input
stringlengths
33
5k
output
stringlengths
32
5k
"""Schemas for tracers.""" from __future__ import annotations import warnings from datetime import datetime, timezone from typing import Any, Optional from uuid import UUID from langsmith import RunTree from langsmith.schemas import RunTypeEnum as RunTypeEnumDep from pydantic import PydanticDeprecationWarning from pydantic.v1 import BaseModel as BaseModelV1 from pydantic.v1 import Field as FieldV1 from langchain_core._api import deprecated @deprecated("0.1.0", alternative="Use string instead.", removal="1.0") def RunTypeEnum() -> type[RunTypeEnumDep]: # noqa: N802 """RunTypeEnum.""" warnings.warn( "RunTypeEnum is deprecated. Please directly use a string instead" " (e.g. 'llm', 'chain', 'tool').", DeprecationWarning, stacklevel=2, ) return RunTypeEnumDep @deprecated("0.1.0", removal="1.0") class TracerSessionV1Base(BaseModelV1): """Base class for TracerSessionV1.""" start_time: datetime = FieldV1(default_factory=lambda: datetime.now(timezone.utc)) name: Optional[str] = None extra: Optional[dict[str, Any]] = None @deprecated("0.1.0", removal="1.0") class TracerSessionV1Create(TracerSessionV1Base): """Create class for TracerSessionV1.""" @deprecated("0.1.0", removal="1.0") class TracerSessionV1(TracerSessionV1Base): """TracerSessionV1 schema.""" id: int @deprecated("0.1.0", removal="1.0") class TracerSessionBase(TracerSessionV1Base): """Base class for TracerSession.""" tenant_id: UUID @deprecated("0.1.0", removal="1.0") class TracerSession(TracerSessionBase): """TracerSessionV1 schema for the V2 API.""" id: UUID @deprecated("0.1.0", alternative="Run", removal="1.0") class BaseRun(BaseModelV1): """Base class for Run.""" uuid: str parent_uuid: Optional[str] = None start_time: datetime = FieldV1(default_factory=lambda: datetime.now(timezone.utc)) end_time: datetime = FieldV1(default_factory=lambda: datetime.now(timezone.utc)) extra: Optional[dict[str, Any]] = None execution_order: int child_execution_order: int serialized: dict[str, Any] session_id: int error: Optional[str] = None @deprecated("0.1.0", alternative="Run", removal="1.0") class LLMRun(BaseRun): """Class for LLMRun.""" prompts: list[str] # Temporarily, remove but we will completely remove LLMRun # response: Optional[LLMResult] = None @deprecated("0.1.0", alternative="Run", removal="1.0") class ChainRun(BaseRun): """Class for ChainRun.""" inputs: dict[str, Any] outputs: Optional[dict[str, Any]] = None child_llm_runs: list[LLMRun] = FieldV1(default_factory=list) child_chain_runs: list[ChainRun] = FieldV1(default_factory=list) child_tool_runs: list[ToolRun] = FieldV1(default_factory=list) @deprecated("0.1.0", alternative="Run", removal="1.0") class ToolRun(BaseRun): """Class for ToolRun.""" tool_input: str output: Optional[str] = None action: str child_llm_runs: list[LLMRun] = FieldV1(default_factory=list) child_chain_runs: list[ChainRun] = FieldV1(default_factory=list) child_tool_runs: list[ToolRun] = FieldV1(default_factory=list) # Begin V2 API Schemas Run = RunTree # For backwards compatibility # TODO: Update once langsmith moves to Pydantic V2 and we can swap Run.model_rebuild # for Run.update_forward_refs with warnings.catch_warnings(): warnings.simplefilter("ignore", category=PydanticDeprecationWarning) ChainRun.update_forward_refs() ToolRun.update_forward_refs() __all__ = [ "BaseRun", "ChainRun", "LLMRun", "Run", "RunTypeEnum", "ToolRun", "TracerSession", "TracerSessionBase", "TracerSessionV1", "TracerSessionV1Base", "TracerSessionV1Create", ]
"""Schemas for tracers.""" from __future__ import annotations import datetime import warnings from typing import Any, Optional from uuid import UUID from langsmith import RunTree from langsmith.schemas import RunTypeEnum as RunTypeEnumDep from pydantic import PydanticDeprecationWarning from pydantic.v1 import BaseModel as BaseModelV1 from pydantic.v1 import Field as FieldV1 from langchain_core._api import deprecated @deprecated("0.1.0", alternative="Use string instead.", removal="1.0") def RunTypeEnum() -> type[RunTypeEnumDep]: # noqa: N802 """RunTypeEnum.""" warnings.warn( "RunTypeEnum is deprecated. Please directly use a string instead" " (e.g. 'llm', 'chain', 'tool').", DeprecationWarning, stacklevel=2, ) return RunTypeEnumDep @deprecated("0.1.0", removal="1.0") class TracerSessionV1Base(BaseModelV1): """Base class for TracerSessionV1.""" start_time: datetime.datetime = FieldV1(default_factory=datetime.datetime.utcnow) name: Optional[str] = None extra: Optional[dict[str, Any]] = None @deprecated("0.1.0", removal="1.0") class TracerSessionV1Create(TracerSessionV1Base): """Create class for TracerSessionV1.""" @deprecated("0.1.0", removal="1.0") class TracerSessionV1(TracerSessionV1Base): """TracerSessionV1 schema.""" id: int @deprecated("0.1.0", removal="1.0") class TracerSessionBase(TracerSessionV1Base): """Base class for TracerSession.""" tenant_id: UUID @deprecated("0.1.0", removal="1.0") class TracerSession(TracerSessionBase): """TracerSessionV1 schema for the V2 API.""" id: UUID @deprecated("0.1.0", alternative="Run", removal="1.0") class BaseRun(BaseModelV1): """Base class for Run.""" uuid: str parent_uuid: Optional[str] = None start_time: datetime.datetime = FieldV1(default_factory=datetime.datetime.utcnow) end_time: datetime.datetime = FieldV1(default_factory=datetime.datetime.utcnow) extra: Optional[dict[str, Any]] = None execution_order: int child_execution_order: int serialized: dict[str, Any] session_id: int error: Optional[str] = None @deprecated("0.1.0", alternative="Run", removal="1.0") class LLMRun(BaseRun): """Class for LLMRun.""" prompts: list[str] # Temporarily, remove but we will completely remove LLMRun # response: Optional[LLMResult] = None @deprecated("0.1.0", alternative="Run", removal="1.0") class ChainRun(BaseRun): """Class for ChainRun.""" inputs: dict[str, Any] outputs: Optional[dict[str, Any]] = None child_llm_runs: list[LLMRun] = FieldV1(default_factory=list) child_chain_runs: list[ChainRun] = FieldV1(default_factory=list) child_tool_runs: list[ToolRun] = FieldV1(default_factory=list) @deprecated("0.1.0", alternative="Run", removal="1.0") class ToolRun(BaseRun): """Class for ToolRun.""" tool_input: str output: Optional[str] = None action: str child_llm_runs: list[LLMRun] = FieldV1(default_factory=list) child_chain_runs: list[ChainRun] = FieldV1(default_factory=list) child_tool_runs: list[ToolRun] = FieldV1(default_factory=list) # Begin V2 API Schemas Run = RunTree # For backwards compatibility # TODO: Update once langsmith moves to Pydantic V2 and we can swap Run.model_rebuild # for Run.update_forward_refs with warnings.catch_warnings(): warnings.simplefilter("ignore", category=PydanticDeprecationWarning) ChainRun.update_forward_refs() ToolRun.update_forward_refs() __all__ = [ "BaseRun", "ChainRun", "LLMRun", "Run", "RunTypeEnum", "ToolRun", "TracerSession", "TracerSessionBase", "TracerSessionV1", "TracerSessionV1Base", "TracerSessionV1Create", ]
from abc import abstractmethod from typing import TYPE_CHECKING, Dict, Iterable, Type from pydantic.fields import ModelField if TYPE_CHECKING: from docarray.document.mixins.proto import ProtoMixin class AbstractDocument(Iterable): __fields__: Dict[str, ModelField] @classmethod @abstractmethod def _get_nested_document_class(cls, field: str) -> Type['ProtoMixin']: ...
from typing import Dict, Iterable from pydantic.fields import ModelField class AbstractDocument(Iterable): __fields__: Dict[str, ModelField]
import json from json import JSONDecodeError from typing import Union from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import ( AIMessage, BaseMessage, ToolCall, ) from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import MultiActionAgentOutputParser class ToolAgentAction(AgentActionMessageLog): tool_call_id: str """Tool call that this message is responding to.""" def parse_ai_message_to_tool_action( message: BaseMessage, ) -> Union[list[AgentAction], AgentFinish]: """Parse an AI message potentially containing tool_calls.""" if not isinstance(message, AIMessage): msg = f"Expected an AI message got {type(message)}" raise TypeError(msg) actions: list = [] if message.tool_calls: tool_calls = message.tool_calls else: if not message.additional_kwargs.get("tool_calls"): return AgentFinish( return_values={"output": message.content}, log=str(message.content) ) # Best-effort parsing tool_calls = [] for tool_call in message.additional_kwargs["tool_calls"]: function = tool_call["function"] function_name = function["name"] try: args = json.loads(function["arguments"] or "{}") tool_calls.append( ToolCall(name=function_name, args=args, id=tool_call["id"]) ) except JSONDecodeError: msg = ( f"Could not parse tool input: {function} because " f"the `arguments` is not valid JSON." ) raise OutputParserException(msg) for tool_call in tool_calls: # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. function_name = tool_call["name"] _tool_input = tool_call["args"] tool_input = _tool_input.get("__arg1", _tool_input) content_msg = f"responded: {message.content}\n" if message.content else "\n" log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n" actions.append( ToolAgentAction( tool=function_name, tool_input=tool_input, log=log, message_log=[message], tool_call_id=tool_call["id"], ) ) return actions class ToolsAgentOutputParser(MultiActionAgentOutputParser): """Parses a message into agent actions/finish. If a tool_calls parameter is passed, then that is used to get the tool names and tool inputs. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "tools-agent-output-parser" def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Union[list[AgentAction], AgentFinish]: if not isinstance(result[0], ChatGeneration): msg = "This output parser only works on ChatGeneration output" raise ValueError(msg) message = result[0].message return parse_ai_message_to_tool_action(message) def parse(self, text: str) -> Union[list[AgentAction], AgentFinish]: msg = "Can only parse messages" raise ValueError(msg)
import json from json import JSONDecodeError from typing import Union from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import ( AIMessage, BaseMessage, ToolCall, ) from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import MultiActionAgentOutputParser class ToolAgentAction(AgentActionMessageLog): tool_call_id: str """Tool call that this message is responding to.""" def parse_ai_message_to_tool_action( message: BaseMessage, ) -> Union[list[AgentAction], AgentFinish]: """Parse an AI message potentially containing tool_calls.""" if not isinstance(message, AIMessage): msg = f"Expected an AI message got {type(message)}" raise TypeError(msg) actions: list = [] if message.tool_calls: tool_calls = message.tool_calls else: if not message.additional_kwargs.get("tool_calls"): return AgentFinish( return_values={"output": message.content}, log=str(message.content) ) # Best-effort parsing tool_calls = [] for tool_call in message.additional_kwargs["tool_calls"]: function = tool_call["function"] function_name = function["name"] try: args = json.loads(function["arguments"] or "{}") tool_calls.append( ToolCall(name=function_name, args=args, id=tool_call["id"]) ) except JSONDecodeError: msg = ( f"Could not parse tool input: {function} because " f"the `arguments` is not valid JSON." ) raise OutputParserException(msg) for tool_call in tool_calls: # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. function_name = tool_call["name"] _tool_input = tool_call["args"] if "__arg1" in _tool_input: tool_input = _tool_input["__arg1"] else: tool_input = _tool_input content_msg = f"responded: {message.content}\n" if message.content else "\n" log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n" actions.append( ToolAgentAction( tool=function_name, tool_input=tool_input, log=log, message_log=[message], tool_call_id=tool_call["id"], ) ) return actions class ToolsAgentOutputParser(MultiActionAgentOutputParser): """Parses a message into agent actions/finish. If a tool_calls parameter is passed, then that is used to get the tool names and tool inputs. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "tools-agent-output-parser" def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Union[list[AgentAction], AgentFinish]: if not isinstance(result[0], ChatGeneration): msg = "This output parser only works on ChatGeneration output" raise ValueError(msg) message = result[0].message return parse_ai_message_to_tool_action(message) def parse(self, text: str) -> Union[list[AgentAction], AgentFinish]: msg = "Can only parse messages" raise ValueError(msg)
import numpy as np import pytest from numpy.testing import assert_allclose from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.metrics import DetCurveDisplay, det_curve @pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"]) @pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"]) @pytest.mark.parametrize("with_sample_weight", [True, False]) @pytest.mark.parametrize("drop_intermediate", [True, False]) @pytest.mark.parametrize("with_strings", [True, False]) def test_det_curve_display( pyplot, constructor_name, response_method, with_sample_weight, drop_intermediate, with_strings, ): X, y = load_iris(return_X_y=True) # Binarize the data with only the two first classes X, y = X[y < 2], y[y < 2] pos_label = None if with_strings: y = np.array(["c", "b"])[y] pos_label = "c" if with_sample_weight: rng = np.random.RandomState(42) sample_weight = rng.randint(1, 4, size=(X.shape[0])) else: sample_weight = None lr = LogisticRegression() lr.fit(X, y) y_pred = getattr(lr, response_method)(X) if y_pred.ndim == 2: y_pred = y_pred[:, 1] # safe guard for the binary if/else construction assert constructor_name in ("from_estimator", "from_predictions") common_kwargs = { "name": lr.__class__.__name__, "alpha": 0.8, "sample_weight": sample_weight, "drop_intermediate": drop_intermediate, "pos_label": pos_label, } if constructor_name == "from_estimator": disp = DetCurveDisplay.from_estimator(lr, X, y, **common_kwargs) else: disp = DetCurveDisplay.from_predictions(y, y_pred, **common_kwargs) fpr, fnr, _ = det_curve( y, y_pred, sample_weight=sample_weight, drop_intermediate=drop_intermediate, pos_label=pos_label, ) assert_allclose(disp.fpr, fpr, atol=1e-7) assert_allclose(disp.fnr, fnr, atol=1e-7) assert disp.estimator_name == "LogisticRegression" # cannot fail thanks to pyplot fixture import matplotlib as mpl assert isinstance(disp.line_, mpl.lines.Line2D) assert disp.line_.get_alpha() == 0.8 assert isinstance(disp.ax_, mpl.axes.Axes) assert isinstance(disp.figure_, mpl.figure.Figure) assert disp.line_.get_label() == "LogisticRegression" expected_pos_label = 1 if pos_label is None else pos_label expected_ylabel = f"False Negative Rate (Positive label: {expected_pos_label})" expected_xlabel = f"False Positive Rate (Positive label: {expected_pos_label})" assert disp.ax_.get_ylabel() == expected_ylabel assert disp.ax_.get_xlabel() == expected_xlabel @pytest.mark.parametrize( "constructor_name, expected_clf_name", [ ("from_estimator", "LogisticRegression"), ("from_predictions", "Classifier"), ], ) def test_det_curve_display_default_name( pyplot, constructor_name, expected_clf_name, ): # Check the default name display in the figure when `name` is not provided X, y = load_iris(return_X_y=True) # Binarize the data with only the two first classes X, y = X[y < 2], y[y < 2] lr = LogisticRegression().fit(X, y) y_pred = lr.predict_proba(X)[:, 1] if constructor_name == "from_estimator": disp = DetCurveDisplay.from_estimator(lr, X, y) else: disp = DetCurveDisplay.from_predictions(y, y_pred) assert disp.estimator_name == expected_clf_name assert disp.line_.get_label() == expected_clf_name
import numpy as np import pytest from numpy.testing import assert_allclose from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.metrics import DetCurveDisplay, det_curve @pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"]) @pytest.mark.parametrize("response_method", ["predict_proba", "decision_function"]) @pytest.mark.parametrize("with_sample_weight", [True, False]) @pytest.mark.parametrize("with_strings", [True, False]) def test_det_curve_display( pyplot, constructor_name, response_method, with_sample_weight, with_strings ): X, y = load_iris(return_X_y=True) # Binarize the data with only the two first classes X, y = X[y < 2], y[y < 2] pos_label = None if with_strings: y = np.array(["c", "b"])[y] pos_label = "c" if with_sample_weight: rng = np.random.RandomState(42) sample_weight = rng.randint(1, 4, size=(X.shape[0])) else: sample_weight = None lr = LogisticRegression() lr.fit(X, y) y_pred = getattr(lr, response_method)(X) if y_pred.ndim == 2: y_pred = y_pred[:, 1] # safe guard for the binary if/else construction assert constructor_name in ("from_estimator", "from_predictions") common_kwargs = { "name": lr.__class__.__name__, "alpha": 0.8, "sample_weight": sample_weight, "pos_label": pos_label, } if constructor_name == "from_estimator": disp = DetCurveDisplay.from_estimator(lr, X, y, **common_kwargs) else: disp = DetCurveDisplay.from_predictions(y, y_pred, **common_kwargs) fpr, fnr, _ = det_curve( y, y_pred, sample_weight=sample_weight, pos_label=pos_label, ) assert_allclose(disp.fpr, fpr) assert_allclose(disp.fnr, fnr) assert disp.estimator_name == "LogisticRegression" # cannot fail thanks to pyplot fixture import matplotlib as mpl assert isinstance(disp.line_, mpl.lines.Line2D) assert disp.line_.get_alpha() == 0.8 assert isinstance(disp.ax_, mpl.axes.Axes) assert isinstance(disp.figure_, mpl.figure.Figure) assert disp.line_.get_label() == "LogisticRegression" expected_pos_label = 1 if pos_label is None else pos_label expected_ylabel = f"False Negative Rate (Positive label: {expected_pos_label})" expected_xlabel = f"False Positive Rate (Positive label: {expected_pos_label})" assert disp.ax_.get_ylabel() == expected_ylabel assert disp.ax_.get_xlabel() == expected_xlabel @pytest.mark.parametrize( "constructor_name, expected_clf_name", [ ("from_estimator", "LogisticRegression"), ("from_predictions", "Classifier"), ], ) def test_det_curve_display_default_name( pyplot, constructor_name, expected_clf_name, ): # Check the default name display in the figure when `name` is not provided X, y = load_iris(return_X_y=True) # Binarize the data with only the two first classes X, y = X[y < 2], y[y < 2] lr = LogisticRegression().fit(X, y) y_pred = lr.predict_proba(X)[:, 1] if constructor_name == "from_estimator": disp = DetCurveDisplay.from_estimator(lr, X, y) else: disp = DetCurveDisplay.from_predictions(y, y_pred) assert disp.estimator_name == expected_clf_name assert disp.line_.get_label() == expected_clf_name
from __future__ import annotations import os from copy import deepcopy import numpy as np import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models import Pooling, StaticEmbedding, Transformer from sentence_transformers.util import is_datasets_available from tests.utils import SafeTemporaryDirectory if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture(scope="session") def _stsb_bert_tiny_model() -> SentenceTransformer: model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def stsb_bert_tiny_model(_stsb_bert_tiny_model: SentenceTransformer) -> SentenceTransformer: return deepcopy(_stsb_bert_tiny_model) @pytest.fixture(scope="session") def _avg_word_embeddings_levy() -> SentenceTransformer: model = SentenceTransformer("sentence-transformers/average_word_embeddings_levy_dependency") model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def avg_word_embeddings_levy(_avg_word_embeddings_levy: SentenceTransformer) -> SentenceTransformer: return deepcopy(_avg_word_embeddings_levy) @pytest.fixture() def stsb_bert_tiny_model_onnx() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-onnx") @pytest.fixture() def stsb_bert_tiny_model_openvino() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-openvino") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture(scope="session") def _static_retrieval_mrl_en_v1_model() -> SentenceTransformer: model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1") return model @pytest.fixture() def static_retrieval_mrl_en_v1_model(_static_retrieval_mrl_en_v1_model: SentenceTransformer) -> SentenceTransformer: return deepcopy(_static_retrieval_mrl_en_v1_model) @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding_model(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> DatasetDict: return load_dataset("sentence-transformers/stsb") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. """ if os.environ.get("CI", None): # Note: `ignore_cleanup_errors=True` is used to avoid NotADirectoryError in Windows on GitHub Actions. # See https://github.com/python/cpython/issues/107408, https://www.scivision.dev/python-tempfile-permission-error-windows/ with SafeTemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
from __future__ import annotations import os from copy import deepcopy import numpy as np import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models import Pooling, StaticEmbedding, Transformer from sentence_transformers.util import is_datasets_available from tests.utils import SafeTemporaryDirectory if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture(scope="session") def _stsb_bert_tiny_model() -> SentenceTransformer: model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def stsb_bert_tiny_model(_stsb_bert_tiny_model: SentenceTransformer) -> SentenceTransformer: return deepcopy(_stsb_bert_tiny_model) @pytest.fixture(scope="session") def _avg_word_embeddings_levy() -> SentenceTransformer: model = SentenceTransformer("sentence-transformers/average_word_embeddings_levy_dependency") model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def avg_word_embeddings_levy(_avg_word_embeddings_levy: SentenceTransformer) -> SentenceTransformer: return deepcopy(_avg_word_embeddings_levy) @pytest.fixture() def stsb_bert_tiny_model_onnx() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-onnx") @pytest.fixture() def stsb_bert_tiny_model_openvino() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-openvino") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding_model(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> DatasetDict: return load_dataset("sentence-transformers/stsb") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. """ if os.environ.get("CI", None): # Note: `ignore_cleanup_errors=True` is used to avoid NotADirectoryError in Windows on GitHub Actions. # See https://github.com/python/cpython/issues/107408, https://www.scivision.dev/python-tempfile-permission-error-windows/ with SafeTemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.21.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.20.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
from ._vggish import VGGISH, VGGishBundle from .hifigan_pipeline import HIFIGAN_VOCODER_V3_LJSPEECH as _HIFIGAN_VOCODER_V3_LJSPEECH, HiFiGANVocoderBundle from .rnnt_pipeline import ( EMFORMER_RNNT_BASE_MUSTC as _EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 as _EMFORMER_RNNT_BASE_TEDLIUM3 ) from torchaudio._internal.module_utils import dropping_const_support EMFORMER_RNNT_BASE_MUSTC = dropping_const_support(_EMFORMER_RNNT_BASE_MUSTC) EMFORMER_RNNT_BASE_TEDLIUM3 = dropping_const_support(_EMFORMER_RNNT_BASE_TEDLIUM3) HIFIGAN_VOCODER_V3_LJSPEECH = dropping_const_support(_HIFIGAN_VOCODER_V3_LJSPEECH) __all__ = [ "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", "HIFIGAN_VOCODER_V3_LJSPEECH", "HiFiGANVocoderBundle", "VGGISH", "VGGishBundle", ]
from ._vggish import VGGISH, VGGishBundle from .hifigan_pipeline import HIFIGAN_VOCODER_V3_LJSPEECH, HiFiGANVocoderBundle from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 __all__ = [ "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", "HIFIGAN_VOCODER_V3_LJSPEECH", "HiFiGANVocoderBundle", "VGGISH", "VGGishBundle", ]
_base_ = './cascade-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
_base_ = './cascade_rcnn_r50_fpn_lsj_200e_8x8_fp16_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.typing import Tensor def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor.flush_ndarray(nd_proto, value=original_tensor) nested_item = NodeProto(tensor=nd_proto) tensor = Tensor.read_ndarray(nested_item.tensor) assert (tensor == original_tensor).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor.flush_ndarray(nd_proto, value=original_tensor) nested_item2 = NodeProto(tensor=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.proto.io import flush_ndarray, read_ndarray def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) flush_ndarray(nd_proto, value=original_tensor) nested_item = NodeProto(tensor=nd_proto) tensor = read_ndarray(nested_item.tensor) assert (tensor == original_tensor).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) flush_ndarray(nd_proto, value=original_tensor) nested_item2 = NodeProto(tensor=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
from typing import Any, Optional from llama_index.core.base.base_query_engine import BaseQueryEngine from llama_index.core.evaluation import ( AnswerRelevancyEvaluator, BaseEvaluator, EvaluationResult, ) from llama_index.core.tools import QueryEngineTool from llama_index.core.tools.types import ToolMetadata, ToolOutput DEFAULT_NAME = "query_engine_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and get back a natural language response. """ FAILED_TOOL_OUTPUT_TEMPLATE = ( "Could not use tool {tool_name} because it failed evaluation.\n" "Reason: {reason}" ) class EvalQueryEngineTool(QueryEngineTool): """ Evaluating query engine tool. A tool that makes use of a query engine and an evaluator, where the evaluation of the query engine response will determine the tool output. Args: evaluator (BaseEvaluator): A query engine. query_engine (BaseQueryEngine): A query engine. metadata (ToolMetadata): The associated metadata of the query engine. """ _evaluator: BaseEvaluator _failed_tool_output_template: str def __init__( self, evaluator: BaseEvaluator, *args: Any, failed_tool_output_template: str = FAILED_TOOL_OUTPUT_TEMPLATE, **kwargs: Any, ): super().__init__(*args, **kwargs) self._evaluator = evaluator self._failed_tool_output_template = failed_tool_output_template def _process_tool_output( self, tool_output: ToolOutput, evaluation_result: EvaluationResult, ) -> ToolOutput: if evaluation_result.passing: return tool_output tool_output.content = self._failed_tool_output_template.format( tool_name=self.metadata.name, reason=evaluation_result.feedback, ) return tool_output @classmethod def from_defaults( cls, query_engine: BaseQueryEngine, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, resolve_input_errors: bool = True, evaluator: Optional[BaseEvaluator] = None, ) -> "EvalQueryEngineTool": return cls( evaluator=evaluator or AnswerRelevancyEvaluator(), query_engine=query_engine, metadata=ToolMetadata( name=name or DEFAULT_NAME, description=description or DEFAULT_DESCRIPTION, return_direct=return_direct, ), resolve_input_errors=resolve_input_errors, ) def call(self, *args: Any, **kwargs: Any) -> ToolOutput: tool_output = super().call(*args, **kwargs) evaluation_results = self._evaluator.evaluate_response( tool_output.raw_input["input"], tool_output.raw_output ) return self._process_tool_output(tool_output, evaluation_results) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: tool_output = await super().acall(*args, **kwargs) evaluation_results = await self._evaluator.aevaluate_response( tool_output.raw_input["input"], tool_output.raw_output ) return self._process_tool_output(tool_output, evaluation_results)
from typing import Any, Optional from llama_index.core.base.base_query_engine import BaseQueryEngine from llama_index.core.evaluation import ( AnswerRelevancyEvaluator, BaseEvaluator, EvaluationResult, ) from llama_index.core.tools import QueryEngineTool from llama_index.core.tools.types import ToolMetadata, ToolOutput DEFAULT_NAME = "query_engine_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and get back a natural language response. """ FAILED_TOOL_OUTPUT_TEMPLATE = ( "Could not use tool {tool_name} because it failed evaluation.\n" "Reason: {reason}" ) class EvalQueryEngineTool(QueryEngineTool): """Evaluating query engine tool. A tool that makes use of a query engine and an evaluator, where the evaluation of the query engine response will determine the tool output. Args: evaluator (BaseEvaluator): A query engine. query_engine (BaseQueryEngine): A query engine. metadata (ToolMetadata): The associated metadata of the query engine. """ _evaluator: BaseEvaluator _failed_tool_output_template: str def __init__( self, evaluator: BaseEvaluator, *args: Any, failed_tool_output_template: str = FAILED_TOOL_OUTPUT_TEMPLATE, **kwargs: Any, ): super().__init__(*args, **kwargs) self._evaluator = evaluator self._failed_tool_output_template = failed_tool_output_template def _process_tool_output( self, tool_output: ToolOutput, evaluation_result: EvaluationResult, ) -> ToolOutput: if evaluation_result.passing: return tool_output tool_output.content = self._failed_tool_output_template.format( tool_name=self.metadata.name, reason=evaluation_result.feedback, ) return tool_output @classmethod def from_defaults( cls, query_engine: BaseQueryEngine, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, resolve_input_errors: bool = True, evaluator: Optional[BaseEvaluator] = None, ) -> "EvalQueryEngineTool": return cls( evaluator=evaluator or AnswerRelevancyEvaluator(), query_engine=query_engine, metadata=ToolMetadata( name=name or DEFAULT_NAME, description=description or DEFAULT_DESCRIPTION, return_direct=return_direct, ), resolve_input_errors=resolve_input_errors, ) def call(self, *args: Any, **kwargs: Any) -> ToolOutput: tool_output = super().call(*args, **kwargs) evaluation_results = self._evaluator.evaluate_response( tool_output.raw_input["input"], tool_output.raw_output ) return self._process_tool_output(tool_output, evaluation_results) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: tool_output = await super().acall(*args, **kwargs) evaluation_results = await self._evaluator.aevaluate_response( tool_output.raw_input["input"], tool_output.raw_output ) return self._process_tool_output(tool_output, evaluation_results)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox', backend_args=backend_args) test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline))) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces T = TypeVar('T', bound='Mesh3DUrl') @_register_proto(proto_type_name='mesh_url') class Mesh3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ def load( self: T, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'VerticesAndFaces': """ Load the data from the url into a VerticesAndFaces object containing vertices and faces information. EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc import numpy as np from docarray.typing import Mesh3DUrl, NdArray class MyDoc(BaseDoc): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="toydata/tetrahedron.obj") tensors = doc.mesh_url.load() assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, NdArray) :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: VerticesAndFaces object containing vertices and faces information. """ from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces if not trimesh_args: trimesh_args = {} mesh = self._load_trimesh_instance( force='mesh', skip_materials=skip_materials, **trimesh_args ) vertices = parse_obj_as(NdArray, mesh.vertices.view(np.ndarray)) faces = parse_obj_as(NdArray, mesh.faces.view(np.ndarray)) return VerticesAndFaces(vertices=vertices, faces=faces) def display(self) -> None: """ Plot mesh from url. This loads the Trimesh instance of the 3D mesh, and then displays it. To use this you need to install trimesh[easy]: `pip install 'trimesh[easy]'`. """ from IPython.display import display mesh = self._load_trimesh_instance(skip_materials=False) display(mesh.show())
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces T = TypeVar('T', bound='Mesh3DUrl') @_register_proto(proto_type_name='mesh_url') class Mesh3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ def load( self: T, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'VerticesAndFaces': """ Load the data from the url into a VerticesAndFaces object containing vertices and faces information. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import Mesh3DUrl, NdArray class MyDoc(BaseDocument): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="toydata/tetrahedron.obj") tensors = doc.mesh_url.load() assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, NdArray) :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: VerticesAndFaces object containing vertices and faces information. """ from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces if not trimesh_args: trimesh_args = {} mesh = self._load_trimesh_instance( force='mesh', skip_materials=skip_materials, **trimesh_args ) vertices = parse_obj_as(NdArray, mesh.vertices.view(np.ndarray)) faces = parse_obj_as(NdArray, mesh.faces.view(np.ndarray)) return VerticesAndFaces(vertices=vertices, faces=faces) def display(self) -> None: """ Plot mesh from url. This loads the Trimesh instance of the 3D mesh, and then displays it. To use this you need to install trimesh[easy]: `pip install 'trimesh[easy]'`. """ from IPython.display import display mesh = self._load_trimesh_instance(skip_materials=False) display(mesh.show())
from .base import ElevenLabsVoiceAgent, ElevenLabsVoiceAgentInterface __all__ = ["ElevenLabsVoiceAgent", "ElevenLabsVoiceAgentInterface"]
from .base import ElevenLabsConversation __all__ = ["ElevenLabsConversation"]
import mimetypes from typing import TYPE_CHECKING, Optional from docarray.document.mixins._property import _PropertyMixin if TYPE_CHECKING: from docarray.typing import DocumentContentType, ArrayType from docarray import DocumentArray _all_mime_types = set(mimetypes.types_map.values()) class PropertyMixin(_PropertyMixin): def _clear_content(self): self._data.content = None self._data.text = None self._data.tensor = None self._data.blob = None @property def content(self) -> Optional['DocumentContentType']: ct = self.content_type if ct: return getattr(self, ct) @_PropertyMixin.text.setter def text(self, value: str): if value is not None: self._clear_content() self._data.text = value @_PropertyMixin.blob.setter def blob(self, value: bytes): if value is not None: self._clear_content() self._data.blob = value @_PropertyMixin.tensor.setter def tensor(self, value: 'ArrayType'): if value is not None: self._clear_content() self._data.tensor = value @content.setter def content(self, value: 'DocumentContentType'): self._clear_content() if isinstance(value, bytes): self._data.blob = value elif isinstance(value, str): self._data.text = value elif value is not None: self._data.tensor = value @_PropertyMixin.uri.setter def uri(self, value: str): if value: mime_type = mimetypes.guess_type(value)[0] if mime_type: self._data.mime_type = mime_type self._data.uri = value @_PropertyMixin.mime_type.setter def mime_type(self, value: str): if value and value not in _all_mime_types: # given but not recognizable, do best guess r = mimetypes.guess_type(f'*.{value}')[0] value = r or value self._data.mime_type = value @_PropertyMixin.chunks.setter def chunks(self, value: 'DocumentArray'): from docarray.array.chunk import ChunkArray if not isinstance(value, ChunkArray): value = ChunkArray(value, reference_doc=self._data._reference_doc) self._data.chunks = value @_PropertyMixin.matches.setter def matches(self, value: 'DocumentArray'): from docarray.array.match import MatchArray if not isinstance(value, MatchArray): value = MatchArray(value, reference_doc=self._data._reference_doc) self._data.matches = value @property def content_type(self) -> Optional[str]: nf = self.non_empty_fields if 'text' in nf: return 'text' elif 'tensor' in nf: return 'tensor' elif 'blob' in nf: return 'blob'
import mimetypes from typing import TYPE_CHECKING, Optional from ._property import _PropertyMixin if TYPE_CHECKING: from ...typing import DocumentContentType, ArrayType from ... import DocumentArray _all_mime_types = set(mimetypes.types_map.values()) class PropertyMixin(_PropertyMixin): def _clear_content(self): self._data.content = None self._data.text = None self._data.tensor = None self._data.blob = None @property def content(self) -> Optional['DocumentContentType']: ct = self.content_type if ct: return getattr(self, ct) @_PropertyMixin.text.setter def text(self, value: str): if value is not None: self._clear_content() self._data.text = value @_PropertyMixin.blob.setter def blob(self, value: bytes): if value is not None: self._clear_content() self._data.blob = value @_PropertyMixin.tensor.setter def tensor(self, value: 'ArrayType'): if value is not None: self._clear_content() self._data.tensor = value @content.setter def content(self, value: 'DocumentContentType'): self._clear_content() if isinstance(value, bytes): self._data.blob = value elif isinstance(value, str): self._data.text = value elif value is not None: self._data.tensor = value @_PropertyMixin.uri.setter def uri(self, value: str): if value: mime_type = mimetypes.guess_type(value)[0] if mime_type: self._data.mime_type = mime_type self._data.uri = value @_PropertyMixin.mime_type.setter def mime_type(self, value: str): if value and value not in _all_mime_types: # given but not recognizable, do best guess r = mimetypes.guess_type(f'*.{value}')[0] value = r or value self._data.mime_type = value @_PropertyMixin.chunks.setter def chunks(self, value: 'DocumentArray'): from ...array.chunk import ChunkArray if not isinstance(value, ChunkArray): value = ChunkArray(value, reference_doc=self._data._reference_doc) self._data.chunks = value @_PropertyMixin.matches.setter def matches(self, value: 'DocumentArray'): from ...array.match import MatchArray if not isinstance(value, MatchArray): value = MatchArray(value, reference_doc=self._data._reference_doc) self._data.matches = value @property def content_type(self) -> Optional[str]: nf = self.non_empty_fields if 'text' in nf: return 'text' elif 'tensor' in nf: return 'tensor' elif 'blob' in nf: return 'blob'
