input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class PAA(SingleStageDetector): """Implementation of `PAA <https://arxiv.org/pdf/2007.08103.pdf>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of PAA. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of PAA. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class PAA(SingleStageDetector): """Implementation of `PAA <https://arxiv.org/pdf/2007.08103.pdf>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of PAA. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of PAA. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
from abc import ABC from typing import Any, Optional, Tuple, Type, TypeVar, Union from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.torch_tensor import TorchTensor T = TypeVar('T', bound='Embedding') class EmbeddingMixin(AbstractTensor, ABC): alternative_type: Optional[Type] = None @classmethod def __validate_getitem__(cls, item: Any) -> Tuple[int]: shape = super().__validate_getitem__(item) if len(shape) > 1: error_msg = f'`{cls}` can only have a single dimension/axis.' if cls.alternative_type: error_msg += f' Consider using {cls.alternative_type} instead.' raise ValueError(error_msg) return shape class NdArrayEmbedding(NdArray, EmbeddingMixin): alternative_type = NdArray torch_base = type(TorchTensor) # type: Any embedding_base = type(EmbeddingMixin) # type: Any class metaTorchAndEmbedding(torch_base, embedding_base): pass class TorchEmbedding(TorchTensor, EmbeddingMixin, metaclass=metaTorchAndEmbedding): alternative_type = TorchTensor Embedding = Union[NdArrayEmbedding, TorchEmbedding]
from typing import TypeVar from docarray.proto import NodeProto from docarray.typing.tensor import NdArray T = TypeVar('T', bound='Embedding') class Embedding(NdArray): def _to_node_protobuf(self: T, field: str = 'tensor') -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :param field: field in which to store the content in the node proto :return: the nested item protobuf message """ return super()._to_node_protobuf(field='embedding')
import PIL.Image import pytest import torch import torchvision.prototype.transforms.utils from prototype_common_utils import make_bounding_box, make_detection_mask, make_image from torchvision.prototype import datapoints from torchvision.prototype.transforms.functional import to_image_pil from torchvision.prototype.transforms.utils import has_all, has_any IMAGE = make_image(color_space="RGB") BOUNDING_BOX = make_bounding_box(format=datapoints.BoundingBoxFormat.XYXY, spatial_size=IMAGE.spatial_size) MASK = make_detection_mask(size=IMAGE.spatial_size) @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ((MASK,), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX,), (datapoints.Image, datapoints.Mask), False), ((IMAGE,), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, datapoints.Image),), True), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ((IMAGE,), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True), ( (torch.Tensor(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True, ), ( (to_image_pil(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True, ), ], ) def test_has_any(sample, types, expected): assert has_any(sample, *types) is expected @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, (datapoints.Image, datapoints.BoundingBox, datapoints.Mask)),), True, ), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ], ) def test_has_all(sample, types, expected): assert has_all(sample, *types) is expected
import PIL.Image import pytest import torch import torchvision.prototype.transforms.utils from prototype_common_utils import make_bounding_box, make_detection_mask, make_image from torchvision.prototype import datapoints from torchvision.prototype.transforms.functional import to_image_pil from torchvision.prototype.transforms.utils import has_all, has_any IMAGE = make_image(color_space=datapoints.ColorSpace.RGB) BOUNDING_BOX = make_bounding_box(format=datapoints.BoundingBoxFormat.XYXY, spatial_size=IMAGE.spatial_size) MASK = make_detection_mask(size=IMAGE.spatial_size) @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ((MASK,), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX,), (datapoints.Image, datapoints.Mask), False), ((IMAGE,), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, datapoints.Image),), True), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ((IMAGE,), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True), ( (torch.Tensor(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True, ), ( (to_image_pil(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.prototype.transforms.utils.is_simple_tensor), True, ), ], ) def test_has_any(sample, types, expected): assert has_any(sample, *types) is expected @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBox, datapoints.Mask), True), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox), False), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX), (datapoints.Image, datapoints.BoundingBox, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, (datapoints.Image, datapoints.BoundingBox, datapoints.Mask)),), True, ), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ], ) def test_has_all(sample, types, expected): assert has_all(sample, *types) is expected
"""Base tool spec class.""" import asyncio from inspect import signature from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import ToolMetadata from llama_index.core.tools.utils import create_schema_from_function AsyncCallable = Callable[..., Awaitable[Any]] # TODO: deprecate the Tuple (there's no use for it) SPEC_FUNCTION_TYPE = Union[str, Tuple[str, str]] class BaseToolSpec: """Base tool spec class.""" # list of functions that you'd want to convert to spec spec_functions: List[SPEC_FUNCTION_TYPE] def get_fn_schema_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[Type[BaseModel]]: """ Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ spec_functions = spec_functions or self.spec_functions for fn in spec_functions: if fn == fn_name: return create_schema_from_function(fn_name, getattr(self, fn_name)) raise ValueError(f"Invalid function name: {fn_name}") def get_metadata_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[ToolMetadata]: """ Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ try: func = getattr(self, fn_name) except AttributeError: return None name = fn_name docstring = func.__doc__ or "" description = f"{name}{signature(func)}\n{docstring}" fn_schema = self.get_fn_schema_from_fn_name( fn_name, spec_functions=spec_functions ) return ToolMetadata(name=name, description=description, fn_schema=fn_schema) def to_tool_list( self, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None, func_to_metadata_mapping: Optional[Dict[str, ToolMetadata]] = None, ) -> List[FunctionTool]: """Convert tool spec to list of tools.""" spec_functions = spec_functions or self.spec_functions func_to_metadata_mapping = func_to_metadata_mapping or {} tool_list = [] for func_spec in spec_functions: func_sync = None func_async = None if isinstance(func_spec, str): func = getattr(self, func_spec) if asyncio.iscoroutinefunction(func): func_async = func else: func_sync = func metadata = func_to_metadata_mapping.get(func_spec, None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec) elif isinstance(func_spec, tuple) and len(func_spec) == 2: func_sync = getattr(self, func_spec[0]) func_async = getattr(self, func_spec[1]) metadata = func_to_metadata_mapping.get(func_spec[0], None) if metadata is None: metadata = func_to_metadata_mapping.get(func_spec[1], None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec[0]) else: raise ValueError( "spec_functions must be of type: List[Union[str, Tuple[str, str]]]" ) if func_sync is None: if func_async is not None: func_sync = patch_sync(func_async) else: raise ValueError( f"Could not retrieve a function for spec: {func_spec}" ) tool = FunctionTool.from_defaults( fn=func_sync, async_fn=func_async, tool_metadata=metadata, ) tool_list.append(tool) return tool_list def patch_sync(func_async: AsyncCallable) -> Callable: """Patch sync function from async function.""" def patched_sync(*args: Any, **kwargs: Any) -> Any: loop = asyncio.get_event_loop() return loop.run_until_complete(func_async(*args, **kwargs)) return patched_sync
"""Base tool spec class.""" import asyncio from inspect import signature from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import ToolMetadata from llama_index.core.tools.utils import create_schema_from_function AsyncCallable = Callable[..., Awaitable[Any]] # TODO: deprecate the Tuple (there's no use for it) SPEC_FUNCTION_TYPE = Union[str, Tuple[str, str]] class BaseToolSpec: """Base tool spec class.""" # list of functions that you'd want to convert to spec spec_functions: List[SPEC_FUNCTION_TYPE] def get_fn_schema_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[Type[BaseModel]]: """Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ spec_functions = spec_functions or self.spec_functions for fn in spec_functions: if fn == fn_name: return create_schema_from_function(fn_name, getattr(self, fn_name)) raise ValueError(f"Invalid function name: {fn_name}") def get_metadata_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[ToolMetadata]: """Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ try: func = getattr(self, fn_name) except AttributeError: return None name = fn_name docstring = func.__doc__ or "" description = f"{name}{signature(func)}\n{docstring}" fn_schema = self.get_fn_schema_from_fn_name( fn_name, spec_functions=spec_functions ) return ToolMetadata(name=name, description=description, fn_schema=fn_schema) def to_tool_list( self, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None, func_to_metadata_mapping: Optional[Dict[str, ToolMetadata]] = None, ) -> List[FunctionTool]: """Convert tool spec to list of tools.""" spec_functions = spec_functions or self.spec_functions func_to_metadata_mapping = func_to_metadata_mapping or {} tool_list = [] for func_spec in spec_functions: func_sync = None func_async = None if isinstance(func_spec, str): func = getattr(self, func_spec) if asyncio.iscoroutinefunction(func): func_async = func else: func_sync = func metadata = func_to_metadata_mapping.get(func_spec, None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec) elif isinstance(func_spec, tuple) and len(func_spec) == 2: func_sync = getattr(self, func_spec[0]) func_async = getattr(self, func_spec[1]) metadata = func_to_metadata_mapping.get(func_spec[0], None) if metadata is None: metadata = func_to_metadata_mapping.get(func_spec[1], None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec[0]) else: raise ValueError( "spec_functions must be of type: List[Union[str, Tuple[str, str]]]" ) if func_sync is None: if func_async is not None: func_sync = patch_sync(func_async) else: raise ValueError( f"Could not retrieve a function for spec: {func_spec}" ) tool = FunctionTool.from_defaults( fn=func_sync, async_fn=func_async, tool_metadata=metadata, ) tool_list.append(tool) return tool_list def patch_sync(func_async: AsyncCallable) -> Callable: """Patch sync function from async function.""" def patched_sync(*args: Any, **kwargs: Any) -> Any: loop = asyncio.get_event_loop() return loop.run_until_complete(func_async(*args, **kwargs)) return patched_sync
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.decomposition import PCA from sklearn.metrics import euclidean_distances # Generate the data EPSILON = np.finfo(np.float32).eps n_samples = 20 rng = np.random.RandomState(seed=3) X_true = rng.randint(0, 20, 2 * n_samples).astype(float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() # Compute pairwise Euclidean distances distances = euclidean_distances(X_true) # Add noise to the distances noise = rng.rand(n_samples, n_samples) noise = noise + noise.T np.fill_diagonal(noise, 0) distances += noise mds = manifold.MDS( n_components=2, max_iter=3000, eps=1e-9, random_state=42, dissimilarity="precomputed", n_jobs=1, ) X_mds = mds.fit(distances).embedding_ nmds = manifold.MDS( n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=42, n_jobs=1, n_init=1, ) X_nmds = nmds.fit_transform(distances) # Rescale the data X_mds *= np.sqrt((X_true**2).sum()) / np.sqrt((X_mds**2).sum()) X_nmds *= np.sqrt((X_true**2).sum()) / np.sqrt((X_nmds**2).sum()) # Rotate the data pca = PCA(n_components=2) X_true = pca.fit_transform(X_true) X_mds = pca.fit_transform(X_mds) X_nmds = pca.fit_transform(X_nmds) # Align the sign of PCs for i in [0, 1]: if np.corrcoef(X_mds[:, i], X_true[:, i])[0, 1] < 0: X_mds[:, i] *= -1 if np.corrcoef(X_nmds[:, i], X_true[:, i])[0, 1] < 0: X_nmds[:, i] *= -1 fig = plt.figure(1) ax = plt.axes([0.0, 0.0, 1.0, 1.0]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color="navy", s=s, lw=0, label="True Position") plt.scatter(X_mds[:, 0], X_mds[:, 1], color="turquoise", s=s, lw=0, label="MDS") plt.scatter(X_nmds[:, 0], X_nmds[:, 1], color="darkorange", s=s, lw=0, label="NMDS") plt.legend(scatterpoints=1, loc="best", shadow=False) # Plot the edges start_idx, end_idx = np.where(X_mds) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [ [X_true[i, :], X_true[j, :]] for i in range(len(X_true)) for j in range(len(X_true)) ] edges = distances.max() / (distances + EPSILON) * 100 np.fill_diagonal(edges, 0) edges = np.abs(edges) lc = LineCollection( segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, edges.max()) ) lc.set_array(edges.flatten()) lc.set_linewidths(np.full(len(segments), 0.5)) ax.add_collection(lc) plt.show()
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.decomposition import PCA from sklearn.metrics import euclidean_distances EPSILON = np.finfo(np.float32).eps n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS( n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1, ) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS( n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1, ) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true**2).sum()) / np.sqrt((pos**2).sum()) npos *= np.sqrt((X_true**2).sum()) / np.sqrt((npos**2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0.0, 0.0, 1.0, 1.0]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color="navy", s=s, lw=0, label="True Position") plt.scatter(pos[:, 0], pos[:, 1], color="turquoise", s=s, lw=0, label="MDS") plt.scatter(npos[:, 0], npos[:, 1], color="darkorange", s=s, lw=0, label="NMDS") plt.legend(scatterpoints=1, loc="best", shadow=False) similarities = similarities.max() / (similarities + EPSILON) * 100 np.fill_diagonal(similarities, 0) # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [ [X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos)) ] values = np.abs(similarities) lc = LineCollection( segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max()) ) lc.set_array(similarities.flatten()) lc.set_linewidths(np.full(len(segments), 0.5)) ax.add_collection(lc) plt.show()
import os from functools import partial from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem class BaseCompressedFileFileSystem(AbstractArchiveFileSystem): """Read contents of compressed file as a filesystem with one file inside.""" root_marker = "" protocol: str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) compression: str = None # compression type in fsspec. ex: "gzip" extension: str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, fo: str = "", target_protocol: Optional[str] = None, target_options: Optional[dict] = None, **kwargs ): """ The compressed file system can be instantiated from any compressed file. It reads the contents of compressed file as a filesystem with one file inside, as if it was an archive. The single file inside the filesystem is named after the compresssed file, without the compression extension at the end of the filename. Args: fo (:obj:``str``): Path to compressed file. Will fetch file using ``fsspec.open()`` mode (:obj:``str``): Currently, only 'rb' accepted target_protocol(:obj:``str``, optional): To override the FS protocol inferred from a URL. target_options (:obj:``dict``, optional): Kwargs passed when instantiating the target FS. """ super().__init__(self, **kwargs) self.fo = fo.__fspath__() if hasattr(fo, "__fspath__") else fo # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode self._open_with_fsspec = partial( fsspec.open, self.fo, mode="rb", protocol=target_protocol, compression=self.compression, client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs", {}), # To avoid issues if it was already passed. }, **(target_options or {}), ) self.compressed_name = os.path.basename(self.fo.split("::")[0]) self.uncompressed_name = ( self.compressed_name[: self.compressed_name.rindex(".")] if "." in self.compressed_name else self.compressed_name ) self.dir_cache = None @classmethod def _strip_protocol(cls, path): # compressed file paths are always relative to the archive root return super()._strip_protocol(path).lstrip("/") def _get_dirs(self): if self.dir_cache is None: f = {**self._open_with_fsspec().fs.info(self.fo), "name": self.uncompressed_name} self.dir_cache = {f["name"]: f} def cat(self, path: str): with self._open_with_fsspec().open() as f: return f.read() def _open( self, path: str, mode: str = "rb", block_size=None, autocommit=True, cache_options=None, **kwargs, ): path = self._strip_protocol(path) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.fo} opened with mode 'rb'") return self._open_with_fsspec().open() class Bz2FileSystem(BaseCompressedFileFileSystem): """Read contents of BZ2 file as a filesystem with one file inside.""" protocol = "bz2" compression = "bz2" extension = ".bz2" class GzipFileSystem(BaseCompressedFileFileSystem): """Read contents of GZIP file as a filesystem with one file inside.""" protocol = "gzip" compression = "gzip" extension = ".gz" class Lz4FileSystem(BaseCompressedFileFileSystem): """Read contents of LZ4 file as a filesystem with one file inside.""" protocol = "lz4" compression = "lz4" extension = ".lz4" class XzFileSystem(BaseCompressedFileFileSystem): """Read contents of .xz (LZMA) file as a filesystem with one file inside.""" protocol = "xz" compression = "xz" extension = ".xz" class ZstdFileSystem(BaseCompressedFileFileSystem): """ Read contents of .zstd file as a filesystem with one file inside. """ protocol = "zstd" compression = "zstd" extension = ".zst"
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem class BaseCompressedFileFileSystem(AbstractArchiveFileSystem): """Read contents of compressed file as a filesystem with one file inside.""" root_marker = "" protocol: str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) compression: str = None # compression type in fsspec. ex: "gzip" extension: str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, fo: str = "", target_protocol: Optional[str] = None, target_options: Optional[dict] = None, **kwargs ): """ The compressed file system can be instantiated from any compressed file. It reads the contents of compressed file as a filesystem with one file inside, as if it was an archive. The single file inside the filesystem is named after the compresssed file, without the compression extension at the end of the filename. Args: fo (:obj:``str``): Path to compressed file. Will fetch file using ``fsspec.open()`` mode (:obj:``str``): Currently, only 'rb' accepted target_protocol(:obj:``str``, optional): To override the FS protocol inferred from a URL. target_options (:obj:``dict``, optional): Kwargs passed when instantiating the target FS. """ super().__init__(self, **kwargs) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode self.file = fsspec.open( fo, mode="rb", protocol=target_protocol, compression=self.compression, client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs", {}), # To avoid issues if it was already passed. }, **(target_options or {}), ) self.compressed_name = os.path.basename(self.file.path.split("::")[0]) self.uncompressed_name = ( self.compressed_name[: self.compressed_name.rindex(".")] if "." in self.compressed_name else self.compressed_name ) self.dir_cache = None @classmethod def _strip_protocol(cls, path): # compressed file paths are always relative to the archive root return super()._strip_protocol(path).lstrip("/") def _get_dirs(self): if self.dir_cache is None: f = {**self.file.fs.info(self.file.path), "name": self.uncompressed_name} self.dir_cache = {f["name"]: f} def cat(self, path: str): return self.file.open().read() def _open( self, path: str, mode: str = "rb", block_size=None, autocommit=True, cache_options=None, **kwargs, ): path = self._strip_protocol(path) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'") return self.file.open() class Bz2FileSystem(BaseCompressedFileFileSystem): """Read contents of BZ2 file as a filesystem with one file inside.""" protocol = "bz2" compression = "bz2" extension = ".bz2" class GzipFileSystem(BaseCompressedFileFileSystem): """Read contents of GZIP file as a filesystem with one file inside.""" protocol = "gzip" compression = "gzip" extension = ".gz" class Lz4FileSystem(BaseCompressedFileFileSystem): """Read contents of LZ4 file as a filesystem with one file inside.""" protocol = "lz4" compression = "lz4" extension = ".lz4" class XzFileSystem(BaseCompressedFileFileSystem): """Read contents of .xz (LZMA) file as a filesystem with one file inside.""" protocol = "xz" compression = "xz" extension = ".xz" class ZstdFileSystem(BaseCompressedFileFileSystem): """ Read contents of .zstd file as a filesystem with one file inside. """ protocol = "zstd" compression = "zstd" extension = ".zst"
from pathlib import Path from typing import List import pytest from flair_text import FlairTextEncoder from jina import Document, DocumentArray, Executor _EMBEDDING_DIM = 100 @pytest.fixture(scope='session') def basic_encoder() -> FlairTextEncoder: return FlairTextEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_no_document(basic_encoder: FlairTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: FlairTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: FlairTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_embeddings_str_error(): with pytest.raises(ValueError, match='embeddings'): FlairTextEncoder(embeddings='word:glove') def test_pooling_strategy_error(): with pytest.raises(ValueError, match='pooling_strategy'): FlairTextEncoder(pooling_strategy='wrong') def test_unknown_model_error(): with pytest.raises(ValueError, match='The model name wrong'): FlairTextEncoder(embeddings=['wrong:glove']) def test_encoding_cpu(): docs = DocumentArray([Document(text='hello there')]) encoder = FlairTextEncoder(device='cpu') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): docs = DocumentArray([Document(text='hello there')]) encoder = FlairTextEncoder(device='cuda') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'embeddings, dim', ( (['flair:news-forward'], 2048), (['flair:news-forward', 'flair:news-backward'], 4096), (['word:glove', 'flair:news-backward'], 2148), (['byte-pair:en'], 100), ), ) def test_encoding_models(embeddings: List[str], dim: int): docs = DocumentArray([Document(text='hello there')]) encoder = FlairTextEncoder(embeddings=embeddings) encoder.encode(docs, {}) assert docs[0].embedding.shape == (dim,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: FlairTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: FlairTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: FlairTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from ...flair_text import FlairTextEncoder _EMBEDDING_DIM = 100 @pytest.fixture(scope='session') def basic_encoder() -> FlairTextEncoder: return FlairTextEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_no_document(basic_encoder: FlairTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: FlairTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: FlairTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_embeddings_str_error(): with pytest.raises(ValueError, match='embeddings'): FlairTextEncoder(embeddings='word:glove') def test_pooling_strategy_error(): with pytest.raises(ValueError, match='pooling_strategy'): FlairTextEncoder(pooling_strategy='wrong') def test_unknown_model_error(): with pytest.raises(ValueError, match='The model name wrong'): FlairTextEncoder(embeddings=['wrong:glove']) def test_encoding_cpu(): docs = DocumentArray([Document(text='hello there')]) encoder = FlairTextEncoder(device='cpu') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): docs = DocumentArray([Document(text='hello there')]) encoder = FlairTextEncoder(device='cuda') encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'embeddings, dim', ( (['flair:news-forward'], 2048), (['flair:news-forward', 'flair:news-backward'], 4096), (['word:glove', 'flair:news-backward'], 2148), (['byte-pair:en'], 100), ), ) def test_encoding_models(embeddings: List[str], dim: int): docs = DocumentArray([Document(text='hello there')]) encoder = FlairTextEncoder(embeddings=embeddings) encoder.encode(docs, {}) assert docs[0].embedding.shape == (dim,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: FlairTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: FlairTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: FlairTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
# Copyright (c) OpenMMLab. All rights reserved. third_part_libs = [ 'pip install -r ../requirements/albu.txt', 'pip install instaboostfast', 'pip install git+https://github.com/cocodataset/panopticapi.git', 'pip install timm', 'pip install mmpretrain', 'pip install git+https://github.com/lvis-dataset/lvis-api.git', 'pip install -r ../requirements/multimodal.txt', 'pip install -r ../requirements/tracking.txt', 'pip install git+https://github.com/JonathonLuiten/TrackEval.git', ] default_floating_range = 0.5 model_floating_ranges = {'atss/atss_r50_fpn_1x_coco.py': 0.3}
# Copyright (c) OpenMMLab. All rights reserved. third_part_libs = [ 'pip install -r ../requirements/albu.txt', 'pip install instaboostfast', 'pip install git+https://github.com/cocodataset/panopticapi.git', 'pip install timm', 'pip install mmcls>=1.0.0rc0', 'pip install git+https://github.com/lvis-dataset/lvis-api.git', ] default_floating_range = 0.5 model_floating_ranges = {'atss/atss_r50_fpn_1x_coco.py': 0.3}
from typing import Optional import numpy as np from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.typing import AnyTensor, ImageUrl from jina import Deployment, Executor, Flow, requests def test_different_document_schema(): class Image(BaseDocument): tensor: Optional[AnyTensor] url: ImageUrl class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[Image], **kwargs) -> DocumentArray[Image]: for doc in docs: doc.tensor = doc.url.load() return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=DocumentArray[Image]( [Image(url='https://via.placeholder.com/150.png')] ), return_type=DocumentArray[Image], ) docs = docs.stack() assert docs.tensor.ndim == 4 def test_send_custom_doc(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[MyDoc], **kwargs): docs[0].text = 'hello world' with Flow().add(uses=MyExec) as f: doc = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert doc[0].text == 'hello world' def test_input_response_schema(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests( on='/foo', request_schema=DocumentArray[MyDoc], response_schema=DocumentArray[MyDoc], ) def foo(self, docs, **kwargs): assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_input_response_schema_annotation(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocumentArray[MyDoc], **kwargs) -> DocumentArray[MyDoc]: assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_different_output_input(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc def test_deployments(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Deployment(uses=MyExec) as dep: docs = dep.post( on='/bar', inputs=InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc
from typing import Optional import numpy as np from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.typing import AnyTensor, ImageUrl from jina import Deployment, Executor, Flow, requests def test_different_document_schema(): class Image(BaseDocument): tensor: Optional[AnyTensor] url: ImageUrl class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[Image], **kwargs) -> DocumentArray[Image]: for doc in docs: doc.tensor = doc.url.load() return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=DocumentArray[Image]( [Image(url='https://via.placeholder.com/150.png')] ), return_type=DocumentArray[Image], ) docs = docs.stack() assert docs.tensor.ndim == 4 def test_send_custom_doc(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[MyDoc], **kwargs): docs[0].text = 'hello world' with Flow().add(uses=MyExec) as f: doc = f.post(on='/foo', inputs=MyDoc(text='hello')) assert doc[0].text == 'hello world' def test_input_response_schema(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests( on='/foo', request_schema=DocumentArray[MyDoc], response_schema=DocumentArray[MyDoc], ) def foo(self, docs, **kwargs): assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_input_response_schema_annotation(): class MyDoc(BaseDocument): text: str class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocumentArray[MyDoc], **kwargs) -> DocumentArray[MyDoc]: assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_different_output_input(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc def test_deployments(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Deployment(uses=MyExec) as dep: docs = dep.post( on='/bar', inputs=InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class VFNet(SingleStageDetector): """Implementation of `VarifocalNet (VFNet).<https://arxiv.org/abs/2008.13367>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(VFNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class VFNet(SingleStageDetector): """Implementation of `VarifocalNet (VFNet).<https://arxiv.org/abs/2008.13367>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(VFNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
import inspect import re import warnings from operator import itemgetter from typing import Optional, Tuple, List from jina import Document def get_properties(cls) -> List[Tuple[str, Optional[str], Optional[str]]]: src = inspect.getsource(cls) members = dict(inspect.getmembers(cls)) setters = re.findall( r'@[a-zA-Z0-9_]+\.setter\s+def\s+([a-zA-Z0-9_]+)\s*\(self,\s*[a-zA-Z0-9_]+\s*:\s*(.*?)\)', src, flags=re.DOTALL, ) property_docs = [] for setter, _ in setters: if setter not in members: warnings.warn( f'{setter} is found as a setter but there is no corresponding getter' ) property_docs.append(None) else: doc = inspect.getdoc(members[setter]) description = next(iter(re.findall(':return:(.*)', doc)), None) if description: description = description.strip() property_docs.append(description) return sorted( list( zip(map(itemgetter(0), setters), map(itemgetter(1), setters), property_docs) ), key=lambda x: x[0], ) def get_overload_signature( properties, indent=' ' * 4, ): kwargs = [ f'{indent}{indent}{property_name}: Optional[{type_hint}] = None' for property_name, type_hint, _ in properties ] args_str = ', \n'.join(kwargs + [f'{indent}{indent}**kwargs']) doc_str = '\n'.join( [ f'{indent}{indent}:param {property_name}: {description}' for property_name, _, description in properties ] + [ f'{indent}{indent}:param kwargs: other parameters to be set _after_ the document is constructed' ] ) signature = f'def __init__(\n{indent}{indent}self,\n{args_str}\n{indent}):' final_str = f'@overload\n{indent}{signature}\n{indent}{indent}"""\n{doc_str}\n{indent}{indent}"""' return final_str def write_signature( cls, overload_signature, tag, indent=' ' * 4, ): filepath = inspect.getfile(cls) final_code = re.sub( rf'(# overload_inject_start_{tag}).*(# overload_inject_end_{tag})', f'\\1\n{indent}{overload_signature}\n{indent}\\2', open(filepath).read(), 0, re.DOTALL, ) with open(filepath, 'w', encoding='utf-8') as fp: fp.write(final_code) def inject_properties_as_overload(cls): properties = get_properties(cls) overload_signature = get_overload_signature(properties) write_signature(cls, overload_signature, 'document') print(inspect.getfile(cls)) if __name__ == '__main__': inject_properties_as_overload(Document)
import inspect import re import warnings from operator import itemgetter from typing import Optional, Tuple, List from jina import Document def get_properties(cls) -> List[Tuple[str, Optional[str], Optional[str]]]: src = inspect.getsource(cls) members = dict(inspect.getmembers(cls)) setters = re.findall( r'@[a-zA-Z0-9_]+\.setter\s+def\s+([a-zA-Z0-9_]+)\s*\(self,\s*[a-zA-Z0-9_]+\s*:\s*(.*?)\)', src, flags=re.DOTALL, ) property_docs = [] for setter, _ in setters: if setter not in members: warnings.warn( f'{setter} is found as a setter but there is no corresponding getter' ) property_docs.append(None) else: doc = inspect.getdoc(members[setter]) description = next(iter(re.findall(':return:(.*)', doc)), None) if description: description = description.strip() property_docs.append(description) return sorted( list( zip(map(itemgetter(0), setters), map(itemgetter(1), setters), property_docs) ), key=lambda x: x[0], ) def get_overload_signature( properties, indent=' ' * 4, ): kwargs = [ f'{indent}{indent}{property_name}: Optional[{type_hint}] = None' for property_name, type_hint, _ in properties ] args_str = ', \n'.join(kwargs + [f'{indent}{indent}**kwargs']) doc_str = '\n'.join( [ f'{indent}{indent}:param {property_name}: {description}' for property_name, _, description in properties ] + [ f'{indent}{indent}:param kwargs: other parameters to be set _after_ the document is constructed' ] ) signature = f'def __init__(\n{indent}{indent}self,\n{args_str}\n{indent}):' final_str = f'@overload\n{indent}{signature}\n{indent}{indent}"""\n{doc_str}\n{indent}{indent}"""' return final_str def write_signature( cls, overload_signature, tag, indent=' ' * 4, ): filepath = inspect.getfile(cls) final_code = re.sub( rf'(# overload_inject_start_{tag}).*(# overload_inject_end_{tag})', f'\\1\n{indent}{overload_signature}\n{indent}\\2', open(filepath).read(), 0, re.DOTALL, ) with open(filepath, 'w') as fp: fp.write(final_code) def inject_properties_as_overload(cls): properties = get_properties(cls) overload_signature = get_overload_signature(properties) write_signature(cls, overload_signature, 'document') print(inspect.getfile(cls)) if __name__ == '__main__': inject_properties_as_overload(Document)
"""LLM Chain for generating examples for question answering.""" from __future__ import annotations from typing import Any from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseLLMOutputParser from pydantic import Field from langchain.chains.llm import LLMChain from langchain.evaluation.qa.generate_prompt import PROMPT from langchain.output_parsers.regex import RegexParser _QA_OUTPUT_PARSER = RegexParser( regex=r"QUESTION: (.*?)\n+ANSWER: (.*)", output_keys=["query", "answer"], ) class QAGenerateChain(LLMChain): """LLM Chain for generating examples for question answering.""" output_parser: BaseLLMOutputParser = Field(default=_QA_OUTPUT_PARSER) output_key: str = "qa_pairs" @classmethod def is_lc_serializable(cls) -> bool: return False @classmethod def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> QAGenerateChain: """Load QA Generate Chain from LLM.""" return cls(llm=llm, prompt=PROMPT, **kwargs)
"""LLM Chain for generating examples for question answering.""" from __future__ import annotations from typing import Any from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseLLMOutputParser from pydantic import Field from langchain.chains.llm import LLMChain from langchain.evaluation.qa.generate_prompt import PROMPT from langchain.output_parsers.regex import RegexParser _QA_OUTPUT_PARSER = RegexParser( regex=r"QUESTION: (.*?)\n+ANSWER: (.*)", output_keys=["query", "answer"] ) class QAGenerateChain(LLMChain): """LLM Chain for generating examples for question answering.""" output_parser: BaseLLMOutputParser = Field(default=_QA_OUTPUT_PARSER) output_key: str = "qa_pairs" @classmethod def is_lc_serializable(cls) -> bool: return False @classmethod def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> QAGenerateChain: """Load QA Generate Chain from LLM.""" return cls(llm=llm, prompt=PROMPT, **kwargs)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 Model Sparsity: Active Dimensions: 63.1, Sparsity Ratio: 0.9979 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 Model Sparsity Stats: Row Non-Zero Mean: 63.13884735107422, Row Sparsity Mean: 0.9979313611984253 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
"""Test Base Schema of documents.""" from collections.abc import Iterator from langchain_core.document_loaders import BaseBlobParser, Blob from langchain_core.documents import Document def test_base_blob_parser() -> None: """Verify that the eager method is hooked up to the lazy method by default.""" class MyParser(BaseBlobParser): """A simple parser that returns a single document.""" def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazy parsing interface.""" yield Document( page_content="foo", ) parser = MyParser() assert isinstance(parser.lazy_parse(Blob(data="who?")), Iterator) # We're verifying that the eager method is hooked up to the lazy method by default. docs = parser.parse(Blob(data="who?")) assert len(docs) == 1 assert docs[0].page_content == "foo"
"""Test Base Schema of documents.""" from typing import Iterator from langchain_core.document_loaders import BaseBlobParser, Blob from langchain_core.documents import Document def test_base_blob_parser() -> None: """Verify that the eager method is hooked up to the lazy method by default.""" class MyParser(BaseBlobParser): """A simple parser that returns a single document.""" def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazy parsing interface.""" yield Document( page_content="foo", ) parser = MyParser() assert isinstance(parser.lazy_parse(Blob(data="who?")), Iterator) # We're verifying that the eager method is hooked up to the lazy method by default. docs = parser.parse(Blob(data="who?")) assert len(docs) == 1 assert docs[0].page_content == "foo"
import random import asyncio import time import aiohttp import grpc def _raise_last_attempt(err, attempt): if isinstance(err, asyncio.CancelledError): trailing_metadata = grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=grpc.StatusCode.CANCELLED, initial_metadata=grpc.aio.Metadata(), trailing_metadata=trailing_metadata, ) elif isinstance(err, grpc.aio.AioRpcError): trailing_metadata = err.trailing_metadata() or grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=err.code(), details=err.details(), initial_metadata=err.initial_metadata(), trailing_metadata=trailing_metadata, debug_error_string=err.debug_error_string(), ) elif isinstance(err, aiohttp.ClientConnectorCertificateError): raise err elif isinstance(err, aiohttp.ClientError): raise ConnectionError(str(err)) else: raise err def sync_wait_or_raise_err(attempt: int, err: Exception, max_attempts: float, backoff_multiplier: float, initial_backoff: float, max_backoff: float, ): """ Accepts retry parameters and the underlying. The error is raised if the max_attempts has been reached otherwise the method waits based on the backoff calculations. :param attempt: Number of the current attempt. :param err: Underlying error that was raised by the operation. :param max_attempts: Maximum number of attempts that are allowed. :param backoff_multiplier: Factor that will be raised to the exponent of (attempt - 1) for calculating the backoff wait time. :param initial_backoff: The backoff time on the first error. This will be multiplied by the backoff_multiplier exponent for subsequent wait time calculations. :param max_backoff: The maximum backoff wait time. """ if attempt == max_attempts: _raise_last_attempt(err, attempt) else: time.sleep(_wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff)) async def wait_or_raise_err( attempt: int, err: Exception, max_attempts: float, backoff_multiplier: float, initial_backoff: float, max_backoff: float, ): """ Accepts retry parameters and the underlying. The error is raised if the max_attempts has been reached otherwise the method waits based on the backoff calculations. :param attempt: Number of the current attempt. :param err: Underlying error that was raised by the operation. :param max_attempts: Maximum number of attempts that are allowed. :param backoff_multiplier: Factor that will be raised to the exponent of (attempt - 1) for calculating the backoff wait time. :param initial_backoff: The backoff time on the first error. This will be multiplied by the backoff_multiplier exponent for subsequent wait time calculations. :param max_backoff: The maximum backoff wait time. """ if attempt == max_attempts: _raise_last_attempt(err, attempt) else: await asyncio.sleep(_wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff)) def _wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff): if attempt == 1: wait_time = initial_backoff else: wait_time = random.uniform( 0, min(initial_backoff * backoff_multiplier ** (attempt - 1), max_backoff), ) return wait_time
import asyncio import random import aiohttp import grpc async def wait_or_raise_err( attempt: int, err: Exception, max_attempts: float, backoff_multiplier: float, initial_backoff: float, max_backoff: float, ): """ Accepts retry parameters and the underlying. The error is raised if the max_attempts has been reached otherwise the method waits based on the backoff calculations. :param attempt: Number of the current attempt. :param err: Underlying error that was raised by the operation. :param max_attempts: Maximum number of attempts that are allowed. :param backoff_multiplier: Factor that will be raised to the exponent of (attempt - 1) for calculating the backoff wait time. :param initial_backoff: The backoff time on the first error. This will be multiplied by the backoff_multiplier exponent for subsequent wait time calculations. :param max_backoff: The maximum backoff wait time. """ if attempt == max_attempts: if isinstance(err, asyncio.CancelledError): trailing_metadata = grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=grpc.StatusCode.CANCELLED, initial_metadata=grpc.aio.Metadata(), trailing_metadata=trailing_metadata, ) elif isinstance(err, grpc.aio.AioRpcError): trailing_metadata = err.trailing_metadata() or grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=err.code(), details=err.details(), initial_metadata=err.initial_metadata(), trailing_metadata=trailing_metadata, debug_error_string=err.debug_error_string(), ) elif isinstance(err, aiohttp.ClientConnectorCertificateError): raise err elif isinstance(err, aiohttp.ClientError): raise ConnectionError(str(err)) else: raise err else: await _backoff_wait(attempt, backoff_multiplier, initial_backoff, max_backoff) async def _backoff_wait(attempt, backoff_multiplier, initial_backoff, max_backoff): if attempt == 1: wait_time = initial_backoff else: wait_time = random.uniform( 0, min(initial_backoff * backoff_multiplier ** (attempt - 1), max_backoff), ) await asyncio.sleep(wait_time)
"""Module to test base parser implementations.""" from typing_extensions import override from langchain_core.exceptions import OutputParserException from langchain_core.language_models import GenericFakeChatModel from langchain_core.messages import AIMessage from langchain_core.output_parsers import ( BaseGenerationOutputParser, BaseTransformOutputParser, ) from langchain_core.outputs import ChatGeneration, Generation def test_base_generation_parser() -> None: """Test Base Generation Output Parser.""" class StrInvertCase(BaseGenerationOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" @override def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore StrInvertCase.model_rebuild() model = GenericFakeChatModel(messages=iter([AIMessage(content="hEllo")])) chain = model | StrInvertCase() assert chain.invoke("") == "HeLLO" def test_base_transform_output_parser() -> None: """Test base transform output parser.""" class StrInvertCase(BaseTransformOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse(self, text: str) -> str: """Parse a single string into a specific format.""" raise NotImplementedError @override def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore model = GenericFakeChatModel(messages=iter([AIMessage(content="hello world")])) chain = model | StrInvertCase() # inputs to models are ignored, response is hard-coded in model definition chunks = list(chain.stream("")) assert chunks == ["HELLO", " ", "WORLD"]
"""Module to test base parser implementations.""" from langchain_core.exceptions import OutputParserException from langchain_core.language_models import GenericFakeChatModel from langchain_core.messages import AIMessage from langchain_core.output_parsers import ( BaseGenerationOutputParser, BaseTransformOutputParser, ) from langchain_core.outputs import ChatGeneration, Generation def test_base_generation_parser() -> None: """Test Base Generation Output Parser.""" class StrInvertCase(BaseGenerationOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore StrInvertCase.model_rebuild() model = GenericFakeChatModel(messages=iter([AIMessage(content="hEllo")])) chain = model | StrInvertCase() assert chain.invoke("") == "HeLLO" def test_base_transform_output_parser() -> None: """Test base transform output parser.""" class StrInvertCase(BaseTransformOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse(self, text: str) -> str: """Parse a single string into a specific format.""" raise NotImplementedError def parse_result( self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Many parsers assume that only a single generation is passed it in. We will assert for that partial: Whether to allow partial results. This is used for parsers that support streaming """ if len(result) != 1: msg = "This output parser can only be used with a single generation." raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore model = GenericFakeChatModel(messages=iter([AIMessage(content="hello world")])) chain = model | StrInvertCase() # inputs to models are ignored, response is hard-coded in model definition chunks = list(chain.stream("")) assert chunks == ["HELLO", " ", "WORLD"]
from llama_index.core.indices.managed.base import BaseManagedIndex from llama_index.core.base.base_retriever import BaseRetriever from llama_index.indices.managed.vertexai import VertexAIIndex from llama_index.indices.managed.vertexai import VertexAIRetriever def test_class(): names_of_base_classes = [b.__name__ for b in VertexAIIndex.__mro__] assert BaseManagedIndex.__name__ in names_of_base_classes names_of_base_classes = [b.__name__ for b in VertexAIRetriever.__mro__] assert BaseRetriever.__name__ in names_of_base_classes
from llama_index.core.indices.managed.base import BaseManagedIndex from llama_index.indices.managed.vertexai import VertexAIIndex def test_class(): names_of_base_classes = [b.__name__ for b in VertexAIIndex.__mro__] assert BaseManagedIndex.__name__ in names_of_base_classes
from typing import Optional from rich.progress import ( BarColumn, MofNCompleteColumn, Progress, SpinnerColumn, Text, TextColumn, TimeElapsedColumn, TimeRemainingColumn, ) class QPSColumn(TextColumn): def render(self, task) -> Text: if task.speed: _text = f'{task.speed:.0f} QPS' else: _text = 'unknown' if self.markup: text = Text.from_markup(_text, style=self.style, justify=self.justify) else: text = Text(_text, style=self.style, justify=self.justify) if self.highlighter: self.highlighter.highlight(text) return text def _get_pbar(disable: bool, total: Optional[int] = None): columns = ( SpinnerColumn(), TextColumn('[bold]{task.description}'), BarColumn(), MofNCompleteColumn(), '•', QPSColumn('{task.speed} QPS', justify='right', style='progress.data.speed'), '•', TimeRemainingColumn() if total else TimeElapsedColumn(), '•', TextColumn( '[bold blue]{task.fields[total_size]}', justify='right', style='progress.filesize', ), ) return Progress( *columns, transient=False, disable=disable, ) def _get_progressbar(description: str, disable: bool, total: Optional[int]): progress = _get_pbar(disable, total) task = progress.add_task(description, total=total, start=False, total_size=0) return progress, task
from rich.progress import ( Progress, BarColumn, SpinnerColumn, MofNCompleteColumn, TextColumn, TimeRemainingColumn, Text, ) class QPSColumn(TextColumn): def render(self, task) -> Text: if task.speed: _text = f'{task.speed:.0f} QPS' else: _text = 'unknown' if self.markup: text = Text.from_markup(_text, style=self.style, justify=self.justify) else: text = Text(_text, style=self.style, justify=self.justify) if self.highlighter: self.highlighter.highlight(text) return text def _get_pbar(disable): return Progress( SpinnerColumn(), TextColumn('[bold]{task.description}'), BarColumn(), MofNCompleteColumn(), '•', QPSColumn('{task.speed} QPS', justify='right', style='progress.data.speed'), '•', TimeRemainingColumn(), '•', TextColumn( '[bold blue]{task.fields[total_size]}', justify='right', style='progress.filesize', ), transient=False, disable=disable, ) def _get_progressbar(description, disable, total): progress = _get_pbar(disable) task = progress.add_task(description, total=total, start=False, total_size=0) return progress, task
from __future__ import annotations import difflib from pathlib import Path import pytest from typer.testing import CliRunner from langchain_cli.cli import app from tests.unit_tests.migrate.cli_runner.cases import before, expected from tests.unit_tests.migrate.cli_runner.folder import Folder pytest.importorskip("gritql") def find_issue(current: Folder, expected: Folder) -> str: for current_file, expected_file in zip(current.files, expected.files): if current_file != expected_file: if current_file.name != expected_file.name: return ( f"Files have " f"different names: {current_file.name} != {expected_file.name}" ) if isinstance(current_file, Folder) and isinstance(expected_file, Folder): return find_issue(current_file, expected_file) if isinstance(current_file, Folder) or isinstance(expected_file, Folder): return ( f"One of the files is a " f"folder: {current_file.name} != {expected_file.name}" ) return "\n".join( difflib.unified_diff( current_file.content.splitlines(), expected_file.content.splitlines(), fromfile=current_file.name, tofile=expected_file.name, ) ) return "Unknown" @pytest.mark.xfail(reason="grit may not be installed in env") def test_command_line(tmp_path: Path) -> None: runner = CliRunner() with runner.isolated_filesystem(temp_dir=tmp_path) as td: before.create_structure(root=Path(td)) # The input is used to force through the confirmation. result = runner.invoke(app, ["migrate", before.name, "--force"]) assert result.exit_code == 0, result.output after = Folder.from_structure(Path(td) / before.name) assert after == expected, find_issue(after, expected)
# ruff: noqa: E402 from __future__ import annotations import pytest pytest.importorskip("gritql") import difflib from pathlib import Path from typer.testing import CliRunner from langchain_cli.cli import app from tests.unit_tests.migrate.cli_runner.cases import before, expected from tests.unit_tests.migrate.cli_runner.folder import Folder def find_issue(current: Folder, expected: Folder) -> str: for current_file, expected_file in zip(current.files, expected.files): if current_file != expected_file: if current_file.name != expected_file.name: return ( f"Files have " f"different names: {current_file.name} != {expected_file.name}" ) if isinstance(current_file, Folder) and isinstance(expected_file, Folder): return find_issue(current_file, expected_file) elif isinstance(current_file, Folder) or isinstance(expected_file, Folder): return ( f"One of the files is a " f"folder: {current_file.name} != {expected_file.name}" ) return "\n".join( difflib.unified_diff( current_file.content.splitlines(), expected_file.content.splitlines(), fromfile=current_file.name, tofile=expected_file.name, ) ) return "Unknown" @pytest.mark.xfail(reason="grit may not be installed in env") def test_command_line(tmp_path: Path) -> None: runner = CliRunner() with runner.isolated_filesystem(temp_dir=tmp_path) as td: before.create_structure(root=Path(td)) # The input is used to force through the confirmation. result = runner.invoke(app, ["migrate", before.name, "--force"]) assert result.exit_code == 0, result.output after = Folder.from_structure(Path(td) / before.name) assert after == expected, find_issue(after, expected)
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=features.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT], num_output_channels: int = 1 ) -> Union[features.ImageTypeJIT, features.VideoTypeJIT]: if not torch.jit.is_scripting() and isinstance(inpt, (features.Image, features.Video)): inpt = inpt.as_subclass(torch.Tensor) old_color_space = None elif isinstance(inpt, torch.Tensor): old_color_space = features._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] else: old_color_space = None call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=features.ColorSpace.GRAY" f"{f', old_color_space=features.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB" f"{f', old_color_space=features.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=features.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[features.LegacyImageTypeJIT, features.LegacyVideoTypeJIT], num_output_channels: int = 1 ) -> Union[features.LegacyImageTypeJIT, features.LegacyVideoTypeJIT]: if not torch.jit.is_scripting() and isinstance(inpt, (features.Image, features.Video)): inpt = inpt.as_subclass(torch.Tensor) old_color_space = None elif isinstance(inpt, torch.Tensor): old_color_space = features._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] else: old_color_space = None call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=features.ColorSpace.GRAY" f"{f', old_color_space=features.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB" f"{f', old_color_space=features.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
__version__ = '0.17.0' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.16.6' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
# Copyright (c) OpenMMLab. All rights reserved. from .build_functions import (build_from_cfg, build_model_from_cfg, build_runner_from_cfg, build_scheduler_from_cfg) from .default_scope import DefaultScope from .registry import Registry from .root import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS, HOOKS, INFERENCERS, LOG_PROCESSORS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIM_WRAPPER_CONSTRUCTORS, OPTIM_WRAPPERS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, STRATEGIES, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) from .utils import (count_registered_modules, init_default_scope, traverse_registry_tree) __all__ = [ 'Registry', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIM_WRAPPER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'OPTIM_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'LOG_PROCESSORS', 'EVALUATOR', 'INFERENCERS', 'DefaultScope', 'traverse_registry_tree', 'count_registered_modules', 'build_model_from_cfg', 'build_runner_from_cfg', 'build_from_cfg', 'build_scheduler_from_cfg', 'init_default_scope', 'FUNCTIONS', 'STRATEGIES' ]
# Copyright (c) OpenMMLab. All rights reserved. from .build_functions import (build_from_cfg, build_model_from_cfg, build_runner_from_cfg, build_scheduler_from_cfg) from .default_scope import DefaultScope from .registry import Registry from .root import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS, HOOKS, INFERENCERS, LOG_PROCESSORS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIM_WRAPPER_CONSTRUCTORS, OPTIM_WRAPPERS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) from .utils import (count_registered_modules, init_default_scope, traverse_registry_tree) __all__ = [ 'Registry', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIM_WRAPPER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'OPTIM_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'LOG_PROCESSORS', 'EVALUATOR', 'INFERENCERS', 'DefaultScope', 'traverse_registry_tree', 'count_registered_modules', 'build_model_from_cfg', 'build_runner_from_cfg', 'build_from_cfg', 'build_scheduler_from_cfg', 'init_default_scope', 'FUNCTIONS' ]
import requests from packaging import version from typing import Sequence, Union, List, Optional from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ) from tgi.types import ( Message, ) def resolve_tgi_function_call(url: str) -> bool: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version") if version.parse(tgi_version) >= version.parse("2.0.1"): return True else: raise ValueError( "'text-generation-inference' version ", f"incompatible with function call: {tgi_version}. ", "Function call support was added in v2.0.1", ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version") if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens") else: return model_info.get("max_input_length") def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens") def get_model_name(url: str) -> Union[str, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("model_id") def to_tgi_messages(messages: Sequence[ChatMessage]) -> Sequence[Message]: out_messages = [] for m in messages: tool_calls = m.additional_kwargs.get("tool_calls") out_messages.append( Message(role=m.role.value, content=m.content, tool_calls=tool_calls) ) return out_messages def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """ Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
import requests from packaging import version from typing import Sequence, Union, List, Optional from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ) from tgi.types import ( Message, ) def resolve_tgi_function_call(url: str) -> bool: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.0.1"): return True else: raise ValueError( "'text-generation-inference' version ", f"incompatible with function call: {tgi_version}. ", "Function call support was added in v2.0.1", ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens", None) else: return model_info.get("max_input_length", None) def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens", None) def get_model_name(url: str) -> Union[str, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("model_id", None) def to_tgi_messages(messages: Sequence[ChatMessage]) -> Sequence[Message]: out_messages = [] for m in messages: tool_calls = m.additional_kwargs.get("tool_calls") out_messages.append( Message(role=m.role.value, content=m.content, tool_calls=tool_calls) ) return out_messages def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
from __future__ import annotations import concurrent.futures from pathlib import Path from typing import Iterator, Literal, Optional, Sequence, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseBlobParser from langchain_community.document_loaders.blob_loaders import ( BlobLoader, FileSystemBlobLoader, ) from langchain_community.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers.registry import get_parser _PathLike = Union[str, Path] DEFAULT = Literal["default"] class ConcurrentLoader(GenericLoader): """Load and pars Documents concurrently.""" def __init__( self, blob_loader: BlobLoader, blob_parser: BaseBlobParser, num_workers: int = 4, ) -> None: super().__init__(blob_loader, blob_parser) self.num_workers = num_workers def lazy_load( self, ) -> Iterator[Document]: """Load documents lazily with concurrent parsing.""" with concurrent.futures.ThreadPoolExecutor( max_workers=self.num_workers ) as executor: futures = { executor.submit(self.blob_parser.lazy_parse, blob) for blob in self.blob_loader.yield_blobs() } for future in concurrent.futures.as_completed(futures): yield from future.result() @classmethod def from_filesystem( cls, path: _PathLike, *, glob: str = "**/[!.]*", exclude: Sequence[str] = (), suffixes: Optional[Sequence[str]] = None, show_progress: bool = False, parser: Union[DEFAULT, BaseBlobParser] = "default", num_workers: int = 4, parser_kwargs: Optional[dict] = None, ) -> ConcurrentLoader: """Create a concurrent generic document loader using a filesystem blob loader. Args: path: The path to the directory to load documents from. glob: The glob pattern to use to find documents. suffixes: The suffixes to use to filter documents. If None, all files matching the glob will be loaded. exclude: A list of patterns to exclude from the loader. show_progress: Whether to show a progress bar or not (requires tqdm). Proxies to the file system loader. parser: A blob parser which knows how to parse blobs into documents num_workers: Max number of concurrent workers to use. parser_kwargs: Keyword arguments to pass to the parser. """ blob_loader = FileSystemBlobLoader( path, glob=glob, exclude=exclude, suffixes=suffixes, show_progress=show_progress, ) if isinstance(parser, str): if parser == "default" and cls.get_parser != GenericLoader.get_parser: # There is an implementation of get_parser on the class, use it. blob_parser = cls.get_parser(**(parser_kwargs or {})) else: blob_parser = get_parser(parser) else: blob_parser = parser return cls(blob_loader, blob_parser, num_workers=num_workers)
