message_type
stringclasses
2 values
message
stringlengths
2
232
message_id
int64
0
1
conversation_id
int64
0
2.38k
instruction
insert a list `k` at the front of list `a`
0
600
output
a.insert(0, k)
1
600
instruction
insert elements of list `k` into list `a` at position `n`
0
601
output
a = a[:n] + k + a[n:]
1
601
instruction
calculate the mean of the nonzero values' indices of dataframe `df`
0
602
output
np.flatnonzero(x).mean()
1
602
instruction
get date from dataframe `df` column 'dates' to column 'just_date'
0
603
output
df['just_date'] = df['dates'].dt.date
1
603
instruction
remove elements in list `b` from list `a`
0
604
output
[x for x in a if x not in b]
1
604
instruction
join elements of each tuple in list `a` into one string
0
605
output
[''.join(x) for x in a]
1
605
instruction
join items of each tuple in list of tuples `a` into a list of strings
0
606
output
list(map(''.join, a))
1
606
instruction
match blank lines in `s` with regular expressions
0
607
output
re.split('\n\\s*\n', s)
1
607
instruction
merge a list of integers `[1, 2, 3, 4, 5]` into a single integer
0
608
output
from functools import reduce reduce(lambda x, y: 10 * x + y, [1, 2, 3, 4, 5])
1
608
instruction
Convert float 24322.34 to comma-separated string
0
609
output
"""{0:,.2f}""".format(24322.34)
1
609
instruction
pass dictionary items `data` as keyword arguments in function `my_function`
0
610
output
my_function(**data)
1
610
instruction
get line count of file 'myfile.txt'
0
611
output
sum((1 for line in open('myfile.txt')))
1
611
instruction
get line count of file `filename`
0
612
output
def bufcount(filename): f = open(filename) lines = 0 buf_size = (1024 * 1024) read_f = f.read buf = read_f(buf_size) while buf: lines += buf.count('\n') buf = read_f(buf_size) return lines
1
612
instruction
round 1123.456789 to be an integer
0
613
output
print(round(1123.456789, -1))
1
613
instruction
sort list `X` based on values from another list `Y`
0
614
output
[x for y, x in sorted(zip(Y, X))]
1
614
instruction
sorting list 'X' based on values from another list 'Y'
0
615
output
[x for y, x in sorted(zip(Y, X))]
1
615
instruction
get equivalent week number from a date `2010/6/16` using isocalendar
0
616
output
datetime.date(2010, 6, 16).isocalendar()[1]
1
616
instruction
select multiple ranges of columns 1-10, 15, 17, and 50-100 in pandas dataframe `df`
0
617
output
df.iloc[:, (np.r_[1:10, (15), (17), 50:100])]
1
617
instruction
apply two different aggregating functions `mean` and `sum` to the same column `dummy` in pandas data frame `df`
0
618
output
df.groupby('dummy').agg({'returns': [np.mean, np.sum]})
1
618
instruction
convert string `s` to lowercase
0
619
output
s.lower()
1
619
instruction
convert utf-8 string `s` to lowercase
0
620
output
s.decode('utf-8').lower()
1
620
instruction
null
0
621
output
ftp.retrbinary('RETR %s' % filename, file.write)
1
621
instruction
handle the `urlfetch_errors ` exception for imaplib request to url `url`
0
622
output
urlfetch.fetch(url, deadline=10 * 60)
1
622
instruction
output first 100 characters in a string `my_string`
0
623
output
print(my_string[0:100])
1
623
instruction
make matplotlib plot legend put marker in legend only once
0
624
output
legend(numpoints=1)
1
624
instruction
get set intersection between dictionaries `d1` and `d2`
0
625
output
dict((x, set(y) & set(d1.get(x, ()))) for x, y in d2.items())
1
625
instruction
convert csv file 'test.csv' into two-dimensional matrix
0
626
output
numpy.loadtxt(open('test.csv', 'rb'), delimiter=',', skiprows=1)
1
626
instruction
filter the objects in django model 'Sample' between date range `2011-01-01` and `2011-01-31`
0
627
output
Sample.objects.filter(date__range=['2011-01-01', '2011-01-31'])
1
627
instruction
filter objects month wise in django model `Sample` for year `2011`
0
628
output
Sample.objects.filter(date__year='2011', date__month='01')
1
628
instruction
create a dictionary `{'spam': 5, 'ham': 6}` into another dictionary `d` field 'dict3'
0
629
output
d['dict3'] = {'spam': 5, 'ham': 6}
1
629
instruction
apply `numpy.linalg.norm` to each row of a matrix `a`
0
630
output
numpy.apply_along_axis(numpy.linalg.norm, 1, a)
1
630
instruction
merge dictionaries form array `dicts` in a single expression
0
631
output
dict((k, v) for d in dicts for k, v in list(d.items()))
1
631
instruction
Convert escaped utf string to utf string in `your string`
0
632
output
print('your string'.decode('string_escape'))
1
632
instruction
counting the number of true booleans in a python list `[True, True, False, False, False, True]`
0
633
output
sum([True, True, False, False, False, True])
1
633
instruction
set the size of figure `fig` in inches to width height of `w`, `h`
0
634
output
fig.set_size_inches(w, h, forward=True)
1
634
instruction
format string with dict `{'5': 'you'}` with integer keys
0
635
output
'hello there %(5)s' % {'5': 'you'}
1
635
instruction
Convert a string of numbers `example_string` separated by `,` into a list of integers
0
636
output
map(int, example_string.split(','))
1
636
instruction
Convert a string of numbers 'example_string' separated by comma into a list of numbers
0
637
output
[int(s) for s in example_string.split(',')]
1
637
instruction
Flatten list `x`
0
638
output
x = [i[0] for i in x]
1
638
instruction
convert list `x` into a flat list
0
639
output
y = map(operator.itemgetter(0), x)
1
639
instruction
get a list `y` of the first element of every tuple in list `x`
0
640
output
y = [i[0] for i in x]
1
640
instruction
extract all the values of a specific key named 'values' from a list of dictionaries
0
641
output
results = [item['value'] for item in test_data]
1
641
instruction
get current datetime in ISO format
0
642
output
datetime.datetime.now().isoformat()
1
642
instruction
get UTC datetime in ISO format
0
643
output
datetime.datetime.utcnow().isoformat()
1
643
instruction
Merge all columns in dataframe `df` into one column
0
644
output
df.apply(' '.join, axis=0)
1
644
instruction
pandas subtract a row from dataframe `df2` from dataframe `df`
0
645
output
pd.DataFrame(df.values - df2.values, columns=df.columns)
1
645
instruction
read file 'myfile.txt' using universal newline mode 'U'
0
646
output
print(open('myfile.txt', 'U').read())
1
646
instruction
print line `line` from text file with 'utf-16-le' format
0
647
output
print(line.decode('utf-16-le').split())
1
647
instruction
open a text file `data.txt` in io module with encoding `utf-16-le`
0
648
output
file = io.open('data.txt', 'r', encoding='utf-16-le')
1
648
instruction
Join data of dataframe `df1` with data in dataframe `df2` based on similar values of column 'user_id' in both dataframes
0
649
output
s1 = pd.merge(df1, df2, how='inner', on=['user_id'])
1
649