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from pathlib import Path from .misc import is_str def is_filepath(x): return is_str(x) or isinstance(x, Path) def fopen(filepath, *args, **kwargs): if is_str(filepath): return open(filepath, *args, **kwargs) elif isinstance(filepath, Path): return filepath.open(*args, **kwargs) raise ValueError('`filepath` should be a string or a Path') def check_file_exist(filename, msg_tmpl='file "{}" does not exist'): if not osp.isfile(filename): raise FileNotFoundError(msg_tmpl.format(filename)) def mkdir_or_exist(dir_name, mode=0o777): if dir_name == '': return dir_name = osp.expanduser(dir_name) os.makedirs(dir_name, mode=mode, exist_ok=True) def symlink(src, dst, overwrite=True, **kwargs): if os.path.lexists(dst) and overwrite: os.remove(dst) os.symlink(src, dst, **kwargs) def scandir(dir_path, suffix=None, recursive=False, case_sensitive=True): """Scan a directory to find the interested files. Args: dir_path (str | :obj:`Path`): Path of the directory. suffix (str | tuple(str), optional): File suffix that we are interested in. Defaults to None. recursive (bool, optional): If set to True, recursively scan the directory. Defaults to False. case_sensitive (bool, optional) : If set to False, ignore the case of suffix. Defaults to True. Returns: A generator for all the interested files with relative paths. """ if isinstance(dir_path, (str, Path)): dir_path = str(dir_path) else: raise TypeError('"dir_path" must be a string or Path object') if (suffix is not None) and not isinstance(suffix, (str, tuple)): raise TypeError('"suffix" must be a string or tuple of strings') if suffix is not None and not case_sensitive: suffix = suffix.lower() if isinstance(suffix, str) else tuple( item.lower() for item in suffix) root = dir_path def _scandir(dir_path, suffix, recursive, case_sensitive): for entry in os.scandir(dir_path): if not entry.name.startswith('.') and entry.is_file(): rel_path = osp.relpath(entry.path, root) _rel_path = rel_path if case_sensitive else rel_path.lower() if suffix is None or _rel_path.endswith(suffix): yield rel_path elif recursive and os.path.isdir(entry.path): # scan recursively if entry.path is a directory yield from _scandir(entry.path, suffix, recursive, case_sensitive) return _scandir(dir_path, suffix, recursive, case_sensitive) def find_vcs_root(path, markers=('.git', )): """Finds the root directory (including itself) of specified markers. Args: path (str): Path of directory or file. markers (list[str], optional): List of file or directory names. Returns: The directory contained one of the markers or None if not found. """ if osp.isfile(path): path = osp.dirname(path) prev, cur = None, osp.abspath(osp.expanduser(path)) while cur != prev: if any(osp.exists(osp.join(cur, marker)) for marker in markers): return cur prev, cur = cur, osp.split(cur)[0] return None def is_abs(path: str) -> bool: """Check if path is an absolute path in different backends. Args: path (str): path of directory or file. Returns: bool: whether path is an absolute path. """ if osp.isabs(path) or path.startswith(('http://', 'https://', 's3://')): return True else: return False
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from pathlib import Path from .misc import is_str def is_filepath(x): return is_str(x) or isinstance(x, Path) def fopen(filepath, *args, **kwargs): if is_str(filepath): return open(filepath, *args, **kwargs) elif isinstance(filepath, Path): return filepath.open(*args, **kwargs) raise ValueError('`filepath` should be a string or a Path') def check_file_exist(filename, msg_tmpl='file "{}" does not exist'): if not osp.isfile(filename): raise FileNotFoundError(msg_tmpl.format(filename)) def mkdir_or_exist(dir_name, mode=0o777): if dir_name == '': return dir_name = osp.expanduser(dir_name) os.makedirs(dir_name, mode=mode, exist_ok=True) def symlink(src, dst, overwrite=True, **kwargs): if os.path.lexists(dst) and overwrite: os.remove(dst) os.symlink(src, dst, **kwargs) def scandir(dir_path, suffix=None, recursive=False, case_sensitive=True): """Scan a directory to find the interested files. Args: dir_path (str | :obj:`Path`): Path of the directory. suffix (str | tuple(str), optional): File suffix that we are interested in. Default: None. recursive (bool, optional): If set to True, recursively scan the directory. Default: False. case_sensitive (bool, optional) : If set to False, ignore the case of suffix. Default: True. Returns: A generator for all the interested files with relative paths. """ if isinstance(dir_path, (str, Path)): dir_path = str(dir_path) else: raise TypeError('"dir_path" must be a string or Path object') if (suffix is not None) and not isinstance(suffix, (str, tuple)): raise TypeError('"suffix" must be a string or tuple of strings') if suffix is not None and not case_sensitive: suffix = suffix.lower() if isinstance(suffix, str) else tuple( item.lower() for item in suffix) root = dir_path def _scandir(dir_path, suffix, recursive, case_sensitive): for entry in os.scandir(dir_path): if not entry.name.startswith('.') and entry.is_file(): rel_path = osp.relpath(entry.path, root) _rel_path = rel_path if case_sensitive else rel_path.lower() if suffix is None or _rel_path.endswith(suffix): yield rel_path elif recursive and os.path.isdir(entry.path): # scan recursively if entry.path is a directory yield from _scandir(entry.path, suffix, recursive, case_sensitive) return _scandir(dir_path, suffix, recursive, case_sensitive) def find_vcs_root(path, markers=('.git', )): """Finds the root directory (including itself) of specified markers. Args: path (str): Path of directory or file. markers (list[str], optional): List of file or directory names. Returns: The directory contained one of the markers or None if not found. """ if osp.isfile(path): path = osp.dirname(path) prev, cur = None, osp.abspath(osp.expanduser(path)) while cur != prev: if any(osp.exists(osp.join(cur, marker)) for marker in markers): return cur prev, cur = cur, osp.split(cur)[0] return None def is_abs(path: str) -> bool: """Check if path is an absolute path in different backends. Args: path (str): path of directory or file. Returns: bool: whether path is an absolute path. """ if osp.isabs(path) or path.startswith(('http://', 'https://', 's3://')): return True else: return False
from docarray.typing.id import ID from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, VideoUrl, ) __all__ = [ 'NdArray', 'AudioNdArray', 'VideoNdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', 'AnyUrl', 'ID', 'AnyTensor', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa from docarray.typing.tensor.video.video_torch_tensor import VideoTorchTensor # noqa __all__.extend( ['AudioTorchTensor', 'TorchEmbedding', 'TorchTensor', 'VideoTorchTensor'] )
from docarray.typing.id import ID from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, ) __all__ = [ 'AudioNdArray', 'NdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'AnyUrl', 'ID', 'AnyTensor', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa __all__.extend(['AudioTorchTensor', 'TorchEmbedding', 'TorchTensor'])
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook from .set_epoch_info_hook import SetEpochInfoHook from .sync_norm_hook import SyncNormHook from .sync_random_size_hook import SyncRandomSizeHook from .yolox_lrupdater_hook import YOLOXLrUpdaterHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook', 'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook', 'CheckInvalidLossHook', 'SetEpochInfoHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkloss_hook import CheckInvalidLossHook from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook from .sync_norm_hook import SyncNormHook from .sync_random_size_hook import SyncRandomSizeHook from .yolox_lrupdater_hook import YOLOXLrUpdaterHook from .yolox_mode_switch_hook import YOLOXModeSwitchHook __all__ = [ 'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook', 'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook', 'CheckInvalidLossHook' ]
""" Implements the Generalized R-CNN framework """ import warnings from collections import OrderedDict from typing import Optional, Union import torch from torch import nn from ...utils import _log_api_usage_once class GeneralizedRCNN(nn.Module): """ Main class for Generalized R-CNN. Args: backbone (nn.Module): rpn (nn.Module): roi_heads (nn.Module): takes the features + the proposals from the RPN and computes detections / masks from it. transform (nn.Module): performs the data transformation from the inputs to feed into the model """ def __init__( self, backbone: nn.Module, rpn: nn.Module, roi_heads: nn.Module, transform: nn.Module, ) -> None: super().__init__() _log_api_usage_once(self) self.transform = transform self.backbone = backbone self.rpn = rpn self.roi_heads = roi_heads # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs( self, losses: dict[str, torch.Tensor], detections: list[dict[str, torch.Tensor]] ) -> Union[dict[str, torch.Tensor], list[dict[str, torch.Tensor]]]: if self.training: return losses return detections def forward( self, images: list[torch.Tensor], targets: Optional[list[dict[str, torch.Tensor]]] = None, ) -> tuple[dict[str, torch.Tensor], list[dict[str, torch.Tensor]]]: """ Args: images (list[Tensor]): images to be processed targets (list[dict[str, tensor]]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for target in targets: boxes = target["boxes"] if isinstance(boxes, torch.Tensor): torch._assert( len(boxes.shape) == 2 and boxes.shape[-1] == 4, f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.", ) else: torch._assert( False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.", ) original_image_sizes: list[tuple[int, int]] = [] for img in images: val = img.shape[-2:] torch._assert( len(val) == 2, f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}", ) original_image_sizes.append((val[0], val[1])) images, targets = self.transform(images, targets) # Check for degenerate boxes # TODO: Move this to a function if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): # print the first degenerate box bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: list[float] = boxes[bb_idx].tolist() torch._assert( False, "All bounding boxes should have positive height and width." f" Found invalid box {degen_bb} for target at index {target_idx}.", ) features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) proposals, proposal_losses = self.rpn(images, features, targets) detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets) detections = self.transform.postprocess( detections, images.image_sizes, original_image_sizes ) # type: ignore[operator] losses = {} losses.update(detector_losses) losses.update(proposal_losses) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections else: return self.eager_outputs(losses, detections)
""" Implements the Generalized R-CNN framework """ import warnings from collections import OrderedDict from typing import Dict, List, Optional, Tuple, Union import torch from torch import nn, Tensor from ...utils import _log_api_usage_once class GeneralizedRCNN(nn.Module): """ Main class for Generalized R-CNN. Args: backbone (nn.Module): rpn (nn.Module): roi_heads (nn.Module): takes the features + the proposals from the RPN and computes detections / masks from it. transform (nn.Module): performs the data transformation from the inputs to feed into the model """ def __init__(self, backbone: nn.Module, rpn: nn.Module, roi_heads: nn.Module, transform: nn.Module) -> None: super().__init__() _log_api_usage_once(self) self.transform = transform self.backbone = backbone self.rpn = rpn self.roi_heads = roi_heads # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs(self, losses, detections): # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Union[Dict[str, Tensor], List[Dict[str, Tensor]]] if self.training: return losses return detections def forward(self, images, targets=None): # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]] """ Args: images (list[Tensor]): images to be processed targets (list[Dict[str, Tensor]]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for target in targets: boxes = target["boxes"] if isinstance(boxes, torch.Tensor): torch._assert( len(boxes.shape) == 2 and boxes.shape[-1] == 4, f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.", ) else: torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.") original_image_sizes: List[Tuple[int, int]] = [] for img in images: val = img.shape[-2:] torch._assert( len(val) == 2, f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}", ) original_image_sizes.append((val[0], val[1])) images, targets = self.transform(images, targets) # Check for degenerate boxes # TODO: Move this to a function if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): # print the first degenerate box bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: List[float] = boxes[bb_idx].tolist() torch._assert( False, "All bounding boxes should have positive height and width." f" Found invalid box {degen_bb} for target at index {target_idx}.", ) features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) proposals, proposal_losses = self.rpn(images, features, targets) detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets) detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) # type: ignore[operator] losses = {} losses.update(detector_losses) losses.update(proposal_losses) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections else: return self.eager_outputs(losses, detections)
# pants requires this import to recognize the dep import pytest_asyncio # noqa: F401 import pytest import os from llama_index.embeddings.nvidia import NVIDIAEmbedding as Interface from llama_index.embeddings.nvidia.base import DEFAULT_MODEL from typing import Generator # this fixture is used to mask the NVIDIA_API_KEY environment variable and restore it # after the test. it also returns the value of the NVIDIA_API_KEY environment variable # before it was masked so that it can be used in the test. @pytest.fixture() def masked_env_var() -> Generator[str, None, None]: var = "NVIDIA_API_KEY" try: if val := os.environ.get(var, None): del os.environ[var] yield val finally: if val: os.environ[var] = val @pytest.fixture(params=[Interface]) def public_class(request: pytest.FixtureRequest) -> type: return request.param def pytest_collection_modifyitems(config, items): if "NVIDIA_API_KEY" not in os.environ: skip_marker = pytest.mark.skip( reason="requires NVIDIA_API_KEY environment variable or --nim-endpoint option" ) for item in items: if "integration" in item.keywords and not config.getoption( "--nim-endpoint" ): item.add_marker(skip_marker) def pytest_addoption(parser: pytest.Parser) -> None: parser.addoption( "--all-models", action="store_true", help="Run tests across all models", ) parser.addoption( "--model-id", action="store", help="Run tests for a specific chat model", ) parser.addoption( "--nim-endpoint", type=str, help="Run tests using NIM mode", ) def get_mode(config: pytest.Config) -> dict: nim_endpoint = config.getoption("--nim-endpoint") if nim_endpoint: return {"base_url": nim_endpoint} return {} def pytest_generate_tests(metafunc: pytest.Metafunc) -> None: mode = get_mode(metafunc.config) if "model" in metafunc.fixturenames: # Default models to test - include both default and custom endpoint models models = [DEFAULT_MODEL, "NV-Embed-QA"] if model := metafunc.config.getoption("--model-id"): models = [model] elif metafunc.config.getoption("--all-models"): models = [model.id for model in Interface(**mode).available_models] metafunc.parametrize("model", models, ids=models) @pytest.fixture() def mode(request: pytest.FixtureRequest) -> dict: return get_mode(request.config)
# pants requires this import to recognize the dep import pytest_asyncio # noqa: F401 import pytest import os from llama_index.embeddings.nvidia import NVIDIAEmbedding as Interface from llama_index.embeddings.nvidia.base import DEFAULT_MODEL from typing import Generator # this fixture is used to mask the NVIDIA_API_KEY environment variable and restore it # after the test. it also returns the value of the NVIDIA_API_KEY environment variable # before it was masked so that it can be used in the test. @pytest.fixture() def masked_env_var() -> Generator[str, None, None]: var = "NVIDIA_API_KEY" try: if val := os.environ.get(var, None): del os.environ[var] yield val finally: if val: os.environ[var] = val @pytest.fixture(params=[Interface]) def public_class(request: pytest.FixtureRequest) -> type: return request.param def pytest_collection_modifyitems(config, items): if "NVIDIA_API_KEY" not in os.environ: skip_marker = pytest.mark.skip( reason="requires NVIDIA_API_KEY environment variable or --nim-endpoint option" ) for item in items: if "integration" in item.keywords and not config.getoption( "--nim-endpoint" ): item.add_marker(skip_marker) def pytest_addoption(parser: pytest.Parser) -> None: parser.addoption( "--all-models", action="store_true", help="Run tests across all models", ) parser.addoption( "--model-id", action="store", help="Run tests for a specific chat model", ) parser.addoption( "--nim-endpoint", type=str, help="Run tests using NIM mode", ) def get_mode(config: pytest.Config) -> dict: nim_endpoint = config.getoption("--nim-endpoint") if nim_endpoint: return {"base_url": nim_endpoint} return {} def pytest_generate_tests(metafunc: pytest.Metafunc) -> None: mode = get_mode(metafunc.config) if "model" in metafunc.fixturenames: models = [DEFAULT_MODEL] if model := metafunc.config.getoption("--model-id"): models = [model] elif metafunc.config.getoption("--all-models"): models = [model.id for model in Interface(**mode).available_models] metafunc.parametrize("model", models, ids=models) @pytest.fixture() def mode(request: pytest.FixtureRequest) -> dict: return get_mode(request.config)
_base_ = ['co_dino_5scale_r50_8xb2_1x_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa load_from = 'https://download.openmmlab.com/mmdetection/v3.0/codetr/co_dino_5scale_swin_large_16e_o365tococo-614254c9.pth' # noqa # model settings model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), # Please only add indices that would be used # in FPN, otherwise some parameter will not be used with_cp=True, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[192, 384, 768, 1536]), query_head=dict( dn_cfg=dict(box_noise_scale=0.4, group_cfg=dict(num_dn_queries=500)), transformer=dict(encoder=dict(with_cp=6)))) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ] ]), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=1, num_workers=1, dataset=dict(pipeline=train_pipeline)) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1280), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader optim_wrapper = dict(optimizer=dict(lr=1e-4)) max_epochs = 16 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8], gamma=0.1) ]
_base_ = ['co_dino_5scale_r50_8xb2_1x_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa load_from = 'https://download.openmmlab.com/mmdetection/v3.0/codetr/co_dino_5scale_swin_large_22e_o365-0a33e247.pth' # noqa # model settings model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), # Please only add indices that would be used # in FPN, otherwise some parameter will not be used with_cp=True, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[192, 384, 768, 1536]), query_head=dict( dn_cfg=dict(box_noise_scale=0.4, group_cfg=dict(num_dn_queries=500)), transformer=dict(encoder=dict(with_cp=6)))) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 2048), (512, 2048), (544, 2048), (576, 2048), (608, 2048), (640, 2048), (672, 2048), (704, 2048), (736, 2048), (768, 2048), (800, 2048), (832, 2048), (864, 2048), (896, 2048), (928, 2048), (960, 2048), (992, 2048), (1024, 2048), (1056, 2048), (1088, 2048), (1120, 2048), (1152, 2048), (1184, 2048), (1216, 2048), (1248, 2048), (1280, 2048), (1312, 2048), (1344, 2048), (1376, 2048), (1408, 2048), (1440, 2048), (1472, 2048), (1504, 2048), (1536, 2048)], keep_ratio=True) ] ]), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=1, num_workers=1, dataset=dict(pipeline=train_pipeline)) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1280), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader optim_wrapper = dict(optimizer=dict(lr=1e-4)) max_epochs = 16 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8], gamma=0.1) ]
# Copyright (c) Meta Platforms, Inc. and affiliates # Owner(s): ["oncall: distributed"] from model_registry import MLPModule, ModelWithParamAlias import torch from torch.distributed.pipelining import pipe_split, pipeline from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) d_hid = 512 microbatch_size = 16 torch.manual_seed(0) # Basic example class ExampleCode(torch.nn.Module): def __init__(self) -> None: super().__init__() self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param2 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.lin1 = torch.nn.Linear(d_hid, d_hid) self.lin2 = torch.nn.Linear(d_hid, d_hid) def forward(self, x, y): x = torch.mm(x, self.mm_param1) # mutli-use param skip_connection = x x = x + y x = torch.relu(x) pipe_split() x = torch.mm(x, self.mm_param1) # mutli-use param x = self.lin1(x) pipe_split() x = torch.relu(x) x = x + skip_connection x = torch.mm(x, self.mm_param2) pipe_split() x = self.lin2(x) x = torch.relu(x) return x class MultiMLP(torch.nn.Module): def __init__(self) -> None: super().__init__() self.mlp0 = MLPModule(d_hid) self.mlp1 = MLPModule(d_hid) self.mlp2 = MLPModule(d_hid) self.mlp3 = MLPModule(d_hid) def forward(self, x, y): x = self.mlp0(x) pipe_split() x = self.mlp1(x) pipe_split() x = self.mlp2(x) pipe_split() x = self.mlp3(x) return x - y EXPECTED_N_STAGES = { ExampleCode: 4, MultiMLP: 4, ModelWithParamAlias: 2, } # Currently, we don't enforce full set equality on the FQNs between the original # and pipelined models, because in the multi-use param case, PP will deduplicate # the FQNs from the state_dict. # TODO CHECK_FQN_SET_EQUALITY = False class PipeTests(TestCase): @parametrize("ModelClass", [ExampleCode, MultiMLP, ModelWithParamAlias]) def test_model_split(self, ModelClass): mod = ModelClass() x = torch.randn(microbatch_size, d_hid) y = torch.randn(microbatch_size, d_hid) pipe = pipeline( mod, mb_args=(x, y), ) assert pipe.num_stages == EXPECTED_N_STAGES[ModelClass], ( f"nstages = {pipe.num_stages}, expect {EXPECTED_N_STAGES[ModelClass]}" ) ref_out = mod(x, y) out = pipe(x, y)[0] torch.testing.assert_close(out, ref_out) print(f"equivalence test passed {torch.sum(out)} ref {torch.sum(ref_out)}") # Check qualname # state_dict.keys include both parameters and persistent buffers old_names = set(mod.state_dict().keys()) new_names = set() for idx in range(pipe.num_stages): stage_mod = pipe.get_stage_module(idx) stage_fqns = set(stage_mod.state_dict().keys()) assert stage_fqns.issubset(old_names) new_names.update(stage_fqns) if CHECK_FQN_SET_EQUALITY: assert old_names == new_names, f""" old names {old_names} new names {new_names} """ print("Qualname check passed") instantiate_parametrized_tests(PipeTests) if __name__ == "__main__": run_tests()
# Copyright (c) Meta Platforms, Inc. and affiliates # Owner(s): ["oncall: distributed"] from model_registry import MLPModule, ModelWithParamAlias import torch from torch.distributed.pipelining import pipe_split, pipeline from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, TestCase, ) d_hid = 512 microbatch_size = 16 torch.manual_seed(0) # Basic example class ExampleCode(torch.nn.Module): def __init__(self) -> None: super().__init__() self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param2 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.lin1 = torch.nn.Linear(d_hid, d_hid) self.lin2 = torch.nn.Linear(d_hid, d_hid) def forward(self, x, y): x = torch.mm(x, self.mm_param1) # mutli-use param skip_connection = x x = x + y x = torch.relu(x) pipe_split() x = torch.mm(x, self.mm_param1) # mutli-use param x = self.lin1(x) pipe_split() x = torch.relu(x) x = x + skip_connection x = torch.mm(x, self.mm_param2) pipe_split() x = self.lin2(x) x = torch.relu(x) return x class MultiMLP(torch.nn.Module): def __init__(self) -> None: super().__init__() self.mlp0 = MLPModule(d_hid) self.mlp1 = MLPModule(d_hid) self.mlp2 = MLPModule(d_hid) self.mlp3 = MLPModule(d_hid) def forward(self, x, y): x = self.mlp0(x) pipe_split() x = self.mlp1(x) pipe_split() x = self.mlp2(x) pipe_split() x = self.mlp3(x) return x - y EXPECTED_N_STAGES = { ExampleCode: 4, MultiMLP: 4, ModelWithParamAlias: 2, } # Currently, we don't enforce full set equality on the FQNs between the original # and pipelined models, because in the multi-use param case, PP will deduplicate # the FQNs from the state_dict. # TODO CHECK_FQN_SET_EQUALITY = False class PipeTests(TestCase): @parametrize("ModelClass", [ExampleCode, MultiMLP, ModelWithParamAlias]) def test_model_split(self, ModelClass): mod = ModelClass() x = torch.randn(microbatch_size, d_hid) y = torch.randn(microbatch_size, d_hid) pipe = pipeline( mod, mb_args=(x, y), ) assert ( pipe.num_stages == EXPECTED_N_STAGES[ModelClass] ), f"nstages = {pipe.num_stages}, expect {EXPECTED_N_STAGES[ModelClass]}" ref_out = mod(x, y) out = pipe(x, y)[0] torch.testing.assert_close(out, ref_out) print(f"equivalence test passed {torch.sum(out)} ref {torch.sum(ref_out)}") # Check qualname # state_dict.keys include both parameters and persistent buffers old_names = set(mod.state_dict().keys()) new_names = set() for idx in range(pipe.num_stages): stage_mod = pipe.get_stage_module(idx) stage_fqns = set(stage_mod.state_dict().keys()) assert stage_fqns.issubset(old_names) new_names.update(stage_fqns) if CHECK_FQN_SET_EQUALITY: assert ( old_names == new_names ), f""" old names {old_names} new names {new_names} """ print("Qualname check passed") instantiate_parametrized_tests(PipeTests) if __name__ == "__main__": run_tests()
"""Init file.""" from llama_index.readers.web.agentql_web.base import ( AgentQLWebReader, ) from llama_index.readers.web.async_web.base import ( AsyncWebPageReader, ) from llama_index.readers.web.beautiful_soup_web.base import ( BeautifulSoupWebReader, ) from llama_index.readers.web.browserbase_web.base import BrowserbaseWebReader from llama_index.readers.web.firecrawl_web.base import FireCrawlWebReader from llama_index.readers.web.hyperbrowser_web.base import HyperbrowserWebReader from llama_index.readers.web.knowledge_base.base import ( KnowledgeBaseWebReader, ) from llama_index.readers.web.main_content_extractor.base import ( MainContentExtractorReader, ) from llama_index.readers.web.news.base import NewsArticleReader from llama_index.readers.web.oxylabs_web.base import OxylabsWebReader from llama_index.readers.web.readability_web.base import ( ReadabilityWebPageReader, ) from llama_index.readers.web.rss.base import ( RssReader, ) from llama_index.readers.web.rss_news.base import ( RssNewsReader, ) from llama_index.readers.web.scrapfly_web.base import ( ScrapflyReader, ) from llama_index.readers.web.simple_web.base import ( SimpleWebPageReader, ) from llama_index.readers.web.sitemap.base import ( SitemapReader, ) from llama_index.readers.web.spider_web.base import ( SpiderWebReader, ) from llama_index.readers.web.trafilatura_web.base import ( TrafilaturaWebReader, ) from llama_index.readers.web.unstructured_web.base import ( UnstructuredURLLoader, ) from llama_index.readers.web.whole_site.base import ( WholeSiteReader, ) from llama_index.readers.web.zyte_web.base import ( ZyteWebReader, ) __all__ = [ "AgentQLWebReader", "AsyncWebPageReader", "BeautifulSoupWebReader", "BrowserbaseWebReader", "FireCrawlWebReader", "HyperbrowserWebReader", "KnowledgeBaseWebReader", "MainContentExtractorReader", "NewsArticleReader", "OxylabsWebReader", "ReadabilityWebPageReader", "RssReader", "RssNewsReader", "ScrapflyReader", "SimpleWebPageReader", "SitemapReader", "SpiderWebReader", "TrafilaturaWebReader", "UnstructuredURLLoader", "WholeSiteReader", "ZyteWebReader", ]
"""Init file.""" from llama_index.readers.web.agentql_web.base import ( AgentQLWebReader, ) from llama_index.readers.web.async_web.base import ( AsyncWebPageReader, ) from llama_index.readers.web.beautiful_soup_web.base import ( BeautifulSoupWebReader, ) from llama_index.readers.web.browserbase_web.base import BrowserbaseWebReader from llama_index.readers.web.firecrawl_web.base import FireCrawlWebReader from llama_index.readers.web.hyperbrowser_web.base import HyperbrowserWebReader from llama_index.readers.web.knowledge_base.base import ( KnowledgeBaseWebReader, ) from llama_index.readers.web.main_content_extractor.base import ( MainContentExtractorReader, ) from llama_index.readers.web.news.base import NewsArticleReader from llama_index.readers.web.oxylabs_web.base import OxylabsWebReader from llama_index.readers.web.readability_web.base import ( ReadabilityWebPageReader, ) from llama_index.readers.web.rss.base import ( RssReader, ) from llama_index.readers.web.rss_news.base import ( RssNewsReader, ) from llama_index.readers.web.scrapfly_web.base import ( ScrapflyReader, ) from llama_index.readers.web.simple_web.base import ( SimpleWebPageReader, ) from llama_index.readers.web.sitemap.base import ( SitemapReader, ) from llama_index.readers.web.spider_web.base import ( SpiderWebReader, ) from llama_index.readers.web.trafilatura_web.base import ( TrafilaturaWebReader, ) from llama_index.readers.web.unstructured_web.base import ( UnstructuredURLLoader, ) from llama_index.readers.web.whole_site.base import ( WholeSiteReader, ) from llama_index.readers.web.zyte_web.base import ( ZyteWebReader, ) __all__ = [ "AgentQLWebReader", "AsyncWebPageReader", "BeautifulSoupWebReader", "BrowserbaseWebReader", "FireCrawlWebReader", "HyperbrowserWebReader", "KnowledgeBaseWebReader", "MainContentExtractorReader", "NewsArticleReader", "OxylabsWebReader", "ReadabilityWebPageReader", "RssReader", "RssNewsReader", "ScrapflyReader", "SimpleWebPageReader", "SitemapReader", "SpiderWebReader", "TrafilaturaWebReader", "UnstructuredURLLoader", "WholeSiteReader", "ZyteWebReader", ]
import argparse import urllib from abc import ABC from http import HTTPStatus from typing import TYPE_CHECKING, Optional, Union from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _create_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs) @staticmethod def is_ready(ctrl_address: str, protocol: Optional[str] = 'grpc', **kwargs) -> bool: """ Check if status is ready. :param ctrl_address: the address where the control request needs to be sent :param protocol: protocol of the gateway runtime :param kwargs: extra keyword arguments :return: True if status is ready else False. """ if protocol is None or protocol == 'grpc': res = super().is_ready(ctrl_address) else: try: conn = urllib.request.urlopen(url=f'http://{ctrl_address}') res = conn.code == HTTPStatus.OK except: res = False return res @classmethod def wait_for_ready_or_shutdown( cls, timeout: Optional[float], ready_or_shutdown_event: Union['multiprocessing.Event', 'threading.Event'], ctrl_address: str, protocol: Optional[str] = 'grpc', **kwargs, ): """ Check if the runtime has successfully started :param timeout: The time to wait before readiness or failure is determined :param ctrl_address: the address where the control message needs to be sent :param ready_or_shutdown_event: the multiprocessing event to detect if the process failed or is ready :param protocol: protocol of the gateway runtime :param kwargs: extra keyword arguments :return: True if is ready or it needs to be shutdown """ return super().wait_for_ready_or_shutdown( timeout=timeout, ready_or_shutdown_event=ready_or_shutdown_event, ctrl_address=ctrl_address, protocol=protocol, )
import argparse from abc import ABC from typing import TYPE_CHECKING, Optional, Union from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _create_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.quantizers import deserialize as deserialize from keras.src.quantizers import get as get from keras.src.quantizers import serialize as serialize from keras.src.quantizers.quantizers import AbsMaxQuantizer as AbsMaxQuantizer from keras.src.quantizers.quantizers import Quantizer as Quantizer from keras.src.quantizers.quantizers import abs_max_quantize as abs_max_quantize from keras.src.quantizers.quantizers import ( compute_float8_amax_history as compute_float8_amax_history, ) from keras.src.quantizers.quantizers import ( compute_float8_scale as compute_float8_scale, ) from keras.src.quantizers.quantizers import ( fake_quant_with_min_max_vars as fake_quant_with_min_max_vars, ) from keras.src.quantizers.quantizers import pack_int4 as pack_int4 from keras.src.quantizers.quantizers import ( quantize_and_dequantize as quantize_and_dequantize, ) from keras.src.quantizers.quantizers import unpack_int4 as unpack_int4
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.quantizers import deserialize as deserialize from keras.src.quantizers import get as get from keras.src.quantizers import serialize as serialize from keras.src.quantizers.quantizers import AbsMaxQuantizer as AbsMaxQuantizer from keras.src.quantizers.quantizers import Quantizer as Quantizer from keras.src.quantizers.quantizers import abs_max_quantize as abs_max_quantize from keras.src.quantizers.quantizers import ( compute_float8_amax_history as compute_float8_amax_history, ) from keras.src.quantizers.quantizers import ( compute_float8_scale as compute_float8_scale, ) from keras.src.quantizers.quantizers import ( fake_quant_with_min_max_vars as fake_quant_with_min_max_vars, ) from keras.src.quantizers.quantizers import ( quantize_and_dequantize as quantize_and_dequantize, )
from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class JinaChunkingBlock(Block): class Input(BlockSchema): texts: list = SchemaField(description="List of texts to chunk") credentials: JinaCredentialsInput = JinaCredentialsField() max_chunk_length: int = SchemaField( description="Maximum length of each chunk", default=1000 ) return_tokens: bool = SchemaField( description="Whether to return token information", default=False ) class Output(BlockSchema): chunks: list = SchemaField(description="List of chunked texts") tokens: list = SchemaField( description="List of token information for each chunk", optional=True ) def __init__(self): super().__init__( id="806fb15e-830f-4796-8692-557d300ff43c", description="Chunks texts using Jina AI's segmentation service", categories={BlockCategory.AI, BlockCategory.TEXT}, input_schema=JinaChunkingBlock.Input, output_schema=JinaChunkingBlock.Output, ) def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: url = "https://segment.jina.ai/" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } all_chunks = [] all_tokens = [] for text in input_data.texts: data = { "content": text, "return_tokens": str(input_data.return_tokens).lower(), "return_chunks": "true", "max_chunk_length": str(input_data.max_chunk_length), } response = requests.post(url, headers=headers, json=data) result = response.json() all_chunks.extend(result.get("chunks", [])) if input_data.return_tokens: all_tokens.extend(result.get("tokens", [])) yield "chunks", all_chunks if input_data.return_tokens: yield "tokens", all_tokens
import requests from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class JinaChunkingBlock(Block): class Input(BlockSchema): texts: list = SchemaField(description="List of texts to chunk") credentials: JinaCredentialsInput = JinaCredentialsField() max_chunk_length: int = SchemaField( description="Maximum length of each chunk", default=1000 ) return_tokens: bool = SchemaField( description="Whether to return token information", default=False ) class Output(BlockSchema): chunks: list = SchemaField(description="List of chunked texts") tokens: list = SchemaField( description="List of token information for each chunk", optional=True ) def __init__(self): super().__init__( id="806fb15e-830f-4796-8692-557d300ff43c", description="Chunks texts using Jina AI's segmentation service", categories={BlockCategory.AI, BlockCategory.TEXT}, input_schema=JinaChunkingBlock.Input, output_schema=JinaChunkingBlock.Output, ) def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: url = "https://segment.jina.ai/" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } all_chunks = [] all_tokens = [] for text in input_data.texts: data = { "content": text, "return_tokens": str(input_data.return_tokens).lower(), "return_chunks": "true", "max_chunk_length": str(input_data.max_chunk_length), } response = requests.post(url, headers=headers, json=data) response.raise_for_status() result = response.json() all_chunks.extend(result.get("chunks", [])) if input_data.return_tokens: all_tokens.extend(result.get("tokens", [])) yield "chunks", all_chunks if input_data.return_tokens: yield "tokens", all_tokens
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg, init_cfg=init_cfg)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import WhatsAppChatLoader from langchain_community.document_loaders.whatsapp_chat import concatenate_rows # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "concatenate_rows": "langchain_community.document_loaders.whatsapp_chat", "WhatsAppChatLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "WhatsAppChatLoader", "concatenate_rows", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import WhatsAppChatLoader from langchain_community.document_loaders.whatsapp_chat import concatenate_rows # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "concatenate_rows": "langchain_community.document_loaders.whatsapp_chat", "WhatsAppChatLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "concatenate_rows", "WhatsAppChatLoader", ]