from __future__ import annotations import concurrent.futures from pathlib import Path from typing import Iterator, Literal, Optional, Sequence, Union from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseBlobParser from langchain_community.document_loaders.blob_loaders import ( BlobLoader, FileSystemBlobLoader, ) from langchain_community.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers.registry import get_parser _PathLike = Union[str, Path] DEFAULT = Literal["default"] class ConcurrentLoader(GenericLoader): """Load and pars Documents concurrently.""" def __init__( self, blob_loader: BlobLoader, # type: ignore[valid-type] blob_parser: BaseBlobParser, num_workers: int = 4, # type: ignore[valid-type] ) -> None: super().__init__(blob_loader, blob_parser) self.num_workers = num_workers def lazy_load( self, ) -> Iterator[Document]: """Load documents lazily with concurrent parsing.""" with concurrent.futures.ThreadPoolExecutor( max_workers=self.num_workers ) as executor: futures = { executor.submit(self.blob_parser.lazy_parse, blob) for blob in self.blob_loader.yield_blobs() # type: ignore[attr-defined] } for future in concurrent.futures.as_completed(futures): yield from future.result() @classmethod def from_filesystem( cls, path: _PathLike, *, glob: str = "**/[!.]*", exclude: Sequence[str] = (), suffixes: Optional[Sequence[str]] = None, show_progress: bool = False, parser: Union[DEFAULT, BaseBlobParser] = "default", num_workers: int = 4, parser_kwargs: Optional[dict] = None, ) -> ConcurrentLoader: """Create a concurrent generic document loader using a filesystem blob loader. Args: path: The path to the directory to load documents from. glob: The glob pattern to use to find documents. suffixes: The suffixes to use to filter documents. If None, all files matching the glob will be loaded. exclude: A list of patterns to exclude from the loader. show_progress: Whether to show a progress bar or not (requires tqdm). Proxies to the file system loader. parser: A blob parser which knows how to parse blobs into documents num_workers: Max number of concurrent workers to use. parser_kwargs: Keyword arguments to pass to the parser. """ blob_loader = FileSystemBlobLoader( # type: ignore[attr-defined, misc] path, glob=glob, exclude=exclude, suffixes=suffixes, show_progress=show_progress, ) if isinstance(parser, str): if parser == "default" and cls.get_parser != GenericLoader.get_parser: # There is an implementation of get_parser on the class, use it. blob_parser = cls.get_parser(**(parser_kwargs or {})) else: blob_parser = get_parser(parser) else: blob_parser = parser return cls(blob_loader, blob_parser, num_workers=num_workers)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import numpy as np import torch from mmcv.transforms import Compose from torchvision.transforms import functional as F from mmdet.apis import init_detector try: import ffmpegcv except ImportError: raise ImportError( 'Please install ffmpegcv with:\n\n pip install ffmpegcv') def parse_args(): parser = argparse.ArgumentParser( description='MMDetection video demo with GPU acceleration') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--nvdecode', action='store_true', help='Use NVIDIA decoder') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def prefetch_img_metas(cfg, ori_wh): w, h = ori_wh cfg.data.test.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(cfg.data.test.pipeline) data = {'img': np.zeros((h, w, 3), dtype=np.uint8)} data = test_pipeline(data) img_metas = data['img_metas'][0].data return img_metas def process_img(frame_resize, img_metas, device): assert frame_resize.shape == img_metas['pad_shape'] frame_cuda = torch.from_numpy(frame_resize).to(device).float() frame_cuda = frame_cuda.permute(2, 0, 1) # HWC to CHW mean = torch.from_numpy(img_metas['img_norm_cfg']['mean']).to(device) std = torch.from_numpy(img_metas['img_norm_cfg']['std']).to(device) frame_cuda = F.normalize(frame_cuda, mean=mean, std=std, inplace=True) frame_cuda = frame_cuda[None, :, :, :] # NCHW data = {'img': [frame_cuda], 'img_metas': [[img_metas]]} return data def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') model = init_detector(args.config, args.checkpoint, device=args.device) if args.nvdecode: VideoCapture = ffmpegcv.VideoCaptureNV else: VideoCapture = ffmpegcv.VideoCapture video_origin = VideoCapture(args.video) img_metas = prefetch_img_metas(model.cfg, (video_origin.width, video_origin.height)) resize_wh = img_metas['pad_shape'][1::-1] video_resize = VideoCapture( args.video, resize=resize_wh, resize_keepratio=True, resize_keepratioalign='topleft', pix_fmt='rgb24') video_writer = None if args.out: video_writer = ffmpegcv.VideoWriter(args.out, fps=video_origin.fps) with torch.no_grad(): for frame_resize, frame_origin in zip( mmcv.track_iter_progress(video_resize), video_origin): data = process_img(frame_resize, img_metas, args.device) result = model(return_loss=False, rescale=True, **data)[0] frame_mask = model.show_result( frame_origin, result, score_thr=args.score_thr) if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame_mask, 'video', args.wait_time) if args.out: video_writer.write(frame_mask) if video_writer: video_writer.release() video_origin.release() video_resize.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import numpy as np import torch from torchvision.transforms import functional as F from mmdet.apis import init_detector from mmdet.datasets.pipelines import Compose try: import ffmpegcv except ImportError: raise ImportError( 'Please install ffmpegcv with:\n\n pip install ffmpegcv') def parse_args(): parser = argparse.ArgumentParser( description='MMDetection video demo with GPU acceleration') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--nvdecode', action='store_true', help='Use NVIDIA decoder') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def prefetch_img_metas(cfg, ori_wh): w, h = ori_wh cfg.data.test.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(cfg.data.test.pipeline) data = {'img': np.zeros((h, w, 3), dtype=np.uint8)} data = test_pipeline(data) img_metas = data['img_metas'][0].data return img_metas def process_img(frame_resize, img_metas, device): assert frame_resize.shape == img_metas['pad_shape'] frame_cuda = torch.from_numpy(frame_resize).to(device).float() frame_cuda = frame_cuda.permute(2, 0, 1) # HWC to CHW mean = torch.from_numpy(img_metas['img_norm_cfg']['mean']).to(device) std = torch.from_numpy(img_metas['img_norm_cfg']['std']).to(device) frame_cuda = F.normalize(frame_cuda, mean=mean, std=std, inplace=True) frame_cuda = frame_cuda[None, :, :, :] # NCHW data = {'img': [frame_cuda], 'img_metas': [[img_metas]]} return data def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') model = init_detector(args.config, args.checkpoint, device=args.device) if args.nvdecode: VideoCapture = ffmpegcv.VideoCaptureNV else: VideoCapture = ffmpegcv.VideoCapture video_origin = VideoCapture(args.video) img_metas = prefetch_img_metas(model.cfg, (video_origin.width, video_origin.height)) resize_wh = img_metas['pad_shape'][1::-1] video_resize = VideoCapture( args.video, resize=resize_wh, resize_keepratio=True, resize_keepratioalign='topleft', pix_fmt='rgb24') video_writer = None if args.out: video_writer = ffmpegcv.VideoWriter(args.out, fps=video_origin.fps) with torch.no_grad(): for frame_resize, frame_origin in zip( mmcv.track_iter_progress(video_resize), video_origin): data = process_img(frame_resize, img_metas, args.device) result = model(return_loss=False, rescale=True, **data)[0] frame_mask = model.show_result( frame_origin, result, score_thr=args.score_thr) if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame_mask, 'video', args.wait_time) if args.out: video_writer.write(frame_mask) if video_writer: video_writer.release() video_origin.release() video_resize.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.2.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.2.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
_base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], )) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], )) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
from pathlib import Path from typing import Union, Tuple, List import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class LibriMix(Dataset): r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``train-360`, ``train-100``, ``dev``, and ``test``] (Default: ``train-360``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``] (Default: ``sep_clean``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: (int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
from pathlib import Path from typing import Union, Tuple, List import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class LibriMix(Dataset): r"""Create the LibriMix dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``train-360`, ``train-100``, ``dev``, and ``test``] (Default: ``train-360``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``] (Default: ``sep_clean``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: (int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
import requests from docarray import DocumentArray def test_weaviate_hnsw(start_storage): da = DocumentArray( storage='weaviate', config={ 'n_dim': 100, 'ef': 100, 'ef_construction': 100, 'max_connections': 16, 'dynamic_ef_min': 50, 'dynamic_ef_max': 300, 'dynamic_ef_factor': 4, 'vector_cache_max_objects': 1000000, 'flat_search_cutoff': 20000, 'cleanup_interval_seconds': 1000, 'skip': True, }, ) result = requests.get('http://localhost:8080/v1/schema').json() classes = result.get('classes', []) main_class = list( filter(lambda class_element: class_element['class'] == da._config.name, classes) ) assert len(main_class) == 1 main_class = main_class[0] assert main_class.get('vectorIndexConfig', {}).get('maxConnections') == 16 assert main_class.get('vectorIndexConfig', {}).get('efConstruction') == 100 assert main_class.get('vectorIndexConfig', {}).get('ef') == 100 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfMin') == 50 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfMax') == 300 assert main_class.get('vectorIndexConfig', {}).get('dynamicEfFactor') == 4 assert ( main_class.get('vectorIndexConfig', {}).get('vectorCacheMaxObjects') == 1000000 ) assert main_class.get('vectorIndexConfig', {}).get('flatSearchCutoff') == 20000 assert main_class.get('vectorIndexConfig', {}).get('cleanupIntervalSeconds') == 1000 assert main_class.get('vectorIndexConfig', {}).get('skip') is True
import requests from docarray import DocumentArray def test_weaviate_hnsw(start_storage): da = DocumentArray( storage='weaviate', config={'n_dim': 100, 'ef': 100, 'ef_construction': 100, 'max_connections': 16}, ) result = requests.get('http://localhost:8080/v1/schema').json() classes = result.get('classes', []) main_class = list( filter(lambda class_element: class_element['class'] == da._config.name, classes) ) assert len(main_class) == 1 main_class = main_class[0] assert main_class.get('vectorIndexConfig', {}).get('maxConnections') == 16 assert main_class.get('vectorIndexConfig', {}).get('efConstruction') == 100 assert main_class.get('vectorIndexConfig', {}).get('ef') == 100
from __future__ import annotations import gzip import os from . import InputExample class NLIDataReader: """Reads in the Stanford NLI dataset and the MultiGenre NLI dataset""" def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, "s1." + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, "s2." + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open( os.path.join(self.dataset_folder, "labels." + filename), mode="rt", encoding="utf-8" ).readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]
from __future__ import annotations import gzip import os from . import InputExample class NLIDataReader(object): """Reads in the Stanford NLI dataset and the MultiGenre NLI dataset""" def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, "s1." + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, "s2." + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open( os.path.join(self.dataset_folder, "labels." + filename), mode="rt", encoding="utf-8" ).readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]
from typing import TYPE_CHECKING, Any, Type, TypeVar, Union, cast import numpy as np from docarray.typing.tensor.embedding.embedding_mixin import EmbeddingMixin from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding from docarray.typing.tensor.tensor import AnyTensor from docarray.utils._internal.misc import is_tf_available, is_torch_available # noqa torch_available = is_torch_available() if torch_available: import torch from docarray.typing.tensor.embedding.torch import TorchEmbedding from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore from docarray.typing.tensor.embedding.tensorflow import TensorFlowEmbedding from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar("T", bound="AnyEmbedding") class AnyEmbedding(AnyTensor, EmbeddingMixin): """ Represents an embedding tensor object that can be used with TensorFlow, PyTorch, and NumPy type. --- '''python from docarray import BaseDoc from docarray.typing import AnyEmbedding class MyEmbeddingDoc(BaseDoc): embedding: AnyEmbedding # Example usage with TensorFlow: import tensorflow as tf doc = MyEmbeddingDoc(embedding=tf.zeros(1000, 2)) type(doc.embedding) # TensorFlowEmbedding # Example usage with PyTorch: import torch doc = MyEmbeddingDoc(embedding=torch.zeros(1000, 2)) type(doc.embedding) # TorchEmbedding # Example usage with NumPy: import numpy as np doc = MyEmbeddingDoc(embedding=np.zeros((1000, 2))) type(doc.embedding) # NdArrayEmbedding ''' --- Raises: TypeError: If the type of the value is not one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] """ @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: "ModelField", config: "BaseConfig", ): if torch_available: if isinstance(value, TorchTensor): return cast(TorchEmbedding, value) elif isinstance(value, torch.Tensor): return TorchEmbedding._docarray_from_native(value) # noqa if tf_available: if isinstance(value, TensorFlowTensor): return cast(TensorFlowEmbedding, value) elif isinstance(value, tf.Tensor): return TensorFlowEmbedding._docarray_from_native(value) # noqa try: return NdArrayEmbedding.validate(value, field, config) except Exception: # noqa pass raise TypeError( f"Expected one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] " f"compatible type, got {type(value)}" )
from typing import Union from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.embedding.torch import TorchEmbedding tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.embedding.tensorflow import ( TensorFlowEmbedding as TFEmbedding, ) if tf_available and torch_available: AnyEmbedding = Union[NdArrayEmbedding, TorchEmbedding, TFEmbedding] # type: ignore elif tf_available: AnyEmbedding = Union[NdArrayEmbedding, TFEmbedding] # type: ignore elif torch_available: AnyEmbedding = Union[NdArrayEmbedding, TorchEmbedding] # type: ignore else: AnyEmbedding = Union[NdArrayEmbedding] # type: ignore __all__ = ['AnyEmbedding']
# Copyright (c) OpenMMLab. All rights reserved. import asyncio from argparse import ArgumentParser from mmdet.apis import (async_inference_detector, inference_detector, init_detector, show_result_pyplot) def parse_args(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--async-test', action='store_true', help='whether to set async options for async inference.') args = parser.parse_args() return args def main(args): # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # test a single image result = inference_detector(model, args.img) # show the results show_result_pyplot(model, args.img, result, score_thr=args.score_thr) async def async_main(args): # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # test a single image tasks = asyncio.create_task(async_inference_detector(model, args.img)) result = await asyncio.gather(tasks) # show the results show_result_pyplot(model, args.img, result[0], score_thr=args.score_thr) if __name__ == '__main__': args = parse_args() if args.async_test: asyncio.run(async_main(args)) else: main(args)
import asyncio from argparse import ArgumentParser from mmdet.apis import (async_inference_detector, inference_detector, init_detector, show_result_pyplot) def parse_args(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--async-test', action='store_true', help='whether to set async options for async inference.') args = parser.parse_args() return args def main(args): # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # test a single image result = inference_detector(model, args.img) # show the results show_result_pyplot(model, args.img, result, score_thr=args.score_thr) async def async_main(args): # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # test a single image tasks = asyncio.create_task(async_inference_detector(model, args.img)) result = await asyncio.gather(tasks) # show the results show_result_pyplot(model, args.img, result[0], score_thr=args.score_thr) if __name__ == '__main__': args = parse_args() if args.async_test: asyncio.run(async_main(args)) else: main(args)
""" Computes embeddings """ from typing import Optional import numpy as np import pytest from sentence_transformers import SentenceTransformer @pytest.mark.parametrize("normalize_embeddings", (False, True)) @pytest.mark.parametrize("prompt_name", (None, "retrieval")) def test_encode_multi_process( stsb_bert_tiny_model: SentenceTransformer, normalize_embeddings: bool, prompt_name: Optional[str] ) -> None: model = stsb_bert_tiny_model model.prompts = {"retrieval": "Represent this sentence for searching relevant passages: "} sentences = ["This is sentence {}".format(i) for i in range(40)] # Start the multi-process pool on e.g. two CPU devices & compute the embeddings using the pool pool = model.start_multi_process_pool(["cpu", "cpu"]) emb = model.encode_multi_process( sentences, pool, chunk_size=10, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name ) model.stop_multi_process_pool(pool) assert emb.shape == (len(sentences), 128) # Make sure the embeddings aren't just all 0 assert emb.sum() != 0.0 # Compare against normal embeddings emb_normal = model.encode(sentences, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name) diff = np.max(np.abs(emb - emb_normal)) assert diff < 0.001 # Ensure that after normalizing, the means are all almost 0, and otherwise not assert np.all(np.abs(emb.mean(1)) < 0.01) == normalize_embeddings
""" Computes embeddings """ import numpy as np import pytest from typing import Optional from sentence_transformers import SentenceTransformer @pytest.mark.parametrize("normalize_embeddings", (False, True)) @pytest.mark.parametrize("prompt_name", (None, "retrieval")) def test_encode_multi_process( stsb_bert_tiny_model: SentenceTransformer, normalize_embeddings: bool, prompt_name: Optional[str] ) -> None: model = stsb_bert_tiny_model model.prompts = {"retrieval": "Represent this sentence for searching relevant passages: "} sentences = ["This is sentence {}".format(i) for i in range(40)] # Start the multi-process pool on e.g. two CPU devices & compute the embeddings using the pool pool = model.start_multi_process_pool(["cpu", "cpu"]) emb = model.encode_multi_process( sentences, pool, chunk_size=10, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name ) model.stop_multi_process_pool(pool) assert emb.shape == (len(sentences), 128) # Make sure the embeddings aren't just all 0 assert emb.sum() != 0.0 # Compare against normal embeddings emb_normal = model.encode(sentences, normalize_embeddings=normalize_embeddings, prompt_name=prompt_name) diff = np.max(np.abs(emb - emb_normal)) assert diff < 0.001 # Ensure that after normalizing, the means are all almost 0, and otherwise not assert np.all(np.abs(emb.mean(1)) < 0.01) == normalize_embeddings
# Copyright (c) OpenMMLab. All rights reserved. import tempfile from unittest import TestCase from unittest.mock import Mock import torch import torch.nn as nn from mmengine.evaluator import Evaluator from mmengine.model import BaseModel from mmengine.optim import OptimWrapper from mmengine.runner import Runner from torch.utils.data import Dataset from mmdet.registry import DATASETS from mmdet.utils import register_all_modules register_all_modules() class ToyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) def forward(self, inputs, data_samples, mode='tensor'): labels = torch.stack(data_samples) outputs = self.linear(inputs) if mode == 'tensor': return outputs elif mode == 'loss': loss = (labels - outputs).sum() outputs = dict(loss=loss) return outputs else: return outputs class ToyModel1(BaseModel, ToyModel): def __init__(self): super().__init__() def forward(self, *args, **kwargs): return super(BaseModel, self).forward(*args, **kwargs) class ToyModel2(BaseModel): def __init__(self): super().__init__() self.teacher = ToyModel1() self.student = ToyModel1() self.semi_test_cfg = dict(predict_on='teacher') def forward(self, *args, **kwargs): return self.student(*args, **kwargs) @DATASETS.register_module(force=True) class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) @property def metainfo(self): return self.METAINFO def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) class TestTeacherStudentValLoop(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_mean_teacher_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = ToyModel2().to(device) evaluator = Mock() evaluator.evaluate = Mock(return_value=dict(acc=0.5)) evaluator.__class__ = Evaluator runner = Runner( model=model, train_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), val_evaluator=evaluator, work_dir=self.temp_dir.name, default_scope='mmdet', optim_wrapper=OptimWrapper( torch.optim.Adam(ToyModel().parameters())), train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1), val_cfg=dict(type='TeacherStudentValLoop'), default_hooks=dict(logger=dict(type='LoggerHook', interval=1)), experiment_name='test1') runner.train()
# Copyright (c) OpenMMLab. All rights reserved. import tempfile from unittest import TestCase from unittest.mock import Mock import torch import torch.nn as nn from mmengine.evaluator import Evaluator from mmengine.model import BaseModel from mmengine.optim import OptimWrapper from mmengine.runner import Runner from torch.utils.data import Dataset from mmdet.registry import DATASETS from mmdet.utils import register_all_modules register_all_modules() class ToyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) def forward(self, batch_inputs, labels, mode='tensor'): labels = torch.stack(labels) outputs = self.linear(batch_inputs) if mode == 'tensor': return outputs elif mode == 'loss': loss = (labels - outputs).sum() outputs = dict(loss=loss) return outputs else: return outputs class ToyModel1(BaseModel, ToyModel): def __init__(self): super().__init__() def forward(self, *args, **kwargs): return super(BaseModel, self).forward(*args, **kwargs) class ToyModel2(BaseModel): def __init__(self): super().__init__() self.teacher = ToyModel1() self.student = ToyModel1() self.semi_test_cfg = dict(predict_on='teacher') def forward(self, *args, **kwargs): return self.student(*args, **kwargs) @DATASETS.register_module(force=True) class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) @property def metainfo(self): return self.METAINFO def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) class TestTeacherStudentValLoop(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_mean_teacher_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = ToyModel2().to(device) evaluator = Mock() evaluator.evaluate = Mock(return_value=dict(acc=0.5)) evaluator.__class__ = Evaluator runner = Runner( model=model, train_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), val_evaluator=evaluator, work_dir=self.temp_dir.name, default_scope='mmdet', optim_wrapper=OptimWrapper( torch.optim.Adam(ToyModel().parameters())), train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1), val_cfg=dict(type='TeacherStudentValLoop'), default_hooks=dict(logger=dict(type='LoggerHook', interval=1)), experiment_name='test1') runner.train()
from typing import Any from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.json import json class StepThroughItemsBlock(Block): class Input(BlockSchema): items: list = SchemaField( advanced=False, description="The list or dictionary of items to iterate over", placeholder="[1, 2, 3, 4, 5] or {'key1': 'value1', 'key2': 'value2'}", default=[], ) items_object: dict = SchemaField( advanced=False, description="The list or dictionary of items to iterate over", placeholder="[1, 2, 3, 4, 5] or {'key1': 'value1', 'key2': 'value2'}", default={}, ) items_str: str = SchemaField( advanced=False, description="The list or dictionary of items to iterate over", placeholder="[1, 2, 3, 4, 5] or {'key1': 'value1', 'key2': 'value2'}", default="", ) class Output(BlockSchema): item: Any = SchemaField(description="The current item in the iteration") key: Any = SchemaField( description="The key or index of the current item in the iteration", ) def __init__(self): super().__init__( id="f66a3543-28d3-4ab5-8945-9b336371e2ce", input_schema=StepThroughItemsBlock.Input, output_schema=StepThroughItemsBlock.Output, categories={BlockCategory.LOGIC}, description="Iterates over a list or dictionary and outputs each item.", test_input={"items": [1, 2, 3, {"key1": "value1", "key2": "value2"}]}, test_output=[ ("item", 1), ("key", 0), ("item", 2), ("key", 1), ("item", 3), ("key", 2), ("item", {"key1": "value1", "key2": "value2"}), ("key", 3), ], test_mock={}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: for data in [input_data.items, input_data.items_object, input_data.items_str]: if not data: continue if isinstance(data, str): items = json.loads(data) else: items = data if isinstance(items, dict): # If items is a dictionary, iterate over its values for item in items.values(): yield "item", item yield "key", item else: # If items is a list, iterate over the list for index, item in enumerate(items): yield "item", item yield "key", index
from typing import Any from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class StepThroughItemsBlock(Block): class Input(BlockSchema): items: list | dict = SchemaField( description="The list or dictionary of items to iterate over", placeholder="[1, 2, 3, 4, 5] or {'key1': 'value1', 'key2': 'value2'}", ) class Output(BlockSchema): item: Any = SchemaField(description="The current item in the iteration") key: Any = SchemaField( description="The key or index of the current item in the iteration", ) def __init__(self): super().__init__( id="f66a3543-28d3-4ab5-8945-9b336371e2ce", input_schema=StepThroughItemsBlock.Input, output_schema=StepThroughItemsBlock.Output, categories={BlockCategory.LOGIC}, description="Iterates over a list or dictionary and outputs each item.", test_input={"items": [1, 2, 3, {"key1": "value1", "key2": "value2"}]}, test_output=[ ("item", 1), ("key", 0), ("item", 2), ("key", 1), ("item", 3), ("key", 2), ("item", {"key1": "value1", "key2": "value2"}), ("key", 3), ], test_mock={}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: items = input_data.items if isinstance(items, dict): # If items is a dictionary, iterate over its values for item in items.values(): yield "item", item yield "key", item else: # If items is a list, iterate over the list for index, item in enumerate(items): yield "item", item yield "key", index
from torio.io import CodecConfig, StreamingMediaDecoder as StreamReader, StreamingMediaEncoder as StreamWriter from ._effector import AudioEffector from ._playback import play_audio __all__ = [ "AudioEffector", "StreamReader", "StreamWriter", "CodecConfig", "play_audio", ]
from ._effector import AudioEffector from ._playback import play_audio from ._stream_reader import StreamReader from ._stream_writer import CodecConfig, StreamWriter __all__ = [ "AudioEffector", "StreamReader", "StreamWriter", "CodecConfig", "play_audio", ]
import asyncio import os from jina import __default_host__ from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.http.app import get_fastapi_app __all__ = ['HTTPGatewayRuntime'] from jina.serve.runtimes.gateway.http.gateway import HTTPGateway class HTTPGatewayRuntime(GatewayRuntime): """Runtime for HTTP interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ self.gateway = HTTPGateway( name=self.name, port=self.args.port, title=self.args.title, description=self.args.description, no_debug_endpoints=self.args.no_debug_endpoints, no_crud_endpoints=self.args.no_crud_endpoints, expose_endpoints=self.args.expose_endpoints, expose_graphql_endpoint=self.args.expose_graphql_endpoint, cors=self.args.cors, ssl_keyfile=self.args.ssl_keyfile, ssl_certfile=self.args.ssl_certfile, uvicorn_kwargs=self.args.uvicorn_kwargs, ) self.gateway.set_streamer( args=self.args, timeout_send=self.timeout_send, metrics_registry=self.metrics_registry, runtime_name=self.args.name, ) await self.gateway.setup_server() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self.gateway.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self.gateway.teardown() async def async_cancel(self): """Stop the server.""" await self.gateway.stop_server() async def async_run_forever(self): """Running method of the server.""" await self.gateway.run_server()
import asyncio import logging import os from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.http.app import get_fastapi_app __all__ = ['HTTPGatewayRuntime'] class HTTPGatewayRuntime(GatewayRuntime): """Runtime for HTTP interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) self.install_signal_handlers() await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) from jina.helper import extend_rest_interface uvicorn_kwargs = self.args.uvicorn_kwargs or {} for ssl_file in ['ssl_keyfile', 'ssl_certfile']: if getattr(self.args, ssl_file): if ssl_file not in uvicorn_kwargs.keys(): uvicorn_kwargs[ssl_file] = getattr(self.args, ssl_file) self._server = UviServer( config=Config( app=extend_rest_interface( get_fastapi_app( args=self.args, logger=self.logger, timeout_send=self.timeout_send, metrics_registry=self.metrics_registry, ) ), host=__default_host__, port=self.args.port, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs ) ) await self._server.setup() async def async_run_forever(self): """Running method of the server.""" await self._server.serve() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self._server.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self._server.shutdown() async def async_cancel(self): """Stop the server.""" self._server.should_exit = True
