problem
stringlengths 10
7.44k
| answer
stringlengths 1
270
| difficulty
stringclasses 8
values |
---|---|---|
An $8\times 8$ chessboard is made of unit squares. We put a rectangular piece of paper with sides of length 1 and 2. We say that the paper and a single square overlap if they share an inner point. Determine the maximum number of black squares that can overlap the paper. | 6 | 1/8 |
Given \( f(x) \) is an odd function defined on \( \mathbf{R} \), \( f(1) = 1 \), and for any \( x < 0 \), it holds that
\[
f\left(\frac{1}{x}\right) = x f\left(\frac{1}{1-x}\right) .
\]
Then find the value of the sum
\[
\sum_{k=1}^{1009} f\left(\frac{1}{k}\right) f\left(\frac{1}{2019-k}\right).
\] | \frac{2^{2016}}{2017!} | 4/8 |
Choose $n$ numbers from the 2017 numbers $1, 2, \cdots, 2017$ such that the difference between any two chosen numbers is a composite number. What is the maximum value of $n$? | 505 | 5/8 |
In the Cartesian coordinate system $xOy$, the parametric equation of curve $C$ is $$\begin{cases} x=3\cos \theta \\ y=2\sin \theta \end{cases} (\theta \text{ is the parameter}),$$ and the parametric equation of the line $l$ is $$\begin{cases} x=t-1 \\ y=2t-a-1 \end{cases} (t \text{ is the parameter}).$$
(Ⅰ) If $a=1$, find the length of the line segment cut off by line $l$ from curve $C$.
(Ⅱ) If $a=11$, find a point $M$ on curve $C$ such that the distance from $M$ to line $l$ is minimal, and calculate the minimum distance. | 2\sqrt{5}-2\sqrt{2} | 3/8 |
Given that the terminal side of angle $\alpha$ is in the second quadrant and intersects the unit circle at point $P(m, \frac{\sqrt{15}}{4})$.
$(1)$ Find the value of the real number $m$;
$(2)$ Let $f(\alpha) = \frac{\cos(2\pi - \alpha) + \tan(3\pi + \alpha)}{\sin(\pi - \alpha) \cdot \cos(\alpha + \frac{3\pi}{2})}$. Find the value of $f(\alpha)$. | -\frac{4 + 16\sqrt{15}}{15} | 7/8 |
Let \( a \) be a real number in the interval \( (0,1) \) and consider the sequence \( \{x_n \mid n=0,1,2, \cdots\} \) defined as follows:
\[ x_0 = a, \]
\[ x_n = \frac{4}{\pi^2} \left( \arccos{x_{n-1}} + \frac{\pi}{2} \right) \cdot \arcsin{x_{n-1}}, \quad n=1,2,3, \cdots \]
Prove that the sequence \( \{x_n\} \) has a limit as \( n \) approaches infinity and find this limit. | 1 | 2/8 |
In a convex quadrilateral \(ABCD\), \(\overrightarrow{BC} = 2 \overrightarrow{AD}\). Point \(P\) is a point in the plane of the quadrilateral such that \(\overrightarrow{PA} + 2020 \overrightarrow{PB} + \overrightarrow{PC} + 2020 \overrightarrow{PD} = \mathbf{0}\). Let \(s\) and \(t\) be the areas of quadrilateral \(ABCD\) and triangle \(PAB\), respectively. Then \(\frac{t}{s} =\) ______. | 337/2021 | 4/8 |
Determine all quadruplets $(a, b, c, d)$ of strictly positive real numbers satisfying $a b c d=1$ and:
\[
a^{2012} + 2012b = 2012c + d^{2012}
\]
and
\[
2012a + b^{2012} = c^{2012} + 2012d
\] | (,\frac{1}{},\frac{1}{},) | 4/8 |
Given the plane vectors $a, b,$ and $c$ such that:
$$
\begin{array}{l}
|\boldsymbol{a}|=|\boldsymbol{b}|=|\boldsymbol{c}|=2, \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\mathbf{0}.
\end{array}
$$
If $0 \leqslant x \leqslant \frac{1}{2} \leqslant y \leqslant 1$, then find the minimum value of
$$
|x(\boldsymbol{a}-\boldsymbol{c})+y(\boldsymbol{b}-\boldsymbol{c})+\boldsymbol{c}|.
$$ | \frac{1}{2} | 6/8 |
Given the hyperbola \( C: \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 \) (where \( a, b > 0 \)), with left and right foci denoted as \( F_{1} \) and \( F_{2} \) respectively, and given that the hyperbola intersects with the circle \( x^{2}+y^{2}=r^{2} \) (where \( r > 0 \)) at a point \( P \). If the maximum value of \( \frac{\left| P F_{1} \right| + \left| P F_{2} \right|}{r} \) is \( 4 \sqrt{2} \), determine the eccentricity of the hyperbola \( C \). | 2\sqrt{2} | 1/8 |
Nonzero real numbers $x$, $y$, $a$, and $b$ satisfy $x < a$ and $y < b$. How many of the following inequalities must be true?
$\textbf{(I)}\ x+y < a+b\qquad$
$\textbf{(II)}\ x-y < a-b\qquad$
$\textbf{(III)}\ xy < ab\qquad$
$\textbf{(IV)}\ \frac{x}{y} < \frac{a}{b}$
$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$ | \textbf{(B)}\1 | 1/8 |
The sides \( AB \) and \( CD \) of quadrilateral \( ABCD \) intersect at point \( O \). Draw any line \( l \) through \( O \) that intersects \( AC \) at \( P \), and intersects \( BD \) at \( Q \). Through \( A \), \( B \), \( C \), and \( D \), draw any conic section, which intersects \( l \) at \( R \) and \( S \). Prove that \( \frac{1}{OP} + \frac{1}{OQ} = \frac{1}{OR} + \frac{1}{OS} \). | \frac{1}{OP}+\frac{1}{OQ}=\frac{1}{OR}+\frac{1}{OS} | 1/8 |
The base of pyramid \( S A B C D \) is a rectangle \( A B C D \), and its height is the edge \( S A = 25 \). Point \( P \) lies on the median \( D M \) of face \( S C D \), point \( Q \) lies on the diagonal \( B D \), and lines \( A P \) and \( S Q \) intersect. Find the length of \( P Q \) if \( B Q : Q D = 3 : 2 \). | 10 | 7/8 |
Let $
f(n) =
\begin{cases}
n^2+1 & \text{if }n\text{ is odd} \\
\dfrac{n}{2} & \text{if }n\text{ is even}
\end{cases}.
$
For how many integers $n$ from 1 to 100, inclusive, does $f ( f (\dotsb f (n) \dotsb )) = 1$ for some number of applications of $f$? | 7 | 5/8 |
You are given the digits $0$, $1$, $2$, $3$, $4$, $5$. Form a four-digit number with no repeating digits.
(I) How many different four-digit numbers can be formed?
(II) How many of these four-digit numbers have a tens digit that is larger than both the units digit and the hundreds digit? | 100 | 5/8 |
Let $P(x), Q(x), $ and $R(x)$ be three monic quadratic polynomials with only real roots, satisfying $$ P(Q(x))=(x-1)(x-3)(x-5)(x-7) $$ $$ Q(R(x))=(x-2)(x-4)(x-6)(x-8) $$ for all real numbers $x.$ What is $P(0)+Q(0)+R(0)?$ *Proposed by Kyle Lee* | 129 | 5/8 |
Find all strictly increasing sequences of natural numbers \( a_{1}, a_{2}, \ldots, a_{n}, \ldots \) in which \( a_{2} = 2 \) and \( a_{n m} = a_{n} a_{m} \) for any natural numbers \( n \) and \( m \). | a_n=n | 7/8 |
Neznaika is drawing closed paths inside a $5 \times 8$ rectangle, traveling along the diagonals of $1 \times 2$ rectangles. In the illustration, an example of a path passing through 12 such diagonals is shown. Help Neznaika draw the longest possible path. | 20 | 1/8 |
Sean enters a classroom in the Memorial Hall and sees a 1 followed by 2020 0's on the blackboard. As he is early for class, he decides to go through the digits from right to left and independently erase the $n$th digit from the left with probability $\frac{n-1}{n}$. (In particular, the 1 is never erased.) Compute the expected value of the number formed from the remaining digits when viewed as a base-3 number. (For example, if the remaining number on the board is 1000 , then its value is 27 .) | 681751 | 1/8 |
Show that if \(0 \leq a, b, c \leq 1\), then
$$
\frac{a}{bc+1} + \frac{b}{ac+1} + \frac{c}{ab+1} \leq 2
$$ | 2 | 5/8 |
Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose that Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let $s$ denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of $s$? | 13 | 7/8 |
Two adjacent faces of a tetrahedron, each being equilateral triangles with side length 1, form a dihedral angle of 45 degrees. The tetrahedron is rotated around the common edge of these faces. Find the maximum area of the projection of the rotating tetrahedron onto the plane containing this edge. | \frac{\sqrt{3}}{4} | 1/8 |
Petya's bank account contains $500. The bank allows only two types of transactions: withdrawing $300 or adding $198. What is the maximum amount Petya can withdraw from the account, if he has no other money? | 300 | 1/8 |
The graph of $y=g(x)$, defined on a limited domain shown, is conceptualized through the function $g(x) = \frac{(x-6)(x-4)(x-2)(x)(x+2)(x+4)(x+6)}{945} - 2.5$. If each horizontal grid line represents a unit interval, determine the sum of all integers $d$ for which the equation $g(x) = d$ has exactly six solutions. | -5 | 1/8 |
For positive integers \( n \), let \( S_n \) be the set of integers \( x \) such that \( n \) distinct lines, no three concurrent, can divide a plane into \( x \) regions. For example, \( S_2 = \{3, 4\} \), because the plane is divided into 3 regions if the two lines are parallel, and 4 regions otherwise. What is the minimum \( i \) such that \( S_i \) contains at least 4 elements? | 4 | 6/8 |
A town's reservoir has a usable water volume of 120 million cubic meters. Assuming the annual precipitation remains unchanged, it can sustain a water supply for 160,000 people for 20 years. After urbanization and the migration of 40,000 new residents, the reservoir will only be able to maintain the water supply for the residents for 15 years.