import logging import os import json from typing import Any, List, Optional, cast from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.constants import DEFAULT_SIMILARITY_TOP_K from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.core.vector_stores.utils import metadata_dict_to_node logger = logging.getLogger(__name__) class MongoDBAtlasBM25Retriever(BaseRetriever): def __init__( self, mongodb_client: Optional[Any] = None, db_name: str = "default_db", collection_name: str = "default_collection", index_name: str = "default", text_key: str = "text", metadata_key: str = "metadata", similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K, ) -> None: """ Initialize the vector store. Args: mongodb_client: A MongoDB client. db_name: A MongoDB database name. collection_name: A MongoDB collection name. index_name: A MongoDB Atlas Vector Search index name. text_key: A MongoDB field that will contain the text for each document. metadata_key: A MongoDB field that will contain """ import_err_msg = "`pymongo` package not found, please run `pip install pymongo`" try: from importlib.metadata import version from pymongo import MongoClient from pymongo.driver_info import DriverInfo except ImportError: raise ImportError(import_err_msg) if mongodb_client is not None: self._mongodb_client = cast(MongoClient, mongodb_client) else: if "MONGO_URI" not in os.environ: raise ValueError( "Must specify MONGO_URI via env variable " "if not directly passing in client." ) self._mongodb_client = MongoClient( os.environ["MONGO_URI"], driver=DriverInfo(name="llama-index", version=version("llama-index")), ) self._db = self._mongodb_client[db_name] self._collection = self._db[collection_name] self._index_name = index_name self._text_key = text_key self._metadata_key = metadata_key self._similarity_top_k = similarity_top_k def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" query = query_bundle.query_str pipeline = [ { "$search": { "index": self._index_name, "text": {"query": query, "path": self._text_key}, } }, {"$addFields": {"score": {"$meta": "searchScore"}}}, {"$sort": {"score": -1}}, {"$limit": self._similarity_top_k}, ] results = list(self._collection.aggregate(pipeline)) retrieve_nodes = [] for result in results[: self._similarity_top_k]: doc = self._collection.find_one({"_id": result["_id"]}) node = doc[self._text_key] node_content = json.loads( doc.get("metadata", {}).get("_node_content", "{}") ) metadata_dict = doc.pop(self._metadata_key) node = None try: node = metadata_dict_to_node(metadata_dict) node.set_content(doc["text"]) except Exception: node = TextNode( text=doc["text"], id_=doc["id"], metadata=doc.get("metadata", {}), start_char_idx=node_content.get("start_char_idx", None), end_char_idx=node_content.get("end_char_idx", None), relationships=node_content.get("relationships", None), ) node_with_score = NodeWithScore(node=node, score=result["score"]) retrieve_nodes.append(node_with_score) return retrieve_nodes
import logging import os import json from typing import Any, List, Optional, cast from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.constants import DEFAULT_SIMILARITY_TOP_K from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.core.vector_stores.utils import metadata_dict_to_node logger = logging.getLogger(__name__) class MongoDBAtlasBM25Retriever(BaseRetriever): def __init__( self, mongodb_client: Optional[Any] = None, db_name: str = "default_db", collection_name: str = "default_collection", index_name: str = "default", text_key: str = "text", metadata_key: str = "metadata", similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K, ) -> None: """Initialize the vector store. Args: mongodb_client: A MongoDB client. db_name: A MongoDB database name. collection_name: A MongoDB collection name. index_name: A MongoDB Atlas Vector Search index name. text_key: A MongoDB field that will contain the text for each document. metadata_key: A MongoDB field that will contain """ import_err_msg = "`pymongo` package not found, please run `pip install pymongo`" try: from importlib.metadata import version from pymongo import MongoClient from pymongo.driver_info import DriverInfo except ImportError: raise ImportError(import_err_msg) if mongodb_client is not None: self._mongodb_client = cast(MongoClient, mongodb_client) else: if "MONGO_URI" not in os.environ: raise ValueError( "Must specify MONGO_URI via env variable " "if not directly passing in client." ) self._mongodb_client = MongoClient( os.environ["MONGO_URI"], driver=DriverInfo(name="llama-index", version=version("llama-index")), ) self._db = self._mongodb_client[db_name] self._collection = self._db[collection_name] self._index_name = index_name self._text_key = text_key self._metadata_key = metadata_key self._similarity_top_k = similarity_top_k def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" query = query_bundle.query_str pipeline = [ { "$search": { "index": self._index_name, "text": {"query": query, "path": self._text_key}, } }, {"$addFields": {"score": {"$meta": "searchScore"}}}, {"$sort": {"score": -1}}, {"$limit": self._similarity_top_k}, ] results = list(self._collection.aggregate(pipeline)) retrieve_nodes = [] for result in results[: self._similarity_top_k]: doc = self._collection.find_one({"_id": result["_id"]}) node = doc[self._text_key] node_content = json.loads( doc.get("metadata", {}).get("_node_content", "{}") ) metadata_dict = doc.pop(self._metadata_key) node = None try: node = metadata_dict_to_node(metadata_dict) node.set_content(doc["text"]) except Exception: node = TextNode( text=doc["text"], id_=doc["id"], metadata=doc.get("metadata", {}), start_char_idx=node_content.get("start_char_idx", None), end_char_idx=node_content.get("end_char_idx", None), relationships=node_content.get("relationships", None), ) node_with_score = NodeWithScore(node=node, score=result["score"]) retrieve_nodes.append(node_with_score) return retrieve_nodes
# ReAct agent formatter import logging from abc import abstractmethod from typing import List, Optional, Sequence from llama_index.core.agent.react.prompts import ( CONTEXT_REACT_CHAT_SYSTEM_HEADER, REACT_CHAT_SYSTEM_HEADER, ) from llama_index.core.agent.react.types import ( BaseReasoningStep, ObservationReasoningStep, ) from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.bridge.pydantic import BaseModel, ConfigDict, Field from llama_index.core.tools import BaseTool logger = logging.getLogger(__name__) def get_react_tool_descriptions(tools: Sequence[BaseTool]) -> List[str]: """Tool.""" tool_descs = [] for tool in tools: tool_desc = ( f"> Tool Name: {tool.metadata.name}\n" f"Tool Description: {tool.metadata.description}\n" f"Tool Args: {tool.metadata.fn_schema_str}\n" ) tool_descs.append(tool_desc) return tool_descs # TODO: come up with better name class BaseAgentChatFormatter(BaseModel): """Base chat formatter.""" model_config = ConfigDict(arbitrary_types_allowed=True) @abstractmethod def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" class ReActChatFormatter(BaseAgentChatFormatter): """ReAct chat formatter.""" system_header: str = REACT_CHAT_SYSTEM_HEADER # default context: str = "" # not needed w/ default observation_role: MessageRole = Field( default=MessageRole.USER, description=( "Message role of tool outputs. If the LLM you use supports function/tool " "calling, you may set it to `MessageRole.TOOL` to avoid the tool outputs " "being misinterpreted as new user messages." ), ) def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" current_reasoning = current_reasoning or [] format_args = { "tool_desc": "\n".join(get_react_tool_descriptions(tools)), "tool_names": ", ".join([tool.metadata.get_name() for tool in tools]), } if self.context: format_args["context"] = self.context fmt_sys_header = self.system_header.format(**format_args) # format reasoning history as alternating user and assistant messages # where the assistant messages are thoughts and actions and the tool # messages are observations reasoning_history = [] for reasoning_step in current_reasoning: if isinstance(reasoning_step, ObservationReasoningStep): message = ChatMessage( role=self.observation_role, content=reasoning_step.get_content(), ) else: message = ChatMessage( role=MessageRole.ASSISTANT, content=reasoning_step.get_content(), ) reasoning_history.append(message) return [ ChatMessage(role=MessageRole.SYSTEM, content=fmt_sys_header), *chat_history, *reasoning_history, ] @classmethod def from_defaults( cls, system_header: Optional[str] = None, context: Optional[str] = None, observation_role: MessageRole = MessageRole.USER, ) -> "ReActChatFormatter": """Create ReActChatFormatter from defaults.""" if not system_header: system_header = ( REACT_CHAT_SYSTEM_HEADER if not context else CONTEXT_REACT_CHAT_SYSTEM_HEADER ) return ReActChatFormatter( system_header=system_header, context=context or "", observation_role=observation_role, ) @classmethod def from_context(cls, context: str) -> "ReActChatFormatter": """Create ReActChatFormatter from context. NOTE: deprecated """ logger.warning( "ReActChatFormatter.from_context is deprecated, please use `from_defaults` instead." ) return ReActChatFormatter.from_defaults( system_header=CONTEXT_REACT_CHAT_SYSTEM_HEADER, context=context )
# ReAct agent formatter import logging from abc import abstractmethod from typing import List, Optional, Sequence from llama_index.core.agent.react.prompts import ( CONTEXT_REACT_CHAT_SYSTEM_HEADER, REACT_CHAT_SYSTEM_HEADER, ) from llama_index.core.agent.react.types import ( BaseReasoningStep, ObservationReasoningStep, ) from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.bridge.pydantic import BaseModel, ConfigDict from llama_index.core.tools import BaseTool logger = logging.getLogger(__name__) def get_react_tool_descriptions(tools: Sequence[BaseTool]) -> List[str]: """Tool.""" tool_descs = [] for tool in tools: tool_desc = ( f"> Tool Name: {tool.metadata.name}\n" f"Tool Description: {tool.metadata.description}\n" f"Tool Args: {tool.metadata.fn_schema_str}\n" ) tool_descs.append(tool_desc) return tool_descs # TODO: come up with better name class BaseAgentChatFormatter(BaseModel): """Base chat formatter.""" model_config = ConfigDict(arbitrary_types_allowed=True) @abstractmethod def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" class ReActChatFormatter(BaseAgentChatFormatter): """ReAct chat formatter.""" system_header: str = REACT_CHAT_SYSTEM_HEADER # default context: str = "" # not needed w/ default def format( self, tools: Sequence[BaseTool], chat_history: List[ChatMessage], current_reasoning: Optional[List[BaseReasoningStep]] = None, ) -> List[ChatMessage]: """Format chat history into list of ChatMessage.""" current_reasoning = current_reasoning or [] format_args = { "tool_desc": "\n".join(get_react_tool_descriptions(tools)), "tool_names": ", ".join([tool.metadata.get_name() for tool in tools]), } if self.context: format_args["context"] = self.context fmt_sys_header = self.system_header.format(**format_args) # format reasoning history as alternating user and assistant messages # where the assistant messages are thoughts and actions and the user # messages are observations reasoning_history = [] for reasoning_step in current_reasoning: if isinstance(reasoning_step, ObservationReasoningStep): message = ChatMessage( role=MessageRole.USER, content=reasoning_step.get_content(), ) else: message = ChatMessage( role=MessageRole.ASSISTANT, content=reasoning_step.get_content(), ) reasoning_history.append(message) return [ ChatMessage(role=MessageRole.SYSTEM, content=fmt_sys_header), *chat_history, *reasoning_history, ] @classmethod def from_defaults( cls, system_header: Optional[str] = None, context: Optional[str] = None, ) -> "ReActChatFormatter": """Create ReActChatFormatter from defaults.""" if not system_header: system_header = ( REACT_CHAT_SYSTEM_HEADER if not context else CONTEXT_REACT_CHAT_SYSTEM_HEADER ) return ReActChatFormatter( system_header=system_header, context=context or "", ) @classmethod def from_context(cls, context: str) -> "ReActChatFormatter": """Create ReActChatFormatter from context. NOTE: deprecated """ logger.warning( "ReActChatFormatter.from_context is deprecated, please use `from_defaults` instead." ) return ReActChatFormatter.from_defaults( system_header=CONTEXT_REACT_CHAT_SYSTEM_HEADER, context=context )
from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from docarray.proto import NodeProto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.helper import _uri_to_blob class TextUrl(AnyUrl): """ URL to a text file. Cane be remote (web) URL, or a local file path. """ def _to_node_protobuf(self) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(text_url=str(self)) def load_to_bytes(self, timeout: Optional[float] = None) -> bytes: """ Load the text file into a bytes object. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument from docarray.typing import TextUrl class MyDoc(BaseDocument): remote_url: TextUrl local_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', local_url='home/username/my_file.txt', ) remote_txt_bytes = doc.remote_url.load_to_bytes() local_txt_bytes = doc.local_url.load_to_bytes() :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :return: the text file content as bytes """ return _uri_to_blob(self, timeout=timeout) def load(self, charset: str = 'utf-8', timeout: Optional[float] = None) -> str: """ Load the text file into a string. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument from docarray.typing import TextUrl class MyDoc(BaseDocument): remote_url: TextUrl local_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', local_url='home/username/my_file.txt', ) remote_txt = doc.remote_url.load() print(remote_txt) # prints: ```<!DOCTYPE html>\n<html class="client-nojs" ... > ...``` local_txt = doc.local_url.load() print(local_txt) # prints content of my_file.txt :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :param charset: decoding charset; may be any character set registered with IANA :return: the text file content """ _bytes = _uri_to_blob(self, timeout=timeout) return _bytes.decode(charset)
from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from docarray.proto import NodeProto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.helper import _uri_to_blob class TextUrl(AnyUrl): """ URL to a text file. Cane be remote (web) URL, or a local file path. """ def _to_node_protobuf(self) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(text_url=str(self)) def load_to_bytes(self, timeout: Optional[float] = None) -> bytes: """ Load the text file into a bytes object. EXAMPLE USAGE .. code-block:: python from docarray import Document from docarray.typing import TextUrl class MyDoc(Document): remote_url: TextUrl local_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', local_url='home/username/my_file.txt', ) remote_txt_bytes = doc.remote_url.load_to_bytes() local_txt_bytes = doc.local_url.load_to_bytes() :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :return: the text file content as bytes """ return _uri_to_blob(self, timeout=timeout) def load(self, charset: str = 'utf-8', timeout: Optional[float] = None) -> str: """ Load the text file into a string. EXAMPLE USAGE .. code-block:: python from docarray import Document from docarray.typing import TextUrl class MyDoc(Document): remote_url: TextUrl local_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', local_url='home/username/my_file.txt', ) remote_txt = doc.remote_url.load() print(remote_txt) # prints: ```<!DOCTYPE html>\n<html class="client-nojs" ... > ...``` local_txt = doc.local_url.load() print(local_txt) # prints content of my_file.txt :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :param charset: decoding charset; may be any character set registered with IANA :return: the text file content """ _bytes = _uri_to_blob(self, timeout=timeout) return _bytes.decode(charset)
# Initialize extension and backend first from . import ( # noqa # usort: skip _extension, _backend, ) from . import ( # noqa: F401 backend, # For BC compliance, datasets, functional, io, kaldi_io, models, pipelines, sox_effects, transforms, utils, ) from ._backend import AudioMetaData, get_audio_backend, info, list_audio_backends, load, save, set_audio_backend try: from .version import __version__, git_version # noqa: F401 except ImportError: pass __all__ = [ "AudioMetaData", "load", "info", "save", "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
from . import ( # noqa: F401 _extension, compliance, datasets, functional, io, kaldi_io, models, pipelines, sox_effects, transforms, utils, ) from ._backend.common import AudioMetaData # noqa try: from .version import __version__, git_version # noqa: F401 except ImportError: pass def _is_backend_dispatcher_enabled(): import os return os.getenv("TORCHAUDIO_USE_BACKEND_DISPATCHER", default="1") == "1" if _is_backend_dispatcher_enabled(): from ._backend import _init_backend, get_audio_backend, list_audio_backends, set_audio_backend else: from .backend import _init_backend, get_audio_backend, list_audio_backends, set_audio_backend _init_backend() # for backward compatibility. This has to happen after _backend is imported. from . import backend # noqa: F401 __all__ = [ "AudioMetaData", "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod from typing import TYPE_CHECKING, Any, Type, TypeVar from pydantic import parse_obj_as from docarray.typing.abstract_type import AbstractType from docarray.utils._internal.pydantic import bytes_validator, is_pydantic_v2 if is_pydantic_v2: from pydantic_core import core_schema if TYPE_CHECKING: from docarray.proto import NodeProto if is_pydantic_v2: from pydantic import GetCoreSchemaHandler T = TypeVar('T', bound='BaseBytes') class BaseBytes(bytes, AbstractType): """ Bytes type for docarray """ @classmethod def _docarray_validate( cls: Type[T], value: Any, ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) if is_pydantic_v2: @classmethod @abstractmethod def __get_pydantic_core_schema__( cls, _source_type: Any, _handler: 'GetCoreSchemaHandler' ) -> 'core_schema.CoreSchema': return core_schema.general_after_validator_function( cls.validate, core_schema.bytes_schema(), )
from abc import abstractmethod from typing import TYPE_CHECKING, Any, Type, TypeVar from pydantic import parse_obj_as from docarray.typing.abstract_type import AbstractType from docarray.utils._internal.pydantic import bytes_validator, is_pydantic_v2 if is_pydantic_v2: from pydantic_core import core_schema if TYPE_CHECKING: from docarray.proto import NodeProto if is_pydantic_v2: from pydantic import GetCoreSchemaHandler T = TypeVar('T', bound='BaseBytes') class BaseBytes(bytes, AbstractType): """ Bytes type for docarray """ @classmethod def _docarray_validate( cls: Type[T], value: Any, ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) if is_pydantic_v2: @classmethod @abstractmethod def __get_pydantic_core_schema__( cls, _source_type: Any, _handler: 'GetCoreSchemaHandler' ) -> 'core_schema.CoreSchema': return core_schema.general_after_validator_function( cls.validate, core_schema.bytes_schema(), )
""" ================================== Getting started with transforms v2 ================================== Most computer vision tasks are not supported out of the box by ``torchvision.transforms`` v1, since it only supports images. ``torchvision.transforms.v2`` enables jointly transforming images, videos, bounding boxes, and masks. This example showcases the core functionality of the new ``torchvision.transforms.v2`` API. """ import pathlib import torch def load_data(): from torchvision.io import read_image from torchvision import datapoints from torchvision.ops import masks_to_boxes assets_directory = pathlib.Path("../assets") path = assets_directory / "FudanPed00054.png" image = datapoints.Image(read_image(str(path))) merged_masks = read_image(str(assets_directory / "FudanPed00054_mask.png")) labels = torch.unique(merged_masks)[1:] masks = datapoints.Mask(merged_masks == labels.view(-1, 1, 1)) bounding_boxes = datapoints.BoundingBoxes( masks_to_boxes(masks), format=datapoints.BoundingBoxFormat.XYXY, canvas_size=image.shape[-2:] ) return path, image, bounding_boxes, masks, labels # %% # The :mod:`torchvision.transforms.v2` API supports images, videos, bounding boxes, and instance and segmentation # masks. Thus, it offers native support for many Computer Vision tasks, like image and video classification, object # detection or instance and semantic segmentation. Still, the interface is the same, making # :mod:`torchvision.transforms.v2` a drop-in replacement for the existing :mod:`torchvision.transforms` API, aka v1. import torchvision.transforms.v2 as transforms transform = transforms.Compose( [ transforms.ColorJitter(contrast=0.5), transforms.RandomRotation(30), transforms.CenterCrop(480), ] ) # %% # :mod:`torchvision.transforms.v2` natively supports jointly transforming multiple inputs while making sure that # potential random behavior is consistent across all inputs. However, it doesn't enforce a specific input structure or # order. path, image, bounding_boxes, masks, labels = load_data() torch.manual_seed(0) new_image = transform(image) # Image Classification new_image, new_bounding_boxes, new_labels = transform(image, bounding_boxes, labels) # Object Detection new_image, new_bounding_boxes, new_masks, new_labels = transform( image, bounding_boxes, masks, labels ) # Instance Segmentation new_image, new_target = transform((image, {"boxes": bounding_boxes, "labels": labels})) # Arbitrary Structure # %% # Under the hood, :mod:`torchvision.transforms.v2` relies on :mod:`torchvision.datapoints` for the dispatch to the # appropriate function for the input data: :ref:`sphx_glr_auto_examples_v2_transforms_plot_datapoints.py`. Note however, that as # regular user, you likely don't have to touch this yourself. See # :ref:`sphx_glr_auto_examples_v2_transforms_plot_transforms_v2_e2e.py`. # # All "foreign" types like :class:`str`'s or :class:`pathlib.Path`'s are passed through, allowing to store extra # information directly with the sample: sample = {"path": path, "image": image} new_sample = transform(sample) assert new_sample["path"] is sample["path"] # %% # As stated above, :mod:`torchvision.transforms.v2` is a drop-in replacement for :mod:`torchvision.transforms` and thus # also supports transforming plain :class:`torch.Tensor`'s as image or video if applicable. This is achieved with a # simple heuristic: # # * If we find an explicit image or video (:class:`torchvision.datapoints.Image`, :class:`torchvision.datapoints.Video`, # or :class:`PIL.Image.Image`) in the input, all other plain tensors are passed through. # * If there is no explicit image or video, only the first plain :class:`torch.Tensor` will be transformed as image or # video, while all others will be passed through. plain_tensor_image = torch.rand(image.shape) print(image.shape, plain_tensor_image.shape) # passing a plain tensor together with an explicit image, will not transform the former plain_tensor_image, image = transform(plain_tensor_image, image) print(image.shape, plain_tensor_image.shape) # passing a plain tensor without an explicit image, will transform the former plain_tensor_image, _ = transform(plain_tensor_image, bounding_boxes) print(image.shape, plain_tensor_image.shape)
""" ================================== Getting started with transforms v2 ================================== Most computer vision tasks are not supported out of the box by ``torchvision.transforms`` v1, since it only supports images. ``torchvision.transforms.v2`` enables jointly transforming images, videos, bounding boxes, and masks. This example showcases the core functionality of the new ``torchvision.transforms.v2`` API. """ import pathlib import torch import torchvision def load_data(): from torchvision.io import read_image from torchvision import datapoints from torchvision.ops import masks_to_boxes assets_directory = pathlib.Path("../assets") path = assets_directory / "FudanPed00054.png" image = datapoints.Image(read_image(str(path))) merged_masks = read_image(str(assets_directory / "FudanPed00054_mask.png")) labels = torch.unique(merged_masks)[1:] masks = datapoints.Mask(merged_masks == labels.view(-1, 1, 1)) bounding_boxes = datapoints.BoundingBoxes( masks_to_boxes(masks), format=datapoints.BoundingBoxFormat.XYXY, canvas_size=image.shape[-2:] ) return path, image, bounding_boxes, masks, labels # %% # The :mod:`torchvision.transforms.v2` API supports images, videos, bounding boxes, and instance and segmentation # masks. Thus, it offers native support for many Computer Vision tasks, like image and video classification, object # detection or instance and semantic segmentation. Still, the interface is the same, making # :mod:`torchvision.transforms.v2` a drop-in replacement for the existing :mod:`torchvision.transforms` API, aka v1. # We are using BETA APIs, so we deactivate the associated warning, thereby acknowledging that # some APIs may slightly change in the future torchvision.disable_beta_transforms_warning() import torchvision.transforms.v2 as transforms transform = transforms.Compose( [ transforms.ColorJitter(contrast=0.5), transforms.RandomRotation(30), transforms.CenterCrop(480), ] ) # %% # :mod:`torchvision.transforms.v2` natively supports jointly transforming multiple inputs while making sure that # potential random behavior is consistent across all inputs. However, it doesn't enforce a specific input structure or # order. path, image, bounding_boxes, masks, labels = load_data() torch.manual_seed(0) new_image = transform(image) # Image Classification new_image, new_bounding_boxes, new_labels = transform(image, bounding_boxes, labels) # Object Detection new_image, new_bounding_boxes, new_masks, new_labels = transform( image, bounding_boxes, masks, labels ) # Instance Segmentation new_image, new_target = transform((image, {"boxes": bounding_boxes, "labels": labels})) # Arbitrary Structure # %% # Under the hood, :mod:`torchvision.transforms.v2` relies on :mod:`torchvision.datapoints` for the dispatch to the # appropriate function for the input data: :ref:`sphx_glr_auto_examples_v2_transforms_plot_datapoints.py`. Note however, that as # regular user, you likely don't have to touch this yourself. See # :ref:`sphx_glr_auto_examples_v2_transforms_plot_transforms_v2_e2e.py`. # # All "foreign" types like :class:`str`'s or :class:`pathlib.Path`'s are passed through, allowing to store extra # information directly with the sample: sample = {"path": path, "image": image} new_sample = transform(sample) assert new_sample["path"] is sample["path"] # %% # As stated above, :mod:`torchvision.transforms.v2` is a drop-in replacement for :mod:`torchvision.transforms` and thus # also supports transforming plain :class:`torch.Tensor`'s as image or video if applicable. This is achieved with a # simple heuristic: # # * If we find an explicit image or video (:class:`torchvision.datapoints.Image`, :class:`torchvision.datapoints.Video`, # or :class:`PIL.Image.Image`) in the input, all other plain tensors are passed through. # * If there is no explicit image or video, only the first plain :class:`torch.Tensor` will be transformed as image or # video, while all others will be passed through. plain_tensor_image = torch.rand(image.shape) print(image.shape, plain_tensor_image.shape) # passing a plain tensor together with an explicit image, will not transform the former plain_tensor_image, image = transform(plain_tensor_image, image) print(image.shape, plain_tensor_image.shape) # passing a plain tensor without an explicit image, will transform the former plain_tensor_image, _ = transform(plain_tensor_image, bounding_boxes) print(image.shape, plain_tensor_image.shape)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" GGUF_FILE_EXTENSION = "gguf" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft")
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft")
from __future__ import annotations import os from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class FGVCAircraft(VisionDataset): """`FGVC Aircraft <https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/>`_ Dataset. The dataset contains 10,000 images of aircraft, with 100 images for each of 100 different aircraft model variants, most of which are airplanes. Aircraft models are organized in a three-levels hierarchy. The three levels, from finer to coarser, are: - ``variant``, e.g. Boeing 737-700. A variant collapses all the models that are visually indistinguishable into one class. The dataset comprises 100 different variants. - ``family``, e.g. Boeing 737. The dataset comprises 70 different families. - ``manufacturer``, e.g. Boeing. The dataset comprises 30 different manufacturers. Args: root (string): Root directory of the FGVC Aircraft dataset. split (string, optional): The dataset split, supports ``train``, ``val``, ``trainval`` and ``test``. annotation_level (str, optional): The annotation level, supports ``variant``, ``family`` and ``manufacturer``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz" def __init__( self, root: str, split: str = "trainval", annotation_level: str = "variant", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "trainval", "test")) self._annotation_level = verify_str_arg( annotation_level, "annotation_level", ("variant", "family", "manufacturer") ) self._data_path = os.path.join(self.root, "fgvc-aircraft-2013b") if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") annotation_file = os.path.join( self._data_path, "data", { "variant": "variants.txt", "family": "families.txt", "manufacturer": "manufacturers.txt", }[self._annotation_level], ) with open(annotation_file, "r") as f: self.classes = [line.strip() for line in f] self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) image_data_folder = os.path.join(self._data_path, "data", "images") labels_file = os.path.join(self._data_path, "data", f"images_{self._annotation_level}_{self._split}.txt") self._image_files = [] self._labels = [] with open(labels_file, "r") as f: for line in f: image_name, label_name = line.strip().split(" ", 1) self._image_files.append(os.path.join(image_data_folder, f"{image_name}.jpg")) self._labels.append(self.class_to_idx[label_name]) def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _download(self) -> None: """ Download the FGVC Aircraft dataset archive and extract it under root. """ if self._check_exists(): return download_and_extract_archive(self._URL, self.root) def _check_exists(self) -> bool: return os.path.exists(self._data_path) and os.path.isdir(self._data_path)
from __future__ import annotations import os from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class FGVCAircraft(VisionDataset): """`FGVC Aircraft <https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/>`_ Dataset. The dataset contains 10,000 images of aircraft, with 100 images for each of 100 different aircraft model variants, most of which are airplanes. Aircraft models are organized in a three-levels hierarchy. The three levels, from finer to coarser, are: - ``variant``, e.g. Boeing 737-700. A variant collapses all the models that are visually indistinguishable into one class. The dataset comprises 100 different variants. - ``family``, e.g. Boeing 737. The dataset comprises 70 different families. - ``manufacturer``, e.g. Boeing. The dataset comprises 30 different manufacturers. Args: root (string): Root directory of the FGVC Aircraft dataset. split (string, optional): The dataset split, supports ``train``, ``val``, ``trainval`` and ``test``. annotation_level (str, optional): The annotation level, supports ``variant``, ``family`` and ``manufacturer``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz" def __init__( self, root: str, split: str = "trainval", annotation_level: str = "variant", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "trainval", "test")) self._annotation_level = verify_str_arg( annotation_level, "annotation_level", ("variant", "family", "manufacturer") ) self._data_path = os.path.join(self.root, "fgvc-aircraft-2013b") if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") annotation_file = os.path.join( self._data_path, "data", { "variant": "variants.txt", "family": "families.txt", "manufacturer": "manufacturers.txt", }[self._annotation_level], ) with open(annotation_file, "r") as f: self.classes = [line.strip() for line in f] self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) image_data_folder = os.path.join(self._data_path, "data", "images") labels_file = os.path.join(self._data_path, "data", f"images_{self._annotation_level}_{self._split}.txt") self._image_files = [] self._labels = [] with open(labels_file, "r") as f: for line in f: image_name, label_name = line.strip().split(" ", 1) self._image_files.append(os.path.join(image_data_folder, f"{image_name}.jpg")) self._labels.append(self.class_to_idx[label_name]) def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _download(self) -> None: """ Download the FGVC Aircraft dataset archive and extract it under root. """ if self._check_exists(): return download_and_extract_archive(self._URL, self.root) def _check_exists(self) -> bool: return os.path.exists(self._data_path) and os.path.isdir(self._data_path)
import pathlib from typing import Any, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.prototype.datapoints import BoundingBox, Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> List[OnlineResource]: rsrcs: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: Tuple[Tuple[str, Any], Dict[str, Any]]) -> Dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_box = BoundingBox( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_box": bounding_box, } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
import pathlib from typing import Any, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from torchvision.prototype.features import BoundingBox, Label from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> List[OnlineResource]: rsrcs: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: Tuple[Tuple[str, Any], Dict[str, Any]]) -> Dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_box = BoundingBox( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_box": bounding_box, } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.17.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.16.2.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import pytest from jina import Document, Flow @pytest.mark.parametrize('endpoint', ['foo', 'bar']) @pytest.mark.parametrize( 'uses', ['jinaai+sandbox://jina-ai/Hello'] ) def test_sandbox(endpoint, uses): with Flow().add(uses=uses) as f: da = f.post( endpoint, [ Document(text="dog world"), Document(text="cat world"), Document(id="a", text="elephant world"), Document(id="b", text="monkey world"), ], ) assert da.texts == [ 'hello dog world', 'hello cat world', 'hello elephant world', 'hello monkey world', ]
import pytest from jina import Document, Flow @pytest.mark.parametrize('endpoint', ['foo', 'bar']) def test_sandbox(endpoint): with Flow().add(uses='jinahub+sandbox://Hello') as f: da = f.post( endpoint, [ Document(text="dog world"), Document(text="cat world"), Document(id="a", text="elephant world"), Document(id="b", text="monkey world"), ], ) assert da.texts == [ 'hello dog world', 'hello cat world', 'hello elephant world', 'hello monkey world', ]
import numpy as np import pytest import scipy.ndimage import torch from whisper.timing import dtw_cpu, dtw_cuda, median_filter sizes = [ (10, 20), (32, 16), (123, 1500), (234, 189), ] shapes = [ (10,), (1, 15), (4, 5, 345), (6, 12, 240, 512), ] @pytest.mark.parametrize("N, M", sizes) def test_dtw(N: int, M: int): steps = np.concatenate([np.zeros(N - 1), np.ones(M - 1)]) np.random.shuffle(steps) x = np.random.random((N, M)).astype(np.float32) i, j, k = 0, 0, 0 trace = [] while True: x[i, j] -= 1 trace.append((i, j)) if k == len(steps): break if k + 1 < len(steps) and steps[k] != steps[k + 1]: i += 1 j += 1 k += 2 continue if steps[k] == 0: i += 1 if steps[k] == 1: j += 1 k += 1 trace = np.array(trace).T dtw_trace = dtw_cpu(x) assert np.allclose(trace, dtw_trace) @pytest.mark.requires_cuda @pytest.mark.parametrize("N, M", sizes) def test_dtw_cuda_equivalence(N: int, M: int): x_numpy = np.random.randn(N, M).astype(np.float32) x_cuda = torch.from_numpy(x_numpy).cuda() trace_cpu = dtw_cpu(x_numpy) trace_cuda = dtw_cuda(x_cuda) assert np.allclose(trace_cpu, trace_cuda) @pytest.mark.parametrize("shape", shapes) def test_median_filter(shape): x = torch.randn(*shape) for filter_width in [3, 5, 7, 13]: filtered = median_filter(x, filter_width) # using np.pad to reflect-pad, because Scipy's behavior is different near the edges. pad_width = filter_width // 2 padded_x = np.pad( x, [(0, 0)] * (x.ndim - 1) + [(pad_width, pad_width)], mode="reflect" ) scipy_filtered = scipy.ndimage.median_filter( padded_x, [1] * (x.ndim - 1) + [filter_width] ) scipy_filtered = scipy_filtered[..., pad_width:-pad_width] assert np.allclose(filtered, scipy_filtered) @pytest.mark.requires_cuda @pytest.mark.parametrize("shape", shapes) def test_median_filter_equivalence(shape): x = torch.randn(*shape) for filter_width in [3, 5, 7, 13]: filtered_cpu = median_filter(x, filter_width) filtered_gpu = median_filter(x.cuda(), filter_width).cpu() assert np.allclose(filtered_cpu, filtered_gpu)