# Copyright (c) OpenMMLab. All rights reserved. import argparse import numpy as np import torch from mmcv import Config, DictAction from mmdet.models import build_detector try: from mmcv.cnn import get_model_complexity_info except ImportError: raise ImportError('Please upgrade mmcv to >0.6.2') def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[1280, 800], help='input image size') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--size-divisor', type=int, default=32, help='Pad the input image, the minimum size that is divisible ' 'by size_divisor, -1 means do not pad the image.') args = parser.parse_args() return args def main(): args = parse_args() if len(args.shape) == 1: h = w = args.shape[0] elif len(args.shape) == 2: h, w = args.shape else: raise ValueError('invalid input shape') orig_shape = (3, h, w) divisor = args.size_divisor if divisor > 0: h = int(np.ceil(h / divisor)) * divisor w = int(np.ceil(w / divisor)) * divisor input_shape = (3, h, w) cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) if torch.cuda.is_available(): model.cuda() model.eval() if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info(model, input_shape) split_line = '=' * 30 if divisor > 0 and \ input_shape != orig_shape: print(f'{split_line}\nUse size divisor set input shape ' f'from {orig_shape} to {input_shape}\n') print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import torch from mmcv import Config, DictAction from mmdet.models import build_detector try: from mmcv.cnn import get_model_complexity_info except ImportError: raise ImportError('Please upgrade mmcv to >0.6.2') def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[1280, 800], help='input image size') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() if len(args.shape) == 1: input_shape = (3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (3, ) + tuple(args.shape) else: raise ValueError('invalid input shape') cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) if torch.cuda.is_available(): model.cuda() model.eval() if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info(model, input_shape) split_line = '=' * 30 print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') if __name__ == '__main__': main()
"""Functionality for loading agents.""" import json import logging from pathlib import Path from typing import Any, Optional, Union import yaml from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import Tool from langchain.agents.agent import BaseMultiActionAgent, BaseSingleActionAgent from langchain.agents.types import AGENT_TO_CLASS from langchain.chains.loading import load_chain, load_chain_from_config logger = logging.getLogger(__file__) URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLanguageModel, tools: list[Tool], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: msg = f"Loading {config_type} agent not supported" raise ValueError(msg) agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) @deprecated("0.1.0", removal="1.0") def load_agent_from_config( config: dict, llm: Optional[BaseLanguageModel] = None, tools: Optional[list[Tool]] = None, **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from Config Dict. Args: config: Config dict to load agent from. llm: Language model to use as the agent. tools: List of tools this agent has access to. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If agent type is not specified in the config. """ if "_type" not in config: msg = "Must specify an agent Type in config" raise ValueError(msg) load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: msg = ( "If `load_from_llm_and_tools` is set to True, then LLM must be provided" ) raise ValueError(msg) if tools is None: msg = ( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) raise ValueError(msg) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: msg = f"Loading {config_type} agent not supported" raise ValueError(msg) agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: msg = "One of `llm_chain` and `llm_chain_path` should be specified." raise ValueError(msg) if "output_parser" in config: logger.warning( "Currently loading output parsers on agent is not supported, " "will just use the default one." ) del config["output_parser"] combined_config = {**config, **kwargs} return agent_cls(**combined_config) @deprecated("0.1.0", removal="1.0") def load_agent( path: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Unified method for loading an agent from LangChainHub or local fs. Args: path: Path to the agent file. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: RuntimeError: If loading from the deprecated github-based Hub is attempted. """ if isinstance(path, str) and path.startswith("lc://"): msg = ( "Loading from the deprecated github-based Hub is no longer supported. " "Please use the new LangChain Hub at https://smith.langchain.com/hub " "instead." ) raise RuntimeError(msg) return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from file.""" valid_suffixes = {"json", "yaml"} # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix[1:] == "json": with open(file_path) as f: config = json.load(f) elif file_path.suffix[1:] == "yaml": with open(file_path) as f: config = yaml.safe_load(f) else: msg = f"Unsupported file type, must be one of {valid_suffixes}." raise ValueError(msg) # Load the agent from the config now. return load_agent_from_config(config, **kwargs)
"""Functionality for loading agents.""" import json import logging from pathlib import Path from typing import Any, Optional, Union import yaml from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import Tool from langchain.agents.agent import BaseMultiActionAgent, BaseSingleActionAgent from langchain.agents.types import AGENT_TO_CLASS from langchain.chains.loading import load_chain, load_chain_from_config logger = logging.getLogger(__file__) URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLanguageModel, tools: list[Tool], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) @deprecated("0.1.0", removal="1.0") def load_agent_from_config( config: dict, llm: Optional[BaseLanguageModel] = None, tools: Optional[list[Tool]] = None, **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from Config Dict. Args: config: Config dict to load agent from. llm: Language model to use as the agent. tools: List of tools this agent has access to. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If agent type is not specified in the config. """ if "_type" not in config: raise ValueError("Must specify an agent Type in config") load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, then LLM must be provided" ) if tools is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.") if "output_parser" in config: logger.warning( "Currently loading output parsers on agent is not supported, " "will just use the default one." ) del config["output_parser"] combined_config = {**config, **kwargs} return agent_cls(**combined_config) @deprecated("0.1.0", removal="1.0") def load_agent( path: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Unified method for loading an agent from LangChainHub or local fs. Args: path: Path to the agent file. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: RuntimeError: If loading from the deprecated github-based Hub is attempted. """ if isinstance(path, str) and path.startswith("lc://"): raise RuntimeError( "Loading from the deprecated github-based Hub is no longer supported. " "Please use the new LangChain Hub at https://smith.langchain.com/hub " "instead." ) return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from file.""" valid_suffixes = {"json", "yaml"} # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix[1:] == "json": with open(file_path) as f: config = json.load(f) elif file_path.suffix[1:] == "yaml": with open(file_path) as f: config = yaml.safe_load(f) else: raise ValueError(f"Unsupported file type, must be one of {valid_suffixes}.") # Load the agent from the config now. return load_agent_from_config(config, **kwargs)
""" Official evaluation script for ReCoRD v1.0. (Some functions are adopted from the SQuAD evaluation script.) """ import argparse import json import re import string import sys from collections import Counter def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 correct_ids = [] for passage in dataset: for qa in passage["qas"]: total += 1 if qa["id"] not in predictions: message = f'Unanswered question {qa["id"]} will receive score 0.' print(message, file=sys.stderr) continue ground_truths = [x["text"] for x in qa["answers"]] prediction = predictions[qa["id"]] _exact_match = metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) if int(_exact_match) == 1: correct_ids.append(qa["id"]) exact_match += _exact_match f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = exact_match / total f1 = f1 / total return {"exact_match": exact_match, "f1": f1}, correct_ids if __name__ == "__main__": expected_version = "1.0" parser = argparse.ArgumentParser("Official evaluation script for ReCoRD v1.0.") parser.add_argument("data_file", help="The dataset file in JSON format.") parser.add_argument("pred_file", help="The model prediction file in JSON format.") parser.add_argument("--output_correct_ids", action="store_true", help="Output the correctly answered query IDs.") args = parser.parse_args() with open(args.data_file) as data_file: dataset_json = json.load(data_file) if dataset_json["version"] != expected_version: print( f'Evaluation expects v-{expected_version}, but got dataset with v-{dataset_json["version"]}', file=sys.stderr, ) dataset = dataset_json["data"] with open(args.pred_file) as pred_file: predictions = json.load(pred_file) metrics, correct_ids = evaluate(dataset, predictions) if args.output_correct_ids: print(f"Output {len(correct_ids)} correctly answered question IDs.") with open("correct_ids.json", "w") as f: json.dump(correct_ids, f)
""" Official evaluation script for ReCoRD v1.0. (Some functions are adopted from the SQuAD evaluation script.) """ import argparse import json import re import string import sys from collections import Counter def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 correct_ids = [] for passage in dataset: for qa in passage["qas"]: total += 1 if qa["id"] not in predictions: message = f'Unanswered question {qa["id"]} will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x["text"], qa["answers"])) prediction = predictions[qa["id"]] _exact_match = metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) if int(_exact_match) == 1: correct_ids.append(qa["id"]) exact_match += _exact_match f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = exact_match / total f1 = f1 / total return {"exact_match": exact_match, "f1": f1}, correct_ids if __name__ == "__main__": expected_version = "1.0" parser = argparse.ArgumentParser("Official evaluation script for ReCoRD v1.0.") parser.add_argument("data_file", help="The dataset file in JSON format.") parser.add_argument("pred_file", help="The model prediction file in JSON format.") parser.add_argument("--output_correct_ids", action="store_true", help="Output the correctly answered query IDs.") args = parser.parse_args() with open(args.data_file) as data_file: dataset_json = json.load(data_file) if dataset_json["version"] != expected_version: print( f'Evaluation expects v-{expected_version}, but got dataset with v-{dataset_json["version"]}', file=sys.stderr, ) dataset = dataset_json["data"] with open(args.pred_file) as pred_file: predictions = json.load(pred_file) metrics, correct_ids = evaluate(dataset, predictions) if args.output_correct_ids: print(f"Output {len(correct_ids)} correctly answered question IDs.") with open("correct_ids.json", "w") as f: json.dump(correct_ids, f)
from ._optical_flow import FlyingChairs, FlyingThings3D, HD1K, KittiFlow, Sintel from ._stereo_matching import ( CarlaStereo, CREStereo, ETH3DStereo, FallingThingsStereo, InStereo2k, Kitti2012Stereo, Kitti2015Stereo, Middlebury2014Stereo, SceneFlowStereo, SintelStereo, ) from .caltech import Caltech101, Caltech256 from .celeba import CelebA from .cifar import CIFAR10, CIFAR100 from .cityscapes import Cityscapes from .clevr import CLEVRClassification from .coco import CocoCaptions, CocoDetection from .country211 import Country211 from .dtd import DTD from .eurosat import EuroSAT from .fakedata import FakeData from .fer2013 import FER2013 from .fgvc_aircraft import FGVCAircraft from .flickr import Flickr30k, Flickr8k from .flowers102 import Flowers102 from .folder import DatasetFolder, ImageFolder from .food101 import Food101 from .gtsrb import GTSRB from .hmdb51 import HMDB51 from .imagenet import ImageNet from .imagenette import Imagenette from .inaturalist import INaturalist from .kinetics import Kinetics from .kitti import Kitti from .lfw import LFWPairs, LFWPeople from .lsun import LSUN, LSUNClass from .mnist import EMNIST, FashionMNIST, KMNIST, MNIST, QMNIST from .moving_mnist import MovingMNIST from .omniglot import Omniglot from .oxford_iiit_pet import OxfordIIITPet from .pcam import PCAM from .phototour import PhotoTour from .places365 import Places365 from .rendered_sst2 import RenderedSST2 from .sbd import SBDataset from .sbu import SBU from .semeion import SEMEION from .stanford_cars import StanfordCars from .stl10 import STL10 from .sun397 import SUN397 from .svhn import SVHN from .ucf101 import UCF101 from .usps import USPS from .vision import VisionDataset from .voc import VOCDetection, VOCSegmentation from .widerface import WIDERFace __all__ = ( "LSUN", "LSUNClass", "ImageFolder", "DatasetFolder", "FakeData", "CocoCaptions", "CocoDetection", "CIFAR10", "CIFAR100", "EMNIST", "FashionMNIST", "QMNIST", "MNIST", "KMNIST", "StanfordCars", "STL10", "SUN397", "SVHN", "PhotoTour", "SEMEION", "Omniglot", "SBU", "Flickr8k", "Flickr30k", "Flowers102", "VOCSegmentation", "VOCDetection", "Cityscapes", "ImageNet", "Caltech101", "Caltech256", "CelebA", "WIDERFace", "SBDataset", "VisionDataset", "USPS", "Kinetics", "HMDB51", "UCF101", "Places365", "Kitti", "INaturalist", "LFWPeople", "LFWPairs", "KittiFlow", "Sintel", "FlyingChairs", "FlyingThings3D", "HD1K", "Food101", "DTD", "FER2013", "GTSRB", "CLEVRClassification", "OxfordIIITPet", "PCAM", "Country211", "FGVCAircraft", "EuroSAT", "RenderedSST2", "Kitti2012Stereo", "Kitti2015Stereo", "CarlaStereo", "Middlebury2014Stereo", "CREStereo", "FallingThingsStereo", "SceneFlowStereo", "SintelStereo", "InStereo2k", "ETH3DStereo", "wrap_dataset_for_transforms_v2", "Imagenette", ) # We override current module's attributes to handle the import: # from torchvision.datasets import wrap_dataset_for_transforms_v2 # without a cyclic error. # Ref: https://peps.python.org/pep-0562/ def __getattr__(name): if name in ("wrap_dataset_for_transforms_v2",): from torchvision.tv_tensors._dataset_wrapper import wrap_dataset_for_transforms_v2 return wrap_dataset_for_transforms_v2 raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
from ._optical_flow import FlyingChairs, FlyingThings3D, HD1K, KittiFlow, Sintel from ._stereo_matching import ( CarlaStereo, CREStereo, ETH3DStereo, FallingThingsStereo, InStereo2k, Kitti2012Stereo, Kitti2015Stereo, Middlebury2014Stereo, SceneFlowStereo, SintelStereo, ) from .caltech import Caltech101, Caltech256 from .celeba import CelebA from .cifar import CIFAR10, CIFAR100 from .cityscapes import Cityscapes from .clevr import CLEVRClassification from .coco import CocoCaptions, CocoDetection from .country211 import Country211 from .dtd import DTD from .eurosat import EuroSAT from .fakedata import FakeData from .fer2013 import FER2013 from .fgvc_aircraft import FGVCAircraft from .flickr import Flickr30k, Flickr8k from .flowers102 import Flowers102 from .folder import DatasetFolder, ImageFolder from .food101 import Food101 from .gtsrb import GTSRB from .hmdb51 import HMDB51 from .imagenet import ImageNet from .inaturalist import INaturalist from .kinetics import Kinetics from .kitti import Kitti from .lfw import LFWPairs, LFWPeople from .lsun import LSUN, LSUNClass from .mnist import EMNIST, FashionMNIST, KMNIST, MNIST, QMNIST from .moving_mnist import MovingMNIST from .omniglot import Omniglot from .oxford_iiit_pet import OxfordIIITPet from .pcam import PCAM from .phototour import PhotoTour from .places365 import Places365 from .rendered_sst2 import RenderedSST2 from .sbd import SBDataset from .sbu import SBU from .semeion import SEMEION from .stanford_cars import StanfordCars from .stl10 import STL10 from .sun397 import SUN397 from .svhn import SVHN from .ucf101 import UCF101 from .usps import USPS from .vision import VisionDataset from .voc import VOCDetection, VOCSegmentation from .widerface import WIDERFace __all__ = ( "LSUN", "LSUNClass", "ImageFolder", "DatasetFolder", "FakeData", "CocoCaptions", "CocoDetection", "CIFAR10", "CIFAR100", "EMNIST", "FashionMNIST", "QMNIST", "MNIST", "KMNIST", "StanfordCars", "STL10", "SUN397", "SVHN", "PhotoTour", "SEMEION", "Omniglot", "SBU", "Flickr8k", "Flickr30k", "Flowers102", "VOCSegmentation", "VOCDetection", "Cityscapes", "ImageNet", "Caltech101", "Caltech256", "CelebA", "WIDERFace", "SBDataset", "VisionDataset", "USPS", "Kinetics", "HMDB51", "UCF101", "Places365", "Kitti", "INaturalist", "LFWPeople", "LFWPairs", "KittiFlow", "Sintel", "FlyingChairs", "FlyingThings3D", "HD1K", "Food101", "DTD", "FER2013", "GTSRB", "CLEVRClassification", "OxfordIIITPet", "PCAM", "Country211", "FGVCAircraft", "EuroSAT", "RenderedSST2", "Kitti2012Stereo", "Kitti2015Stereo", "CarlaStereo", "Middlebury2014Stereo", "CREStereo", "FallingThingsStereo", "SceneFlowStereo", "SintelStereo", "InStereo2k", "ETH3DStereo", "wrap_dataset_for_transforms_v2", ) # We override current module's attributes to handle the import: # from torchvision.datasets import wrap_dataset_for_transforms_v2 # without a cyclic error. # Ref: https://peps.python.org/pep-0562/ def __getattr__(name): if name in ("wrap_dataset_for_transforms_v2",): from torchvision.tv_tensors._dataset_wrapper import wrap_dataset_for_transforms_v2 return wrap_dataset_for_transforms_v2 raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
"""Product extraction pack.""" import asyncio from typing import Any, Dict from llama_index.core import SimpleDirectoryReader from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.output_parsers import PydanticOutputParser from llama_index.core.program.multi_modal_llm_program import ( MultiModalLLMCompletionProgram, ) from llama_index.multi_modal_llms.openai import OpenAIMultiModal from pydantic import BaseModel, Field async def _screenshot_page( url: str, out_path: str, width: int = 1200, height: int = 800 ) -> None: from pyppeteer import launch browser = await launch() page = await browser.newPage() await page.setViewport({"width": 1200, "height": 800}) await page.goto(url, {"waitUntil": "domcontentloaded"}) await page.screenshot({"path": out_path}) await browser.close() class Product(BaseModel): """Data model for an Amazon Product.""" title: str = Field(..., description="Title of product") category: str = Field(..., description="Category of product") discount: float = Field(..., description="Discount of product") price: float = Field(..., description="Price of product") rating: float = Field(..., description="Rating of product") description: str = Field(..., description="Description of product") img_description: str = Field(..., description="Description of product image") inventory: str = Field(..., description="Inventory of product") DEFAULT_PROMPT_TEMPLATE_STR = """\ Can you extract the following fields from this product, in JSON format? """ class AmazonProductExtractionPack(BaseLlamaPack): """ Product extraction pack. Given a website url of a product (e.g. Amazon page), screenshot it, and use GPT-4V to extract structured outputs. """ def __init__( self, website_url: str, tmp_file_path: str = "./tmp.png", screenshot_width: int = 1200, screenshot_height: int = 800, prompt_template_str: str = DEFAULT_PROMPT_TEMPLATE_STR, **kwargs: Any, ) -> None: """Init params.""" self.website_url = website_url # download image to temporary file asyncio.get_event_loop().run_until_complete( _screenshot_page( website_url, tmp_file_path, width=screenshot_width, height=screenshot_height, ) ) # put your local directory here self.image_documents = SimpleDirectoryReader( input_files=[tmp_file_path] ).load_data() # initialize openai pydantic program self.openai_mm_llm = OpenAIMultiModal( model="gpt-4-vision-preview", max_new_tokens=1000 ) self.openai_program = MultiModalLLMCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Product), image_documents=self.image_documents, prompt_template_str=prompt_template_str, llm=self.openai_mm_llm, verbose=True, ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "openai_program": self.openai_program, "openai_mm_llm": self.openai_mm_llm, "image_documents": self.image_documents, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.openai_program(*args, **kwargs)
"""Product extraction pack.""" import asyncio from typing import Any, Dict from llama_index.core import SimpleDirectoryReader from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.output_parsers import PydanticOutputParser from llama_index.core.program.multi_modal_llm_program import ( MultiModalLLMCompletionProgram, ) from llama_index.multi_modal_llms.openai import OpenAIMultiModal from pydantic import BaseModel, Field async def _screenshot_page( url: str, out_path: str, width: int = 1200, height: int = 800 ) -> None: from pyppeteer import launch browser = await launch() page = await browser.newPage() await page.setViewport({"width": 1200, "height": 800}) await page.goto(url, {"waitUntil": "domcontentloaded"}) await page.screenshot({"path": out_path}) await browser.close() class Product(BaseModel): """Data model for an Amazon Product.""" title: str = Field(..., description="Title of product") category: str = Field(..., description="Category of product") discount: float = Field(..., description="Discount of product") price: float = Field(..., description="Price of product") rating: float = Field(..., description="Rating of product") description: str = Field(..., description="Description of product") img_description: str = Field(..., description="Description of product image") inventory: str = Field(..., description="Inventory of product") DEFAULT_PROMPT_TEMPLATE_STR = """\ Can you extract the following fields from this product, in JSON format? """ class AmazonProductExtractionPack(BaseLlamaPack): """Product extraction pack. Given a website url of a product (e.g. Amazon page), screenshot it, and use GPT-4V to extract structured outputs. """ def __init__( self, website_url: str, tmp_file_path: str = "./tmp.png", screenshot_width: int = 1200, screenshot_height: int = 800, prompt_template_str: str = DEFAULT_PROMPT_TEMPLATE_STR, **kwargs: Any, ) -> None: """Init params.""" self.website_url = website_url # download image to temporary file asyncio.get_event_loop().run_until_complete( _screenshot_page( website_url, tmp_file_path, width=screenshot_width, height=screenshot_height, ) ) # put your local directory here self.image_documents = SimpleDirectoryReader( input_files=[tmp_file_path] ).load_data() # initialize openai pydantic program self.openai_mm_llm = OpenAIMultiModal( model="gpt-4-vision-preview", max_new_tokens=1000 ) self.openai_program = MultiModalLLMCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Product), image_documents=self.image_documents, prompt_template_str=prompt_template_str, llm=self.openai_mm_llm, verbose=True, ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "openai_program": self.openai_program, "openai_mm_llm": self.openai_mm_llm, "image_documents": self.image_documents, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.openai_program(*args, **kwargs)
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from pydantic import parse_obj_as from docarray import Document from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(Document): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save_to_wav_file(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save_to_wav_file(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 T = TypeVar('T', bound='AudioNdArray') @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional from pydantic import parse_obj_as from docarray import Document from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(Document): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save_to_wav_file(file_path='path/to/file_1.wav') # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = parse_obj_as(AudioNdArray, doc_2.url.load()) doc_2.audio_tensor.save_to_wav_file(file_path='path/to/file_2.wav') """ def to_audio_bytes(self): tensor = (self * MAX_INT_16).astype('<h') return tensor.tobytes()
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="2.7.0.dev0", author="Nils Reimers", author_email="[email protected]", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), python_requires=">=3.8.0", install_requires=[ "transformers>=4.32.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="2.6.0.dev0", author="Nils Reimers", author_email="[email protected]", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), python_requires=">=3.8.0", install_requires=[ "transformers>=4.32.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from typing import List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class TrafilaturaWebReader(BasePydanticReader): """ Trafilatura web page reader. Reads pages from the web. Requires the `trafilatura` package. """ is_remote: bool = True @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "TrafilaturaWebReader" def load_data( self, urls: List[str], include_comments=True, output_format="txt", include_tables=True, include_images=False, include_formatting=False, include_links=False, show_progress=False, no_ssl=False, **kwargs, ) -> List[Document]: """ Load data from the urls. Args: urls (List[str]): List of URLs to scrape. include_comments (bool, optional): Include comments in the output. Defaults to True. output_format (str, optional): Output format. Defaults to 'txt'. include_tables (bool, optional): Include tables in the output. Defaults to True. include_images (bool, optional): Include images in the output. Defaults to False. include_formatting (bool, optional): Include formatting in the output. Defaults to False. include_links (bool, optional): Include links in the output. Defaults to False. show_progress (bool, optional): Show progress bar. Defaults to False no_ssl (bool, optional): Bypass SSL verification. Defaults to False. kwargs: Additional keyword arguments for the `trafilatura.extract` function. Returns: List[Document]: List of documents. """ import trafilatura if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] if show_progress: from tqdm import tqdm iterator = tqdm(urls, desc="Downloading pages") else: iterator = urls for url in iterator: downloaded = trafilatura.fetch_url(url, no_ssl=no_ssl) response = trafilatura.extract( downloaded, include_comments=include_comments, output_format=output_format, include_tables=include_tables, include_images=include_images, include_formatting=include_formatting, include_links=include_links, **kwargs, ) documents.append(Document(text=response, id_=url)) return documents
from typing import List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class TrafilaturaWebReader(BasePydanticReader): """Trafilatura web page reader. Reads pages from the web. Requires the `trafilatura` package. """ is_remote: bool = True @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "TrafilaturaWebReader" def load_data( self, urls: List[str], include_comments=True, output_format="txt", include_tables=True, include_images=False, include_formatting=False, include_links=False, show_progress=False, no_ssl=False, **kwargs, ) -> List[Document]: """Load data from the urls. Args: urls (List[str]): List of URLs to scrape. include_comments (bool, optional): Include comments in the output. Defaults to True. output_format (str, optional): Output format. Defaults to 'txt'. include_tables (bool, optional): Include tables in the output. Defaults to True. include_images (bool, optional): Include images in the output. Defaults to False. include_formatting (bool, optional): Include formatting in the output. Defaults to False. include_links (bool, optional): Include links in the output. Defaults to False. show_progress (bool, optional): Show progress bar. Defaults to False no_ssl (bool, optional): Bypass SSL verification. Defaults to False. kwargs: Additional keyword arguments for the `trafilatura.extract` function. Returns: List[Document]: List of documents. """ import trafilatura if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] if show_progress: from tqdm import tqdm iterator = tqdm(urls, desc="Downloading pages") else: iterator = urls for url in iterator: downloaded = trafilatura.fetch_url(url, no_ssl=no_ssl) response = trafilatura.extract( downloaded, include_comments=include_comments, output_format=output_format, include_tables=include_tables, include_images=include_images, include_formatting=include_formatting, include_links=include_links, **kwargs, ) documents.append(Document(text=response, id_=url)) return documents
from workflows.resource import Resource, ResourceDefinition, ResourceManager # noqa
import inspect from typing import ( Callable, Generic, TypeVar, Union, Awaitable, Dict, Any, cast, ) from pydantic import ( BaseModel, ConfigDict, ) T = TypeVar("T") class _Resource(Generic[T]): def __init__( self, factory: Callable[..., Union[T, Awaitable[T]]], cache: bool ) -> None: self._factory = factory self._is_async = inspect.iscoroutinefunction(factory) self.name = factory.__qualname__ self.cache = cache async def call(self) -> T: if self._is_async: result = await cast(Callable[..., Awaitable[T]], self._factory)() else: result = cast(Callable[..., T], self._factory)() return result class ResourceDefinition(BaseModel): model_config = ConfigDict(arbitrary_types_allowed=True) name: str resource: _Resource def Resource(factory: Callable[..., T], cache: bool = True) -> _Resource[T]: return _Resource(factory, cache) class ResourceManager: def __init__(self) -> None: self.resources: Dict[str, Any] = {} async def set(self, name: str, val: Any) -> None: self.resources.update({name: val}) async def get(self, resource: _Resource) -> Any: if not resource.cache: val = await resource.call() elif resource.cache and not self.resources.get(resource.name, None): val = await resource.call() await self.set(resource.name, val) else: val = self.resources.get(resource.name) return val def get_all(self) -> Dict[str, Any]: return self.resources
