input
stringlengths 2.6k
28.8k
| output
stringlengths 4
150
|
---|---|
Context:
to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiot
used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception
##drate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of
process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to
1975. skin tissue - engineered skin is a type of bioartificial organ that is often used to treat burns, diabetic foot ulcers, or other large wounds that cannot heal well on their own. artificial skin can be made from autografts, allografts, and xenografts. autografted skin comes from a patient ' s own skin, which allows the dermis to have a faster healing rate, and the donor site can be re - harvested a few times. allograft skin often comes from cadaver skin and is mostly used to treat burn victims. lastly, xenografted skin comes from animals and provides a temporary healing structure for the skin. they assist in dermal regeneration, but cannot become part of the host skin. tissue - engineered skin is now available in commercial products. integra, originally used to only treat burns, consists of a collagen matrix and chondroitin sulfate that can be used as a skin replacement. the chondroitin sulfate functions as a component of proteoglycans, which helps to form the extracellular matrix. integra can be repopulated and revascularized while maintaining its dermal collagen architecture, making it a bioartificial organ dermagraft, another commercial - made tissue - engineered skin product, is made out of living fibroblasts. these fibroblasts proliferate and produce growth factors, collagen, and ecm proteins, that help build granulation tissue. = = = = heart = = = = since the number of patients awaiting a heart transplant is continuously increasing over time, and the number of patients on the waiting list surpasses the organ availability, artificial organs used as replacement therapy for terminal heart failure would help alleviate this difficulty. artificial hearts are usually used to bridge the heart transplantation or can be applied as replacement therapy for terminal heart malfunction. the total artificial heart ( tah ), first introduced by dr. vladimir p. demikhov in 1937, emerged as an ideal alternative. since then it has been developed and improved as a mechanical pump that provides long - term circulatory support and replaces diseased or damaged heart ventricles that cannot properly pump the blood, restoring thus the pulmonary and systemic flow. some of the current tahs include abiocor, an fda - approved device that comprises two artificial ventricles and their valves, and does not require subcutaneous connections, and is indicated for
a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment,
product of ceramic manufacture, or as an adjective. ceramics is the making of things out of ceramic materials. ceramic engineering, like many sciences, evolved from a different discipline by today ' s standards. materials science engineering is grouped with ceramics engineering to this day. abraham darby first used coke in 1709 in shropshire, england, to improve the yield of a smelting process. coke is now widely used to produce carbide ceramics. potter josiah wedgwood opened the first modern ceramics factory in stoke - on - trent, england, in 1759. austrian chemist carl josef bayer, working for the textile industry in russia, developed a process to separate alumina from bauxite ore in 1888. the bayer process is still used to purify alumina for the ceramic and aluminium industries. brothers pierre and jacques curie discovered piezoelectricity in rochelle salt c. 1880. piezoelectricity is one of the key properties of electroceramics. e. g. acheson heated a mixture of coke and clay in 1893, and invented carborundum, or synthetic silicon carbide. henri moissan also synthesized sic and tungsten carbide in his electric arc furnace in paris about the same time as acheson. karl schroter used liquid - phase sintering to bond or " cement " moissan ' s tungsten carbide particles with cobalt in 1923 in germany. cemented ( metal - bonded ) carbide edges greatly increase the durability of hardened steel cutting tools. w. h. nernst developed cubic - stabilized zirconia in the 1920s in berlin. this material is used as an oxygen sensor in exhaust systems. the main limitation on the use of ceramics in engineering is brittleness. = = = military = = = the military requirements of world war ii encouraged developments, which created a need for high - performance materials and helped speed the development of ceramic science and engineering. throughout the 1960s and 1970s, new types of ceramics were developed in response to advances in atomic energy, electronics, communications, and space travel. the discovery of ceramic superconductors in 1986 has spurred intense research to develop superconducting ceramic parts for electronic devices, electric motors, and transportation equipment. there is an increasing need in the military sector for high - strength, robust materials which have the capability to transmit light around the visible ( 0. 4 β 0. 7 micrometers ) and mid - infrared ( 1 β 5 micrometers ) regions of the spectrum. these materials
technology developed, medicine became more reliant upon medications. throughout history and in europe right until the late 18th century, not only plant products were used as medicine, but also animal ( including human ) body parts and fluids. pharmacology developed in part from herbalism and some drugs are still derived from plants ( atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloids, taxol, hyoscine, etc. ). vaccines were discovered by edward jenner and louis pasteur. the first antibiotic was arsphenamine ( salvarsan ) discovered by paul ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. the first major class of antibiotics was the sulfa drugs, derived by german chemists originally from azo dyes. pharmacology has become increasingly sophisticated ; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side - effects. genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision - making. evidence - based medicine is a contemporary movement to establish the most effective algorithms of practice ( ways of doing things ) through the use of systematic reviews and meta - analysis. the movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. the cochrane collaboration leads this movement. a 2001 review of 160 cochrane systematic reviews revealed that, according to two readers, 21. 3 % of the reviews concluded insufficient evidence, 20 % concluded evidence of no effect, and 22. 5 % concluded positive effect. = = quality, efficiency, and access = = evidence - based medicine, prevention of medical error ( and other " iatrogenesis " ), and avoidance of unnecessary health care are a priority in modern medical systems. these topics generate significant political and public policy attention, particularly in the united states where healthcare is regarded as excessively costly but population health metrics lag similar nations. globally, many developing countries lack access to care and access to medicines. as of 2015, most wealthy developed countries provide health care to all citizens, with a few exceptions such as the united states where lack of health insurance
##olithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and the study of mummies. scientists and historians have been able to form significant inferences about the lifestyle and culture of various prehistoric peoples, and especially their technology. = = = ancient = = = = = = = copper and bronze ages = = = = metallic copper occurs on the surface of weathered copper ore deposits and copper was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for
##tion, and pasteurization in order to become products that can be sold. there are three levels of food processing : primary, secondary, and tertiary. primary food processing involves turning agricultural products into other products that can be turned into food, secondary food processing is the making of food from readily available ingredients, and tertiary food processing is commercial production of ready - to eat or heat - and - serve foods. drying, pickling, salting, and fermenting foods were some of the oldest food processing techniques used to preserve food by preventing yeasts, molds, and bacteria to cause spoiling. methods for preserving food have evolved to meet current standards of food safety but still use the same processes as the past. biochemical engineers also work to improve the nutritional value of food products, such as in golden rice, which was developed to prevent vitamin a deficiency in certain areas where this was an issue. efforts to advance preserving technologies can also ensure lasting retention of nutrients as foods are stored. packaging plays a key role in preserving as well as ensuring the safety of the food by protecting the product from contamination, physical damage, and tampering. packaging can also make it easier to transport and serve food. a common job for biochemical engineers working in the food industry is to design ways to perform all these processes on a large scale in order to meet the demands of the population. responsibilities for this career path include designing and performing experiments, optimizing processes, consulting with groups to develop new technologies, and preparing project plans for equipment and facilities. = = = pharmaceuticals = = = in the pharmaceutical industry, bioprocess engineering plays a crucial role in the large - scale production of biopharmaceuticals, such as monoclonal antibodies, vaccines, and therapeutic proteins. the development and optimization of bioreactors and fermentation systems are essential for the mass production of these products, ensuring consistent quality and high yields. for example, recombinant proteins like insulin and erythropoietin are produced through cell culture systems using genetically modified cells. the bioprocess engineer β s role is to optimize variables like temperature, ph, nutrient availability, and oxygen levels to maximize the efficiency of these systems. the growing field of gene therapy also relies on bioprocessing techniques to produce viral vectors, which are used to deliver therapeutic genes to patients. this involves scaling up processes from laboratory to industrial scale while maintaining safety and regulatory compliance. as the demand for biopharmaceutical products increases, advancements
Question: Which type of animal creates useful substances such as honey, wax, lacquer, and silk?
A) bacteria
B) fungus
C) spiders
D) insects
|
D) insects
|
Context:
##simal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called small strain theory, small deformation theory, small displacement theory, or small displacement - gradient theory where strains and rotations are both small. for some materials, e. g. elastomers and polymers, subjected to large deformations, the engineering definition of strain is not applicable, e. g. typical engineering strains
cosmic strings in the brane universe have recently gained a great interest. i think the most interesting story is that future cosmological observations distinguish them from the conventional cosmic strings. if the strings are the higher - dimensional objects that can ( at least initially ) move along the compactified space, and finally settle down to ( quasi - ) degenerated vacua in the compactified space, then kinks should appear on the strings, which interpolate between the degenerated vacua. these kinks look like ` ` beads ' ' on the strings, which means that the strings turn into necklaces. moreover, in the case that the compact manifold is not simply connected, the string loop that winds around a non - trivial circle is stable due to the topological reason. since the existence of degenerated vacua and a non - trivial circle is the common feature of the brane models, it is important to study cosmological constraints on the cosmic necklaces and their stable winding states in the brane universe.
the thickness of freshly made soap films is usually in the micron range, and interference colors make thickness fluctuations easily visible. circular patterns of constant thickness are commonly observed, either a thin film disc in a thicker film or the reverse. in this letter, we evidence the line tension at the origin of these circular patterns. using a well controlled soap film preparation, we produce a piece of thin film surrounded by a thicker film. the thickness profile, measured with a spectral camera, leads to a line tension of the order of 0. 1 nn which drives the relaxation of the thin film shape, initially very elongated, toward a circular shape. a balance between line tension and air friction leads to a quantitative prediction of the relaxation process. such a line tension is expected to play a role in the production of marginal regeneration patches, involved in soap film drainage and stability.
using first principles density functional calculations, gold monatomic wires are found to exhibit a zigzag shape which remains under tension, becoming linear just before breaking. at room temperature they are found to spin, what explains the extremely long apparent interatomic distances shown by electron microscopy. the zigzag structure is stable if the tension is relieved, the wire holding its chainlike shape even as a free - standing cluster. this unexpected metallic - wire stiffness stems from the transverse quantization in the wire, as shown in a simple free electron model.
yes and no. the size of the largest neighbourhood in a barabasi - albert scale - free entwork has string fluctuations of the order of the average value. the number of sites having exactly ten neighbours increases linearly in the network size while its relative fluctuations decrease towards zero if the number of sites in the network increases from 1000 to ten million.
the attenuation length and refractive index of liquid xenon for intrinsic scintillation light ( 178nm ) have been measured in a single experiment. the value obtained for attenuation length is 364 + - 18 mm. the refractive index is found to be 1. 69 + - 0. 02. both values were measured at a temperature of 170 + - 1 k.
the time variation of the gravitational constant g in the recently discussed large number cosmologies accounts for the galactic rotational velocity curves without invoking dark matter and also for effects like the precession of the perhelion of mercury.
fluid dynamics video demonstrating the evolution of dynamic stall on a wind turbine blade.
an attempt had been made to get algebraic structure of 2d complex harmonic oscillator.
there is an odd tension in electroweak physics. perturbation theory is extremely successful. at the same time, fundamental field theory gives manifold reasons why this should not be the case. this tension is resolved by the fr \ " ohlich - morchio - strocchi mechanism. however, the legacy of this work goes far beyond the resolution of this tension, and may usher in a fundamentally and ontologically different perspective on elementary particles, and even quantum gravity.
Question: Stringed instruments can help show the relationship between tension and what in strings?
A) temperatures
B) volumes
C) lengths
D) frequencies
|
D) frequencies
|
Context:
the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophy
or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry,
and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next,
of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an
to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the
various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the accumulation of favorable traits over successive generations, thereby increasing the match between the organisms and their environment. = = = speciation = = = a species is a group of organisms that mate with one another and speciation is the process by which one lineage splits into two lineages as a result of having evolved independently from each other
combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active
techniques that provide heart and lung support. it is used primarily to support the lungs for a prolonged but still temporary timeframe ( 1 β 30 days ) and allow for recovery from reversible diseases. robert bartlett is known as the father of ecmo and performed the first treatment of a newborn using an ecmo machine in 1975. skin tissue - engineered skin is a type of bioartificial organ that is often used to treat burns, diabetic foot ulcers, or other large wounds that cannot heal well on their own. artificial skin can be made from autografts, allografts, and xenografts. autografted skin comes from a patient ' s own skin, which allows the dermis to have a faster healing rate, and the donor site can be re - harvested a few times. allograft skin often comes from cadaver skin and is mostly used to treat burn victims. lastly, xenografted skin comes from animals and provides a temporary healing structure for the skin. they assist in dermal regeneration, but cannot become part of the host skin. tissue - engineered skin is now available in commercial products. integra, originally used to only treat burns, consists of a collagen matrix and chondroitin sulfate that can be used as a skin replacement. the chondroitin sulfate functions as a component of proteoglycans, which helps to form the extracellular matrix. integra can be repopulated and revascularized while maintaining its dermal collagen architecture, making it a bioartificial organ dermagraft, another commercial - made tissue - engineered skin product, is made out of living fibroblasts. these fibroblasts proliferate and produce growth factors, collagen, and ecm proteins, that help build granulation tissue. = = = = heart = = = = since the number of patients awaiting a heart transplant is continuously increasing over time, and the number of patients on the waiting list surpasses the organ availability, artificial organs used as replacement therapy for terminal heart failure would help alleviate this difficulty. artificial hearts are usually used to bridge the heart transplantation or can be applied as replacement therapy for terminal heart malfunction. the total artificial heart ( tah ), first introduced by dr. vladimir p. demikhov in 1937, emerged as an ideal alternative. since then it has been developed and improved as a mechanical pump that provides long - term circulatory support and
##aggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated
could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of
Question: Ectotherms undergo a variety of changes at the cellular level to acclimatize to shifts in what?
A) volume
B) temperature
C) altitude
D) density
|
B) temperature
|
Context:
in gravitational lensing, the concept of optical depth assumes the lens is dark. several microlensing detections have now been made where the lens may be bright. relations are developed between apparent and absolute optical depth in the regime of the apparent and absolute brightness of the lens. an apparent optical depth through bright lenses is always less than the true, absolute optical depth. the greater the intrinsic brightness of the lens, the more likely it will be found nearer the source.
the thickness of freshly made soap films is usually in the micron range, and interference colors make thickness fluctuations easily visible. circular patterns of constant thickness are commonly observed, either a thin film disc in a thicker film or the reverse. in this letter, we evidence the line tension at the origin of these circular patterns. using a well controlled soap film preparation, we produce a piece of thin film surrounded by a thicker film. the thickness profile, measured with a spectral camera, leads to a line tension of the order of 0. 1 nn which drives the relaxation of the thin film shape, initially very elongated, toward a circular shape. a balance between line tension and air friction leads to a quantitative prediction of the relaxation process. such a line tension is expected to play a role in the production of marginal regeneration patches, involved in soap film drainage and stability.
it is hard for us humans to recognize things in nature until we have invented them ourselves. for image - forming optics, nature has made virtually every kind of lens humans have devised. but what about lensless " imaging "? recently, we showed that a bare array of sensors on a curved substrate could achieve resolution not limited by diffraction - without any lens at all provided that the objects imaged conform to our a priori assumptions. is it possible that somewhere in nature we will find this kind of vision system? we think so and provide examples that seem to make no sense whatever unless they are using something like our lensless imaging work.
the curvature radiation is applied to the explain the circular polarization of frbs. significant circular polarization is reported in both apparently non - repeating and repeating frbs. curvature radiation can produce significant circular polarization at the wing of the radiation beam. in the curvature radiation scenario, in order to see significant circular polarization in frbs ( 1 ) more energetic bursts, ( 2 ) burst with electrons having higher lorentz factor, ( 3 ) a slowly rotating neutron star at the centre are required. different rotational period of the central neutron star may explain why some frbs have high circular polarization, while others don ' t. considering possible difference in refractive index for the parallel and perpendicular component of electric field, the position angle may change rapidly over the narrow pulse window of the radiation beam. the position angle swing in frbs may also be explained by this non - geometric origin, besides that of the rotating vector model.
##hography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. = = = etching processes = = = there are two basic categories of etching processes : wet etching and dry etching. in the former, the material is dissolved when immersed in a chemical solution. in the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. = = = = wet etching = = = = wet chemical etching consists of the selective removal of material by dipping a substrate into a solution that dissolves it. the chemical nature of this etching process provides good selectivity, which means the etching rate of the target material is considerably higher than the mask material if selected carefully. wet etching can be performed using either isotropic wet etchants or anisotropic wet etchants. isotropic wet etchant etch in all directions of the crystalline silicon at approximately equal rates. anisotropic wet etchants preferably etch along certain crystal planes at faster rates than other planes, thereby allowing more complicated 3 - d microstructures to be implemented. wet anisotropic etchants are often used in conjunction with boron etch stops wherein the surface of the silicon is heavily doped with boron resulting in a silicon material layer that is
the luminosity variation of a stellar source due to the gravitational microlensing effect can be considered also if the light rays are defocused ( instead of focused ) toward the observer. in this case, we should detect a gap instead of a peak in the light curve of the source. actually, we describe how the phenomenon depends on the relative position of source and lens with respect to the observer : if the lens is between, we have focusing, if the lens is behind, we have defocusing. it is shown that the number of events with predicted gaps is equal to the number of events with peaks in the light curves.
also called projection lines ) differs, as explained below. in first - angle projection, the parallel projectors originate as if radiated from behind the viewer and pass through the 3d object to project a 2d image onto the orthogonal plane behind it. the 3d object is projected into 2d " paper " space as if you were looking at a radiograph of the object : the top view is under the front view, the right view is at the left of the front view. first - angle projection is the iso standard and is primarily used in europe. in third - angle projection, the parallel projectors originate as if radiated from the far side of the object and pass through the 3d object to project a 2d image onto the orthogonal plane in front of it. the views of the 3d object are like the panels of a box that envelopes the object, and the panels pivot as they open up flat into the plane of the drawing. thus the left view is placed on the left and the top view on the top ; and the features closest to the front of the 3d object will appear closest to the front view in the drawing. third - angle projection is primarily used in the united states and canada, where it is the default projection system according to asme standard asme y14. 3m. until the late 19th century, first - angle projection was the norm in north america as well as europe ; but circa the 1890s, third - angle projection spread throughout the north american engineering and manufacturing communities to the point of becoming a widely followed convention, and it was an asa standard by the 1950s. circa world war i, british practice was frequently mixing the use of both projection methods. as shown above, the determination of what surface constitutes the front, back, top, and bottom varies depending on the projection method used. not all views are necessarily used. generally only as many views are used as are necessary to convey all needed information clearly and economically. the front, top, and right - side views are commonly considered the core group of views included by default, but any combination of views may be used depending on the needs of the particular design. in addition to the six principal views ( front, back, top, bottom, right side, left side ), any auxiliary views or sections may be included as serve the purposes of part definition and its communication. view lines or section lines ( lines with arrows marked " a - a ", " b - b ", etc. ) define the direction and location of viewing or sectioning. sometimes a note tells the reader in which zone
of measuring methods. x - rays and gamma rays are used in industrial radiography to make images of the inside of solid products, as a means of nondestructive testing and inspection. the piece to be radiographed is placed between the source and a photographic film in a cassette. after a certain exposure time, the film is developed and it shows any internal defects of the material. gauges - gauges use the exponential absorption law of gamma rays level indicators : source and detector are placed at opposite sides of a container, indicating the presence or absence of material in the horizontal radiation path. beta or gamma sources are used, depending on the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics
passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap
the mean apparent magnitude of starlink mini direct - to - cell ( dtc ) satellites is 4. 62 while the mean of magnitudes adjusted to a uniform distance of 1000 km is 5. 50. dtcs average 4. 9 times brighter than other starlink mini spacecraft at a common distance. we cannot currently separate the effects of the dtc antenna itself, the different attitude modes that may be required for dtc operations and to what extent brightness mitigation procedures were in place at the times of our observations. in a best case scenario, where dtc brightness mitigation is as successful as that for other minis and the dtc antenna does not add significantly to brightness, we estimate that dtcs will be about 2. 6 times as bright as the others based upon their lower altitudes. the dtcs spend a greater fraction of their time in the earth ' s shadow than satellites at higher altitudes. that will offset some of their impact on astronomical observing.
Question: Convex lenses are thicker in the middle than at the edges so they cause rays of light to converge, or meet, at a point called what?
A) focus
B) the apex
C) the base
D) the center
|
A) focus
|
Context:
the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle
applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting β molten metal is poured into a shaped mold. variants of casting include sand casting, investment
is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales
product of ceramic manufacture, or as an adjective. ceramics is the making of things out of ceramic materials. ceramic engineering, like many sciences, evolved from a different discipline by today ' s standards. materials science engineering is grouped with ceramics engineering to this day. abraham darby first used coke in 1709 in shropshire, england, to improve the yield of a smelting process. coke is now widely used to produce carbide ceramics. potter josiah wedgwood opened the first modern ceramics factory in stoke - on - trent, england, in 1759. austrian chemist carl josef bayer, working for the textile industry in russia, developed a process to separate alumina from bauxite ore in 1888. the bayer process is still used to purify alumina for the ceramic and aluminium industries. brothers pierre and jacques curie discovered piezoelectricity in rochelle salt c. 1880. piezoelectricity is one of the key properties of electroceramics. e. g. acheson heated a mixture of coke and clay in 1893, and invented carborundum, or synthetic silicon carbide. henri moissan also synthesized sic and tungsten carbide in his electric arc furnace in paris about the same time as acheson. karl schroter used liquid - phase sintering to bond or " cement " moissan ' s tungsten carbide particles with cobalt in 1923 in germany. cemented ( metal - bonded ) carbide edges greatly increase the durability of hardened steel cutting tools. w. h. nernst developed cubic - stabilized zirconia in the 1920s in berlin. this material is used as an oxygen sensor in exhaust systems. the main limitation on the use of ceramics in engineering is brittleness. = = = military = = = the military requirements of world war ii encouraged developments, which created a need for high - performance materials and helped speed the development of ceramic science and engineering. throughout the 1960s and 1970s, new types of ceramics were developed in response to advances in atomic energy, electronics, communications, and space travel. the discovery of ceramic superconductors in 1986 has spurred intense research to develop superconducting ceramic parts for electronic devices, electric motors, and transportation equipment. there is an increasing need in the military sector for high - strength, robust materials which have the capability to transmit light around the visible ( 0. 4 β 0. 7 micrometers ) and mid - infrared ( 1 β 5 micrometers ) regions of the spectrum. these materials
passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap
based on 1 / 10 and 1 / 100 weight percentages of the carbon and other alloying elements they contain. thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. solid materials are generally grouped into three basic classifications : ceramics, metals, and polymers. this broad classification is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. an item that is often made from each of these materials types is the beverage container. the material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. ceramic ( glass ) containers are optically transparent, impervious to the passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. metal ( aluminum alloy ) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. however, the cans are opaque, expensive to produce, and are easily dented and punctured. polymers ( polyethylene plastic ) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to the passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another
. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. =
surface. ceramics such as alumina, boron carbide and silicon carbide have been used in bulletproof vests to repel small arms rifle fire. such plates are known commonly as ballistic plates. similar material is used to protect cockpits of some military aircraft, because of the low weight of the material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or
the graphane with chemically bonded alkali metals ( li, na, k ) was considered as potential material for hydrogen storage. the ab initio calculations show that such material can adsorb as many as 4 hydrogen molecules per li, na and k metal atoms. these values correspond to 12. 20 wt %, 10. 33 wt % and 8. 56 wt % of hydrogen, respectively and exceed the doe requirements. the thermodynamic analysis shows that li - graphane complex is the most promising for hydrogen storage with ability to adsorb 3 hydrogen molecules per metal atom at 300 k and pressure in the range from 5 to 250 atm.
as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase
Question: What are magnesium carbonate, aluminum hydroxide, and sodium bicarbonate commonly used as?
A) salts
B) antacids
C) antibiotics
D) antidepressants
|
B) antacids
|
Context:
classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron
according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in
. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world
others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly ferment
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
various versions of club are shown to be different. a question of soukup, fuchino and juhasz, is it consistent to have a stick without club, is answered as a consequence. the more detailed version of the paper, which is coming up, also answers a question of galvin.
##l ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol
polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly,
muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by
##xadecimal ( base 16 ) or octal ( base 8 ). some programming languages also permit digit group separators. the internal representation of this datum is the way the value is stored in the computer ' s memory. unlike mathematical integers, a typical datum in a computer has some minimal and maximum possible value. the most common representation of a positive integer is a string of bits, using the binary numeral system. the order of the memory bytes storing the bits varies ; see endianness. the width, precision, or bitness of an integral type is the number of bits in its representation. an integral type with n bits can encode 2n numbers ; for example an unsigned type typically represents the non - negative values 0 through 2n β 1. other encodings of integer values to bit patterns are sometimes used, for example binary - coded decimal or gray code, or as printed character codes such as ascii. there are four well - known ways to represent signed numbers in a binary computing system. the most common is two ' s complement, which allows a signed integral type with n bits to represent numbers from β2 ( nβ1 ) through 2 ( nβ1 ) β 1. two ' s complement arithmetic is convenient because there is a perfect one - to - one correspondence between representations and values ( in particular, no separate + 0 and β0 ), and because addition, subtraction and multiplication do not need to distinguish between signed and unsigned types. other possibilities include offset binary, sign - magnitude, and ones ' complement. some computer languages define integer sizes in a machine - independent way ; others have varying definitions depending on the underlying processor word size. not all language implementations define variables of all integer sizes, and defined sizes may not even be distinct in a particular implementation. an integer in one programming language may be a different size in a different language, on a different processor, or in an execution context of different bitness ; see Β§ words. some older computer architectures used decimal representations of integers, stored in binary - coded decimal ( bcd ) or other format. these values generally require data sizes of 4 bits per decimal digit ( sometimes called a nibble ), usually with additional bits for a sign. many modern cpus provide limited support for decimal integers as an extended datatype, providing instructions for converting such values to and from binary values. depending on the architecture, decimal integers may have fixed sizes ( e. g., 7 decimal digits plus a sign fit into a 32 - bit word ),
Question: What type of taste do bases normally have?
A) bitter
B) sour
C) sweet
D) salty
|
A) bitter
|
Context:
this note fixes a small gap in kerckhoff ' s proof that the limit set of the handlebody set has measure zero.
all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture
the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 β 139 ad ) to describe the heavens as spherical : the heavens are like a hen ' s egg and as round as a crossbow bullet ; the earth is like the yolk of the egg, and lies in the centre. this analogy with a curved egg led some modern historians, notably joseph needham, to conjecture that chinese astronomers were, after all, aware of the earth ' s sphericity. the egg reference, however, was rather meant to clarify the relative position of the flat earth to the heavens : in a passage of zhang heng ' s cosmogony not translated by needham, zhang himself says : " heaven takes its body from the yang, so it is round and in motion. earth takes its body from the yin, so it is flat and quiescent ". the point of the egg analogy is simply to stress that the earth is completely enclosed by heaven, rather than merely covered from above as the kai tian describes. chinese astronomers, many of them brilliant men by any standards, continued to think in flat - earth terms until the seventeenth century ; this surprising fact might be the starting - point for a re - examination of the apparent facility with which the idea of a spherical earth found acceptance in fifth - century bc greece. further examples cited by needham supposed to demonstrate dissenting voices from the ancient chinese consensus actually refer without exception to the earth being square, not to it being flat. accordingly, the 13th - century scholar li ye, who argued that the movements of the round heaven would be hindered by a square earth, did not advocate a spherical earth, but rather that its edge should be rounded off so as to be circular. however, needham disagrees, affirming that li ye believed the earth to be spherical, similar in shape to the heavens but much smaller. this was preconceived by the 4th - century scholar yu xi, who argued for the infinity of outer space surrounding the earth and that the latter could be either square or round, in accordance to the shape of the heavens. when chinese geographers of the 17th century, influenced by european cartography and astronomy, showed the earth as a sphere that could be circumnavigated by sailing around the globe, they
while co - coculturing epithelial and adipocyte cells. the hystem kit is another 3 - d platform containing ecm components and hyaluronic acid that has been used for cancer research. additionally, hydrogel constituents can be chemically modified to assist in crosslinking and enhance their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a
describe the heavens as spherical : the heavens are like a hen ' s egg and as round as a crossbow bullet ; the earth is like the yolk of the egg, and lies in the centre. this analogy with a curved egg led some modern historians, notably joseph needham, to conjecture that chinese astronomers were, after all, aware of the earth ' s sphericity. the egg reference, however, was rather meant to clarify the relative position of the flat earth to the heavens : in a passage of zhang heng ' s cosmogony not translated by needham, zhang himself says : " heaven takes its body from the yang, so it is round and in motion. earth takes its body from the yin, so it is flat and quiescent ". the point of the egg analogy is simply to stress that the earth is completely enclosed by heaven, rather than merely covered from above as the kai tian describes. chinese astronomers, many of them brilliant men by any standards, continued to think in flat - earth terms until the seventeenth century ; this surprising fact might be the starting - point for a re - examination of the apparent facility with which the idea of a spherical earth found acceptance in fifth - century bc greece. further examples cited by needham supposed to demonstrate dissenting voices from the ancient chinese consensus actually refer without exception to the earth being square, not to it being flat. accordingly, the 13th - century scholar li ye, who argued that the movements of the round heaven would be hindered by a square earth, did not advocate a spherical earth, but rather that its edge should be rounded off so as to be circular. however, needham disagrees, affirming that li ye believed the earth to be spherical, similar in shape to the heavens but much smaller. this was preconceived by the 4th - century scholar yu xi, who argued for the infinity of outer space surrounding the earth and that the latter could be either square or round, in accordance to the shape of the heavens. when chinese geographers of the 17th century, influenced by european cartography and astronomy, showed the earth as a sphere that could be circumnavigated by sailing around the globe, they did so with formulaic terminology previously used by zhang heng to describe the spherical shape of the sun and moon ( i. e. that they were as round as a crossbow bullet ). as noted in the book huainanzi, in the 2nd century bc, chinese astronomers effectively inverted eratosthenes ' calculation
molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands.
i transform the trapdoor problem of hfe into a linear algebra problem.
the belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of newton. the assumption that space is flat at infinity has guided several modern physical theories. but what do we actually know to support this belief? a simple argument, called the " telescope principle ", asserts that all that we can know about space is bounded by observations. physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. the telescope principle is simple to state, but it leads to very interesting insights into relativity and yang - mills theory via projective equivalences of their respective spaces.
##artificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to
life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype, genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the
Question: Which body part helps roundworm prevent their body from expanding?
A) scales
B) tough cuticle covering
C) plate
D) skin
|
B) tough cuticle covering
|
Context:
their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can
a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation (
, followed by a medical interview and a physical examination. basic diagnostic medical devices ( e. g., stethoscope, tongue depressor ) are typically used. after examining for signs and interviewing for symptoms, the doctor may order medical tests ( e. g., blood tests ), take a biopsy, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history
, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses
) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice,
you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ),
is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a
) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system
the universe is found to have undergone several phases in which the gravitational constant had different behaviors. during some epochs the energy density of the universe remained constant and the universe remained static. in the radiation dominated epoch the radiation field satisfies stefan ' s formula while the scale factor varies linearly with time. the model enhances the formation of the structure in the universe as observed today.
, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary
Question: The maintenance of constant conditions in the body is also known as what?
A) hypothesis
B) consciousness
C) mononucleosis
D) homeostasis
|
D) homeostasis
|
Context:
some references for the breaking strength of fused silica fibers compiled in 1999.
to that of a flat crack through the plain matrix. the magnitude of the toughening is determined by the mismatch strain caused by thermal contraction incompatibility and the microfracture resistance of the particle / matrix interface. the toughening becomes noticeable with a narrow size distribution of appropriately sized particles, and researchers typically accept that deflection effects in materials with roughly equiaxial grains may increase the fracture toughness by about twice the grain boundary value. the model reveals that the increase in toughness is dependent on particle shape and the volume fraction of the second phase, with the most effective morphology being the rod of high aspect ratio, which can account for a fourfold increase in fracture toughness. the toughening arises primarily from the twist of the crack front between particles, as indicated by deflection profiles. disc - shaped particles and spheres are less effective in toughening. fracture toughness, regardless of morphology, is determined by the twist of the crack front at its most severe configuration, rather than the initial tilt of the crack front. only for disc - shaped particles does the initial tilting of the crack front provide significant toughening ; however, the twist component still overrides the tilt - derived toughening. additional important features of the deflection analysis include the appearance of asymptotic toughening for the three morphologies at volume fractions in excess of 0. 2. it is also noted that a significant influence on the toughening by spherical particles is exerted by the interparticle spacing distribution ; greater toughening is afforded when spheres are nearly contacting such that twist angles approach Ο / 2. these predictions provide the basis for the design of high - toughness two - phase ceramic materials. the ideal second phase, in addition to maintaining chemical compatibility, should be present in amounts of 10 to 20 volume percent. greater amounts may diminish the toughness increase due to overlapping particles. particles with high aspect ratios, especially those with rod - shaped morphologies, are most suitable for maximum toughening. this model is often used to determine the factors that contribute to the increase in fracture toughness in ceramics which is ultimately useful in the development of advanced ceramic materials with improved performance. = = theory of chemical processing = = = = = microstructural uniformity = = = in the processing of fine ceramics, the irregular particle sizes and shapes in a typical powder often lead to non - uniform packing morphologies that result in packing density variations in the powder compact. uncontrolled aggl
, phone lines and power lines ) to create a high - speed local area network. twisted pair cabling is used for wired ethernet and other standards. it typically consists of 4 pairs of copper cabling that can be utilized for both voice and data transmission. the use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. the transmission speed ranges from 2 mbit / s to 10 gbit / s. twisted pair cabling comes in two forms : unshielded twisted pair ( utp ) and shielded twisted - pair ( stp ). each form comes in several category ratings, designed for use in various scenarios. an optical fiber is a glass fiber. it carries pulses of light that represent data via lasers and optical amplifiers. some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. there are two basic types of fiber optics, single - mode optical fiber ( smf ) and multi - mode optical fiber ( mmf ). single - mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometers. multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. = = = wireless = = = network connections can be established wirelessly using radio or other electromagnetic means of communication. terrestrial microwave β terrestrial microwave communication uses earth - based transmitters and receivers resembling satellite dishes. terrestrial microwaves are in the low gigahertz range, which limits all communications to line - of - sight. relay stations are spaced approximately 40 miles ( 64 km ) apart. communications satellites β satellites also communicate via microwave. the satellites are stationed in space, typically in geosynchronous orbit 35, 400 km ( 22, 000 mi ) above the equator. these earth - orbiting systems are capable of receiving and relaying voice, data, and tv signals. cellular networks use several radio communications technologies. the systems divide the region covered into multiple geographic areas. each area is served by a low - power transceiver. radio and spread spectrum technologies β wireless lans use a high - frequency radio technology similar to
electromagnetic induction. the transmission speed ranges from 2 mbit / s to 10 gbit / s. twisted pair cabling comes in two forms : unshielded twisted pair ( utp ) and shielded twisted - pair ( stp ). each form comes in several category ratings, designed for use in various scenarios. an optical fiber is a glass fiber. it carries pulses of light that represent data via lasers and optical amplifiers. some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. there are two basic types of fiber optics, single - mode optical fiber ( smf ) and multi - mode optical fiber ( mmf ). single - mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometers. multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. = = = wireless = = = network connections can be established wirelessly using radio or other electromagnetic means of communication. terrestrial microwave β terrestrial microwave communication uses earth - based transmitters and receivers resembling satellite dishes. terrestrial microwaves are in the low gigahertz range, which limits all communications to line - of - sight. relay stations are spaced approximately 40 miles ( 64 km ) apart. communications satellites β satellites also communicate via microwave. the satellites are stationed in space, typically in geosynchronous orbit 35, 400 km ( 22, 000 mi ) above the equator. these earth - orbiting systems are capable of receiving and relaying voice, data, and tv signals. cellular networks use several radio communications technologies. the systems divide the region covered into multiple geographic areas. each area is served by a low - power transceiver. radio and spread spectrum technologies β wireless lans use a high - frequency radio technology similar to digital cellular. wireless lans use spread spectrum technology to enable communication between multiple devices in a limited area. ieee 802. 11 defines a common flavor of open - standards wireless radio - wave technology known as wi - fi. free - space optical communication uses visible or invisible light for communications. in most cases, line - of
inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat
if a fintie group g acts topologically and faithfully on r ^ 3, then g is a subgroup of o ( 3 )
, only competed the national cheerleaders & dance association ( nca & nda ) college nationals along with buzz and the goldrush dance team competing here as well. however, in the 2022 season, goldrush competed at the universal cheerleaders & dance association ( uca & uda ) college nationals for the first time and in 2023 the cheer team will compete here for the first time as well. the institute mascots are buzz and the ramblin ' wreck. the institute ' s traditional football rival is the university of georgia ; the rivalry is considered one of the fiercest in college football. the rivalry is commonly referred to as clean, old - fashioned hate, which is also the title of a book about the subject. there is also a long - standing rivalry with clemson. tech has eighteen varsity sports : football, women ' s and men ' s basketball, baseball, softball, volleyball, golf, men ' s and women ' s tennis, men ' s and women ' s swimming and diving, men ' s and women ' s track and field, men ' s and women ' s cross country, and coed cheerleading. four georgia tech football teams were selected as national champions in news polls : 1917, 1928, 1952, and 1990. in may 2007, the women ' s tennis team won the ncaa national championship with a 4 β 2 victory over ucla, the first ever national title granted by the ncaa to tech. = = = fight songs = = = tech ' s fight song " i ' m a ramblin ' wreck from georgia tech " is known worldwide. first published in the 1908 blue print, it was adapted from an old drinking song ( " son of a gambolier " ) and embellished with trumpet flourishes by frank roman. then - vice president richard nixon and soviet premier nikita khrushchev sang the song together when they met in moscow in 1958 to reduce the tension between them. as the story goes, nixon did not know any russian songs, but khrushchev knew that one american song as it had been sung on the ed sullivan show. " i ' m a ramblin ' wreck " has had many other notable moments in its history. it is reportedly the first school song to have been played in space. gregory peck sang the song while strumming a ukulele in the movie the man in the gray flannel suit. john wayne whistled it in the high and the mighty. tim holt ' s character sings a few bars of it in
accept that deflection effects in materials with roughly equiaxial grains may increase the fracture toughness by about twice the grain boundary value. the model reveals that the increase in toughness is dependent on particle shape and the volume fraction of the second phase, with the most effective morphology being the rod of high aspect ratio, which can account for a fourfold increase in fracture toughness. the toughening arises primarily from the twist of the crack front between particles, as indicated by deflection profiles. disc - shaped particles and spheres are less effective in toughening. fracture toughness, regardless of morphology, is determined by the twist of the crack front at its most severe configuration, rather than the initial tilt of the crack front. only for disc - shaped particles does the initial tilting of the crack front provide significant toughening ; however, the twist component still overrides the tilt - derived toughening. additional important features of the deflection analysis include the appearance of asymptotic toughening for the three morphologies at volume fractions in excess of 0. 2. it is also noted that a significant influence on the toughening by spherical particles is exerted by the interparticle spacing distribution ; greater toughening is afforded when spheres are nearly contacting such that twist angles approach Ο / 2. these predictions provide the basis for the design of high - toughness two - phase ceramic materials. the ideal second phase, in addition to maintaining chemical compatibility, should be present in amounts of 10 to 20 volume percent. greater amounts may diminish the toughness increase due to overlapping particles. particles with high aspect ratios, especially those with rod - shaped morphologies, are most suitable for maximum toughening. this model is often used to determine the factors that contribute to the increase in fracture toughness in ceramics which is ultimately useful in the development of advanced ceramic materials with improved performance. = = theory of chemical processing = = = = = microstructural uniformity = = = in the processing of fine ceramics, the irregular particle sizes and shapes in a typical powder often lead to non - uniform packing morphologies that result in packing density variations in the powder compact. uncontrolled agglomeration of powders due to attractive van der waals forces can also give rise to in microstructural inhomogeneities. differential stresses that develop as a result of non - uniform drying shrinkage are directly related to the rate at which the solvent can be removed, and thus highly dependent upon the
##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures
it is the purpose of this note to classify connected quandles up to order 14, and in particular to show that there is no connected quandle of order 14.
Question: What is the term for tough protein fibers that connects bones to each other?
A) ligaments
B) muscles
C) tetons
D) cords
|
A) ligaments
|
Context:
chemistry is the scientific study of the properties and behavior of matter. it is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions : their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. chemistry also addresses the nature of chemical bonds in chemical compounds. in the scope of its subject, chemistry occupies an intermediate position between physics and biology. it is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. for example, chemistry explains aspects of plant growth ( botany ), the formation of igneous rocks ( geology ), how atmospheric ozone is formed and how environmental pollutants are degraded ( ecology ), the properties of the soil on the moon ( cosmochemistry ), how medications work ( pharmacology ), and how to collect dna evidence at a crime scene ( forensics ). chemistry has existed under various names since ancient times. it has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. the applications of various fields of chemistry are used frequently for economic purposes in the chemical industry. = = etymology = = the word chemistry comes from a modification during the renaissance of the word alchemy, which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism, and medicine. alchemy is often associated with the quest to turn lead or other base metals into gold, though alchemists were also interested in many of the questions of modern chemistry. the modern word alchemy in turn is derived from the arabic word al - kimia ( Ψ§ΩΩΫΩ
ΫΨ§Ψ‘ ). this may have egyptian origins since al - kimia is derived from the ancient greek ΟΞ·ΞΌΞΉΞ±, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from ΟημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that
or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales of us $ 980. 5 billion with a profit margin of 10. 3 %. = = = professional societies = = = = = see also = = = = references = = = = bibliography = = = = further reading = = popular reading atkins, p. w. galileo ' s finger ( oxford university press )
modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology,
contrast to macroscopic or gross anatomy, cytology and histology are concerned with microscopic structures. biochemistry is the study of the chemistry taking place in living organisms, especially the structure and function of their chemical components. biomechanics is the study of the structure and function of biological systems by means of the methods of mechanics. biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems. biostatistics is the application of statistics to biological fields in the broadest sense. a knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. it is also fundamental to epidemiology and evidence - based medicine. cytology is the microscopic study of individual cells. embryology is the study of the early development of organisms. endocrinology is the study of hormones and their effect throughout the body of animals. epidemiology is the study of the demographics of disease processes, and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease β the causes, course, progression and resolution thereof.
. biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems. biostatistics is the application of statistics to biological fields in the broadest sense. a knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. it is also fundamental to epidemiology and evidence - based medicine. cytology is the microscopic study of individual cells. embryology is the study of the early development of organisms. endocrinology is the study of hormones and their effect throughout the body of animals. epidemiology is the study of the demographics of disease processes, and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease β the causes, course, progression and resolution thereof. pharmacology is the study of drugs and their actions. photobiology is the study of the interactions between non - ionizing radiation and living organisms. physiology is the study of the normal functioning of the body and the underlying regulatory mechanisms. radiobiology is the study of the interactions between ionizing radiation and living organisms.
the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales
current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the
microcanonical thermodynamics ( mcth ) is contrasted to canonical thermodynamics ( cth ). at phase transitions of 1. order the two ensembles are not equivalent even in the thermodynamic limit. energy fluctuations do not vanish and phase separations are suppressed in cth. a proper treatment of fluctuations is neccessary. mcth allows to address even isolated small systems where phase transitions can be clearly classified into first order and continuous ones. the microcanonical caloric curve t ( e ) determines the transition temperature, latent heat and surface entropy / tension. for systems of ca. 1000 na -, k -, or fe - atoms at 1 atm. all 3 quantities can be calculated. the three parameters approach with rising size the known bulk values. there is nothing that demands the use of the thermodynamic limit. within microcanonical thermodynamics of finite systems there are fundamental differences between conserved extensive variables and ensemble related ones like entropy, temperature and pressure. this is discussed in detail.
the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include ag
and genetics. inorganic chemistry is the study of the properties and reactions of inorganic compounds, such as metals and minerals. the distinction between organic and inorganic disciplines is not absolute and there is much overlap, most importantly in the sub - discipline of organometallic chemistry. materials chemistry is the preparation, characterization, and understanding of solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which
Question: What is the study of macroscopic properties, atomic properties, and phenomena in chemical systems?
A) physical chemistry
B) thermal chemistry
C) molecular chemistry
D) differential chemistry
|
A) physical chemistry
|
Context:
into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches
28 size spectra of extensive air showers from 7 different experiments are analysed consistently. they are fitted by adjusting either 4 or 5 parameters : knee position, power law exponents above and below the knee, overall intensity and, in addition, a parameter describing the smoothness of the bend. the residuals are then normalized to the same knee position and averaged. when 5 parameters are employed no systematic deviation from a single smooth knee is apparent at the 1 % level up to a factor of 4 above the knee. at larger shower sizes a moderately significant deviation can be seen whose shape and position are compatible with a second knee caused by iron group nuclei.
as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body.
the robot ' s objective is to rehabilitate the pipe joints of fresh water supply systems by crawling into water canals and applying a restoration material to repair the pipes. the robot ' s structure consists of six wheeled - legs, three on the front separated 120 { \ deg } and three on the back in the same configuration, supporting the structure along the centre of the pipe. in this configuration the robot is able to clean and seal with a rotating tool, similar to a cylindrical robot, covering the entire 3d in - pipe space.
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools
inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat
an attempt had been made to get algebraic structure of 2d complex harmonic oscillator.
time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans
the lorentz covariant tempered disributions with the supports in the product of the closed upper light cones are described.
Question: Bones, cartilage, and ligaments make up what anatomical system?
A) Muscular system
B) Integumentary system
C) Lymphatic system
D) skeletal system
|
D) skeletal system
|
Context:
often called physicians. these terms, internist or physician ( in the narrow sense, common outside north america ), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities. because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of
known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders.
much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes
english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict trauma, reconstruction of the facial features using remains of deceased ( skull ) thus aiding identification. gender - based medicine studies the biological and physiological differences between the human sexes and how that affects differences in disease. health informatics is a relatively recent field that deal with the application of computers and information technology to medicine. hospice and pal
herbicides. the people ' s republic of china was the first country to commercialise transgenic plants, introducing a virus - resistant tobacco in 1992. in 1994 calgene attained approval to commercially release the first genetically modified food, the flavr savr, a tomato engineered to have a longer shelf life. in 1994, the european union approved tobacco engineered to be resistant to the herbicide bromoxynil, making it the first genetically engineered crop commercialised in europe. in 1995, bt potato was approved safe by the environmental protection agency, after having been approved by the fda, making it the first pesticide producing crop to be approved in the us. in 2009 11 transgenic crops were grown commercially in 25 countries, the largest of which by area grown were the us, brazil, argentina, india, canada, china, paraguay and south africa. in 2010, scientists at the j. craig venter institute created the first synthetic genome and inserted it into an empty bacterial cell. the resulting bacterium, named mycoplasma laboratorium, could replicate and produce proteins. four years later this was taken a step further when a bacterium was developed that replicated a plasmid containing a unique base pair, creating the first organism engineered to use an expanded genetic alphabet. in 2012, jennifer doudna and emmanuelle charpentier collaborated to develop the crispr / cas9 system, a technique which can be used to easily and specifically alter the genome of almost any organism. = = process = = creating a gmo is a multi - step process. genetic engineers must first choose what gene they wish to insert into the organism. this is driven by what the aim is for the resultant organism and is built on earlier research. genetic screens can be carried out to determine potential genes and further tests then used to identify the best candidates. the development of microarrays, transcriptomics and genome sequencing has made it much easier to find suitable genes. luck also plays its part ; the roundup ready gene was discovered after scientists noticed a bacterium thriving in the presence of the herbicide. = = = gene isolation and cloning = = = the next step is to isolate the candidate gene. the cell containing the gene is opened and the dna is purified. the gene is separated by using restriction enzymes to cut the dna into fragments or polymerase chain reaction ( pcr ) to amplify up the gene segment. these segments can then be extracted through gel electrophoresis. if the chosen gene or the donor organism ' s
effective and rapid detection of lesions in the gastrointestinal tract is critical to gastroenterologist ' s response to some life - threatening diseases. wireless capsule endoscopy ( wce ) has revolutionized traditional endoscopy procedure by allowing gastroenterologists visualize the entire gi tract non - invasively. once the tiny capsule is swallowed, it sequentially capture images of the gi tract at about 2 to 6 frames per second ( fps ). a single video can last up to 8 hours producing between 30, 000 to 100, 000 images. automating the detection of frames containing specific lesion in wce video would relieve gastroenterologists the arduous task of reviewing the entire video before making diagnosis. while the wce produces large volume of images, only about 5 \ % of the frames contain lesions that aid the diagnosis process. convolutional neural network ( cnn ) based models have been very successful in various image classification tasks. however, they suffer excessive parameters, are sample inefficient and rely on very large amount of training data. deploying a cnn classifier for lesion detection task will require time - to - time fine - tuning to generalize to any unforeseen category. in this paper, we propose a metric - based learning framework followed by a few - shot lesion recognition in wce data. metric - based learning is a meta - learning framework designed to establish similarity or dissimilarity between concepts while few - shot learning ( fsl ) aims to identify new concepts from only a small number of examples. we train a feature extractor to learn a representation for different small bowel lesions using metric - based learning. at the testing stage, the category of an unseen sample is predicted from only a few support examples, thereby allowing the model to generalize to a new category that has never been seen before. we demonstrated the efficacy of this method on real patient capsule endoscopy data.
a producer or independently. recording engineer β the engineer who records sound. assistant engineer β often employed in larger studios, allowing them to train to become full - time engineers. they often assist full - time engineers with microphone setups, session breakdowns and in some cases, rough mixes. mixing engineer β a person who creates mixes of multi - track recordings. it is common to record a commercial record at one studio and have it mixed by different engineers in other studios. mastering engineer β the person who masters the final mixed stereo tracks ( or sometimes a series of audio stems, which consists in a mix of the main sections ) that the mix engineer produces. the mastering engineer makes any final adjustments to the overall sound of the record in the final step before commercial duplication. mastering engineers use principles of equalization, compression and limiting to fine - tune the sound timbre and dynamics and to achieve a louder recording. sound designer β broadly an artist who produces soundtracks or sound effects content for media. live sound engineer front of house ( foh ) engineer, or a1. β a person dealing with live sound reinforcement. this usually includes planning and installation of loudspeakers, cabling and equipment and mixing sound during the show. this may or may not include running the foldback sound. a live / sound reinforcement engineer hears source material and tries to correlate that sonic experience with system performance. wireless microphone engineer, or a2. this position is responsible for wireless microphones during a theatre production, a sports event or a corporate event. foldback or monitor engineer β a person running foldback sound during a live event. the term foldback comes from the old practice of folding back audio signals from the front of house ( foh ) mixing console to the stage so musicians can hear themselves while performing. monitor engineers usually have a separate audio system from the foh engineer and manipulate audio signals independently from what the audience hears so they can satisfy the requirements of each performer on stage. in - ear systems, digital and analog mixing consoles, and a variety of speaker enclosures are typically used by monitor engineers. in addition, most monitor engineers must be familiar with wireless or rf ( radio - frequency ) equipment and often must communicate personally with the artist ( s ) during each performance. systems engineer β responsible for the design setup of modern pa systems, which are often very complex. a systems engineer is usually also referred to as a crew chief on tour and is responsible for the performance and day - to - day job requirements of the audio crew as a whole along with the foh
men. well - known spiritual systems include animism ( the notion of inanimate objects having spirits ), spiritualism ( an appeal to gods or communion with ancestor spirits ) ; shamanism ( the vesting of an individual with mystic powers ) ; and divination ( magically obtaining the truth ). the field of medical anthropology examines the ways in which culture and society are organized around or impacted by issues of health, health care and related issues. the earliest known medical texts in the world were found in the ancient syrian city of ebla and date back to 2500 bce. other early records on medicine have been discovered from ancient egyptian medicine, babylonian medicine, ayurvedic medicine ( in the indian subcontinent ), classical chinese medicine ( alternative medicine ) predecessor to the modern traditional chinese medicine ), and ancient greek medicine and roman medicine. in egypt, imhotep ( 3rd millennium bce ) is the first physician in history known by name. the oldest egyptian medical text is the kahun gynaecological papyrus from around 2000 bce, which describes gynaecological diseases. the edwin smith papyrus dating back to 1600 bce is an early work on surgery, while the ebers papyrus dating back to 1500 bce is akin to a textbook on medicine. in china, archaeological evidence of medicine in chinese dates back to the bronze age shang dynasty, based on seeds for herbalism and tools presumed to have been used for surgery. the huangdi neijing, the progenitor of chinese medicine, is a medical text written beginning in the 2nd century bce and compiled in the 3rd century. in india, the surgeon sushruta described numerous surgical operations, including the earliest forms of plastic surgery. earliest records of dedicated hospitals come from mihintale in sri lanka where evidence of dedicated medicinal treatment facilities for patients are found. in greece, the ancient greek physician hippocrates, the " father of modern medicine ", laid the foundation for a rational approach to medicine. hippocrates introduced the hippocratic oath for physicians, which is still relevant and in use today, and was the first to categorize illnesses as acute, chronic, endemic and epidemic, and use terms such as, " exacerbation, relapse, resolution, crisis, paroxysm, peak, and convalescence ". the greek physician galen was also one of the greatest surgeons of the ancient world and performed many audacious operations, including brain and eye surgeries. after the fall of the western roman empire and the onset of
a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern
file records. electronic health records are patients ' records and information stored digitally and can be accessed online by exclusively authorized personnel. from the patient ' s perspective : the word - of - mouth evaluation of various hospitals and physicians will be clear at a glance on the internet. when people see the doctor, they can immediately evaluate the doctor and let everyone know. the user ' s illness big data will be stored permanently with the electronic medical record until the end of life. in the future, the internet of things world will network all your information. when did you eat what meals, when did you do something, and the calories consumed that day were all uploaded to the cloud. the doctor can more accurately determine the condition based on your regular diet. more often, patients can choose not to seek medical treatment in a hospital, and based on the reliability of big data, they can directly solve it remotely. the continuous evolution of technology allows relevant medical services and treatments to grow to be more effective and personable with medical technology. with the advancements in 3d medical technology, the opportunities of efficient, customizable healthcare such as medicine and surgeries are becoming increasingly achievable. technology has been pioneering the world and experts are determined to find the optimal applications of technology in the medical field to make customizable healthcare affordable, cost - efficient, and practical. experts have begun to study and apply 3d technology to surgical procedures, where surgeons and surgeons - in - training have started using 3d - printed, physical stimulations to navigate cranial surgeries with the use of the patients ' data. = = = m - commerce = = = mobile e - commerce can provide users with the services, applications, information and entertainment they need anytime, anywhere. purchasing and using goods and services have become more convenient with the introduction of a mobile terminal. not to mention, websites have started to adopt various forms of mobile payments. the mobile payment platform not only supports various bank cards for online payment, but also supports various terminal operations such as mobile phones and telephones, which meets the needs of online consumers in pursuit of personalization and diversification. due to the covid19 pandemic, the usage of m - commerce has skyrocketed in popular retail stores such as amazon, 7eleven, and other large retailers. shopping online has made a lot more stores accessible and convenient for customers, as long as these applications are designed to be straightforward and simple. poor ui / ux design is a big factor in deterring customers from completing their purchases and / or na
Question: What is the first part of the large intestine called?
A) duodenum
B) cecum
C) colon
D) jejunum
|
B) cecum
|
Context:
= = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling
##morphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to
remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling and the risks of creating more pollution. = = = e - waste recycling = = = the recycling of electronic waste ( e - waste ) has seen significant technological advancements due to increasing environmental concerns and the growing volume of electronic product disposals. traditional e - waste recycling methods, which often involve manual disassemb
have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became
to be separated conceptually from geology and crop production and treated as a whole. as a founding father of soil science, fallou has primacy in time. fallou was working on the origins of soil before dokuchaev was born ; however dokuchaev ' s work was more extensive and is considered to be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current
##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the
be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way
##hosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere
they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea
genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way that gives us long - term ( decade - to - decade ) feedback on our performance as stewards of the planet. the effort includes understanding the functions of soil microbiotic crusts and exploring the potential to sequester atmospheric carbon in soil organic matter. relating the concept of agriculture to soil quality, however, has not
Question: What occurs when nature reclaims areas formerly occupied by life?
A) primary succession
B) tertiary succession
C) secondary succession
D) typical succession
|
C) secondary succession
|
Context:
##artificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to
##ization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be reproducible and to have low manufacturing costs. the main modeling equation for the dead - end filtration at constant pressure drop is represented by darcy ' s law : d v p d t = q = Ξ΄ p ΞΌ a ( 1 r m + r ) { \ displaystyle { \ frac { dv _
classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane
the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be rep
one phenomenological explanation of superluminal propagation of neutrinos, which may have been observed by opera and minos, is that neutrinos travel faster inside of matter than in vacuum. if so neutrinos exhibit refraction inside matter and should exhibit other manifestations of refraction, such as deflection and reflection. such refraction would be easily detectable through the momentum imparted to appropriately shaped refractive material inserted into the neutrino beam. for numi this could be as large as ~ 10g cm / s. if these effect were found, they would provide new ways of manipulating and detecting neutrinos. reasons why this scenario seems implausible are given, however it is still worthwhile to conduct simple searches for differential refraction of neutrinos.
to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.
capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function
i discuss some compelling suggestions about particles which could be the dark matter in the universe, with special attention to experimental searches for them.
". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications
molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane = = = = = the composite biomass membrane = = = green membrane or bio - membrane synthesis is the solution to protected environments which have largely comprehensive performance. biomass is used in the form of activated carbon nanoparticles, like using cellulose based biomass coconut shell, hazelnut shell, walnut shell, agricultural wastes of corn stalks etc. which improve surface hydrophilicity, larger pore size, more and lower surface roughness therefore, the separation and anti - fouling performance of membranes are also improved simultaneously. = = = fabrication of pure biomass based membrane = = = a biomass - based membrane is a membrane made from organic materials such as plant fibers. these membranes are often used in water filtration and wastewater treatment applications. the fabrication of a pure biomass - based membrane is a complex process that involves a number of steps. the first step is to create a slurry of the organic materials. this slurry is then cast
Question: To solubilize the fats so that they can be absorbed, what organ secretes a fluid called bile into the small intestine?
A) small intestine
B) gall bladder
C) stomach
D) spleen
|
B) gall bladder
|
Context:
used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception
pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin
listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to
the status of the theory of color confinemnt is discussed.
anemia is a major health burden worldwide. examining the hemoglobin level of blood is an important way to achieve the diagnosis of anemia, but it requires blood drawing and a blood test. in this work we propose a non - invasive, fast, and cost - effective screening test for iron - deficiency anemia in peruvian young children. our initial results show promising evidence for detecting conjunctival pallor anemia and artificial intelligence techniques with photos taken with a popular smartphone.
waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. microbial biotechnology has been proposed for the rapidly emerging area of biotechnology applications in space and microgravity ( space bioeconomy ) dark biotechnology is the color associated with bioterrorism or biological weapons and biowarfare which uses microorganisms, and toxins to cause diseases and death in humans, livestock and crops. = = = medicine = = = in medicine, modern biotechnology has many applications in areas such as pharmaceutical drug discoveries and production, pharmacogenomics, and genetic testing ( or genetic screening ). in 2021, nearly 40 % of the total company value of pharmaceutical biotech companies worldwide were active in oncology with neurology and rare diseases being the other two big applications. pharmacogenomics ( a combination of pharmacology and genomics ) is the technology that analyses how genetic makeup affects an individual ' s response to drugs. researchers in the field investigate the influence of genetic variation on drug responses in patients by
substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the
##chemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek ΞΌΞ΅ΟαλλοΟ
ΟΞ³ΞΏΟ, metallourgos, " worker in metal ", from ΞΌΞ΅Οαλλον, metallon, " mine, metal " + Ξ΅ΟΞ³ΞΏΞ½, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate
oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze. chemistry was preceded by its protoscience, alchemy, which operated a non - scientific approach to understanding the constituents of matter and their interactions. despite being unsuccessful in explaining the nature of matter and its transformations, alchemists set the stage for modern chemistry by performing experiments and recording the results. robert boyle, although skeptical of elements and convinced of alchemy, played a key part in elevating the " sacred art " as an
blu - ray is the name of a next - generation optical disc format jointly developed by the blu - ray disc association a group of the world ' s leading consumer electronics, personal computer and media manufacturers. the format was developed to enable recording, rewriting and playback of high - definition video, as well as storing large amounts of data. this extra capacity combined with the use of advanced video and audio codec will offer consumers an unprecedented hd experience. while current optical disc technologies such as dvd and dvdram rely on a red laser to read and write data, the new format uses a blue - violet laser instead, hence the name blu - ray. blu ray also promises some added security, making ways for copyright protections. blu - ray discs can have a unique id written on them to have copyright protection inside the recorded streams. blu. ray disc takes the dvd technology one step further, just by using a laser with a nice color.
Question: When the hemoglobin loses its oxygen, it changes to what color?
A) grayish red
B) bluish red
C) purple red
D) light pink
|
B) bluish red
|
Context:
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the
navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea
approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with
weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial
cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make
##g mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality, high ( near theoretical ) density and microstructural uniformity. the increasing use and diversity of specialty forms of ceramics adds to the diversity of process technologies to be used. thus, reinforcing fibers and filaments are mainly made by polymer, sol - gel, or cvd processes, but melt
winds from agn and quasars will form large amounts of dust, as the cool gas in these winds passes through the ( pressure, temperature ) region where dust is formed in agb stars. conditions in the gas are benign to dust at these radii. as a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.
##hography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. = = = etching processes = = = there are two basic categories of etching processes : wet etching and dry etching. in the former, the material is dissolved when immersed in a chemical solution. in the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. = = = = wet etching = = = = wet chemical etching consists of the selective removal of material by dipping a substrate into a solution that dissolves it. the chemical nature of this etching process provides good selectivity, which means the etching rate of the target material is considerably higher than the mask material if selected carefully. wet etching can be performed using either isotropic wet etchants or anisotropic wet etchants. isotropic wet etchant etch in all directions of the crystalline silicon at approximately equal rates. anisotropic wet etchants preferably etch along certain crystal planes at faster rates than other planes, thereby allowing more complicated 3 - d microstructures to be implemented. wet anisotropic etchants are often used in conjunction with boron etch stops wherein the surface of the silicon is heavily doped with boron resulting in a silicon material layer that is
a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth '
Question: How are weather patterns formed?
A) carbon dioxide
B) the moon's gravitational pull
C) pollution from planes
D) uneven heating of the atmosphere
|
D) uneven heating of the atmosphere
|
Context:
in this article i explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. i also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen.
this is a comment on phys. rev. lett. 98, 180403 ( 2007 ) [ arxiv : 0704. 2162 ].
the standard theory of ideal gases ignores the interaction of the gas particles with the thermal radiation ( photon gas ) that fills the otherwise vacuum space between them. this is an unphysical feature since every material absorbs and radiates thermal energy. this interaction may be important in gases since the latter, unlike solids and liquids are capable of undergoing conspicuous volume changes. taking it into account makes the behaviour of the ideal gases more realistic and removes gibbs ' paradox.
ring mass density and the corresponding circular velocity in thin disk model are known to be integral transforms of one another. but it may be less familiar that the transforms can be reduced to one - fold integrals with identical weight functions. it may be of practical value that the integral for the surface density does not involve the velocity derivative, unlike the equivalent and widely known toomre ' s formula.
they judged, for example, that justice was a particular property of numbers, the soul and mind another, opportunity another, and similarly, so to say, anything else ), and since furthermore they saw expressed by numbers the properties and the ratios of harmony, since finally everything in nature appeared to them to be similar to numbers, and numbers appeared to be first among all there is in nature, they thought that the elements of numbers were the elements of all that there is, and that the whole world was harmony and number. and all the properties they could find in numbers and in musical chords, corresponding to properties and parts of the sky, and in general to the whole cosmic order, they gathered and adapted to it. and if something was missing, they made an effort to introduce it, so that their tractation be complete. to clarify with an example : since ten seems to be a perfect number and to contain in itself the whole nature of numbers, they said that the bodies that move in the sky are also ten : and since one can only see nine, they added as tenth the anti - earth. further evidence for the views of pythagoras and his school, although fragmentary and sometimes contradictory, comes from alexander polyhistor. alexander tells us that central doctrines of the pythagorieans were the harmony of numbers and the ideal that the mathematical world has primacy over, or can account for the existence of, the physical world. according to aristotle, the pythagoreans used mathematics for solely mystical reasons, devoid of practical application. they believed that all things were made of numbers. the number one ( the monad ) represented the origin of all things and other numbers similarly had symbolic representations. nevertheless modern scholars debate whether this numerology was taught by pythagoras himself or whether it was original to the later philosopher of the pythagorean school, philolaus of croton. walter burkert argues in his study lore and science in ancient pythagoreanism, that the only mathematics the pythagoreans ever actually engaged in was simple, proofless arithmetic, but that these arithmetic discoveries did contribute significantly to the beginnings of mathematics. = = plato = = the pythagorian school influenced the work of plato. mathematical platonism is the metaphysical view that ( a ) there are abstract mathematical objects whose existence is independent of us, and ( b ) there are true mathematical sentences that provide true descriptions of such objects. the independence of the mathematical objects is such
molecular nitrogen is the most commonly assumed background gas that supports habitability on rocky planets. despite its chemical inertness, nitrogen molecule is broken by lightning, hot volcanic vents, and bolide impacts, and can be converted into soluble nitrogen compounds and then sequestered in the ocean. the very stability of nitrogen, and that of nitrogen - based habitability, is thus called into question. here we determine the lifetime of molecular nitrogen vis - a - vis aqueous sequestration, by developing a novel model that couples atmospheric photochemistry and oceanic chemistry. we find that hno, the dominant nitrogen compounds produced in anoxic atmospheres, is converted to n2o in the ocean, rather than oxidized to nitrites or nitrates as previously assumed. this n2o is then released back into the atmosphere and quickly converted to n2. we also find that the deposition rate of no is severely limited by the kinetics of the aqueous - phase reaction that converts no to nitrites in the ocean. putting these insights together, we conclude that the atmosphere must produce nitrogen species at least as oxidized as no2 and hno2 to enable aqueous sequestration. the lifetime of molecular nitrogen in anoxic atmospheres is determined to be > 1 billion years on temperate planets of both sun - like and m dwarf stars. this result upholds the validity of molecular nitrogen as a universal background gas on rocky planets.
this is a copy of the article by the same authors published in duke math. j. ( 1994 ).
astronomical observations have shown that the expansion of the universe is at present accelerating, consistently with a constant negative pressure or tension. this is a major puzzle because we do not understand why this tension is so small compared to the planck density ; why, being so small, it is not exactly zero ; and why it has precisely the required value to make the expansion start accelerating just at the epoch when we are observing the universe. the recently proposed conjecture by afshordi that black holes create a gravitational aether owing to quantum gravity effects, which may be identified with this invisible tension, can solve this coincidence problem. the fact that the expansion of the universe is starting to accelerate at the epoch when we observe it is a necessity that is implied by our origin in a planet orbiting a star that formed when the age of the universe was of the same order as the lifetime of the star. this argument is unrelated to any anthropic reasoning.
part i. some facts from p - adic analysis. part ii. tables of integrals.
my main results are simple formulas for the surface area of d - dimensional lattice polytopes using ehrhart theory.
Question: Boyle discovered that what property of a gas is inversely proportional to its volume?
A) temperature
B) amount
C) mass
D) pressure
|
D) pressure
|
Context:
the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal,
in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and
which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing
nuclear jets containing relativistic ` ` hot ' ' particles close to the central engine cool dramatically by producing high energy radiation. the radiative dissipation is similar to the famous compton drag acting upon ` ` cold ' ' thermal particles in a relativistic bulk flow. highly relativistic protons induce anisotropic showers raining electromagnetic power down onto the putative accretion disk. thus, the radiative signature of hot hadronic jets is x - ray irradiation of cold thermal matter. the synchrotron radio emission of the accelerated electrons is self - absorbed due to the strong magnetic fields close to the magnetic nozzle.
temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first,
it is believed that there may have been a large number of black holes formed in the very early universe. these would have quantised masses. a charged ` ` elementary black hole ' ' ( with the minimum possible mass ) can capture electrons, protons and other charged particles to form a ` ` black hole atom ' '. we find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. there is no limit to the charge of the black hole, which gives us the possibility of observing z > 137 bound states and transitions at the lower continuum. negatively charged black holes can capture protons. for z > 1, the orbiting protons will coalesce to form a nucleus ( after beta - decay of some protons to neutrons ), with a stability curve different to that of free nuclei. in this system there is also the distinct possibility of single quark capture. this leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. finally we consider atoms formed with much larger black holes.
ultra high energy particles arrive at earth constantly. they provide a beam at energies higher than any man - made accelerator, but at a very low rate. two large experiments, the pierre auger observatory and the telescope array experiment, have been taking data for several years now covering together the whole sky. i summarize the most recent measurements from both experiments, i compare their results and, for a change, i highlight their agreements.
intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between 0. 1 and 100 nm in each spatial dimension. the terms nanoparticles and ultrafine particles ( ufp ) often are used synonymously although ufp can reach into the micrometre range. the term ' nanostructure ' is often used, when referring to magnetic technology. nanoscale structure in biology is often called ultrastructure. = = = = microstructure = = = = microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25Γ magnification. it deals with objects from 100 nm to a few cm. the microstructure of a material ( which can be broadly classified into metallic, polymeric, ceramic and composite ) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high / low temperature behavior, wear resistance, and so on. most of the traditional materials ( such as metals and ceramics ) are microstructured. the manufacture of a perfect crystal of a material is physically impossible. for example, any crystalline material will contain defects such as precipitates, grain boundaries ( hall β petch relationship ), vacancies, interstitial atoms or substitutional atoms. the microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance material properties. = = = = macrostructure = = = = macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of
galactic collisions are normally modeled in a cdm model by assuming the dm consists of a small number of very massive objects. this note shows that the behaviour of a cdm halo during collisions depends critically on the mass of the particles that make it up, and in particular, all halo particles below a certain characteristic mass are likely to be lost.
electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure
Question: What amazing machines smash particles that are smaller than atoms into each other head-on?