Question: What is the annual precipitation in million cubic meters? What is the average annual water consumption per person in cubic meters? | 50 | 3/8 |
Solve the following equation:
\[ \sqrt{x+1999 \sqrt{x+1999 \sqrt{x+1999 \sqrt{x+1999 \sqrt{2000 x}}}}}=x \] | 02000 | 4/8 |
Prove that $ \sum_{k \equal{} 0}^{995} \frac {( \minus{} 1)^k}{1991 \minus{} k} {1991 \minus{} k \choose k} \equal{} \frac {1}{1991}$ | \frac{1}{1991} | 1/8 |
Find all functions \( f:[1,+\infty) \rightarrow [1,+\infty) \) that satisfy the following conditions:
1. \( f(x) \leqslant 2(x+1) \);
2. \( f(x+1) = \frac{1}{x}\left[(f(x))^{2}-1\right] \). | f(x)=x+1 | 1/8 |
Let $b(n)$ be the number of digits in the base -4 representation of $n$. Evaluate $\sum_{i=1}^{2013} b(i)$. | 12345 | 1/8 |
If $a$, $b$, $c$, and $d$ are the solutions of the equation $x^4 - bx - 3 = 0$, then an equation whose solutions are $\frac{a + b + c}{d^2}$, $\frac{a + b + d}{c^2}$, $\frac{a + c + d}{b^2}$, $\frac{b + c + d}{a^2}$ is | 3x^4 - bx^3 - 1 = 0 | 5/8 |
In counting $n$ colored balls, some red and some black, it was found that $49$ of the first $50$ counted were red.
Thereafter, $7$ out of every $8$ counted were red. If, in all, $90$ % or more of the balls counted were red, the maximum value of $n$ is: | 210 | 7/8 |
In a similar setup, square $PQRS$ is constructed along diameter $PQ$ of a semicircle. The semicircle and square $PQRS$ are coplanar. Line segment $PQ$ has a length of 8 centimeters. If point $N$ is the midpoint of arc $PQ$, what is the length of segment $NS$? | 4\sqrt{10} | 2/8 |
What is the hundreds digit of $(20! - 15!)?$ | 0 | 7/8 |
Given that \(ABCD\) is a parallelogram, where \(\overrightarrow{AB} = \vec{a}\) and \(\overrightarrow{AC} = \vec{b}\), and \(E\) is the midpoint of \(CD\), find \(\overrightarrow{EB} = \quad\). | \frac{3}{2}\vec{}-\vec{b} | 7/8 |
Let the real numbers \( x \) and \( y \) satisfy the system of equations:
\[ \begin{cases}
x^{3} - 3x^{2} + 2026x = 2023 \\
y^{3} + 6y^{2} + 2035y = -4053
\end{cases} \]
Find \( x + y \). | -1 | 7/8 |
Consider the integer \[N = 9 + 99 + 999 + 9999 + \cdots + \underbrace{99\ldots 99}_\text{321 digits}.\]Find the sum of the digits of $N$. | 342 | 5/8 |
The sequence of positive integers $a_1, a_2, \dots$ has the property that $\gcd(a_m, a_n) > 1$ if and only if $|m - n| = 1$ . Find the sum of the four smallest possible values of $a_2$ . | 42 | 2/8 |
Given \(0 < a < b\), two lines \(l\) and \(m\) pass through fixed points \(A(a, 0)\) and \(B(b, 0)\) respectively, intersecting the parabola \(y^2 = x\) at four distinct points. When these four points lie on a common circle, find the locus of the intersection point \(P\) of lines \(l\) and \(m\). | \frac{b}{2} | 1/8 |
A digital watch displays hours and minutes in a 24-hour format. Calculate the largest possible sum of the digits in this display. | 24 | 7/8 |
The numbers $1,2,\ldots,64$ are written in the squares of an $8\times 8$ chessboard, one number to each square. Then $2\times 2$ tiles are placed on the chessboard (without overlapping) so that each tile covers exactly four squares whose numbers sum to less than $100$. Find, with proof, the maximum number of tiles that can be placed on the chessboard, and give an example of a distribution of the numbers $1,2,\ldots,64$ into the squares of the chessboard that admits this maximum number of tiles. | 12 | 2/8 |
Given an ellipse $$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$$ with eccentricity $$\frac{\sqrt{3}}{2}$$, and the distance from its left vertex to the line $x + 2y - 2 = 0$ is $$\frac{4\sqrt{5}}{5}$$.
