> None: chain = CriteriaEvalChain.from_llm( llm=FakeLLM( queries={"text": "The meaning of life\nY"}, sequential_responses=True ), criteria={"my criterion": "my criterion description"}, ) with pytest.warns(UserWarning, match=chain._skip_reference_warning): result = chain.evaluate_strings( prediction="my prediction", reference="my reference", input="my input" ) assert result["reasoning"] == "The meaning of life" def test_criteria_eval_chain_missing_reference() -> None: chain = LabeledCriteriaEvalChain.from_llm( llm=FakeLLM( queries={"text": "The meaning of life\nY"}, sequential_responses=True, ), criteria={"my criterion": "my criterion description"}, ) with pytest.raises(ValueError): chain.evaluate_strings(prediction="my prediction", input="my input") def test_implements_string_protocol() -> None: assert issubclass(CriteriaEvalChain, StringEvaluator)
from typing import TYPE_CHECKING, NamedTuple, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.proto import NodeProto T = TypeVar('T', bound='Mesh3DUrl') class Mesh3DLoadResult(NamedTuple): vertices: NdArray faces: NdArray class Mesh3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ def _to_node_protobuf(self: T) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that needs to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(mesh_url=str(self)) def load(self: T) -> Mesh3DLoadResult: """ Load the data from the url into a named tuple of two NdArrays containing vertices and faces information. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import Mesh3DUrl class MyDoc(BaseDocument): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="toydata/tetrahedron.obj") vertices, faces = doc.mesh_url.load() assert isinstance(vertices, np.ndarray) assert isinstance(faces, np.ndarray) :return: named tuple of two NdArrays representing the mesh's vertices and faces """ mesh = self._load_trimesh_instance(force='mesh') vertices = parse_obj_as(NdArray, mesh.vertices.view(np.ndarray)) faces = parse_obj_as(NdArray, mesh.faces.view(np.ndarray)) return Mesh3DLoadResult(vertices=vertices, faces=faces)
from typing import TYPE_CHECKING, Tuple, TypeVar import numpy as np from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.proto import NodeProto T = TypeVar('T', bound='Mesh3DUrl') class Mesh3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ def _to_node_protobuf(self: T) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that needs to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(mesh_url=str(self)) def load(self: T) -> Tuple[np.ndarray, np.ndarray]: """ Load the data from the url into a tuple of two numpy.ndarrays containing vertices and faces information. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import Mesh3DUrl class MyDoc(BaseDocument): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="toydata/tetrahedron.obj") vertices, faces = doc.mesh_url.load() assert isinstance(vertices, np.ndarray) assert isinstance(faces, np.ndarray) :return: tuple of two np.ndarrays representing the mesh's vertices and faces """ mesh = self._load_trimesh_instance(force='mesh') vertices = mesh.vertices.view(np.ndarray) faces = mesh.faces.view(np.ndarray) return vertices, faces
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.8.4' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.8.3' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
"""DocumentFilter that uses an LLM chain to extract the relevant parts of documents.""" from __future__ import annotations from collections.abc import Sequence from typing import Any, Callable, Optional, cast from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import Runnable from pydantic import ConfigDict from langchain.chains.llm import LLMChain from langchain.retrievers.document_compressors.chain_extract_prompt import ( prompt_template, ) def default_get_input(query: str, doc: Document) -> dict[str, Any]: """Return the compression chain input.""" return {"question": query, "context": doc.page_content} class NoOutputParser(BaseOutputParser[str]): """Parse outputs that could return a null string of some sort.""" no_output_str: str = "NO_OUTPUT" def parse(self, text: str) -> str: cleaned_text = text.strip() if cleaned_text == self.no_output_str: return "" return cleaned_text def _get_default_chain_prompt() -> PromptTemplate: output_parser = NoOutputParser() template = prompt_template.format(no_output_str=output_parser.no_output_str) return PromptTemplate( template=template, input_variables=["question", "context"], output_parser=output_parser, ) class LLMChainExtractor(BaseDocumentCompressor): """Document compressor that uses an LLM chain to extract the relevant parts of documents.""" llm_chain: Runnable """LLM wrapper to use for compressing documents.""" get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents.""" compressed_docs = [] for doc in documents: _input = self.get_input(query, doc) output_ = self.llm_chain.invoke(_input, config={"callbacks": callbacks}) if isinstance(self.llm_chain, LLMChain): output = output_[self.llm_chain.output_key] if self.llm_chain.prompt.output_parser is not None: output = self.llm_chain.prompt.output_parser.parse(output) else: output = output_ if len(output) == 0: continue compressed_docs.append( Document(page_content=cast(str, output), metadata=doc.metadata), ) return compressed_docs async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents asynchronously.""" inputs = [self.get_input(query, doc) for doc in documents] outputs = await self.llm_chain.abatch(inputs, {"callbacks": callbacks}) compressed_docs = [] for i, doc in enumerate(documents): if len(outputs[i]) == 0: continue compressed_docs.append( Document(page_content=outputs[i], metadata=doc.metadata), ) return compressed_docs @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, get_input: Optional[Callable[[str, Document], str]] = None, llm_chain_kwargs: Optional[dict] = None, ) -> LLMChainExtractor: """Initialize from LLM.""" _prompt = prompt if prompt is not None else _get_default_chain_prompt() _get_input = get_input if get_input is not None else default_get_input if _prompt.output_parser is not None: parser = _prompt.output_parser else: parser = StrOutputParser() llm_chain = _prompt | llm | parser return cls(llm_chain=llm_chain, get_input=_get_input) # type: ignore[arg-type]
"""DocumentFilter that uses an LLM chain to extract the relevant parts of documents.""" from __future__ import annotations from collections.abc import Sequence from typing import Any, Callable, Optional, cast from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import Runnable from pydantic import ConfigDict from langchain.chains.llm import LLMChain from langchain.retrievers.document_compressors.chain_extract_prompt import ( prompt_template, ) def default_get_input(query: str, doc: Document) -> dict[str, Any]: """Return the compression chain input.""" return {"question": query, "context": doc.page_content} class NoOutputParser(BaseOutputParser[str]): """Parse outputs that could return a null string of some sort.""" no_output_str: str = "NO_OUTPUT" def parse(self, text: str) -> str: cleaned_text = text.strip() if cleaned_text == self.no_output_str: return "" return cleaned_text def _get_default_chain_prompt() -> PromptTemplate: output_parser = NoOutputParser() template = prompt_template.format(no_output_str=output_parser.no_output_str) return PromptTemplate( template=template, input_variables=["question", "context"], output_parser=output_parser, ) class LLMChainExtractor(BaseDocumentCompressor): """Document compressor that uses an LLM chain to extract the relevant parts of documents.""" llm_chain: Runnable """LLM wrapper to use for compressing documents.""" get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents.""" compressed_docs = [] for doc in documents: _input = self.get_input(query, doc) output_ = self.llm_chain.invoke(_input, config={"callbacks": callbacks}) if isinstance(self.llm_chain, LLMChain): output = output_[self.llm_chain.output_key] if self.llm_chain.prompt.output_parser is not None: output = self.llm_chain.prompt.output_parser.parse(output) else: output = output_ if len(output) == 0: continue compressed_docs.append( Document(page_content=cast(str, output), metadata=doc.metadata) ) return compressed_docs async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents asynchronously.""" inputs = [self.get_input(query, doc) for doc in documents] outputs = await self.llm_chain.abatch(inputs, {"callbacks": callbacks}) compressed_docs = [] for i, doc in enumerate(documents): if len(outputs[i]) == 0: continue compressed_docs.append( Document(page_content=outputs[i], metadata=doc.metadata) ) return compressed_docs @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, get_input: Optional[Callable[[str, Document], str]] = None, llm_chain_kwargs: Optional[dict] = None, ) -> LLMChainExtractor: """Initialize from LLM.""" _prompt = prompt if prompt is not None else _get_default_chain_prompt() _get_input = get_input if get_input is not None else default_get_input if _prompt.output_parser is not None: parser = _prompt.output_parser else: parser = StrOutputParser() llm_chain = _prompt | llm | parser return cls(llm_chain=llm_chain, get_input=_get_input) # type: ignore[arg-type]
import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyEmbedding, NdArrayEmbedding, TorchEmbedding from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.computation.tensorflow_backend import tnp from docarray.typing.tensor.embedding import TensorFlowEmbedding @pytest.mark.proto def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor) @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), TorchEmbedding, torch.Tensor), (np.zeros((1000, 2)), NdArrayEmbedding, np.ndarray), ], ) def test_torch_ndarray_to_any_embedding(tensor, cls_audio_tensor, cls_tensor): class MyEmbeddingDoc(BaseDoc): tensor: AnyEmbedding doc = MyEmbeddingDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_tensorflow_to_any_embedding(): class MyEmbeddingDoc(BaseDoc): tensor: AnyEmbedding doc = MyEmbeddingDoc(tensor=tf.zeros((1000, 2))) assert isinstance(doc.tensor, TensorFlowEmbedding) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1000, 2)))
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyEmbedding @pytest.mark.proto def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor)