problem
stringlengths 10
7.44k
| answer
stringlengths 1
270
| difficulty
stringclasses 8
values |
---|---|---|
Plot points $A, B, C$ at coordinates $(0,0),(0,1)$, and $(1,1)$ in the plane, respectively. Let $S$ denote the union of the two line segments $A B$ and $B C$. Let $X_{1}$ be the area swept out when Bobby rotates $S$ counterclockwise 45 degrees about point $A$. Let $X_{2}$ be the area swept out when Calvin rotates $S$ clockwise 45 degrees about point $A$. Find $\frac{X_{1}+X_{2}}{2}$. | \frac{\pi}{4} | 4/8 |
The diagonals of parallelogram \(ABCD\) intersect at point \(O\). In triangles \(OAB\), \(OBC\), and \(OCD\), medians \(OM\), \(OM'\), and \(OM''\) and angle bisectors \(OL\), \(OL'\), and \(OL''\) are drawn respectively. Prove that angles \(MM'M''\) and \(LL'L''\) are equal. | \angleMM'M''=\angleLL'L'' | 6/8 |
Let $n$ be a nonzero natural number, and $x_1, x_2,..., x_n$ positive real numbers that $ \frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}= n$ . Find the minimum value of the expression $x_1 +\frac{x_2^2}{2}++\frac{x_3^3}{3}+...++\frac{x_n^n}{n}$ . | 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} | 2/8 |
In the drawing, there is a grid consisting of 25 small equilateral triangles.
How many rhombuses can be formed from two adjacent small triangles? | 30 | 3/8 |
Let $n$ be a positive integer.
Determine the number of sequences $a_0, a_1, \ldots, a_n$ with terms in the set $\{0,1,2,3\}$ such that $$ n=a_0+2a_1+2^2a_2+\ldots+2^na_n. $$ | \lfloor\frac{n}{2}\rfloor+1 | 1/8 |
Given polynomials \( P(x), Q(x), R(x) \), and \( S(x) \) such that the polynomial \( P\left(x^{5}\right)+x Q\left(x^{5}\right)+x^{2} R\left(x^{5}\right) = \left(x^{4}+x^{3} + x^{2} + x + 1\right) S(x) \) holds, prove that \( x-1 \) is a factor of \( P(x) \). | x-1isfactorofP(x) | 1/8 |
Natural numbers \(a, b, c\) are such that \(\gcd(\operatorname{lcm}(a, b), c) \cdot \operatorname{lcm}(\gcd(a, b), c) = 200\).
What is the maximum value of \(\gcd(\operatorname{lcm}(a, b), c) ?\) | 10 | 3/8 |
The rank of a rational number \( q \) is the unique \( k \) for which \( q=\frac{1}{a_{1}}+\cdots+\frac{1}{a_{k}} \), where each \( a_{i} \) is the smallest positive integer such that \( q \geq \frac{1}{a_{1}}+\cdots+\frac{1}{a_{i}} \). Let \( q \) be the largest rational number less than \( \frac{1}{4} \) with rank 3, and suppose the expression for \( q \) is \( \frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}} \). Find the ordered triple \( \left( a_{1}, a_{2}, a_{3} \right) \). | (5,21,421) | 2/8 |
There are three candidates standing for one position as student president and 130 students are voting. Sally has 24 votes so far, while Katie has 29 and Alan has 37. How many more votes does Alan need to be certain he will finish with the most votes? | 17 | 6/8 |
Find the least
a. positive real number
b. positive integer $t$ such that the equation $(x^2+y^2)^2 + 2tx(x^2 + y^2) = t^2y^2$ has a solution where $x,y$ are positive integers. | 25 | 1/8 |
Let \( S = \{1, 2, \ldots, 2016\} \), and let \( f \) be a randomly chosen bijection from \( S \) to itself. Let \( n \) be the smallest positive integer such that \( f^{(n)}(1) = 1 \), where \( f^{(i)}(x) = f\left(f^{(i-1)}(x)\right) \). What is the expected value of \( n \)? | \frac{2017}{2} | 7/8 |
Maximum difference in weights of two bags is achieved by taking the largest and smallest possible values of the two different brands. Given the weights of three brands of flour are $\left(25\pm 0.1\right)kg$, $\left(25\pm 0.2\right)kg$, and $\left(25\pm 0.3\right)kg$, calculate the maximum possible difference in weights. | 0.6 | 1/8 |
Joe the teacher is bad at rounding. Because of this, he has come up with his own way to round grades, where a *grade* is a nonnegative decimal number with finitely many digits after the decimal point.
Given a grade with digits $a_1a_2 \dots a_m.b_1b_2 \dots b_n$ , Joe first rounds the number to the nearest $10^{-n+1}$ th place. He then repeats the procedure on the new number, rounding to the nearest $10^{-n+2}$ th, then rounding the result to the nearest $10^{-n+3}$ th, and so on, until he obtains an integer. For example, he rounds the number $2014.456$ via $2014.456 \to 2014.46 \to 2014.5 \to 2015$ .
There exists a rational number $M$ such that a grade $x$ gets rounded to at least $90$ if and only if $x \ge M$ . If $M = \tfrac pq$ for relatively prime integers $p$ and $q$ , compute $p+q$ .
*Proposed by Yang Liu* | 814 | 2/8 |
Find the integer $x$ that satisfies the equation $10x + 3 \equiv 7 \pmod{18}$. | 13 | 4/8 |
Over all real numbers $x$ and $y$ such that $$x^{3}=3 x+y \quad \text { and } \quad y^{3}=3 y+x$$ compute the sum of all possible values of $x^{2}+y^{2}$. | 15 | 6/8 |
The diameter divides a circle into two parts. In one of these parts, a smaller circle is inscribed so that it touches the larger circle at point \( M \) and the diameter at point \( K \). The ray \( MK \) intersects the larger circle a second time at point \( N \). Find the length of \( MN \), given that the sum of the distances from point \( M \) to the ends of the diameter is 6. | 3\sqrt{2} | 1/8 |
Let $A B C$ be an equilateral triangle of side length 15 . Let $A_{b}$ and $B_{a}$ be points on side $A B, A_{c}$ and $C_{a}$ be points on side $A C$, and $B_{c}$ and $C_{b}$ be points on side $B C$ such that $\triangle A A_{b} A_{c}, \triangle B B_{c} B_{a}$, and $\triangle C C_{a} C_{b}$ are equilateral triangles with side lengths 3, 4 , and 5 , respectively. Compute the radius of the circle tangent to segments $\overline{A_{b} A_{c}}, \overline{B_{a} B_{c}}$, and $\overline{C_{a} C_{b}}$. | 3 \sqrt{3} | 2/8 |
How many natural numbers less than 1000 are multiples of 4 and do not contain the digits 1, 3, 4, 5, 7, 9 in their representation? | 31 | 5/8 |
In a certain sequence the first term is $a_1 = 2007$ and the second term is $a_2 = 2008.$ Furthermore, the values of the remaining terms are chosen so that
\[a_n + a_{n + 1} + a_{n + 2} = n\]for all $n \ge 1.$ Determine $a_{1000}.$ | 2340 | 5/8 |
From the $8$ vertices of a cube, choose any $4$ vertices. The probability that these $4$ points lie in the same plane is ______ (express the result as a simplified fraction). | \frac{6}{35} | 2/8 |
What is the sum of the last three digits of each term in the following part of the Fibonacci Factorial Series: $1!+2!+3!+5!+8!+13!+21!$? | 249 | 2/8 |
Chester is traveling from Hualien to Lugang, Changhua, to participate in the Hua Luogeng Golden Cup Mathematics Competition. Before setting off, his father checked the car's odometer, which read a palindromic number of 69,696 kilometers (a palindromic number remains the same when read forward or backward). After driving for 5 hours, they arrived at their destination, and the odometer displayed another palindromic number. During the journey, the father's driving speed never exceeded 85 kilometers per hour. What is the maximum average speed (in kilometers per hour) at which Chester's father could have driven? | 82.2 | 6/8 |
What are the last 8 digits of $$11 \times 101 \times 1001 \times 10001 \times 100001 \times 1000001 \times 111 ?$$ | 19754321 | 1/8 |
Juan rolls a fair regular decagonal die marked with numbers from 1 to 10. Then Amal rolls a fair eight-sided die marked with numbers from 1 to 8. What is the probability that the product of the two rolls is a multiple of 4? | \frac{19}{40} | 6/8 |
Consider a sequence $\{a_n\}_{n\geq 0}$ such that $a_{n+1}=a_n-\lfloor{\sqrt{a_n}}\rfloor\ (n\geq 0),\ a_0\geq 0$ .