(Ⅰ) Find the equation of ellipse C;
(Ⅱ) Suppose line $l$ intersects ellipse C at points A and B. If the circle with diameter AB passes through the origin O, investigate whether the distance from point O to line AB is a constant. If so, find this constant; otherwise, explain why;
(Ⅲ) Under the condition of (Ⅱ), try to find the minimum value of the area $S$ of triangle $\triangle AOB$. | \frac{4}{5} | 2/8 |
The square quilt block shown is made from sixteen unit squares, where eight of these squares have been divided in half diagonally to form triangles. Each triangle is shaded. What fraction of the square quilt is shaded? Express your answer as a common fraction. | \frac{1}{4} | 5/8 |
How many of the integers between 1 and 1500, inclusive, can be expressed as the difference of the squares of two positive integers? | 1124 | 1/8 |
Find the maximum of the expression \( x(1+x)(3-x) \) among positive numbers without using calculus. | \frac{70+26\cdot\sqrt{13}}{27} | 1/8 |
How many four-digit even numbers do not contain the digits 5 and 6? | 1792 | 7/8 |
For which real numbers $k > 1$ does there exist a bounded set of positive real numbers $S$ with at
least $3$ elements such that $$ k(a - b)\in S $$ for all $a,b\in S $ with $a > b?$ Remark: A set of positive real numbers $S$ is bounded if there exists a positive real number $M$ such that $x < M$ for all $x \in S.$ | 2 | 1/8 |
What is the largest integer $n$ such that $n$ is divisible by every integer less than $\sqrt[3]{n}$ ? | 420 | 7/8 |
A customer who intends to purchase an appliance has three coupons, only one of which may be used:
Coupon 1: $10\%$ off the listed price if the listed price is at least $\textdollar50$
Coupon 2: $\textdollar 20$ off the listed price if the listed price is at least $\textdollar100$
Coupon 3: $18\%$ off the amount by which the listed price exceeds $\textdollar100$
For which of the following listed prices will coupon $1$ offer a greater price reduction than either coupon $2$ or coupon $3$?
$\textbf{(A) }\textdollar179.95\qquad \textbf{(B) }\textdollar199.95\qquad \textbf{(C) }\textdollar219.95\qquad \textbf{(D) }\textdollar239.95\qquad \textbf{(E) }\textdollar259.95\qquad$ | \textbf{(C)}\\textdollar219.95 | 1/8 |
Define $\operatorname{gcd}(a, b)$ as the greatest common divisor of integers $a$ and $b$. Given that $n$ is the smallest positive integer greater than 1000 that satisfies:
$$
\begin{array}{l}
\operatorname{gcd}(63, n+120) = 21, \\
\operatorname{gcd}(n+63, 120) = 60
\end{array}
$$
Then the sum of the digits of $n$ is ( ). | 18 | 6/8 |
We say a 2023-tuple of nonnegative integers \(\left(a_{1}, a_{2}, \ldots a_{2023}\right)\) is sweet if the following conditions hold:
- \(a_{1}+a_{2}+\ldots+a_{2023}=2023\),
- \(\frac{a_{1}}{2^{1}}+\frac{a_{2}}{2^{2}}+\ldots+\frac{a_{2023}}{2^{2023}} \leq 1\).
Determine the greatest positive integer \(L\) such that
\[
a_{1}+2a_{2}+\ldots+2023a_{2023} \geq L
\]
holds for every sweet 2023-tuple \(\left(a_{1}, a_{2}, \ldots, a_{2023}\right)\). | 22228 | 1/8 |
From any \( n \)-digit \((n>1)\) number \( a \), we can obtain a \( 2n \)-digit number \( b \) by writing two copies of \( a \) one after the other. If \( \frac{b}{a^{2}} \) is an integer, find the value of this integer. | 7 | 5/8 |
A stack contains 300 cards: 100 white, 100 black, and 100 red. For each white card, the number of black cards below it is counted; for each black card, the number of red cards below it is counted; and for each red card, the number of white cards below it is counted. Find the maximum possible value of the sum of these 300 counts. | 20000 | 1/8 |
Which one of the following combinations of given parts does not determine the indicated triangle?