import pytest import numpy as np import scipy.ndimage import torch from whisper.timing import dtw_cpu, dtw_cuda, median_filter sizes = [ (10, 20), (32, 16), (123, 1500), (234, 189), ] shapes = [ (10,), (1, 15), (4, 5, 345), (6, 12, 240, 512), ] @pytest.mark.parametrize("N, M", sizes) def test_dtw(N: int, M: int): steps = np.concatenate([np.zeros(N - 1), np.ones(M - 1)]) np.random.shuffle(steps) x = np.random.random((N, M)).astype(np.float32) i, j, k = 0, 0, 0 trace = [] while True: x[i, j] -= 1 trace.append((i, j)) if k == len(steps): break if k + 1 < len(steps) and steps[k] != steps[k + 1]: i += 1 j += 1 k += 2 continue if steps[k] == 0: i += 1 if steps[k] == 1: j += 1 k += 1 trace = np.array(trace).T dtw_trace = dtw_cpu(x) assert np.allclose(trace, dtw_trace) @pytest.mark.requires_cuda @pytest.mark.parametrize("N, M", sizes) def test_dtw_cuda_equivalence(N: int, M: int): x_numpy = np.random.randn(N, M).astype(np.float32) x_cuda = torch.from_numpy(x_numpy).cuda() trace_cpu = dtw_cpu(x_numpy) trace_cuda = dtw_cuda(x_cuda) assert np.allclose(trace_cpu, trace_cuda) @pytest.mark.parametrize("shape", shapes) def test_median_filter(shape): x = torch.randn(*shape) for filter_width in [3, 5, 7, 13]: filtered = median_filter(x, filter_width) # using np.pad to reflect-pad, because Scipy's behavior is different near the edges. pad_width = filter_width // 2 padded_x = np.pad(x, [(0, 0)] * (x.ndim - 1) + [(pad_width, pad_width)], mode="reflect") scipy_filtered = scipy.ndimage.median_filter(padded_x, [1] * (x.ndim - 1) + [filter_width]) scipy_filtered = scipy_filtered[..., pad_width:-pad_width] assert np.allclose(filtered, scipy_filtered) @pytest.mark.requires_cuda @pytest.mark.parametrize("shape", shapes) def test_median_filter_equivalence(shape): x = torch.randn(*shape) for filter_width in [3, 5, 7, 13]: filtered_cpu = median_filter(x, filter_width) filtered_gpu = median_filter(x.cuda(), filter_width).cpu() assert np.allclose(filtered_cpu, filtered_gpu)
from keras.src import backend from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer from keras.src.saving.serialization_lib import deserialize_keras_object @keras_export("keras.layers.Masking") class Masking(Layer): """Masks a sequence by using a mask value to skip timesteps. For each timestep in the input tensor (dimension #1 in the tensor), if all values in the input tensor at that timestep are equal to `mask_value`, then the timestep will be masked (skipped) in all downstream layers (as long as they support masking). If any downstream layer does not support masking yet receives such an input mask, an exception will be raised. Example: Consider a NumPy data array `x` of shape `(samples, timesteps, features)`, to be fed to an LSTM layer. You want to mask timestep #3 and #5 because you lack data for these timesteps. You can: - Set `x[:, 3, :] = 0.` and `x[:, 5, :] = 0.` - Insert a `Masking` layer with `mask_value=0.` before the LSTM layer: ```python samples, timesteps, features = 32, 10, 8 inputs = np.random.random([samples, timesteps, features]).astype(np.float32) inputs[:, 3, :] = 0. inputs[:, 5, :] = 0. model = keras.models.Sequential() model.add(keras.layers.Masking(mask_value=0.0)) model.add(keras.layers.LSTM(32)) output = model(inputs) # The time step 3 and 5 will be skipped from LSTM calculation. ``` Note: in the Keras masking convention, a masked timestep is denoted by a mask value of `False`, while a non-masked (i.e. usable) timestep is denoted by a mask value of `True`. """ def __init__(self, mask_value=0.0, **kwargs): super().__init__(**kwargs) # `mask_value` can be a serialized tensor, hence verify it if isinstance(mask_value, dict) and mask_value.get("config", None): mask_value = deserialize_keras_object(mask_value) self.mask_value = mask_value self.supports_masking = True self.built = True def compute_mask(self, inputs, mask=None): return ops.any(ops.not_equal(inputs, self.mask_value), axis=-1) def call(self, inputs): boolean_mask = ops.any( ops.not_equal(inputs, self.mask_value), axis=-1, keepdims=True ) # Set masked outputs to 0 outputs = inputs * backend.cast(boolean_mask, dtype=inputs.dtype) # Compute the mask and outputs simultaneously. backend.set_keras_mask(outputs, mask=ops.squeeze(boolean_mask, axis=-1)) return outputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = {"mask_value": self.mask_value} return {**base_config, **config}
from keras.src import backend from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.Masking") class Masking(Layer): """Masks a sequence by using a mask value to skip timesteps. For each timestep in the input tensor (dimension #1 in the tensor), if all values in the input tensor at that timestep are equal to `mask_value`, then the timestep will be masked (skipped) in all downstream layers (as long as they support masking). If any downstream layer does not support masking yet receives such an input mask, an exception will be raised. Example: Consider a NumPy data array `x` of shape `(samples, timesteps, features)`, to be fed to an LSTM layer. You want to mask timestep #3 and #5 because you lack data for these timesteps. You can: - Set `x[:, 3, :] = 0.` and `x[:, 5, :] = 0.` - Insert a `Masking` layer with `mask_value=0.` before the LSTM layer: ```python samples, timesteps, features = 32, 10, 8 inputs = np.random.random([samples, timesteps, features]).astype(np.float32) inputs[:, 3, :] = 0. inputs[:, 5, :] = 0. model = keras.models.Sequential() model.add(keras.layers.Masking(mask_value=0.0)) model.add(keras.layers.LSTM(32)) output = model(inputs) # The time step 3 and 5 will be skipped from LSTM calculation. ``` Note: in the Keras masking convention, a masked timestep is denoted by a mask value of `False`, while a non-masked (i.e. usable) timestep is denoted by a mask value of `True`. """ def __init__(self, mask_value=0.0, **kwargs): super().__init__(**kwargs) self.mask_value = mask_value self.supports_masking = True self.built = True def compute_mask(self, inputs, mask=None): return ops.any(ops.not_equal(inputs, self.mask_value), axis=-1) def call(self, inputs): boolean_mask = ops.any( ops.not_equal(inputs, self.mask_value), axis=-1, keepdims=True ) # Set masked outputs to 0 outputs = inputs * backend.cast(boolean_mask, dtype=inputs.dtype) # Compute the mask and outputs simultaneously. backend.set_keras_mask(outputs, mask=ops.squeeze(boolean_mask, axis=-1)) return outputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = {"mask_value": self.mask_value} return {**base_config, **config}
"""LLMResult class.""" from __future__ import annotations from copy import deepcopy from typing import Literal, Optional, Union from pydantic import BaseModel from langchain_core.outputs.chat_generation import ChatGeneration, ChatGenerationChunk from langchain_core.outputs.generation import Generation, GenerationChunk from langchain_core.outputs.run_info import RunInfo class LLMResult(BaseModel): """A container for results of an LLM call. Both chat models and LLMs generate an LLMResult object. This object contains the generated outputs and any additional information that the model provider wants to return. """ generations: list[ list[Union[Generation, ChatGeneration, GenerationChunk, ChatGenerationChunk]] ] """Generated outputs. The first dimension of the list represents completions for different input prompts. The second dimension of the list represents different candidate generations for a given prompt. When returned from an LLM the type is list[list[Generation]]. When returned from a chat model the type is list[list[ChatGeneration]]. ChatGeneration is a subclass of Generation that has a field for a structured chat message. """ llm_output: Optional[dict] = None """For arbitrary LLM provider specific output. This dictionary is a free-form dictionary that can contain any information that the provider wants to return. It is not standardized and is provider-specific. Users should generally avoid relying on this field and instead rely on accessing relevant information from standardized fields present in AIMessage. """ run: Optional[list[RunInfo]] = None """List of metadata info for model call for each input.""" type: Literal["LLMResult"] = "LLMResult" """Type is used exclusively for serialization purposes.""" def flatten(self) -> list[LLMResult]: """Flatten generations into a single list. Unpack list[list[Generation]] -> list[LLMResult] where each returned LLMResult contains only a single Generation. If token usage information is available, it is kept only for the LLMResult corresponding to the top-choice Generation, to avoid over-counting of token usage downstream. Returns: List of LLMResults where each returned LLMResult contains a single Generation. """ llm_results = [] for i, gen_list in enumerate(self.generations): # Avoid double counting tokens in OpenAICallback if i == 0: llm_results.append( LLMResult( generations=[gen_list], llm_output=self.llm_output, ) ) else: if self.llm_output is not None: llm_output = deepcopy(self.llm_output) llm_output["token_usage"] = {} else: llm_output = None llm_results.append( LLMResult( generations=[gen_list], llm_output=llm_output, ) ) return llm_results def __eq__(self, other: object) -> bool: """Check for LLMResult equality by ignoring any metadata related to runs.""" if not isinstance(other, LLMResult): return NotImplemented return ( self.generations == other.generations and self.llm_output == other.llm_output )
"""LLMResult class.""" from __future__ import annotations from copy import deepcopy from typing import Literal, Optional, Union from pydantic import BaseModel from langchain_core.outputs.chat_generation import ChatGeneration, ChatGenerationChunk from langchain_core.outputs.generation import Generation, GenerationChunk from langchain_core.outputs.run_info import RunInfo class LLMResult(BaseModel): """A container for results of an LLM call. Both chat models and LLMs generate an LLMResult object. This object contains the generated outputs and any additional information that the model provider wants to return. """ generations: list[ list[Union[Generation, ChatGeneration, GenerationChunk, ChatGenerationChunk]] ] """Generated outputs. The first dimension of the list represents completions for different input prompts. The second dimension of the list represents different candidate generations for a given prompt. When returned from an LLM the type is list[list[Generation]]. When returned from a chat model the type is list[list[ChatGeneration]]. ChatGeneration is a subclass of Generation that has a field for a structured chat message. """ llm_output: Optional[dict] = None """For arbitrary LLM provider specific output. This dictionary is a free-form dictionary that can contain any information that the provider wants to return. It is not standardized and is provider-specific. Users should generally avoid relying on this field and instead rely on accessing relevant information from standardized fields present in AIMessage. """ run: Optional[list[RunInfo]] = None """List of metadata info for model call for each input.""" type: Literal["LLMResult"] = "LLMResult" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def flatten(self) -> list[LLMResult]: """Flatten generations into a single list. Unpack list[list[Generation]] -> list[LLMResult] where each returned LLMResult contains only a single Generation. If token usage information is available, it is kept only for the LLMResult corresponding to the top-choice Generation, to avoid over-counting of token usage downstream. Returns: List of LLMResults where each returned LLMResult contains a single Generation. """ llm_results = [] for i, gen_list in enumerate(self.generations): # Avoid double counting tokens in OpenAICallback if i == 0: llm_results.append( LLMResult( generations=[gen_list], llm_output=self.llm_output, ) ) else: if self.llm_output is not None: llm_output = deepcopy(self.llm_output) llm_output["token_usage"] = {} else: llm_output = None llm_results.append( LLMResult( generations=[gen_list], llm_output=llm_output, ) ) return llm_results def __eq__(self, other: object) -> bool: """Check for LLMResult equality by ignoring any metadata related to runs.""" if not isinstance(other, LLMResult): return NotImplemented return ( self.generations == other.generations and self.llm_output == other.llm_output )
from __future__ import annotations from collections.abc import Sequence from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from pydantic import ConfigDict from langchain.chains.router.base import RouterChain class EmbeddingRouterChain(RouterChain): """Chain that uses embeddings to route between options.""" vectorstore: VectorStore routing_keys: list[str] = ["query"] model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the LLM chain prompt expects. :meta private: """ return self.routing_keys def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _input = ", ".join([inputs[k] for k in self.routing_keys]) results = self.vectorstore.similarity_search(_input, k=1) return {"next_inputs": inputs, "destination": results[0].metadata["name"]} async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _input = ", ".join([inputs[k] for k in self.routing_keys]) results = await self.vectorstore.asimilarity_search(_input, k=1) return {"next_inputs": inputs, "destination": results[0].metadata["name"]} @classmethod def from_names_and_descriptions( cls, names_and_descriptions: Sequence[tuple[str, Sequence[str]]], vectorstore_cls: type[VectorStore], embeddings: Embeddings, **kwargs: Any, ) -> EmbeddingRouterChain: """Convenience constructor.""" documents = [] for name, descriptions in names_and_descriptions: documents.extend( [ Document(page_content=description, metadata={"name": name}) for description in descriptions ] ) vectorstore = vectorstore_cls.from_documents(documents, embeddings) return cls(vectorstore=vectorstore, **kwargs) @classmethod async def afrom_names_and_descriptions( cls, names_and_descriptions: Sequence[tuple[str, Sequence[str]]], vectorstore_cls: type[VectorStore], embeddings: Embeddings, **kwargs: Any, ) -> EmbeddingRouterChain: """Convenience constructor.""" documents = [] documents.extend( [ Document(page_content=description, metadata={"name": name}) for name, descriptions in names_and_descriptions for description in descriptions ] ) vectorstore = await vectorstore_cls.afrom_documents(documents, embeddings) return cls(vectorstore=vectorstore, **kwargs)
from __future__ import annotations from collections.abc import Sequence from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from pydantic import ConfigDict from langchain.chains.router.base import RouterChain class EmbeddingRouterChain(RouterChain): """Chain that uses embeddings to route between options.""" vectorstore: VectorStore routing_keys: list[str] = ["query"] model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the LLM chain prompt expects. :meta private: """ return self.routing_keys def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _input = ", ".join([inputs[k] for k in self.routing_keys]) results = self.vectorstore.similarity_search(_input, k=1) return {"next_inputs": inputs, "destination": results[0].metadata["name"]} async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _input = ", ".join([inputs[k] for k in self.routing_keys]) results = await self.vectorstore.asimilarity_search(_input, k=1) return {"next_inputs": inputs, "destination": results[0].metadata["name"]} @classmethod def from_names_and_descriptions( cls, names_and_descriptions: Sequence[tuple[str, Sequence[str]]], vectorstore_cls: type[VectorStore], embeddings: Embeddings, **kwargs: Any, ) -> EmbeddingRouterChain: """Convenience constructor.""" documents = [] for name, descriptions in names_and_descriptions: for description in descriptions: documents.append( Document(page_content=description, metadata={"name": name}) ) vectorstore = vectorstore_cls.from_documents(documents, embeddings) return cls(vectorstore=vectorstore, **kwargs) @classmethod async def afrom_names_and_descriptions( cls, names_and_descriptions: Sequence[tuple[str, Sequence[str]]], vectorstore_cls: type[VectorStore], embeddings: Embeddings, **kwargs: Any, ) -> EmbeddingRouterChain: """Convenience constructor.""" documents = [] for name, descriptions in names_and_descriptions: for description in descriptions: documents.append( Document(page_content=description, metadata={"name": name}) ) vectorstore = await vectorstore_cls.afrom_documents(documents, embeddings) return cls(vectorstore=vectorstore, **kwargs)
# Copyright (c) OpenMMLab. All rights reserved. import warnings from typing import Tuple import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmengine.config import ConfigDict from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import MultiConfig, OptConfigType @MODELS.register_module() class FusedSemanticHead(BaseModule): r"""Multi-level fused semantic segmentation head. .. code-block:: none in_1 -> 1x1 conv --- | in_2 -> 1x1 conv -- | || in_3 -> 1x1 conv - || ||| /-> 1x1 conv (mask prediction) in_4 -> 1x1 conv -----> 3x3 convs (*4) | \-> 1x1 conv (feature) in_5 -> 1x1 conv --- """ # noqa: W605 def __init__( self, num_ins: int, fusion_level: int, seg_scale_factor=1 / 8, num_convs: int = 4, in_channels: int = 256, conv_out_channels: int = 256, num_classes: int = 183, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, ignore_label: int = None, loss_weight: float = None, loss_seg: ConfigDict = dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2), init_cfg: MultiConfig = dict( type='Kaiming', override=dict(name='conv_logits')) ) -> None: super().__init__(init_cfg=init_cfg) self.num_ins = num_ins self.fusion_level = fusion_level self.seg_scale_factor = seg_scale_factor self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.lateral_convs = nn.ModuleList() for i in range(self.num_ins): self.lateral_convs.append( ConvModule( self.in_channels, self.in_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, inplace=False)) self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.conv_embedding = ConvModule( conv_out_channels, conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.conv_logits = nn.Conv2d(conv_out_channels, self.num_classes, 1) if ignore_label: loss_seg['ignore_index'] = ignore_label if loss_weight: loss_seg['loss_weight'] = loss_weight if ignore_label or loss_weight: warnings.warn('``ignore_label`` and ``loss_weight`` would be ' 'deprecated soon. Please set ``ingore_index`` and ' '``loss_weight`` in ``loss_seg`` instead.') self.criterion = MODELS.build(loss_seg) def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function. Args: feats (tuple[Tensor]): Multi scale feature maps. Returns: tuple[Tensor]: - mask_preds (Tensor): Predicted mask logits. - x (Tensor): Fused feature. """ x = self.lateral_convs[self.fusion_level](feats[self.fusion_level]) fused_size = tuple(x.shape[-2:]) for i, feat in enumerate(feats): if i != self.fusion_level: feat = F.interpolate( feat, size=fused_size, mode='bilinear', align_corners=True) # fix runtime error of "+=" inplace operation in PyTorch 1.10 x = x + self.lateral_convs[i](feat) for i in range(self.num_convs): x = self.convs[i](x) mask_preds = self.conv_logits(x) x = self.conv_embedding(x) return mask_preds, x def loss(self, mask_preds: Tensor, labels: Tensor) -> Tensor: """Loss function. Args: mask_preds (Tensor): Predicted mask logits. labels (Tensor): Ground truth. Returns: Tensor: Semantic segmentation loss. """ labels = F.interpolate( labels.float(), scale_factor=self.seg_scale_factor, mode='nearest') labels = labels.squeeze(1).long() loss_semantic_seg = self.criterion(mask_preds, labels) return loss_semantic_seg
# Copyright (c) OpenMMLab. All rights reserved. import warnings from typing import Tuple import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmengine.config import ConfigDict from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import MultiConfig, OptConfigType @MODELS.register_module() class FusedSemanticHead(BaseModule): r"""Multi-level fused semantic segmentation head. .. code-block:: none in_1 -> 1x1 conv --- | in_2 -> 1x1 conv -- | || in_3 -> 1x1 conv - || ||| /-> 1x1 conv (mask prediction) in_4 -> 1x1 conv -----> 3x3 convs (*4) | \-> 1x1 conv (feature) in_5 -> 1x1 conv --- """ # noqa: W605 def __init__( self, num_ins: int, fusion_level: int, seg_scale_factor=1 / 8, num_convs: int = 4, in_channels: int = 256, conv_out_channels: int = 256, num_classes: int = 183, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, ignore_label: int = None, loss_weight: float = None, loss_seg: ConfigDict = dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2), init_cfg: MultiConfig = dict( type='Kaiming', override=dict(name='conv_logits')) ) -> None: super().__init__(init_cfg=init_cfg) self.num_ins = num_ins self.fusion_level = fusion_level self.seg_scale_factor = seg_scale_factor self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.lateral_convs = nn.ModuleList() for i in range(self.num_ins): self.lateral_convs.append( ConvModule( self.in_channels, self.in_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, inplace=False)) self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.conv_embedding = ConvModule( conv_out_channels, conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.conv_logits = nn.Conv2d(conv_out_channels, self.num_classes, 1) if ignore_label: loss_seg['ignore_index'] = ignore_label if loss_weight: loss_seg['loss_weight'] = loss_weight if ignore_label or loss_weight: warnings.warn('``ignore_label`` and ``loss_weight`` would be ' 'deprecated soon. Please set ``ingore_index`` and ' '``loss_weight`` in ``loss_seg`` instead.') self.criterion = MODELS.build(loss_seg) def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function. Args: feats (tuple[Tensor]): Multi scale feature maps. Returns: tuple[Tensor]: - mask_pred (Tensor): Predicted mask logits. - x (Tensor): Fused feature. """ x = self.lateral_convs[self.fusion_level](feats[self.fusion_level]) fused_size = tuple(x.shape[-2:]) for i, feat in enumerate(feats): if i != self.fusion_level: feat = F.interpolate( feat, size=fused_size, mode='bilinear', align_corners=True) # fix runtime error of "+=" inplace operation in PyTorch 1.10 x = x + self.lateral_convs[i](feat) for i in range(self.num_convs): x = self.convs[i](x) mask_pred = self.conv_logits(x) x = self.conv_embedding(x) return mask_pred, x def loss(self, mask_pred: Tensor, labels: Tensor) -> Tensor: """Loss function. Args: mask_pred (Tensor): Predicted mask logits. labels (Tensor): Ground truth. Returns: Tensor: Semantic segmentation loss. """ labels = F.interpolate( labels.float(), scale_factor=self.seg_scale_factor, mode='nearest') labels = labels.squeeze(1).long() loss_semantic_seg = self.criterion(mask_pred, labels) return loss_semantic_seg
# Copyright (c) OpenMMLab. All rights reserved. from typing import Sequence from torch.utils.data import BatchSampler, Sampler from mmdet.datasets.samplers.track_img_sampler import TrackImgSampler from mmdet.registry import DATA_SAMPLERS # TODO: maybe replace with a data_loader wrapper @DATA_SAMPLERS.register_module() class AspectRatioBatchSampler(BatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __init__(self, sampler: Sampler, batch_size: int, drop_last: bool = False) -> None: if not isinstance(sampler, Sampler): raise TypeError('sampler should be an instance of ``Sampler``, ' f'but got {sampler}') if not isinstance(batch_size, int) or batch_size <= 0: raise ValueError('batch_size should be a positive integer value, ' f'but got batch_size={batch_size}') self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last # two groups for w < h and w >= h self._aspect_ratio_buckets = [[] for _ in range(2)] def __iter__(self) -> Sequence[int]: for idx in self.sampler: data_info = self.sampler.dataset.get_data_info(idx) width, height = data_info['width'], data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:] def __len__(self) -> int: if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size @DATA_SAMPLERS.register_module() class TrackAspectRatioBatchSampler(AspectRatioBatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __iter__(self) -> Sequence[int]: for idx in self.sampler: # hard code to solve TrackImgSampler if isinstance(self.sampler, TrackImgSampler): video_idx, _ = idx else: video_idx = idx # video_idx data_info = self.sampler.dataset.get_data_info(video_idx) # data_info {video_id, images, video_length} img_data_info = data_info['images'][0] width, height = img_data_info['width'], img_data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:]
# Copyright (c) OpenMMLab. All rights reserved. from typing import Sequence from torch.utils.data import BatchSampler, Sampler from mmdet.registry import DATA_SAMPLERS # TODO: maybe replace with a data_loader wrapper @DATA_SAMPLERS.register_module() class AspectRatioBatchSampler(BatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __init__(self, sampler: Sampler, batch_size: int, drop_last: bool = False) -> None: if not isinstance(sampler, Sampler): raise TypeError('sampler should be an instance of ``Sampler``, ' f'but got {sampler}') if not isinstance(batch_size, int) or batch_size <= 0: raise ValueError('batch_size should be a positive integer value, ' f'but got batch_size={batch_size}') self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last # two groups for w < h and w >= h self._aspect_ratio_buckets = [[] for _ in range(2)] def __iter__(self) -> Sequence[int]: for idx in self.sampler: data_info = self.sampler.dataset.get_data_info(idx) width, height = data_info['width'], data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:] def __len__(self) -> int: if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size @DATA_SAMPLERS.register_module() class TrackAspectRatioBatchSampler(AspectRatioBatchSampler): """A sampler wrapper for grouping images with similar aspect ratio (< 1 or. >= 1) into a same batch. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. """ def __iter__(self) -> Sequence[int]: for idx in self.sampler: # video_idx data_info = self.sampler.dataset.get_data_info(idx) # data_info {video_id, images, video_length} img_data_info = data_info['images'][0] width, height = img_data_info['width'], img_data_info['height'] bucket_id = 0 if width < height else 1 bucket = self._aspect_ratio_buckets[bucket_id] bucket.append(idx) # yield a batch of indices in the same aspect ratio group if len(bucket) == self.batch_size: yield bucket[:] del bucket[:] # yield the rest data and reset the bucket left_data = self._aspect_ratio_buckets[0] + self._aspect_ratio_buckets[ 1] self._aspect_ratio_buckets = [[] for _ in range(2)] while len(left_data) > 0: if len(left_data) <= self.batch_size: if not self.drop_last: yield left_data[:] left_data = [] else: yield left_data[:self.batch_size] left_data = left_data[self.batch_size:]
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ import gc import sys from collections import defaultdict from time import time import numpy as np from sklearn.datasets import make_regression from sklearn.linear_model import lars_path, lars_path_gram, lasso_path def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print("====================") print("Iteration %03d of %03d" % (it, max_it)) print("====================") dataset_kwargs = { "n_samples": n_samples, "n_features": n_features, "n_informative": n_features // 10, "effective_rank": min(n_samples, n_features) / 10, # 'effective_rank': None, "bias": 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end="") sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path_gram(Xy=Xy, Gram=G, n_samples=y.size, method="lasso") delta = time() - tstart print("%0.3fs" % delta) results["lars_path (with Gram)"].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end="") sys.stdout.flush() tstart = time() lars_path(X, y, method="lasso") delta = time() - tstart print("%0.3fs" % delta) results["lars_path (without Gram)"].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end="") sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results["lasso_path (with Gram)"].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end="") sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results["lasso_path (without Gram)"].append(delta) return results if __name__ == "__main__": import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d # register the 3d projection # noqa: F401 samples_range = np.linspace(10, 2000, 5).astype(int) features_range = np.linspace(10, 2000, 5).astype(int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure("scikit-learn Lasso path benchmark results") i = 1 for c, (label, timings) in zip("bcry", sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection="3d") X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) # ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel("n_samples") ax.set_ylabel("n_features") ax.set_zlabel("Time (s)") ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) # ax.legend() i += 1 plt.show()
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ import gc import sys from collections import defaultdict from time import time import numpy as np from sklearn.datasets import make_regression from sklearn.linear_model import lars_path, lars_path_gram, lasso_path def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print("====================") print("Iteration %03d of %03d" % (it, max_it)) print("====================") dataset_kwargs = { "n_samples": n_samples, "n_features": n_features, "n_informative": n_features // 10, "effective_rank": min(n_samples, n_features) / 10, # 'effective_rank': None, "bias": 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end="") sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path_gram(Xy=Xy, Gram=G, n_samples=y.size, method="lasso") delta = time() - tstart print("%0.3fs" % delta) results["lars_path (with Gram)"].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end="") sys.stdout.flush() tstart = time() lars_path(X, y, method="lasso") delta = time() - tstart print("%0.3fs" % delta) results["lars_path (without Gram)"].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end="") sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results["lasso_path (with Gram)"].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end="") sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results["lasso_path (without Gram)"].append(delta) return results if __name__ == "__main__": from mpl_toolkits.mplot3d import axes3d # noqa register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(10, 2000, 5).astype(int) features_range = np.linspace(10, 2000, 5).astype(int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure("scikit-learn Lasso path benchmark results") i = 1 for c, (label, timings) in zip("bcry", sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection="3d") X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) # ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel("n_samples") ax.set_ylabel("n_features") ax.set_zlabel("Time (s)") ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) # ax.legend() i += 1 plt.show()
""" =================================================== Recursive feature elimination with cross-validation =================================================== A Recursive Feature Elimination (RFE) example with automatic tuning of the number of features selected with cross-validation. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Data generation # --------------- # # We build a classification task using 3 informative features. The introduction # of 2 additional redundant (i.e. correlated) features has the effect that the # selected features vary depending on the cross-validation fold. The remaining # features are non-informative as they are drawn at random. from sklearn.datasets import make_classification n_features = 15 feat_names = [f"feature_{i}" for i in range(15)] X, y = make_classification( n_samples=500, n_features=n_features, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, class_sep=0.8, random_state=0, ) # %% # Model training and selection # ---------------------------- # # We create the RFE object and compute the cross-validated scores. The scoring # strategy "accuracy" optimizes the proportion of correctly classified samples. from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.model_selection import StratifiedKFold min_features_to_select = 1 # Minimum number of features to consider clf = LogisticRegression() cv = StratifiedKFold(5) rfecv = RFECV( estimator=clf, step=1, cv=cv, scoring="accuracy", min_features_to_select=min_features_to_select, n_jobs=2, ) rfecv.fit(X, y) print(f"Optimal number of features: {rfecv.n_features_}") # %% # In the present case, the model with 3 features (which corresponds to the true # generative model) is found to be the most optimal. # # Plot number of features VS. cross-validation scores # --------------------------------------------------- import matplotlib.pyplot as plt import pandas as pd data = { key: value for key, value in rfecv.cv_results_.items() if key in ["n_features", "mean_test_score", "std_test_score"] } cv_results = pd.DataFrame(data) plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Mean test accuracy") plt.errorbar( x=cv_results["n_features"], y=cv_results["mean_test_score"], yerr=cv_results["std_test_score"], ) plt.title("Recursive Feature Elimination \nwith correlated features") plt.show() # %% # From the plot above one can further notice a plateau of equivalent scores # (similar mean value and overlapping errorbars) for 3 to 5 selected features. # This is the result of introducing correlated features. Indeed, the optimal # model selected by the RFE can lie within this range, depending on the # cross-validation technique. The test accuracy decreases above 5 selected # features, this is, keeping non-informative features leads to over-fitting and # is therefore detrimental for the statistical performance of the models. # %% import numpy as np for i in range(cv.n_splits): mask = rfecv.cv_results_[f"split{i}_support"][ rfecv.n_features_ - 1 ] # mask of features selected by the RFE features_selected = np.ma.compressed(np.ma.masked_array(feat_names, mask=1 - mask)) print(f"Features selected in fold {i}: {features_selected}") # %% # In the five folds, the selected features are consistent. This is good news, # it means that the selection is stable across folds, and it confirms that # these features are the most informative ones.
""" =================================================== Recursive feature elimination with cross-validation =================================================== A Recursive Feature Elimination (RFE) example with automatic tuning of the number of features selected with cross-validation. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Data generation # --------------- # # We build a classification task using 3 informative features. The introduction # of 2 additional redundant (i.e. correlated) features has the effect that the # selected features vary depending on the cross-validation fold. The remaining # features are non-informative as they are drawn at random. from sklearn.datasets import make_classification n_features = 15 feat_names = [f"feature_{i}" for i in range(15)] X, y = make_classification( n_samples=500, n_features=n_features, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, class_sep=0.8, random_state=0, ) # %% # Model training and selection # ---------------------------- # # We create the RFE object and compute the cross-validated scores. The scoring # strategy "accuracy" optimizes the proportion of correctly classified samples. from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.model_selection import StratifiedKFold min_features_to_select = 1 # Minimum number of features to consider clf = LogisticRegression() cv = StratifiedKFold(5) rfecv = RFECV( estimator=clf, step=1, cv=cv, scoring="accuracy", min_features_to_select=min_features_to_select, n_jobs=2, ) rfecv.fit(X, y) print(f"Optimal number of features: {rfecv.n_features_}") # %% # In the present case, the model with 3 features (which corresponds to the true # generative model) is found to be the most optimal. # # Plot number of features VS. cross-validation scores # --------------------------------------------------- import matplotlib.pyplot as plt import pandas as pd data = { key: value for key, value in rfecv.cv_results_.items() if key in ["n_features", "mean_test_score", "std_test_score"] } cv_results = pd.DataFrame(data) plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Mean test accuracy") plt.errorbar( x=cv_results["n_features"], y=cv_results["mean_test_score"], yerr=cv_results["std_test_score"], ) plt.title("Recursive Feature Elimination \nwith correlated features") plt.show() # %% # From the plot above one can further notice a plateau of equivalent scores # (similar mean value and overlapping errorbars) for 3 to 5 selected features. # This is the result of introducing correlated features. Indeed, the optimal # model selected by the RFE can lie within this range, depending on the # cross-validation technique. The test accuracy decreases above 5 selected # features, this is, keeping non-informative features leads to over-fitting and # is therefore detrimental for the statistical performance of the models. # %% import numpy as np for i in range(cv.n_splits): mask = rfecv.cv_results_[f"split{i}_support"][ rfecv.n_features_ ] # mask of features selected by the RFE features_selected = np.ma.compressed(np.ma.masked_array(feat_names, mask=1 - mask)) print(f"Features selected in fold {i}: {features_selected}") # %% # In the five folds, the selected features are consistent. This is good news, # it means that the selection is stable across folds, and it confirms that # these features are the most informative ones.