(1) If $a_0=24$ , then find the smallest $n$ such that $a_n=0$ .
(2) If $a_0=m^2\ (m=2,\ 3,\ \cdots)$ , then for $j$ with $1\leq j\leq m$ , express $a_{2j-1},\ a_{2j}$ in terms of $j,\ m$ .
(3) Let $m\geq 2$ be integer and for integer $p$ with $1\leq p\leq m-1$ , let $a\0=m^2-p$ . Find $k$ such that $a_k=(m-p)^2$ , then
find the smallest $n$ such that $a_n=0$ . | 2m-1 | 1/8 |
Several people completed the task of planting 2013 trees, with each person planting the same number of trees. If 5 people do not participate in the planting, the remaining people each need to plant 2 more trees but still cannot complete the task. However, if each person plants 3 more trees, they can exceed the task. How many people participated in the planting? | 61 | 7/8 |
Find the cosine of the angle between the slant height and the diagonal of the base of a regular four-sided pyramid where the lateral edge is equal to the side of the base. | \frac{\sqrt{6}}{6} | 6/8 |
The sum of all real roots of the equation $|x^2-3x+2|+|x^2+2x-3|=11$ is . | \frac{5\sqrt{97}-19}{20} | 7/8 |
Show the correctness of the following identities:
1.
$$
\left|\begin{array}{ccc}
a & b & c \\
b+c & c+a & a+b \\
b c & c a & a b
\end{array}\right| \equiv-(a+b+c)(b-c)(c-a)(a-b)
$$
2.
$$
\left|\begin{array}{lll}
b c & a & a^{2} \\
a c & b & b^{2} \\
a b & c & c^{2}
\end{array}\right| \equiv(a-b)(b-c)(c-a)(a b+a c+b c)
$$
3.
$$
\left|\begin{array}{cccc}
1+a & 1 & 1 & 1 \\
1 & 1+b & 1 & 1 \\
1 & 1 & 1+c & 1 \\
1 & 1 & 1 & 1+d
\end{array}\right| \equiv abcd\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)
$$ | abcd(1+\frac{1}{}+\frac{1}{b}+\frac{1}{}+\frac{1}{}) | 1/8 |
Given that the real numbers \( x, y, z \) satisfy \( x^{2}+y^{2}+z^{2}=2 \), prove that:
\[ x + y + z \leq xy z + 2. \] | x+y+z\lexyz+2 | 2/8 |
The graph of $xy = 4$ is a hyperbola. Find the distance between the foci of this hyperbola. | 4\sqrt{2} | 1/8 |
Let \( r = \frac{p}{q} \in (0, 1) \) be a rational number where \( p \) and \( q \) are coprime positive integers, and \( p \cdot q \) divides 3600. How many such rational numbers \( r \) are there? | 112 | 2/8 |
An inscribed circle with radius \( R \) is placed in a certain angle, and the length of the chord connecting the tangent points is \( a \). Two tangents are drawn parallel to this chord, forming a trapezoid. Find the area of this trapezoid. | \frac{8R^3}{} | 1/8 |
In $\triangle ABC$, $\angle A = 60^{\circ}$, $AB > AC$, point $O$ is the circumcenter, and the altitudes $BE$ and $CF$ intersect at point $H$. Points $M$ and $N$ lie on segments $BH$ and $HF$ respectively, such that $BM = CN$. Find the value of $\frac{MH + NH}{OH}$. | \sqrt{3} | 4/8 |
In a class of 50 students, each student must be paired with another student for a project. Due to prior groupings in other classes, 10 students already have assigned partners. If the pairing for the remaining students is done randomly, what is the probability that Alex is paired with her best friend, Jamie? Express your answer as a common fraction. | \frac{1}{29} | 2/8 |
A teacher intends to give the children a problem of the following type. He will tell them that he has thought of a polynomial \( P(x) \) of degree 2017 with integer coefficients and a leading coefficient of 1. Then he will provide them with \( k \) integers \( n_{1}, n_{2}, \ldots, n_{k} \), and separately provide the value of the expression \( P(n_{1}) \cdot P(n_{2}) \cdot \ldots \cdot P(n_{k}) \). From this data, the children must determine the polynomial that the teacher had in mind. What is the minimum value of \( k \) such that the polynomial found by the children will necessarily be the same as the one conceived by the teacher? | 2017 | 1/8 |