$\textbf{(A)}\ \text{base angle and vertex angle; isosceles triangle} \\ \textbf{(B)}\ \text{vertex angle and the base; isosceles triangle} \\ \textbf{(C)}\ \text{the radius of the circumscribed circle; equilateral triangle} \\ \textbf{(D)}\ \text{one arm and the radius of the inscribed circle; right triangle} \\ \textbf{(E)}\ \text{two angles and a side opposite one of them; scalene triangle}$ | \textbf{(A)} | 1/8 |
Suppose that \( X \) and \( Y \) are angles with \( \tan X = \frac{1}{m} \) and \( \tan Y = \frac{a}{n} \) for some positive integers \( a, m, \) and \( n \). Determine the number of positive integers \( a \leq 50 \) for which there are exactly 6 pairs of positive integers \( (m, n) \) with \( X + Y = 45^{\circ} \).
(Note: The formula \( \tan (X + Y) = \frac{\tan X + \tan Y}{1 - \tan X \tan Y} \) may be useful.) | 12 | 6/8 |
Three points $A$, $B$, and $P$ are placed on a circle $\Gamma$. Let $Q$ be the orthogonal projection of $P$ onto $(AB)$, $S$ the projection of $P$ onto the tangent to the circle at $A$, and $R$ the projection of $P$ onto the tangent to the circle at $B$. Show that $P Q^{2} = P R \times P S$. | PQ^2=PR\timesPS | 3/8 |
Is it true that for any triangle:
$$
\frac{1}{f_{a}}+\frac{1}{f_{b}}+\frac{1}{f_{c}}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$
where \(a, b, c\) are the sides of the triangle and \(f_{a}, f_{b}, f_{c}\) are the angle bisectors from vertices \(A, B,\) and \(C\), respectively? | True | 2/8 |
Compute the remainder when $$\sum_{k=1}^{30303} k^{k}$$ is divided by 101. | 29 | 2/8 |
For $k\ge 1$ , define $a_k=2^k$ . Let $$ S=\sum_{k=1}^{\infty}\cos^{-1}\left(\frac{2a_k^2-6a_k+5}{\sqrt{(a_k^2-4a_k+5)(4a_k^2-8a_k+5)}}\right). $$ Compute $\lfloor 100S\rfloor$ . | 157 | 7/8 |
An open box is constructed by starting with a rectangular sheet of metal $10$ in. by $14$ in. and cutting a square of side $x$ inches from each corner. The resulting projections are folded up and the seams welded. The volume of the resulting box is:
$\textbf{(A)}\ 140x - 48x^2 + 4x^3 \qquad \textbf{(B)}\ 140x + 48x^2 + 4x^3\qquad \\ \textbf{(C)}\ 140x+24x^2+x^3\qquad \textbf{(D)}\ 140x-24x^2+x^3\qquad \textbf{(E)}\ \text{none of these}$ | \textbf{(A)}\140x-48x^2+4x^3 | 1/8 |
In a taxi, a passenger can sit in the front and three passengers can sit in the back. In how many ways can four passengers sit in a taxi if one of these passengers wants to sit by the window? | 18 | 3/8 |
Given integers $a$ and $b$ satisfy: $a-b$ is a prime number, and $ab$ is a perfect square. When $a \geq 2012$, find the minimum value of $a$. | 2025 | 6/8 |
The numerical sequence $\left\{x_{n}\right\}$ is such that for each $n>1$ the condition $x_{n+1}=\left|x_{n}\right|-x_{n-1}$ is satisfied.
Prove that the sequence is periodic with a period of 9. | 9 | 3/8 |
If the integer $a$ makes the inequality system about $x$ $\left\{\begin{array}{l}{\frac{x+1}{3}≤\frac{2x+5}{9}}\\{\frac{x-a}{2}>\frac{x-a+1}{3}}\end{array}\right.$ have at least one integer solution, and makes the solution of the system of equations about $x$ and $y$ $\left\{\begin{array}{l}ax+2y=-4\\ x+y=4\end{array}\right.$ positive integers, find the sum of all values of $a$ that satisfy the conditions. | -16 | 7/8 |
We have a set of 221 real numbers whose sum is 110721. We arrange them to form a rectangle such that all rows and the first and last columns are arithmetic progressions with more than one element each. Prove that the sum of the elements at the four corners is 2004. | 2004 | 6/8 |
(1) How many natural numbers are there that are less than 5000 and have no repeated digits?
(2) From the digits 1 to 9, five digits are selected each time to form a 5-digit number without repeated digits.
(i) If only odd digits can be placed in odd positions, how many such 5-digit numbers can be formed?
