text
stringlengths
145
7.65M
============================================================================================================================================================ SOURCE CODE FILE: pixelshuffle.h LINES: 1 SIZE: 3.12 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\pixelshuffle.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/cloneable.h> #include <torch/nn/functional/pixelshuffle.h> #include <torch/nn/options/pixelshuffle.h> #include <torch/csrc/Export.h> namespace torch::nn { // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PixelShuffle // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` /// to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an /// upscale factor. See /// https://pytorch.org/docs/main/nn.html#torch.nn.PixelShuffle to learn about /// the exact behavior of this module. /// /// See the documentation for `torch::nn::PixelShuffleOptions` class to learn /// what constructor arguments are supported for this module. /// /// Example: /// ``` /// PixelShuffle model(PixelShuffleOptions(5)); /// ``` struct TORCH_API PixelShuffleImpl : public torch::nn::Cloneable<PixelShuffleImpl> { explicit PixelShuffleImpl(const PixelShuffleOptions& options_); /// Pretty prints the `PixelShuffle` module into the given `stream`. void pretty_print(std::ostream& stream) const override; Tensor forward(const Tensor& input); void reset() override; /// The options with which this `Module` was constructed. PixelShuffleOptions options; }; /// A `ModuleHolder` subclass for `PixelShuffleImpl`. /// See the documentation for `PixelShuffleImpl` class to learn what methods it /// provides, and examples of how to use `PixelShuffle` with /// `torch::nn::PixelShuffleOptions`. See the documentation for `ModuleHolder` /// to learn about PyTorch's module storage semantics. TORCH_MODULE(PixelShuffle); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PixelUnshuffle ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Reverses the PixelShuffle operation by rearranging elements in a tensor of /// shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape :math:`(*, /// C \times r^2, H, W)`, where r is a downscale factor. See /// https://pytorch.org/docs/main/nn.html#torch.nn.PixelUnshuffle to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::PixelUnshuffleOptions` class to learn /// what constructor arguments are supported for this module. /// /// Example: /// ``` /// PixelUnshuffle model(PixelUnshuffleOptions(5)); /// ``` struct TORCH_API PixelUnshuffleImpl : public torch::nn::Cloneable<PixelUnshuffleImpl> { explicit PixelUnshuffleImpl(const PixelUnshuffleOptions& options_); /// Pretty prints the `PixelUnshuffle` module into the given `stream`. void pretty_print(std::ostream& stream) const override; Tensor forward(const Tensor& input); void reset() override; /// The options with which this `Module` was constructed. PixelUnshuffleOptions options; }; /// A `ModuleHolder` subclass for `PixelUnshuffleImpl`. /// See the documentation for `PixelUnshuffleImpl` class to learn what methods /// it provides, and examples of how to use `PixelUnshuffle` with /// `torch::nn::PixelUnshuffleOptions`. See the documentation for `ModuleHolder` /// to learn about PyTorch's module storage semantics. TORCH_MODULE(PixelUnshuffle); } // namespace torch::nn ```
======================================================================================================================================================= SOURCE CODE FILE: pooling.h LINES: 1 SIZE: 29.70 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\pooling.h ENCODING: utf-8 ```h #pragma once #include <torch/expanding_array.h> #include <torch/nn/cloneable.h> #include <torch/nn/functional/pooling.h> #include <torch/nn/modules/common.h> #include <torch/nn/options/pooling.h> #include <torch/csrc/Export.h> namespace torch::nn { /// Base class for all (dimension-specialized) avgpool modules. template <size_t D, typename Derived> class TORCH_API AvgPoolImpl : public torch::nn::Cloneable<Derived> { public: AvgPoolImpl(ExpandingArray<D> kernel_size) : AvgPoolImpl(AvgPoolOptions<D>(kernel_size)) {} explicit AvgPoolImpl(const AvgPoolOptions<D>& options_); void reset() override; /// Pretty prints the `AvgPool{1,2,3}d` module into the given `stream`. void pretty_print(std::ostream& stream) const override; /// The options with which this `Module` was constructed. AvgPoolOptions<D> options; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AvgPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies avgpool over a 1-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AvgPool1d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::AvgPool1dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// AvgPool1d