How many ways are there for Nick to travel from $(0,0)$ to $(16,16)$ in the coordinate plane by moving one unit in the positive $x$ or $y$ direction at a time, such that Nick changes direction an odd number of times? | 2\cdot\binom{30}{15} | 1/8 |
A graph shows the number of books read in June by the top readers in a school library. The data points given are:
- 4 readers read 3 books each
- 5 readers read 5 books each
- 2 readers read 7 books each
- 1 reader read 10 books
Determine the mean (average) number of books read by these readers. | 5.0833 | 2/8 |
Let $A$ be a point on the circle $x^2 + y^2 - 12x + 31 = 0,$ and let $B$ be a point on the parabola $y^2 = 4x.$ Find the smallest possible distance $AB.$ | \sqrt{5} | 7/8 |
Given the sequence $\left\{a_{n}\right\}$ that satisfies $a_{1}=p, a_{2}=p+1, a_{n+2}-2 a_{n+1}+a_{n}=n-20$, where $p$ is a given real number and $n$ is a positive integer, find the value of $n$ that makes $a_{n}$ minimal. | 40 | 1/8 |
There is a positive integer s such that there are s solutions to the equation $64sin^2(2x)+tan^2(x)+cot^2(x)=46$ in the interval $(0,\frac{\pi}{2})$ all of the form $\frac{m_k}{n_k}\pi$ where $m_k$ and $n_k$ are relatively prime positive integers, for $k = 1, 2, 3, . . . , s$ . Find $(m_1 + n_1) + (m_2 + n_2) + (m_3 + n_3) + · · · + (m_s + n_s)$ . | 100 | 5/8 |
There are \( n \) ministers, each of whom has issued a (unique) decree. To familiarize everyone with the decrees, the ministers send telegrams to each other. No two telegrams can be sent simultaneously. When a minister receives a telegram, he immediately reads it. When sending a telegram, a minister includes not only his own decree but also all the decrees of other ministers known to him at that moment.
After some number of telegrams have been sent, it turns out that all ministers have become familiar with all the decrees. Furthermore, no minister has received any decree from another minister more than once in a telegram. Some ministers received telegrams that included their own decree among others. Prove that the number of such ministers is at least \( n-1 \). | n-1 | 5/8 |
A positive integer \( n \) is called "flippant" if \( n \) does not end in \( 0 \) (when written in decimal notation) and, moreover, \( n \) and the number obtained by reversing the digits of \( n \) are both divisible by \( 7 \). How many flippant integers are there between \( 10 \) and \( 1000 \)? | 17 | 2/8 |
How many right triangles with integer side lengths have one of the legs equal to 15? | 4 | 7/8 |
In the village where Glafira lives, there is a small pond that is filled by springs at the bottom. Glafira discovered that a herd of 17 cows completely drank this pond in 3 days. After some time, the springs refilled the pond, and then 2 cows drank it in 30 days. How many days will it take for one cow to drink this pond? | 75 | 3/8 |
A lattice point in an $xy$-coordinate system is any point $(x, y)$ where both $x$ and $y$ are integers. The graph of $y = mx +2$ passes through no lattice point with $0 < x \le 100$ for all $m$ such that $\frac{1}{2} < m < a$. What is the maximum possible value of $a$? | \frac{50}{99} | 6/8 |
Let \( ABC \) be any triangle. Let \( D \) and \( E \) be points on \( AB \) and \( BC \) respectively such that \( AD = 7DB \) and \( BE = 10EC \). Assume that \( AE \) and \( CD \) meet at a point \( F \). Determine \( \lfloor k \rfloor \), where \( k \) is the real number such that \( AF = k \times FE \). | 77 | 7/8 |