# mypy: allow-untyped-defs from collections import OrderedDict __all__ = ["raises", "expand_tuples", "reverse_dict", "groupby", "typename"] def raises(err, lamda): # codespell:ignore lamda try: lamda() # codespell:ignore lamda return False except err: return True def expand_tuples(L): """ >>> expand_tuples([1, (2, 3)]) [(1, 2), (1, 3)] >>> expand_tuples([1, 2]) [(1, 2)] """ if not L: return [()] elif not isinstance(L[0], tuple): rest = expand_tuples(L[1:]) return [(L[0],) + t for t in rest] else: rest = expand_tuples(L[1:]) return [(item,) + t for t in rest for item in L[0]] # Taken from theano/theano/gof/sched.py # Avoids licensing issues because this was written by Matthew Rocklin def _toposort(edges): """Topological sort algorithm by Kahn [1] - O(nodes + vertices) inputs: edges - a dict of the form {a: {b, c}} where b and c depend on a outputs: L - an ordered list of nodes that satisfy the dependencies of edges >>> _toposort({1: (2, 3), 2: (3,)}) [1, 2, 3] >>> # Closely follows the wikipedia page [2] >>> # [1] Kahn, Arthur B. (1962), "Topological sorting of large networks", >>> # Communications of the ACM >>> # [2] http://en.wikipedia.org/wiki/Toposort#Algorithms """ incoming_edges = reverse_dict(edges) incoming_edges = OrderedDict((k, set(val)) for k, val in incoming_edges.items()) S = OrderedDict.fromkeys(v for v in edges if v not in incoming_edges) L = [] while S: n, _ = S.popitem() L.append(n) for m in edges.get(n, ()): assert n in incoming_edges[m] incoming_edges[m].remove(n) if not incoming_edges[m]: S[m] = None if any(incoming_edges.get(v, None) for v in edges): raise ValueError("Input has cycles") return L def reverse_dict(d): """Reverses direction of dependence dict >>> d = {"a": (1, 2), "b": (2, 3), "c": ()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = OrderedDict() # type: ignore[var-annotated] for key in d: for val in d[key]: result[val] = result.get(val, ()) + (key,) return result # Taken from toolz # Avoids licensing issues because this version was authored by Matthew Rocklin def groupby(func, seq): """Group a collection by a key function >>> names = ["Alice", "Bob", "Charlie", "Dan", "Edith", "Frank"] >>> groupby(len, names) # doctest: +SKIP {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']} >>> iseven = lambda x: x % 2 == 0 >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP {False: [1, 3, 5, 7], True: [2, 4, 6, 8]} See Also: ``countby`` """ d = OrderedDict() # type: ignore[var-annotated] for item in seq: key = func(item) if key not in d: d[key] = [] d[key].append(item) return d def typename(type): """Get the name of `type`. Parameters ---------- type : Union[Type, Tuple[Type]] Returns ------- str The name of `type` or a tuple of the names of the types in `type`. Examples -------- >>> typename(int) 'int' >>> typename((int, float)) '(int, float)' """ try: return type.__name__ except AttributeError: if len(type) == 1: return typename(*type) return f"({', '.join(map(typename, type))})"
# mypy: allow-untyped-defs from collections import OrderedDict __all__ = ["raises", "expand_tuples", "reverse_dict", "groupby", "typename"] def raises(err, lamda): try: lamda() return False except err: return True def expand_tuples(L): """ >>> expand_tuples([1, (2, 3)]) [(1, 2), (1, 3)] >>> expand_tuples([1, 2]) [(1, 2)] """ if not L: return [()] elif not isinstance(L[0], tuple): rest = expand_tuples(L[1:]) return [(L[0],) + t for t in rest] else: rest = expand_tuples(L[1:]) return [(item,) + t for t in rest for item in L[0]] # Taken from theano/theano/gof/sched.py # Avoids licensing issues because this was written by Matthew Rocklin def _toposort(edges): """Topological sort algorithm by Kahn [1] - O(nodes + vertices) inputs: edges - a dict of the form {a: {b, c}} where b and c depend on a outputs: L - an ordered list of nodes that satisfy the dependencies of edges >>> _toposort({1: (2, 3), 2: (3,)}) [1, 2, 3] >>> # Closely follows the wikipedia page [2] >>> # [1] Kahn, Arthur B. (1962), "Topological sorting of large networks", >>> # Communications of the ACM >>> # [2] http://en.wikipedia.org/wiki/Toposort#Algorithms """ incoming_edges = reverse_dict(edges) incoming_edges = OrderedDict((k, set(val)) for k, val in incoming_edges.items()) S = OrderedDict.fromkeys(v for v in edges if v not in incoming_edges) L = [] while S: n, _ = S.popitem() L.append(n) for m in edges.get(n, ()): assert n in incoming_edges[m] incoming_edges[m].remove(n) if not incoming_edges[m]: S[m] = None if any(incoming_edges.get(v, None) for v in edges): raise ValueError("Input has cycles") return L def reverse_dict(d): """Reverses direction of dependence dict >>> d = {"a": (1, 2), "b": (2, 3), "c": ()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = OrderedDict() # type: ignore[var-annotated] for key in d: for val in d[key]: result[val] = result.get(val, ()) + (key,) return result # Taken from toolz # Avoids licensing issues because this version was authored by Matthew Rocklin def groupby(func, seq): """Group a collection by a key function >>> names = ["Alice", "Bob", "Charlie", "Dan", "Edith", "Frank"] >>> groupby(len, names) # doctest: +SKIP {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']} >>> iseven = lambda x: x % 2 == 0 >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP {False: [1, 3, 5, 7], True: [2, 4, 6, 8]} See Also: ``countby`` """ d = OrderedDict() # type: ignore[var-annotated] for item in seq: key = func(item) if key not in d: d[key] = [] d[key].append(item) return d def typename(type): """Get the name of `type`. Parameters ---------- type : Union[Type, Tuple[Type]] Returns ------- str The name of `type` or a tuple of the names of the types in `type`. Examples -------- >>> typename(int) 'int' >>> typename((int, float)) '(int, float)' """ try: return type.__name__ except AttributeError: if len(type) == 1: return typename(*type) return f"({', '.join(map(typename, type))})"
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import TripletEvaluator from sentence_transformers.losses import TripletLoss from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = "distilbert-base-uncased" batch_size = 16 num_train_epochs = 1 output_dir = "output/training-wikipedia-sections-" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the Wikipedia-Sections dataset: https://huggingface.co/datasets/sentence-transformers/wikipedia-sections train_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="train").select( range(10_000) ) eval_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="validation").select( range(1000) ) test_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="test").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss # TripletLoss (https://sbert.net/docs/package_reference/losses.html#tripletloss) needs three text columns train_loss = TripletLoss(model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = TripletEvaluator( anchors=eval_dataset[:1000]["anchor"], positives=eval_dataset[:1000]["positive"], negatives=eval_dataset[:1000]["negative"], name="wikipedia-sections-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="wikipedia-sections-triplet", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = TripletEvaluator( anchors=test_dataset["anchor"], positives=test_dataset["positive"], negatives=test_dataset["negative"], name="wikipedia-sections-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-wikipedia-sections-triplet") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-wikipedia-sections-triplet')`." )
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ import traceback from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import TripletEvaluator from sentence_transformers.losses import TripletLoss from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from datetime import datetime from datasets import load_dataset import logging # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = "distilbert-base-uncased" batch_size = 16 num_train_epochs = 1 output_dir = "output/training-wikipedia-sections-" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the Wikipedia-Sections dataset: https://huggingface.co/datasets/sentence-transformers/wikipedia-sections train_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="train").select( range(10_000) ) eval_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="validation").select( range(1000) ) test_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="test").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss # TripletLoss (https://sbert.net/docs/package_reference/losses.html#tripletloss) needs three text columns train_loss = TripletLoss(model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = TripletEvaluator( anchors=eval_dataset[:1000]["anchor"], positives=eval_dataset[:1000]["positive"], negatives=eval_dataset[:1000]["negative"], name="wikipedia-sections-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="wikipedia-sections-triplet", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = TripletEvaluator( anchors=test_dataset["anchor"], positives=test_dataset["positive"], negatives=test_dataset["negative"], name="wikipedia-sections-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-wikipedia-sections-triplet") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-wikipedia-sections-triplet')`." )
from typing import Union, Iterable, MutableSequence, Iterator from docarray.array.storage.memory.backend import needs_id2offset_rebuild from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods""" @needs_id2offset_rebuild def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ self._data.insert(index, value) def append(self, value: 'Document'): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._data.append(value) if not self._needs_id2offset_rebuild: self._id_to_index[value.id] = len(self) - 1 def __eq__(self, other): return ( type(self) is type(other) and type(self._data) is type(other._data) and self._data == other._data ) def __len__(self): return len(self._data) def __iter__(self) -> Iterator['Document']: yield from self._data def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return x in self._id2offset elif isinstance(x, Document): return x.id in self._id2offset else: return False def __repr__(self): return f'<DocumentArray (length={len(self)}) at {id(self)}>' def __add__(self, other: Union['Document', Iterable['Document']]): v = type(self)(self) v.extend(other) return v def extend(self, values: Iterable['Document']) -> None: values = list(values) # consume the iterator only once last_idx = len(self._id2offset) self._data.extend(values) self._id_to_index.update({d.id: i + last_idx for i, d in enumerate(values)})
from typing import Union, Iterable, MutableSequence, Iterator from ..memory.backend import needs_id2offset_rebuild from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods""" @needs_id2offset_rebuild def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ self._data.insert(index, value) def append(self, value: 'Document'): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._data.append(value) if not self._needs_id2offset_rebuild: self._id_to_index[value.id] = len(self) - 1 def __eq__(self, other): return ( type(self) is type(other) and type(self._data) is type(other._data) and self._data == other._data ) def __len__(self): return len(self._data) def __iter__(self) -> Iterator['Document']: yield from self._data def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return x in self._id2offset elif isinstance(x, Document): return x.id in self._id2offset else: return False def __repr__(self): return f'<DocumentArray (length={len(self)}) at {id(self)}>' def __add__(self, other: Union['Document', Iterable['Document']]): v = type(self)(self) v.extend(other) return v def extend(self, values: Iterable['Document']) -> None: values = list(values) # consume the iterator only once last_idx = len(self._id2offset) self._data.extend(values) self._id_to_index.update({d.id: i + last_idx for i, d in enumerate(values)})
import copy import warnings from collections.abc import Mapping, Sequence from typing import Any, TypeVar, Union from torch.utils.data.datapipes.datapipe import MapDataPipe _T = TypeVar("_T") __all__ = ["SequenceWrapperMapDataPipe"] class SequenceWrapperMapDataPipe(MapDataPipe[_T]): r""" Wraps a sequence object into a MapDataPipe. Args: sequence: Sequence object to be wrapped into an MapDataPipe deepcopy: Option to deepcopy input sequence object .. note:: If ``deepcopy`` is set to False explicitly, users should ensure that data pipeline doesn't contain any in-place operations over the iterable instance, in order to prevent data inconsistency across iterations. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp = SequenceWrapper(range(10)) >>> list(dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> dp = SequenceWrapper({'a': 100, 'b': 200, 'c': 300, 'd': 400}) >>> dp['a'] 100 """ sequence: Union[Sequence[_T], Mapping[Any, _T]] def __init__( self, sequence: Union[Sequence[_T], Mapping[Any, _T]], deepcopy: bool = True ) -> None: if deepcopy: try: self.sequence = copy.deepcopy(sequence) except TypeError: warnings.warn( "The input sequence can not be deepcopied, " "please be aware of in-place modification would affect source data" ) self.sequence = sequence else: self.sequence = sequence def __getitem__(self, index: int) -> _T: return self.sequence[index] def __len__(self) -> int: return len(self.sequence)
# mypy: allow-untyped-defs import copy import warnings from torch.utils.data.datapipes.datapipe import MapDataPipe __all__ = ["SequenceWrapperMapDataPipe"] class SequenceWrapperMapDataPipe(MapDataPipe): r""" Wraps a sequence object into a MapDataPipe. Args: sequence: Sequence object to be wrapped into an MapDataPipe deepcopy: Option to deepcopy input sequence object .. note:: If ``deepcopy`` is set to False explicitly, users should ensure that data pipeline doesn't contain any in-place operations over the iterable instance, in order to prevent data inconsistency across iterations. Example: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp = SequenceWrapper(range(10)) >>> list(dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> dp = SequenceWrapper({'a': 100, 'b': 200, 'c': 300, 'd': 400}) >>> dp['a'] 100 """ def __init__(self, sequence, deepcopy=True): if deepcopy: try: self.sequence = copy.deepcopy(sequence) except TypeError: warnings.warn( "The input sequence can not be deepcopied, " "please be aware of in-place modification would affect source data" ) self.sequence = sequence else: self.sequence = sequence def __getitem__(self, index): return self.sequence[index] def __len__(self): return len(self.sequence)
from __future__ import annotations import json import logging import re from re import Pattern from typing import Optional, Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.language_models import BaseLanguageModel from pydantic import Field from langchain.agents.agent import AgentOutputParser from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS from langchain.output_parsers import OutputFixingParser logger = logging.getLogger(__name__) class StructuredChatOutputParser(AgentOutputParser): """Output parser for the structured chat agent.""" format_instructions: str = FORMAT_INSTRUCTIONS """Default formatting instructions""" pattern: Pattern = re.compile(r"```(?:json\s+)?(\W.*?)```", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: """Returns formatting instructions for the given output parser.""" return self.format_instructions def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: action_match = self.pattern.search(text) if action_match is not None: response = json.loads(action_match.group(1).strip(), strict=False) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) return AgentAction( response["action"], response.get("action_input", {}), text, ) return AgentFinish({"output": text}, text) except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @property def _type(self) -> str: return "structured_chat" class StructuredChatOutputParserWithRetries(AgentOutputParser): """Output parser with retries for the structured chat agent.""" base_parser: AgentOutputParser = Field(default_factory=StructuredChatOutputParser) """The base parser to use.""" output_fixing_parser: Optional[OutputFixingParser] = None """The output fixing parser to use.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: if self.output_fixing_parser is not None: parsed_obj: Union[AgentAction, AgentFinish] = ( self.output_fixing_parser.parse(text) ) else: parsed_obj = self.base_parser.parse(text) return parsed_obj except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @classmethod def from_llm( cls, llm: Optional[BaseLanguageModel] = None, base_parser: Optional[StructuredChatOutputParser] = None, ) -> StructuredChatOutputParserWithRetries: if llm is not None: base_parser = base_parser or StructuredChatOutputParser() output_fixing_parser: OutputFixingParser = OutputFixingParser.from_llm( llm=llm, parser=base_parser, ) return cls(output_fixing_parser=output_fixing_parser) if base_parser is not None: return cls(base_parser=base_parser) return cls() @property def _type(self) -> str: return "structured_chat_with_retries"
from __future__ import annotations import json import logging import re from re import Pattern from typing import Optional, Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.language_models import BaseLanguageModel from pydantic import Field from langchain.agents.agent import AgentOutputParser from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS from langchain.output_parsers import OutputFixingParser logger = logging.getLogger(__name__) class StructuredChatOutputParser(AgentOutputParser): """Output parser for the structured chat agent.""" format_instructions: str = FORMAT_INSTRUCTIONS """Default formatting instructions""" pattern: Pattern = re.compile(r"```(?:json\s+)?(\W.*?)```", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: """Returns formatting instructions for the given output parser.""" return self.format_instructions def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: action_match = self.pattern.search(text) if action_match is not None: response = json.loads(action_match.group(1).strip(), strict=False) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) return AgentAction( response["action"], response.get("action_input", {}), text ) return AgentFinish({"output": text}, text) except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @property def _type(self) -> str: return "structured_chat" class StructuredChatOutputParserWithRetries(AgentOutputParser): """Output parser with retries for the structured chat agent.""" base_parser: AgentOutputParser = Field(default_factory=StructuredChatOutputParser) """The base parser to use.""" output_fixing_parser: Optional[OutputFixingParser] = None """The output fixing parser to use.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: if self.output_fixing_parser is not None: parsed_obj: Union[AgentAction, AgentFinish] = ( self.output_fixing_parser.parse(text) ) else: parsed_obj = self.base_parser.parse(text) return parsed_obj except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @classmethod def from_llm( cls, llm: Optional[BaseLanguageModel] = None, base_parser: Optional[StructuredChatOutputParser] = None, ) -> StructuredChatOutputParserWithRetries: if llm is not None: base_parser = base_parser or StructuredChatOutputParser() output_fixing_parser: OutputFixingParser = OutputFixingParser.from_llm( llm=llm, parser=base_parser ) return cls(output_fixing_parser=output_fixing_parser) if base_parser is not None: return cls(base_parser=base_parser) return cls() @property def _type(self) -> str: return "structured_chat_with_retries"
import torch from torchaudio_unittest.common_utils import PytorchTestCase from .model_test_impl import Tacotron2DecoderTests, Tacotron2EncoderTests, Tacotron2Tests class TestTacotron2EncoderFloat32CPU(Tacotron2EncoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2DecoderFloat32CPU(Tacotron2DecoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2Float32CPU(Tacotron2Tests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu")
import torch from torchaudio_unittest.common_utils import PytorchTestCase from .model_test_impl import ( Tacotron2DecoderTests, Tacotron2EncoderTests, Tacotron2Tests, ) class TestTacotron2EncoderFloat32CPU(Tacotron2EncoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2DecoderFloat32CPU(Tacotron2DecoderTests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class TestTacotron2Float32CPU(Tacotron2Tests, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu")
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn( f'multiprocessing start method is set to `fork`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `fork`: {e!r}' ) # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.16.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.16.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from keras.src import backend from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer class BaseGlobalPooling(Layer): """Base global pooling layer.""" def __init__( self, pool_dimensions, data_format=None, keepdims=False, **kwargs ): super().__init__(**kwargs) self.data_format = backend.standardize_data_format(data_format) self.keepdims = keepdims self.input_spec = InputSpec(ndim=pool_dimensions + 2) self.built = True def call(self, inputs): raise NotImplementedError def compute_output_shape(self, input_shape): num_spatial_dims = len(input_shape) - 2 if self.data_format == "channels_last": if self.keepdims: return ( (input_shape[0],) + (1,) * num_spatial_dims + (input_shape[-1],) ) else: return (input_shape[0],) + (input_shape[-1],) else: if self.keepdims: return (input_shape[0], input_shape[1]) + ( 1, ) * num_spatial_dims else: return (input_shape[0], input_shape[1]) def get_config(self): config = super().get_config() config.update( { "data_format": self.data_format, "keepdims": self.keepdims, } ) return config
from keras.src import backend from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer class BaseGlobalPooling(Layer): """Base global pooling layer.""" def __init__( self, pool_dimensions, data_format=None, keepdims=False, **kwargs ): super().__init__(**kwargs) self.data_format = backend.standardize_data_format(data_format) self.keepdims = keepdims self.input_spec = InputSpec(ndim=pool_dimensions + 2) def call(self, inputs): raise NotImplementedError def compute_output_shape(self, input_shape): num_spatial_dims = len(input_shape) - 2 if self.data_format == "channels_last": if self.keepdims: return ( (input_shape[0],) + (1,) * num_spatial_dims + (input_shape[-1],) ) else: return (input_shape[0],) + (input_shape[-1],) else: if self.keepdims: return (input_shape[0], input_shape[1]) + ( 1, ) * num_spatial_dims else: return (input_shape[0], input_shape[1]) def get_config(self): config = super().get_config() config.update( { "data_format": self.data_format, "keepdims": self.keepdims, } ) return config
import logging from typing import List, Optional from llama_index.core.schema import Document from llama_index.readers.box.BoxAPI.box_api import ( box_check_connection, get_box_files_details, get_box_folder_files_details, get_text_representation, ) from llama_index.readers.box.BoxAPI.box_llama_adaptors import box_file_to_llama_document from llama_index.readers.box import BoxReaderBase from box_sdk_gen import ( BoxClient, File, ) logger = logging.getLogger(__name__) class BoxReaderTextExtraction(BoxReaderBase): """ A reader class for loading text content from Box files. This class inherits from the `BaseReader` class and specializes in extracting plain text content from Box files. It utilizes the provided BoxClient object to interact with the Box API and retrieves the text representation of the files. Attributes: _box_client (BoxClient): An authenticated Box client object used for interacting with the Box API. """ @classmethod def class_name(cls) -> str: return "BoxReaderTextExtraction" def __init__(self, box_client: BoxClient): super().__init__(box_client=box_client) # def load_data(self, *args: Any, **load_kwargs: Any) -> List[Document]: def load_data( self, file_ids: Optional[List[str]] = None, folder_id: Optional[str] = None, is_recursive: bool = False, ) -> List[Document]: """ Extracts text content from Box files and creates Document objects. This method utilizes the Box API to retrieve the text representation (if available) of the specified Box files. It then creates Document objects containing the extracted text and file metadata. Args: file_ids (Optional[List[str]], optional): A list of Box file IDs to extract text from. If provided, folder_id is ignored. Defaults to None. folder_id (Optional[str], optional): The ID of the Box folder to extract text from. If provided, along with is_recursive set to True, retrieves data from sub-folders as well. Defaults to None. is_recursive (bool, optional): If True and folder_id is provided, extracts text from sub-folders within the specified folder. Defaults to False. Returns: List[Document]: A list of Document objects containing the extracted text content and file metadata. """ # Connect to Box box_check_connection(self._box_client) docs: List[Document] = [] box_files: List[File] = [] # get Box files details if file_ids is not None: box_files.extend( get_box_files_details(box_client=self._box_client, file_ids=file_ids) ) elif folder_id is not None: box_files.extend( get_box_folder_files_details( box_client=self._box_client, folder_id=folder_id, is_recursive=is_recursive, ) ) box_files = get_text_representation( box_client=self._box_client, box_files=box_files, ) for file in box_files: doc = box_file_to_llama_document(file) doc.text = file.text_representation if file.text_representation else "" docs.append(doc) return docs
import logging from typing import List, Optional from llama_index.core.schema import Document from llama_index.readers.box.BoxAPI.box_api import ( box_check_connection, get_box_files_details, get_box_folder_files_details, get_text_representation, ) from llama_index.readers.box.BoxAPI.box_llama_adaptors import box_file_to_llama_document from llama_index.readers.box import BoxReaderBase from box_sdk_gen import ( BoxClient, File, ) logger = logging.getLogger(__name__) class BoxReaderTextExtraction(BoxReaderBase): """ A reader class for loading text content from Box files. This class inherits from the `BaseReader` class and specializes in extracting plain text content from Box files. It utilizes the provided BoxClient object to interact with the Box API and retrieves the text representation of the files. Attributes: _box_client (BoxClient): An authenticated Box client object used for interacting with the Box API. """ @classmethod def class_name(cls) -> str: return "BoxReaderTextExtraction" def __init__(self, box_client: BoxClient): super().__init__(box_client=box_client) # def load_data(self, *args: Any, **load_kwargs: Any) -> List[Document]: def load_data( self, file_ids: Optional[List[str]] = None, folder_id: Optional[str] = None, is_recursive: bool = False, ) -> List[Document]: """ Extracts text content from Box files and creates Document objects. This method utilizes the Box API to retrieve the text representation (if available) of the specified Box files. It then creates Document objects containing the extracted text and file metadata. Args: file_ids (Optional[List[str]], optional): A list of Box file IDs to extract text from. If provided, folder_id is ignored. Defaults to None. folder_id (Optional[str], optional): The ID of the Box folder to extract text from. If provided, along with is_recursive set to True, retrieves data from sub-folders as well. Defaults to None. is_recursive (bool, optional): If True and folder_id is provided, extracts text from sub-folders within the specified folder. Defaults to False. Returns: List[Document]: A list of Document objects containing the extracted text content and file metadata. """ # Connect to Box box_check_connection(self._box_client) docs: List[Document] = [] box_files: List[File] = [] # get Box files details if file_ids is not None: box_files.extend( get_box_files_details(box_client=self._box_client, file_ids=file_ids) ) elif folder_id is not None: box_files.extend( get_box_folder_files_details( box_client=self._box_client, folder_id=folder_id, is_recursive=is_recursive, ) ) box_files = get_text_representation( box_client=self._box_client, box_files=box_files, ) for file in box_files: doc = box_file_to_llama_document(file) doc.text = file.text_representation if file.text_representation else "" docs.append(doc) return docs
import os from llama_index.core.tools.function_tool import FunctionTool import pytest from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import ChatMessage, ImageBlock, MessageRole from llama_index.llms.gemini import Gemini from llama_index.llms.gemini.utils import chat_message_to_gemini from google.ai.generativelanguage_v1beta.types import ( FunctionCallingConfig, ToolConfig, ) def test_embedding_class() -> None: names_of_base_classes = [b.__name__ for b in Gemini.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_chat_message_to_gemini() -> None: msg = ChatMessage("Some content") assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": ["Some content"], } msg = ChatMessage("Some content") msg.blocks.append(ImageBlock(image=b"foo", image_mimetype="image/png")) assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": ["Some content", {"data": b"foo", "mime_type": "image/png"}], } @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_generate_image_prompt() -> None: msg = ChatMessage("Tell me the brand of the car in this image:") msg.blocks.append( ImageBlock( url="https://upload.wikimedia.org/wikipedia/commons/5/52/Ferrari_SP_FFX.jpg" ) ) response = Gemini(model="models/gemini-1.5-flash").chat(messages=[msg]) assert "ferrari" in str(response).lower() @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_stream() -> None: msg = ChatMessage("List three types of software testing strategies") response = list(Gemini(model="models/gemini-1.5-flash").stream_chat(messages=[msg])) assert response @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_with_tools() -> None: def add(a: int, b: int) -> int: """Add two integers and returns the result integer.""" return a + b add_tool = FunctionTool.from_defaults(fn=add) msg = ChatMessage("What is the result of adding 2 and 3?") model = Gemini(model="models/gemini-1.5-flash") response = model.chat_with_tools( user_msg=msg, tools=[add_tool], tool_config=ToolConfig( function_calling_config=FunctionCallingConfig( mode=FunctionCallingConfig.Mode.ANY ) ), ) tool_calls = model.get_tool_calls_from_response(response) assert len(tool_calls) == 1 assert tool_calls[0].tool_name == "add" assert tool_calls[0].tool_kwargs == {"a": 2, "b": 3} assert len(response.additional_kwargs["tool_calls"]) >= 1
import os import pytest from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import ChatMessage, ImageBlock, MessageRole from llama_index.llms.gemini import Gemini from llama_index.llms.gemini.utils import chat_message_to_gemini def test_embedding_class(): names_of_base_classes = [b.__name__ for b in Gemini.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_chat_message_to_gemini(): msg = ChatMessage("Some content") assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": ["Some content"], } msg = ChatMessage("Some content") msg.blocks.append(ImageBlock(image=b"foo", image_mimetype="image/png")) assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": ["Some content", {"data": b"foo", "mime_type": "image/png"}], } @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_generate_image_prompt(): msg = ChatMessage("Tell me the brand of the car in this image:") msg.blocks.append( ImageBlock( url="https://upload.wikimedia.org/wikipedia/commons/5/52/Ferrari_SP_FFX.jpg" ) ) response = Gemini().chat(messages=[msg]) assert "ferrari" in str(response).lower() @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_stream(): msg = ChatMessage("List three types of software testing strategies") response = list(Gemini().stream_chat(messages=[msg])) assert response
try: from docarray import BaseDoc as Document from docarray import DocList as DocumentArray docarray_v2 = True except ImportError: from docarray import Document, DocumentArray docarray_v2 = False
try: from docarray import BaseDoc as Document from docarray import DocArray as DocumentArray docarray_v2 = True except ImportError: from docarray import Document, DocumentArray docarray_v2 = False
from collections.abc import AsyncIterator import pytest from langchain_core.utils.aiter import abatch_iterate @pytest.mark.parametrize( ("input_size", "input_iterable", "expected_output"), [ (2, [1, 2, 3, 4, 5], [[1, 2], [3, 4], [5]]), (3, [10, 20, 30, 40, 50], [[10, 20, 30], [40, 50]]), (1, [100, 200, 300], [[100], [200], [300]]), (4, [], []), ], ) async def test_abatch_iterate( input_size: int, input_iterable: list[str], expected_output: list[list[str]] ) -> None: """Test batching function.""" async def _to_async_iterable(iterable: list[str]) -> AsyncIterator[str]: for item in iterable: yield item iterator_ = abatch_iterate(input_size, _to_async_iterable(input_iterable)) assert isinstance(iterator_, AsyncIterator) output = [el async for el in iterator_] assert output == expected_output
from collections.abc import AsyncIterator import pytest from langchain_core.utils.aiter import abatch_iterate @pytest.mark.parametrize( ("input_size", "input_iterable", "expected_output"), [ (2, [1, 2, 3, 4, 5], [[1, 2], [3, 4], [5]]), (3, [10, 20, 30, 40, 50], [[10, 20, 30], [40, 50]]), (1, [100, 200, 300], [[100], [200], [300]]), (4, [], []), ], ) async def test_abatch_iterate( input_size: int, input_iterable: list[str], expected_output: list[str] ) -> None: """Test batching function.""" async def _to_async_iterable(iterable: list[str]) -> AsyncIterator[str]: for item in iterable: yield item iterator_ = abatch_iterate(input_size, _to_async_iterable(input_iterable)) assert isinstance(iterator_, AsyncIterator) output = [el async for el in iterator_] assert output == expected_output
from llama_index_instrumentation.event_handlers.base import BaseEventHandler # noqa
from typing import Any from abc import abstractmethod from llama_index.core.bridge.pydantic import BaseModel, ConfigDict from llama_index.core.instrumentation.events.base import BaseEvent class BaseEventHandler(BaseModel): """Base callback handler that can be used to track event starts and ends.""" model_config = ConfigDict(arbitrary_types_allowed=True) @classmethod def class_name(cls) -> str: """Class name.""" return "BaseEventHandler" @abstractmethod def handle(self, event: BaseEvent, **kwargs: Any) -> Any: """Logic for handling event."""
