Dataset Viewer
Auto-converted to Parquet
input
stringlengths
2.6k
28.8k
output
stringlengths
4
150
Context: covid - 19, also known as novel coronavirus disease, is a highly contagious disease that first surfaced in china in late 2019. sars - cov - 2 is a coronavirus that belongs to the vast family of coronaviruses that causes this disease. the sickness originally appeared in wuhan, china in december 2019 and quickly spread to over 213 nations, becoming a global pandemic. fever, dry cough, and tiredness are the most typical covid - 19 symptoms. aches, pains, and difficulty breathing are some of the other symptoms that patients may face. the majority of these symptoms are indicators of respiratory infections and lung abnormalities, which radiologists can identify. chest x - rays of covid - 19 patients seem similar, with patchy and hazy lungs rather than clear and healthy lungs. on x - rays, however, pneumonia and other chronic lung disorders can resemble covid - 19. trained radiologists must be able to distinguish between covid - 19 and an illness that is less contagious. our ai algorithm seeks to give doctors a quantitative estimate of the risk of deterioration. so that patients at high risk of deterioration can be triaged and treated efficiently. the method could be particularly useful in pandemic hotspots when screening upon admission is important for allocating limited resources like hospital beds. factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, i build a melting temperature database that contains approximately 10, 000 materials. based on the database, i build a machine learning model that predicts melting temperature in seconds. the model features graph neural network and residual neural network architecture. the root - mean - square errors of melting temperature are 90 and 160k for training and testing, respectively. the model is deployed online and is publicly available. a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. at low temperatures, the system forms a lamellar phase. at a critical temperature, the stack disorders vertically in a melting - like transition. we predict the upper bound on the dissociation temperatures of different quarkonium states. background : african swine fever is among the most devastating viral diseases of pigs. despite nearly a century of research, there is still no safe and effective vaccine available. the current situation is that either vaccines are safe but not effective, or they are effective but not safe. findings : the asf vaccine prepared using the inactivation method with propiolactone provided 98. 6 % protection within 100 days after three intranasal immunizations, spaced 7 days apart. conclusions : an inactivated vaccine made from complete african swine fever virus particles using propiolactone is safe and effective for controlling asf through mucosal immunity. multi - strain diseases are diseases that consist of several strains, or serotypes. the serotypes may interact by antibody - dependent enhancement ( ade ), in which infection with a single serotype is asymptomatic, but infection with a second serotype leads to serious illness accompanied by greater infectivity. it has been observed from serotype data of dengue hemorrhagic fever that outbreaks of the four serotypes occur asynchronously. both autonomous and seasonally driven outbreaks were studied in a model containing ade. for sufficiently small ade, the number of infectives of each serotype synchronizes, with outbreaks occurring in phase. when the ade increases past a threshold, the system becomes chaotic, and infectives of each serotype desynchronize. however, certain groupings of the primary and second ary infectives remain synchronized even in the chaotic regime. the recursion operator and bi - hamiltonian formulation of the drinfeld - sokolov system are given we discuss the recent development of effective field theories for quarkonium at finite temperature. Question: Which factor will most likely cause a person to develop a fever? A) a leg muscle relaxing after exercise B) a bacterial population in the bloodstream C) several viral particles on the skin D) carbohydrates being digested in the stomach
B) a bacterial population in the bloodstream
Context: , which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", , fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabino ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an o with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym Question: Lichens are symbiotic organisms made of green algae and fungi. What do the green algae supply to the fungi in this symbiotic relationship? A) carbon dioxide B) food C) protection D) water
B) food
Context: in order to obtain the keys in this system, a key must be inserted and turned ( like the key at the bottom of the system of the picture ). once the key is turned, the operator may retrieve the remaining keys that will be used to open other doors. once all keys are returned, then the operator will be allowed to take out the original key from the beginning. the key will not turn unless the remaining keys are put back in place. another example is an electric kiln. to prevent access to the inside of an electric kiln, a trapped key system may be used to interlock a disconnecting switch and the kiln door. while the switch is turned on, the key is held by the interlock attached to the disconnecting switch. to open the kiln door, the switch is first opened, which releases the key. the key can then be used to unlock the kiln door. while the key is removed from the switch interlock, a plunger from the interlock mechanically prevents the switch from closing. power cannot be re - applied to the kiln until the kiln door is locked, releasing the key, and the key is then returned to the disconnecting switch interlock. a similar two - part interlock system can be used anywhere it is necessary to ensure the energy supply to a machine is interrupted before the machine is entered for adjustment or maintenance. = = mechanical = = interlocks may be strictly mechanical. an example of a mechanical interlock is a steering wheel of a car. in modern days, most cars have an anti - theft feature that restricts the turning of the steering wheel if the key is not inserted in the ignition. this prevents an individual from pushing the car since the mechanical interlock restricts the directional motion of the front wheels of the car. in the operation of a device such as a press or cutter that is hand fed or the workpiece hand removed, the use of two buttons to actuate the device, one for each hand, greatly reduces the possibility of operation endangering the operator. no such system is fool - proof, and such systems are often augmented by the use of cable – pulled gloves worn by the operator ; these are retracted away from the danger area by the stroke of the machine. a major problem in engineering operator safety is the tendency of operators to ignore safety precautions or even outright disabling forced interlocks due to work pressure and other factors. therefore, such safeties require and perhaps must facilitate operator cooperation. = = electrical = in a predetermined sequence. after the control or power has been isolated, a key is released that can be used to grant access to individual or multiple doors. below is an example of what a trapped key interlock transfer block would look like. this is a part of a trapped key interlocking system. in order to obtain the keys in this system, a key must be inserted and turned ( like the key at the bottom of the system of the picture ). once the key is turned, the operator may retrieve the remaining keys that will be used to open other doors. once all keys are returned, then the operator will be allowed to take out the original key from the beginning. the key will not turn unless the remaining keys are put back in place. another example is an electric kiln. to prevent access to the inside of an electric kiln, a trapped key system may be used to interlock a disconnecting switch and the kiln door. while the switch is turned on, the key is held by the interlock attached to the disconnecting switch. to open the kiln door, the switch is first opened, which releases the key. the key can then be used to unlock the kiln door. while the key is removed from the switch interlock, a plunger from the interlock mechanically prevents the switch from closing. power cannot be re - applied to the kiln until the kiln door is locked, releasing the key, and the key is then returned to the disconnecting switch interlock. a similar two - part interlock system can be used anywhere it is necessary to ensure the energy supply to a machine is interrupted before the machine is entered for adjustment or maintenance. = = mechanical = = interlocks may be strictly mechanical. an example of a mechanical interlock is a steering wheel of a car. in modern days, most cars have an anti - theft feature that restricts the turning of the steering wheel if the key is not inserted in the ignition. this prevents an individual from pushing the car since the mechanical interlock restricts the directional motion of the front wheels of the car. in the operation of a device such as a press or cutter that is hand fed or the workpiece hand removed, the use of two buttons to actuate the device, one for each hand, greatly reduces the possibility of operation endangering the operator. no such system is fool - proof, and such systems are often augmented by the use of cable – pulled gloves worn by the operator ; these are ##idermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β‰ˆ70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the which offer more ergonomic layouts of the keys. assistive technology devices have been created to enable disabled people to use modern touch screen mobile computers such as the ipad, iphone and ipod touch. the pererro is a plug and play adapter for ios devices which uses the built in apple voiceover feature in combination with a basic switch. this brings touch screen technology to those who were previously unable to use it. apple, with the release of ios 7 had introduced the ability to navigate apps using switch control. switch access could be activated either through an external bluetooth connected switch, single touch of the screen, or use of right and left head turns using the device ' s camera. additional accessibility features include the use of assistive touch which allows a user to access multi - touch gestures through pre - programmed onscreen buttons. for users with physical disabilities a large variety of switches are available and customizable to the user ' s needs varying in size, shape, or amount of pressure required for activation. switch access may be placed near any area of the body which has consistent and reliable mobility and less subject to fatigue. common sites include the hands, head, and feet. eye gaze and head mouse systems can also be used as an alternative mouse navigation. a user may use single or multiple switch sites and the process often involves a scanning through items on a screen and activating the switch once the desired object is highlighted. = = home automation = = the form of home automation called assistive domotics focuses on making it possible for elderly and disabled people to live independently. home automation is becoming a viable option for the elderly and disabled who would prefer to stay in their own homes rather than move to a healthcare facility. this field uses much of the same technology and equipment as home automation for security, entertainment, and energy conservation but tailors it towards elderly and disabled users. for example, automated prompts and reminders use motion sensors and pre - recorded audio messages ; an automated prompt in the kitchen may remind the resident to turn off the oven, and one by the front door may remind the resident to lock the door. = = assistive technology and innovation = = innovation is happening in assistive technology either through improvements to existing devices or the creation of new products. in the wipo published 2021 report on technology trends, assistive products are grouped into either conventional or emerging technologies. conventional assisting technology tracks innovation within well - established assistive products, whereas emerging assistive technology refers to more advanced products. these identified advanced assistive products are distinguished from the directly on the skin is currently available as a sole study source. the significance of epidermal electronics involves their mechanical properties, which resemble those of skin. the skin can be modeled as bilayer, composed of an epidermis having young ' s modulus ( e ) of 2 - 80 kpa and thickness of 0. 