A convex polyhedron is bounded by 4 regular hexagonal faces and 4 regular triangular faces. At each vertex of the polyhedron, 2 hexagons and 1 triangle meet. What is the volume of the polyhedron if the length of its edges is one unit? | \frac{23\sqrt{2}}{12} | 5/8 |
In a chess tournament, 12 participants played. After the tournament, each participant compiled 12 lists. The first list includes only the participant himself, the second list includes himself and those he won against, the third list includes everyone from the second list and those they won against, and so on. The twelfth list includes everyone from the eleventh list and those they won against. It is known that for any participant, there is a person in their twelfth list who was not in their eleventh list. How many drawn games were played in the tournament? | 54 | 2/8 |
Given the sets
$$
\begin{array}{l}
A=\left\{(x, y) \mid x=m, y=-3m+2, m \in \mathbf{Z}_{+}\right\}, \\
B=\left\{(x, y) \mid x=n, y=a\left(a^{2}-n+1\right), n \in \mathbf{Z}_{+}\right\},
\end{array}
$$
find the total number of integers $a$ such that $A \cap B \neq \varnothing$. | 10 | 7/8 |
Marcus and four of his relatives are at a party. Each pair of the five people are either friends or enemies. For any two enemies, there is no person that they are both friends with. In how many ways is this possible? | 52 | 5/8 |
Let $\mathcal{S}$ be the set $\lbrace1,2,3,\ldots,10\rbrace$ Let $n$ be the number of sets of two non-empty disjoint subsets of $\mathcal{S}$. (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when $n$ is divided by $1000$.
| 501 | 7/8 |
Let $\triangle ABC$ with $AB=AC$ and $BC=14$ be inscribed in a circle $\omega$ . Let $D$ be the point on ray $BC$ such that $CD=6$ . Let the intersection of $AD$ and $\omega$ be $E$ . Given that $AE=7$ , find $AC^2$ .
*Proposed by Ephram Chun and Euhan Kim* | 105 | 3/8 |
Let $ABCDE$ be a convex pentagon such that: $\angle ABC=90,\angle BCD=135,\angle DEA=60$ and $AB=BC=CD=DE$ . Find angle $\angle DAE$ . | 30 | 1/8 |
The solution of the equations
\begin{align*}2x-3y &=7 \\ 4x-6y &=20\end{align*}
is:
$\textbf{(A)}\ x=18, y=12 \qquad \textbf{(B)}\ x=0, y=0 \qquad \textbf{(C)}\ \text{There is no solution} \\ \textbf{(D)}\ \text{There are an unlimited number of solutions}\qquad \textbf{(E)}\ x=8, y=5$ | \textbf{(C)}\ | 1/8 |
In a certain year, a certain date was never a Sunday in any month. Determine that date. | 31 | 1/8 |
On the side \( AB \) of the convex quadrilateral \( ABCD \), point \( M \) is chosen such that \( \angle AMD = \angle ADB \) and \( \angle ACM = \angle ABC \). The quantity three times the square of the ratio of the distance from point \( A \) to the line \( CD \) to the distance from point \( C \) to the line \( AD \) is equal to 2, and \( CD = 20 \). Find the radius of the inscribed circle of triangle \( ACD \). | 4\sqrt{10}-2\sqrt{15} | 1/8 |
Let $a, b, c$ be positive real numbers such that $a \leq b \leq c \leq 2 a$. Find the maximum possible value of $$\frac{b}{a}+\frac{c}{b}+\frac{a}{c}$$ | \frac{7}{2} | 7/8 |
Given a regular 2017-sided polygon \(A_{1} A_{2} \cdots A_{2017}\) inscribed in a unit circle \(\odot O\), choose any two different vertices \(A_{i}, A_{j}\). Find the probability that \(\overrightarrow{O A_{i}} \cdot \overrightarrow{O A_{j}} > \frac{1}{2}\). | 1/3 | 5/8 |
Find the number of ordered pairs of integers $(a, b)$ that satisfy the inequality
\[
1 < a < b+2 < 10.
\]
*Proposed by Lewis Chen* | 28 | 6/8 |
Two circles touch internally at point \( A \). From the center \( O \) of the larger circle, a radius \( O B \) is drawn, which touches the smaller circle at point \( C \). Find \(\angle BAC\). | 45 | 1/8 |
How many 4-digit numbers greater than 1000 are there that use the four digits of 2012?