model(AvgPool1dOptions(3).stride(2)); /// ``` class TORCH_API AvgPool1dImpl : public AvgPoolImpl<1, AvgPool1dImpl> { public: using AvgPoolImpl<1, AvgPool1dImpl>::AvgPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `AvgPool1dImpl`. /// See the documentation for `AvgPool1dImpl` class to learn what methods it /// provides, and examples of how to use `AvgPool1d` with /// `torch::nn::AvgPool1dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(AvgPool1d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AvgPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies avgpool over a 2-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AvgPool2d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::AvgPool2dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// AvgPool2d model(AvgPool2dOptions({3, 2}).stride({2, 2})); /// ``` class TORCH_API AvgPool2dImpl : public AvgPoolImpl<2, AvgPool2dImpl> { public: using AvgPoolImpl<2, AvgPool2dImpl>::AvgPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `AvgPool2dImpl`. /// See the documentation for `AvgPool2dImpl` class to learn what methods it /// provides, and examples of how to use `AvgPool2d` with /// `torch::nn::AvgPool2dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(AvgPool2d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AvgPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies avgpool over a 3-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AvgPool3d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::AvgPool3dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// AvgPool3d model(AvgPool3dOptions(5).stride(2)); /// ``` class TORCH_API AvgPool3dImpl : public AvgPoolImpl<3, AvgPool3dImpl> { public: using AvgPoolImpl<3, AvgPool3dImpl>::AvgPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `AvgPool3dImpl`. /// See the documentation for `AvgPool3dImpl` class to learn what methods it /// provides, and examples of how to use `AvgPool3d` with /// `torch::nn::AvgPool3dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(AvgPool3d); // ============================================================================ /// Base class for all (dimension-specialized) maxpool modules. template <size_t D, typename Derived> class TORCH_API MaxPoolImpl : public torch::nn::Cloneable<Derived> { public: MaxPoolImpl(ExpandingArray<D> kernel_size) : MaxPoolImpl(MaxPoolOptions<D>(kernel_size)) {} explicit MaxPoolImpl(const MaxPoolOptions<D>& options_); void reset() override; /// Pretty prints the `MaxPool{1,2,3}d` module into the given `stream`. void pretty_print(std::ostream& stream) const override; /// The options with which this `Module` was constructed. MaxPoolOptions<D> options; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies maxpool over a 1-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.MaxPool1d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::MaxPool1dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// MaxPool1d model(MaxPool1dOptions(3).stride(2)); /// ``` class TORCH_API MaxPool1dImpl : public MaxPoolImpl<1, MaxPool1dImpl> { public: using MaxPoolImpl<1, MaxPool1dImpl>::MaxPoolImpl; Tensor forward(const Tensor& input); /// Returns the outputs and the indices of the max values. /// Useful for `torch::nn::MaxUnpool1d` later. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); }; /// A `ModuleHolder` subclass for `MaxPool1dImpl`. /// See the documentation for `MaxPool1dImpl` class to learn what methods it /// provides, and examples of how to use `MaxPool1d` with /// `torch::nn::MaxPool1dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(MaxPool1d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies maxpool over a 2-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.MaxPool2d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::MaxPool2dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// MaxPool2d model(MaxPool2dOptions({3, 2}).stride({2, 2})); /// ``` class TORCH_API MaxPool2dImpl : public MaxPoolImpl<2, MaxPool2dImpl> { public: using MaxPoolImpl<2, MaxPool2dImpl>::MaxPoolImpl; Tensor forward(const Tensor& input); /// Returns the outputs and the indices of the max values. /// Useful for `torch::nn::MaxUnpool2d` later. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); }; /// A `ModuleHolder` subclass for `MaxPool2dImpl`. /// See the documentation for `MaxPool2dImpl` class to learn what methods it /// provides, and examples of how to use `MaxPool2d` with /// `torch::nn::MaxPool2dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(MaxPool2d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies maxpool over a 3-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.MaxPool3d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::MaxPool3dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// MaxPool3d model(MaxPool3dOptions(3).stride(2)); /// ``` class TORCH_API MaxPool3dImpl : public MaxPoolImpl<3, MaxPool3dImpl> { public: using MaxPoolImpl<3, MaxPool3dImpl>::MaxPoolImpl; Tensor forward(const Tensor& input); /// Returns the outputs and the indices of the max values. /// Useful for `torch::nn::MaxUnpool3d` later. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); }; /// A `ModuleHolder` subclass for `MaxPool3dImpl`. /// See the documentation for `MaxPool3dImpl` class to learn what methods it /// provides, and examples of how to use `MaxPool3d` with /// `torch::nn::MaxPool3dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(MaxPool3d); // ============================================================================ /// Base class for all (dimension-specialized) adaptive maxpool modules. template <size_t D, typename output_size_t, typename Derived> class TORCH_API AdaptiveMaxPoolImpl : public torch::nn::Cloneable<Derived> { public: AdaptiveMaxPoolImpl(output_size_t output_size) : AdaptiveMaxPoolImpl( AdaptiveMaxPoolOptions<output_size_t>(output_size)) {} explicit AdaptiveMaxPoolImpl( const AdaptiveMaxPoolOptions<output_size_t>& options_) : options(options_) {} void reset() override {} /// Pretty prints the `AdaptiveMaxPool{1,2,3}d` module into the given /// `stream`. void pretty_print(std::ostream& stream) const override { stream << "torch::nn::AdaptiveMaxPool" << D << "d" << "(output_size=" << options.output_size() << ")"; } /// The options with which this `Module` was constructed. AdaptiveMaxPoolOptions<output_size_t> options; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveMaxPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies adaptive maxpool over a 1-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AdaptiveMaxPool1d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::AdaptiveMaxPool1dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// AdaptiveMaxPool1d model(AdaptiveMaxPool1dOptions(3)); /// ``` class TORCH_API AdaptiveMaxPool1dImpl : public AdaptiveMaxPoolImpl<1, ExpandingArray<1>, AdaptiveMaxPool1dImpl> { public: using AdaptiveMaxPoolImpl<1, ExpandingArray<1>, AdaptiveMaxPool1dImpl>:: AdaptiveMaxPoolImpl; Tensor forward(const Tensor& input); /// Returns the indices along with the outputs. /// Useful to pass to nn.MaxUnpool1d. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); }; /// A `ModuleHolder` subclass for `AdaptiveMaxPool1dImpl`. /// See the documentation for `AdaptiveMaxPool1dImpl` class to learn what /// methods it provides, and examples of how to use `AdaptiveMaxPool1d` with /// `torch::nn::AdaptiveMaxPool1dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(AdaptiveMaxPool1d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveMaxPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies adaptive maxpool over a 2-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AdaptiveMaxPool2d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::AdaptiveMaxPool2dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2})); /// ``` class TORCH_API AdaptiveMaxPool2dImpl : public AdaptiveMaxPoolImpl< 2, ExpandingArrayWithOptionalElem<2>, AdaptiveMaxPool2dImpl> { public: using AdaptiveMaxPoolImpl< 2, ExpandingArrayWithOptionalElem<2>, AdaptiveMaxPool2dImpl>::AdaptiveMaxPoolImpl; Tensor forward(const Tensor& input); /// Returns the indices along with the outputs. /// Useful to pass to nn.MaxUnpool2d. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); }; /// A `ModuleHolder` subclass for `AdaptiveMaxPool2dImpl`. /// See the documentation for `AdaptiveMaxPool2dImpl` class to learn what /// methods it provides, and examples of how to use `AdaptiveMaxPool2d` with /// `torch::nn::AdaptiveMaxPool2dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(AdaptiveMaxPool2d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveMaxPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies adaptive maxpool over a 3-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AdaptiveMaxPool3d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::AdaptiveMaxPool3dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// AdaptiveMaxPool3d model(AdaptiveMaxPool3dOptions(3)); /// ``` class TORCH_API AdaptiveMaxPool3dImpl : public AdaptiveMaxPoolImpl< 3, ExpandingArrayWithOptionalElem<3>, AdaptiveMaxPool3dImpl> { public: using AdaptiveMaxPoolImpl< 3, ExpandingArrayWithOptionalElem<3>, AdaptiveMaxPool3dImpl>::AdaptiveMaxPoolImpl; Tensor forward(const Tensor& input); /// Returns the indices along with the outputs. /// Useful to pass to nn.MaxUnpool3d. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); }; /// A `ModuleHolder` subclass for `AdaptiveMaxPool3dImpl`. /// See the documentation for `AdaptiveMaxPool3dImpl` class to learn what /// methods it provides, and examples of how to use `AdaptiveMaxPool3d` with /// `torch::nn::AdaptiveMaxPool3dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(AdaptiveMaxPool3d); // ============================================================================ /// Base class for all (dimension-specialized) adaptive avgpool modules. template <size_t D, typename output_size_t, typename Derived> class TORCH_API AdaptiveAvgPoolImpl : public torch::nn::Cloneable<Derived> { public: AdaptiveAvgPoolImpl(output_size_t output_size) : AdaptiveAvgPoolImpl( AdaptiveAvgPoolOptions<output_size_t>(output_size)) {} explicit AdaptiveAvgPoolImpl( const AdaptiveAvgPoolOptions<output_size_t>& options_) : options(options_) {} void reset() override {} /// Pretty prints the `AdaptiveAvgPool{1,2,3}d` module into the given /// `stream`. void pretty_print(std::ostream& stream) const override { stream << "torch::nn::AdaptiveAvgPool" << D << "d" << "(output_size=" << options.output_size() << ")"; } /// The options with which this `Module` was constructed. AdaptiveAvgPoolOptions<output_size_t> options; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveAvgPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies adaptive avgpool over a 1-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AdaptiveAvgPool1d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::AdaptiveAvgPool1dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// AdaptiveAvgPool1d model(AdaptiveAvgPool1dOptions(5)); /// ``` class TORCH_API AdaptiveAvgPool1dImpl : public AdaptiveAvgPoolImpl<1, ExpandingArray<1>, AdaptiveAvgPool1dImpl> { public: using AdaptiveAvgPoolImpl<1, ExpandingArray<1>, AdaptiveAvgPool1dImpl>:: AdaptiveAvgPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `AdaptiveAvgPool1dImpl`. /// See the documentation for `AdaptiveAvgPool1dImpl` class to learn what /// methods it provides, and examples of how to use `AdaptiveAvgPool1d` with /// `torch::nn::AdaptiveAvgPool1dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(AdaptiveAvgPool1d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveAvgPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies adaptive avgpool over a 2-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AdaptiveAvgPool2d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::AdaptiveAvgPool2dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// AdaptiveAvgPool2d model(AdaptiveAvgPool2dOptions({3, 2})); /// ``` class TORCH_API AdaptiveAvgPool2dImpl : public AdaptiveAvgPoolImpl< 2, ExpandingArrayWithOptionalElem<2>, AdaptiveAvgPool2dImpl> { public: using AdaptiveAvgPoolImpl< 2, ExpandingArrayWithOptionalElem<2>, AdaptiveAvgPool2dImpl>::AdaptiveAvgPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `AdaptiveAvgPool2dImpl`. /// See the documentation for `AdaptiveAvgPool2dImpl` class to learn what /// methods it provides, and examples of how to use `AdaptiveAvgPool2d` with /// `torch::nn::AdaptiveAvgPool2dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(AdaptiveAvgPool2d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveAvgPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies adaptive avgpool over a 3-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.AdaptiveAvgPool3d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::AdaptiveAvgPool3dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// AdaptiveAvgPool3d model(AdaptiveAvgPool3dOptions(3)); /// ``` class TORCH_API AdaptiveAvgPool3dImpl : public AdaptiveAvgPoolImpl< 3, ExpandingArrayWithOptionalElem<3>, AdaptiveAvgPool3dImpl> { public: using AdaptiveAvgPoolImpl< 3, ExpandingArrayWithOptionalElem<3>, AdaptiveAvgPool3dImpl>::AdaptiveAvgPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `AdaptiveAvgPool3dImpl`. /// See the documentation for `AdaptiveAvgPool3dImpl` class to learn what /// methods it provides, and examples of how to use `AdaptiveAvgPool3d` with /// `torch::nn::AdaptiveAvgPool3dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(AdaptiveAvgPool3d); // ============================================================================ /// Base class for all (dimension-specialized) maxunpool modules. template <size_t D, typename Derived> class TORCH_API MaxUnpoolImpl : public torch::nn::Cloneable<Derived> { public: MaxUnpoolImpl(ExpandingArray<D> kernel_size) : MaxUnpoolImpl(MaxUnpoolOptions<D>(kernel_size)) {} explicit