A) observant accelerators
B) absorption accelerators
C) particle accelerators
D) nitrogen accelerators
|
C) particle accelerators
|
Context:
and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying
species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos
earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena (
= = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling
industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll
the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. micro
the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the
short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates
eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour
occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary
Question: The interaction of what opposite factors describe a biome and ecosystem?
A) hygroscopic and abiotic
B) innate and biotic
C) metastasis and biotic
D) abiotic and biotic
|
D) abiotic and biotic
|
Context:
onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested
above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea. the drainage basin of a river is the expanse of country bounded by a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer
consisting of several distinct layers, often referred to as spheres : the lithosphere, the hydrosphere, the atmosphere, and the biosphere, this concept of spheres is a useful tool for understanding the earth ' s surface and its various processes these correspond to rocks, water, air and life. also included by some are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth
subsea engineering and the ability to detect, track and destroy submarines ( anti - submarine warfare ) required the parallel development of a host of marine scientific instrumentation and sensors. visible light is not transferred far underwater, so the medium for transmission of data is primarily acoustic. high - frequency sound is used to measure the depth of the ocean, determine the nature of the seafloor, and detect submerged objects. the higher the frequency, the higher the definition of the data that is returned. sound navigation and ranging or sonar was developed during the first world war to detect submarines, and has been greatly refined through to the present day. submarines similarly use sonar equipment to detect and target other submarines and surface ships, and to detect submerged obstacles such as seamounts that pose a navigational obstacle. simple echo - sounders point straight down and can give an accurate reading of ocean depth ( or look up at the underside of sea - ice ). more advanced echo sounders use a fan - shaped beam or sound, or multiple beams to derive highly detailed images of the ocean floor. high power systems can penetrate the soil and seabed rocks to give information about the geology of the seafloor, and are widely used in geophysics for the discovery of hydrocarbons, or for engineering survey. for close - range underwater communications, optical transmission is possible, mainly using blue lasers. these have a high bandwidth compared with acoustic systems, but the range is usually only a few tens of metres, and ideally at night. as well as acoustic communications and navigation, sensors have been developed to measure ocean parameters such as temperature, salinity, oxygen levels and other properties including nitrate levels, levels of trace chemicals and environmental dna. the industry trend has been towards smaller, more accurate and more affordable systems so that they can be purchased and used by university departments and small companies as well as large corporations, research organisations and governments. the sensors and instruments are fitted to autonomous and remotely - operated systems as well as ships, and are enabling these systems to take on tasks that hitherto required an expensive human - crewed platform. manufacture of marine sensors and instruments mainly takes place in asia, europe and north america. products are advertised in specialist journals, and through trade shows such as oceanology international and ocean business which help raise awareness of the products. = = = environmental engineering = = = in every coastal and offshore project, environmental sustainability is an important consideration for the preservation of ocean ecosystems and natural resources. instances in which marine engineers benefit from knowledge of environmental engineering include creation of fisheries, clean
ocean, determine the nature of the seafloor, and detect submerged objects. the higher the frequency, the higher the definition of the data that is returned. sound navigation and ranging or sonar was developed during the first world war to detect submarines, and has been greatly refined through to the present day. submarines similarly use sonar equipment to detect and target other submarines and surface ships, and to detect submerged obstacles such as seamounts that pose a navigational obstacle. simple echo - sounders point straight down and can give an accurate reading of ocean depth ( or look up at the underside of sea - ice ). more advanced echo sounders use a fan - shaped beam or sound, or multiple beams to derive highly detailed images of the ocean floor. high power systems can penetrate the soil and seabed rocks to give information about the geology of the seafloor, and are widely used in geophysics for the discovery of hydrocarbons, or for engineering survey. for close - range underwater communications, optical transmission is possible, mainly using blue lasers. these have a high bandwidth compared with acoustic systems, but the range is usually only a few tens of metres, and ideally at night. as well as acoustic communications and navigation, sensors have been developed to measure ocean parameters such as temperature, salinity, oxygen levels and other properties including nitrate levels, levels of trace chemicals and environmental dna. the industry trend has been towards smaller, more accurate and more affordable systems so that they can be purchased and used by university departments and small companies as well as large corporations, research organisations and governments. the sensors and instruments are fitted to autonomous and remotely - operated systems as well as ships, and are enabling these systems to take on tasks that hitherto required an expensive human - crewed platform. manufacture of marine sensors and instruments mainly takes place in asia, europe and north america. products are advertised in specialist journals, and through trade shows such as oceanology international and ocean business which help raise awareness of the products. = = = environmental engineering = = = in every coastal and offshore project, environmental sustainability is an important consideration for the preservation of ocean ecosystems and natural resources. instances in which marine engineers benefit from knowledge of environmental engineering include creation of fisheries, clean - up of oil spills, and creation of coastal solutions. = = = offshore systems = = = a number of systems designed fully or in part by marine engineers are used offshore - far away from coastlines. = = = = offshore oil platforms = = = = the design of offshore oil platforms involves a number of
. ), bachelor of science ( b. sc. or b. s. ), bachelor of technology ( b. tech. ), bachelor of technology management and marine engineering ( b. tecman & mareng ), or a bachelor of applied science ( b. a. sc. ) in marine engineering. depending on the country and jurisdiction, to be licensed as a marine engineer, a master ' s degree, such as a master of engineering ( m. eng. ), master of science ( m. sc or m. s. ), or master of applied science ( m. a. sc. ) may be required. some marine engineers join the profession laterally, entering from other disciplines, like mechanical engineering, civil engineering, electrical engineering, geomatics engineering and environmental engineering, or from science - based fields, such as geology, geophysics, physics, geomatics, earth science, and mathematics. to qualify as a marine engineer, those changing professions are required to earn a graduate marine engineering degree, such as an m. eng, m. s., m. sc., or m. a. sc., after graduating from a different quantitative undergraduate program. the fundamental subjects of marine engineering study usually include : mathematics ; calculus, algebra, differential equations, numerical analysis geoscience ; geochemistry, geophysics, mineralogy, geomatics mechanics ; rock mechanics, soil mechanics, geomechanics thermodynamics ; heat transfer, work ( thermodynamics ), mass transfer hydrogeology fluid mechanics ; fluid statics, fluid dynamics geostatistics ; spatial analysis, statistics control engineering ; control theory, instrumentation surface mining ; open - pit mining = = related fields = = = = = naval architecture = = = in the engineering of seagoing vessels, naval architecture is concerned with the overall design of the ship and its propulsion through the water, while marine engineering ensures that the ship systems function as per the design. although they have distinctive disciplines, naval architects and marine engineers often work side - by - side. = = = ocean engineering ( and combination with marine engineering ) = = = ocean engineering is concerned with other structures and systems in or adjacent to the ocean, including offshore platforms, coastal structures such as piers and harbors, and other ocean systems such as ocean wave energy conversion and underwater life - support systems. this in fact makes ocean engineering a distinctive field from marine engineering, which is concerned with the design and application of shipboard systems specifically. however, on account of
##hosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere
are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). "
blu - ray is the name of a next - generation optical disc format jointly developed by the blu - ray disc association a group of the world ' s leading consumer electronics, personal computer and media manufacturers. the format was developed to enable recording, rewriting and playback of high - definition video, as well as storing large amounts of data. this extra capacity combined with the use of advanced video and audio codec will offer consumers an unprecedented hd experience. while current optical disc technologies such as dvd and dvdram rely on a red laser to read and write data, the new format uses a blue - violet laser instead, hence the name blu - ray. blu ray also promises some added security, making ways for copyright protections. blu - ray discs can have a unique id written on them to have copyright protection inside the recorded streams. blu. ray disc takes the dvd technology one step further, just by using a laser with a nice color.
from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their
Question: What is caused by differences in density at the top and bottom of the ocean?
A) still water
B) deep currents
C) shallow currents
D) flat currents
|
B) deep currents
|
Context:
tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. while it was once categorized as a sub - field of biomaterials, having grown in scope and importance, it can be considered as a field of its own. while most definitions of tissue engineering cover a broad range of applications, in practice, the term is closely associated with applications that repair or replace portions of or whole tissues ( i. e. organs, bone, cartilage, blood vessels, bladder, skin, muscle etc. ). often, the tissues involved require certain mechanical and structural properties for proper functioning. the term has also been applied to efforts to perform specific biochemical functions using cells within an artificially - created support system ( e. g. an artificial pancreas, or a bio artificial liver ). the term regenerative medicine is often used synonymously with tissue engineering, although those involved in regenerative medicine place more emphasis on the use of stem cells or progenitor cells to produce tissues. = = overview = = a commonly applied definition of tissue engineering, as stated by langer and vacanti, is " an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [ biological tissue ] function or a whole organ ". in addition, langer and vacanti also state that there are three main types of tissue engineering : cells, tissue - inducing substances, and a cells + matrix approach ( often referred to as a scaffold ). tissue engineering has also been defined as " understanding the principles of tissue growth, and applying this to produce functional replacement tissue for clinical use ". a further description goes on to say that an " underlying supposition of tissue engineering is that the employment of natural biology of the system will allow for greater success in developing therapeutic strategies aimed at the replacement, repair, maintenance, or enhancement of tissue function ". developments in the multidisciplinary field of tissue engineering have yielded a novel set of tissue replacement parts and implementation strategies. scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabric
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family
##al radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to
functions of the human body, if necessary, through the use of technology. modern medicine can replace several of the body ' s functions through the use of artificial organs and can significantly alter the function of the human body through artificial devices such as, for example, brain implants and pacemakers. the fields of bionics and medical bionics are dedicated to the study of synthetic implants pertaining to natural systems. conversely, some engineering disciplines view the human body as a biological machine worth studying and are dedicated to emulating many of its functions by replacing biology with technology. this has led to fields such as artificial intelligence, neural networks, fuzzy logic, and robotics. there are also substantial interdisciplinary interactions between engineering and medicine. both fields provide solutions to real world problems. this often requires moving forward before phenomena are completely understood in a more rigorous scientific sense and therefore experimentation and empirical knowledge is an integral part of both. medicine, in part, studies the function of the human body. the human body, as a biological machine, has many functions that can be modeled using engineering methods. the heart for example functions much like a pump, the skeleton is like a linked structure with levers, the brain produces electrical signals etc. these similarities as well as the increasing importance and application of engineering principles in medicine, led to the development of the field of biomedical engineering that uses concepts developed in both disciplines. newly emerging branches of science, such as systems biology, are adapting analytical tools traditionally used for engineering, such as systems modeling and computational analysis, to the description of biological systems. = = = art = = = there are connections between engineering and art, for example, architecture, landscape architecture and industrial design ( even to the extent that these disciplines may sometimes be included in a university ' s faculty of engineering ). the art institute of chicago, for instance, held an exhibition about the art of nasa ' s aerospace design. robert maillart ' s bridge design is perceived by some to have been deliberately artistic. at the university of south florida, an engineering professor, through a grant with the national science foundation, has developed a course that connects art and engineering. among famous historical figures, leonardo da vinci is a well - known renaissance artist and engineer, and a prime example of the nexus between art and engineering. = = = business = = = business engineering deals with the relationship between professional engineering, it systems, business administration and change management. engineering management or " management engineering " is a specialized field of management concerned with engineering practice or the engineering industry sector. the demand for management
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
##fts. autografted skin comes from a patient ' s own skin, which allows the dermis to have a faster healing rate, and the donor site can be re - harvested a few times. allograft skin often comes from cadaver skin and is mostly used to treat burn victims. lastly, xenografted skin comes from animals and provides a temporary healing structure for the skin. they assist in dermal regeneration, but cannot become part of the host skin. tissue - engineered skin is now available in commercial products. integra, originally used to only treat burns, consists of a collagen matrix and chondroitin sulfate that can be used as a skin replacement. the chondroitin sulfate functions as a component of proteoglycans, which helps to form the extracellular matrix. integra can be repopulated and revascularized while maintaining its dermal collagen architecture, making it a bioartificial organ dermagraft, another commercial - made tissue - engineered skin product, is made out of living fibroblasts. these fibroblasts proliferate and produce growth factors, collagen, and ecm proteins, that help build granulation tissue. = = = = heart = = = = since the number of patients awaiting a heart transplant is continuously increasing over time, and the number of patients on the waiting list surpasses the organ availability, artificial organs used as replacement therapy for terminal heart failure would help alleviate this difficulty. artificial hearts are usually used to bridge the heart transplantation or can be applied as replacement therapy for terminal heart malfunction. the total artificial heart ( tah ), first introduced by dr. vladimir p. demikhov in 1937, emerged as an ideal alternative. since then it has been developed and improved as a mechanical pump that provides long - term circulatory support and replaces diseased or damaged heart ventricles that cannot properly pump the blood, restoring thus the pulmonary and systemic flow. some of the current tahs include abiocor, an fda - approved device that comprises two artificial ventricles and their valves, and does not require subcutaneous connections, and is indicated for patients with biventricular heart failure. in 2010 syncardia released the portable freedom driver that allows patients to have a portable device without being confined to the hospital. = = = = kidney = = = = while kidney transplants are possible, renal failure is more often treated using an artificial kidney. the first artificial
this document aims at specifying the requirements and capturing the needs of users for building a softbody simulation system. this system has different applications ranging from computer games to surgery training which facilitates the creation and visualization of a certain softbody object. it also allows users to interact with created object at real time. a softbody or deformable object is an object whose shape changes due to an external force. deformation type varies depending on the amount of object deformation. each object can have multiple layers and each layer can have its own properties. so layers can be different in pressure, density and motion.
Question: What is the layer of tissue between the body and shell called?