3 – 3 mm and a dermis having e of 140 - 600 kpa and thickness of 0. 05 - 1. 5 mm. together this bilayer responds plastically to tensile strains β‰₯ 30 %, below which the skin ' s surface stretches and wrinkles without deforming. properties of epidermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β‰ˆ70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support 5 to 20 meters. north america and japan use a frequency of 315 mhz, while europe uses 433. 92 and 868 mhz. some models can also remotely start the engine, to warm up the car. a security concern with all keyless entry systems is a replay attack, in which a thief uses a special receiver ( " code grabber " ) to record the radio signal during opening, which can later be replayed to open the door. to prevent this, keyless systems use a rolling code system in which a pseudorandom number generator in the remote control generates a different random key each time it is used. to prevent thieves from simulating the pseudorandom generator to calculate the next key, the radio signal is also encrypted. garage door opener – a short - range handheld transmitter which can open or close a building ' s electrically operated garage door from outside, so the owner can open the door upon arrival, and close it after departure. when a button is pressed the control transmits a coded fsk radio signal to a receiver in the opener, raising or lowering the door. modern openers use 310, 315 or 390 mhz. to prevent a thief using a replay attack, modern openers use a rolling code system. radio - controlled models – a popular hobby is playing with radio - controlled model boats, cars, airplanes, and helicopters ( quadcopters ) which are controlled by radio signals from a handheld console with a joystick. most recent transmitters use the 2. 4 ghz ism band with multiple control channels modulated with pwm, pcm or fsk. wireless doorbell – a residential doorbell that uses wireless technology to eliminate the need to run wires through the building walls. it consists of a doorbell button beside the door containing a small battery powered transmitter. when the doorbell is pressed it sends a signal to a receiver inside the house with a speaker that sounds chimes to indicate someone is at the door. they usually use the 2. 4 ghz ism band. the frequency channel used can usually be changed by the owner in case another nearby doorbell is using the same channel. = = = = scientific research = = = = radio astronomy is the scientific study of radio waves emitted by astronomical objects. radio astronomers use radio telescopes, large radio antennas and receivers, to receive and study the radio waves from astronomical radio sources. since astronomical radio sources are so far away, the radio waves from them are extremely weak, requiring extremely sensitive receivers, and radio telescopes are the most sensitive radio receivers in existence. they use 0. 3 – 3 mm and a dermis having e of 140 - 600 kpa and thickness of 0. 05 - 1. 5 mm. together this bilayer responds plastically to tensile strains β‰₯ 30 %, below which the skin ' s surface stretches and wrinkles without deforming. properties of epidermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β‰ˆ70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the ##rs in their design. from that time on transistors were almost exclusively used for computer logic circuits and peripheral devices. however, early junction transistors were relatively bulky devices that were difficult to manufacture on a mass - production basis, which limited them to a number of specialised applications. the mosfet was invented at bell labs between 1955 and 1960. it was the first truly compact transistor that could be miniaturised and mass - produced for a wide range of uses. its advantages include high scalability, affordability, low power consumption, and high density. it revolutionized the electronics industry, becoming the most widely used electronic device in the world. the mosfet is the basic element in most modern electronic equipment. as the complexity of circuits grew, problems arose. one problem was the size of the circuit. a complex circuit like a computer was dependent on speed. if the components were large, the wires interconnecting them must be long. the electric signals took time to go through the circuit, thus slowing the computer. the invention of the integrated circuit by jack kilby and robert noyce solved this problem by making all the components and the chip out of the same block ( monolith ) of semiconductor material. the circuits could be made smaller, and the manufacturing process could be automated. this led to the idea of integrating all components on a single - crystal silicon wafer, which led to small - scale integration ( ssi ) in the early 1960s, and then medium - scale integration ( msi ) in the late 1960s, followed by vlsi. in 2008, billion - transistor processors became commercially available. = = subfields = = = = devices and components = = an electronic component is any component in an electronic system either active or passive. components are connected together, usually by being soldered to a printed circuit board ( pcb ), to create an electronic circuit with a particular function. components may be packaged singly, or in more complex groups as integrated circuits. passive electronic components are capacitors, inductors, resistors, whilst active components are such as semiconductor devices ; transistors and thyristors, which control current flow at electron level. = = types of circuits = = electronic circuit functions can be divided into two function groups : analog and digital. a particular device may consist of circuitry that has either or a mix of the two types. analog circuits are becoming less common, as many of their functions are being digitized. = = = analog circuits = = this paper deals with a problem in which two players share a previously sliced pizza and try to eat as much amount of pizza as they can. it takes time to eat each piece of pizza and both players eat pizza at the same rate. one is allowed to take a next piece only after the person has finished eating the piece on hand. also, after the first piece is taken, one can only take a piece which is adjacent to already - taken piece. this paper shows that, in this real time setting, the starting player can always eat at least two - fifth of the total size of the pizza. however, this may not be the best possible amount the starting player can eat. it is a modified problem from an original one where two players takes piece alternatively instead. the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the side to loosen or tighten the fit with a custom motor and gear, which could also be controlled by a smartphone. = = modern technologies = = on april 16, 2013, google invited " glass explorers " who had pre - ordered its wearable glasses at the 2012 google i / o conference to pick up their devices. Question: When a switch is used in an electrical circuit, the switch can A) cause the charge to build. B) increase and decrease the voltage. C) cause the current to change direction. D) stop and start the flow of current.
D) stop and start the flow of current.
Context: ##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently which offer more ergonomic layouts of the keys. assistive technology devices have been created to enable disabled people to use modern touch screen mobile computers such as the ipad, iphone and ipod touch. the pererro is a plug and play adapter for ios devices which uses the built in apple voiceover feature in combination with a basic switch. this brings touch screen technology to those who were previously unable to use it. apple, with the release of ios 7 had introduced the ability to navigate apps using switch control. switch access could be activated either through an external bluetooth connected switch, single touch of the screen, or use of right and left head turns using the device ' s camera. additional accessibility features include the use of assistive touch which allows a user to access multi - touch gestures through pre - programmed onscreen buttons. for users with physical disabilities a large variety of switches are available and customizable to the user ' s needs varying in size, shape, or amount of pressure required for activation. switch access may be placed near any area of the body which has consistent and reliable mobility and less subject to fatigue. common sites include the hands, head, and feet. eye gaze and head mouse systems can also be used as an alternative mouse navigation. a user may use single or multiple switch sites and the process often involves a scanning through items on a screen and activating the switch once the desired object is highlighted. = = home automation = = the form of home automation called assistive domotics focuses on making it possible for elderly and disabled people to live independently. home automation is becoming a viable option for the elderly and disabled who would prefer to stay in their own homes rather than move to a healthcare facility. this field uses much of the same technology and equipment as home automation for security, entertainment, and energy conservation but tailors it towards elderly and disabled users. for example, automated prompts and reminders use motion sensors and pre - recorded audio messages ; an automated prompt in the kitchen may remind the resident to turn off the oven, and one by the front door may remind the resident to lock the door. = = assistive technology and innovation = = innovation is happening in assistive technology either through improvements to existing devices or the creation of new products. in the wipo published 2021 report on technology trends, assistive products are grouped into either conventional or emerging technologies. conventional assisting technology tracks innovation within well - established assistive products, whereas emerging assistive technology refers to more advanced products. these identified advanced assistive products are distinguished from the defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall. actions of a device at a remote location. remote control systems may also include telemetry channels in the other direction, used to transmit real - time information on the state of the device back to the control station. uncrewed spacecraft are an example of remote - controlled machines, controlled by commands transmitted by satellite ground stations. most handheld remote controls used to control consumer electronics products like televisions or dvd players actually operate by infrared light rather than radio waves, so are not examples of radio remote control. a security concern with remote control systems is spoofing, in which an unauthorized person transmits an imitation of the control signal to take control of the device. examples of radio remote control : unmanned aerial vehicle ( uav, drone ) – a drone is an aircraft without an onboard pilot, flown by remote control by a pilot in another location, usually in a piloting station on the ground. they are used by the military for reconnaissance and ground attack, and more recently by the civilian world for news reporting and aerial photography. the pilot uses aircraft controls like a joystick or steering wheel, which create control signals which are transmitted to the drone by radio to control the flight surfaces and engine. a telemetry system transmits back a video image from a camera in the drone to allow the pilot to see where the aircraft is going, and data from a gps receiver giving the real - time position of the aircraft. uavs have sophisticated onboard automatic pilot systems that maintain stable flight and only require manual control to change directions. keyless entry system – a short - range handheld battery powered key fob transmitter, included with most modern cars, which can lock and unlock the doors of a vehicle from outside, eliminating the need to use a key. when a button is pressed, the transmitter sends a coded radio signal to a receiver in the vehicle, operating the locks. the fob must be close to the vehicle, typically within 5 to 20 meters. north america and japan use a frequency of 315 mhz, while europe uses 433. 