(ii) If odd digits can only be placed in odd positions, how many such 5-digit numbers can be formed? | 1800 | 1/8 |
There is a set of data: $a_{1}=\frac{3}{1×2×3}$, $a_{2}=\frac{5}{2×3×4}$, $a_{3}=\frac{7}{3×4×5}$, $\ldots $, $a_{n}=\frac{2n+1}{n(n+1)(n+2)}$. Let $S_{n}=a_{1}+a_{2}+a_{3}+\ldots +a_{n}$. Find the value of $S_{12}$. To solve this problem, Xiao Ming first simplified $a_{n}$ to $a_{n}=\frac{x}{(n+1)(n+2)}+\frac{y}{n(n+2)}$, and then calculated the value of $S_{12}$ based on the simplified $a_{n}$. Please follow Xiao Ming's approach to first find the values of $x$ and $y$, and then calculate the value of $S_{12}$. | \frac{201}{182} | 7/8 |
Given an equilateral triangle of side 10, divide each side into three equal parts, construct an equilateral triangle on the middle part, and then delete the middle part. Repeat this step for each side of the resulting polygon. Find \( S^2 \), where \( S \) is the area of the region obtained by repeating this procedure infinitely many times. | 4800 | 6/8 |
Let $\\((2-x)^5 = a_0 + a_1x + a_2x^2 + \ldots + a_5x^5\\)$. Evaluate the value of $\dfrac{a_0 + a_2 + a_4}{a_1 + a_3}$. | -\dfrac{122}{121} | 1/8 |
Let event $A$ be "The line $ax - by = 0$ intersects the circle $(x - 2\sqrt{2})^2 + y^2 = 6$".
(1) If $a$ and $b$ are the numbers obtained by rolling a dice twice, find the probability of event $A$.
(2) If the real numbers $a$ and $b$ satisfy $(a - \sqrt{3})^2 + (b - 1)^2 \leq 4$, find the probability of event $A$. | \frac{1}{2} | 4/8 |
A triangular array of squares has one square in the first row, two in the second, and in general, $k$ squares in the $k$th row for $1 \leq k \leq 16$. With the exception of the bottom row, each square rests on two squares in the row immediately below. In each square of the sixteenth row, a $0$ or a $1$ is placed. Numbers are then placed into the other squares, with the entry for each square being the sum of the entries in the two squares below it. For how many initial distributions of $0$'s and $1$'s in the bottom row is the number in the top square a multiple of $5$? | 16384 | 1/8 |
Find the number of integers $n$ greater than 1 such that for any integer $a$, $n$ divides $a^{25} - a$. | 31 | 7/8 |
What is $\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)$?
$\textbf{(A)}\ -4020 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 401 \qquad \textbf{(E)}\ 4020$ | \textbf{(C)}\40 | 1/8 |
Using the digits 0, 1, 2, 3, and 4, find the number of 13-digit sequences that can be written such that the difference between any two consecutive digits is 1. Examples of such 13-digit sequences are 0123432123432, 2323432321234, and 3210101234323. | 3402 | 3/8 |
Given a cube $A B C D-A_{1} B_{1} C_{1} D_{1}$ with edge length $1$, let $P$ be a moving point on the space diagonal $B C_{1}$ and $Q$ be a moving point on the base $A B C D$. Find the minimum value of $D_{1} P + P Q$. | 1 + \frac{\sqrt{2}}{2} | 4/8 |
Circles $O_1, O_2$ intersects at $A, B$ . The circumcircle of $O_1BO_2$ intersects $O_1, O_2$ and line $AB$ at $R, S, T$ respectively. Prove that $TR = TS$ | TR=TS | 6/8 |
Let $G$ be the centroid of quadrilateral $ABCD$. If $GA^2 + GB^2 + GC^2 + GD^2 = 116$, find the sum $AB^2 + AC^2 + AD^2 + BC^2 + BD^2 + CD^2$. | 464 | 7/8 |
Point $P$ is a moving point on the parabola $y^{2}=4x$. The minimum value of the sum of the distances from point $P$ to point $A(0,-1)$ and from point $P$ to the line $x=-1$ is ______. | \sqrt{2} | 3/8 |
The positive integers are colored with black and white such that:
- There exists a bijection from the black numbers to the white numbers,
- The sum of three black numbers is a black number, and
- The sum of three white numbers is a white number.
Find the number of possible colorings that satisfies the above conditions. | 2 | 5/8 |
If the sum of 7 consecutive even numbers is 1988, then the largest of these numbers is
(A) 286
(B) 288
(C) 290
(D) 292 | 290 | 1/8 |
In a board game played with dice, our piece is four spaces away from the finish line. If we roll at least a four, we reach the finish line. If we roll a three, we are guaranteed to finish in the next roll.