A) mantle
B) cuticle
C) collagen
D) epidermis
|
A) mantle
|
Context:
from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable
the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the
an alternative explanation of 1 / f - noise in manganites is suggested and discussed
soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the
##idermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the
directly on the skin is currently available as a sole study source. the significance of epidermal electronics involves their mechanical properties, which resemble those of skin. the skin can be modeled as bilayer, composed of an epidermis having young ' s modulus ( e ) of 2 - 80 kpa and thickness of 0. 3 β 3 mm and a dermis having e of 140 - 600 kpa and thickness of 0. 05 - 1. 5 mm. together this bilayer responds plastically to tensile strains β₯ 30 %, below which the skin ' s surface stretches and wrinkles without deforming. properties of epidermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support
botany, also called plant science, is the branch of natural science and biology studying plants, especially their anatomy, taxonomy, and ecology. a botanist or plant scientist is a scientist who specialises in this field. " plant " and " botany " may be defined more narrowly to include only land plants and their study, which is also known as phytology. phytologists or botanists ( in the strict sense ) study approximately 410, 000 species of land plants, including some 391, 000 species of vascular plants ( of which approximately 369, 000 are flowering plants ) and approximately 20, 000 bryophytes. botany originated in prehistory as herbalism with the efforts of early humans to identify β and later cultivate β plants that were edible, poisonous, and possibly medicinal, making it one of the first endeavours of human investigation. medieval physic gardens, often attached to monasteries, contained plants possibly having medicinal benefit. they were forerunners of the first botanical gardens attached to universities, founded from the 1540s onwards. one of the earliest was the padua botanical garden. these gardens facilitated the academic study of plants. efforts to catalogue and describe their collections were the beginnings of plant taxonomy and led in 1753 to the binomial system of nomenclature of carl linnaeus that remains in use to this day for the naming of all biological species. in the 19th and 20th centuries, new techniques were developed for the study of plants, including methods of optical microscopy and live cell imaging, electron microscopy, analysis of chromosome number, plant chemistry and the structure and function of enzymes and other proteins. in the last two decades of the 20th century, botanists exploited the techniques of molecular genetic analysis, including genomics and proteomics and dna sequences to classify plants more accurately. modern botany is a broad subject with contributions and insights from most other areas of science and technology. research topics include the study of plant structure, growth and differentiation, reproduction, biochemistry and primary metabolism, chemical products, development, diseases, evolutionary relationships, systematics, and plant taxonomy. dominant themes in 21st - century plant science are molecular genetics and epigenetics, which study the mechanisms and control of gene expression during differentiation of plant cells and tissues. botanical research has diverse applications in providing staple foods, materials such as timber, oil, rubber, fibre and drugs, in modern horticulture, agriculture and forestry, plant propagation, breeding and genetic modification, in the synthesis of chemicals and raw materials for construction and energy production, in environmental management, and the maintenance of biodiversity. =
0. 3 β 3 mm and a dermis having e of 140 - 600 kpa and thickness of 0. 05 - 1. 5 mm. together this bilayer responds plastically to tensile strains β₯ 30 %, below which the skin ' s surface stretches and wrinkles without deforming. properties of epidermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the
the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the side to loosen or tighten the fit with a custom motor and gear, which could also be controlled by a smartphone. = = modern technologies = = on april 16, 2013, google invited " glass explorers " who had pre - ordered its wearable glasses at the 2012 google i / o conference to pick up their devices.
smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added
Question: Well suited to absorb water and dissolved minerals from the soil, thin-walled dermal cells and tiny hairs cover what basic plant structures?
A) leaves
B) roots
C) flowers
D) stems
|
B) roots
|
Context:
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
, characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc β 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the
listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to
anemia is a major health burden worldwide. examining the hemoglobin level of blood is an important way to achieve the diagnosis of anemia, but it requires blood drawing and a blood test. in this work we propose a non - invasive, fast, and cost - effective screening test for iron - deficiency anemia in peruvian young children. our initial results show promising evidence for detecting conjunctival pallor anemia and artificial intelligence techniques with photos taken with a popular smartphone.
tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active areas of research on bioreactors includes increasing production scale and refining the physiological environment, both of which could improve the efficiency and efficacy of bioreactors in research or clinical use. bioreactors are currently used to study, among other things, cell and tissue level therapies, cell and tissue response to specific physiological environment changes, and development of disease and injury. = = = long fiber generation = = = in 2013, a group from the university of tokyo developed cell laden fibers up to a meter in length and on the order of 100 ΞΌm in size. these fibers were created using a microfluidic device that forms a double coaxial laminar flow. each ' layer ' of the microfluidic device ( cells seeded in ecm, a hydrogel sheath, and finally a calcium chloride solution ). the seeded cells culture within the hydrogel sheath for several days, and then the sheath is removed with viable cell fibers. various cell types were inserted into the ecm core, including myocytes, endothelial cells, nerve cell fibers, and epithelial cell fibers. this group then showed that these fibers can be woven together to fabricate tissues or organs in a mechanism similar to textile weaving. fibrous morphologies are advantageous in that they provide an alternative to traditional scaffold design, and many organs ( such as muscle ) are composed of fibrous cells. = = = bioartificial organs = = = an artificial organ is an engineered device that can be extra corporeal or implanted to support impaired or failing organ
managing blood lipid levels is important for the treatment and prevention of diabetes, cardiovascular disease, and obesity. an easy - to - use, portable lipid blood test will accelerate more frequent testing by patients and at - risk populations. we used smartphone systems that are already familiar to many people. because smartphone systems can be carried around everywhere, blood can be measured easily and frequently. we compared the results of lipid tests with those of existing clinical diagnostic laboratory methods. we found that smartphone - based point - of - care lipid blood tests are as accurate as hospital - grade laboratory tests. our system will be useful for those who need to manage blood lipid levels to motivate them to track and control their behavior.
numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. they combined together into the global model of blood circulation. some results of numerical simulations concerning matter transport through the human organism and heart diseases are represented in the end.
Question: What is the major artery of the body, taking oxygenated blood to the organs and muscles of the body?
A) capillary
B) diastolic
C) aorta
D) carotid
|
C) aorta
|
Context:
combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active
cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single
and peripheral blood. they concluded from the results that immuno - cytochemical staining of bone marrow and peripheral blood is a sensitive and simple way to detect and quantify breast cancer cells. one of the main reasons for metastatic relapse in patients with solid tumours is the early dissemination of malignant cells. the use of monoclonal antibodies ( mabs ) specific for cytokeratins can identify disseminated individual epithelial tumor cells in the bone marrow. one study reports on having developed an immuno - cytochemical procedure for simultaneous labeling of cytokeratin component no. 18 ( ck18 ) and prostate specific antigen ( psa ). this would help in the further characterization of disseminated individual epithelial tumor cells in patients with prostate cancer. the twelve control aspirates from patients with benign prostatic hyperplasia showed negative staining, which further supports the specificity of ck18 in detecting epithelial tumour cells in bone marrow. in most cases of malignant disease complicated by effusion, neoplastic cells can be easily recognized. however, in some cases, malignant cells are not so easily seen or their presence is too doubtful to call it a positive report. the use of immuno - cytochemical techniques increases diagnostic accuracy in these cases. ghosh, mason and spriggs analysed 53 samples of pleural or peritoneal fluid from 41 patients with malignant disease. conventional cytological examination had not revealed any neoplastic cells. three monoclonal antibodies ( anti - cea, ca 1 and hmfg - 2 ) were used to search for malignant cells. immunocytochemical labelling was performed on unstained smears, which had been stored at - 20 Β°c up to 18 months. twelve of the forty - one cases in which immuno - cytochemical staining was performed, revealed malignant cells. the result represented an increase in diagnostic accuracy of approximately 20 %. the study concluded that in patients with suspected malignant disease, immuno - cytochemical labeling should be used routinely in the examination of cytologically negative samples and has important implications with respect to patient management. another application of immuno - cytochemical staining is for the detection of two antigens in the same smear. double staining with light chain antibodies and with t and b cell markers can indicate the neoplastic origin of a lymph
such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively
their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ),
development of a tumor is known to be a result of accumulation of dna changes in somatic cells. however, the processes of how dna changes are produced and how they accumulate in somatic cells are not clear. dna changes include two types : point dna mutations and chromosome changes. however, point dna mutations ( dna mutations ) are the main type of dna changes that can remain and accumulate in cells. severe dna injuries are the causes for dna mutations. however, misrepair of dna is an essential process for transforming a dna injury into a survivable and inheritable dna mutation. in somatic cells, misrepair of dna is the main source of dna mutations. since the surviving chance of a cell by misrepair of dna is low, accumulation of dna mutations can take place only possibly in the cells that can proliferate. tumors can only develop in the tissues that are regenerable. the accumulation of misrepairs of dna needs to proceed in many generations of cells, and cell transformation from a normal cell into a tumor cell is a slow and long process. however, once a cell is transformed especially when it is malignantly transformed, the deficiency of dna repair and the rapid cell proliferation will accelerate the accumulation of dna mutations. the process of accumulation of dna mutations is actually the process of aging of a genome dna. repeated cell injuries and repeated cell regenerations are the two preconditions for tumor - development. for cancer prevention, a moderate and flexible living style is advised.
to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the
of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method
Question: What do you call a growing mass of cancerous cells that pushes into nearby tissues?
A) calcium
B) tumor
C) bacteria
D) pallet
|
B) tumor
|
Context:
plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of
cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single
combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis
such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively
the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways
electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and
generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associative properties of the human brain ; and ( 3 ) across the symbolic β subsymbolic border, including hybrid. symbolic modeling evolved from the computer science paradigms using the technologies of knowledge - based systems, as well as a philosophical perspective ( e. g. " good old - fashioned artificial intelligence " ( gofai ) ). they were developed by the first cognitive researchers and later used in information engineering for expert systems. since the early 1990s it was generalized in systemics for the investigation of functional human - like intelligence models, such as personoids, and, in parallel, developed as the soar environment. recently, especially in
kidneys and the majority of those currently in use are extracorporeal, such as with hemodialysis, which filters blood directly, or peritoneal dialysis, which filters via a fluid in the abdomen. in order to contribute to the biological functions of a kidney such as producing metabolic factors or hormones, some artificial kidneys incorporate renal cells. there has been progress in the way of making these devices smaller and more transportable, or even implantable. one challenge still to be faced in these smaller devices is countering the limited volume and therefore limited filtering capabilities. bioscaffolds have also been introduced to provide a framework upon which normal kidney tissue can be regenerated. these scaffolds encompass natural scaffolds ( e. g., decellularized kidneys, collagen hydrogel, or silk fibroin ), synthetic scaffolds ( e. g., poly [ lactic - co - glycolic acid ] or other polymers ), or a combination of two or more natural and synthetic scaffolds. these scaffolds can be implanted into the body either without cell treatment or after a period of stem cell seeding and incubation. in vitro and in vivo studies are being conducted to compare and optimize the type of scaffold and to assess whether cell seeding prior to implantation adds to the viability, regeneration and effective function of the kidneys. a recent systematic review and meta - analysis compared the results of published animal studies and identified that improved outcomes are reported with the use of hybrid ( mixed ) scaffolds and cell seeding ; however, the meta - analysis of these results were not in agreement with the evaluation of descriptive results from the review. therefore, further studies involving larger animals and novel scaffolds, and more transparent reproduction of previous studies are advisable. = = = biomimetics = = = biomimetics is a field that aims to produce materials and systems that replicate those present in nature. in the context of tissue engineering, this is a common approach used by engineers to create materials for these applications that are comparable to native tissues in terms of their structure, properties, and biocompatibility. material properties are largely dependent on physical, structural, and chemical characteristics of that material. subsequently, a biomimetic approach to system design will become significant in material integration, and a sufficient understanding of biological processes and interactions will be necessary. replication of biological systems and
Question: What is the major intracellular cation?
A) potassium
B) sodium
C) glucose
D) magnesium
|
A) potassium
|
Context:
not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for a protein, known as a gene ' s promoter, is reintroduced into an organism with the protein coding region replaced by a reporter gene such as gfp or an enzyme that catalyses the production of a dye. thus the time and place where a particular protein is produced can be observed. expression studies can be taken a step further by altering the promoter to find which pieces are crucial for the proper expression of the gene and are actually bound by transcription factor proteins ; this process is known as promoter bashing. = = = industrial = = = organisms can have their cells transformed with a gene coding for a useful protein, such as an enzyme, so that they will overexpress the desired protein. mass quantities of the protein can then be manufactured by growing the transformed organism in bioreactor equipment using industrial fermentation, and then purifying the protein. some genes do not work well in bacteria, so yeast, insect cells or mammalian cells can also be used. these techniques are used to produce medicines such as insulin, human growth hormone, and vaccines, supplements such as tryptophan, aid in the production of food ( chymosin in cheese making ) and fuels. other applications with genetically engineered bacteria could involve making them perform tasks outside their natural cycle, such as making biofuels, cleaning up oil spills, carbon and other toxic waste and detecting arsenic in drinking water. certain genetically modified microbes can also be used in biomining and bioremediation, due to their ability to extract heavy metals from their environment and incorporate them into compounds that are more easily recover
is opened and the dna is purified. the gene is separated by using restriction enzymes to cut the dna into fragments or polymerase chain reaction ( pcr ) to amplify up the gene segment. these segments can then be extracted through gel electrophoresis. if the chosen gene or the donor organism ' s genome has been well studied it may already be accessible from a genetic library. if the dna sequence is known, but no copies of the gene are available, it can also be artificially synthesised. once isolated the gene is ligated into a plasmid that is then inserted into a bacterium. the plasmid is replicated when the bacteria divide, ensuring unlimited copies of the gene are available. the rk2 plasmid is notable for its ability to replicate in a wide variety of single - celled organisms, which makes it suitable as a genetic engineering tool. before the gene is inserted into the target organism it must be combined with other genetic elements. these include a promoter and terminator region, which initiate and end transcription. a selectable marker gene is added, which in most cases confers antibiotic resistance, so researchers can easily determine which cells have been successfully transformed. the gene can also be modified at this stage for better expression or effectiveness. these manipulations are carried out using recombinant dna techniques, such as restriction digests, ligations and molecular cloning. = = = inserting dna into the host genome = = = there are a number of techniques used to insert genetic material into the host genome. some bacteria can naturally take up foreign dna. this ability can be induced in other bacteria via stress ( e. g. thermal or electric shock ), which increases the cell membrane ' s permeability to dna ; up - taken dna can either integrate with the genome or exist as extrachromosomal dna. dna is generally inserted into animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into
prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then
conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes
the usual modelling of the syllogisms of the organon by a calculus of classes does not include relations. aristotle may however have envisioned them in the first two books as the category of relatives, where he allowed them to compose with themselves. composition is the main operation in combinatory logic, which therefore offers itself for a new kind of modelling. the resulting calculus includes also composition of predicates by logical connectives.
founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype,
used to manufacture existing medicines relatively easily and cheaply. the first genetically engineered products were medicines designed to treat human diseases. to cite one example, in 1978 genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium escherichia coli. insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of
the broad definition of " utilizing a biotechnological system to make products ". indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise. agriculture has been theorized to have become the dominant way of producing food since the neolithic revolution. through early biotechnology, the earliest farmers selected and bred the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united
Question: The enzyme pepsin plays an important role in the digestion of proteins by breaking down intact protein to what short-chain amino acids?