92 and 868 mhz. some models can also remotely start the engine, to warm up the car. a security concern with all keyless entry systems is a replay attack, in which a thief uses a special receiver ( " code grabber " ) to record the radio signal during opening, which can later be replayed to open the door. to prevent this, keyless systems use a rolling code system in which a pseudorandom number generator in the remote control generates a different random key each time it is used. to prevent in the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. this is costly in terms of money and man power. a person is needed for 24x7 care of these people. to help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. this will reduce the need of man power, also a continuous monitoring would not be needed. the system is using ms kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. the system provides gui for simple usage and gives visual and audio feedback to user. this system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip. like it, assist physical therapists by providing task - specific practice of walking in people following neurological injury. = = = prosthesis = = = a prosthesis, prosthetic, or prosthetic limb is a device that replaces a missing body part. it is part of the field of biomechatronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure . additionally, there are more sophisticated vr systems being developed which allow the user to use their entire body in their recovery. it also has sophisticated sensors that would allow medical professionals to collect data on muscle engagement and tension. it uses electrical impedance tomography, a form of noninvasive imaging to view muscle usage. another concern is the lack of major funding by big companies and the government into the field. many of these vr sets are off the shelf items, and not properly made for medical use. external add - ones are usually 3d printed or made from spare parts from other electronics. this lack of support means that patients who want to try this method have to be technically savvy, which is unlikely as many ailments only appear later in life. additionally, certain parts of vr like haptic feedback and tracking are still not advanced enough to be used reliably in a medical setting. another issue is the amount of vr devices that are available for purchase. while this does increase the options available, the differences between vr systems could impact patient recovery. the vast number of vr devices also makes it difficult for medical professionals to give and interpret information, as they might not have had practice with the specific model, which could lead to faulty advice being given out. = = = applications = = = currently other applications within healthcare are being explored, such as : applications for monitoring of glucose, alcohol, and lactate or blood oxygen, breath monitoring, heartbeat, heart rate and its variability, electromyography ( emg ), electrocardiogram ( ecg ) and electroencephalogram ( eeg ), body temperature, pressure ( e. g. in shoes ), sweat rate or sweat loss, levels of uric acid and ions – e. g. for preventing fatigue or injuries or for optimizing training patterns, including via " human - integrated electronics " forecasting changes in mood, stress, and health measuring blood alcohol content measuring athletic performance monitoring how sick the user is detecting early signs of infection long - term monitoring of patients with heart and circulatory problems that records an electrocardiogram and is self - moistening health risk assessment applications, including measures of frailty and risks of age - dependent diseases automatic documentation of care activities days - long continuous imaging of diverse organs via a wearable bioadhesive stretchable high - resolution ultrasound imaging patch or e. g. a wearable continuous heart ultrasound imager. ( potential novel diagnostic and monitoring tools ) sleep tracking cortisol monitoring for measuring stress measuring relaxation or alert more recently by the civilian world for news reporting and aerial photography. the pilot uses aircraft controls like a joystick or steering wheel, which create control signals which are transmitted to the drone by radio to control the flight surfaces and engine. a telemetry system transmits back a video image from a camera in the drone to allow the pilot to see where the aircraft is going, and data from a gps receiver giving the real - time position of the aircraft. uavs have sophisticated onboard automatic pilot systems that maintain stable flight and only require manual control to change directions. keyless entry system – a short - range handheld battery powered key fob transmitter, included with most modern cars, which can lock and unlock the doors of a vehicle from outside, eliminating the need to use a key. when a button is pressed, the transmitter sends a coded radio signal to a receiver in the vehicle, operating the locks. the fob must be close to the vehicle, typically within 5 to 20 meters. north america and japan use a frequency of 315 mhz, while europe uses 433. 