What is the probability that we will reach the finish line in more than two rolls? | 1/12 | 1/8 |
Given an ellipse M: $$\frac {x^{2}}{a^{2}}+ \frac {y^{2}}{b^{2}}=1$$ (a>0, b>0) with two vertices A(-a, 0) and B(a, 0). Point P is a point on the ellipse distinct from A and B. The slopes of lines PA and PB are k₁ and k₂, respectively, and $$k_{1}k_{2}=- \frac {1}{2}$$.
(1) Find the eccentricity of the ellipse C.
(2) If b=1, a line l intersects the x-axis at D(-1, 0) and intersects the ellipse at points M and N. Find the maximum area of △OMN. | \frac { \sqrt {2}}{2} | 2/8 |
The length, width, and height of a rectangular prism are three consecutive natural numbers. The volume of the prism is equal to twice the sum of the lengths of all its edges. What is the surface area of this rectangular prism?
A. 74
B. 148
C. 150
D. 154 | 148 | 1/8 |
The cards in a stack of $2n$ cards are numbered consecutively from 1 through $2n$ from top to bottom. The top $n$ cards are removed, kept in order, and form pile $A.$ The remaining cards form pile $B.$ The cards are then restacked by taking cards alternately from the tops of pile $B$ and $A,$ respectively. In this process, card number $(n+1)$ becomes the bottom card of the new stack, card number 1 is on top of this card, and so on, until piles $A$ and $B$ are exhausted. If, after the restacking process, at least one card from each pile occupies the same position that it occupied in the original stack, the stack is named magical. For example, eight cards form a magical stack because cards number 3 and number 6 retain their original positions. Find the number of cards in the magical stack in which card number 131 retains its original position. | 392 | 3/8 |
Find all pairs $(x,y)$ of nonnegative integers that satisfy \[x^3y+x+y=xy+2xy^2.\] | (0, 0), (1, 1), (2, 2) | 1/8 |
Given that $F$ is the right focus of the hyperbola $C$: ${{x}^{2}}-\dfrac{{{y}^{2}}}{8}=1$, and $P$ is a point on the left branch of $C$, $A(0,4)$. When the perimeter of $\Delta APF$ is minimized, the area of this triangle is \_\_\_. | \dfrac{36}{7} | 6/8 |
Given the sets \( M = \{x, y, \lg(xy)\} \) and \( N = \{0, |x|, y\} \) with \( M = N \), find the value of \(\left(x + \frac{1}{y}\right) + \left(x^{2} + \frac{1}{y^{2}}\right) + \left(x^{3} + \frac{1}{y^{3}}\right) + \cdots + \left(x^{2001} + \frac{1}{y^{2001}}\right) \). | -2 | 1/8 |
There are 101 natural numbers written in a circle. It is known that among any three consecutive numbers, there is at least one even number. What is the minimum number of even numbers that can be among the written numbers? | 34 | 7/8 |
Find the number of triples of natural numbers \((a, b, c)\) that satisfy the system of equations:
\[
\left\{\begin{array}{l}
\gcd(a, b, c) = 33, \\
\operatorname{lcm}(a, b, c) = 3^{19} \cdot 11^{15}.
\end{array}\right.
\] | 9072 | 7/8 |
A three-digit positive integer \( n \) has digits \( a, b, c \). (That is, \( a \) is the hundreds digit of \( n \), \( b \) is the tens digit of \( n \), and \( c \) is the ones (units) digit of \( n \).) Determine the largest possible value of \( n \) for which:
- \( a \) is divisible by 2,
- the two-digit integer \( ab \) (where \( a \) is the tens digit and \( b \) is the ones digit) is divisible by 3 but is not divisible by 6, and
- \( n \) is divisible by 5 but is not divisible by 7. | 870 | 7/8 |
Find all pairs of positive integers $(m, n)$ such that $m^2-mn+n^2+1$ divides both numbers $3^{m+n}+(m+n)!$ and $3^{m^3+n^3}+m+n$ .
*Proposed by Dorlir Ahmeti* | (2,2) | 1/8 |
\(F_{1}\) and \(F_{2}\) are the foci of the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\) (\(a > b > 0\)). \(P\) is a point on the ellipse. If the area of \(\triangle P F_{1} F_{2}\) is 1, \(\tan \angle P F_{1} F_{2} = \frac{1}{2}\), and \(\tan \angle P F_{2} F_{1} = -2\), then \(a =\) ___. | \frac{\sqrt{15}}{2} | 4/8 |
In an equilateral triangle \( \triangle ABC \), there are points \( D, E, F \) on sides \( BC, CA, AB \), respectively, dividing each side into a ratio of \( 3:(n-3) \) with \( n > 6 \). The segments \( AD, BE, CF \) intersect to form triangle \( \triangle PQR \) (where \( BE \) intersects \( AD \) at \( P \), and intersects \( CF \) at \( Q \)). When the area of \( \triangle PQR \) is \(\frac{4}{49}\) of the area of \( \triangle ABC \), find the value of \( n \).
