message_type
stringclasses
2 values
message
stringlengths
2
232
message_id
int64
0
1
conversation_id
int64
0
2.38k
instruction
return the column for value 38.15 in dataframe `df`
0
150
output
df.ix[:, (df.loc[0] == 38.15)].columns
1
150
instruction
merge 2 dataframes `df1` and `df2` with same values in a column 'revenue' with and index 'date'
0
151
output
df2['revenue'] = df2.CET.map(df1.set_index('date')['revenue'])
1
151
instruction
load a json data `json_string` into variable `json_data`
0
152
output
json_data = json.loads(json_string)
1
152
instruction
convert radians 1 to degrees
0
153
output
math.cos(math.radians(1))
1
153
instruction
count the number of integers in list `a`
0
154
output
sum(isinstance(x, int) for x in a)
1
154
instruction
replacing '\u200b' with '*' in a string using regular expressions
0
155
output
'used\u200b'.replace('\u200b', '*')
1
155
instruction
run function 'SudsMove' simultaneously
0
156
output
threading.Thread(target=SudsMove).start()
1
156
instruction
sum of squares values in a list `l`
0
157
output
sum(i * i for i in l)
1
157
instruction
calculate the sum of the squares of each value in list `l`
0
158
output
sum(map(lambda x: x * x, l))
1
158
instruction
Create a dictionary `d` from list `iterable`
0
159
output
d = dict(((key, value) for (key, value) in iterable))
1
159
instruction
Create a dictionary `d` from list `iterable`
0
160
output
d = {key: value for (key, value) in iterable}
1
160
instruction
Create a dictionary `d` from list of key value pairs `iterable`
0
161
output
d = {k: v for (k, v) in iterable}
1
161
instruction
round off entries in dataframe `df` column `Alabama_exp` to two decimal places, and entries in column `Credit_exp` to three decimal places
0
162
output
df.round({'Alabama_exp': 2, 'Credit_exp': 3})
1
162
instruction
Make function `WRITEFUNCTION` output nothing in curl `p`
0
163
output
p.setopt(pycurl.WRITEFUNCTION, lambda x: None)
1
163
instruction
return a random word from a word list 'words'
0
164
output
print(random.choice(words))
1
164
instruction
Find a max value of the key `count` in a nested dictionary `d`
0
165
output
max(d, key=lambda x: d[x]['count'])
1
165
instruction
get list of string elements in string `data` delimited by commas, putting `0` in place of empty strings
0
166
output
[(int(x) if x else 0) for x in data.split(',')]
1
166
instruction
split string `s` into a list of strings based on ',' then replace empty strings with zero
0
167
output
""",""".join(x or '0' for x in s.split(','))
1
167
instruction
regular expression match nothing
0
168
output
re.compile('$^')
1
168
instruction
regular expression syntax for not to match anything
0
169
output
re.compile('.\\A|.\\A*|.\\A+')
1
169
instruction
create a regular expression object with a pattern that will match nothing
0
170
output
re.compile('a^')
1
170
instruction
drop all columns in dataframe `df` that holds a maximum value bigger than 0
0
171
output
df.columns[df.max() > 0]
1
171
instruction
check if date `yourdatetime` is equal to today's date
0
172
output
yourdatetime.date() == datetime.today().date()
1
172
instruction
print bold text 'Hello'
0
173
output
print('\x1b[1m' + 'Hello')
1
173
instruction
remove 20 symbols in front of '.' in string 'unique12345678901234567890.mkv'
0
174
output
re.sub('.{20}(.mkv)', '\\1', 'unique12345678901234567890.mkv')
1
174
instruction
Define a list with string values `['a', 'c', 'b', 'obj']`
0
175
output
['a', 'c', 'b', 'obj']
1
175
instruction
substitute multiple whitespace with single whitespace in string `mystring`
0
176
output
""" """.join(mystring.split())
1
176
instruction
print a floating point number 2.345e-67 without any truncation
0
177
output
print('{:.100f}'.format(2.345e-67))
1
177
instruction
Check if key 'key1' in `dict`
0
178
output
('key1' in dict)
1
178
instruction
Check if key 'a' in `d`
0
179
output
('a' in d)
1
179
instruction
Check if key 'c' in `d`
0
180
output
('c' in d)
1
180
instruction
Check if a given key 'key1' exists in dictionary `dict`
0
181
output
if ('key1' in dict): pass
1
181
instruction
Check if a given key `key` exists in dictionary `d`
0
182
output
if (key in d): pass
1
182
instruction
create a django query for a list of values `1, 4, 7`
0
183
output
Blog.objects.filter(pk__in=[1, 4, 7])
1
183
instruction
read a binary file 'test/test.pdf'
0
184
output
f = open('test/test.pdf', 'rb')
1
184
instruction
insert ' ' between every three digit before '.' and replace ',' with '.' in 12345678.46
0
185
output
format(12345678.46, ',').replace(',', ' ').replace('.', ',')
1
185
instruction
Join pandas data frame `frame_1` and `frame_2` with left join by `county_ID` and right join by `countyid`
0
186
output
pd.merge(frame_1, frame_2, left_on='county_ID', right_on='countyid')
1
186
instruction
calculate ratio of sparsity in a numpy array `a`
0
187
output
np.isnan(a).sum() / np.prod(a.shape)
1
187
instruction
reverse sort items in default dictionary `cityPopulation` by the third item in each key's list of values
0
188
output
sorted(iter(cityPopulation.items()), key=lambda k_v: k_v[1][2], reverse=True)
1
188
instruction
Sort dictionary `u` in ascending order based on second elements of its values
0
189
output
sorted(list(u.items()), key=lambda v: v[1])
1
189
instruction
reverse sort dictionary `d` based on its values
0
190
output
sorted(list(d.items()), key=lambda k_v: k_v[1], reverse=True)
1
190
instruction
sorting a defaultdict `d` by value
0
191
output
sorted(list(d.items()), key=lambda k_v: k_v[1])
1
191
instruction
open a file 'bundled-resource.jpg' in the same directory as a python script
0
192
output
f = open(os.path.join(__location__, 'bundled-resource.jpg'))
1
192
instruction
open the file 'words.txt' in 'rU' mode
0
193
output
f = open('words.txt', 'rU')
1
193
instruction
divide the values with same keys of two dictionary `d1` and `d2`
0
194
output
{k: (float(d2[k]) / d1[k]) for k in d2}
1
194
instruction
divide the value for each key `k` in dict `d2` by the value for the same key `k` in dict `d1`
0
195
output
{k: (d2[k] / d1[k]) for k in list(d1.keys()) & d2}
1
195
instruction
divide values associated with each key in dictionary `d1` from values associated with the same key in dictionary `d2`
0
196
output
dict((k, float(d2[k]) / d1[k]) for k in d2)
1
196
instruction
write dataframe `df` to csv file `filename` with dates formatted as yearmonthday `%Y%m%d`
0
197
output
df.to_csv(filename, date_format='%Y%m%d')
1
197
instruction
remove a key 'key' from a dictionary `my_dict`
0
198
output
my_dict.pop('key', None)
1
198
instruction
replace NaN values in array `a` with zeros
0
199
output
b = np.where(np.isnan(a), 0, a)
1
199