92 and 868 mhz. some models can also remotely start the engine, to warm up the car. a security concern with all keyless entry systems is a replay attack, in which a thief uses a special receiver ( " code grabber " ) to record the radio signal during opening, which can later be replayed to open the door. to prevent this, keyless systems use a rolling code system in which a pseudorandom number generator in the remote control generates a different random key each time it is used. to prevent thieves from simulating the pseudorandom generator to calculate the next key, the radio signal is also encrypted. garage door opener – a short - range handheld transmitter which can open or close a building ' s electrically operated garage door from outside, so the owner can open the door upon arrival, and close it after departure. when a button is pressed the control transmits a coded fsk radio signal to a receiver in the opener, raising or lowering the door. modern openers use 310, 315 or 390 mhz. to prevent a thief using a replay attack, modern openers use a rolling code system. radio - controlled models – a popular hobby is playing with radio - controlled model boats, cars, airplanes, and helicopters ( quadcopters ) which are controlled by radio signals from a handheld console with a joystick. most recent transmitters use the 2. 4 ghz ism band with multiple control channels modulated with pwm, pc as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body. Question: Which of the following is an example of an assistive device? A) contact lens B) motorcycle C) raincoat D) coffee pot
A) contact lens
Context: , crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest ##morphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light ##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as ##hosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere all simple weight modules with finite dimensional weight spaces over affine lie algebras are classified. s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it an orthotropic metamaterial is composed of elements arrayed periodically in space. the element includes two cuboid structures. the first structure is the basic structure of the element, and the second structure is the transformation of the first structure of the element. the first structure of the element is a cuboid structure composed of 24 bars connected by 8 nodes, and the second structure of the element is a cuboid structure composed of 36 bars connected by 14 nodes. this metamaterial has 6 independent elastic constants, so there is a large degree of freedom in material design. using a simple universal design method, a metamaterial with tailored elastic constants can be designed. therefore, it has great application value in the fields of mechanical metamaterials, elastic wave metamaterials, acoustic metamaterials, and seismic metamaterials, and has also laid the foundation for realizing the dream of controlling elastic waves, acoustic waves and vibrations. s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere ) between the surface and the exosphere ( about 1000 km ). major subdisciplines include meteorology, climatology, atmospheric chemistry, and atmospheric physics. = = = earth science breakup = = = = = see also = = = = references = = = = = sources = = = = = be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way Question: Rocks are classified as igneous, metamorphic, or sedimentary according to A) their color B) their shape C) how they formed D) the minerals they contain
C) how they formed
Context: ##able. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla – polylactic acid. this is a polyester which degrades within the human body to form lactic acid, a naturally occurring chemical which is easily removed from the body. similar materials are polyglycolic acid ( pga ) and polycaprolactone ( pcl ) : their degradation mechanism is similar to that of pla, but pcl degrades slower and pga degrades faster. pla is commonly combined with pga to create poly - lactic - co - glycolic acid ( plga ). this is especially useful because the degradation of plga can be tailored by altering the weight percentages of pla and pga : more pla – slower degradation, more pga – faster degradation. this tunability, along with its biocompatibility, makes it an extremely useful material for scaffold creation. scaffolds may also be constructed from natural materials : in particular different derivatives of the extracellular matrix have been studied to evaluate their ability to support cell growth. protein based materials – such as collagen, or fibrin, and polysaccharidic materials - like chitosan or glycosaminoglycans ( gags ), have all proved suitable in terms of cell compatibility. among gags, hyaluronic acid, possibly in combination with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond applications continue to expand as researchers develop new kinds of ceramics to serve different purposes. zirconium dioxide ceramics are used in the manufacture of knives. the blade of the ceramic knife will stay sharp for much longer than that of a steel knife, although it is more brittle and can be snapped by dropping it on a hard surface. ceramics such as alumina, boron carbide and silicon carbide have been used in bulletproof vests to repel small arms rifle fire. such plates are known commonly as ballistic plates. similar material is used to protect cockpits of some military aircraft, because of the low weight of the material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal , social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a rapid rate, many regulatory authorities require continuing medical education. medical practitioners upgrade their knowledge in various ways, including medical journals, seminars, conferences, and online programs. a database of objectives covering medical knowledge, as suggested by national societies across the united states, can be searched at http : / / data. medobjectives quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. ##l ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to Question: A chewable calcium carbonate tablet is a common treatment for stomach discomfort. Calcium carbonate is most likely used as this type of medicine because calcium carbonate A) has a pleasant flavor. B) is inexpensive to produce. C) neutralizes digestive acid. D) occurs naturally in the body.