A) protons
B) lipids
C) peptides
D) proteins
|
C) peptides
|
Context:
the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio
hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility
in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio - chronological and cosmological perspective ' by robert v. gentry. " baillieul noted that gentry was a physicist with no background in geology and given the absence of this background, gentry had misrepresented the geological context from which the specimens were collected. additionally, he noted that gentry relied on research from the
quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time.
the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self
the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the
which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus
radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of releasing nuclear material into the surrounding environment. the most significant meltdowns occurred at three mile island in pennsylvania and chernobyl in the soviet ukraine. the earthquake and tsunami on march 11, 2011 caused serious damage to three nuclear reactors and a spent fuel storage pond at the fukushima daiichi nuclear power plant in japan. military reactors that experienced similar accidents were windscale in the united kingdom and sl - 1 in the united states. military accidents usually involve the loss or unexpected detonation of nuclear weapons. the castle bravo test in 1954 produced a larger yield than expected, which contaminated nearby islands, a japanese fishing boat ( with one fatality ), and raised concerns about contaminated fish in japan. in the 1950s through 1970s, several nuclear bombs were lost from submarines and aircraft, some of which have never been recovered. the last twenty years have seen a marked decline in such accidents. = = examples of environmental benefits = = proponents of nuclear energy note that annually, nuclear - generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed / recycled for other energy uses. proponents of nuclear energy also bring to attention the opportunity cost of utilizing other forms of electricity. for example, the environmental protection agency estimates that coal kills 30, 000 people a year, as a result of its environmental impact, while 60 people died in the chernobyl disaster. a real world example of impact provided by proponents of nuclear energy is the 650, 000 ton increase in carbon emissions in the two months following the closure of the vermont yankee nuclear plant. = = see also = = atomic age lists of nuclear disasters and radioactive incidents nuclear power debate outline of nuclear technology radiology = = references = = = = external links = = nuclear energy institute β beneficial uses
the universe is found to have undergone several phases in which the gravitational constant had different behaviors. during some epochs the energy density of the universe remained constant and the universe remained static. in the radiation dominated epoch the radiation field satisfies stefan ' s formula while the scale factor varies linearly with time. the model enhances the formation of the structure in the universe as observed today.
the decay rate for isotopes subject to extreme pressures, those differences were too small to significantly impact date estimates. the constancy of the decay rates is also governed by first principles in quantum mechanics, wherein any deviation in the rate would require a change in the fundamental constants. according to these principles, a change in the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionucl
Question: What remains a constant of radioactive substance over time?
A) acidity
B) rate of decay
C) volatility
D) temperature
|
B) rate of decay
|
Context:
by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the
and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying
by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which
##al nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the
groups of organisms. divisions related to the broader historical sense of botany include bacteriology, mycology ( or fungology ), and phycology β respectively, the study of bacteria, fungi, and algae β with lichenology as a subfield of mycology. the narrower sense of botany as the study of embryophytes ( land plants ) is called phytology. bryology is the study of mosses ( and in the broader sense also liverworts and hornworts ). pteridology ( or filicology ) is the study of ferns and allied plants. a number of other taxa of ranks varying from family to subgenus have terms for their study, including agrostology ( or graminology ) for the study of grasses, synantherology for the study of composites, and batology for the study of brambles. study can also be divided by guild rather than clade or grade. for example, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical
aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β pieces of dna that can move between cells β while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e.
ranks varying from family to subgenus have terms for their study, including agrostology ( or graminology ) for the study of grasses, synantherology for the study of composites, and batology for the study of brambles. study can also be divided by guild rather than clade or grade. for example, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing
organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae,
invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β pieces of dna
, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both
Question: Terrestrial ecosystems, also known for their diversity, are grouped into large categories called what?
A) bisomes
B) monomes
C) substrates
D) biomes
|
D) biomes
|
Context:
an important question of theoretical physics is whether sound is able to propagate in vacuums at all and if this is the case, then it must lead to the reinterpretation of one zero - restmass particle which corresponds to vacuum - sound waves. taking the electron - neutrino as the corresponding particle, its observed non - vanishing rest - energy may only appear for neutrino - propagation inside material media. the idea may also influence the physics of dense matter, restricting the maximum speed of sound, both in vacuums and in matter to the speed of light.
, lightning strikes, tornadoes, building fires, wildfires, and mass shootings disabling most of the system if not the entirety of it. geographic redundancy locations can be more than 621 miles ( 999 km ) continental, more than 62 miles apart and less than 93 miles ( 150 km ) apart, less than 62 miles apart, but not on the same campus, or different buildings that are more than 300 feet ( 91 m ) apart on the same campus. the following methods can reduce the risks of damage by a fire conflagration : large buildings at least 80 feet ( 24 m ) to 110 feet ( 34 m ) apart, but sometimes a minimum of 210 feet ( 64 m ) apart. : 9 high - rise buildings at least 82 feet ( 25 m ) apart : 12 open spaces clear of flammable vegetation within 200 feet ( 61 m ) on each side of objects different wings on the same building, in rooms that are separated by more than 300 feet ( 91 m ) different floors on the same wing of a building in rooms that are horizontally offset by a minimum of 70 feet ( 21 m ) with fire walls between the rooms that are on different floors two rooms separated by another room, leaving at least a 70 - foot gap between the two rooms there should be a minimum of two separated fire walls and on opposite sides of a corridor geographic redundancy is used by amazon web services ( aws ), google cloud platform ( gcp ), microsoft azure, netflix, dropbox, salesforce, linkedin, paypal, twitter, facebook, apple icloud, cisco meraki, and many others to provide geographic redundancy, high availability, fault tolerance and to ensure availability and reliability for their cloud services. as another example, to minimize risk of damage from severe windstorms or water damage, buildings can be located at least 2 miles ( 3. 2 km ) away from the shore, with an elevation of at least 5 feet ( 1. 5 m ) above sea level. for additional protection, they can be located at least 100 feet ( 30 m ) away from flood plain areas. = = functions of redundancy = = the two functions of redundancy are passive redundancy and active redundancy. both functions prevent performance decline from exceeding specification limits without human intervention using extra capacity. passive redundancy uses excess capacity to reduce the impact of component failures. one common form of passive redundancy is the extra strength of cabling and struts used in bridges.
the sn explosion in the closed binary can give the magnetospheric flare possessing the properties of grb. the sn shock, flowing around the magnetosphere of a magnetized neutron star or a white dwarf, produces a narrow magnetic tail 10 ^ 9 cm long, 10 ^ 8 cm wide and a magnetic field of 10 ^ 6 gauss. fast particles ( lorentz factor of 10 ^ 4 ), generated in the tail by reconnection processes, radaite gamma rays of the 100 kev - 1 mev energies. the duration of radiation t < 1 sec corresponds to a short grb. apart, the powerful shock can tear and accelerate part of the tail. that is the relativistic, strongly magnetized jet, producing gamma radiation and also x - rays and optic afterglow. that is long ( t > 10 sec ) grb. the duration of the afterglow is inversly proportional to the photon energy and is several months for optic.
when fast radio burst ( frb ) waves propagate through the local ( < 1 pc ) environment of the frb source, electrons in the plasma undergo large - amplitude oscillations. the finite - amplitude effects cause the effective plasma frequency and cyclotron frequency to be dependent on the wave strength. the dispersion measure and rotation measure should therefore vary slightly from burst to burst for a repeating source, depending on the luminosity and frequency of the individual burst. furthermore, free - free absorption of strong waves is suppressed due to the accelerated electrons ' reduced energy exchange in coulomb collisions. this allows bright low - frequency bursts to propagate through an environment that would be optically thick to low - amplitude waves. given a large sample of bursts from a repeating source, it would be possible to use the deficit of low - frequency and low - luminosity bursts to infer the emission measure of the local intervening plasma and its distance from the source. information about the local environment will shed light on the nature of frb sources.
difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february
, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union in 1990, the united kingdom in 1991, and both france and china continued testing until 1996. after signing the comprehensive test ban treaty in 1996 ( which had as of 2011 not entered into force ), all of these states have pledged to discontinue all nuclear testing. non - signatories india and pakistan last tested nuclear weapons in 1998. nuclear weapons are the most destructive weapons known - the archetypal weapons of mass destruction. throughout the cold war, the opposing powers had huge nuclear arsenals, sufficient to kill hundreds of millions of people. generations of people grew up under the shadow of nuclear devastation, portrayed in films such as dr. strangelove and the atomic cafe. however, the tremendous energy release in the detonation of a nuclear weapon also suggested the possibility of a new energy source. = = civilian uses = = = = = nuclear power = = = nuclear power is a type of nuclear technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. nuclear energy is produced by a controlled nuclear chain reaction which creates heat β and which is used to boil water, produce steam, and drive a steam turbine. the turbine is used to generate electricity and / or to do mechanical work. currently nuclear
a rydberg gas of no entrained in a supersonic molecular beam releases electrons as it evolves to form an ultracold plasma. the size of this signal, compared with that extracted by the subsequent application of a pulsed electric field, determines the absolute magnitude of the plasma charge. this information, combined with the number density of ions, supports a simple thermochemical model that explains the evolution of the plasma to an ultracold electron temperature.
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
the purpose of the given work is detailed research of toroidal shock wave movement process to the center of symmetry in air by normal atmosphere pressure. the wave is generated by plazma which is generated by a ring discharger.
ultra high energy particles arrive at earth constantly. they provide a beam at energies higher than any man - made accelerator, but at a very low rate. two large experiments, the pierre auger observatory and the telescope array experiment, have been taking data for several years now covering together the whole sky. i summarize the most recent measurements from both experiments, i compare their results and, for a change, i highlight their agreements.
Question: High explosives create shock waves that exceed the speed of sound, a phenomenon that goes by what term?
A) turbulence
B) ion speed
C) supersonic
D) light speed
|
C) supersonic
|
Context:
plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of
tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. while it was once categorized as a sub - field of biomaterials, having grown in scope and importance, it can be considered as a field of its own. while most definitions of tissue engineering cover a broad range of applications, in practice, the term is closely associated with applications that repair or replace portions of or whole tissues ( i. e. organs, bone, cartilage, blood vessels, bladder, skin, muscle etc. ). often, the tissues involved require certain mechanical and structural properties for proper functioning. the term has also been applied to efforts to perform specific biochemical functions using cells within an artificially - created support system ( e. g. an artificial pancreas, or a bio artificial liver ). the term regenerative medicine is often used synonymously with tissue engineering, although those involved in regenerative medicine place more emphasis on the use of stem cells or progenitor cells to produce tissues. = = overview = = a commonly applied definition of tissue engineering, as stated by langer and vacanti, is " an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [ biological tissue ] function or a whole organ ". in addition, langer and vacanti also state that there are three main types of tissue engineering : cells, tissue - inducing substances, and a cells + matrix approach ( often referred to as a scaffold ). tissue engineering has also been defined as " understanding the principles of tissue growth, and applying this to produce functional replacement tissue for clinical use ". a further description goes on to say that an " underlying supposition of tissue engineering is that the employment of natural biology of the system will allow for greater success in developing therapeutic strategies aimed at the replacement, repair, maintenance, or enhancement of tissue function ". developments in the multidisciplinary field of tissue engineering have yielded a novel set of tissue replacement parts and implementation strategies. scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabric
as you read these words you are using a complex biological neural network. you have a highly interconnected set of some neurons to facilitate your reading, breathing, motion and thinking. each of your biological neurons, a rich assembly of tissue and chemistry, has the complexity, if not the speed, of a microprocessor. some of your neural structure was with you at birth. other parts have been established by experience.
##ilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla β polylactic acid. this is a polyester which degrades within the human body to form lactic acid, a naturally occurring chemical which is easily removed from the body. similar materials are polyglycolic acid ( pga ) and polycaprolactone ( pcl ) : their degradation mechanism is similar to that of pla, but pcl degrades slower and pga degrades faster. pla is commonly combined with pga to create poly - lactic - co - glycolic acid ( plga ). this is especially useful because the degradation of plga can be tailored by altering the weight percentages of pla and pga : more pla β slower degradation, more pga β faster degradation. this tunability, along with its biocompatibility, makes it an extremely useful material for scaffold creation. scaffolds may also be constructed from natural materials : in particular different derivatives of the extracellular matrix have been studied to evaluate their ability to support cell growth. protein based materials β such as collagen, or fibrin, and polysaccharidic materials - like chitosan or glycosaminoglycans ( gags ), have all proved suitable in terms of cell compatibility. among gags, hyaluronic acid, possibly in combination with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond formation. the use of thiolated polymers ( thiomers ) as scaffold material for tissue engineering was initially introduced at the 4th central european symposium on pharmaceutical technology in vienna 2001. as thiomers are biocompatible, exhibit cellular mimicking properties and efficiently support proliferation and differentiation of various cell types,
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
a comparison of the sensitivities of methods which allow us to determine the coordinates of a moving hot body is made.
the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. if a mixture of different materials is used together in a ceramic, the sintering temperature is sometimes above the melting point of one minor component β a liquid phase sintering. this results in shorter sintering times compared to solid state sintering. such liquid phase sintering involves in faster diffusion processes and may result in abnormal grain growth. = = strength of ceramics = = a material ' s strength is dependent on its microstructure. the engineering processes to which a material is subjected can alter its microstructure. the variety of strengthening mechanisms that alter the strength of a material include the mechanism of grain boundary strengthening. thus, although yield strength is maximized with decreasing grain size, ultimately, very small grain sizes make the material brittle. considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending on its microstructural properties and the desired end effect. the relation between yield stress and grain size is described mathematically by the hall - petch equation which is Ο y = Ο 0 + k y d { \ displaystyle \ sigma _ { y } = \ sigma _ { 0 } + { k _ { y } \ over {
three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu
Question: What do you call a structure composed of two or more types of tissues that work together to do a specific task?
A) cell
B) marrow
C) system
D) organ
|
D) organ
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.