"""Run smoke tests""" import sys from pathlib import Path import torch import torchvision from torchvision.io import decode_jpeg, read_file, read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.shape != (4, 471, 354): raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_decode_jpeg(device: str = "cpu"): img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) img_jpg = decode_jpeg(img_jpg_data, device=device) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") elif sys.version_info >= (3, 11, 0): print("Successfully caught torch.compile RuntimeError on Python 3.11") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") print(f"{torch.ops.image._jpeg_version() = }") assert torch.ops.image._is_compiled_against_turbo() smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() smoke_test_torchvision_decode_jpeg() if torch.cuda.is_available(): smoke_test_torchvision_decode_jpeg("cuda") smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Run smoke tests""" import sys from pathlib import Path import torch import torchvision from torchvision.io import decode_jpeg, read_file, read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.shape != (4, 471, 354): raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_decode_jpeg(device: str = "cpu"): img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) img_jpg = decode_jpeg(img_jpg_data, device=device) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") elif sys.version_info >= (3, 11, 0): print("Successfully caught torch.compile RuntimeError on Python 3.11") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() smoke_test_torchvision_decode_jpeg() if torch.cuda.is_available(): smoke_test_torchvision_decode_jpeg("cuda") smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina._docarray import Document from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from jina._docarray import Document from jina._docarray.document import DocumentSourceType from jina._docarray.document.mixins.content import DocumentContentType from jina.types.request import Request from docarray import DocList, BaseDoc SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, BaseDoc, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType], DocList ] def request_generator( exec_endpoint: str, data: Optional['GeneratorSourceType'] = None, request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable) or isinstance(data, Document): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina._docarray import Document from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from jina._docarray import Document from jina._docarray.document import DocumentSourceType from jina._docarray.document.mixins.content import DocumentContentType from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: Optional['GeneratorSourceType'] = None, request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable) or isinstance(data, Document): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
from typing import Any from langchain_core.exceptions import OutputParserException from langchain.output_parsers import ResponseSchema, StructuredOutputParser def test_parse() -> None: """Test parsing structured output.""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) # Test valid JSON input text = '```json\n{"name": "John", "age": 30}\n```' expected_result = {"name": "John", "age": 30} result = parser.parse(text) assert result == expected_result, f"Expected {expected_result}, but got {result}" # Test invalid JSON input text = '```json\n{"name": "John"}\n```' try: parser.parse(text) except OutputParserException: pass # Test passes if OutputParserException is raised else: assert False, f"Expected OutputParserException, but got {parser.parse(text)}" def test_output_type() -> None: """Test the output type of the structured output parser is Dict[str, Any].""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) assert parser.OutputType == dict[str, Any]
from typing import Any, Dict from langchain_core.exceptions import OutputParserException from langchain.output_parsers import ResponseSchema, StructuredOutputParser def test_parse() -> None: """Test parsing structured output.""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) # Test valid JSON input text = '```json\n{"name": "John", "age": 30}\n```' expected_result = {"name": "John", "age": 30} result = parser.parse(text) assert result == expected_result, f"Expected {expected_result}, but got {result}" # Test invalid JSON input text = '```json\n{"name": "John"}\n```' try: parser.parse(text) except OutputParserException: pass # Test passes if OutputParserException is raised else: assert False, f"Expected OutputParserException, but got {parser.parse(text)}" def test_output_type() -> None: """Test the output type of the structured output parser is Dict[str, Any].""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) assert parser.OutputType == Dict[str, Any]
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, ) from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator from sentence_transformers.sparse_encoder.losses import SparseMultipleNegativesRankingLoss, SpladeLoss from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import SparseEncoderTrainingArguments from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) model.eval() # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = SpladeLoss( model=model, main_loss=SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = SparseNanoBEIREvaluator(["msmarco", "nfcorpus", "nq"], show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=1400, save_strategy="steps", save_steps=1400, learning_rate=4e-5, optim="adamw_torch", run_name=run_name, batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(run_name, private=True) if __name__ == "__main__": main()
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, ) from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator from sentence_transformers.sparse_encoder.losses import SparseMultipleNegativesRankingLoss, SpladeLoss from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import SparseEncoderTrainingArguments # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) model.eval() # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = SpladeLoss( model=model, main_loss=SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = SparseNanoBEIREvaluator(["msmarco", "nfcorpus", "nq"], show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=2400, save_strategy="steps", save_steps=2400, learning_rate=4e-5, optim="adamw_torch", run_name=run_name, ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(run_name, private=True) if __name__ == "__main__": main()
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from torchvision.tv_tensors._tv_tensor import TVTensor L = TypeVar("L", bound="_LabelBase") class _LabelBase(TVTensor): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) # type: ignore[index] class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from torchvision.tv_tensors._tv_tensor import TVTensor L = TypeVar("L", bound="_LabelBase") class _LabelBase(TVTensor): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label
import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import nested_params, TestBaseMixin class AutogradTestImpl(TestBaseMixin): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device, requires_grad=True) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device, requires_grad=True) self.assertTrue(gradcheck(fn, (x, y, mode))) self.assertTrue(gradgradcheck(fn, (x, y, mode))) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self.assertTrue(gradcheck(F.add_noise, (waveform, noise, lengths, snr))) self.assertTrue(gradgradcheck(F.add_noise, (waveform, noise, lengths, snr))) @parameterized.expand( [ (8000, (2, 3, 5, 7)), (8000, (8000, 1)), ] ) def test_oscillator_bank(self, sample_rate, shape): # can be replaced with math.prod when we drop 3.7 support def prod(iterable): ret = 1 for item in iterable: ret *= item return ret numel = prod(shape) # use 1.9 instead of 2 so as to include values above nyquist frequency fmax = sample_rate / 1.9 freq = torch.linspace(-fmax, fmax, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape( shape ) amps = torch.linspace(-5, 5, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape(shape) assert gradcheck(F.oscillator_bank, (freq, amps, sample_rate)) def test_extend_pitch(self): num_frames, num_pitches = 5, 7 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype, requires_grad=True) pattern = torch.linspace(1, num_pitches, num_pitches, device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.extend_pitch, (input, num_pitches)) assert gradcheck(F.extend_pitch, (input, pattern)) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.sinc_impulse_response, (cutoff, 513, False)) assert gradcheck(F.sinc_impulse_response, (cutoff, 513, True)) def test_speed(self): leading_dims = (3, 2) T = 200 waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device) self.assertTrue(gradcheck(F.speed, (waveform, lengths, 1000, 1.1))) self.assertTrue(gradgradcheck(F.speed, (waveform, lengths, 1000, 1.1))) def test_preemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype, requires_grad=True) coeff = 0.9 self.assertTrue(gradcheck(F.preemphasis, (waveform, coeff))) self.assertTrue(gradgradcheck(F.preemphasis, (waveform, coeff))) def test_deemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype, requires_grad=True) coeff = 0.9 self.assertTrue(gradcheck(F.deemphasis, (waveform, coeff))) self.assertTrue(gradgradcheck(F.deemphasis, (waveform, coeff))) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.frequency_impulse_response, (mags,))
import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import nested_params, TestBaseMixin class AutogradTestImpl(TestBaseMixin): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device, requires_grad=True) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device, requires_grad=True) self.assertTrue(gradcheck(fn, (x, y, mode))) self.assertTrue(gradgradcheck(fn, (x, y, mode))) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self.assertTrue(gradcheck(F.add_noise, (waveform, noise, lengths, snr))) self.assertTrue(gradgradcheck(F.add_noise, (waveform, noise, lengths, snr))) @parameterized.expand( [ (8000, (2, 3, 5, 7)), (8000, (8000, 1)), ] ) def test_oscillator_bank(self, sample_rate, shape): # can be replaced with math.prod when we drop 3.7 support def prod(iterable): ret = 1 for item in iterable: ret *= item return ret numel = prod(shape) # use 1.9 instead of 2 so as to include values above nyquist frequency fmax = sample_rate / 1.9 freq = torch.linspace(-fmax, fmax, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape( shape ) amps = torch.linspace(-5, 5, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape(shape) assert gradcheck(F.oscillator_bank, (freq, amps, sample_rate)) def test_extend_pitch(self): num_frames, num_pitches = 5, 7 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype, requires_grad=True) pattern = torch.linspace(1, num_pitches, num_pitches, device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.extend_pitch, (input, num_pitches)) assert gradcheck(F.extend_pitch, (input, pattern)) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.sinc_impulse_response, (cutoff, 513, False)) assert gradcheck(F.sinc_impulse_response, (cutoff, 513, True)) def test_speed(self): leading_dims = (3, 2) T = 200 waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device) self.assertTrue(gradcheck(F.speed, (waveform, lengths, 1000, 1.1))) self.assertTrue(gradgradcheck(F.speed, (waveform, lengths, 1000, 1.1))) def test_preemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype, requires_grad=True) coeff = 0.9 self.assertTrue(gradcheck(F.preemphasis, (waveform, coeff))) self.assertTrue(gradgradcheck(F.preemphasis, (waveform, coeff))) def test_deemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype, requires_grad=True) coeff = 0.9 self.assertTrue(gradcheck(F.deemphasis, (waveform, coeff))) self.assertTrue(gradgradcheck(F.deemphasis, (waveform, coeff)))
import copy import warnings from dataclasses import InitVar, dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None use_auth_token: InitVar[Optional[Union[str, bool]]] = "deprecated" ignore_url_params: bool = False storage_options: Dict[str, Any] = field(default_factory=dict) download_desc: Optional[str] = None def __post_init__(self, use_auth_token): if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) self.token = use_auth_token if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT} def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
import copy import warnings from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None use_auth_token = "deprecated" ignore_url_params: bool = False storage_options: Dict[str, Any] = field(default_factory=dict) download_desc: Optional[str] = None def __post_init__(self): if self.use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={self.use_auth_token}' instead.", FutureWarning, ) self.token = self.use_auth_token if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT} def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
"""Pass input through a moderation endpoint.""" from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.utils import check_package_version, get_from_dict_or_env from pydantic import Field, model_validator from langchain.chains.base import Chain class OpenAIModerationChain(Chain): """Pass input through a moderation endpoint. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() """ client: Any = None #: :meta private: async_client: Any = None #: :meta private: model_name: Optional[str] = None """Moderation model name to use.""" error: bool = False """Whether or not to error if bad content was found.""" input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: openai_api_key: Optional[str] = None openai_organization: Optional[str] = None openai_pre_1_0: bool = Field(default=False) @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization values["openai_pre_1_0"] = False try: check_package_version("openai", gte_version="1.0") except ValueError: values["openai_pre_1_0"] = True if values["openai_pre_1_0"]: values["client"] = openai.Moderation # type: ignore[attr-defined] else: values["client"] = openai.OpenAI(api_key=openai_api_key) values["async_client"] = openai.AsyncOpenAI(api_key=openai_api_key) except ImportError: msg = ( "Could not import openai python package. " "Please install it with `pip install openai`." ) raise ImportError(msg) return values @property def input_keys(self) -> list[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> list[str]: """Return output key. :meta private: """ return [self.output_key] def _moderate(self, text: str, results: Any) -> str: condition = results["flagged"] if self.openai_pre_1_0 else results.flagged if condition: error_str = "Text was found that violates OpenAI's content policy." if self.error: raise ValueError(error_str) return error_str return text def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: text = inputs[self.input_key] if self.openai_pre_1_0: results = self.client.create(text) output = self._moderate(text, results["results"][0]) else: results = self.client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output} async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: if self.openai_pre_1_0: return await super()._acall(inputs, run_manager=run_manager) text = inputs[self.input_key] results = await self.async_client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output}
"""Pass input through a moderation endpoint.""" from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.utils import check_package_version, get_from_dict_or_env from pydantic import Field, model_validator from langchain.chains.base import Chain class OpenAIModerationChain(Chain): """Pass input through a moderation endpoint. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() """ client: Any = None #: :meta private: async_client: Any = None #: :meta private: model_name: Optional[str] = None """Moderation model name to use.""" error: bool = False """Whether or not to error if bad content was found.""" input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: openai_api_key: Optional[str] = None openai_organization: Optional[str] = None openai_pre_1_0: bool = Field(default=False) @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization values["openai_pre_1_0"] = False try: check_package_version("openai", gte_version="1.0") except ValueError: values["openai_pre_1_0"] = True if values["openai_pre_1_0"]: values["client"] = openai.Moderation # type: ignore[attr-defined] else: values["client"] = openai.OpenAI(api_key=openai_api_key) values["async_client"] = openai.AsyncOpenAI(api_key=openai_api_key) except ImportError: msg = ( "Could not import openai python package. " "Please install it with `pip install openai`." ) raise ImportError(msg) return values @property def input_keys(self) -> list[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> list[str]: """Return output key. :meta private: """ return [self.output_key] def _moderate(self, text: str, results: Any) -> str: condition = results["flagged"] if self.openai_pre_1_0 else results.flagged if condition: error_str = "Text was found that violates OpenAI's content policy." if self.error: raise ValueError(error_str) else: return error_str return text def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: text = inputs[self.input_key] if self.openai_pre_1_0: results = self.client.create(text) output = self._moderate(text, results["results"][0]) else: results = self.client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output} async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: if self.openai_pre_1_0: return await super()._acall(inputs, run_manager=run_manager) text = inputs[self.input_key] results = await self.async_client.moderations.create(input=text) output = self._moderate(text, results.results[0]) return {self.output_key: output}
import requests from typing import List, Dict DEFAULT_GITBOOK_API_URL = "https://api.gitbook.com/v1" class GitbookClient: """ Gitbook Restful API Client. Helper Class to invoke gitbook restful api & parse result Args: api_token (str): Gitbook API Token. api_url (str): Gitbook API Endpoint. """ def __init__(self, api_token: str, api_url: str = DEFAULT_GITBOOK_API_URL): self.api_token = api_token self.base_url = api_url or DEFAULT_GITBOOK_API_URL self.headers = { "Authorization": f"Bearer {self.api_token}", "Content-Type": "application/json", } def _make_request(self, url: str) -> Dict: """Helper method to handle common HTTP GET requests.""" try: response = requests.get(url, headers=self.headers) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: return self._handle_error(e) def get_space(self, space_id) -> Dict: """Gets information for a specific space.""" url = f"{self.base_url}/spaces/{space_id}" return self._make_request(url) def list_pages(self, space_id) -> List[Dict]: """Gets all pages in a specific space.""" space_info = self.get_space(space_id) url = f"{self.base_url}/spaces/{space_id}/content" space = self._make_request(url) pages_info = [] for page in space.get("pages"): GitbookClient._extract_page_info( pages_info, page, space_info.get("title", "ROOT") ) return pages_info def get_page(self, space_id, page_id) -> Dict: """Gets the details of a specific page.""" url = ( f"{self.base_url}/spaces/{space_id}/content/page/{page_id}?format=markdown" ) return self._make_request(url) def get_page_markdown(self, space_id, page_id) -> str: """Gets the content of a specific page in Markdown format.""" page_content = self.get_page(space_id, page_id) return page_content.get("markdown") def _handle_error(self, response): """Handles HTTP errors.""" if isinstance(response, requests.exceptions.HTTPError): error_message = f"Error: {response.response.status_code} Client Error: {response.response.reason}" else: error_message = f"Error: {response}" raise Exception(error_message) @staticmethod def _extract_page_info( pages: list, page: dict, prev_title: str = "", parent: str = "" ): pageType = page.get("type", "") title = prev_title + " > " + page.get("title") id = page.get("id") if pageType == "document": pages.append( { "id": id, "title": title, "path": page.get("path"), "description": page.get("description", ""), "parent": parent, } ) for _page in page.get("pages"): GitbookClient._extract_page_info(pages, _page, title, id) elif pageType == "group": for _page in page.get("pages"): GitbookClient._extract_page_info(pages, _page, title, id)
import requests from typing import List, Dict DEFAULT_GITBOOK_API_URL = "https://api.gitbook.com/v1" class GitbookClient: """Gitbook Restful API Client. Helper Class to invoke gitbook restful api & parse result Args: api_token (str): Gitbook API Token. api_url (str): Gitbook API Endpoint. """ def __init__(self, api_token: str, api_url: str = DEFAULT_GITBOOK_API_URL): self.api_token = api_token self.base_url = api_url or DEFAULT_GITBOOK_API_URL self.headers = { "Authorization": f"Bearer {self.api_token}", "Content-Type": "application/json", } def _make_request(self, url: str) -> Dict: """Helper method to handle common HTTP GET requests.""" try: response = requests.get(url, headers=self.headers) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: return self._handle_error(e) def get_space(self, space_id) -> Dict: """Gets information for a specific space.""" url = f"{self.base_url}/spaces/{space_id}" return self._make_request(url) def list_pages(self, space_id) -> List[Dict]: """Gets all pages in a specific space.""" space_info = self.get_space(space_id) url = f"{self.base_url}/spaces/{space_id}/content" space = self._make_request(url) pages_info = [] for page in space.get("pages"): GitbookClient._extract_page_info( pages_info, page, space_info.get("title", "ROOT") ) return pages_info def get_page(self, space_id, page_id) -> Dict: """Gets the details of a specific page.""" url = ( f"{self.base_url}/spaces/{space_id}/content/page/{page_id}?format=markdown" ) return self._make_request(url) def get_page_markdown(self, space_id, page_id) -> str: """Gets the content of a specific page in Markdown format.""" page_content = self.get_page(space_id, page_id) return page_content.get("markdown") def _handle_error(self, response): """Handles HTTP errors.""" if isinstance(response, requests.exceptions.HTTPError): error_message = f"Error: {response.response.status_code} Client Error: {response.response.reason}" else: error_message = f"Error: {response}" raise Exception(error_message) @staticmethod def _extract_page_info( pages: list, page: dict, prev_title: str = "", parent: str = "" ): pageType = page.get("type", "") title = prev_title + " > " + page.get("title") id = page.get("id") if pageType == "document": pages.append( { "id": id, "title": title, "path": page.get("path"), "description": page.get("description", ""), "parent": parent, } ) for _page in page.get("pages"): GitbookClient._extract_page_info(pages, _page, title, id) elif pageType == "group": for _page in page.get("pages"): GitbookClient._extract_page_info(pages, _page, title, id)
from __future__ import annotations import re from typing import TYPE_CHECKING, Any if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. Extend this class and implement __call__ for custom evaluators. """ def __init__(self): self.greater_is_better = True self.primary_metric = None def __call__( self, model: SentenceTransformer, output_path: str | None = None, epoch: int = -1, steps: int = -1 ) -> float | dict[str, float]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: dict[str, float], name: str) -> dict[str, float]: def maybe_to_float(value: Any) -> Any: try: return float(value) except ValueError: return value if not name: return {key: maybe_to_float(value) for key, value in metrics.items()} metrics = {name + "_" + key: maybe_to_float(value) for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data( self, model: SentenceTransformer, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Replace "CE" prefix with "CrossEncoder" 2. Remove "Evaluator" from the class name 3. Add a space before every capital letter """ class_name = self.__class__.__name__ if class_name.startswith("CE"): class_name = "CrossEncoder" + class_name[2:] try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", r"\g<1> \g<2>", class_name) def get_config_dict(self) -> dict[str, Any]: """ Return a dictionary with all meaningful configuration values of the evaluator to store in the model card. """ return {} def embed_inputs( self, model: SentenceTransformer, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor] | np.ndarray | Tensor | dict[str, Tensor] | list[dict[str, Tensor]]: """ Call the encoder method of the model pass Args: model (SentenceTransformer): Model we are evaluating sentences (str | list[str] | np.ndarray): Text that we are embedding Returns: list[Tensor] | np.ndarray | Tensor | dict[str, Tensor] | list[dict[str, Tensor]]: The associated embedding """ return model.encode(sentences, **kwargs)
from __future__ import annotations import re from typing import TYPE_CHECKING, Any if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. Extend this class and implement __call__ for custom evaluators. """ def __init__(self): self.greater_is_better = True self.primary_metric = None def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> float | dict[str, float]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: dict[str, float], name: str) -> dict[str, float]: def maybe_to_float(value: Any) -> Any: try: return float(value) except ValueError: return value if not name: return {key: maybe_to_float(value) for key, value in metrics.items()} metrics = {name + "_" + key: maybe_to_float(value) for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data( self, model: SentenceTransformer, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Replace "CE" prefix with "CrossEncoder" 2. Remove "Evaluator" from the class name 3. Add a space before every capital letter """ class_name = self.__class__.__name__ if class_name.startswith("CE"): class_name = "CrossEncoder" + class_name[2:] try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", r"\g<1> \g<2>", class_name) def get_config_dict(self) -> dict[str, Any]: """ Return a dictionary with all meaningful configuration values of the evaluator to store in the model card. """ return {} def embed_inputs( self, model: SentenceTransformer, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor] | np.ndarray | Tensor | dict[str, Tensor] | list[dict[str, Tensor]]: """ Call the encoder method of the model pass Args: model (SentenceTransformer): Model we are evaluating sentences (str | list[str] | np.ndarray): Text that we are embedding Returns: list[Tensor] | np.ndarray | Tensor | dict[str, Tensor] | list[dict[str, Tensor]]: The associated embedding """ return model.encode(sentences, **kwargs)
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Dict, List, Tuple, Union import torch.nn.functional as F from mmengine.model import BaseModule from torch import Tensor from mmdet.data_elements import SampleList from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptMultiConfig @MODELS.register_module() class BaseSemanticHead(BaseModule, metaclass=ABCMeta): """Base module of Semantic Head. Args: num_classes (int): the number of classes. seg_rescale_factor (float): the rescale factor for ``gt_sem_seg``, which equals to ``1 / output_strides``. The output_strides is for ``seg_preds``. Defaults to 1 / 4. init_cfg (Optional[Union[:obj:`ConfigDict`, dict]]): the initialization config. loss_seg (Union[:obj:`ConfigDict`, dict]): the loss of the semantic head. """ def __init__(self, num_classes: int, seg_rescale_factor: float = 1 / 4., loss_seg: ConfigType = dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=1.0), init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.loss_seg = MODELS.build(loss_seg) self.num_classes = num_classes self.seg_rescale_factor = seg_rescale_factor @abstractmethod def forward(self, x: Union[Tensor, Tuple[Tensor]]) -> Dict[str, Tensor]: """Placeholder of forward function. Args: x (Tensor): Feature maps. Returns: Dict[str, Tensor]: A dictionary, including features and predicted scores. Required keys: 'seg_preds' and 'feats'. """ pass @abstractmethod def loss(self, x: Union[Tensor, Tuple[Tensor]], batch_data_samples: SampleList) -> Dict[str, Tensor]: """ Args: x (Union[Tensor, Tuple[Tensor]]): Feature maps. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Args: x (Tensor): Feature maps. Returns: Dict[str, Tensor]: The loss of semantic head. """ pass def predict(self, x: Union[Tensor, Tuple[Tensor]], batch_img_metas: List[dict], rescale: bool = False) -> List[Tensor]: """Test without Augmentation. Args: x (Union[Tensor, Tuple[Tensor]]): Feature maps. batch_img_metas (List[dict]): List of image information. rescale (bool): Whether to rescale the results. Defaults to False. Returns: list[Tensor]: semantic segmentation logits. """ seg_preds = self.forward(x)['seg_preds'] seg_preds = F.interpolate( seg_preds, size=batch_img_metas[0]['batch_input_shape'], mode='bilinear', align_corners=False) seg_preds = [seg_preds[i] for i in range(len(batch_img_metas))] if rescale: seg_pred_list = [] for i in range(len(batch_img_metas)): h, w = batch_img_metas[i]['img_shape'] seg_pred = seg_preds[i][:, :h, :w] h, w = batch_img_metas[i]['ori_shape'] seg_pred = F.interpolate( seg_pred[None], size=(h, w), mode='bilinear', align_corners=False)[0] seg_pred_list.append(seg_pred) else: seg_pred_list = seg_preds return seg_pred_list
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Dict, List, Tuple, Union import torch.nn.functional as F from mmengine.model import BaseModule from torch import Tensor from mmdet.core.utils import ConfigType, OptMultiConfig, SampleList from mmdet.registry import MODELS @MODELS.register_module() class BaseSemanticHead(BaseModule, metaclass=ABCMeta): """Base module of Semantic Head. Args: num_classes (int): the number of classes. seg_rescale_factor (float): the rescale factor for ``gt_sem_seg``, which equals to ``1 / output_strides``. The output_strides is for ``seg_preds``. Defaults to 1 / 4. init_cfg (Optional[Union[:obj:`ConfigDict`, dict]]): the initialization config. loss_seg (Union[:obj:`ConfigDict`, dict]): the loss of the semantic head. """ def __init__(self, num_classes: int, seg_rescale_factor: float = 1 / 4., loss_seg: ConfigType = dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=1.0), init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.loss_seg = MODELS.build(loss_seg) self.num_classes = num_classes self.seg_rescale_factor = seg_rescale_factor @abstractmethod def forward(self, x: Union[Tensor, Tuple[Tensor]]) -> Dict[str, Tensor]: """Placeholder of forward function. Args: x (Tensor): Feature maps. Returns: Dict[str, Tensor]: A dictionary, including features and predicted scores. Required keys: 'seg_preds' and 'feats'. """ pass @abstractmethod def loss(self, x: Union[Tensor, Tuple[Tensor]], batch_data_samples: SampleList) -> Dict[str, Tensor]: """ Args: x (Union[Tensor, Tuple[Tensor]]): Feature maps. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Args: x (Tensor): Feature maps. Returns: Dict[str, Tensor]: The loss of semantic head. """ pass def predict(self, x: Union[Tensor, Tuple[Tensor]], batch_img_metas: List[dict], rescale: bool = False) -> List[Tensor]: """Test without Augmentation. Args: x (Union[Tensor, Tuple[Tensor]]): Feature maps. batch_img_metas (List[dict]): List of image information. rescale (bool): Whether to rescale the results. Defaults to False. Returns: list[Tensor]: semantic segmentation logits. """ seg_preds = self.forward(x)['seg_preds'] seg_preds = F.interpolate( seg_preds, size=batch_img_metas[0]['batch_input_shape'], mode='bilinear', align_corners=False) seg_preds = [seg_preds[i] for i in range(len(batch_img_metas))] if rescale: seg_pred_list = [] for i in range(len(batch_img_metas)): h, w = batch_img_metas[i]['img_shape'] seg_pred = seg_preds[i][:, :h, :w] h, w = batch_img_metas[i]['ori_shape'] seg_pred = F.interpolate( seg_pred[None], size=(h, w), mode='bilinear', align_corners=False)[0] seg_pred_list.append(seg_pred) else: seg_pred_list = seg_preds return seg_pred_list
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class HubSpotContactBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (create, update, get)", default="get" ) contact_data: dict = SchemaField( description="Contact data for create/update operations", default_factory=dict, ) email: str = SchemaField( description="Email address for get/update operations", default="" ) class Output(BlockSchema): contact: dict = SchemaField(description="Contact information") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="5267326e-c4c1-4016-9f54-4e72ad02f813", description="Manages HubSpot contacts - create, update, and retrieve contact information", categories={BlockCategory.CRM}, input_schema=HubSpotContactBlock.Input, output_schema=HubSpotContactBlock.Output, ) def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com/crm/v3/objects/contacts" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "create": response = Requests().post( base_url, headers=headers, json={"properties": input_data.contact_data} ) result = response.json() yield "contact", result yield "status", "created" elif input_data.operation == "get": # Search for contact by email search_url = f"{base_url}/search" search_data = { "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] } response = Requests().post(search_url, headers=headers, json=search_data) result = response.json() yield "contact", result.get("results", [{}])[0] yield "status", "retrieved" elif input_data.operation == "update": search_response = Requests().post( f"{base_url}/search", headers=headers, json={ "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] }, ) contact_id = search_response.json().get("results", [{}])[0].get("id") if contact_id: response = Requests().patch( f"{base_url}/{contact_id}", headers=headers, json={"properties": input_data.contact_data}, ) result = response.json() yield "contact", result yield "status", "updated" else: yield "contact", {} yield "status", "contact_not_found"
from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class HubSpotContactBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (create, update, get)", default="get" ) contact_data: dict = SchemaField( description="Contact data for create/update operations", default_factory=dict, ) email: str = SchemaField( description="Email address for get/update operations", default="" ) class Output(BlockSchema): contact: dict = SchemaField(description="Contact information") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="5267326e-c4c1-4016-9f54-4e72ad02f813", description="Manages HubSpot contacts - create, update, and retrieve contact information", categories={BlockCategory.CRM}, input_schema=HubSpotContactBlock.Input, output_schema=HubSpotContactBlock.Output, ) def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com/crm/v3/objects/contacts" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "create": response = requests.post( base_url, headers=headers, json={"properties": input_data.contact_data} ) result = response.json() yield "contact", result yield "status", "created" elif input_data.operation == "get": # Search for contact by email search_url = f"{base_url}/search" search_data = { "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] } response = requests.post(search_url, headers=headers, json=search_data) result = response.json() yield "contact", result.get("results", [{}])[0] yield "status", "retrieved" elif input_data.operation == "update": search_response = requests.post( f"{base_url}/search", headers=headers, json={ "filterGroups": [ { "filters": [ { "propertyName": "email", "operator": "EQ", "value": input_data.email, } ] } ] }, ) contact_id = search_response.json().get("results", [{}])[0].get("id") if contact_id: response = requests.patch( f"{base_url}/{contact_id}", headers=headers, json={"properties": input_data.contact_data}, ) result = response.json() yield "contact", result yield "status", "updated" else: yield "contact", {} yield "status", "contact_not_found"
import os import fsspec import pytest from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lz4, require_zstandard def test_mockfs(mockfs): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def test_non_mockfs(): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def test_extract_path_from_uri(): mock_bucket = "mock-s3-bucket" dataset_path = f"s3://{mock_bucket}" dataset_path = extract_path_from_uri(dataset_path) assert dataset_path.startswith("s3://") is False dataset_path = "./local/path" new_dataset_path = extract_path_from_uri(dataset_path) assert dataset_path == new_dataset_path def test_is_remote_filesystem(mockfs): is_remote = is_remote_filesystem(mockfs) assert is_remote is True fs = fsspec.filesystem("file") is_remote = is_remote_filesystem(fs) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_compression_filesystems(compression_fs_class, gz_file, bz2_file, lz4_file, zstd_file, xz_file, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) fs = fsspec.filesystem(compression_fs_class.protocol, fo=input_path) assert isinstance(fs, compression_fs_class) expected_filename = os.path.basename(input_path) expected_filename = expected_filename[: expected_filename.rindex(".")] assert fs.glob("*") == [expected_filename] with fs.open(expected_filename, "r", encoding="utf-8") as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"]) def test_fs_isfile(protocol, zip_jsonl_path, jsonl_gz_path): compressed_file_paths = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} compressed_file_path = compressed_file_paths[protocol] member_file_path = "dataset.jsonl" path = f"{protocol}://{member_file_path}::{compressed_file_path}" fs, *_ = fsspec.get_fs_token_paths(path) assert fs.isfile(member_file_path) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def test_hf_filesystem(hf_token, hf_api, hf_private_dataset_repo_txt_data, text_file): repo_info = hf_api.dataset_info(hf_private_dataset_repo_txt_data, token=hf_token) hffs = HfFileSystem(repo_info=repo_info, token=hf_token) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(text_file) as f: assert hffs.open("data/text_data.txt", "r").read() == f.read()