C) neutralizes digestive acid.
Context: grasping an object is a matter of first moving a prehensile organ at some position in the world, and then managing the contact relationship between the prehensile organ and the object. once the contact relationship has been established and made stable, the object is part of the body and it can move in the world. as any action, the action of grasping is ontologically anchored in the physical space while the correlative movement originates in the space of the body. evolution has found amazing solutions that allow organisms to rapidly and efficiently manage the relationship between their body and the world. it is then natural that roboticists consider taking inspiration of these natural solutions, while contributing to better understand their origin. affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, a comparison of the sensitivities of methods which allow us to determine the coordinates of a moving hot body is made. cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions the gravitational poynting vector provides a mechanism for the transfer of gravitational energy to a system of falling objects. in the following we will show that the gravitational poynting vector together with the gravitational larmor theorem also provides a mechanism to explain how massive bodies acquire rotational kinetic energy when external mechanical forces are applied on them. the classical and the quantum motion of a massive body in the rotating tube is considered. photon is included. the spin motion described by the bargmann - michel - telegdi equation is considered in the rotation tube and rotating system. forces and their effect upon matter. typically, engineering mechanics is used to analyze and predict the acceleration and deformation ( both elastic and plastic ) of objects under known forces ( also called loads ) or stresses. subdisciplines of mechanics include statics, the study of non - moving bodies under known loads, how forces affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall. ##physical processes which take place in human beings as they make sense of information received through the visual system. the subject of the image. when developing an imaging system, designers must consider the observables associated with the subjects which will be imaged. these observables generally take the form of emitted or reflected energy, such as electromagnetic energy or mechanical energy. the capture device. once the observables associated with the subject are characterized, designers can then identify and integrate the technologies needed to capture those observables. for example, in the case of consumer digital cameras, those technologies include optics for collecting energy in the visible portion of the electromagnetic spectrum, and electronic detectors for converting the electromagnetic energy into an electronic signal. the processor. for all digital imaging systems, the electronic signals produced by the capture device must be manipulated by an algorithm which formats the signals so they can be displayed as an image. in practice, there are often multiple processors involved in the creation of a digital image. the display. the display takes the electronic signals which have been manipulated by the processor and renders them on some visual medium. examples include paper ( for printed, or " hard copy " images ), television, computer monitor, or projector. note that some imaging scientists will include additional " links " in their description of the imaging chain. for example, some will include the " source " of the energy which " illuminates " or interacts with the subject of the image. others will include storage and / or transmission systems. = = subfields = = subfields within imaging science include : image processing, computer vision, 3d computer graphics, animations, atmospheric optics, astronomical imaging, biological imaging, digital image restoration, digital imaging, color science, digital photography, holography, magnetic resonance imaging, medical imaging, microdensitometry, optics, photography, remote sensing, radar imaging, radiometry, silver halide, ultrasound imaging, photoacoustic imaging, thermal imaging, visual perception, and various printing technologies. = = methodologies = = acoustic imaging coherent imaging uses an active coherent illumination source, such as in radar, synthetic aperture radar ( sar ), medical ultrasound and optical coherence tomography ; non - coherent imaging systems include fluorescent microscopes, optical microscopes, and telescopes. chemical imaging, the simultaneous measurement of spectra and pictures digital imaging, creating digital images, generally by scanning or through digital photography disk image, a file which contains the exact content of a data storage medium document imaging, replicating documents commonly unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals Question: Which two body systems are directly involved in movement? A) muscular and skeletal B) digestive and muscular C) skeletal and respiratory D) respiratory and digestive
A) muscular and skeletal
Context: in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β†’ batching β†’ mixing β†’ forming β†’ drying β†’ firing β†’ assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. . oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be to that of a flat crack through the plain matrix. the magnitude of the toughening is determined by the mismatch strain caused by thermal contraction incompatibility and the microfracture resistance of the particle / matrix interface. the toughening becomes noticeable with a narrow size distribution of appropriately sized particles, and researchers typically accept that deflection effects in materials with roughly equiaxial grains may increase the fracture toughness by about twice the grain boundary value. the model reveals that the increase in toughness is dependent on particle shape and the volume fraction of the second phase, with the most effective morphology being the rod of high aspect ratio, which can account for a fourfold increase in fracture toughness. the toughening arises primarily from the twist of the crack front between particles, as indicated by deflection profiles. disc - shaped particles and spheres are less effective in toughening. fracture toughness, regardless of morphology, is determined by the twist of the crack front at its most severe configuration, rather than the initial tilt of the crack front. only for disc - shaped particles does the initial tilting of the crack front provide significant toughening ; however, the twist component still overrides the tilt - derived toughening. additional important features of the deflection analysis include the appearance of asymptotic toughening for the three morphologies at volume fractions in excess of 0. 