_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
"""Integration test for Sms.""" from langchain_community.utilities.twilio import TwilioAPIWrapper def test_call() -> None: """Test that call runs.""" twilio = TwilioAPIWrapper() output = twilio.run("Message", "+16162904619") assert output
"""Integration test for Sms.""" from langchain_community.utilities.twilio import TwilioAPIWrapper def test_call() -> None: """Test that call runs.""" twilio = TwilioAPIWrapper() # type: ignore[call-arg] output = twilio.run("Message", "+16162904619") assert output
from keras.src import testing from keras.src import tree from keras.src.backend import KerasTensor from keras.src.ops.symbolic_arguments import SymbolicArguments class SymbolicArgumentsTest(testing.TestCase): # Testing multiple args and empty kwargs def test_args(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {}, ) self.assertEqual(args.keras_tensors, [a, b]) self.assertEqual(args._flat_arguments, [a, b]) self.assertEqual(args._single_positional_tensor, None) # Testing single arg and single position tensor def test_args_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) args = SymbolicArguments((a)) self.assertEqual(args.keras_tensors, [a]) self.assertEqual(args._flat_arguments, [a]) self.assertEqual(len(args.kwargs), 0) self.assertEqual(isinstance(args.args[0], KerasTensor), True) self.assertEqual(args._single_positional_tensor, a) # Testing kwargs def test_kwargs(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {1: c}, ) self.assertEqual(args.keras_tensors, [a, b, c]) self.assertEqual(args._flat_arguments, [a, b, c]) self.assertEqual(args._single_positional_tensor, None) # Testing conversion function with args and kwargs def test_conversion_fn(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) sym_args = SymbolicArguments( ( a, b, ), {1: c}, ) (value, _) = sym_args.convert(lambda x: x**2) args1 = value[0][0] self.assertIsInstance(args1, KerasTensor) mapped_value = tree.map_structure(lambda x: x**2, a) self.assertEqual(mapped_value.shape, args1.shape) self.assertEqual(mapped_value.dtype, args1.dtype) # Testing fill in function with single args only def test_fill_in_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) tensor_dict = {id(a): 3} sym_args = SymbolicArguments((a)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, (3,)) # Testing fill in function with multiple args def test_fill_in_multiple_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) tensor_dict = {id(b): 2} sym_args = SymbolicArguments((a, b)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, ((None, 2),)) # Testing fill in function for args and kwargs def test_fill_in(self): shape1 = (2, 3, 4) shape2 = (3, 2, 4) a = KerasTensor(shape=shape1) b = KerasTensor(shape=shape2) c = KerasTensor(shape=shape2) dictionary = {id(a): 3, id(c): 2} sym_args = SymbolicArguments( ( a, b, ), {"1": c}, ) (values, _) = sym_args.fill_in(dictionary) self.assertEqual(values, ((3, None), {"1": 2}))
from keras.src import testing from keras.src import tree from keras.src.backend import KerasTensor from keras.src.ops.symbolic_arguments import SymbolicArguments class SymbolicArgumentsTest(testing.TestCase): # Testing multiple args and empty kwargs def test_args(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {}, ) self.assertEqual(args.keras_tensors, [a, b]) self.assertEqual(args._flat_arguments, [a, b]) self.assertEqual(args._single_positional_tensor, None) # Testing single arg and single position tensor def test_args_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) args = SymbolicArguments((a)) self.assertEqual(args.keras_tensors, [a]) self.assertEqual(args._flat_arguments, [a]) self.assertEqual(len(args.kwargs), 0) self.assertEqual(isinstance(args.args[0], KerasTensor), True) self.assertEqual(args._single_positional_tensor, a) # Testing kwargs def test_kwargs(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {1: c}, ) self.assertEqual(args.keras_tensors, [a, b, c]) self.assertEqual(args._flat_arguments, [a, b, c]) self.assertEqual(args._single_positional_tensor, None) # Testing conversion function with args and kwargs def test_conversion_fn(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) sym_args = SymbolicArguments( ( a, b, ), {1: c}, ) (value, _) = sym_args.convert(lambda x: x**2) args1 = value[0][0] self.assertIsInstance(args1, KerasTensor) mapped_value = tree.map_structure(lambda x: x**2, a) self.assertEqual(mapped_value.shape, args1.shape) self.assertEqual(mapped_value.dtype, args1.dtype) # Testing fill in function with single args only def test_fill_in_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) tensor_dict = {id(a): 3} sym_args = SymbolicArguments((a)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, (3,)) # Testing fill in function with multiple args def test_fill_in_multiple_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) tensor_dict = {id(b): 2} sym_args = SymbolicArguments((a, b)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, ((a, 2),)) # Testing fill in function for args and kwargs def test_fill_in(self): shape1 = (2, 3, 4) shape2 = (3, 2, 4) a = KerasTensor(shape=shape1) b = KerasTensor(shape=shape2) c = KerasTensor(shape=shape2) dictionary = {id(a): 3, id(c): 2} sym_args = SymbolicArguments( ( a, b, ), {1: c}, ) (values, _) = sym_args.fill_in(dictionary) self.assertEqual(values, ((3, b), {1: 2}))
import tantivy # noqa from llama_index.core.vector_stores.types import BasePydanticVectorStore from llama_index.vector_stores.lancedb import LanceDBVectorStore from llama_index.core import VectorStoreIndex import pytest import lance # noqa: F401 import pytest import pytest_asyncio from llama_index.core import VectorStoreIndex from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode from llama_index.vector_stores.lancedb import LanceDBVectorStore try: from lancedb.rerankers import LinearCombinationReranker from llama_index.embeddings.huggingface import HuggingFaceEmbedding deps = True except ImportError: deps = None @pytest_asyncio.fixture async def index() -> VectorStoreIndex: vector_store = LanceDBVectorStore( overfetch_factor=1, mode="overwrite", reranker=LinearCombinationReranker(weight=0.3), ) nodes = [ TextNode( text="test1", id_="11111111-1111-1111-1111-111111111111", relationships={NodeRelationship.SOURCE: RelatedNodeInfo(node_id="test-0")}, ), TextNode( text="test2", id_="22222222-2222-2222-2222-222222222222", relationships={NodeRelationship.SOURCE: RelatedNodeInfo(node_id="test-1")}, ), TextNode( text="test3", id_="33333333-3333-3333-3333-333333333333", relationships={NodeRelationship.SOURCE: RelatedNodeInfo(node_id="test-2")}, ), ] embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") for node in nodes: node_embedding = embed_model.get_text_embedding( node.get_content(metadata_mode="all") ) node.embedding = node_embedding vector_store.add(nodes=nodes) return VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model) def test_class(): names_of_base_classes = [b.__name__ for b in LanceDBVectorStore.__mro__] assert BasePydanticVectorStore.__name__ in names_of_base_classes @pytest.mark.skipif( deps is None, reason="Need to install lancedb and huggingface locally to run this test.", ) def test_vector_query(index: VectorStoreIndex) -> None: retriever = index.as_retriever() response = retriever.retrieve("test1") assert response[0].id_ == "11111111-1111-1111-1111-111111111111" @pytest.mark.skipif( deps is None, reason="Need to install lancedb and huggingface locally to run this test.", ) def test_fts_query(index: VectorStoreIndex) -> None: try: response = index.as_retriever( vector_store_kwargs={"query_type": "fts"} ).retrieve("test") except Warning as e: pass response = index.as_retriever(vector_store_kwargs={"query_type": "fts"}).retrieve( "test1" ) assert response[0].id_ == "11111111-1111-1111-1111-111111111111" @pytest.mark.skipif( deps is None, reason="Need to install lancedb and huggingface locally to run this test.", ) def test_hybrid_query(index: VectorStoreIndex) -> None: response = index.as_retriever( vector_store_kwargs={"query_type": "hybrid"} ).retrieve("test") assert response[0].id_ == "11111111-1111-1111-1111-111111111111" @pytest.mark.skipif( deps is None, reason="Need to install lancedb and huggingface locally to run this test.", ) def test_delete(index: VectorStoreIndex) -> None: index.delete(doc_id="test-0") assert index.vector_store._table.count_rows() == 2
import tantivy # noqa from llama_index.core.vector_stores.types import BasePydanticVectorStore from llama_index.vector_stores.lancedb import LanceDBVectorStore from llama_index.core import VectorStoreIndex def test_class(): names_of_base_classes = [b.__name__ for b in LanceDBVectorStore.__mro__] assert BasePydanticVectorStore.__name__ in names_of_base_classes def test_vector_query(index: VectorStoreIndex) -> None: retriever = index.as_retriever() response = retriever.retrieve("test1") assert response[0].id_ == "11111111-1111-1111-1111-111111111111" def test_fts_query(index: VectorStoreIndex) -> None: try: response = index.as_retriever( vector_store_kwargs={"query_type": "fts"} ).retrieve("test") except Warning as e: pass response = index.as_retriever(vector_store_kwargs={"query_type": "fts"}).retrieve( "test1" ) assert response[0].id_ == "11111111-1111-1111-1111-111111111111" def test_hybrid_query(index: VectorStoreIndex) -> None: response = index.as_retriever( vector_store_kwargs={"query_type": "hybrid"} ).retrieve("test") assert response[0].id_ == "11111111-1111-1111-1111-111111111111" def test_delete(index: VectorStoreIndex) -> None: index.delete(doc_id="test-0") assert index.vector_store._table.count_rows() == 2
_base_ = [ '../common/ms-poly_3x_coco-instance.py', '../_base_/models/mask-rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_400mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')), neck=dict( type='FPN', in_channels=[32, 64, 160, 384], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005), clip_grad=dict(max_norm=35, norm_type=2))
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_400mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')), neck=dict( type='FPN', in_channels=[32, 64, 160, 384], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005), clip_grad=dict(max_norm=35, norm_type=2))
# dataset settings dataset_type = 'MOTChallengeDataset' data_root = 'data/MOT17/' img_scale = (1088, 1088) backend_args = None # data pipeline train_pipeline = [ dict( type='UniformRefFrameSample', num_ref_imgs=1, frame_range=10, filter_key_img=True), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadTrackAnnotations'), dict( type='RandomResize', scale=img_scale, ratio_range=(0.8, 1.2), keep_ratio=True, clip_object_border=False), dict(type='PhotoMetricDistortion') ]), dict( type='TransformBroadcaster', # different cropped positions for different frames share_random_params=False, transforms=[ dict( type='RandomCrop', crop_size=img_scale, bbox_clip_border=False) ]), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='RandomFlip', prob=0.5), ]), dict(type='PackTrackInputs') ] test_pipeline = [ dict( type='TransformBroadcaster', transforms=[ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='LoadTrackAnnotations') ]), dict(type='PackTrackInputs') ] # dataloader train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, visibility_thr=-1, ann_file='annotations/half-train_cocoformat.json', data_prefix=dict(img_path='train'), metainfo=dict(classes=('pedestrian', )), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, # Now we support two ways to test, image_based and video_based # if you want to use video_based sampling, you can use as follows # sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-val_cocoformat.json', data_prefix=dict(img_path='train'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # evaluator val_evaluator = dict( type='MOTChallengeMetric', metric=['HOTA', 'CLEAR', 'Identity']) test_evaluator = val_evaluator
# dataset settings dataset_type = 'MOTChallengeDataset' data_root = 'data/MOT17/' img_scale = (1088, 1088) # data pipeline train_pipeline = [ dict( type='UniformRefFrameSample', num_ref_imgs=1, frame_range=10, filter_key_img=True), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='LoadImageFromFile'), dict(type='LoadTrackAnnotations'), dict( type='RandomResize', scale=img_scale, ratio_range=(0.8, 1.2), keep_ratio=True, clip_object_border=False), dict(type='PhotoMetricDistortion') ]), dict( type='TransformBroadcaster', # different cropped positions for different frames share_random_params=False, transforms=[ dict( type='RandomCrop', crop_size=img_scale, bbox_clip_border=False) ]), dict( type='TransformBroadcaster', share_random_params=True, transforms=[ dict(type='RandomFlip', prob=0.5), ]), dict(type='PackTrackInputs') ] test_pipeline = [ dict( type='TransformBroadcaster', transforms=[ dict(type='LoadImageFromFile'), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='LoadTrackAnnotations') ]), dict(type='PackTrackInputs') ] # dataloader train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, visibility_thr=-1, ann_file='annotations/half-train_cocoformat.json', data_prefix=dict(img_path='train'), metainfo=dict(classes=('pedestrian', )), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, # Now we support two ways to test, image_based and video_based # if you want to use video_based sampling, you can use as follows # sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), sampler=dict(type='TrackImgSampler'), # image-based sampling dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/half-val_cocoformat.json', data_prefix=dict(img_path='train'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # evaluator val_evaluator = dict( type='MOTChallengeMetric', metric=['HOTA', 'CLEAR', 'Identity']) test_evaluator = val_evaluator
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmdet.models.dense_heads import AutoAssignHead class TestAutoAssignHead(TestCase): def test_autoassign_head_loss(self): """Tests autoassign head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] autoassign_head = AutoAssignHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, strides=[8, 16, 32, 64, 128], loss_bbox=dict(type='GIoULoss', loss_weight=5.0), norm_cfg=None) # Fcos head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in autoassign_head.prior_generator.strides) cls_scores, bbox_preds, centernesses = autoassign_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = autoassign_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the neg loss should be nonzero but # pos loss and center loss should be zero empty_pos_loss = empty_gt_losses['loss_pos'].item() empty_neg_loss = empty_gt_losses['loss_neg'].item() empty_ctr_loss = empty_gt_losses['loss_center'].item() self.assertGreater(empty_neg_loss, 0, 'neg loss should be non-zero') self.assertEqual( empty_pos_loss, 0, 'there should be no pos loss when there are no true boxes') self.assertEqual( empty_ctr_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all pos, neg loss and center loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = autoassign_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_pos_loss = one_gt_losses['loss_pos'].item() onegt_neg_loss = one_gt_losses['loss_neg'].item() onegt_ctr_loss = one_gt_losses['loss_center'].item() self.assertGreater(onegt_pos_loss, 0, 'pos loss should be non-zero') self.assertGreater(onegt_neg_loss, 0, 'neg loss should be non-zero') self.assertGreater(onegt_ctr_loss, 0, 'center loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmdet.models.dense_heads import AutoAssignHead class TestAutoAssignHead(TestCase): def test_autoassign_head_loss(self): """Tests autoassign head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] autoassign_head = AutoAssignHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, strides=[8, 16, 32, 64, 128], loss_bbox=dict(type='GIoULoss', loss_weight=5.0), norm_cfg=None) # Fcos head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in autoassign_head.prior_generator.strides) cls_scores, bbox_preds, centernesses = autoassign_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = autoassign_head.loss(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the neg loss should be nonzero but # pos loss and center loss should be zero empty_pos_loss = empty_gt_losses['loss_pos'].item() empty_neg_loss = empty_gt_losses['loss_neg'].item() empty_ctr_loss = empty_gt_losses['loss_center'].item() self.assertGreater(empty_neg_loss, 0, 'neg loss should be non-zero') self.assertEqual( empty_pos_loss, 0, 'there should be no pos loss when there are no true boxes') self.assertEqual( empty_ctr_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all pos, neg loss and center loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = autoassign_head.loss(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_pos_loss = one_gt_losses['loss_pos'].item() onegt_neg_loss = one_gt_losses['loss_neg'].item() onegt_ctr_loss = one_gt_losses['loss_center'].item() self.assertGreater(onegt_pos_loss, 0, 'pos loss should be non-zero') self.assertGreater(onegt_neg_loss, 0, 'neg loss should be non-zero') self.assertGreater(onegt_ctr_loss, 0, 'center loss should be non-zero')
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( BaseRequestsTool, RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BaseRequestsTool": "langchain_community.tools", "RequestsGetTool": "langchain_community.tools", "RequestsPostTool": "langchain_community.tools", "RequestsPatchTool": "langchain_community.tools", "RequestsPutTool": "langchain_community.tools", "RequestsDeleteTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BaseRequestsTool", "RequestsDeleteTool", "RequestsGetTool", "RequestsPatchTool", "RequestsPostTool", "RequestsPutTool", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( BaseRequestsTool, RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BaseRequestsTool": "langchain_community.tools", "RequestsGetTool": "langchain_community.tools", "RequestsPostTool": "langchain_community.tools", "RequestsPatchTool": "langchain_community.tools", "RequestsPutTool": "langchain_community.tools", "RequestsDeleteTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BaseRequestsTool", "RequestsGetTool", "RequestsPostTool", "RequestsPatchTool", "RequestsPutTool", "RequestsDeleteTool", ]
import warnings from typing import Any, Dict, List, Union import numpy as np import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.prototype.transforms import Transform from torchvision.transforms import functional as _F from typing_extensions import Literal from ._transform import _RandomApplyTransform from .utils import is_simple_tensor, query_chw class ToTensor(Transform): _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt) # TODO: in other PR (?) undeprecate those and make them use _rgb_to_gray? class Grayscale(Transform): _transformed_types = ( datapoints.Image, PIL.Image.Image, is_simple_tensor, datapoints.Video, ) def __init__(self, num_output_channels: Literal[1, 3] = 1) -> None: deprecation_msg = ( f"The transform `Grayscale(num_output_channels={num_output_channels})` " f"is deprecated and will be removed in a future release." ) if num_output_channels == 1: replacement_msg = ( "transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY)" ) else: replacement_msg = ( "transforms.Compose(\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n" ")" ) warnings.warn(f"{deprecation_msg} Instead, please use\n\n{replacement_msg}") super().__init__() self.num_output_channels = num_output_channels def _transform( self, inpt: Union[datapoints.ImageType, datapoints.VideoType], params: Dict[str, Any] ) -> Union[datapoints.ImageType, datapoints.VideoType]: output = _F.rgb_to_grayscale(inpt, num_output_channels=self.num_output_channels) if isinstance(inpt, (datapoints.Image, datapoints.Video)): output = inpt.wrap_like(inpt, output) # type: ignore[arg-type] return output class RandomGrayscale(_RandomApplyTransform): _transformed_types = ( datapoints.Image, PIL.Image.Image, is_simple_tensor, datapoints.Video, ) def __init__(self, p: float = 0.1) -> None: warnings.warn( "The transform `RandomGrayscale(p=...)` is deprecated and will be removed in a future release. " "Instead, please use\n\n" "transforms.RandomApply(\n" " transforms.Compose(\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n" " )\n" " p=...,\n" ")" ) super().__init__(p=p) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: num_input_channels, *_ = query_chw(flat_inputs) return dict(num_input_channels=num_input_channels) def _transform( self, inpt: Union[datapoints.ImageType, datapoints.VideoType], params: Dict[str, Any] ) -> Union[datapoints.ImageType, datapoints.VideoType]: output = _F.rgb_to_grayscale(inpt, num_output_channels=params["num_input_channels"]) if isinstance(inpt, (datapoints.Image, datapoints.Video)): output = inpt.wrap_like(inpt, output) # type: ignore[arg-type] return output
import warnings from typing import Any, Dict, List, Union import numpy as np import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.prototype.transforms import Transform from torchvision.transforms import functional as _F from typing_extensions import Literal from ._transform import _RandomApplyTransform from .utils import is_simple_tensor, query_chw class ToTensor(Transform): _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt) class Grayscale(Transform): _transformed_types = ( datapoints.Image, PIL.Image.Image, is_simple_tensor, datapoints.Video, ) def __init__(self, num_output_channels: Literal[1, 3] = 1) -> None: deprecation_msg = ( f"The transform `Grayscale(num_output_channels={num_output_channels})` " f"is deprecated and will be removed in a future release." ) if num_output_channels == 1: replacement_msg = ( "transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY)" ) else: replacement_msg = ( "transforms.Compose(\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n" ")" ) warnings.warn(f"{deprecation_msg} Instead, please use\n\n{replacement_msg}") super().__init__() self.num_output_channels = num_output_channels def _transform( self, inpt: Union[datapoints.ImageType, datapoints.VideoType], params: Dict[str, Any] ) -> Union[datapoints.ImageType, datapoints.VideoType]: output = _F.rgb_to_grayscale(inpt, num_output_channels=self.num_output_channels) if isinstance(inpt, (datapoints.Image, datapoints.Video)): output = inpt.wrap_like(inpt, output, color_space=datapoints.ColorSpace.GRAY) # type: ignore[arg-type] return output class RandomGrayscale(_RandomApplyTransform): _transformed_types = ( datapoints.Image, PIL.Image.Image, is_simple_tensor, datapoints.Video, ) def __init__(self, p: float = 0.1) -> None: warnings.warn( "The transform `RandomGrayscale(p=...)` is deprecated and will be removed in a future release. " "Instead, please use\n\n" "transforms.RandomApply(\n" " transforms.Compose(\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n" " )\n" " p=...,\n" ")" ) super().__init__(p=p) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: num_input_channels, *_ = query_chw(flat_inputs) return dict(num_input_channels=num_input_channels) def _transform( self, inpt: Union[datapoints.ImageType, datapoints.VideoType], params: Dict[str, Any] ) -> Union[datapoints.ImageType, datapoints.VideoType]: output = _F.rgb_to_grayscale(inpt, num_output_channels=params["num_input_channels"]) if isinstance(inpt, (datapoints.Image, datapoints.Video)): output = inpt.wrap_like(inpt, output, color_space=datapoints.ColorSpace.GRAY) # type: ignore[arg-type] return output
import os import pytest import time import uuid import pinecone.db_data from pinecone import Pinecone, ServerlessSpec from typing import List from llama_index.core import StorageContext, VectorStoreIndex from llama_index.core.embeddings import MockEmbedding from llama_index.core.schema import TextNode from llama_index.core.vector_stores.types import ( BasePydanticVectorStore, MetadataFilter, MetadataFilters, FilterCondition, FilterOperator, ) from llama_index.vector_stores.pinecone import PineconeVectorStore MAX_WAIT_TIME = 60 EMBED_DIM = 1536 PINECONE_API_KEY = os.environ.get( "PINECONE_API_KEY", None, ) should_skip = not all((PINECONE_API_KEY,)) def test_class(): names_of_base_classes = [b.__name__ for b in PineconeVectorStore.__mro__] assert BasePydanticVectorStore.__name__ in names_of_base_classes @pytest.fixture def nodes(): return [ TextNode( text="Hello, world 1!", metadata={"some_key": 1}, embedding=[0.3] * EMBED_DIM, ), TextNode( text="Hello, world 2!", metadata={"some_key": 2}, embedding=[0.5] * EMBED_DIM, ), TextNode( text="Hello, world 3!", metadata={"some_key": "3"}, embedding=[0.7] * EMBED_DIM, ), ] @pytest.fixture def pinecone_index(): index_name = f"{uuid.uuid4()}" pc = Pinecone(api_key=PINECONE_API_KEY) if not pc.has_index(index_name): pc.create_index( name=index_name, dimension=EMBED_DIM, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-east-1"), ) pc_index = pc.Index(index_name) yield pc_index pc.delete_index(index_name) @pytest.fixture def index_with_nodes( pinecone_index: pinecone.db_data.index.Index, nodes: List[TextNode] ): vector_store = PineconeVectorStore(pinecone_index=pinecone_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex( nodes=nodes, storage_context=storage_context, embed_model=MockEmbedding(embed_dim=EMBED_DIM), ) # Note: not ideal, but pinecone takes a while to index the nodes start_time = time.time() while True: stats = pinecone_index.describe_index_stats() if stats["total_vector_count"] != len(nodes): if time.time() - start_time > MAX_WAIT_TIME: raise Exception("Index not ready after 60 seconds") time.sleep(1) else: break return index @pytest.mark.skipif( should_skip, reason="PINECONE_API_KEY and/or PINECONE_INDEX_NAME not set" ) def test_basic_e2e(index_with_nodes: VectorStoreIndex): nodes = index_with_nodes.as_retriever().retrieve("Hello, world 1!") assert len(nodes) == 2 @pytest.mark.skipif( should_skip, reason="PINECONE_API_KEY and/or PINECONE_INDEX_NAME not set" ) def test_retrieval_with_filters(index_with_nodes: VectorStoreIndex): filters = MetadataFilters( filters=[ MetadataFilter( key="some_key", value=1, operator=FilterOperator.EQ, ), MetadataFilter( key="some_key", value=2, operator=FilterOperator.EQ, ), ], condition=FilterCondition.OR, ) nodes = index_with_nodes.as_retriever(filters=filters).retrieve("Hello, world 1!") assert len(nodes) == 2 filters = MetadataFilters( filters=[ MetadataFilter( key="some_key", value=1, operator=FilterOperator.GT, ), ], ) nodes = index_with_nodes.as_retriever(filters=filters).retrieve("Hello, world 1!") assert len(nodes) == 1 filters = MetadataFilters( filters=[ MetadataFilter( key="some_key", value=[1, 2], operator=FilterOperator.IN, ), ], ) nodes = index_with_nodes.as_retriever(filters=filters).retrieve("Hello, world 1!") assert len(nodes) == 2 filters = MetadataFilters( filters=[ MetadataFilter( key="some_key", value="3", operator=FilterOperator.EQ, ), ], ) nodes = index_with_nodes.as_retriever(filters=filters).retrieve("Hello, world 1!") assert len(nodes) == 1
from llama_index.core.vector_stores.types import BasePydanticVectorStore from llama_index.vector_stores.pinecone import PineconeVectorStore def test_class(): names_of_base_classes = [b.__name__ for b in PineconeVectorStore.__mro__] assert BasePydanticVectorStore.__name__ in names_of_base_classes
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.audio.audio_tensor import AudioTensor try: import torch torch_available = True except ImportError: torch_available = False T = TypeVar('T', bound='Audio') class Audio(BaseDocument): """ Document for handling audios. The Audio Document can contain an AudioUrl (`Audio.url`), an AudioTensor (`Audio.tensor`), and an AnyEmbedding (`Audio.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Audio # use it directly audio = Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Audio, Text from typing import Optional # extend it class MyAudio(Audio): name: Optional[Text] audio = MyAudio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) audio.name = Text(text='my first audio') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Audio, Text # compose it class MultiModalDoc(Document): audio: Audio text: Text mmdoc = MultiModalDoc( audio=Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.audio.tensor = mmdoc.audio.url.load() """ url: Optional[AudioUrl] tensor: Optional[AudioTensor] embedding: Optional[AnyEmbedding] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
from typing import Optional, TypeVar from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.tensor.audio.audio_tensor import AudioTensor T = TypeVar('T', bound='Audio') class Audio(BaseDocument): """ Document for handling audios. The Audio Document can contain an AudioUrl (`Audio.url`), an AudioTensor (`Audio.tensor`), and an AnyEmbedding (`Audio.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Audio # use it directly audio = Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Audio, Text from typing import Optional # extend it class MyAudio(Audio): name: Optional[Text] audio = MyAudio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) audio.name = Text(text='my first audio') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Audio, Text # compose it class MultiModalDoc(Document): audio: Audio text: Text mmdoc = MultiModalDoc( audio=Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.audio.tensor = mmdoc.audio.url.load() """ url: Optional[AudioUrl] tensor: Optional[AudioTensor] embedding: Optional[AnyEmbedding]
import itertools import torch from parameterized import parameterized from torchaudio_unittest.common_utils import get_asset_path, skipIfNoCtcDecoder, TempDirMixin, TorchaudioTestCase NUM_TOKENS = 8 @skipIfNoCtcDecoder class CTCDecoderTest(TempDirMixin, TorchaudioTestCase): def _get_decoder(self, tokens=None, use_lm=True, use_lexicon=True, **kwargs): from torchaudio.models.decoder import ctc_decoder if use_lexicon: lexicon_file = get_asset_path("decoder/lexicon.txt") kenlm_file = get_asset_path("decoder/kenlm.arpa") if use_lm else None else: lexicon_file = None kenlm_file = get_asset_path("decoder/kenlm_char.arpa") if use_lm else None if tokens is None: tokens = get_asset_path("decoder/tokens.txt") return ctc_decoder( lexicon=lexicon_file, tokens=tokens, lm=kenlm_file, **kwargs, ) def _get_emissions(self): B, T, N = 4, 15, NUM_TOKENS emissions = torch.rand(B, T, N) return emissions @parameterized.expand( list( itertools.product( [get_asset_path("decoder/tokens.txt"), ["-", "|", "f", "o", "b", "a", "r"]], [True, False], [True, False], ) ), ) def test_construct_decoder(self, tokens, use_lm, use_lexicon): self._get_decoder(tokens=tokens, use_lm=use_lm, use_lexicon=use_lexicon) @parameterized.expand( [(True,), (False,)], ) def test_shape(self, use_lexicon): emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) self.assertEqual(len(results), emissions.shape[0]) @parameterized.expand( [(True,), (False,)], ) def test_timesteps_shape(self, use_lexicon): """Each token should correspond with a timestep""" emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) for i in range(emissions.shape[0]): result = results[i][0] self.assertEqual(result.tokens.shape, result.timesteps.shape) def test_no_lm_decoder(self): """Check that using no LM produces the same result as using an LM with 0 lm_weight""" kenlm_decoder = self._get_decoder(lm_weight=0) zerolm_decoder = self._get_decoder(use_lm=False) emissions = self._get_emissions() kenlm_results = kenlm_decoder(emissions) zerolm_results = zerolm_decoder(emissions) self.assertEqual(kenlm_results, zerolm_results) def test_get_timesteps(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) decoder = self._get_decoder() timesteps = decoder._get_timesteps(unprocessed_tokens) expected = [0, 3, 7] self.assertEqual(timesteps, expected) def test_get_tokens_and_idxs(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) # ["f", "f", "-", "o", "o", "o", "-", "o"] decoder = self._get_decoder() token_ids = decoder._get_tokens(unprocessed_tokens) tokens = decoder.idxs_to_tokens(token_ids) expected_ids = [2, 3, 3] self.assertEqual(token_ids, expected_ids) expected_tokens = ["f", "o", "o"] self.assertEqual(tokens, expected_tokens) @parameterized.expand([(get_asset_path("decoder/tokens.txt"),), (["-", "|", "f", "o", "b", "a", "r"],)]) def test_index_to_tokens(self, tokens): # decoder tokens: '-' '|' 'f' 'o' 'b' 'a' 'r' decoder = self._get_decoder(tokens) idxs = torch.LongTensor((1, 2, 1, 3, 5)) tokens = decoder.idxs_to_tokens(idxs) expected_tokens = ["|", "f", "|", "o", "a"] self.assertEqual(tokens, expected_tokens)
import itertools import torch from parameterized import parameterized from torchaudio_unittest.common_utils import ( get_asset_path, skipIfNoCtcDecoder, TempDirMixin, TorchaudioTestCase, ) NUM_TOKENS = 8 @skipIfNoCtcDecoder class CTCDecoderTest(TempDirMixin, TorchaudioTestCase): def _get_decoder(self, tokens=None, use_lm=True, use_lexicon=True, **kwargs): from torchaudio.models.decoder import ctc_decoder if use_lexicon: lexicon_file = get_asset_path("decoder/lexicon.txt") kenlm_file = get_asset_path("decoder/kenlm.arpa") if use_lm else None else: lexicon_file = None kenlm_file = get_asset_path("decoder/kenlm_char.arpa") if use_lm else None if tokens is None: tokens = get_asset_path("decoder/tokens.txt") return ctc_decoder( lexicon=lexicon_file, tokens=tokens, lm=kenlm_file, **kwargs, ) def _get_emissions(self): B, T, N = 4, 15, NUM_TOKENS emissions = torch.rand(B, T, N) return emissions @parameterized.expand( list( itertools.product( [get_asset_path("decoder/tokens.txt"), ["-", "|", "f", "o", "b", "a", "r"]], [True, False], [True, False], ) ), ) def test_construct_decoder(self, tokens, use_lm, use_lexicon): self._get_decoder(tokens=tokens, use_lm=use_lm, use_lexicon=use_lexicon) @parameterized.expand( [(True,), (False,)], ) def test_shape(self, use_lexicon): emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) self.assertEqual(len(results), emissions.shape[0]) @parameterized.expand( [(True,), (False,)], ) def test_timesteps_shape(self, use_lexicon): """Each token should correspond with a timestep""" emissions = self._get_emissions() decoder = self._get_decoder(use_lexicon=use_lexicon) results = decoder(emissions) for i in range(emissions.shape[0]): result = results[i][0] self.assertEqual(result.tokens.shape, result.timesteps.shape) def test_no_lm_decoder(self): """Check that using no LM produces the same result as using an LM with 0 lm_weight""" kenlm_decoder = self._get_decoder(lm_weight=0) zerolm_decoder = self._get_decoder(use_lm=False) emissions = self._get_emissions() kenlm_results = kenlm_decoder(emissions) zerolm_results = zerolm_decoder(emissions) self.assertEqual(kenlm_results, zerolm_results) def test_get_timesteps(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) decoder = self._get_decoder() timesteps = decoder._get_timesteps(unprocessed_tokens) expected = [0, 3, 7] self.assertEqual(timesteps, expected) def test_get_tokens_and_idxs(self): unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) # ["f", "f", "-", "o", "o", "o", "-", "o"] decoder = self._get_decoder() token_ids = decoder._get_tokens(unprocessed_tokens) tokens = decoder.idxs_to_tokens(token_ids) expected_ids = [2, 3, 3] self.assertEqual(token_ids, expected_ids) expected_tokens = ["f", "o", "o"] self.assertEqual(tokens, expected_tokens) @parameterized.expand([(get_asset_path("decoder/tokens.txt"),), (["-", "|", "f", "o", "b", "a", "r"],)]) def test_index_to_tokens(self, tokens): # decoder tokens: '-' '|' 'f' 'o' 'b' 'a' 'r' decoder = self._get_decoder(tokens) idxs = torch.LongTensor((1, 2, 1, 3, 5)) tokens = decoder.idxs_to_tokens(idxs) expected_tokens = ["|", "f", "|", "o", "a"] self.assertEqual(tokens, expected_tokens)
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.6.1,<0.7", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "pandas": "pandas<2.3.0", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic>=2", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.6.1,<0.7", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "pandas": "pandas<2.3.0", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", "opentelemetry-api": "opentelemetry-api", "opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp", "opentelemetry-sdk": "opentelemetry-sdk", }
""" This script contains an example how to perform semantic search with OpenSearch. You need OpenSearch up and running locally: https://docs.opensearch.org/docs/latest/getting-started/quickstart/ Further, you need the Python OpenSearch Client installed: https://docs.opensearch.org/docs/latest/clients/python-low-level/, e.g.: ``` pip install opensearch-py ``` This script was created for `opensearch` v2.15.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.models import Router from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.search_engines import semantic_search_opensearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] print(f"Finish loading data. Corpus size: {len(corpus)}") # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model model_id = "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill" doc_encoder = MLMTransformer(model_id) router = Router.for_query_document( query_modules=[ IDF.from_json( model_id, tokenizer=doc_encoder.tokenizer, frozen=True, ), ], document_modules=[ doc_encoder, SpladePooling("max", activation_function="log1p_relu"), ], ) sparse_model = SparseEncoder(modules=[router], similarity_fn_name="dot") print("Start encoding corpus...") start_time = time.time() # 4. Encode the corpus corpus_embeddings = sparse_model.encode_document( corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True ) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using inference-free mode start_time = time.time() query_embeddings = sparse_model.encode_query(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Query encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using OpenSearch results, search_time, corpus_index = semantic_search_opensearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with OpenSearch. You need OpenSearch up and running locally: https://docs.opensearch.org/docs/latest/getting-started/quickstart/ Further, you need the Python OpenSearch Client installed: https://docs.opensearch.org/docs/latest/clients/python-low-level/, e.g.: ``` pip install opensearch-py ``` This script was created for `opensearch` v2.15.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder, models from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.search_engines import semantic_search_opensearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] print(f"Finish loading data. Corpus size: {len(corpus)}") # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model model_id = "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill" doc_encoder = MLMTransformer(model_id) asym = models.Asym( { "query": [ IDF.from_json( model_id, tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max", activation_function="log1p_relu"), ], } ) sparse_model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) print("Start encoding corpus...") start_time = time.time() # 4. Encode the corpus corpus_embeddings = sparse_model.encode( [{"doc": doc} for doc in corpus], convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True ) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using inference-free mode start_time = time.time() query_embeddings = sparse_model.encode([{"query": query} for query in queries], convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Query encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using OpenSearch results, search_time, corpus_index = semantic_search_opensearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