import os import fsspec import pytest from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lz4, require_zstandard def test_extract_path_from_uri(): mock_bucket = "mock-s3-bucket" dataset_path = f"s3://{mock_bucket}" dataset_path = extract_path_from_uri(dataset_path) assert dataset_path.startswith("s3://") is False dataset_path = "./local/path" new_dataset_path = extract_path_from_uri(dataset_path) assert dataset_path == new_dataset_path def test_is_remote_filesystem(mockfs): is_remote = is_remote_filesystem(mockfs) assert is_remote is True fs = fsspec.filesystem("file") is_remote = is_remote_filesystem(fs) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_compression_filesystems(compression_fs_class, gz_file, bz2_file, lz4_file, zstd_file, xz_file, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) fs = fsspec.filesystem(compression_fs_class.protocol, fo=input_path) assert isinstance(fs, compression_fs_class) expected_filename = os.path.basename(input_path) expected_filename = expected_filename[: expected_filename.rindex(".")] assert fs.glob("*") == [expected_filename] with fs.open(expected_filename, "r", encoding="utf-8") as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"]) def test_fs_isfile(protocol, zip_jsonl_path, jsonl_gz_path): compressed_file_paths = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} compressed_file_path = compressed_file_paths[protocol] member_file_path = "dataset.jsonl" path = f"{protocol}://{member_file_path}::{compressed_file_path}" fs, *_ = fsspec.get_fs_token_paths(path) assert fs.isfile(member_file_path) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def test_hf_filesystem(hf_token, hf_api, hf_private_dataset_repo_txt_data, text_file): repo_info = hf_api.dataset_info(hf_private_dataset_repo_txt_data, token=hf_token) hffs = HfFileSystem(repo_info=repo_info, token=hf_token) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(text_file) as f: assert hffs.open("data/text_data.txt", "r").read() == f.read()
from typing import Optional import pytest import torch from docarray import BaseDocument, DocumentArray, Text from docarray.array.abstract_array import AnyDocumentArray from docarray.typing import TorchTensor num_docs = 5 num_sub_docs = 2 num_sub_sub_docs = 3 @pytest.fixture def multi_model_docs(): class SubSubDoc(BaseDocument): sub_sub_text: Text sub_sub_tensor: TorchTensor[2] class SubDoc(BaseDocument): sub_text: Text sub_da: DocumentArray[SubSubDoc] class MultiModalDoc(BaseDocument): mm_text: Text mm_tensor: Optional[TorchTensor[3, 2, 2]] mm_da: DocumentArray[SubDoc] docs = DocumentArray[MultiModalDoc]( [ MultiModalDoc( mm_text=Text(text=f'hello{i}'), mm_da=[ SubDoc( sub_text=Text(text=f'sub_{i}_1'), sub_da=DocumentArray[SubSubDoc]( [ SubSubDoc( sub_sub_text=Text(text='subsub'), sub_sub_tensor=torch.zeros(2), ) for _ in range(num_sub_sub_docs) ] ), ) for _ in range(num_sub_docs) ], ) for i in range(num_docs) ] ) return docs @pytest.mark.parametrize( 'access_path,len_result', [ ('mm_text', num_docs), # List of 5 Text objs ('mm_text.text', num_docs), # List of 5 strings ('mm_da', num_docs * num_sub_docs), # List of 5 * 2 SubDoc objs ('mm_da.sub_text', num_docs * num_sub_docs), # List of 5 * 2 Text objs ( 'mm_da.sub_da', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 SubSubDoc objs ( 'mm_da.sub_da.sub_sub_text', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 Text objs ], ) def test_traverse_flat(multi_model_docs, access_path, len_result): traversed = multi_model_docs.traverse_flat(access_path) assert len(traversed) == len_result def test_traverse_stacked_da(): class Image(BaseDocument): tensor: TorchTensor[3, 224, 224] batch = DocumentArray[Image]( [ Image( tensor=torch.zeros(3, 224, 224), ) for _ in range(2) ] ) batch_stacked = batch.stack() tensors = batch_stacked.traverse_flat(access_path='tensor') assert tensors.shape == (2, 3, 224, 224) assert isinstance(tensors, torch.Tensor) @pytest.mark.parametrize( 'input_list,output_list', [ ([1, 2, 3], [1, 2, 3]), ([[1], [2], [3]], [1, 2, 3]), ([[[1]], [[2]], [[3]]], [[1], [2], [3]]), ], ) def test_flatten_one_level(input_list, output_list): flattened = AnyDocumentArray._flatten_one_level(sequence=input_list) assert flattened == output_list def test_flatten_one_level_list_of_da(): doc = BaseDocument() input_list = [DocumentArray([doc, doc, doc])] flattened = AnyDocumentArray._flatten_one_level(sequence=input_list) assert flattened == [doc, doc, doc]
from typing import Optional import pytest import torch from docarray import Document, DocumentArray, Text from docarray.array.abstract_array import AnyDocumentArray from docarray.typing import TorchTensor num_docs = 5 num_sub_docs = 2 num_sub_sub_docs = 3 @pytest.fixture def multi_model_docs(): class SubSubDoc(Document): sub_sub_text: Text sub_sub_tensor: TorchTensor[2] class SubDoc(Document): sub_text: Text sub_da: DocumentArray[SubSubDoc] class MultiModalDoc(Document): mm_text: Text mm_tensor: Optional[TorchTensor[3, 2, 2]] mm_da: DocumentArray[SubDoc] docs = DocumentArray[MultiModalDoc]( [ MultiModalDoc( mm_text=Text(text=f'hello{i}'), mm_da=[ SubDoc( sub_text=Text(text=f'sub_{i}_1'), sub_da=DocumentArray[SubSubDoc]( [ SubSubDoc( sub_sub_text=Text(text='subsub'), sub_sub_tensor=torch.zeros(2), ) for _ in range(num_sub_sub_docs) ] ), ) for _ in range(num_sub_docs) ], ) for i in range(num_docs) ] ) return docs @pytest.mark.parametrize( 'access_path,len_result', [ ('mm_text', num_docs), # List of 5 Text objs ('mm_text.text', num_docs), # List of 5 strings ('mm_da', num_docs * num_sub_docs), # List of 5 * 2 SubDoc objs ('mm_da.sub_text', num_docs * num_sub_docs), # List of 5 * 2 Text objs ( 'mm_da.sub_da', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 SubSubDoc objs ( 'mm_da.sub_da.sub_sub_text', num_docs * num_sub_docs * num_sub_sub_docs, ), # List of 5 * 2 * 3 Text objs ], ) def test_traverse_flat(multi_model_docs, access_path, len_result): traversed = multi_model_docs.traverse_flat(access_path) assert len(traversed) == len_result def test_traverse_stacked_da(): class Image(Document): tensor: TorchTensor[3, 224, 224] batch = DocumentArray[Image]( [ Image( tensor=torch.zeros(3, 224, 224), ) for _ in range(2) ] ) batch_stacked = batch.stack() tensors = batch_stacked.traverse_flat(access_path='tensor') assert tensors.shape == (2, 3, 224, 224) assert isinstance(tensors, torch.Tensor) @pytest.mark.parametrize( 'input_list,output_list', [ ([1, 2, 3], [1, 2, 3]), ([[1], [2], [3]], [1, 2, 3]), ([[[1]], [[2]], [[3]]], [[1], [2], [3]]), ], ) def test_flatten_one_level(input_list, output_list): flattened = AnyDocumentArray._flatten_one_level(sequence=input_list) assert flattened == output_list def test_flatten_one_level_list_of_da(): doc = Document() input_list = [DocumentArray([doc, doc, doc])] flattened = AnyDocumentArray._flatten_one_level(sequence=input_list) assert flattened == [doc, doc, doc]
import numpy as np import pytest from docarray.proto import DocProto, NodeProto from docarray.typing import NdArray @pytest.mark.proto def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray._docarray_from_native(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() @pytest.mark.proto def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray._docarray_from_native(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocProto(data=data)
import numpy as np import pytest from docarray.proto import DocumentProto, NodeProto from docarray.typing import NdArray @pytest.mark.proto def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray._docarray_from_native(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() @pytest.mark.proto def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray._docarray_from_native(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from collections import defaultdict from time import time import numpy as np from scipy.linalg import svd from sklearn.datasets import make_low_rank_matrix from sklearn.utils.extmath import randomized_svd def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print("====================") print("Iteration %03d of %03d" % (it, max_it)) print("====================") X = make_low_rank_matrix( n_samples, n_features, effective_rank=rank, tail_strength=0.2 ) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results["scipy svd"].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results["scikit-learn randomized_svd (n_iter=0)"].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results["scikit-learn randomized_svd (n_iter=%d)" % n_iter].append( time() - tstart ) return results if __name__ == "__main__": import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d # register the 3d projection # noqa: F401 samples_range = np.linspace(2, 1000, 4).astype(int) features_range = np.linspace(2, 1000, 4).astype(int) results = compute_bench(samples_range, features_range) label = "scikit-learn singular value decomposition benchmark results" fig = plt.figure(label) ax = fig.gca(projection="3d") for c, (label, timings) in zip("rbg", sorted(results.items())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel("n_samples") ax.set_ylabel("n_features") ax.set_zlabel("Time (s)") ax.legend() plt.show()
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from collections import defaultdict from time import time import numpy as np from scipy.linalg import svd from sklearn.datasets import make_low_rank_matrix from sklearn.utils.extmath import randomized_svd def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print("====================") print("Iteration %03d of %03d" % (it, max_it)) print("====================") X = make_low_rank_matrix( n_samples, n_features, effective_rank=rank, tail_strength=0.2 ) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results["scipy svd"].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results["scikit-learn randomized_svd (n_iter=0)"].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results["scikit-learn randomized_svd (n_iter=%d)" % n_iter].append( time() - tstart ) return results if __name__ == "__main__": from mpl_toolkits.mplot3d import axes3d # noqa register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(int) features_range = np.linspace(2, 1000, 4).astype(int) results = compute_bench(samples_range, features_range) label = "scikit-learn singular value decomposition benchmark results" fig = plt.figure(label) ax = fig.gca(projection="3d") for c, (label, timings) in zip("rbg", sorted(results.items())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel("n_samples") ax.set_ylabel("n_features") ax.set_zlabel("Time (s)") ax.legend() plt.show()
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model_reused: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model_reused evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTripletEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model) """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% Model Anchor Sparsity: Active Dimensions: 105.5, Sparsity Ratio: 0.9965 Model Positive Sparsity: Active Dimensions: 69.8, Sparsity Ratio: 0.9977 Model Negative Sparsity: Active Dimensions: 68.6, Sparsity Ratio: 0.9978 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTripletEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model, ".") """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% Model Sparsity Stats Query : Row Non-Zero Mean: 105.4530029296875, Row Sparsity Mean: 0.9965449571609497 Model Sparsity Stats Corpus : Row Non-Zero Mean: 69.18349838256836, Row Sparsity Mean: 0.9977333247661591 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
import os import shutil import pytest import torch import torchaudio class GreedyCTCDecoder(torch.nn.Module): def __init__(self, labels, blank: int = 0): super().__init__() self.blank = blank self.labels = labels def forward(self, logits: torch.Tensor) -> str: """Given a sequence logits over labels, get the best path string Args: logits (Tensor): Logit tensors. Shape `[num_seq, num_label]`. Returns: str: The resulting transcript """ best_path = torch.argmax(logits, dim=-1) # [num_seq,] best_path = torch.unique_consecutive(best_path, dim=-1) hypothesis = [] for i in best_path: if i != self.blank: hypothesis.append(self.labels[i]) return "".join(hypothesis) @pytest.fixture def ctc_decoder(): return GreedyCTCDecoder _FILES = { "en": "Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.flac", "de": "20090505-0900-PLENARY-16-de_20090505-21_56_00_8.flac", "en2": "20120613-0900-PLENARY-8-en_20120613-13_46_50_3.flac", "es": "20130207-0900-PLENARY-7-es_20130207-13_02_05_5.flac", "fr": "20121212-0900-PLENARY-5-fr_20121212-11_37_04_10.flac", "it": "20170516-0900-PLENARY-16-it_20170516-18_56_31_1.flac", } _MIXTURE_FILES = { "speech_separation": "mixture_3729-6852-0037_8463-287645-0000.wav", "music_separation": "al_james_mixture_shorter.wav", } _CLEAN_FILES = { "speech_separation": [ "s1_3729-6852-0037_8463-287645-0000.wav", "s2_3729-6852-0037_8463-287645-0000.wav", ], "music_separation": [ "al_james_drums_shorter.wav", "al_james_bass_shorter.wav", "al_james_other_shorter.wav", "al_james_vocals_shorter.wav", ], } @pytest.fixture def sample_speech(lang): if lang not in _FILES: raise NotImplementedError(f"Unexpected lang: {lang}") filename = _FILES[lang] path = torchaudio.utils.download_asset(f"test-assets/{filename}") return path @pytest.fixture def mixture_source(task): if task not in _MIXTURE_FILES: raise NotImplementedError(f"Unexpected task: {task}") path = torchaudio.utils.download_asset(f"test-assets/{_MIXTURE_FILES[task]}") return path @pytest.fixture def clean_sources(task): if task not in _CLEAN_FILES: raise NotImplementedError(f"Unexpected task: {task}") paths = [] for file in _CLEAN_FILES[task]: path = torchaudio.utils.download_asset(f"test-assets/{file}") paths.append(path) return paths def pytest_addoption(parser): parser.addoption( "--use-tmp-hub-dir", action="store_true", help=( "When provided, tests will use temporary directory as Torch Hub directory. " "Downloaded models will be deleted after each test." ), ) @pytest.fixture(autouse=True) def temp_hub_dir(tmp_path, pytestconfig): if not pytestconfig.getoption("use_tmp_hub_dir", default=False): yield else: org_dir = torch.hub.get_dir() subdir = os.path.join(tmp_path, "hub") torch.hub.set_dir(subdir) yield torch.hub.set_dir(org_dir) shutil.rmtree(subdir, ignore_errors=True) @pytest.fixture() def emissions(): path = torchaudio.utils.download_asset("test-assets/emissions-8555-28447-0012.pt") return torch.load(path)
import os import shutil import pytest import torch import torchaudio class GreedyCTCDecoder(torch.nn.Module): def __init__(self, labels, blank: int = 0): super().__init__() self.blank = blank self.labels = labels def forward(self, logits: torch.Tensor) -> str: """Given a sequence logits over labels, get the best path string Args: logits (Tensor): Logit tensors. Shape `[num_seq, num_label]`. Returns: str: The resulting transcript """ best_path = torch.argmax(logits, dim=-1) # [num_seq,] best_path = torch.unique_consecutive(best_path, dim=-1) hypothesis = [] for i in best_path: if i != self.blank: hypothesis.append(self.labels[i]) return "".join(hypothesis) @pytest.fixture def ctc_decoder(): return GreedyCTCDecoder _FILES = { "en": "Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.flac", "de": "20090505-0900-PLENARY-16-de_20090505-21_56_00_8.flac", "en2": "20120613-0900-PLENARY-8-en_20120613-13_46_50_3.flac", "es": "20130207-0900-PLENARY-7-es_20130207-13_02_05_5.flac", "fr": "20121212-0900-PLENARY-5-fr_20121212-11_37_04_10.flac", "it": "20170516-0900-PLENARY-16-it_20170516-18_56_31_1.flac", } _MIXTURE_FILES = { "speech_separation": "mixture_3729-6852-0037_8463-287645-0000.wav", "music_separation": "al_james_mixture_shorter.wav", } _CLEAN_FILES = { "speech_separation": [ "s1_3729-6852-0037_8463-287645-0000.wav", "s2_3729-6852-0037_8463-287645-0000.wav", ], "music_separation": [ "al_james_drums_shorter.wav", "al_james_bass_shorter.wav", "al_james_other_shorter.wav", "al_james_vocals_shorter.wav", ], } @pytest.fixture def sample_speech(lang): if lang not in _FILES: raise NotImplementedError(f"Unexpected lang: {lang}") filename = _FILES[lang] path = torchaudio.utils.download_asset(f"test-assets/{filename}") return path @pytest.fixture def mixture_source(task): if task not in _MIXTURE_FILES: raise NotImplementedError(f"Unexpected task: {task}") path = torchaudio.utils.download_asset(f"test-assets/{_MIXTURE_FILES[task]}") return path @pytest.fixture def clean_sources(task): if task not in _CLEAN_FILES: raise NotImplementedError(f"Unexpected task: {task}") paths = [] for file in _CLEAN_FILES[task]: path = torchaudio.utils.download_asset(f"test-assets/{file}") paths.append(path) return paths def pytest_addoption(parser): parser.addoption( "--use-tmp-hub-dir", action="store_true", help=( "When provided, tests will use temporary directory as Torch Hub directory. " "Downloaded models will be deleted after each test." ), ) @pytest.fixture(autouse=True) def temp_hub_dir(tmp_path, pytestconfig): if not pytestconfig.getoption("use_tmp_hub_dir"): yield else: org_dir = torch.hub.get_dir() subdir = os.path.join(tmp_path, "hub") torch.hub.set_dir(subdir) yield torch.hub.set_dir(org_dir) shutil.rmtree(subdir, ignore_errors=True) @pytest.fixture() def emissions(): path = torchaudio.utils.download_asset("test-assets/emissions-8555-28447-0012.pt") return torch.load(path)
# Copyright (c) OpenMMLab. All rights reserved. import itertools from typing import Dict, Optional from mmengine.model import is_model_wrapper from mmengine.registry import HOOKS, MODELS from .hook import DATA_BATCH, Hook @HOOKS.register_module() class EMAHook(Hook): """A Hook to apply Exponential Moving Average (EMA) on the model during training. Note: - EMAHook takes priority over CheckpointHook. - The original model parameters are actually saved in ema field after train. Args: ema_type (str): The type of EMA strategy to use. You can find the supported strategies in ``mmengine.model.averaged_model``. Defaults to 'ExponentialMovingAverage' """ priority = 'NORMAL' def __init__(self, ema_type: str = 'ExponentialMovingAverage', **kwargs): self.ema_cfg = dict(type=ema_type, **kwargs) def before_run(self, runner) -> None: """Create an ema copy of the model.""" model = runner.model if is_model_wrapper(model): model = model.module self.src_model = model self.ema_model = MODELS.build( self.ema_cfg, default_args=dict(model=self.src_model)) def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Update ema parameter.""" self.ema_model.update_parameters(self.src_model) def before_val_epoch(self, runner) -> None: """We load parameter values from ema model to source model before validation.""" self._swap_ema_parameters() def after_val_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """We recover source model's parameter from ema model after validation.""" self._swap_ema_parameters() def before_test_epoch(self, runner) -> None: """We load parameter values from ema model to source model before test.""" self._swap_ema_parameters() def after_test_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """We recover source model's parameter from ema model after test.""" self._swap_ema_parameters() def before_save_checkpoint(self, runner, checkpoint: dict) -> None: """Save ema parameters to checkpoint.""" checkpoint['ema_state_dict'] = self.ema_model.state_dict() # Save ema parameters to the source model's state dict so that we can # directly load the averaged model weights for deployment. # Swapping the state_dict key-values instead of swapping model # parameters because the state_dict is a shallow copy of model # parameters. self._swap_ema_state_dict(checkpoint) def after_load_checkpoint(self, runner, checkpoint: dict) -> None: """Resume ema parameters from checkpoint.""" # The original model parameters are actually saved in ema field. # swap the weights back to resume ema state. self._swap_ema_state_dict(checkpoint) self.ema_model.load_state_dict(checkpoint['ema_state_dict']) def _swap_ema_parameters(self) -> None: """Swap the parameter of model with ema_model.""" avg_param = ( itertools.chain(self.ema_model.module.parameters(), self.ema_model.module.buffers()) if self.ema_model.update_buffers else self.ema_model.module.parameters()) src_param = ( itertools.chain(self.src_model.parameters(), self.src_model.buffers()) if self.ema_model.update_buffers else self.src_model.parameters()) for p_avg, p_src in zip(avg_param, src_param): tmp = p_avg.data.clone() p_avg.data.copy_(p_src.data) p_src.data.copy_(tmp) def _swap_ema_state_dict(self, checkpoint): """Swap the state dict values of model with ema_model.""" model_state = checkpoint['state_dict'] ema_state = checkpoint['ema_state_dict'] for k in ema_state: if k[:7] == 'module.': tmp = ema_state[k] ema_state[k] = model_state[k[7:]] model_state[k[7:]] = tmp
# Copyright (c) OpenMMLab. All rights reserved. import itertools from typing import Dict, Optional from mmengine.model import is_model_wrapper from mmengine.registry import HOOKS, MODELS from .hook import DATA_BATCH, Hook @HOOKS.register_module() class EMAHook(Hook): """A Hook to apply Exponential Moving Average (EMA) on the model during training. Note: - EMAHook takes priority over CheckpointHook. - The original model parameters are actually saved in ema field after train. Args: ema_type (str): The type of EMA strategy to use. You can find the supported strategies in ``mmengine.model.averaged_model``. Defaults to 'ExponentialMovingAverage' """ priority = 'NORMAL' def __init__(self, ema_type: str = 'ExponentialMovingAverage', **kwargs): self.ema_cfg = dict(type=ema_type, **kwargs) def before_run(self, runner) -> None: """Create an ema copy of the model.""" model = runner.model if is_model_wrapper(model): model = model.module self.src_model = model self.ema_model = MODELS.build( self.ema_cfg, default_args=dict(model=self.src_model)) def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Update ema parameter.""" self.ema_model.update_parameters(self.src_model) def before_val_epoch(self, runner) -> None: """We load parameter values from ema model to source model before validation.""" self._swap_ema_parameters() def after_val_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """We recover source model's parameter from ema model after validation.""" self._swap_ema_parameters() def before_test_epoch(self, runner) -> None: """We load parameter values from ema model to source model before test.""" self._swap_ema_parameters() def after_test_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """We recover source model's parameter from ema model after test.""" self._swap_ema_parameters() def before_save_checkpoint(self, runner, checkpoint: dict) -> None: """Save ema parameters to checkpoint.""" # save ema parameters to the source model's state dict so that we can # directly load the averaged model weights for deployment. self._swap_ema_parameters() checkpoint['ema_state_dict'] = self.ema_model.state_dict() self._swap_ema_parameters() def after_load_checkpoint(self, runner, checkpoint: dict) -> None: """Resume ema parameters from checkpoint.""" self.ema_model.load_state_dict(checkpoint['ema_state_dict']) # The original model parameters are actually saved in ema field. # swap the weights back to resume ema state. self._swap_ema_parameters() def _swap_ema_parameters(self) -> None: """Swap the parameter of model with ema_model.""" avg_param = ( itertools.chain(self.ema_model.module.parameters(), self.ema_model.module.buffers()) if self.ema_model.update_buffers else self.ema_model.module.parameters()) src_param = ( itertools.chain(self.src_model.parameters(), self.src_model.buffers()) if self.ema_model.update_buffers else self.src_model.parameters()) for p_avg, p_src in zip(avg_param, src_param): tmp = p_avg.data.clone() p_avg.data.copy_(p_src.data) p_src.data.copy_(tmp)
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel from langchain_community.utilities.polygon import PolygonAPIWrapper class Inputs(BaseModel): """Inputs for Polygon's Financials API""" query: str class PolygonFinancials(BaseTool): """Tool that gets the financials of a ticker from Polygon""" mode: str = "get_financials" name: str = "polygon_financials" description: str = ( "A wrapper around Polygon's Stock Financials API. " "This tool is useful for fetching fundamental financials from " "balance sheets, income statements, and cash flow statements " "for a stock ticker. The input should be the ticker that you want " "to get the latest fundamental financial data for." ) args_schema: Type[BaseModel] = Inputs api_wrapper: PolygonAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Polygon API tool.""" return self.api_wrapper.run(self.mode, ticker=query)
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel from langchain_community.utilities.polygon import PolygonAPIWrapper class Inputs(BaseModel): """Inputs for Polygon's Financials API""" query: str class PolygonFinancials(BaseTool): # type: ignore[override, override] """Tool that gets the financials of a ticker from Polygon""" mode: str = "get_financials" name: str = "polygon_financials" description: str = ( "A wrapper around Polygon's Stock Financials API. " "This tool is useful for fetching fundamental financials from " "balance sheets, income statements, and cash flow statements " "for a stock ticker. The input should be the ticker that you want " "to get the latest fundamental financial data for." ) args_schema: Type[BaseModel] = Inputs api_wrapper: PolygonAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Polygon API tool.""" return self.api_wrapper.run(self.mode, ticker=query)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import export_dump_streaming from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): vec_idx = np.random.randint(0, high=512, size=[512]).astype(str) vec = np.array(np.random.random([512, 10]), dtype=np.float32) query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) train_data_file = os.path.join(os.environ['TEST_WORKSPACE'], 'train.npy') train_data = np.array(np.random.random([1024, 10]), dtype=np.float32) np.save(train_data_file, train_data) trained_index_file = os.path.join(os.environ['TEST_WORKSPACE'], 'faiss.index') export_dump_streaming( os.path.join(tmpdir, 'dump'), 1, len(vec_idx), zip(vec_idx, vec, [b'' for _ in range(len(vec))]), ) dump_path = os.path.join(tmpdir, 'dump') f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, }, ) with f: # the trained index will be dumped to "faiss.index" f.post(on='/train', parameters={'train_data_file': train_data_file}) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, 'dump_path': dump_path, }, ) with f: result = f.post( on='/search', data=query_docs, return_results=True, parameters={'top_k': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert ( d.matches[0].scores['cosine'].value <= d.matches[1].scores['cosine'].value ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import export_dump_streaming from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): vec_idx = np.random.randint(0, high=512, size=[512]).astype(str) vec = np.array(np.random.random([512, 10]), dtype=np.float32) query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) train_data_file = os.path.join(os.environ['TEST_WORKSPACE'], 'train.npy') train_data = np.array(np.random.random([1024, 10]), dtype=np.float32) np.save(train_data_file, train_data) trained_index_file = os.path.join(os.environ['TEST_WORKSPACE'], 'faiss.index') export_dump_streaming( os.path.join(tmpdir, 'dump'), 1, len(vec_idx), zip(vec_idx, vec, [b'' for _ in range(len(vec))]), ) dump_path = os.path.join(tmpdir, 'dump') f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, }, ) with f: # the trained index will be dumped to "faiss.index" f.post(on='/train', parameters={'train_data_file': train_data_file}) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, 'dump_path': dump_path, }, ) with f: result = f.post( on='/search', data=query_docs, return_results=True, parameters={'top_k': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert ( d.matches[0].scores['euclidean'].value <= d.matches[1].scores['euclidean'].value ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', ], timeout=30, check=True, )
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_bit import * from .image_processing_bit import * from .image_processing_bit_fast import * from .modeling_bit import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_bit import * from .image_processing_bit import * from .modeling_bit import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright (c) OpenMMLab. All rights reserved. import copy import torch.nn as nn from mmcv.cnn import ConvModule, Scale from mmdet.models.dense_heads.fcos_head import FCOSHead from ..builder import HEADS @HEADS.register_module() class NASFCOSHead(FCOSHead): """Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_. It is quite similar with FCOS head, except for the searched structure of classification branch and bbox regression branch, where a structure of "dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead. """ def __init__(self, *args, init_cfg=None, **kwargs): if init_cfg is None: init_cfg = [ dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']), dict( type='Normal', std=0.01, override=[ dict(name='conv_reg'), dict(name='conv_centerness'), dict( name='conv_cls', type='Normal', std=0.01, bias_prob=0.01) ]), ] super(NASFCOSHead, self).__init__(*args, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" dconv3x3_config = dict( type='DCNv2', kernel_size=3, use_bias=True, deform_groups=2, padding=1) conv3x3_config = dict(type='Conv', kernel_size=3, padding=1) conv1x1_config = dict(type='Conv', kernel_size=1) self.arch_config = [ dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config ] self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i, op_ in enumerate(self.arch_config): op = copy.deepcopy(op_) chn = self.in_channels if i == 0 else self.feat_channels assert isinstance(op, dict) use_bias = op.pop('use_bias', False) padding = op.pop('padding', 0) kernel_size = op.pop('kernel_size') module = ConvModule( chn, self.feat_channels, kernel_size, stride=1, padding=padding, norm_cfg=self.norm_cfg, bias=use_bias, conv_cfg=op) self.cls_convs.append(copy.deepcopy(module)) self.reg_convs.append(copy.deepcopy(module)) self.conv_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
import copy import torch.nn as nn from mmcv.cnn import ConvModule, Scale from mmdet.models.dense_heads.fcos_head import FCOSHead from ..builder import HEADS @HEADS.register_module() class NASFCOSHead(FCOSHead): """Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_. It is quite similar with FCOS head, except for the searched structure of classification branch and bbox regression branch, where a structure of "dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead. """ def __init__(self, *args, init_cfg=None, **kwargs): if init_cfg is None: init_cfg = [ dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']), dict( type='Normal', std=0.01, override=[ dict(name='conv_reg'), dict(name='conv_centerness'), dict( name='conv_cls', type='Normal', std=0.01, bias_prob=0.01) ]), ] super(NASFCOSHead, self).__init__(*args, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" dconv3x3_config = dict( type='DCNv2', kernel_size=3, use_bias=True, deform_groups=2, padding=1) conv3x3_config = dict(type='Conv', kernel_size=3, padding=1) conv1x1_config = dict(type='Conv', kernel_size=1) self.arch_config = [ dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config ] self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i, op_ in enumerate(self.arch_config): op = copy.deepcopy(op_) chn = self.in_channels if i == 0 else self.feat_channels assert isinstance(op, dict) use_bias = op.pop('use_bias', False) padding = op.pop('padding', 0) kernel_size = op.pop('kernel_size') module = ConvModule( chn, self.feat_channels, kernel_size, stride=1, padding=padding, norm_cfg=self.norm_cfg, bias=use_bias, conv_cfg=op) self.cls_convs.append(copy.deepcopy(module)) self.reg_convs.append(copy.deepcopy(module)) self.conv_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): return super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_tensor=False, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): return super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_tensor=False, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
# Copyright (c) OpenMMLab. All rights reserved. import copy import time from contextlib import contextmanager from typing import Generator, Optional from mmengine.utils.manager import ManagerMixin, _accquire_lock, _release_lock class DefaultScope(ManagerMixin): """Scope of current task used to reset the current registry, which can be accessed globally. Consider the case of resetting the current ``Resgitry`` by``default_scope`` in the internal module which cannot access runner directly, it is difficult to get the ``default_scope`` defined in ``Runner``. However, if ``Runner`` created ``DefaultScope`` instance by given ``default_scope``, the internal module can get ``default_scope`` by ``DefaultScope.get_current_instance`` everywhere. Args: name (str): Name of default scope for global access. scope_name (str): Scope of current task. Examples: >>> from mmengine import MODELS >>> # Define default scope in runner. >>> DefaultScope.get_instance('task', scope_name='mmdet') >>> # Get default scope globally. >>> scope_name = DefaultScope.get_instance('task').scope_name """ def __init__(self, name: str, scope_name: str): super().__init__(name) self._scope_name = scope_name @property def scope_name(self) -> str: """ Returns: str: Get current scope. """ return self._scope_name @classmethod def get_current_instance(cls) -> Optional['DefaultScope']: """Get latest created default scope. Since default_scope is an optional argument for ``Registry.build``. ``get_current_instance`` should return ``None`` if there is no ``DefaultScope`` created. Examples: >>> default_scope = DefaultScope.get_current_instance() >>> # There is no `DefaultScope` created yet, >>> # `get_current_instance` return `None`. >>> default_scope = DefaultScope.get_instance( >>> 'instance_name', scope_name='mmengine') >>> default_scope.scope_name mmengine >>> default_scope = DefaultScope.get_current_instance() >>> default_scope.scope_name mmengine Returns: Optional[DefaultScope]: Return None If there has not been ``DefaultScope`` instance created yet, otherwise return the latest created DefaultScope instance. """ _accquire_lock() if cls._instance_dict: instance = super().get_current_instance() else: instance = None _release_lock() return instance @classmethod @contextmanager def overwrite_default_scope(cls, scope_name: Optional[str]) -> Generator: """overwrite the current default scope with `scope_name`""" if scope_name is None: yield else: tmp = copy.deepcopy(cls._instance_dict) cls.get_instance(f'overwrite-{time.time()}', scope_name=scope_name) try: yield finally: cls._instance_dict = tmp
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional from mmengine.utils.manager import ManagerMixin, _accquire_lock, _release_lock class DefaultScope(ManagerMixin): """Scope of current task used to reset the current registry, which can be accessed globally. Consider the case of resetting the current ``Resgitry`` by``default_scope`` in the internal module which cannot access runner directly, it is difficult to get the ``default_scope`` defined in ``Runner``. However, if ``Runner`` created ``DefaultScope`` instance by given ``default_scope``, the internal module can get ``default_scope`` by ``DefaultScope.get_current_instance`` everywhere. Args: name (str): Name of default scope for global access. scope_name (str): Scope of current task. Examples: >>> from mmengine import MODELS >>> # Define default scope in runner. >>> DefaultScope.get_instance('task', scope_name='mmdet') >>> # Get default scope globally. >>> scope_name = DefaultScope.get_instance('task').scope_name """ def __init__(self, name: str, scope_name: str): super().__init__(name) self._scope_name = scope_name @property def scope_name(self) -> str: """ Returns: str: Get current scope. """ return self._scope_name @classmethod def get_current_instance(cls) -> Optional['DefaultScope']: """Get latest created default scope. Since default_scope is an optional argument for ``Registry.build``. ``get_current_instance`` should return ``None`` if there is no ``DefaultScope`` created. Examples: >>> default_scope = DefaultScope.get_current_instance() >>> # There is no `DefaultScope` created yet, >>> # `get_current_instance` return `None`. >>> default_scope = DefaultScope.get_instance( >>> 'instance_name', scope_name='mmengine') >>> default_scope.scope_name mmengine >>> default_scope = DefaultScope.get_current_instance() >>> default_scope.scope_name mmengine Returns: Optional[DefaultScope]: Return None If there has not been ``DefaultScope`` instance created yet, otherwise return the latest created DefaultScope instance. """ _accquire_lock() if cls._instance_dict: instance = super().get_current_instance() else: instance = None _release_lock() return instance