MaxUnpoolImpl(const MaxUnpoolOptions<D>& options_); void reset() override; /// Pretty prints the `MaxUnpool{1,2,3}d` module into the given `stream`. void pretty_print(std::ostream& stream) const override; /// The options with which this `Module` was constructed. MaxUnpoolOptions<D> options; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxUnpool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies maxunpool over a 1-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.MaxUnpool1d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::MaxUnpool1dOptions` class to learn /// what constructor arguments are supported for this module. /// /// Example: /// ``` /// MaxUnpool1d model(MaxUnpool1dOptions(3).stride(2).padding(1)); /// ``` class TORCH_API MaxUnpool1dImpl : public MaxUnpoolImpl<1, MaxUnpool1dImpl> { public: using MaxUnpoolImpl<1, MaxUnpool1dImpl>::MaxUnpoolImpl; Tensor forward( const Tensor& input, const Tensor& indices, const std::optional<std::vector<int64_t>>& output_size = std::nullopt); protected: FORWARD_HAS_DEFAULT_ARGS({2, AnyValue(std::optional<std::vector<int64_t>>())}) }; /// A `ModuleHolder` subclass for `MaxUnpool1dImpl`. /// See the documentation for `MaxUnpool1dImpl` class to learn what methods it /// provides, and examples of how to use `MaxUnpool1d` with /// `torch::nn::MaxUnpool1dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(MaxUnpool1d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxUnpool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies maxunpool over a 2-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.MaxUnpool2d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::MaxUnpool2dOptions` class to learn /// what constructor arguments are supported for this module. /// /// Example: /// ``` /// MaxUnpool2d model(MaxUnpool2dOptions(3).stride(2).padding(1)); /// ``` class TORCH_API MaxUnpool2dImpl : public MaxUnpoolImpl<2, MaxUnpool2dImpl> { public: using MaxUnpoolImpl<2, MaxUnpool2dImpl>::MaxUnpoolImpl; Tensor forward( const Tensor& input, const Tensor& indices, const std::optional<std::vector<int64_t>>& output_size = std::nullopt); protected: FORWARD_HAS_DEFAULT_ARGS({2, AnyValue(std::optional<std::vector<int64_t>>())}) }; /// A `ModuleHolder` subclass for `MaxUnpool2dImpl`. /// See the documentation for `MaxUnpool2dImpl` class to learn what methods it /// provides, and examples of how to use `MaxUnpool2d` with /// `torch::nn::MaxUnpool2dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(MaxUnpool2d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxUnpool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies maxunpool over a 3-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.MaxUnpool3d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::MaxUnpool3dOptions` class to learn /// what constructor arguments are supported for this module. /// /// Example: /// ``` /// MaxUnpool3d model(MaxUnpool3dOptions(3).stride(2).padding(1)); /// ``` class TORCH_API MaxUnpool3dImpl : public MaxUnpoolImpl<3, MaxUnpool3dImpl> { public: using MaxUnpoolImpl<3, MaxUnpool3dImpl>::MaxUnpoolImpl; Tensor forward( const Tensor& input, const Tensor& indices, const std::optional<std::vector<int64_t>>& output_size = std::nullopt); protected: FORWARD_HAS_DEFAULT_ARGS({2, AnyValue(std::optional<std::vector<int64_t>>())}) }; /// A `ModuleHolder` subclass for `MaxUnpool3dImpl`. /// See the documentation for `MaxUnpool3dImpl` class to learn what methods it /// provides, and examples of how to use `MaxUnpool3d` with /// `torch::nn::MaxUnpool3dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(MaxUnpool3d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FractionalMaxPool2d // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies fractional maxpool over a 2-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.FractionalMaxPool2d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::FractionalMaxPool2dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// FractionalMaxPool2d model(FractionalMaxPool2dOptions(5).output_size(1)); /// ``` class TORCH_API FractionalMaxPool2dImpl : public torch::nn::Cloneable<FractionalMaxPool2dImpl> { public: FractionalMaxPool2dImpl(ExpandingArray<2> kernel_size) : FractionalMaxPool2dImpl(FractionalMaxPool2dOptions(kernel_size)) {} explicit FractionalMaxPool2dImpl(FractionalMaxPool2dOptions options_); void reset() override; /// Pretty prints the `FractionalMaxPool2d` module into the given `stream`. void pretty_print(std::ostream& stream) const override; Tensor forward(const Tensor& input); /// Returns the outputs and the indices of the max values. /// Useful for `torch::nn::MaxUnpool2d` later. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); /// The options with which this `Module` was constructed. FractionalMaxPool2dOptions options; Tensor _random_samples; }; /// A `ModuleHolder` subclass for `FractionalMaxPool2dImpl`. /// See the documentation for `FractionalMaxPool2dImpl` class to learn what /// methods it provides, and examples of how to use `FractionalMaxPool2d` with /// `torch::nn::FractionalMaxPool2dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(FractionalMaxPool2d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FractionalMaxPool3d // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies fractional maxpool over a 3-D input. /// See https://pytorch.org/docs/main/nn.html#torch.nn.FractionalMaxPool3d to /// learn about the exact behavior of this module. /// /// See the documentation for `torch::nn::FractionalMaxPool3dOptions` class to /// learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// FractionalMaxPool3d model(FractionalMaxPool3dOptions(5).output_size(1)); /// ``` class TORCH_API FractionalMaxPool3dImpl : public torch::nn::Cloneable<FractionalMaxPool3dImpl> { public: FractionalMaxPool3dImpl(ExpandingArray<3> kernel_size) : FractionalMaxPool3dImpl(FractionalMaxPool3dOptions(kernel_size)) {} explicit FractionalMaxPool3dImpl(FractionalMaxPool3dOptions options_); void reset() override; /// Pretty prints the `FractionalMaxPool3d` module into the given `stream`. void pretty_print(std::ostream& stream) const override; Tensor forward(const Tensor& input); /// Returns the outputs and the indices of the max values. /// Useful for `torch::nn::MaxUnpool3d` later. std::tuple<Tensor, Tensor> forward_with_indices(const Tensor& input); /// The options with which this `Module` was constructed. FractionalMaxPool3dOptions options; Tensor _random_samples; }; /// A `ModuleHolder` subclass for `FractionalMaxPool3dImpl`. /// See the documentation for `FractionalMaxPool3dImpl` class to learn what /// methods it provides, and examples of how to use `FractionalMaxPool3d` with /// `torch::nn::FractionalMaxPool3dOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(FractionalMaxPool3d); // ============================================================================ /// Base class for all (dimension-specialized) lppool modules. template <size_t D, typename Derived> class TORCH_API LPPoolImpl : public torch::nn::Cloneable<Derived> { public: LPPoolImpl(double norm_type, ExpandingArray<D> kernel_size) : LPPoolImpl(LPPoolOptions<D>(norm_type, kernel_size)) {} explicit LPPoolImpl(const LPPoolOptions<D>& options_); void reset() override; /// Pretty prints the `LPPool{1,2}d` module into the given `stream`. void pretty_print(std::ostream& stream) const override; LPPoolOptions<D> options; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LPPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies the LPPool1d function element-wise. /// See https://pytorch.org/docs/main/nn.html#torch.nn.LPPool1d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::LPPool1dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// LPPool1d model(LPPool1dOptions(1, 2).stride(5).ceil_mode(true)); /// ``` class TORCH_API LPPool1dImpl : public LPPoolImpl<1, LPPool1dImpl> { public: using LPPoolImpl<1, LPPool1dImpl>::LPPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `LPPool1dImpl`. /// See the documentation for `LPPool1dImpl` class to learn what methods it /// provides, and examples of how to use `LPPool1d` with /// `torch::nn::LPPool1dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(LPPool1d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LPPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies the LPPool2d function element-wise. /// See https://pytorch.org/docs/main/nn.html#torch.nn.LPPool2d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::LPPool2dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// LPPool2d model(LPPool2dOptions(1, std::vector<int64_t>({3, 4})).stride({5, /// 6}).ceil_mode(true)); /// ``` class TORCH_API LPPool2dImpl : public LPPoolImpl<2, LPPool2dImpl> { public: using LPPoolImpl<2, LPPool2dImpl>::LPPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `LPPool2dImpl`. /// See the documentation for `LPPool2dImpl` class to learn what methods it /// provides, and examples of how to use `LPPool2d` with /// `torch::nn::LPPool2dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(LPPool2d); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LPPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Applies the LPPool3d function element-wise. /// See https://pytorch.org/docs/main/nn.html#torch.nn.LPPool3d to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::LPPool3dOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// LPPool3d model(LPPool3dOptions(1, std::vector<int64_t>({3, 4, 5})).stride( /// {5, 6, 7}).ceil_mode(true)); /// ``` class TORCH_API LPPool3dImpl : public LPPoolImpl<3, LPPool3dImpl> { public: using LPPoolImpl<3, LPPool3dImpl>::LPPoolImpl; Tensor forward(const Tensor& input); }; /// A `ModuleHolder` subclass for `LPPool3dImpl`. /// See the documentation for `LPPool3dImpl` class to learn what methods it /// provides, and examples of how to use `LPPool3d` with /// `torch::nn::LPPool3dOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(LPPool3d); } // namespace torch::nn ```