(1992 Japan Mathematical Olympiad Preliminary Problem) | 8 | 1/8 |
Two players, $B$ and $R$ , play the following game on an infinite grid of unit squares, all initially colored white. The players take turns starting with $B$ . On $B$ 's turn, $B$ selects one white unit square and colors it blue. On $R$ 's turn, $R$ selects two white unit squares and colors them red. The players alternate until $B$ decides to end the game. At this point, $B$ gets a score, given by the number of unit squares in the largest (in terms of area) simple polygon containing only blue unit squares. What is the largest score $B$ can guarantee?
(A *simple polygon* is a polygon (not necessarily convex) that does not intersect itself and has no holes.)
*Proposed by David Torres* | 4 | 3/8 |
Given three positive numbers \( a, b, \mathrm{and} c \) satisfying \( a \leq b+c \leq 3a \) and \( 3b^2 \leq a(a+c) \leq 5b^2 \), what is the minimum value of \(\frac{b-2c}{a}\)? | -\frac{18}{5} | 4/8 |
Katya gave Vasya a series of books to read. He promised to return them in a month but did not. Katya asked her brother Kolya to talk to Vasya to get the books back. Kolya agreed, but in return, Katya must give him one of the books. In this example, Kolya is:
1) a financial pyramid
2) a collection agency
3) a bank
4) an insurance company | 2 | 1/8 |
You are given two line segments of length \(2^{n}\) for each integer \(0 \leq n \leq 10\). How many distinct nondegenerate triangles can you form with three of the segments? Two triangles are considered distinct if they are not congruent. | 55 | 1/8 |
Triangle $AHI$ is equilateral. We know $\overline{BC}$, $\overline{DE}$ and $\overline{FG}$ are all parallel to $\overline{HI}$ and $AB = BD = DF = FH$. What is the ratio of the area of trapezoid $FGIH$ to the area of triangle $AHI$? Express your answer as a common fraction.
[asy]
unitsize(0.2inch);
defaultpen(linewidth(0.7));
real f(real y)
{
return (5*sqrt(3)-y)/sqrt(3);
}
draw((-5,0)--(5,0)--(0,5*sqrt(3))--cycle);
draw((-f(5*sqrt(3)/4),5*sqrt(3)/4)--(f(5*sqrt(3)/4),5*sqrt(3)/4));
draw((-f(5*sqrt(3)/2),5*sqrt(3)/2)--(f(5*sqrt(3)/2),5*sqrt(3)/2));
draw((-f(15*sqrt(3)/4),15*sqrt(3)/4)--(f(15*sqrt(3)/4),15*sqrt(3)/4));
label("$A$",(0,5*sqrt(3)),N);
label("$B$",(-f(15*sqrt(3)/4),15*sqrt(3)/4),WNW);
label("$C$",(f(15*sqrt(3)/4),15*sqrt(3)/4),ENE);
label("$D$",(-f(5*sqrt(3)/2),5*sqrt(3)/2),WNW);
label("$E$",(f(5*sqrt(3)/2),5*sqrt(3)/2),ENE);
label("$F$",(-f(5*sqrt(3)/4),5*sqrt(3)/4),WNW);
label("$G$",(f(5*sqrt(3)/4),5*sqrt(3)/4),ENE);
label("$H$",(-5,0),W);
label("$I$",(5,0),E);[/asy] | \frac{7}{16} | 7/8 |
Let $f$ be a function on defined on $|x|<1$ such that $f\left (\tfrac1{10}\right )$ is rational and $f(x)= \sum_{i=1}^{\infty} a_i x^i $ where $a_i\in{\{0,1,2,3,4,5,6,7,8,9\}}$ . Prove that $f$ can be written as $f(x)= \frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials with integer coefficients. | f(x)=\frac{p(x)}{q(x)} | 6/8 |
A high school with 2000 students held a "May Fourth" running and mountain climbing competition in response to the call for "Sunshine Sports". Each student participated in only one of the competitions. The number of students from the first, second, and third grades participating in the running competition were \(a\), \(b\), and \(c\) respectively, with \(a:b:c=2:3:5\). The number of students participating in mountain climbing accounted for \(\frac{2}{5}\) of the total number of students. To understand the students' satisfaction with this event, a sample of 200 students was surveyed. The number of second-grade students participating in the running competition that should be sampled is \_\_\_\_\_. | 36 | 6/8 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.