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", ]
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_transformers import GoogleTranslateTransformer # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleTranslateTransformer": "langchain_community.document_transformers", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleTranslateTransformer", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_transformers import GoogleTranslateTransformer # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleTranslateTransformer": "langchain_community.document_transformers" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleTranslateTransformer", ]
from typing import Optional from opentelemetry.context.context import Context from jina import DocumentArray, Executor, requests class ExecutorTestWithTracing(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.meter: self.request_counter = self.meter.create_counter('request_counter') else: self.request_counter = None @requests def testing( self, docs: DocumentArray, tracing_context: Optional[Context], **kwargs ): if self.request_counter: self.request_counter.add(1) if self.tracer: with self.tracer.start_span('dummy', context=tracing_context) as span: span.set_attribute('len_docs', len(docs)) return docs
from typing import Optional from opentelemetry.context.context import Context from jina import Executor, requests, DocumentArray class ExecutorTestWithTracing(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.meter: self.request_counter = self.meter.create_counter('request_counter') else: self.request_counter = None @requests def testing( self, docs: 'DocumentArray', tracing_context: Optional[Context], **kwargs ): if self.request_counter: self.request_counter.add(1) if self.tracer: with self.tracer.start_span('dummy', context=tracing_context) as span: span.set_attribute('len_docs', len(docs)) return docs
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import (find_latest_checkpoint, get_test_pipeline_cfg, update_data_root) from .mot_error_visualize import imshow_mot_errors from .replace_cfg_vals import replace_cfg_vals from .setup_env import (register_all_modules, setup_cache_size_limit_of_dynamo, setup_multi_processes) from .split_batch import split_batch from .typing_utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'get_test_pipeline_cfg', 'setup_cache_size_limit_of_dynamo', 'imshow_mot_errors' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import (find_latest_checkpoint, get_test_pipeline_cfg, update_data_root) from .replace_cfg_vals import replace_cfg_vals from .setup_env import (register_all_modules, setup_cache_size_limit_of_dynamo, setup_multi_processes) from .split_batch import split_batch from .typing_utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'get_test_pipeline_cfg', 'setup_cache_size_limit_of_dynamo' ]
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import mmcv import numpy as np from mmdet.datasets.pipelines import (LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles) class TestLoading: @classmethod def setup_class(cls): cls.data_prefix = osp.join(osp.dirname(__file__), '../../data') def test_load_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename='color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == osp.join(self.data_prefix, 'color.jpg') assert results['ori_filename'] == 'color.jpg' assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3) assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='color', " + \ "file_client_args={'backend': 'disk'})" # no img_prefix results = dict( img_prefix=None, img_info=dict(filename='tests/data/color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == 'tests/data/color.jpg' assert results['ori_filename'] == 'tests/data/color.jpg' assert results['img'].shape == (288, 512, 3) # to_float32 transform = LoadImageFromFile(to_float32=True) results = transform(copy.deepcopy(results)) assert results['img'].dtype == np.float32 # gray image results = dict( img_prefix=self.data_prefix, img_info=dict(filename='gray.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 transform = LoadImageFromFile(color_type='unchanged') results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512) assert results['img'].dtype == np.uint8 def test_load_multi_channel_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename=['color.jpg', 'color.jpg'])) transform = LoadMultiChannelImageFromFiles() results = transform(copy.deepcopy(results)) assert results['filename'] == [ osp.join(self.data_prefix, 'color.jpg'), osp.join(self.data_prefix, 'color.jpg') ] assert results['ori_filename'] == ['color.jpg', 'color.jpg'] assert results['img'].shape == (288, 512, 3, 2) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3, 2) assert results['ori_shape'] == (288, 512, 3, 2) assert results['pad_shape'] == (288, 512, 3, 2) assert results['scale_factor'] == 1.0 assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='unchanged', " + \ "file_client_args={'backend': 'disk'})" def test_load_webcam_img(self): img = mmcv.imread(osp.join(self.data_prefix, 'color.jpg')) results = dict(img=img) transform = LoadImageFromWebcam() results = transform(copy.deepcopy(results)) assert results['filename'] is None assert results['ori_filename'] is None assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3)
import copy import os.path as osp import mmcv import numpy as np from mmdet.datasets.pipelines import (LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles) class TestLoading: @classmethod def setup_class(cls): cls.data_prefix = osp.join(osp.dirname(__file__), '../../data') def test_load_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename='color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == osp.join(self.data_prefix, 'color.jpg') assert results['ori_filename'] == 'color.jpg' assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3) assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='color', " + \ "file_client_args={'backend': 'disk'})" # no img_prefix results = dict( img_prefix=None, img_info=dict(filename='tests/data/color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == 'tests/data/color.jpg' assert results['ori_filename'] == 'tests/data/color.jpg' assert results['img'].shape == (288, 512, 3) # to_float32 transform = LoadImageFromFile(to_float32=True) results = transform(copy.deepcopy(results)) assert results['img'].dtype == np.float32 # gray image results = dict( img_prefix=self.data_prefix, img_info=dict(filename='gray.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 transform = LoadImageFromFile(color_type='unchanged') results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512) assert results['img'].dtype == np.uint8 def test_load_multi_channel_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename=['color.jpg', 'color.jpg'])) transform = LoadMultiChannelImageFromFiles() results = transform(copy.deepcopy(results)) assert results['filename'] == [ osp.join(self.data_prefix, 'color.jpg'), osp.join(self.data_prefix, 'color.jpg') ] assert results['ori_filename'] == ['color.jpg', 'color.jpg'] assert results['img'].shape == (288, 512, 3, 2) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3, 2) assert results['ori_shape'] == (288, 512, 3, 2) assert results['pad_shape'] == (288, 512, 3, 2) assert results['scale_factor'] == 1.0 assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='unchanged', " + \ "file_client_args={'backend': 'disk'})" def test_load_webcam_img(self): img = mmcv.imread(osp.join(self.data_prefix, 'color.jpg')) results = dict(img=img) transform = LoadImageFromWebcam() results = transform(copy.deepcopy(results)) assert results['filename'] is None assert results['ori_filename'] is None assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3)
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = './ms-rcnn_r101-caffe_fpn_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './ms_rcnn_r101_caffe_fpn_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
import csv import logging import os from typing import TYPE_CHECKING, Dict import torch from torch.utils.data import DataLoader from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator from sentence_transformers.util import batch_to_device if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer logger = logging.getLogger(__name__) class LabelAccuracyEvaluator(SentenceEvaluator): """ Evaluate a model based on its accuracy on a labeled dataset This requires a model with LossFunction.SOFTMAX The results are written in a CSV. If a CSV already exists, then values are appended. """ def __init__(self, dataloader: DataLoader, name: str = "", softmax_model=None, write_csv: bool = True): """ Constructs an evaluator for the given dataset Args: dataloader (DataLoader): the data for the evaluation """ super().__init__() self.dataloader = dataloader self.name = name self.softmax_model = softmax_model if name: name = "_" + name self.write_csv = write_csv self.csv_file = "accuracy_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "accuracy"] self.primary_metric = "accuracy" def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: model.eval() total = 0 correct = 0 if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("Evaluation on the " + self.name + " dataset" + out_txt) self.dataloader.collate_fn = model.smart_batching_collate for step, batch in enumerate(self.dataloader): features, label_ids = batch for idx in range(len(features)): features[idx] = batch_to_device(features[idx], model.device) label_ids = label_ids.to(model.device) with torch.no_grad(): _, prediction = self.softmax_model(features, labels=None) total += prediction.size(0) correct += torch.argmax(prediction, dim=1).eq(label_ids).sum().item() accuracy = correct / total logger.info("Accuracy: {:.4f} ({}/{})\n".format(accuracy, correct, total)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) if not os.path.isfile(csv_path): with open(csv_path, newline="", mode="w", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(self.csv_headers) writer.writerow([epoch, steps, accuracy]) else: with open(csv_path, newline="", mode="a", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow([epoch, steps, accuracy]) metrics = {"accuracy": accuracy} metrics = self.prefix_name_to_metrics(metrics, self.name) self.store_metrics_in_model_card_data(model, metrics) return metrics
from sentence_transformers import SentenceTransformer from . import SentenceEvaluator import torch from torch.utils.data import DataLoader import logging from ..util import batch_to_device import os import csv logger = logging.getLogger(__name__) class LabelAccuracyEvaluator(SentenceEvaluator): """ Evaluate a model based on its accuracy on a labeled dataset This requires a model with LossFunction.SOFTMAX The results are written in a CSV. If a CSV already exists, then values are appended. """ def __init__(self, dataloader: DataLoader, name: str = "", softmax_model=None, write_csv: bool = True): """ Constructs an evaluator for the given dataset :param dataloader: the data for the evaluation """ self.dataloader = dataloader self.name = name self.softmax_model = softmax_model if name: name = "_" + name self.write_csv = write_csv self.csv_file = "accuracy_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "accuracy"] def __call__(self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: model.eval() total = 0 correct = 0 if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("Evaluation on the " + self.name + " dataset" + out_txt) self.dataloader.collate_fn = model.smart_batching_collate for step, batch in enumerate(self.dataloader): features, label_ids = batch for idx in range(len(features)): features[idx] = batch_to_device(features[idx], model.device) label_ids = label_ids.to(model.device) with torch.no_grad(): _, prediction = self.softmax_model(features, labels=None) total += prediction.size(0) correct += torch.argmax(prediction, dim=1).eq(label_ids).sum().item() accuracy = correct / total logger.info("Accuracy: {:.4f} ({}/{})\n".format(accuracy, correct, total)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) if not os.path.isfile(csv_path): with open(csv_path, newline="", mode="w", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow(self.csv_headers) writer.writerow([epoch, steps, accuracy]) else: with open(csv_path, newline="", mode="a", encoding="utf-8") as f: writer = csv.writer(f) writer.writerow([epoch, steps, accuracy]) return accuracy
import pytest from langchain_core.documents import Document from langchain_core.indexing.api import _HashedDocument def test_hashed_document_hashing() -> None: hashed_document = _HashedDocument( # type: ignore[call-arg] uid="123", page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert isinstance(hashed_document.hash_, str) def test_hashing_with_missing_content() -> None: """Check that ValueError is raised if page_content is missing.""" with pytest.raises(TypeError): _HashedDocument( metadata={"key": "value"}, ) # type: ignore[call-arg] def test_uid_auto_assigned_to_hash() -> None: """Test uid is auto-assigned to the hashed_document hash.""" hashed_document = _HashedDocument( # type: ignore[call-arg] page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert hashed_document.uid == hashed_document.hash_ def test_to_document() -> None: """Test to_document method.""" hashed_document = _HashedDocument( # type: ignore[call-arg] page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) doc = hashed_document.to_document() assert isinstance(doc, Document) assert doc.page_content == "Lorem ipsum dolor sit amet" assert doc.metadata == {"key": "value"} def test_from_document() -> None: """Test from document class method.""" document = Document( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) hashed_document = _HashedDocument.from_document(document) # hash should be deterministic assert hashed_document.hash_ == "fd1dc827-051b-537d-a1fe-1fa043e8b276" assert hashed_document.uid == hashed_document.hash_
import pytest from langchain_core.documents import Document from langchain_core.indexing.api import _HashedDocument def test_hashed_document_hashing() -> None: hashed_document = _HashedDocument( # type: ignore[call-arg] uid="123", page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert isinstance(hashed_document.hash_, str) def test_hashing_with_missing_content() -> None: """Check that ValueError is raised if page_content is missing.""" with pytest.raises(TypeError): _HashedDocument( metadata={"key": "value"}, ) # type: ignore def test_uid_auto_assigned_to_hash() -> None: """Test uid is auto-assigned to the hashed_document hash.""" hashed_document = _HashedDocument( # type: ignore[call-arg] page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert hashed_document.uid == hashed_document.hash_ def test_to_document() -> None: """Test to_document method.""" hashed_document = _HashedDocument( # type: ignore[call-arg] page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) doc = hashed_document.to_document() assert isinstance(doc, Document) assert doc.page_content == "Lorem ipsum dolor sit amet" assert doc.metadata == {"key": "value"} def test_from_document() -> None: """Test from document class method.""" document = Document( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) hashed_document = _HashedDocument.from_document(document) # hash should be deterministic assert hashed_document.hash_ == "fd1dc827-051b-537d-a1fe-1fa043e8b276" assert hashed_document.uid == hashed_document.hash_
import csv import os from pathlib import Path from typing import Tuple, Union from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import _load_waveform SAMPLE_RATE = 16000 class FluentSpeechCommands(Dataset): """*Fluent Speech Commands* :cite:`fluent` dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [``"train"``, ``"valid"``, ``"test"``]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): if subset not in ["train", "valid", "test"]: raise ValueError("`subset` must be one of ['train', 'valid', 'test']") root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def get_metadata(self, n: int) -> Tuple[str, int, str, int, str, str, str, str]: """Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, but otherwise returns the same fields as :py:func:`__getitem__`. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; str: Path to audio int: Sample rate str: File name int: Speaker ID str: Transcription str: Action str: Object str: Location """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] file_path = os.path.join("wavs", "speakers", speaker_id, f"{file_name}.wav") return file_path, SAMPLE_RATE, file_name, speaker_id, transcription, action, obj, location def __len__(self) -> int: return len(self.data) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, str, str, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: File name int: Speaker ID str: Transcription str: Action str: Object str: Location """ metadata = self.get_metadata(n) waveform = _load_waveform(self._path, metadata[0], metadata[1]) return (waveform,) + metadata[1:]
import csv import os from pathlib import Path from typing import Tuple, Union from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import _load_waveform SAMPLE_RATE = 16000 class FluentSpeechCommands(Dataset): """Create *Fluent Speech Commands* :cite:`fluent` Dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [`"train"`, `"valid"`, `"test"`]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): if subset not in ["train", "valid", "test"]: raise ValueError("`subset` must be one of ['train', 'valid', 'test']") root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def get_metadata(self, n: int) -> Tuple[str, int, str, int, str, str, str, str]: """Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, but otherwise returns the same fields as :py:func:`__getitem__`. Args: n (int): The index of the sample to be loaded Returns: (str, int, str, int, str, str, str, str): ``(filepath, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] file_path = os.path.join("wavs", "speakers", speaker_id, f"{file_name}.wav") return file_path, SAMPLE_RATE, file_name, speaker_id, transcription, action, obj, location def __len__(self) -> int: return len(self.data) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, str, str, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, str, str, str, str): ``(waveform, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ metadata = self.get_metadata(n) waveform = _load_waveform(self._path, metadata[0], metadata[1]) return (waveform,) + metadata[1:]
"""Argparser module for the export API""" from jina.parsers.base import set_base_parser from jina.parsers.helper import _chf def set_export_parser(parser=None): """Set the parser for exporting :param parser: the parser configure :return: the parser """ if not parser: parser = set_base_parser() spp = parser.add_subparsers( dest='export', description='use `%(prog)-8s [sub-command] --help` ' 'to get detailed information about each sub-command', required=True, ) set_export_flowchart_parser( spp.add_parser( 'flowchart', help='Export a Flow YAML file to a flowchart', formatter_class=_chf, ) ) set_export_k8s_parser( spp.add_parser( 'kubernetes', help='Export a Flow YAML file to a Kubernetes YAML bundle', formatter_class=_chf, ) ) set_export_docker_compose_parser( spp.add_parser( 'docker-compose', help='Export a Flow YAML file to a Docker Compose YAML file', formatter_class=_chf, ) ) set_export_schema_parser( spp.add_parser( 'schema', help='Export Jina Executor & Flow API to JSONSchema files', formatter_class=_chf, ) ) return parser def mixin_base_io_parser(parser): """Add basic IO parsing args :param parser: the parser configure """ parser.add_argument( 'config_path', type=str, metavar='INPUT', help='The input file path of a Flow or Deployment YAML ', ) parser.add_argument( 'outpath', type=str, metavar='OUTPUT', help='The output path', ) def set_export_docker_compose_parser(parser=None): """Set the parser for the flow chart export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_base_io_parser(parser) parser.add_argument( '--network_name', type=str, help='The name of the network that will be used by the deployment name.', ) return parser def set_export_k8s_parser(parser=None): """Set the parser for the flow chart export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_base_io_parser(parser) parser.add_argument( '--k8s-namespace', type=str, help='The name of the k8s namespace to set for the configurations. If None, the name of the Flow will be used.', ) return parser def set_export_flowchart_parser(parser=None): """Set the parser for the flow chart export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_base_io_parser(parser) parser.add_argument( '--vertical-layout', action='store_true', default=False, help='If set, then the flowchart is rendered vertically from top to down.', ) return parser def set_export_schema_parser(parser=None): """Set the parser for the API export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( '--yaml-path', type=str, nargs='*', metavar='PATH', help='The YAML file path for storing the exported API', ) parser.add_argument( '--json-path', type=str, nargs='*', metavar='PATH', help='The JSON file path for storing the exported API', ) parser.add_argument( '--schema-path', type=str, nargs='*', metavar='PATH', help='The JSONSchema file path for storing the exported API', ) return parser
"""Argparser module for the export API""" from jina.parsers.base import set_base_parser from jina.parsers.helper import _chf def set_export_parser(parser=None): """Set the parser for exporting :param parser: the parser configure :return: the parser """ if not parser: parser = set_base_parser() spp = parser.add_subparsers( dest='export', description='use `%(prog)-8s [sub-command] --help` ' 'to get detailed information about each sub-command', required=True, ) set_export_flowchart_parser( spp.add_parser( 'flowchart', help='Export a Flow YAML file to a flowchart', formatter_class=_chf, ) ) set_export_k8s_parser( spp.add_parser( 'kubernetes', help='Export a Flow YAML file to a Kubernetes YAML bundle', formatter_class=_chf, ) ) set_export_docker_compose_parser( spp.add_parser( 'docker-compose', help='Export a Flow YAML file to a Docker Compose YAML file', formatter_class=_chf, ) ) set_export_schema_parser( spp.add_parser( 'schema', help='Export Jina Executor & Flow API to JSONSchema files', formatter_class=_chf, ) ) return parser def mixin_base_io_parser(parser): """Add basic IO parsing args :param parser: the parser configure """ parser.add_argument( 'config_path', type=str, metavar='INPUT', help='The input file path of a Flow or Deployment YAML ' ) parser.add_argument( 'outpath', type=str, metavar='OUTPUT', help='The output path', ) def set_export_docker_compose_parser(parser=None): """Set the parser for the flow chart export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_base_io_parser(parser) parser.add_argument( '--network_name', type=str, help='The name of the network that will be used by the deployment name.', ) return parser def set_export_k8s_parser(parser=None): """Set the parser for the flow chart export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_base_io_parser(parser) parser.add_argument( '--k8s-namespace', type=str, help='The name of the k8s namespace to set for the configurations. If None, the name of the Flow will be used.', ) return parser def set_export_flowchart_parser(parser=None): """Set the parser for the flow chart export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_base_io_parser(parser) parser.add_argument( '--vertical-layout', action='store_true', default=False, help='If set, then the flowchart is rendered vertically from top to down.', ) return parser def set_export_schema_parser(parser=None): """Set the parser for the API export :param parser: an optional existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( '--yaml-path', type=str, nargs='*', metavar='PATH', help='The YAML file path for storing the exported API', ) parser.add_argument( '--json-path', type=str, nargs='*', metavar='PATH', help='The JSON file path for storing the exported API', ) parser.add_argument( '--schema-path', type=str, nargs='*', metavar='PATH', help='The JSONSchema file path for storing the exported API', ) return parser
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from simpleranker import SimpleRanker @pytest.mark.parametrize('traversal_paths', [['r'], ['c']]) @pytest.mark.parametrize('ranking', ['min', 'max']) def test_ranking(documents_chunk, documents_chunk_chunk, traversal_paths, ranking): ranker = SimpleRanker( metric='cosine', ranking=ranking, traversal_paths=traversal_paths, ) if traversal_paths == ['r']: ranking_docs = documents_chunk else: ranking_docs = documents_chunk_chunk ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags if ranking == 'min': assert ( match.scores['cosine'].value <= doc.matches[i + 1].scores['cosine'].value ) else: assert ( match.scores['cosine'].value >= doc.matches[i + 1].scores['cosine'].value ) @pytest.mark.parametrize('ranking', ['mean_min', 'mean_max']) def test_mean_ranking(documents_chunk, ranking): traversal_paths = ['r'] ranker = SimpleRanker( metric='cosine', ranking=ranking, traversal_paths=traversal_paths, ) ranking_docs = documents_chunk mean_scores = [] for doc in ranking_docs[0].chunks: scores = [] for match in doc.matches: scores.append(match.scores['cosine'].value) mean_scores.append(sum(scores) / 10) mean_scores.sort(reverse=ranking == 'mean_max') ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags assert match.scores['cosine'].value == pytest.approx(mean_scores[i], 1e-5)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from simpleranker import SimpleRanker @pytest.mark.parametrize('default_traversal_paths', [['r'], ['c']]) @pytest.mark.parametrize('ranking', ['min', 'max']) def test_ranking( documents_chunk, documents_chunk_chunk, default_traversal_paths, ranking ): ranker = SimpleRanker( metric='cosine', ranking=ranking, default_traversal_paths=default_traversal_paths, ) if default_traversal_paths == ['r']: ranking_docs = documents_chunk else: ranking_docs = documents_chunk_chunk ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags if ranking == 'min': assert ( match.scores['cosine'].value <= doc.matches[i + 1].scores['cosine'].value ) else: assert ( match.scores['cosine'].value >= doc.matches[i + 1].scores['cosine'].value ) @pytest.mark.parametrize('ranking', ['mean_min', 'mean_max']) def test_mean_ranking(documents_chunk, ranking): default_traversal_paths = ['r'] ranker = SimpleRanker( metric='cosine', ranking=ranking, default_traversal_paths=default_traversal_paths, ) ranking_docs = documents_chunk mean_scores = [] for doc in ranking_docs[0].chunks: scores = [] for match in doc.matches: scores.append(match.scores['cosine'].value) mean_scores.append(sum(scores) / 10) mean_scores.sort(reverse=ranking == 'mean_max') ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags assert match.scores['cosine'].value == pytest.approx(mean_scores[i], 1e-5)
"""**Prompt values** for language model prompts. Prompt values are used to represent different pieces of prompts. They can be used to represent text, images, or chat message pieces. """ from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import Sequence from typing import Literal, cast from typing_extensions import TypedDict from langchain_core.load.serializable import Serializable from langchain_core.messages import ( AnyMessage, BaseMessage, HumanMessage, get_buffer_string, ) class PromptValue(Serializable, ABC): """Base abstract class for inputs to any language model. PromptValues can be converted to both LLM (pure text-generation) inputs and ChatModel inputs. """ @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable. Defaults to True.""" return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "schema", "prompt"]. """ return ["langchain", "schema", "prompt"] @abstractmethod def to_string(self) -> str: """Return prompt value as string.""" @abstractmethod def to_messages(self) -> list[BaseMessage]: """Return prompt as a list of Messages.""" class StringPromptValue(PromptValue): """String prompt value.""" text: str """Prompt text.""" type: Literal["StringPromptValue"] = "StringPromptValue" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "base"]. """ return ["langchain", "prompts", "base"] def to_string(self) -> str: """Return prompt as string.""" return self.text def to_messages(self) -> list[BaseMessage]: """Return prompt as messages.""" return [HumanMessage(content=self.text)] class ChatPromptValue(PromptValue): """Chat prompt value. A type of a prompt value that is built from messages. """ messages: Sequence[BaseMessage] """List of messages.""" def to_string(self) -> str: """Return prompt as string.""" return get_buffer_string(self.messages) def to_messages(self) -> list[BaseMessage]: """Return prompt as a list of messages.""" return list(self.messages) @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "chat"]. """ return ["langchain", "prompts", "chat"] class ImageURL(TypedDict, total=False): """Image URL.""" detail: Literal["auto", "low", "high"] """Specifies the detail level of the image. Defaults to "auto". Can be "auto", "low", or "high".""" url: str """Either a URL of the image or the base64 encoded image data.""" class ImagePromptValue(PromptValue): """Image prompt value.""" image_url: ImageURL """Image URL.""" type: Literal["ImagePromptValue"] = "ImagePromptValue" def to_string(self) -> str: """Return prompt (image URL) as string.""" return self.image_url["url"] def to_messages(self) -> list[BaseMessage]: """Return prompt (image URL) as messages.""" return [HumanMessage(content=[cast("dict", self.image_url)])] class ChatPromptValueConcrete(ChatPromptValue): """Chat prompt value which explicitly lists out the message types it accepts. For use in external schemas. """ messages: Sequence[AnyMessage] """Sequence of messages.""" type: Literal["ChatPromptValueConcrete"] = "ChatPromptValueConcrete" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "chat"]. """ return ["langchain", "prompts", "chat"]
"""**Prompt values** for language model prompts. Prompt values are used to represent different pieces of prompts. They can be used to represent text, images, or chat message pieces. """ from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import Sequence from typing import Literal, cast from typing_extensions import TypedDict from langchain_core.load.serializable import Serializable from langchain_core.messages import ( AnyMessage, BaseMessage, HumanMessage, get_buffer_string, ) class PromptValue(Serializable, ABC): """Base abstract class for inputs to any language model. PromptValues can be converted to both LLM (pure text-generation) inputs and ChatModel inputs. """ @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable. Defaults to True.""" return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "schema", "prompt"]. """ return ["langchain", "schema", "prompt"] @abstractmethod def to_string(self) -> str: """Return prompt value as string.""" @abstractmethod def to_messages(self) -> list[BaseMessage]: """Return prompt as a list of Messages.""" class StringPromptValue(PromptValue): """String prompt value.""" text: str """Prompt text.""" type: Literal["StringPromptValue"] = "StringPromptValue" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "base"]. """ return ["langchain", "prompts", "base"] def to_string(self) -> str: """Return prompt as string.""" return self.text def to_messages(self) -> list[BaseMessage]: """Return prompt as messages.""" return [HumanMessage(content=self.text)] class ChatPromptValue(PromptValue): """Chat prompt value. A type of a prompt value that is built from messages. """ messages: Sequence[BaseMessage] """List of messages.""" def to_string(self) -> str: """Return prompt as string.""" return get_buffer_string(self.messages) def to_messages(self) -> list[BaseMessage]: """Return prompt as a list of messages.""" return list(self.messages) @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "chat"]. """ return ["langchain", "prompts", "chat"] class ImageURL(TypedDict, total=False): """Image URL.""" detail: Literal["auto", "low", "high"] """Specifies the detail level of the image. Defaults to "auto". Can be "auto", "low", or "high".""" url: str """Either a URL of the image or the base64 encoded image data.""" class ImagePromptValue(PromptValue): """Image prompt value.""" image_url: ImageURL """Image URL.""" type: Literal["ImagePromptValue"] = "ImagePromptValue" def to_string(self) -> str: """Return prompt (image URL) as string.""" return self.image_url["url"] def to_messages(self) -> list[BaseMessage]: """Return prompt (image URL) as messages.""" return [HumanMessage(content=[cast(dict, self.image_url)])] class ChatPromptValueConcrete(ChatPromptValue): """Chat prompt value which explicitly lists out the message types it accepts. For use in external schemas. """ messages: Sequence[AnyMessage] """Sequence of messages.""" type: Literal["ChatPromptValueConcrete"] = "ChatPromptValueConcrete" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "chat"]. """ return ["langchain", "prompts", "chat"]
import logging from typing import Any from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField from backend.util import json logger = logging.getLogger(__name__) class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") @classmethod def get_input_schema(cls, data: BlockInput) -> dict[str, Any]: return data.get("input_schema", {}) @classmethod def get_input_defaults(cls, data: BlockInput) -> BlockInput: return data.get("data", {}) @classmethod def get_missing_input(cls, data: BlockInput) -> set[str]: required_fields = cls.get_input_schema(data).get("required", []) return set(required_fields) - set(data) @classmethod def get_mismatch_error(cls, data: BlockInput) -> str | None: return json.validate_with_jsonschema(cls.get_input_schema(data), data) class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: from backend.data.execution import ExecutionEventType from backend.executor import utils as execution_utils event_bus = execution_utils.get_execution_event_bus() graph_exec = execution_utils.add_graph_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, inputs=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( user_id=graph_exec.user_id, graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.id, ): if event.event_type == ExecutionEventType.GRAPH_EXEC_UPDATE: if event.status in [ ExecutionStatus.COMPLETED, ExecutionStatus.TERMINATED, ExecutionStatus.FAILED, ]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue logger.debug( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.debug( f"Execution {log_id} produced {output_name}: {output_data}" ) yield output_name, output_data
import logging from typing import Any from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField from backend.util import json logger = logging.getLogger(__name__) class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") @classmethod def get_input_schema(cls, data: BlockInput) -> dict[str, Any]: return data.get("input_schema", {}) @classmethod def get_input_defaults(cls, data: BlockInput) -> BlockInput: return data.get("data", {}) @classmethod def get_missing_input(cls, data: BlockInput) -> set[str]: required_fields = cls.get_input_schema(data).get("required", []) return set(required_fields) - set(data) @classmethod def get_mismatch_error(cls, data: BlockInput) -> str | None: return json.validate_with_jsonschema(cls.get_input_schema(data), data) class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: from backend.data.execution import ExecutionEventType from backend.executor import utils as execution_utils event_bus = execution_utils.get_execution_event_bus() graph_exec = execution_utils.add_graph_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, data=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.graph_exec_id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( user_id=graph_exec.user_id, graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.graph_exec_id, ): if event.event_type == ExecutionEventType.GRAPH_EXEC_UPDATE: if event.status in [ ExecutionStatus.COMPLETED, ExecutionStatus.TERMINATED, ExecutionStatus.FAILED, ]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue logger.debug( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.debug( f"Execution {log_id} produced {output_name}: {output_data}" ) yield output_name, output_data