import math import random class NoDuplicatesDataLoader: def __init__(self, train_examples, batch_size): """ A special data loader to be used with MultipleNegativesRankingLoss. The data loader ensures that there are no duplicate sentences within the same batch """ self.batch_size = batch_size self.data_pointer = 0 self.collate_fn = None self.train_examples = train_examples random.shuffle(self.train_examples) def __iter__(self): for _ in range(self.__len__()): batch = [] texts_in_batch = set() while len(batch) < self.batch_size: example = self.train_examples[self.data_pointer] valid_example = True for text in example.texts: if text.strip().lower() in texts_in_batch: valid_example = False break if valid_example: batch.append(example) for text in example.texts: texts_in_batch.add(text.strip().lower()) self.data_pointer += 1 if self.data_pointer >= len(self.train_examples): self.data_pointer = 0 random.shuffle(self.train_examples) yield self.collate_fn(batch) if self.collate_fn is not None else batch def __len__(self): return math.floor(len(self.train_examples) / self.batch_size)
import random import math class NoDuplicatesDataLoader: def __init__(self, train_examples, batch_size): """ A special data loader to be used with MultipleNegativesRankingLoss. The data loader ensures that there are no duplicate sentences within the same batch """ self.batch_size = batch_size self.data_pointer = 0 self.collate_fn = None self.train_examples = train_examples random.shuffle(self.train_examples) def __iter__(self): for _ in range(self.__len__()): batch = [] texts_in_batch = set() while len(batch) < self.batch_size: example = self.train_examples[self.data_pointer] valid_example = True for text in example.texts: if text.strip().lower() in texts_in_batch: valid_example = False break if valid_example: batch.append(example) for text in example.texts: texts_in_batch.add(text.strip().lower()) self.data_pointer += 1 if self.data_pointer >= len(self.train_examples): self.data_pointer = 0 random.shuffle(self.train_examples) yield self.collate_fn(batch) if self.collate_fn is not None else batch def __len__(self): return math.floor(len(self.train_examples) / self.batch_size)
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch from torch import nn from sentence_transformers.models.Module import Module class CNN(Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" config_keys: list[str] = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] config_file_name: str = "cnn_config.json" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) self.save_torch_weights(output_path, safe_serialization=safe_serialization) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: hub_kwargs = { "subfolder": subfolder, "token": token, "cache_folder": cache_folder, "revision": revision, "local_files_only": local_files_only, } config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs) model = cls(**config) model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json")) as fIn: config = json.load(fIn) model = CNN(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
import re from typing import Any, Optional from langchain_text_splitters import RecursiveCharacterTextSplitter class JSFrameworkTextSplitter(RecursiveCharacterTextSplitter): """Text splitter that handles React (JSX), Vue, and Svelte code. This splitter extends RecursiveCharacterTextSplitter to handle React (JSX), Vue, and Svelte code by: 1. Detecting and extracting custom component tags from the text 2. Using those tags as additional separators along with standard JS syntax The splitter combines: - Custom component tags as separators (e.g. <Component, <div) - JavaScript syntax elements (function, const, if, etc) - Standard text splitting on newlines This allows chunks to break at natural boundaries in React, Vue, and Svelte component code. """ def __init__( self, separators: Optional[list[str]] = None, chunk_size: int = 2000, chunk_overlap: int = 0, **kwargs: Any, ) -> None: """Initialize the JS Framework text splitter. Args: separators: Optional list of custom separator strings to use chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks **kwargs: Additional arguments to pass to parent class """ super().__init__(chunk_size=chunk_size, chunk_overlap=chunk_overlap, **kwargs) self._separators = separators or [] def split_text(self, text: str) -> list[str]: """Split text into chunks. This method splits the text into chunks by: - Extracting unique opening component tags using regex - Creating separators list with extracted tags and JS separators - Splitting the text using the separators by calling the parent class method Args: text: String containing code to split Returns: List of text chunks split on component and JS boundaries """ # Extract unique opening component tags using regex # Regex to match opening tags, excluding self-closing tags opening_tags = re.findall(r"<\s*([a-zA-Z0-9]+)[^>]*>", text) component_tags = [] for tag in opening_tags: if tag not in component_tags: component_tags.append(tag) component_separators = [f"<{tag}" for tag in component_tags] js_separators = [ "\nexport ", " export ", "\nfunction ", "\nasync function ", " async function ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", " class ", "\nif ", " if ", "\nfor ", " for ", "\nwhile ", " while ", "\nswitch ", " switch ", "\ncase ", " case ", "\ndefault ", " default ", ] separators = ( self._separators + js_separators + component_separators + ["<>", "\n\n", "&&\n", "||\n"] ) self._separators = separators chunks = super().split_text(text) return chunks
import re from typing import Any, List, Optional from langchain_text_splitters import RecursiveCharacterTextSplitter class JSFrameworkTextSplitter(RecursiveCharacterTextSplitter): """Text splitter that handles React (JSX), Vue, and Svelte code. This splitter extends RecursiveCharacterTextSplitter to handle React (JSX), Vue, and Svelte code by: 1. Detecting and extracting custom component tags from the text 2. Using those tags as additional separators along with standard JS syntax The splitter combines: - Custom component tags as separators (e.g. <Component, <div) - JavaScript syntax elements (function, const, if, etc) - Standard text splitting on newlines This allows chunks to break at natural boundaries in React, Vue, and Svelte component code. """ def __init__( self, separators: Optional[List[str]] = None, chunk_size: int = 2000, chunk_overlap: int = 0, **kwargs: Any, ) -> None: """Initialize the JS Framework text splitter. Args: separators: Optional list of custom separator strings to use chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks **kwargs: Additional arguments to pass to parent class """ super().__init__(chunk_size=chunk_size, chunk_overlap=chunk_overlap, **kwargs) self._separators = separators or [] def split_text(self, text: str) -> List[str]: """Split text into chunks. This method splits the text into chunks by: - Extracting unique opening component tags using regex - Creating separators list with extracted tags and JS separators - Splitting the text using the separators by calling the parent class method Args: text: String containing code to split Returns: List of text chunks split on component and JS boundaries """ # Extract unique opening component tags using regex # Regex to match opening tags, excluding self-closing tags opening_tags = re.findall(r"<\s*([a-zA-Z0-9]+)[^>]*>", text) component_tags = [] for tag in opening_tags: if tag not in component_tags: component_tags.append(tag) component_separators = [f"<{tag}" for tag in component_tags] js_separators = [ "\nexport ", " export ", "\nfunction ", "\nasync function ", " async function ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", " class ", "\nif ", " if ", "\nfor ", " for ", "\nwhile ", " while ", "\nswitch ", " switch ", "\ncase ", " case ", "\ndefault ", " default ", ] separators = ( self._separators + js_separators + component_separators + ["<>", "\n\n", "&&\n", "||\n"] ) self._separators = separators chunks = super().split_text(text) return chunks
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import os.path as osp import urllib import warnings from typing import Union import torch from mmengine.config import Config, ConfigDict from mmengine.logging import print_log from mmengine.utils import scandir IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def find_latest_checkpoint(path, suffix='pth'): """Find the latest checkpoint from the working directory. Args: path(str): The path to find checkpoints. suffix(str): File extension. Defaults to pth. Returns: latest_path(str | None): File path of the latest checkpoint. References: .. [1] https://github.com/microsoft/SoftTeacher /blob/main/ssod/utils/patch.py """ if not osp.exists(path): warnings.warn('The path of checkpoints does not exist.') return None if osp.exists(osp.join(path, f'latest.{suffix}')): return osp.join(path, f'latest.{suffix}') checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) if len(checkpoints) == 0: warnings.warn('There are no checkpoints in the path.') return None latest = -1 latest_path = None for checkpoint in checkpoints: count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) if count > latest: latest = count latest_path = checkpoint return latest_path def update_data_root(cfg, logger=None): """Update data root according to env MMDET_DATASETS. If set env MMDET_DATASETS, update cfg.data_root according to MMDET_DATASETS. Otherwise, using cfg.data_root as default. Args: cfg (:obj:`Config`): The model config need to modify logger (logging.Logger | str | None): the way to print msg """ assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' if 'MMDET_DATASETS' in os.environ: dst_root = os.environ['MMDET_DATASETS'] print_log(f'MMDET_DATASETS has been set to be {dst_root}.' f'Using {dst_root} as data root.') else: return assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' def update(cfg, src_str, dst_str): for k, v in cfg.items(): if isinstance(v, ConfigDict): update(cfg[k], src_str, dst_str) if isinstance(v, str) and src_str in v: cfg[k] = v.replace(src_str, dst_str) update(cfg.data, cfg.data_root, dst_root) cfg.data_root = dst_root def get_test_pipeline_cfg(cfg: Union[str, ConfigDict]) -> ConfigDict: """Get the test dataset pipeline from entire config. Args: cfg (str or :obj:`ConfigDict`): the entire config. Can be a config file or a ``ConfigDict``. Returns: :obj:`ConfigDict`: the config of test dataset. """ if isinstance(cfg, str): cfg = Config.fromfile(cfg) def _get_test_pipeline_cfg(dataset_cfg): if 'pipeline' in dataset_cfg: return dataset_cfg.pipeline # handle dataset wrapper elif 'dataset' in dataset_cfg: return _get_test_pipeline_cfg(dataset_cfg.dataset) # handle dataset wrappers like ConcatDataset elif 'datasets' in dataset_cfg: return _get_test_pipeline_cfg(dataset_cfg.datasets[0]) raise RuntimeError('Cannot find `pipeline` in `test_dataloader`') return _get_test_pipeline_cfg(cfg.test_dataloader.dataset) def get_file_list(source_root: str) -> [list, dict]: """Get file list. Args: source_root (str): image or video source path Return: source_file_path_list (list): A list for all source file. source_type (dict): Source type: file or url or dir. """ is_dir = os.path.isdir(source_root) is_url = source_root.startswith(('http:/', 'https:/')) is_file = os.path.splitext(source_root)[-1].lower() in IMG_EXTENSIONS source_file_path_list = [] if is_dir: # when input source is dir for file in scandir(source_root, IMG_EXTENSIONS, recursive=True): source_file_path_list.append(os.path.join(source_root, file)) elif is_url: # when input source is url filename = os.path.basename( urllib.parse.unquote(source_root).split('?')[0]) file_save_path = os.path.join(os.getcwd(), filename) print(f'Downloading source file to {file_save_path}') torch.hub.download_url_to_file(source_root, file_save_path) source_file_path_list = [file_save_path] elif is_file: # when input source is single image source_file_path_list = [source_root] else: print('Cannot find image file.') source_type = dict(is_dir=is_dir, is_url=is_url, is_file=is_file) return source_file_path_list, source_type
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import os.path as osp import warnings from typing import Union from mmengine.config import Config, ConfigDict from mmengine.logging import print_log def find_latest_checkpoint(path, suffix='pth'): """Find the latest checkpoint from the working directory. Args: path(str): The path to find checkpoints. suffix(str): File extension. Defaults to pth. Returns: latest_path(str | None): File path of the latest checkpoint. References: .. [1] https://github.com/microsoft/SoftTeacher /blob/main/ssod/utils/patch.py """ if not osp.exists(path): warnings.warn('The path of checkpoints does not exist.') return None if osp.exists(osp.join(path, f'latest.{suffix}')): return osp.join(path, f'latest.{suffix}') checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) if len(checkpoints) == 0: warnings.warn('There are no checkpoints in the path.') return None latest = -1 latest_path = None for checkpoint in checkpoints: count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) if count > latest: latest = count latest_path = checkpoint return latest_path def update_data_root(cfg, logger=None): """Update data root according to env MMDET_DATASETS. If set env MMDET_DATASETS, update cfg.data_root according to MMDET_DATASETS. Otherwise, using cfg.data_root as default. Args: cfg (:obj:`Config`): The model config need to modify logger (logging.Logger | str | None): the way to print msg """ assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' if 'MMDET_DATASETS' in os.environ: dst_root = os.environ['MMDET_DATASETS'] print_log(f'MMDET_DATASETS has been set to be {dst_root}.' f'Using {dst_root} as data root.') else: return assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' def update(cfg, src_str, dst_str): for k, v in cfg.items(): if isinstance(v, ConfigDict): update(cfg[k], src_str, dst_str) if isinstance(v, str) and src_str in v: cfg[k] = v.replace(src_str, dst_str) update(cfg.data, cfg.data_root, dst_root) cfg.data_root = dst_root def get_test_pipeline_cfg(cfg: Union[str, ConfigDict]) -> ConfigDict: """Get the test dataset pipeline from entire config. Args: cfg (str or :obj:`ConfigDict`): the entire config. Can be a config file or a ``ConfigDict``. Returns: :obj:`ConfigDict`: the config of test dataset. """ if isinstance(cfg, str): cfg = Config.fromfile(cfg) def _get_test_pipeline_cfg(dataset_cfg): if 'pipeline' in dataset_cfg: return dataset_cfg.pipeline # handle dataset wrapper elif 'dataset' in dataset_cfg: return _get_test_pipeline_cfg(dataset_cfg.dataset) # handle dataset wrappers like ConcatDataset elif 'datasets' in dataset_cfg: return _get_test_pipeline_cfg(dataset_cfg.datasets[0]) raise RuntimeError('Cannot find `pipeline` in `test_dataloader`') return _get_test_pipeline_cfg(cfg.test_dataloader.dataset)
# Copyright (c) OpenMMLab. All rights reserved. from .base_data_element import BaseDataElement from .instance_data import InstanceData from .label_data import LabelData from .pixel_data import PixelData from .sampler import DefaultSampler, InfiniteSampler from .utils import pseudo_collate, worker_init_fn __all__ = [ 'BaseDataElement', 'DefaultSampler', 'InfiniteSampler', 'worker_init_fn', 'pseudo_collate', 'InstanceData', 'LabelData', 'PixelData' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_data_element import BaseDataElement from .instance_data import InstanceData from .sampler import DefaultSampler, InfiniteSampler from .utils import pseudo_collate, worker_init_fn __all__ = [ 'BaseDataElement', 'DefaultSampler', 'InfiniteSampler', 'worker_init_fn', 'pseudo_collate', 'InstanceData' ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparse_sigmoid from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.activations.activations import threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.activations.activations import threshold
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 1.0, similarity_fct=util.dot_score) -> None: """ Given a list of (anchor, positive) pairs or (anchor, positive, negative) triplets, this loss optimizes the following: 1. Given an anchor (e.g. a question), assign the highest similarity to the corresponding positive (i.e. answer) out of every single positive and negative (e.g. all answers) in the batch. If you provide the optional negatives, they will all be used as extra options from which the model must pick the correct positive. Within reason, the harder this "picking" is, the stronger the model will become. Because of this, a higher batch size results in more in-batch negatives, which then increases performance (to a point). This loss function works great to train embeddings for retrieval setups where you have positive pairs (e.g. (query, answer)) as it will sample in each batch ``n-1`` negative docs randomly. This loss is also known as InfoNCE loss, SimCSE loss, Cross-Entropy Loss with in-batch negatives, or simply in-batch negatives loss. Args: model: SparseEncoder model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, dot product. Can also be set to cosine similarity (and then set scale to 20) Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive) pairs or (anchor, positive, negative) triplets Inputs: +-------------------------------------------------+--------+ | Texts | Labels | +=================================================+========+ | (anchor, positive) pairs | none | +-------------------------------------------------+--------+ | (anchor, positive, negative) triplets | none | +-------------------------------------------------+--------+ | (anchor, positive, negative_1, ..., negative_n) | none | +-------------------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseCachedMultipleNegativesRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. - :class:`SparseGISTEmbedLoss` is equivalent to this loss, but uses a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model), document_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError( "SparseMultipleNegativesRankingLoss should not be used alone. Use it with SpladeLoss or CSRLoss." )
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 1.0, similarity_fct=util.dot_score) -> None: """ Given a list of (anchor, positive) pairs or (anchor, positive, negative) triplets, this loss optimizes the following: 1. Given an anchor (e.g. a question), assign the highest similarity to the corresponding positive (i.e. answer) out of every single positive and negative (e.g. all answers) in the batch. If you provide the optional negatives, they will all be used as extra options from which the model must pick the correct positive. Within reason, the harder this "picking" is, the stronger the model will become. Because of this, a higher batch size results in more in-batch negatives, which then increases performance (to a point). This loss function works great to train embeddings for retrieval setups where you have positive pairs (e.g. (query, answer)) as it will sample in each batch ``n-1`` negative docs randomly. This loss is also known as InfoNCE loss, SimCSE loss, Cross-Entropy Loss with in-batch negatives, or simply in-batch negatives loss. Args: model: SparseEncoder model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, dot product. Can also be set to cosine similarity (and then set scale to 20) Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive) pairs or (anchor, positive, negative) triplets Inputs: +-------------------------------------------------+--------+ | Texts | Labels | +=================================================+========+ | (anchor, positive) pairs | none | +-------------------------------------------------+--------+ | (anchor, positive, negative) triplets | none | +-------------------------------------------------+--------+ | (anchor, positive, negative_1, ..., negative_n) | none | +-------------------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseCachedMultipleNegativesRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. - :class:`SparseGISTEmbedLoss` is equivalent to this loss, but uses a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model), corpus_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError( "SparseMultipleNegativesRankingLoss should not be used alone. Use it with SpladeLoss or CSRLoss." )
import os import warnings from modulefinder import Module import torch from torchvision import datasets, io, models, ops, transforms, utils from .extension import _HAS_OPS, _load_library try: from .version import __version__ # noqa: F401 except ImportError: pass try: _load_library("Decoder") _HAS_GPU_VIDEO_DECODER = True except (ImportError, OSError, ModuleNotFoundError): _HAS_GPU_VIDEO_DECODER = False # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader", "cuda"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav', 'video_reader' and 'cuda'" % backend) if backend == "video_reader" and not io._HAS_VIDEO_OPT: # TODO: better messages message = "video_reader video backend is not available. Please compile torchvision from source and try again" raise RuntimeError(message) elif backend == "cuda" and not _HAS_GPU_VIDEO_DECODER: # TODO: better messages message = "cuda video backend is not available." raise RuntimeError(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state()
import os import warnings import torch from torchvision import datasets, io, models, ops, transforms, utils from .extension import _HAS_OPS try: from .version import __version__ # noqa: F401 except ImportError: pass # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav' and 'video_reader'" % backend) if backend == "video_reader" and not io._HAS_VIDEO_OPT: message = "video_reader video backend is not available. Please compile torchvision from source and try again" warnings.warn(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state()
import pytest from absl.testing import parameterized from keras.src import backend from keras.src import layers from keras.src import testing from keras.src.backend.common.keras_tensor import KerasTensor class ReshapeTest(testing.TestCase): @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) @pytest.mark.requires_trainable_backend def test_reshape(self, sparse): if sparse and not backend.SUPPORTS_SPARSE_TENSORS: pytest.skip("Backend does not support sparse tensors.") self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (8, 1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8, 1), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (8,)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (2, 4)}, input_shape=(3, 8), input_sparse=sparse, expected_output_shape=(3, 2, 4), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (-1, 1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8, 1), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (1, -1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 1, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (-1,)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (2, -1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 2, 4), expected_output_sparse=sparse, run_training_check=not sparse, ) def test_reshape_with_dynamic_batch_size(self): input_layer = layers.Input(shape=(2, 4)) reshaped = layers.Reshape((8,))(input_layer) self.assertEqual(reshaped.shape, (None, 8)) def test_reshape_with_dynamic_batch_size_and_minus_one(self): input = KerasTensor((None, 6, 4)) layer = layers.Reshape((-1, 8)) layer.build(input.shape) reshaped = backend.compute_output_spec(layer.__call__, input) self.assertEqual(reshaped.shape, (None, 3, 8)) def test_reshape_with_dynamic_dim_and_minus_one(self): input = KerasTensor((4, 6, None, 3)) layer = layers.Reshape((-1, 3)) layer.build(input.shape) reshaped = backend.compute_output_spec(layer.__call__, input) self.assertEqual(reshaped.shape, (4, None, 3)) def test_reshape_sets_static_shape(self): input_layer = layers.Input(batch_shape=(2, None)) reshaped = layers.Reshape((3, 5))(input_layer) # Also make sure the batch dim is not lost after reshape. self.assertEqual(reshaped.shape, (2, 3, 5))
import pytest from absl.testing import parameterized from keras.src import backend from keras.src import layers from keras.src import testing from keras.src.backend.common.keras_tensor import KerasTensor class ReshapeTest(testing.TestCase, parameterized.TestCase): @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) @pytest.mark.requires_trainable_backend def test_reshape(self, sparse): if sparse and not backend.SUPPORTS_SPARSE_TENSORS: pytest.skip("Backend does not support sparse tensors.") self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (8, 1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8, 1), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (8,)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (2, 4)}, input_shape=(3, 8), input_sparse=sparse, expected_output_shape=(3, 2, 4), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (-1, 1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8, 1), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (1, -1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 1, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (-1,)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (2, -1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 2, 4), expected_output_sparse=sparse, run_training_check=not sparse, ) def test_reshape_with_dynamic_batch_size(self): input_layer = layers.Input(shape=(2, 4)) reshaped = layers.Reshape((8,))(input_layer) self.assertEqual(reshaped.shape, (None, 8)) def test_reshape_with_dynamic_batch_size_and_minus_one(self): input = KerasTensor((None, 6, 4)) layer = layers.Reshape((-1, 8)) layer.build(input.shape) reshaped = backend.compute_output_spec(layer.__call__, input) self.assertEqual(reshaped.shape, (None, 3, 8)) def test_reshape_with_dynamic_dim_and_minus_one(self): input = KerasTensor((4, 6, None, 3)) layer = layers.Reshape((-1, 3)) layer.build(input.shape) reshaped = backend.compute_output_spec(layer.__call__, input) self.assertEqual(reshaped.shape, (4, None, 3)) def test_reshape_sets_static_shape(self): input_layer = layers.Input(batch_shape=(2, None)) reshaped = layers.Reshape((3, 5))(input_layer) # Also make sure the batch dim is not lost after reshape. self.assertEqual(reshaped.shape, (2, 3, 5))
import enum from typing import Any, List, Optional, Union import pydantic import backend.data.graph from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash class Methods(enum.Enum): SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" EXECUTION_EVENT = "execution_event" ERROR = "error" HEARTBEAT = "heartbeat" class WsMessage(pydantic.BaseModel): method: Methods data: Optional[Union[dict[str, Any], list[Any], str]] = None success: bool | None = None channel: str | None = None error: str | None = None class ExecutionSubscription(pydantic.BaseModel): graph_id: str class SubscriptionDetails(pydantic.BaseModel): event_type: str channel: str graph_id: str class CreateGraph(pydantic.BaseModel): template_id: str | None = None template_version: int | None = None graph: backend.data.graph.Graph | None = None class CreateAPIKeyRequest(pydantic.BaseModel): name: str permissions: List[APIKeyPermission] description: Optional[str] = None class CreateAPIKeyResponse(pydantic.BaseModel): api_key: APIKeyWithoutHash plain_text_key: str class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int class UpdatePermissionsRequest(pydantic.BaseModel): permissions: List[APIKeyPermission]
import enum import typing import pydantic import backend.data.graph from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash class Methods(enum.Enum): SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" EXECUTION_EVENT = "execution_event" ERROR = "error" class WsMessage(pydantic.BaseModel): method: Methods data: typing.Dict[str, typing.Any] | list[typing.Any] | None = None success: bool | None = None channel: str | None = None error: str | None = None class ExecutionSubscription(pydantic.BaseModel): graph_id: str class SubscriptionDetails(pydantic.BaseModel): event_type: str channel: str graph_id: str class CreateGraph(pydantic.BaseModel): template_id: str | None = None template_version: int | None = None graph: backend.data.graph.Graph | None = None class CreateAPIKeyRequest(pydantic.BaseModel): name: str permissions: typing.List[APIKeyPermission] description: typing.Optional[str] = None class CreateAPIKeyResponse(pydantic.BaseModel): api_key: APIKeyWithoutHash plain_text_key: str class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int class UpdatePermissionsRequest(pydantic.BaseModel): permissions: typing.List[APIKeyPermission]
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase from unittest.mock import Mock import torch import torch.nn as nn from torch.utils.data import Dataset from mmengine.hooks import EMAHook from mmengine.model import BaseModel, ExponentialMovingAverage from mmengine.optim import OptimWrapper from mmengine.registry import DATASETS, MODEL_WRAPPERS from mmengine.runner import Runner class ToyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) def forward(self, batch_inputs, labels, mode='tensor'): labels = torch.stack(labels) outputs = self.linear(batch_inputs) if mode == 'tensor': return outputs elif mode == 'loss': loss = (labels - outputs).sum() outputs = dict(loss=loss) return outputs else: return outputs class ToyModel1(BaseModel, ToyModel): def __init__(self): super().__init__() def forward(self, *args, **kwargs): return super(BaseModel, self).forward(*args, **kwargs) @DATASETS.register_module() class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) @property def metainfo(self): return self.METAINFO def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) class TestEMAHook(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_ema_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = ToyModel1().to(device) evaluator = Mock() evaluator.evaluate = Mock(return_value=dict(acc=0.5)) runner = Runner( model=model, train_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), val_evaluator=evaluator, work_dir=self.temp_dir.name, optim_wrapper=OptimWrapper( torch.optim.Adam(ToyModel().parameters())), train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1), val_cfg=dict(), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook', )], experiment_name='test1') runner.train() for hook in runner.hooks: if isinstance(hook, EMAHook): self.assertTrue( isinstance(hook.ema_model, ExponentialMovingAverage)) self.assertTrue( osp.exists(osp.join(self.temp_dir.name, 'epoch_2.pth'))) checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth')) self.assertTrue('ema_state_dict' in checkpoint) self.assertTrue(checkpoint['ema_state_dict']['steps'] == 8) # load and testing runner = Runner( model=model, test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test2') runner.test() @MODEL_WRAPPERS.register_module() class DummyWrapper(BaseModel): def __init__(self, model): super().__init__() self.module = model def forward(self, *args, **kwargs): return self.module(*args, **kwargs) # with model wrapper runner = Runner( model=DummyWrapper(ToyModel()), test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test3') runner.test()
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase from unittest.mock import Mock import torch import torch.nn as nn from torch.utils.data import Dataset from mmengine.hooks import EMAHook from mmengine.model import ExponentialMovingAverage from mmengine.optim import OptimWrapper from mmengine.registry import DATASETS, MODEL_WRAPPERS from mmengine.runner import Runner class ToyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) def forward(self, data_batch, return_loss=False): inputs, labels = [], [] for x in data_batch: inputs.append(x['inputs']) labels.append(x['data_sample']) device = 'cuda:0' if torch.cuda.is_available() else 'cpu' inputs = torch.stack(inputs).to(device) labels = torch.stack(labels).to(device) outputs = self.linear(inputs) if return_loss: loss = (labels - outputs).sum() outputs = dict(loss=loss, log_vars=dict(loss=loss.item())) return outputs else: outputs = dict(log_vars=dict(a=1, b=0.5)) return outputs @DATASETS.register_module() class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) @property def metainfo(self): return self.METAINFO def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) class TestEMAHook(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_ema_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = ToyModel().to(device) evaluator = Mock() evaluator.evaluate = Mock(return_value=dict(acc=0.5)) runner = Runner( model=model, train_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), val_evaluator=evaluator, work_dir=self.temp_dir.name, optim_wrapper=OptimWrapper( torch.optim.Adam(ToyModel().parameters())), train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1), val_cfg=dict(), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook', )], experiment_name='test1') runner.train() for hook in runner.hooks: if isinstance(hook, EMAHook): self.assertTrue( isinstance(hook.ema_model, ExponentialMovingAverage)) self.assertTrue( osp.exists(osp.join(self.temp_dir.name, 'epoch_2.pth'))) checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth')) self.assertTrue('ema_state_dict' in checkpoint) self.assertTrue(checkpoint['ema_state_dict']['steps'] == 8) # load and testing runner = Runner( model=model, test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test2') runner.test() @MODEL_WRAPPERS.register_module() class DummyWrapper(nn.Module): def __init__(self, model): super().__init__() self.module = model def forward(self, *args, **kwargs): return self.module(*args, **kwargs) # with model wrapper runner = Runner( model=DummyWrapper(model), test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test3') runner.test()
# Copyright (c) OpenMMLab. All rights reserved. import os from typing import Optional import torch try: import torch_npu # noqa: F401 import torch_npu.npu.utils as npu_utils # Enable operator support for dynamic shape and # binary operator support on the NPU. npu_jit_compile = bool(os.getenv('NPUJITCompile', False)) torch.npu.set_compile_mode(jit_compile=npu_jit_compile) IS_NPU_AVAILABLE = hasattr(torch, 'npu') and torch.npu.is_available() except Exception: IS_NPU_AVAILABLE = False try: import torch_dipu # noqa: F401 IS_DIPU_AVAILABLE = True except Exception: IS_DIPU_AVAILABLE = False try: import torch_musa # noqa: F401 IS_MUSA_AVAILABLE = True except Exception: IS_MUSA_AVAILABLE = False def get_max_cuda_memory(device: Optional[torch.device] = None) -> int: """Returns the maximum GPU memory occupied by tensors in megabytes (MB) for a given device. By default, this returns the peak allocated memory since the beginning of this program. Args: device (torch.device, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if ``device`` is None. Defaults to None. Returns: int: The maximum GPU memory occupied by tensors in megabytes for a given device. """ mem = torch.cuda.max_memory_allocated(device=device) mem_mb = torch.tensor([int(mem) // (1024 * 1024)], dtype=torch.int, device=device) torch.cuda.reset_peak_memory_stats() return int(mem_mb.item()) def is_cuda_available() -> bool: """Returns True if cuda devices exist.""" return torch.cuda.is_available() def is_npu_available() -> bool: """Returns True if Ascend PyTorch and npu devices exist.""" return IS_NPU_AVAILABLE def is_mlu_available() -> bool: """Returns True if Cambricon PyTorch and mlu devices exist.""" return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available() def is_mps_available() -> bool: """Return True if mps devices exist. It's specialized for mac m1 chips and require torch version 1.12 or higher. """ return hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() def is_dipu_available() -> bool: return IS_DIPU_AVAILABLE def get_max_musa_memory(device: Optional[torch.device] = None) -> int: """Returns the maximum GPU memory occupied by tensors in megabytes (MB) for a given device. By default, this returns the peak allocated memory since the beginning of this program. Args: device (torch.device, optional): selected device. Returns statistic for the current device, given by :func:`~torch.musa.current_device`, if ``device`` is None. Defaults to None. Returns: int: The maximum GPU memory occupied by tensors in megabytes for a given device. """ mem = torch.musa.max_memory_allocated(device=device) mem_mb = torch.tensor([int(mem) // (1024 * 1024)], dtype=torch.int, device=device) # TODO:[email protected]: This function is not supported by musa yet. # torch.musa.reset_peak_memory_stats() return int(mem_mb.item()) def is_musa_available() -> bool: return IS_MUSA_AVAILABLE def is_npu_support_full_precision() -> bool: """Returns True if npu devices support full precision training.""" version_of_support_full_precision = 220 return IS_NPU_AVAILABLE and npu_utils.get_soc_version( ) >= version_of_support_full_precision DEVICE = 'cpu' if is_npu_available(): DEVICE = 'npu' elif is_cuda_available(): DEVICE = 'cuda' elif is_mlu_available(): DEVICE = 'mlu' elif is_mps_available(): DEVICE = 'mps' elif is_dipu_available(): DEVICE = 'dipu' elif is_musa_available(): DEVICE = 'musa' def get_device() -> str: """Returns the currently existing device type. Returns: str: cuda | npu | mlu | mps | musa | cpu. """ return DEVICE
# Copyright (c) OpenMMLab. All rights reserved. import os from typing import Optional import torch try: import torch_npu # noqa: F401 import torch_npu.npu.utils as npu_utils # Enable operator support for dynamic shape and # binary operator support on the NPU. npu_jit_compile = bool(os.getenv('NPUJITCompile', False)) torch.npu.set_compile_mode(jit_compile=npu_jit_compile) IS_NPU_AVAILABLE = hasattr(torch, 'npu') and torch.npu.is_available() except Exception: IS_NPU_AVAILABLE = False try: import torch_dipu # noqa: F401 IS_DIPU_AVAILABLE = True except Exception: IS_DIPU_AVAILABLE = False def get_max_cuda_memory(device: Optional[torch.device] = None) -> int: """Returns the maximum GPU memory occupied by tensors in megabytes (MB) for a given device. By default, this returns the peak allocated memory since the beginning of this program. Args: device (torch.device, optional): selected device. Returns statistic for the current device, given by :func:`~torch.cuda.current_device`, if ``device`` is None. Defaults to None. Returns: int: The maximum GPU memory occupied by tensors in megabytes for a given device. """ mem = torch.cuda.max_memory_allocated(device=device) mem_mb = torch.tensor([int(mem) // (1024 * 1024)], dtype=torch.int, device=device) torch.cuda.reset_peak_memory_stats() return int(mem_mb.item()) def is_cuda_available() -> bool: """Returns True if cuda devices exist.""" return torch.cuda.is_available() def is_npu_available() -> bool: """Returns True if Ascend PyTorch and npu devices exist.""" return IS_NPU_AVAILABLE def is_mlu_available() -> bool: """Returns True if Cambricon PyTorch and mlu devices exist.""" return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available() def is_mps_available() -> bool: """Return True if mps devices exist. It's specialized for mac m1 chips and require torch version 1.12 or higher. """ return hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() def is_dipu_available() -> bool: return IS_DIPU_AVAILABLE def is_npu_support_full_precision() -> bool: """Returns True if npu devices support full precision training.""" version_of_support_full_precision = 220 return IS_NPU_AVAILABLE and npu_utils.get_soc_version( ) >= version_of_support_full_precision DEVICE = 'cpu' if is_npu_available(): DEVICE = 'npu' elif is_cuda_available(): DEVICE = 'cuda' elif is_mlu_available(): DEVICE = 'mlu' elif is_mps_available(): DEVICE = 'mps' elif is_dipu_available(): DEVICE = 'dipu' def get_device() -> str: """Returns the currently existing device type. Returns: str: cuda | npu | mlu | mps | cpu. """ return DEVICE
from argparse import Namespace from copy import deepcopy from typing import TYPE_CHECKING, Type from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import PodRoleType from jina.orchestrate.pods import Pod from jina.orchestrate.pods.container import ContainerPod if TYPE_CHECKING: # pragma: no cover from jina.orchestrate.pods import BasePod class PodFactory: """ A PodFactory is a factory class, abstracting the Pod creation """ @staticmethod def build_pod( args: 'Namespace', gateway_load_balancer: bool = False ) -> Type['BasePod']: """Build an implementation of a `BasePod` interface :param args: deployment arguments parsed from the CLI. :param gateway_load_balancer: flag indicating if this Pod is supposed to be a Gateway Load Balancer :return: the created Deployment """ # copy to update but forward original cargs = deepcopy(args) cargs.gateway_load_balancer = gateway_load_balancer if is_valid_huburi(cargs.uses): _hub_args = deepcopy(args) _hub_args.uri = args.uses _hub_args.no_usage = True cargs.uses = HubIO(_hub_args).pull() if ( cargs.pod_role != PodRoleType.HEAD and cargs.uses and cargs.uses.startswith('docker://') ): return ContainerPod(cargs) else: return Pod(cargs)