$\textbf{(A)}\hspace{.05in}6\qquad\textbf{(B)}\hspace{.05in}7\qquad\textbf{(C)}\hspace{.05in}8\qquad\textbf{(D)}\hspace{.05in}9\qquad\textbf{(E)}\hspace{.05in}12$ | \textbf{(D)}\9 | 1/8 |
Given the square \(ABCD\) with side length of 2, triangle \(AEF\) is constructed so that \(AE\) bisects side \(BC\), and \(AF\) bisects side \(CD\). Moreover, \(EF\) is parallel to the diagonal \(BD\) and passes through \(C\). Find the area of triangle \(AEF\). | \frac{8}{3} | 1/8 |
How many ways are there to color every integer either red or blue such that \(n\) and \(n+7\) are the same color for all integers \(n\), and there does not exist an integer \(k\) such that \(k, k+1\), and \(2k\) are all the same color? | 6 | 1/8 |
Given an acute triangle \( \triangle ABC \), where \(\sin (A+B)=\frac{3}{5}\) and \(\sin (A-B)=\frac{1}{5}\).
1. Prove that \(\tan A = 2 \tan B\).
2. Given \(AB = 3\), find the height on the side \(AB\). | 2+\sqrt{6} | 4/8 |
The least common multiple of $a$ and $b$ is $18$, and the least common multiple of $b$ and $c$ is $20$. Find the least possible value of the least common multiple of $a$ and $c$. | 90 | 1/8 |
If three lines from the family of lines given by \( C: x \cos t + (y + 1) \sin t = 2 \) enclose an equilateral triangle \( D \), what is the area of the region \( D \)? | 12\sqrt{3} | 5/8 |
A rectangle has length \( x \) and width \( y \). A triangle has base 16 and height \( x \). If the area of the rectangle is equal to the area of the triangle, then the value of \( y \) is:
(A) 16
(B) 4
(C) 8
(D) 12
(E) 32 | 8 | 1/8 |
Quadratic polynomial \( P(x) \) is such that \( P(P(x)) = x^4 - 2x^3 + 4x^2 - 3x + 4 \). What can be the value of \( P(8) \)? List all possible options. | 58 | 7/8 |
Given that $F(1,0)$ is the focus of the ellipse $\frac{x^2}{9} + \frac{y^2}{m} = 1$, $P$ is a moving point on the ellipse, and $A(1,1)$, find the minimum value of $|PA| + |PF|$. | 6 - \sqrt{5} | 2/8 |
On a circle of length 2013, there are 2013 points marked, dividing it into equal arcs. A piece is placed at each marked point. The distance between two points is defined as the length of the shorter arc between them. For what maximum $n$ can the pieces be rearranged so that each marked point has a piece again, and the distance between any two pieces that were initially no more than $n$ apart increases? | 670 | 1/8 |
Given that the sequence $\{a_{n}\}$ is a geometric sequence with a common ratio $q\neq 1$, $a_{1}=3$, $3a_{1}$, $2a_{2}$, $a_{3}$ form an arithmetic sequence, and the terms of the sequence $\{a_{n}\}$ are arranged in a certain order as $a_{1}$, $a_{1}$, $a_{2}$, $a_{1}$, $a_{2}$, $a_{3}$, $a_{1}$, $a_{2}$, $a_{3}$, $a_{4}$, $\ldots$, determine the value of the sum $S_{23}$ of the first 23 terms of the new sequence $\{b_{n}\}$. | 1641 | 7/8 |
Given an odd function \( f(x) \) defined on \( \mathbf{R} \) whose graph is symmetric about the line \( x=2 \), and when \( 0 < x \leq 2 \), \( f(x) = x + 1 \). Find the value of \( f(-100) + f(-101) \). | 2 | 7/8 |
Given \( x, y, z \in \mathbf{R}_{+} \) such that \( x + y + z = 1 \), prove that:
$$
\left(\frac{1}{x^{2}} - x\right)\left(\frac{1}{y^{2}} - y\right)\left(\frac{1}{z^{2}} - z\right) \geqslant \left(\frac{26}{3}\right)^{3}.
$$ | (\frac{26}{3})^3 | 6/8 |
Consider $n$ children in a playground, where $n\ge 2$ . Every child has a coloured hat, and every pair of children is joined by a coloured ribbon. For every child, the colour of each ribbon held is different, and also different from the colour of that child’s hat. What is the minimum number of colours that needs to be used? | n | 1/8 |
Given the sequence $\{a_n\}$ with the general term formula $a_n = -n^2 + 12n - 32$, determine the maximum value of $S_n - S_m$ for any $m, n \in \mathbb{N^*}$ and $m < n$. | 10 | 7/8 |
Let $\triangle A B C$ be an acute triangle, with $M$ being the midpoint of $\overline{B C}$, such that $A M=B C$. Let $D$ and $E$ be the intersection of the internal angle bisectors of $\angle A M B$ and $\angle A M C$ with $A B$ and $A C$, respectively. Find the ratio of the area of $\triangle D M E$ to the area of $\triangle A B C$. | \frac{2}{9} | 5/8 |
In a match without draws, the competition ends when one person wins 2 more games than the other, and the person with more wins is the winner. It is known that in odd-numbered games, the probability that player A wins is $\frac{3}{5}$, and in even-numbered games, the probability that player B wins is $\frac{3}{5}$. Find the expected number of games played when the match ends. | \frac{25}{6} | 3/8 |
Given two sequences of real numbers \(0 < a_1 < a_2 < \ldots\) and \(0 = b_0 < b_1 < b_2 < \ldots\) such that:
1. If \(a_i + a_j + a_k = a_r + a_s + a_t\), then \((i, j, k)\) is a permutation of \((r, s, t)\).
2. A positive real number \(x\) can be represented as \(x = a_j - a_i\) if and only if it can be represented as \(x = b_m - b_n\).
Prove that \(a_k = b_k\) for all \(k\). | a_k=b_kforallk | 1/8 |
Find the pairs of positive integers \((a, b)\) such that \(\frac{a b^{2}}{a+b}\) is a prime number, where \(a \neq b\). | (6,2) | 2/8 |
Prove that if \( a \) and \( b \) are positive numbers, then
$$
\frac{(a-b)^{2}}{2(a+b)} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}-\sqrt{a b} \leq \frac{(a-b)^{2}}{a+b}
$$ | \frac{(-b)^2}{2(+b)}\le\sqrt{\frac{^2+b^2}{2}}-\sqrt{}\le\frac{(-b)^2}{+b} | 3/8 |
Determine the number of subsets \( S \) of \(\{1, 2, \ldots, 1000\}\) that satisfy the following conditions:
- \( S \) has 19 elements, and
- the sum of the elements in any non-empty subset of \( S \) is not divisible by 20. | 8\cdot\binom{50}{19} | 1/8 |
Let $n$ be the product of the first 10 primes, and let $$S=\sum_{x y \mid n} \varphi(x) \cdot y$$ where $\varphi(x)$ denotes the number of positive integers less than or equal to $x$ that are relatively prime to $x$, and the sum is taken over ordered pairs $(x, y)$ of positive integers for which $x y$ divides $n$. Compute $\frac{S}{n}$. | 1024 | 7/8 |
How many of us are there?
To help you answer this question, let's say that the probability that at least two of us share the same birthday is less than $1 / 2$, which would no longer be true if one more person joined us. | 22 | 2/8 |
A permutation of a finite set $S$ is a one-to-one function from $S$ to $S$ . A permutation $P$ of the set $\{ 1, 2, 3, 4, 5 \}$ is called a W-permutation if $P(1) > P(2) < P(3) > P(4) < P(5)$ . A permutation of the set $\{1, 2, 3, 4, 5 \}$ is selected at random. Compute the probability that it is a W-permutation. | 2/15 | 2/8 |
On an $11 \times 11$ grid, 22 cells are marked such that exactly two cells are marked in each row and each column. If one arrangement of the marked cells can be transformed into another by swapping rows or columns any number of times, the two arrangements are considered equivalent. How many distinct (nonequivalent) arrangements of the marked cells are there? | 14 | 1/8 |
Given that $\overline{2 a 1 b 9}$ represents a five-digit number, how many ordered digit pairs $(a, b)$ are there such that
$$
\overline{2 a 1 b 9}^{2019} \equiv 1 \pmod{13}?