2. it is also noted that a significant influence on the toughening by spherical particles is exerted by the interparticle spacing distribution ; greater toughening is afforded when spheres are nearly contacting such that twist angles approach Ο€ / 2. these predictions provide the basis for the design of high - toughness two - phase ceramic materials. the ideal second phase, in addition to maintaining chemical compatibility, should be present in amounts of 10 to 20 volume percent. greater amounts may diminish the toughness increase due to overlapping particles. particles with high aspect ratios, especially those with rod - shaped morphologies, are most suitable for maximum toughening. this model is often used to determine the factors that contribute to the increase in fracture toughness in ceramics which is ultimately useful in the development of advanced ceramic materials with improved performance. = = theory of chemical processing = = = = = microstructural uniformity = = = in the processing of fine ceramics, the irregular particle sizes and shapes in a typical powder often lead to non - uniform packing morphologies that result in packing density variations in the powder compact. uncontrolled aggl gravity induced condensation takes the form of momentum alignment in an ensemble of identical particles. use is made of a one - dimensional ising model to calculate the alignment per particle and the correlation length as a function of the temperature. these parameters indicate that momentum alignment is possible in the proximity of some astrophysical objects and in earth, or near earth laboratories. momenta oscillations behave as known spin oscillations and obey identical dispersion relations. the robot ' s objective is to rehabilitate the pipe joints of fresh water supply systems by crawling into water canals and applying a restoration material to repair the pipes. the robot ' s structure consists of six wheeled - legs, three on the front separated 120 { \ deg } and three on the back in the same configuration, supporting the structure along the centre of the pipe. in this configuration the robot is able to clean and seal with a rotating tool, similar to a cylindrical robot, covering the entire 3d in - pipe space. water content and the internal evolution of terrestrial planets and icy bodies are closely linked. the distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. this results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. the internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short - lived 26al decay may govern the amount of hydrous silicates and leftover rock - ice mixtures available in the late stages of their evolution. in turn, water content may affect the early internal evolution of the planetesimals and in particular metal - silicate separation processes. moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of solar system objects. finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors. various charge pairings in strongly correlated electron systems are interpreted as quantum entanglement of a composite system. particles in the intermediate phase have a tendency to form the coherent superposition state of the localized state and the itinerant state, which induces the entanglement of both particles in the bipartite subsystems for increasing the entropy of the system. the correction to the entropic coulomb force becomes an immediate cause of charge pairing. Question: Which change in the state of water particles causes the particles to become arranged in a fixed position? A) boiling B) melting C) freezing D) evaporating
C) freezing
Context: electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase , but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase ##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a vacuum chamber, and cured - pyrolized to convert the furfuryl alcohol to carbon. to provide oxidation resistance for reusability, the outer layers of the rcc are converted to silicon carbide. other examples can be seen in the " plastic " casings of television sets, cell - phones and so on. these plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile butadiene styrene ( abs ) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity consisting of several distinct layers, often referred to as spheres : the lithosphere, the hydrosphere, the atmosphere, and the biosphere, this concept of spheres is a useful tool for understanding the earth ' s surface and its various processes these correspond to rocks, water, air and life. also included by some are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth earth science or geoscience includes all fields of natural science related to the planet earth. this is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of earth ' s four spheres : the biosphere, hydrosphere / cryosphere, atmosphere, and geosphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way that gives us long - term ( decade - to - decade ) feedback on our performance as stewards of the planet. the effort includes understanding the functions of soil microbiotic crusts and exploring the potential to sequester atmospheric carbon in soil organic matter. relating the concept of agriculture to soil quality, however, has not all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make Question: Earth's core is primarily composed of which of the following materials? A) basalt B) iron C) magma D) quartz
B) iron
"Context:\noften injurious, at least with the plants on which i experimented. \" an important adapti(...TRUNCATED)
C) segregation of alleles
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
5