from argparse import Namespace from copy import deepcopy from typing import TYPE_CHECKING, Type from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import PodRoleType from jina.orchestrate.pods import Pod from jina.orchestrate.pods.container import ContainerPod if TYPE_CHECKING: # pragma: no cover from jina.orchestrate.pods import BasePod class PodFactory: """ A PodFactory is a factory class, abstracting the Pod creation """ @staticmethod def build_pod(args: 'Namespace', gateway_load_balancer: bool = False) -> Type['BasePod']: """Build an implementation of a `BasePod` interface :param args: deployment arguments parsed from the CLI. :param gateway_load_balancer: flag indicating if this Pod is supposed to be a Gateway Load Balancer :return: the created Deployment """ # copy to update but forward original cargs = deepcopy(args) cargs.gateway_load_balancer = gateway_load_balancer if is_valid_huburi(cargs.uses): _hub_args = deepcopy(args) _hub_args.uri = args.uses _hub_args.no_usage = True cargs.uses = HubIO(_hub_args).pull() if ( cargs.pod_role != PodRoleType.HEAD and cargs.uses and cargs.uses.startswith('docker://') ): return ContainerPod(cargs) else: return Pod(cargs)
import json from typing import Any, Type, TypeVar, overload import jsonschema from fastapi.encoders import jsonable_encoder from .type import type_match def to_dict(data) -> dict: return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(jsonable_encoder(data)) T = TypeVar("T") @overload def loads(data: str, *args, target_type: Type[T], **kwargs) -> T: ... @overload def loads(data: str, *args, **kwargs) -> Any: ... def loads(data: str, *args, target_type: Type[T] | None = None, **kwargs) -> Any: parsed = json.loads(data, *args, **kwargs) if target_type: return type_match(parsed, target_type) return parsed def validate_with_jsonschema( schema: dict[str, Any], data: dict[str, Any] ) -> str | None: """ Validate the data against the schema. Returns the validation error message if the data does not match the schema. """ try: jsonschema.validate(data, schema) return None except jsonschema.ValidationError as e: return str(e)
import json from typing import Any, Type, TypeVar, overload from fastapi.encoders import jsonable_encoder from .type import type_match def to_dict(data) -> dict: return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(jsonable_encoder(data)) T = TypeVar("T") @overload def loads(data: str, *args, target_type: Type[T], **kwargs) -> T: ... @overload def loads(data: str, *args, **kwargs) -> Any: ... def loads(data: str, *args, target_type: Type[T] | None = None, **kwargs) -> Any: parsed = json.loads(data, *args, **kwargs) if target_type: return type_match(parsed, target_type) return parsed
import warnings from typing import Callable, Union from torch.ao.pruning.sparsifier.base_sparsifier import BaseSparsifier from .base_scheduler import BaseScheduler __all__ = ["LambdaSL"] class LambdaSL(BaseScheduler): """Sets the sparsity level of each parameter group to the final sl times a given function. When last_epoch=-1, sets initial sl as zero. Args: sparsifier (BaseSparsifier): Wrapped sparsifier. sl_lambda (function or list): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in sparsifier.param_groups. last_epoch (int): The index of last epoch. Default: -1. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. Example: >>> # Assuming sparsifier has two groups. >>> lambda1 = lambda epoch: epoch // 30 >>> lambda2 = lambda epoch: 0.95**epoch >>> # xdoctest: +SKIP >>> scheduler = LambdaSL(sparsifier, sl_lambda=[lambda1, lambda2]) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() """ def __init__( self, sparsifier: BaseSparsifier, sl_lambda: Union[Callable[[int], float], list[Callable[[int], float]]], last_epoch: int = -1, verbose: bool = False, ) -> None: self.sparsifier = sparsifier if not isinstance(sl_lambda, list) and not isinstance(sl_lambda, tuple): self.sl_lambdas = [sl_lambda] * len(sparsifier.groups) else: if len(sl_lambda) != len(sparsifier.groups): raise ValueError( f"Expected {len(sparsifier.groups)} lr_lambdas, but got {len(sl_lambda)}" ) self.sl_lambdas = list(sl_lambda) super().__init__(sparsifier, last_epoch, verbose) # type: ignore[no-untyped-call] def get_sl(self) -> list[float]: if not self._get_sl_called_within_step: warnings.warn( "To get the last sparsity level computed by the scheduler, " "please use `get_last_sl()`." ) return [ base_sl * lmbda(self.last_epoch) for lmbda, base_sl in zip(self.sl_lambdas, self.base_sl) ]
# mypy: allow-untyped-defs import warnings from .base_scheduler import BaseScheduler __all__ = ["LambdaSL"] class LambdaSL(BaseScheduler): """Sets the sparsity level of each parameter group to the final sl times a given function. When last_epoch=-1, sets initial sl as zero. Args: sparsifier (BaseSparsifier): Wrapped sparsifier. sl_lambda (function or list): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in sparsifier.param_groups. last_epoch (int): The index of last epoch. Default: -1. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. Example: >>> # Assuming sparsifier has two groups. >>> lambda1 = lambda epoch: epoch // 30 >>> lambda2 = lambda epoch: 0.95**epoch >>> # xdoctest: +SKIP >>> scheduler = LambdaSL(sparsifier, sl_lambda=[lambda1, lambda2]) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() """ def __init__(self, sparsifier, sl_lambda, last_epoch=-1, verbose=False): self.sparsifier = sparsifier if not isinstance(sl_lambda, list) and not isinstance(sl_lambda, tuple): self.sl_lambdas = [sl_lambda] * len(sparsifier.groups) else: if len(sl_lambda) != len(sparsifier.groups): raise ValueError( f"Expected {len(sparsifier.groups)} lr_lambdas, but got {len(sl_lambda)}" ) self.sl_lambdas = list(sl_lambda) super().__init__(sparsifier, last_epoch, verbose) def get_sl(self): if not self._get_sl_called_within_step: warnings.warn( "To get the last sparsity level computed by the scheduler, " "please use `get_last_sl()`." ) return [ base_sl * lmbda(self.last_epoch) for lmbda, base_sl in zip(self.sl_lambdas, self.base_sl) ]
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.15.1' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) Open-MMLab. All rights reserved. __version__ = '2.15.1' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path import pytest import torch import numpy as np import torchvision.models.video as models from torchvision import transforms from jina import Document, DocumentArray, Executor from ...video_torch_encoder import ( VideoTorchEncoder, ConvertFHWCtoFCHW, ConvertFCHWtoCFHW, ) def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 @pytest.mark.parametrize('model_name', ['r3d_18', 'mc3_18', 'r2plus1d_18']) def test_video_torch_encoder(model_name): ex = VideoTorchEncoder(model_name=model_name, use_default_preprocessing=False) da = DocumentArray( [Document(blob=np.random.random((3, 2, 224, 224))) for _ in range(10)] ) ex.encode(da, {}) assert len(da) == 10 for doc in da: assert doc.embedding.shape == (512,) @pytest.mark.parametrize('batch_size', [1, 3, 10]) def test_video_torch_encoder_traversal_paths(batch_size): ex = VideoTorchEncoder(use_default_preprocessing=False) def _create_doc_with_video_chunks(): d = Document(blob=np.random.random((3, 2, 112, 112))) d.chunks = [Document(blob=np.random.random((3, 2, 112, 112))) for _ in range(5)] return d da = DocumentArray([_create_doc_with_video_chunks() for _ in range(10)]) ex.encode(da, {'traversal_paths': ['r', 'c'], 'batch_size': batch_size}) assert len(da) == 10 for doc in da: assert doc.embedding.shape == (512,) assert len(doc.chunks) == 5 for chunk in doc.chunks: assert chunk.embedding.shape == (512,) @pytest.mark.parametrize('model_name', ['r3d_18', 'mc3_18', 'r2plus1d_18']) def test_video_torch_encoder_use_default_preprocessing(model_name): ex = VideoTorchEncoder(model_name=model_name, use_default_preprocessing=True) da = DocumentArray( [Document(blob=np.random.random((10, 270, 480, 3))) for _ in range(10)] ) ex.encode(da, {}) assert len(da) == 10 for doc in da: assert doc.embedding.shape == (512,) @pytest.fixture() def kinects_videos(): from torchvision.datasets import Kinetics400 dataset = Kinetics400( root=Path(__file__).parents[1] / 'data/kinetics400', frames_per_clip=20 ) return [dataset[0][0], dataset[0][0]] @pytest.mark.parametrize('model_name', ['mc3_18', 'r2plus1d_18', 'r3d_18']) def test_with_dataset_video(model_name, kinects_videos): da = DocumentArray( [Document(blob=video.detach().numpy()) for video in kinects_videos] ) ex = VideoTorchEncoder(use_default_preprocessing=True, model_name=model_name) ex.encode(da, {}) assert len(da) == 2 for doc in da: assert doc.embedding.shape == (512,) model = getattr(models, model_name)(pretrained=True).eval() mean = (0.43216, 0.394666, 0.37645) std = (0.22803, 0.22145, 0.216989) resize_size = (128, 171) crop_size = (112, 112) t = transforms.Compose( [ ConvertFHWCtoFCHW(), transforms.ConvertImageDtype(torch.float32), transforms.Resize(resize_size), transforms.Normalize(mean=mean, std=std), transforms.CenterCrop(crop_size), ConvertFCHWtoCFHW(), ] ) tensor = torch.stack([t(video) for video in kinects_videos]) def _get_embeddings(x) -> torch.Tensor: embeddings = torch.Tensor() def get_activation(model, model_input, output): nonlocal embeddings embeddings = output handle = model.avgpool.register_forward_hook(get_activation) model(x) handle.remove() return embeddings.flatten(1) embedding_batch = _get_embeddings(tensor) for doc, expected_torch_embedding in zip(da, embedding_batch): np.testing.assert_almost_equal( doc.embedding, expected_torch_embedding.detach().numpy() )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import pytest import torch import numpy as np import torchvision.models.video as models from torchvision import transforms from jina import Document, DocumentArray try: from video_torch_encoder import VideoTorchEncoder, ConvertFHWCtoFCHW, ConvertFCHWtoCFHW except: from ...video_torch_encoder import VideoTorchEncoder, ConvertFHWCtoFCHW, ConvertFCHWtoCFHW cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.mark.parametrize('model_name', ['r3d_18', 'mc3_18', 'r2plus1d_18']) def test_video_torch_encoder(model_name): ex = VideoTorchEncoder(model_name=model_name, use_default_preprocessing=False) da = DocumentArray([Document(blob=np.random.random((3, 2, 224, 224))) for _ in range(10)]) ex.encode(da, {}) assert len(da) == 10 for doc in da: assert doc.embedding.shape == (512,) @pytest.mark.parametrize('batch_size', [1, 3, 10]) def test_video_torch_encoder_traversal_paths(batch_size): ex = VideoTorchEncoder(use_default_preprocessing=False) def _create_doc_with_video_chunks(): d = Document(blob=np.random.random((3, 2, 112, 112))) d.chunks = [Document(blob=np.random.random((3, 2, 112, 112))) for _ in range(5)] return d da = DocumentArray([_create_doc_with_video_chunks() for _ in range(10)]) ex.encode(da, {'traversal_paths': ['r', 'c'], 'batch_size': batch_size}) assert len(da) == 10 for doc in da: assert doc.embedding.shape == (512,) assert len(doc.chunks) == 5 for chunk in doc.chunks: assert chunk.embedding.shape == (512,) @pytest.mark.parametrize('model_name', ['r3d_18', 'mc3_18', 'r2plus1d_18']) def test_video_torch_encoder_use_default_preprocessing(model_name): ex = VideoTorchEncoder(model_name=model_name, use_default_preprocessing=True) da = DocumentArray([Document(blob=np.random.random((10, 270, 480, 3))) for _ in range(10)]) ex.encode(da, {}) assert len(da) == 10 for doc in da: assert doc.embedding.shape == (512,) @pytest.fixture() def kinects_videos(): from torchvision.datasets import Kinetics400 dataset = Kinetics400(root=os.path.join(cur_dir, '../data/kinetics400'), frames_per_clip=20) return [dataset[0][0], dataset[0][0]] @pytest.mark.parametrize('model_name', ['mc3_18', 'r2plus1d_18', 'r3d_18']) def test_with_dataset_video(model_name, kinects_videos): da = DocumentArray([Document(blob=video.detach().numpy()) for video in kinects_videos]) ex = VideoTorchEncoder(use_default_preprocessing=True, model_name=model_name) ex.encode(da, {}) assert len(da) == 2 for doc in da: assert doc.embedding.shape == (512,) model = getattr(models, model_name)(pretrained=True).eval() mean = (0.43216, 0.394666, 0.37645) std = (0.22803, 0.22145, 0.216989) resize_size = (128, 171) crop_size = (112, 112) t = transforms.Compose([ ConvertFHWCtoFCHW(), transforms.ConvertImageDtype(torch.float32), transforms.Resize(resize_size), transforms.Normalize(mean=mean, std=std), transforms.CenterCrop(crop_size), ConvertFCHWtoCFHW() ]) tensor = torch.stack([t(video) for video in kinects_videos]) def _get_embeddings(x) -> torch.Tensor: embeddings = torch.Tensor() def get_activation(model, model_input, output): nonlocal embeddings embeddings = output handle = model.avgpool.register_forward_hook(get_activation) model(x) handle.remove() return embeddings.flatten(1) embedding_batch = _get_embeddings(tensor) for doc, expected_torch_embedding in zip(da, embedding_batch): np.testing.assert_almost_equal(doc.embedding, expected_torch_embedding.detach().numpy())
import types from typing import TYPE_CHECKING from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 from docarray.index.backends.weaviate import WeaviateDocumentIndex # noqa: F401 __all__ = [] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib elif name == 'WeaviateDocumentIndex': import_library('weaviate', raise_error=True) import docarray.index.backends.weaviate as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
import types from typing import TYPE_CHECKING from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 __all__ = [] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
_base_ = './decoupled-solo_r50_fpn_3x_coco.py' # model settings model = dict( mask_head=dict( type='DecoupledSOLOLightHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, loss_mask=dict( type='DiceLoss', use_sigmoid=True, activate=False, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(852, 512), (852, 480), (852, 448), (852, 416), (852, 384), (852, 352)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(852, 512), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './decoupled-solo_r50_fpn_3x_coco.py' # model settings model = dict( mask_head=dict( type='DecoupledSOLOLightHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, loss_mask=dict( type='DiceLoss', use_sigmoid=True, activate=False, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(852, 512), (852, 480), (852, 448), (852, 416), (852, 384), (852, 352)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(852, 512), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
import warnings from typing import Any, List import torch from torchvision.transforms import functional as _F @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: """[DEPREACTED] Use to_image() and to_dtype() instead.""" warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image(...)` followed by `to_dtype(..., dtype=torch.float32, scale=True)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: torch.Tensor) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import warnings from typing import Any, List import torch from torchvision.transforms import functional as _F @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: """[BETA] [DEPREACTED] Use to_image() and to_dtype() instead.""" warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image(...)` followed by `to_dtype(..., dtype=torch.float32, scale=True)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: torch.Tensor) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
"""JSON Reader.""" import re import defusedxml.ElementTree as ET # safe XML parsing import xml.etree.ElementTree as _XmlET # for type annotations only from pathlib import Path from typing import Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document def _get_leaf_nodes_up_to_level( root: _XmlET.Element, level: int ) -> List[_XmlET.Element]: """ Get collection of nodes up to certain level including leaf nodes. Args: root (ET.Element): XML Root Element level (int): Levels to traverse in the tree Returns: List[ET.Element]: List of target nodes """ def traverse(current_node, current_level): if len(current_node) == 0 or level == current_level: # Keep leaf nodes and target level nodes nodes.append(current_node) elif current_level < level: # Move to the next level for child in current_node: traverse(child, current_level + 1) nodes = [] traverse(root, 0) return nodes class XMLReader(BaseReader): """ XML reader. Reads XML documents with options to help suss out relationships between nodes. Args: tree_level_split (int): From which level in the xml tree we split documents, the default level is the root which is level 0 """ def __init__(self, tree_level_split: Optional[int] = 0) -> None: """Initialize with arguments.""" super().__init__() self.tree_level_split = tree_level_split def _parse_xmlelt_to_document( self, root: _XmlET.Element, extra_info: Optional[Dict] = None ) -> List[Document]: """ Parse the xml object into a list of Documents. Args: root: The XML Element to be converted. extra_info (Optional[Dict]): Additional information. Default is None. Returns: Document: The documents. """ nodes = _get_leaf_nodes_up_to_level(root, self.tree_level_split) documents = [] for node in nodes: content = ET.tostring(node, encoding="utf8").decode("utf-8") content = re.sub(r"^<\?xml.*", "", content) content = content.strip() documents.append(Document(text=content, extra_info=extra_info or {})) return documents def load_data( self, file: Path, extra_info: Optional[Dict] = None, ) -> List[Document]: """ Load data from the input file. Args: file (Path): Path to the input file. extra_info (Optional[Dict]): Additional information. Default is None. Returns: List[Document]: List of documents. """ if not isinstance(file, Path): file = Path(file) tree = ET.parse(file) return self._parse_xmlelt_to_document(tree.getroot(), extra_info)
"""JSON Reader.""" import re import xml.etree.ElementTree as ET from pathlib import Path from typing import Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document def _get_leaf_nodes_up_to_level(root: ET.Element, level: int) -> List[ET.Element]: """ Get collection of nodes up to certain level including leaf nodes. Args: root (ET.Element): XML Root Element level (int): Levels to traverse in the tree Returns: List[ET.Element]: List of target nodes """ def traverse(current_node, current_level): if len(current_node) == 0 or level == current_level: # Keep leaf nodes and target level nodes nodes.append(current_node) elif current_level < level: # Move to the next level for child in current_node: traverse(child, current_level + 1) nodes = [] traverse(root, 0) return nodes class XMLReader(BaseReader): """ XML reader. Reads XML documents with options to help suss out relationships between nodes. Args: tree_level_split (int): From which level in the xml tree we split documents, the default level is the root which is level 0 """ def __init__(self, tree_level_split: Optional[int] = 0) -> None: """Initialize with arguments.""" super().__init__() self.tree_level_split = tree_level_split def _parse_xmlelt_to_document( self, root: ET.Element, extra_info: Optional[Dict] = None ) -> List[Document]: """ Parse the xml object into a list of Documents. Args: root: The XML Element to be converted. extra_info (Optional[Dict]): Additional information. Default is None. Returns: Document: The documents. """ nodes = _get_leaf_nodes_up_to_level(root, self.tree_level_split) documents = [] for node in nodes: content = ET.tostring(node, encoding="utf8").decode("utf-8") content = re.sub(r"^<\?xml.*", "", content) content = content.strip() documents.append(Document(text=content, extra_info=extra_info or {})) return documents def load_data( self, file: Path, extra_info: Optional[Dict] = None, ) -> List[Document]: """ Load data from the input file. Args: file (Path): Path to the input file. extra_info (Optional[Dict]): Additional information. Default is None. Returns: List[Document]: List of documents. """ if not isinstance(file, Path): file = Path(file) tree = ET.parse(file) return self._parse_xmlelt_to_document(tree.getroot(), extra_info)
from __future__ import annotations from copy import deepcopy import pytest from sentence_transformers import CrossEncoder @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture(scope="session") def _reranker_bert_tiny_model() -> CrossEncoder: return CrossEncoder("cross-encoder-testing/reranker-bert-tiny-gooaq-bce") @pytest.fixture() def reranker_bert_tiny_model(_reranker_bert_tiny_model) -> CrossEncoder: return deepcopy(_reranker_bert_tiny_model)
from __future__ import annotations import pytest from sentence_transformers import CrossEncoder @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture() def reranker_bert_tiny_model() -> CrossEncoder: return CrossEncoder("cross-encoder-testing/reranker-bert-tiny-gooaq-bce") @pytest.fixture(scope="session") def reranker_bert_tiny_model_reused() -> CrossEncoder: return CrossEncoder("cross-encoder-testing/reranker-bert-tiny-gooaq-bce")
from __future__ import annotations from typing import Any, List, Optional, Tuple, Union import PIL.Image import torch from torchvision.transforms import InterpolationMode from ._datapoint import _FillTypeJIT, Datapoint class Mask(Datapoint): @classmethod def _wrap(cls, tensor: torch.Tensor) -> Mask: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Mask: if isinstance(data, PIL.Image.Image): from torchvision.transforms.v2 import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor) @classmethod def wrap_like( cls, other: Mask, tensor: torch.Tensor, ) -> Mask: return cls._wrap(tensor) @property def spatial_size(self) -> Tuple[int, int]: return tuple(self.shape[-2:]) # type: ignore[return-value] def horizontal_flip(self) -> Mask: output = self._F.horizontal_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def vertical_flip(self) -> Mask: output = self._F.vertical_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def resize( # type: ignore[override] self, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, max_size: Optional[int] = None, antialias: Optional[Union[str, bool]] = "warn", ) -> Mask: output = self._F.resize_mask(self.as_subclass(torch.Tensor), size, max_size=max_size) return Mask.wrap_like(self, output) def crop(self, top: int, left: int, height: int, width: int) -> Mask: output = self._F.crop_mask(self.as_subclass(torch.Tensor), top, left, height, width) return Mask.wrap_like(self, output) def center_crop(self, output_size: List[int]) -> Mask: output = self._F.center_crop_mask(self.as_subclass(torch.Tensor), output_size=output_size) return Mask.wrap_like(self, output) def resized_crop( self, top: int, left: int, height: int, width: int, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, antialias: Optional[Union[str, bool]] = "warn", ) -> Mask: output = self._F.resized_crop_mask(self.as_subclass(torch.Tensor), top, left, height, width, size=size) return Mask.wrap_like(self, output) def pad( self, padding: List[int], fill: Optional[Union[int, float, List[float]]] = None, padding_mode: str = "constant", ) -> Mask: output = self._F.pad_mask(self.as_subclass(torch.Tensor), padding, padding_mode=padding_mode, fill=fill) return Mask.wrap_like(self, output) def rotate( self, angle: float, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: _FillTypeJIT = None, ) -> Mask: output = self._F.rotate_mask(self.as_subclass(torch.Tensor), angle, expand=expand, center=center, fill=fill) return Mask.wrap_like(self, output) def affine( self, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: _FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.affine_mask( self.as_subclass(torch.Tensor), angle, translate=translate, scale=scale, shear=shear, fill=fill, center=center, ) return Mask.wrap_like(self, output) def perspective( self, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: _FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> Mask: output = self._F.perspective_mask( self.as_subclass(torch.Tensor), startpoints, endpoints, fill=fill, coefficients=coefficients ) return Mask.wrap_like(self, output) def elastic( self, displacement: torch.Tensor, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: _FillTypeJIT = None, ) -> Mask: output = self._F.elastic_mask(self.as_subclass(torch.Tensor), displacement, fill=fill) return Mask.wrap_like(self, output)
from __future__ import annotations from typing import Any, List, Optional, Tuple, Union import PIL.Image import torch from torchvision.transforms import InterpolationMode from ._datapoint import Datapoint, FillTypeJIT class Mask(Datapoint): @classmethod def _wrap(cls, tensor: torch.Tensor) -> Mask: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Mask: if isinstance(data, PIL.Image.Image): from torchvision.transforms.v2 import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor) @classmethod def wrap_like( cls, other: Mask, tensor: torch.Tensor, ) -> Mask: return cls._wrap(tensor) @property def spatial_size(self) -> Tuple[int, int]: return tuple(self.shape[-2:]) # type: ignore[return-value] def horizontal_flip(self) -> Mask: output = self._F.horizontal_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def vertical_flip(self) -> Mask: output = self._F.vertical_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def resize( # type: ignore[override] self, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, max_size: Optional[int] = None, antialias: Optional[Union[str, bool]] = "warn", ) -> Mask: output = self._F.resize_mask(self.as_subclass(torch.Tensor), size, max_size=max_size) return Mask.wrap_like(self, output) def crop(self, top: int, left: int, height: int, width: int) -> Mask: output = self._F.crop_mask(self.as_subclass(torch.Tensor), top, left, height, width) return Mask.wrap_like(self, output) def center_crop(self, output_size: List[int]) -> Mask: output = self._F.center_crop_mask(self.as_subclass(torch.Tensor), output_size=output_size) return Mask.wrap_like(self, output) def resized_crop( self, top: int, left: int, height: int, width: int, size: List[int], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, antialias: Optional[Union[str, bool]] = "warn", ) -> Mask: output = self._F.resized_crop_mask(self.as_subclass(torch.Tensor), top, left, height, width, size=size) return Mask.wrap_like(self, output) def pad( self, padding: List[int], fill: Optional[Union[int, float, List[float]]] = None, padding_mode: str = "constant", ) -> Mask: output = self._F.pad_mask(self.as_subclass(torch.Tensor), padding, padding_mode=padding_mode, fill=fill) return Mask.wrap_like(self, output) def rotate( self, angle: float, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: FillTypeJIT = None, ) -> Mask: output = self._F.rotate_mask(self.as_subclass(torch.Tensor), angle, expand=expand, center=center, fill=fill) return Mask.wrap_like(self, output) def affine( self, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.affine_mask( self.as_subclass(torch.Tensor), angle, translate=translate, scale=scale, shear=shear, fill=fill, center=center, ) return Mask.wrap_like(self, output) def perspective( self, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> Mask: output = self._F.perspective_mask( self.as_subclass(torch.Tensor), startpoints, endpoints, fill=fill, coefficients=coefficients ) return Mask.wrap_like(self, output) def elastic( self, displacement: torch.Tensor, interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, fill: FillTypeJIT = None, ) -> Mask: output = self._F.elastic_mask(self.as_subclass(torch.Tensor), displacement, fill=fill) return Mask.wrap_like(self, output)
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.20.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # isort: split # Deprecated modules from . import arrow_dataset as _arrow_dataset from . import utils as _utils from .exceptions import ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits from .utils import download_manager as _deprecated_download_manager from .utils import info_utils as _deprecated_info_utils _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager _deprecated_info_utils.ExpectedMoreDownloadedFiles = ExpectedMoreDownloadedFiles _deprecated_info_utils.ExpectedMoreSplits = ExpectedMoreSplits _deprecated_info_utils.UnexpectedDownloadedFile = UnexpectedDownloadedFile _deprecated_info_utils.UnexpectedSplits = UnexpectedSplits del _arrow_dataset, _utils, _deprecated_download_manager del _deprecated_info_utils, ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.20.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # isort: split # Deprecated modules from . import arrow_dataset as _arrow_dataset from . import utils as _utils from .exceptions import ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits from .utils import download_manager as _deprecated_download_manager from .utils import info_utils as _deprecated_info_utils _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager _deprecated_info_utils.ExpectedMoreDownloadedFiles = ExpectedMoreDownloadedFiles _deprecated_info_utils.ExpectedMoreSplits = ExpectedMoreSplits _deprecated_info_utils.UnexpectedDownloadedFile = UnexpectedDownloadedFile _deprecated_info_utils.UnexpectedSplits = UnexpectedSplits del _arrow_dataset, _utils, _deprecated_download_manager del _deprecated_info_utils, ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Nystromformer checkpoints from the original repository.""" import argparse import torch from transformers import NystromformerConfig, NystromformerForMaskedLM def rename_key(orig_key): if "model" in orig_key: orig_key = orig_key.replace("model.", "") if "norm1" in orig_key: orig_key = orig_key.replace("norm1", "attention.output.LayerNorm") if "norm2" in orig_key: orig_key = orig_key.replace("norm2", "output.LayerNorm") if "norm" in orig_key: orig_key = orig_key.replace("norm", "LayerNorm") if "transformer" in orig_key: layer_num = orig_key.split(".")[0].split("_")[-1] orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}") if "mha.attn" in orig_key: orig_key = orig_key.replace("mha.attn", "attention.self") if "mha" in orig_key: orig_key = orig_key.replace("mha", "attention") if "W_q" in orig_key: orig_key = orig_key.replace("W_q", "self.query") if "W_k" in orig_key: orig_key = orig_key.replace("W_k", "self.key") if "W_v" in orig_key: orig_key = orig_key.replace("W_v", "self.value") if "ff1" in orig_key: orig_key = orig_key.replace("ff1", "intermediate.dense") if "ff2" in orig_key: orig_key = orig_key.replace("ff2", "output.dense") if "ff" in orig_key: orig_key = orig_key.replace("ff", "output.dense") if "mlm_class" in orig_key: orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder") if "mlm" in orig_key: orig_key = orig_key.replace("mlm", "cls.predictions.transform") if "cls" not in orig_key: orig_key = "nystromformer." + orig_key return orig_key def convert_checkpoint_helper(config, orig_state_dict): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if ("pooler" in key) or ("sen_class" in key) or ("conv.bias" in key): continue else: orig_state_dict[rename_key(key)] = val orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"] orig_state_dict["nystromformer.embeddings.position_ids"] = ( torch.arange(config.max_position_embeddings).expand((1, -1)) + 2 ) return orig_state_dict def convert_nystromformer_checkpoint(checkpoint_path, nystromformer_config_file, pytorch_dump_path): orig_state_dict = torch.load(checkpoint_path, map_location="cpu", weights_only=True)["model_state_dict"] config = NystromformerConfig.from_json_file(nystromformer_config_file) model = NystromformerForMaskedLM(config) new_state_dict = convert_checkpoint_helper(config, orig_state_dict) model.load_state_dict(new_state_dict) model.eval() model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfully converted. Model saved at {pytorch_dump_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to Nystromformer pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for Nystromformer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_nystromformer_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Nystromformer checkpoints from the original repository.""" import argparse import torch from transformers import NystromformerConfig, NystromformerForMaskedLM def rename_key(orig_key): if "model" in orig_key: orig_key = orig_key.replace("model.", "") if "norm1" in orig_key: orig_key = orig_key.replace("norm1", "attention.output.LayerNorm") if "norm2" in orig_key: orig_key = orig_key.replace("norm2", "output.LayerNorm") if "norm" in orig_key: orig_key = orig_key.replace("norm", "LayerNorm") if "transformer" in orig_key: layer_num = orig_key.split(".")[0].split("_")[-1] orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}") if "mha.attn" in orig_key: orig_key = orig_key.replace("mha.attn", "attention.self") if "mha" in orig_key: orig_key = orig_key.replace("mha", "attention") if "W_q" in orig_key: orig_key = orig_key.replace("W_q", "self.query") if "W_k" in orig_key: orig_key = orig_key.replace("W_k", "self.key") if "W_v" in orig_key: orig_key = orig_key.replace("W_v", "self.value") if "ff1" in orig_key: orig_key = orig_key.replace("ff1", "intermediate.dense") if "ff2" in orig_key: orig_key = orig_key.replace("ff2", "output.dense") if "ff" in orig_key: orig_key = orig_key.replace("ff", "output.dense") if "mlm_class" in orig_key: orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder") if "mlm" in orig_key: orig_key = orig_key.replace("mlm", "cls.predictions.transform") if "cls" not in orig_key: orig_key = "nystromformer." + orig_key return orig_key def convert_checkpoint_helper(config, orig_state_dict): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if ("pooler" in key) or ("sen_class" in key) or ("conv.bias" in key): continue else: orig_state_dict[rename_key(key)] = val orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"] orig_state_dict["nystromformer.embeddings.position_ids"] = ( torch.arange(config.max_position_embeddings).expand((1, -1)) + 2 ) return orig_state_dict def convert_nystromformer_checkpoint(checkpoint_path, nystromformer_config_file, pytorch_dump_path): orig_state_dict = torch.load(checkpoint_path, map_location="cpu", weights_only=True)["model_state_dict"] config = NystromformerConfig.from_json_file(nystromformer_config_file) model = NystromformerForMaskedLM(config) new_state_dict = convert_checkpoint_helper(config, orig_state_dict) model.load_state_dict(new_state_dict) model.eval() model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to Nystromformer pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for Nystromformer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_nystromformer_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