$$ | 23 | 6/8 |
Find the maximum possible value of $k$ for which there exist distinct reals $x_1,x_2,\ldots ,x_k $ greater than $1$ such that for all $1 \leq i, j \leq k$ , $$ x_i^{\lfloor x_j \rfloor }= x_j^{\lfloor x_i\rfloor}. $$ *Proposed by Morteza Saghafian* | 4 | 2/8 |
How many different graphs with 9 vertices exist where each vertex is connected to 2 others? | 4 | 2/8 |
Find the number of positive integers less than $2000$ that are neither $5$-nice nor $6$-nice. | 1333 | 1/8 |
Determine the largest integer $N$ , for which there exists a $6\times N$ table $T$ that has the following properties: $*$ Every column contains the numbers $1,2,\ldots,6$ in some ordering. $*$ For any two columns $i\ne j$ , there exists a row $r$ such that $T(r,i)= T(r,j)$ . $*$ For any two columns $i\ne j$ , there exists a row $s$ such that $T(s,i)\ne T(s,j)$ .
(Proposed by Gerhard Woeginger, Austria) | 120 | 7/8 |
Six distinct positive integers are randomly chosen between $1$ and $2006$, inclusive. What is the probability that some pair of these integers has a difference that is a multiple of $5$?
$\textbf{(A) } \frac{1}{2}\qquad\textbf{(B) } \frac{3}{5}\qquad\textbf{(C) } \frac{2}{3}\qquad\textbf{(D) } \frac{4}{5}\qquad\textbf{(E) } 1\qquad$ | \textbf{(E)}1 | 1/8 |
\[A=3\sum_{m=1}^{n^2}(\frac12-\{\sqrt{m}\})\]
where $n$ is an positive integer. Find the largest $k$ such that $n^k$ divides $[A]$ . | 1 | 1/8 |
Given a line $l$ passes through the foci of the ellipse $\frac {y^{2}}{2}+x^{2}=1$ and intersects the ellipse at points P and Q. The perpendicular bisector of segment PQ intersects the x-axis at point M. The maximum area of $\triangle MPQ$ is __________. | \frac {3 \sqrt {6}}{8} | 3/8 |
In a sequence, every (intermediate) term is half of the arithmetic mean of its neighboring terms. What relationship exists between any term, and the terms that are 2 positions before and 2 positions after it? The first term of the sequence is 1, and the 9th term is 40545. What is the 25th term? | 57424611447841 | 1/8 |
Let $b(x)=x^{2}+x+1$. The polynomial $x^{2015}+x^{2014}+\cdots+x+1$ has a unique "base $b(x)$ " representation $x^{2015}+x^{2014}+\cdots+x+1=\sum_{k=0}^{N} a_{k}(x) b(x)^{k}$ where each "digit" $a_{k}(x)$ is either the zero polynomial or a nonzero polynomial of degree less than $\operatorname{deg} b=2$; and the "leading digit $a_{N}(x)$ " is nonzero. Find $a_{N}(0)$. | -1006 | 1/8 |
Let \( P \) be any point inside a regular tetrahedron \( ABCD \) with side length \( \sqrt{2} \). The distances from point \( P \) to the four faces are \( d_1, d_2, d_3, d_4 \) respectively. What is the minimum value of \( d_1^2 + d_2^2 + d_3^2 + d_4^2 \)? | \frac{1}{3} | 5/8 |
From the numbers $1, 2, \cdots, 2004$, select $k$ numbers such that among the selected $k$ numbers, there are three numbers that can form the side lengths of a triangle (with the condition that the three side lengths are pairwise distinct). Find the smallest value of $k$ that satisfies this condition. | 17 | 7/8 |
A convex pentagon is given. Petya wrote down the sine values of all its angles, while Vasya wrote down the cosine values of all its angles. It turned out that among the numbers written by Petya, there are no four distinct values. Can all the numbers written by Vasya be distinct? | No | 2/8 |
Let \( f: \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function such that \( f(0) = 0 \), \( f(1) = 1 \), and \( |f'(x)| \leq 2 \) for all real numbers \( x \). If \( a \) and \( b \) are real numbers such that the set of possible values of \( \int_{0}^{1} f(x) \, dx \) is the open interval \( (a, b) \), determine \( b - a \). | 3/4 | 3/8 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.