from typing import Optional import numpy as np import pytest from pydantic import BaseModel, ValidationError from typing_extensions import TypedDict from docarray import BaseDoc, DocArray from docarray.documents import AudioDoc, ImageDoc, TextDoc from docarray.documents.helper import ( create_doc, create_doc_from_dict, create_doc_from_typeddict, ) from docarray.typing import AudioNdArray def test_multi_modal_doc(): class MyMultiModalDoc(BaseDoc): image: ImageDoc text: TextDoc doc = MyMultiModalDoc( image=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(text='hello') ) assert isinstance(doc.image, BaseDoc) assert isinstance(doc.image, ImageDoc) assert isinstance(doc.text, TextDoc) assert doc.text.text == 'hello' assert (doc.image.tensor == np.zeros((3, 224, 224))).all() def test_nested_chunks_document(): class ChunksDocument(BaseDoc): text: str images: DocArray[ImageDoc] doc = ChunksDocument( text='hello', images=DocArray[ImageDoc]([ImageDoc() for _ in range(10)]), ) assert isinstance(doc.images, DocArray) def test_create_doc(): with pytest.raises(ValueError): _ = create_doc( 'MyMultiModalDoc', __base__=BaseModel, image=(ImageDoc, ...), text=(TextDoc, ...), ) MyMultiModalDoc = create_doc( 'MyMultiModalDoc', image=(ImageDoc, ...), text=(TextDoc, ...) ) assert issubclass(MyMultiModalDoc, BaseDoc) doc = MyMultiModalDoc( image=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(text='hello') ) assert isinstance(doc.image, BaseDoc) assert isinstance(doc.image, ImageDoc) assert isinstance(doc.text, TextDoc) assert doc.text.text == 'hello' assert (doc.image.tensor == np.zeros((3, 224, 224))).all() MyAudio = create_doc( 'MyAudio', __base__=AudioDoc, title=(str, ...), tensor=(Optional[AudioNdArray], ...), ) assert issubclass(MyAudio, BaseDoc) assert issubclass(MyAudio, AudioDoc) def test_create_doc_from_typeddict(): class MyMultiModalDoc(TypedDict): image: ImageDoc text: TextDoc with pytest.raises(ValueError): _ = create_doc_from_typeddict(MyMultiModalDoc, __base__=BaseModel) Doc = create_doc_from_typeddict(MyMultiModalDoc) assert issubclass(Doc, BaseDoc) class MyAudio(TypedDict): title: str tensor: Optional[AudioNdArray] Doc = create_doc_from_typeddict(MyAudio, __base__=AudioDoc) assert issubclass(Doc, BaseDoc) assert issubclass(Doc, AudioDoc) def test_create_doc_from_dict(): data_dict = { 'image': ImageDoc(tensor=np.random.rand(3, 224, 224)), 'text': TextDoc(text='hello'), 'id': 123, } MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDoc) doc = MyDoc( image=ImageDoc(tensor=np.random.rand(3, 224, 224)), text=TextDoc(text='hey'), id=111, ) assert isinstance(doc, BaseDoc) assert isinstance(doc.text, TextDoc) assert isinstance(doc.image, ImageDoc) assert isinstance(doc.id, int) # Create a doc with an incorrect type with pytest.raises(ValidationError): doc = MyDoc( image=ImageDoc(tensor=np.random.rand(3, 224, 224)), text=['some', 'text'], # should be TextDoc id=111, ) # Handle empty data_dict with pytest.raises(ValueError): MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict={}) # Data with a None value data_dict = {'text': 'some text', 'other': None} MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDoc) doc1 = MyDoc(text='txt', other=10) doc2 = MyDoc(text='txt', other='also text') assert isinstance(doc1, BaseDoc) and isinstance(doc2, BaseDoc)
from typing import Optional import numpy as np import pytest from pydantic import BaseModel, ValidationError from typing_extensions import TypedDict from docarray import BaseDocument, DocumentArray from docarray.documents import AudioDoc, ImageDoc, TextDoc from docarray.documents.helper import ( create_doc, create_doc_from_typeddict, create_doc_from_dict, ) from docarray.typing import AudioNdArray def test_multi_modal_doc(): class MyMultiModalDoc(BaseDocument): image: ImageDoc text: TextDoc doc = MyMultiModalDoc( image=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(text='hello') ) assert isinstance(doc.image, BaseDocument) assert isinstance(doc.image, ImageDoc) assert isinstance(doc.text, TextDoc) assert doc.text.text == 'hello' assert (doc.image.tensor == np.zeros((3, 224, 224))).all() def test_nested_chunks_document(): class ChunksDocument(BaseDocument): text: str images: DocumentArray[ImageDoc] doc = ChunksDocument( text='hello', images=DocumentArray[ImageDoc]([ImageDoc() for _ in range(10)]), ) assert isinstance(doc.images, DocumentArray) def test_create_doc(): with pytest.raises(ValueError): _ = create_doc( 'MyMultiModalDoc', __base__=BaseModel, image=(ImageDoc, ...), text=(TextDoc, ...), ) MyMultiModalDoc = create_doc( 'MyMultiModalDoc', image=(ImageDoc, ...), text=(TextDoc, ...) ) assert issubclass(MyMultiModalDoc, BaseDocument) doc = MyMultiModalDoc( image=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(text='hello') ) assert isinstance(doc.image, BaseDocument) assert isinstance(doc.image, ImageDoc) assert isinstance(doc.text, TextDoc) assert doc.text.text == 'hello' assert (doc.image.tensor == np.zeros((3, 224, 224))).all() MyAudio = create_doc( 'MyAudio', __base__=AudioDoc, title=(str, ...), tensor=(Optional[AudioNdArray], ...), ) assert issubclass(MyAudio, BaseDocument) assert issubclass(MyAudio, AudioDoc) def test_create_doc_from_typeddict(): class MyMultiModalDoc(TypedDict): image: ImageDoc text: TextDoc with pytest.raises(ValueError): _ = create_doc_from_typeddict(MyMultiModalDoc, __base__=BaseModel) Doc = create_doc_from_typeddict(MyMultiModalDoc) assert issubclass(Doc, BaseDocument) class MyAudio(TypedDict): title: str tensor: Optional[AudioNdArray] Doc = create_doc_from_typeddict(MyAudio, __base__=AudioDoc) assert issubclass(Doc, BaseDocument) assert issubclass(Doc, AudioDoc) def test_create_doc_from_dict(): data_dict = { 'image': ImageDoc(tensor=np.random.rand(3, 224, 224)), 'text': TextDoc(text='hello'), 'id': 123, } MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDocument) doc = MyDoc( image=ImageDoc(tensor=np.random.rand(3, 224, 224)), text=TextDoc(text='hey'), id=111, ) assert isinstance(doc, BaseDocument) assert isinstance(doc.text, TextDoc) assert isinstance(doc.image, ImageDoc) assert isinstance(doc.id, int) # Create a doc with an incorrect type with pytest.raises(ValidationError): doc = MyDoc( image=ImageDoc(tensor=np.random.rand(3, 224, 224)), text=['some', 'text'], # should be TextDoc id=111, ) # Handle empty data_dict with pytest.raises(ValueError): MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict={}) # Data with a None value data_dict = {'text': 'some text', 'other': None} MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDocument) doc1 = MyDoc(text='txt', other=10) doc2 = MyDoc(text='txt', other='also text') assert isinstance(doc1, BaseDocument) and isinstance(doc2, BaseDocument)
import os import numpy as np import pytest as pytest from jina import Document, DocumentArray cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_connection(indexer, docker_compose): assert indexer.hostname == '127.0.0.1' assert indexer.get_query_handler().ping() @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_upsert(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) qh = indexer.get_query_handler() redis_keys = qh.keys() assert all(doc.id.encode() in redis_keys for doc in docs) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_search(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) query = DocumentArray([Document(id=doc.id) for doc in docs]) indexer.search(query, parameters={}) assert all(query_doc.content == doc.content for query_doc, doc in zip(query, docs)) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_upsert_with_duplicates(indexer, docs, docker_compose): # insert same docs twice indexer.upsert(docs, parameters={}) indexer.upsert(docs, parameters={}) qh = indexer.get_query_handler() assert len(qh.keys()) == 5 @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_add(indexer, docs, docker_compose): indexer.add(docs, parameters={}) with indexer.get_query_handler() as redis_handler: assert all(doc.id.encode() in redis_handler.keys() for doc in docs) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_add_existing(indexer, docs, docker_compose): indexer.add(docs, parameters={}) existing_doc = Document(id=docs[0].id, content='new content') indexer.add(DocumentArray([existing_doc]), parameters={}) with indexer.get_query_handler() as redis_handler: result = redis_handler.get(existing_doc.id) data = bytes(result) retrieved_doc = Document(data) assert retrieved_doc.content != existing_doc.content @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_update(indexer, docs, docker_compose): indexer.add(docs, parameters={}) for doc in docs: doc.content = 'new ' + doc.content indexer.update(docs, parameters={}) with indexer.get_query_handler() as redis_handler: for doc in docs: result = redis_handler.get(doc.id) data = bytes(result) retrieved_doc = Document(data) assert retrieved_doc.content == doc.content @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_update_non_existing(indexer, docs, docker_compose): indexer.update(docs, parameters={}) with indexer.get_query_handler() as redis_handler: assert all(doc.id.encode() not in redis_handler.keys() for doc in docs) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_search_not_found(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) query = DocumentArray([Document(id=docs[0].id), Document()]) indexer.search(query, parameters={}) assert query[0].content == docs[0].content assert query[1].content is None @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_delete(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) indexer.delete(docs[:2], parameters={}) query = DocumentArray([Document(id=doc.id) for doc in docs]) indexer.search(query, parameters={}) assert all(query_doc.content is None for query_doc in query[:2]) assert all(query_doc.content == doc.content for query_doc, doc in zip(query[2:], docs[2:])) qh = indexer.get_query_handler() assert len(qh.keys()) == 3 @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_return_embeddings(indexer, docker_compose): doc = Document(embedding=np.random.rand(1, 10)) da = DocumentArray([doc]) query1 = DocumentArray([Document(id=doc.id)]) indexer.add(da, parameters={}) indexer.search(query1, parameters={}) assert query1[0].embedding is not None assert query1[0].embedding.shape == (1, 10) query2 = DocumentArray([Document(id=doc.id)]) indexer.search(query2, parameters={"return_embeddings": False}) assert query2[0].embedding is None
import os import pytest as pytest from jina import Document, DocumentArray cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_connection(indexer, docker_compose): assert indexer.hostname == '127.0.0.1' assert indexer.get_query_handler().ping() @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_upsert(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) qh = indexer.get_query_handler() redis_keys = qh.keys() assert all(doc.id.encode() in redis_keys for doc in docs) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_search(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) query = DocumentArray([Document(id=doc.id) for doc in docs]) indexer.search(query, parameters={}) assert all(query_doc.content == doc.content for query_doc, doc in zip(query, docs)) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_upsert_with_duplicates(indexer, docs, docker_compose): # insert same docs twice indexer.upsert(docs, parameters={}) indexer.upsert(docs, parameters={}) qh = indexer.get_query_handler() assert len(qh.keys()) == 5 @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_add(indexer, docs, docker_compose): indexer.add(docs, parameters={}) with indexer.get_query_handler() as redis_handler: assert all(doc.id.encode() in redis_handler.keys() for doc in docs) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_add_existing(indexer, docs, docker_compose): indexer.add(docs, parameters={}) existing_doc = Document(id=docs[0].id, content='new content') indexer.add(DocumentArray([existing_doc]), parameters={}) with indexer.get_query_handler() as redis_handler: result = redis_handler.get(existing_doc.id) data = bytes(result) retrieved_doc = Document(data) assert retrieved_doc.content != existing_doc.content @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_update(indexer, docs, docker_compose): indexer.add(docs, parameters={}) for doc in docs: doc.content = 'new ' + doc.content indexer.update(docs, parameters={}) with indexer.get_query_handler() as redis_handler: for doc in docs: result = redis_handler.get(doc.id) data = bytes(result) retrieved_doc = Document(data) assert retrieved_doc.content == doc.content @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_update_non_existing(indexer, docs, docker_compose): indexer.update(docs, parameters={}) with indexer.get_query_handler() as redis_handler: assert all(doc.id.encode() not in redis_handler.keys() for doc in docs) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_search_not_found(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) query = DocumentArray([Document(id=docs[0].id), Document()]) indexer.search(query, parameters={}) assert query[0].content == docs[0].content assert query[1].content is None @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_delete(indexer, docs, docker_compose): indexer.upsert(docs, parameters={}) indexer.delete(docs[:2], parameters={}) query = DocumentArray([Document(id=doc.id) for doc in docs]) indexer.search(query, parameters={}) assert all(query_doc.content is None for query_doc in query[:2]) assert all(query_doc.content == doc.content for query_doc, doc in zip(query[2:], docs[2:])) qh = indexer.get_query_handler() assert len(qh.keys()) == 3
import asyncio from math import ceil import pytest from docarray import Document from jina.clients.request.asyncio import request_generator NUM_INPUT_DOCS = 30 REQUEST_SIZE = 10 @pytest.mark.asyncio async def test_asyncio_req_generator(): async def input_function(): data = [Document() for _ in range(NUM_INPUT_DOCS)] for doc in data: yield doc generator = request_generator('/', input_function(), request_size=REQUEST_SIZE) i = 0 async for req in generator: i += 1 assert len(req.docs) == REQUEST_SIZE await asyncio.sleep(0.1) assert i == ceil(NUM_INPUT_DOCS / REQUEST_SIZE) @pytest.mark.asyncio async def test_asyncio_req_generator_empty_inputs(): generator = request_generator('/', None) i = 0 async for req in generator: i += 1 assert len(req.docs) == 0 await asyncio.sleep(0.1) assert i == 1 def test_asyncio_bad_input_generator(): # exception not handled data = ['text' for _ in range(20)] request_generator('/', data, request_size=10) @pytest.mark.asyncio async def test_asyncio_bad_input_generator2(): async def input_function(): for _ in range(NUM_INPUT_DOCS): yield 42 with pytest.raises(TypeError): async for req in request_generator( exec_endpoint='/', data=input_function(), request_size=REQUEST_SIZE ): print(req.docs.summary()) async def input_function(): yield Document() yield 42 with pytest.raises(ValueError): async for req in request_generator( exec_endpoint='/', data=input_function(), request_size=REQUEST_SIZE ): print(req.docs.summary())
import asyncio from math import ceil import pytest from docarray import Document from jina.clients.request.asyncio import request_generator NUM_INPUT_DOCS = 30 REQUEST_SIZE = 10 @pytest.mark.asyncio async def test_asyncio_req_generator(): async def input_function(): data = [Document() for _ in range(NUM_INPUT_DOCS)] for doc in data: yield doc generator = request_generator('/', input_function(), request_size=REQUEST_SIZE) i = 0 async for req in generator: i += 1 assert len(req.docs) == REQUEST_SIZE await asyncio.sleep(0.1) assert i == ceil(NUM_INPUT_DOCS / REQUEST_SIZE) @pytest.mark.asyncio async def test_asyncio_req_generator_empty_inputs(): generator = request_generator('/', None) i = 0 async for req in generator: i += 1 assert len(req.docs) == 0 await asyncio.sleep(0.1) assert i == 1 def test_asyncio_bad_input_generator(): # exception not handled data = ['text' for _ in range(20)] request_generator('/', data, request_size=10) @pytest.mark.asyncio async def test_asyncio_bad_input_generator2(): async def input_function(): for _ in range(NUM_INPUT_DOCS): yield 42 with pytest.raises(TypeError): async for req in request_generator(exec_endpoint='/', data=input_function(), request_size=REQUEST_SIZE): print(req.docs.summary()) async def input_function(): yield Document() yield 42 with pytest.raises(ValueError): async for req in request_generator(exec_endpoint='/', data=input_function(), request_size=REQUEST_SIZE): print(req.docs.summary())
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/fuse_modules.py`, while adding an import statement here. """ # TODO: These functions are not used outside the `fuse_modules.py` # Keeping here for now, need to remove them later. from torch.ao.quantization.fuse_modules import ( _fuse_modules, _get_module, _set_module, fuse_known_modules, fuse_modules, get_fuser_method, ) # for backward compatibility from torch.ao.quantization.fuser_method_mappings import fuse_conv_bn, fuse_conv_bn_relu
# flake8: noqa: F401 r""" This file is in the process of migration to `torch/ao/quantization`, and is kept here for compatibility while the migration process is ongoing. If you are adding a new entry/functionality, please, add it to the `torch/ao/quantization/fuse_modules.py`, while adding an import statement here. """ # TODO: These functions are not used outside the `fuse_modules.py` # Keeping here for now, need to remove them later. from torch.ao.quantization.fuse_modules import ( _fuse_modules, _get_module, _set_module, fuse_known_modules, fuse_modules, get_fuser_method, ) # for backward compatiblity from torch.ao.quantization.fuser_method_mappings import fuse_conv_bn, fuse_conv_bn_relu
from typing import Dict, List, Optional, Set import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.utils.reduce import reduce, reduce_all class InnerDoc(BaseDoc): integer: int inner_list: List class MMDoc(BaseDoc): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[ImageDoc] = None matches: Optional[DocList] = None matches_with_same_id: Optional[DocList] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocList[MMDoc]([MMDoc()]), matches_with_same_id=DocList[MMDoc]( [MMDoc(id='a', matches=DocList[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, inner_list=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocList[MMDoc]([MMDoc()]), matches_with_same_id=DocList[MMDoc]( [MMDoc(id='a', matches=DocList[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, inner_list=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_reduce_different_ids(): da1 = DocList[MMDoc]([MMDoc() for _ in range(10)]) da2 = DocList[MMDoc]([MMDoc() for _ in range(10)]) result = reduce(da1, da2) assert len(result) == 20 # da1 is changed in place (no extra memory) assert len(da1) == 20 def test_reduce(doc1, doc2): da1 = DocList[MMDoc]([doc1, MMDoc()]) da2 = DocList[MMDoc]([MMDoc(), doc2]) result = reduce(da1, da2) assert len(result) == 3 # da1 is changed in place (no extra memory) assert len(da1) == 3 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b'] def test_reduce_all(doc1, doc2): da1 = DocList[MMDoc]([doc1, MMDoc()]) da2 = DocList[MMDoc]([MMDoc(), doc2]) da3 = DocList[MMDoc]([MMDoc(), MMDoc(), doc1]) result = reduce_all([da1, da2, da3]) assert len(result) == 5 # da1 is changed in place (no extra memory) assert len(da1) == 5 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == [ 'a', 'b', 'c', 'd', 'e', 'f', 'a', 'b', 'c', 'd', 'e', 'f', ] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b', 'c', 'd', 'a', 'b'] def test_update_ndarray(): from docarray.typing import NdArray import numpy as np class MyDoc(BaseDoc): embedding: NdArray[128] embedding1 = np.random.rand(128) embedding2 = np.random.rand(128) doc1 = MyDoc(id='0', embedding=embedding1) doc2 = MyDoc(id='0', embedding=embedding2) doc1.update(doc2) assert (doc1.embedding == embedding2).all()
from typing import Dict, List, Optional, Set import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.utils.reduce import reduce, reduce_all class InnerDoc(BaseDoc): integer: int inner_list: List class MMDoc(BaseDoc): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[ImageDoc] = None matches: Optional[DocList] = None matches_with_same_id: Optional[DocList] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocList[MMDoc]([MMDoc()]), matches_with_same_id=DocList[MMDoc]( [MMDoc(id='a', matches=DocList[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, inner_list=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocList[MMDoc]([MMDoc()]), matches_with_same_id=DocList[MMDoc]( [MMDoc(id='a', matches=DocList[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, inner_list=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_reduce_different_ids(): da1 = DocList[MMDoc]([MMDoc() for _ in range(10)]) da2 = DocList[MMDoc]([MMDoc() for _ in range(10)]) result = reduce(da1, da2) assert len(result) == 20 # da1 is changed in place (no extra memory) assert len(da1) == 20 def test_reduce(doc1, doc2): da1 = DocList[MMDoc]([doc1, MMDoc()]) da2 = DocList[MMDoc]([MMDoc(), doc2]) result = reduce(da1, da2) assert len(result) == 3 # da1 is changed in place (no extra memory) assert len(da1) == 3 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b'] def test_reduce_all(doc1, doc2): da1 = DocList[MMDoc]([doc1, MMDoc()]) da2 = DocList[MMDoc]([MMDoc(), doc2]) da3 = DocList[MMDoc]([MMDoc(), MMDoc(), doc1]) result = reduce_all([da1, da2, da3]) assert len(result) == 5 # da1 is changed in place (no extra memory) assert len(da1) == 5 merged_doc = result[0] assert merged_doc.text == 'hey here 2' assert merged_doc.categories == [ 'a', 'b', 'c', 'd', 'e', 'f', 'a', 'b', 'c', 'd', 'e', 'f', ] assert len(merged_doc.matches) == 2 assert merged_doc.opt_int == 5 assert merged_doc.price == 5 assert merged_doc.test_set == {'a', 'b'} assert len(merged_doc.matches_with_same_id) == 1 assert len(merged_doc.matches_with_same_id[0].matches) == 2 assert merged_doc.inner_doc.integer == 3 assert merged_doc.inner_doc.inner_list == ['c', 'd', 'a', 'b', 'c', 'd', 'a', 'b']
from typing import Any, Dict, Iterator import torch from ..utils import _log_api_usage_once try: from ._load_gpu_decoder import _HAS_GPU_VIDEO_DECODER except ModuleNotFoundError: _HAS_GPU_VIDEO_DECODER = False from ._video_opt import ( _HAS_VIDEO_OPT, _probe_video_from_file, _probe_video_from_memory, _read_video_from_file, _read_video_from_memory, _read_video_timestamps_from_file, _read_video_timestamps_from_memory, Timebase, VideoMetaData, ) from .image import ( decode_image, decode_jpeg, decode_png, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) from .video import read_video, read_video_timestamps, write_video from .video_reader import VideoReader __all__ = [ "write_video", "read_video", "read_video_timestamps", "_read_video_from_file", "_read_video_timestamps_from_file", "_probe_video_from_file", "_read_video_from_memory", "_read_video_timestamps_from_memory", "_probe_video_from_memory", "_HAS_VIDEO_OPT", "_HAS_GPU_VIDEO_DECODER", "_read_video_clip_from_memory", "_read_video_meta_data", "VideoMetaData", "Timebase", "ImageReadMode", "decode_image", "decode_jpeg", "decode_png", "encode_jpeg", "encode_png", "read_file", "read_image", "write_file", "write_jpeg", "write_png", "Video", "VideoReader", ]
from typing import Any, Dict, Iterator import torch from ..utils import _log_api_usage_once from ._video_opt import ( _HAS_VIDEO_OPT, _probe_video_from_file, _probe_video_from_memory, _read_video_from_file, _read_video_from_memory, _read_video_timestamps_from_file, _read_video_timestamps_from_memory, Timebase, VideoMetaData, ) from .image import ( decode_image, decode_jpeg, decode_png, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) from .video import read_video, read_video_timestamps, write_video from .video_reader import VideoReader __all__ = [ "write_video", "read_video", "read_video_timestamps", "_read_video_from_file", "_read_video_timestamps_from_file", "_probe_video_from_file", "_read_video_from_memory", "_read_video_timestamps_from_memory", "_probe_video_from_memory", "_HAS_VIDEO_OPT", "_read_video_clip_from_memory", "_read_video_meta_data", "VideoMetaData", "Timebase", "ImageReadMode", "decode_image", "decode_jpeg", "decode_png", "encode_jpeg", "encode_png", "read_file", "read_image", "write_file", "write_jpeg", "write_png", "Video", "VideoReader", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.dataforseo_api_search.tool import ( DataForSeoAPISearchResults, DataForSeoAPISearchRun, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "DataForSeoAPISearchRun": "langchain_community.tools.dataforseo_api_search.tool", "DataForSeoAPISearchResults": ( "langchain_community.tools.dataforseo_api_search.tool" ), } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "DataForSeoAPISearchResults", "DataForSeoAPISearchRun", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.dataforseo_api_search.tool import ( DataForSeoAPISearchResults, DataForSeoAPISearchRun, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "DataForSeoAPISearchRun": "langchain_community.tools.dataforseo_api_search.tool", "DataForSeoAPISearchResults": ( "langchain_community.tools.dataforseo_api_search.tool" ), } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "DataForSeoAPISearchRun", "DataForSeoAPISearchResults", ]
import pytest from llama_index.postprocessor.nvidia_rerank import NVIDIARerank import respx @pytest.fixture(autouse=True) def mock_local_models(respx_mock: respx.MockRouter) -> None: respx_mock.get( "https://test_url/v1/models", json={ "data": [ {"id": "model1"}, ] }, ) @pytest.mark.integration() def test_available_models(mode: dict) -> None: models = NVIDIARerank(**mode).available_models assert models assert isinstance(models, list) assert all(isinstance(model.id, str) for model in models)
import pytest from llama_index.postprocessor.nvidia_rerank import NVIDIARerank from requests_mock import Mocker @pytest.fixture(autouse=True) def mock_local_models(requests_mock: Mocker) -> None: requests_mock.get( "https://test_url/v1/models", json={ "data": [ {"id": "model1"}, ] }, ) @pytest.mark.integration() def test_available_models(mode: dict) -> None: models = NVIDIARerank(**mode).available_models assert models assert isinstance(models, list) assert all(isinstance(model.id, str) for model in models)
import os from typing import Dict DEPLOYMENT_FILES = [ 'statefulset-executor', 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES: yaml = _get_yaml(template, params) if params.get('device_plugins'): yaml = _get_deployment_with_device_plugins(yaml, params) if params.get('env_from_secret'): yaml = _get_deployment_with_env_secret(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path, encoding='utf-8') as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path, encoding='utf-8') as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = str(value) return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment def _get_deployment_with_env_secret(deployment: Dict, params: Dict) -> Dict: for k,v in params['env_from_secret'].items(): env_var = {} env_var['name'] = k env_var['valueFrom'] = {'secretKeyRef': {'name': v['name'], 'key': v['key']}} deployment['spec']['template']['spec']['containers'][0]['env'].append(env_var) return deployment
import os from typing import Dict DEPLOYMENT_FILES = [ 'statefulset-executor', 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES: yaml = _get_yaml(template, params) if params.get('device_plugins'): yaml = _get_deployment_with_device_plugins(yaml, params) if params.get('env_from_secret'): yaml = _get_deployment_with_env_secret(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = str(value) return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment def _get_deployment_with_env_secret(deployment: Dict, params: Dict) -> Dict: for k,v in params['env_from_secret'].items(): env_var = {} env_var['name'] = k env_var['valueFrom'] = {'secretKeyRef': {'name': v['name'], 'key': v['key']}} deployment['spec']['template']['spec']['containers'][0]['env'].append(env_var) return deployment
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch.nn as nn from transformers.utils import logging logger = logging.get_logger(__name__) class GradientCheckpointingLayer(nn.Module): """Base class for layers with gradient checkpointing. This class enables gradient checkpointing functionality for a layer. By default, gradient checkpointing is disabled (`gradient_checkpointing = False`). When `model.set_gradient_checkpointing()` is called, gradient checkpointing is enabled by setting `gradient_checkpointing = True` and assigning a checkpointing function to `_gradient_checkpointing_func`. Important: When using gradient checkpointing with `use_reentrant=True`, inputs that require gradients (e.g. hidden states) must be passed as positional arguments (`*args`) rather than keyword arguments to properly propagate gradients. Example: ```python >>> # Correct - hidden_states passed as positional arg >>> out = self.layer(hidden_states, attention_mask=attention_mask) >>> # Incorrect - hidden_states passed as keyword arg >>> out = self.layer(hidden_states=hidden_states, attention_mask=attention_mask) ``` """ gradient_checkpointing = False def __call__(self, *args, **kwargs): if self.gradient_checkpointing and self.training: do_warn = False layer_name = self.__class__.__name__ message = f"Caching is incompatible with gradient checkpointing in {layer_name}. Setting" if "use_cache" in kwargs and kwargs["use_cache"]: kwargs["use_cache"] = False message += " `use_cache=False`," do_warn = True # different names for the same thing in different layers if "past_key_value" in kwargs and kwargs["past_key_value"] is not None: kwargs["past_key_value"] = None message += " `past_key_value=None`," do_warn = True if "past_key_values" in kwargs and kwargs["past_key_values"] is not None: kwargs["past_key_values"] = None message += " `past_key_values=None`," do_warn = True if "layer_past" in kwargs and kwargs["layer_past"] is not None: kwargs["layer_past"] = None message += " `layer_past=None`," do_warn = True # warn if anything was changed if do_warn: message = message.rstrip(",") + "." logger.warning(message) return self._gradient_checkpointing_func(partial(super().__call__, **kwargs), *args) return super().__call__(*args, **kwargs)
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch.nn as nn class GradientCheckpointingLayer(nn.Module): """Base class for layers with gradient checkpointing. This class enables gradient checkpointing functionality for a layer. By default, gradient checkpointing is disabled (`gradient_checkpointing = False`). When `model.set_gradient_checkpointing()` is called, gradient checkpointing is enabled by setting `gradient_checkpointing = True` and assigning a checkpointing function to `_gradient_checkpointing_func`. Important: When using gradient checkpointing with `use_reentrant=True`, inputs that require gradients (e.g. hidden states) must be passed as positional arguments (`*args`) rather than keyword arguments to properly propagate gradients. Example: ```python >>> # Correct - hidden_states passed as positional arg >>> out = self.layer(hidden_states, attention_mask=attention_mask) >>> # Incorrect - hidden_states passed as keyword arg >>> out = self.layer(hidden_states=hidden_states, attention_mask=attention_mask) ``` """ gradient_checkpointing = False def __call__(self, *args, **kwargs): if self.gradient_checkpointing and self.training: return self._gradient_checkpointing_func(partial(super().__call__, **kwargs), *args) return super().__call__(*args, **kwargs)
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.14.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.13.2.dev1" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import os import urllib import pytest from pydantic import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TextUrl REMOTE_TXT = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TXT = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'penal_colony.txt') @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TXT, '<!DOCTYPE html>'), (LOCAL_TXT, '“It’s a peculiar apparatus,”')], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TXT, LOCAL_TXT]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_bytes() assert isinstance(txt_bytes, bytes) def test_proto_text_url(): uri = parse_obj_as(TextUrl, LOCAL_TXT) uri._to_node_protobuf() @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TXT) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_bytes(timeout=0.001) def test_json_schema(): schema_json_of(TextUrl) def test_dump_json(): url = parse_obj_as(TextUrl, REMOTE_TXT) orjson_dumps(url)
import os import urllib import pytest from pydantic import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TextUrl REMOTE_TXT = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TXT = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'penal_colony.txt') @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TXT, '<!DOCTYPE html>'), (LOCAL_TXT, '“It’s a peculiar apparatus,”')], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TXT, LOCAL_TXT]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_to_bytes() assert isinstance(txt_bytes, bytes) def test_proto_text_url(): uri = parse_obj_as(TextUrl, LOCAL_TXT) uri._to_node_protobuf() @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TXT) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_to_bytes(timeout=0.001) def test_json_schema(): schema_json_of(TextUrl) def test_dump_json(): url = parse_obj_as(TextUrl, REMOTE_TXT) orjson_dumps(url)
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Gemma3 model.""" import unittest from io import BytesIO import requests from PIL import Image from transformers import is_torch_available from transformers.testing_utils import ( cleanup, require_torch_accelerator, slow, torch_device, ) if is_torch_available(): import torch from transformers import ShieldGemma2ForImageClassification, ShieldGemma2Processor @slow @require_torch_accelerator # @require_read_token class ShieldGemma2IntegrationTest(unittest.TestCase): def tearDown(self): cleanup(torch_device, gc_collect=True) def test_model(self): model_id = "google/shieldgemma-2-4b-it" processor = ShieldGemma2Processor.from_pretrained(model_id, padding_side="left") url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png" response = requests.get(url) image = Image.open(BytesIO(response.content)) model = ShieldGemma2ForImageClassification.from_pretrained(model_id, torch_dtype=torch.bfloat16).to( torch_device ) inputs = processor(images=[image]).to(torch_device) output = model(**inputs) self.assertEqual(len(output.probabilities), 3) for element in output.probabilities: self.assertEqual(len(element), 2)
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Gemma3 model.""" import unittest from io import BytesIO import requests from PIL import Image from transformers import is_torch_available from transformers.testing_utils import ( cleanup, require_torch_accelerator, slow, torch_device, ) if is_torch_available(): import torch from transformers import ShieldGemma2ForImageClassification, ShieldGemma2Processor @slow @require_torch_accelerator # @require_read_token class ShieldGemma2IntegrationTest(unittest.TestCase): def tearDown(self): cleanup(torch_device, gc_collect=True) def test_model(self): model_id = "google/shieldgemma-2-4b-it" processor = ShieldGemma2Processor.from_pretrained(model_id, padding_side="left") url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png" response = requests.get(url) image = Image.open(BytesIO(response.content)) model = ShieldGemma2ForImageClassification.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 ).to(torch_device) inputs = processor(images=[image]).to(torch_device) output = model(**inputs) self.assertEqual(len(output.probabilities), 3) for element in output.probabilities: self.assertEqual(len(element), 2)
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, JPEG, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomChannelPermutation, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, RGB, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, GaussianNoise, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImage, ToPILImage, ToPureTensor from ._utils import check_type, get_bounding_boxes, has_all, has_any, query_chw, query_size from ._deprecated import ToTensor # usort: skip
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, JPEG, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomChannelPermutation, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, RGB, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, GaussianNoise, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImage, ToPILImage, ToPureTensor from ._deprecated import ToTensor # usort: skip
import pytest from backend.data import db from backend.executor import ExecutionScheduler from backend.server.model import CreateGraph from backend.usecases.sample import create_test_graph, create_test_user from backend.util.service import get_service_client from backend.util.test import SpinTestServer @pytest.mark.asyncio(scope="session") async def test_agent_schedule(server: SpinTestServer): await db.connect() test_user = await create_test_user() test_graph = await server.agent_server.test_create_graph( create_graph=CreateGraph(graph=create_test_graph()), is_template=False, user_id=test_user.id, ) scheduler = get_service_client(ExecutionScheduler) schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 0 schedule = scheduler.add_execution_schedule( graph_id=test_graph.id, user_id=test_user.id, graph_version=1, cron="0 0 * * *", input_data={"input": "data"}, ) assert schedule schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 1 assert schedules[0].cron == "0 0 * * *" scheduler.delete_schedule(schedule.id, user_id=test_user.id) schedules = scheduler.get_execution_schedules(test_graph.id, user_id=test_user.id) assert len(schedules) == 0
import pytest from backend.data import db from backend.executor import ExecutionScheduler from backend.server.model import CreateGraph from backend.usecases.sample import create_test_graph, create_test_user from backend.util.service import get_service_client from backend.util.test import SpinTestServer @pytest.mark.asyncio(scope="session") async def test_agent_schedule(server: SpinTestServer): await db.connect() test_user = await create_test_user() test_graph = await server.agent_server.test_create_graph( create_graph=CreateGraph(graph=create_test_graph()), is_template=False, user_id=test_user.id, ) scheduler = get_service_client(ExecutionScheduler) schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 0 schedule_id = scheduler.add_execution_schedule( graph_id=test_graph.id, user_id=test_user.id, graph_version=1, cron="0 0 * * *", input_data={"input": "data"}, ) assert schedule_id schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 1 assert schedules[schedule_id] == "0 0 * * *" scheduler.update_schedule(schedule_id, is_enabled=False, user_id=test_user.id) schedules = scheduler.get_execution_schedules(test_graph.id, user_id=test_user.id) assert len(schedules) == 0