=================================================================================================================================================== SOURCE CODE FILE: rnn.h LINES: 1 SIZE: 13.52 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\rnn.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/cloneable.h> #include <torch/nn/modules/common.h> #include <torch/nn/modules/dropout.h> #include <torch/nn/options/rnn.h> #include <torch/nn/pimpl.h> #include <torch/nn/utils/rnn.h> #include <torch/types.h> #include <ATen/ATen.h> #include <c10/util/Exception.h> #include <cstddef> #include <functional> #include <memory> #include <vector> namespace torch::nn { namespace detail { /// Base class for all RNN implementations (intended for code sharing). template <typename Derived> class TORCH_API RNNImplBase : public torch::nn::Cloneable<Derived> { public: explicit RNNImplBase(const RNNOptionsBase& options_); /// Initializes the parameters of the RNN module. void reset() override; void reset_parameters(); /// Overrides `nn::Module::to()` to call `flatten_parameters()` after the /// original operation. void to(torch::Device device, torch::Dtype dtype, bool non_blocking = false) override; void to(torch::Dtype dtype, bool non_blocking = false) override; void to(torch::Device device, bool non_blocking = false) override; /// Pretty prints the RNN module into the given `stream`. void pretty_print(std::ostream& stream) const override; /// Modifies the internal storage of weights for optimization purposes. /// /// On CPU, this method should be called if any of the weight or bias vectors /// are changed (i.e. weights are added or removed). On GPU, it should be /// called __any time the storage of any parameter is modified__, e.g. any /// time a parameter is assigned a new value. This allows using the fast path /// in cuDNN implementations of respective RNN `forward()` methods. It is /// called once upon construction, inside `reset()`. void flatten_parameters(); std::vector<Tensor> all_weights() const; /// The RNN's options. // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) RNNOptionsBase options_base; protected: // Resets flat_weights_ // Note: be v. careful before removing this, as 3rd party device types // likely rely on this behavior to properly .to() modules like LSTM. void reset_flat_weights(); void check_input(const Tensor& input, const Tensor& batch_sizes) const; std::tuple<int64_t, int64_t, int64_t> get_expected_hidden_size( const Tensor& input, const Tensor& batch_sizes) const; void check_hidden_size( const Tensor& hx, std::tuple<int64_t, int64_t, int64_t> expected_hidden_size, std::string msg = "Expected hidden size {1}, got {2}") const; void check_forward_args(Tensor input, Tensor hidden, Tensor batch_sizes) const; Tensor permute_hidden(Tensor hx, const Tensor& permutation) const; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::vector<std::string> flat_weights_names_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::vector<std::vector<std::string>> all_weights_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::vector<Tensor> flat_weights_; }; } // namespace detail // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RNN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// A multi-layer Elman RNN module with Tanh or ReLU activation. /// See https://pytorch.org/docs/main/generated/torch.nn.RNN.html to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::RNNOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// RNN model(RNNOptions(128, /// 64).num_layers(3).dropout(0.2).nonlinearity(torch::kTanh)); /// ``` class TORCH_API RNNImpl : public detail::RNNImplBase<RNNImpl> { public: RNNImpl(int64_t input_size, int64_t hidden_size) : RNNImpl(RNNOptions(input_size, hidden_size)) {} explicit RNNImpl(const RNNOptions& options_); std::tuple<Tensor, Tensor> forward(const Tensor& input, Tensor hx = {}); protected: FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}) public: std::tuple<torch::nn::utils::rnn::PackedSequence, Tensor> forward_with_packed_input( const torch::nn::utils::rnn::PackedSequence& packed_input, Tensor hx = {}); RNNOptions options; protected: std::tuple<Tensor, Tensor> forward_helper( const Tensor& input, const Tensor& batch_sizes, const Tensor& sorted_indices, int64_t max_batch_size, Tensor hx); }; /// A `ModuleHolder` subclass for `RNNImpl`. /// See the documentation for `RNNImpl` class to learn what methods it /// provides, and examples of how to use `RNN` with `torch::nn::RNNOptions`. /// See the documentation for `ModuleHolder` to learn about PyTorch's /// module storage semantics. TORCH_MODULE(RNN); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LSTM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// A multi-layer long-short-term-memory (LSTM) module. /// See https://pytorch.org/docs/main/generated/torch.nn.LSTM.html to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::LSTMOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// LSTM model(LSTMOptions(2, /// 4).num_layers(3).batch_first(false).bidirectional(true)); /// ``` class TORCH_API LSTMImpl : public detail::RNNImplBase<LSTMImpl> { public: LSTMImpl(int64_t input_size, int64_t hidden_size) : LSTMImpl(LSTMOptions(input_size, hidden_size)) {} explicit LSTMImpl(const LSTMOptions& options_); std::tuple<Tensor, std::tuple<Tensor, Tensor>> forward( const Tensor& input, std::optional<std::tuple<Tensor, Tensor>> hx_opt = {}); protected: FORWARD_HAS_DEFAULT_ARGS( {1, AnyValue(std::optional<std::tuple<Tensor, Tensor>>())}) public: std::tuple<torch::nn::utils::rnn::PackedSequence, std::tuple<Tensor, Tensor>> forward_with_packed_input( const torch::nn::utils::rnn::PackedSequence& packed_input, std::optional<std::tuple<Tensor, Tensor>> hx_opt = {}); LSTMOptions options; protected: void check_forward_args( const Tensor& input, std::tuple<Tensor, Tensor> hidden, const Tensor& batch_sizes) const; std::tuple<int64_t, int64_t, int64_t> get_expected_cell_size( const Tensor& input, const Tensor& batch_sizes) const; std::tuple<Tensor, Tensor> permute_hidden( std::tuple<Tensor, Tensor> hx, const Tensor& permutation) const; std::tuple<Tensor, std::tuple<Tensor, Tensor>> forward_helper( const Tensor& input, const Tensor& batch_sizes, const Tensor& sorted_indices, int64_t max_batch_size, std::optional<std::tuple<Tensor, Tensor>> hx_opt); }; /// A `ModuleHolder` subclass for `LSTMImpl`. /// See the documentation for `LSTMImpl` class to learn what methods it /// provides, and examples of how to use `LSTM` with `torch::nn::LSTMOptions`. /// See the documentation for `ModuleHolder` to learn about PyTorch's /// module storage semantics. TORCH_MODULE(LSTM); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GRU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// A multi-layer gated recurrent unit (GRU) module. /// See https://pytorch.org/docs/main/generated/torch.nn.GRU.html to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::GRUOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// GRU model(GRUOptions(2, /// 4).num_layers(3).batch_first(false).bidirectional(true)); /// ``` class TORCH_API GRUImpl : public detail::RNNImplBase<GRUImpl> { public: GRUImpl(int64_t input_size, int64_t hidden_size) : GRUImpl(GRUOptions(input_size, hidden_size)) {} explicit GRUImpl(const GRUOptions& options_); std::tuple<Tensor, Tensor> forward(const Tensor& input, Tensor hx = {}); protected: FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(torch::Tensor())}) public: std::tuple<torch::nn::utils::rnn::PackedSequence, Tensor> forward_with_packed_input( const torch::nn::utils::rnn::PackedSequence& packed_input, Tensor hx = {}); GRUOptions options; protected: std::tuple<Tensor, Tensor> forward_helper( const Tensor& input, const Tensor& batch_sizes, const Tensor& sorted_indices, int64_t max_batch_size, Tensor hx); }; /// A `ModuleHolder` subclass for `GRUImpl`. /// See the documentation for `GRUImpl` class to learn what methods it /// provides, and examples of how to use `GRU` with `torch::nn::GRUOptions`. /// See the documentation for `ModuleHolder` to learn about PyTorch's /// module storage semantics. TORCH_MODULE(GRU); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RNNCellImplBase // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ namespace detail { /// Base class for all RNNCell implementations (intended for code sharing). template <typename Derived> class TORCH_API RNNCellImplBase : public torch::nn::Cloneable<Derived> { public: explicit RNNCellImplBase(const RNNCellOptionsBase& options_); /// Initializes the parameters of the RNNCell module. void reset() override; void reset_parameters(); /// Pretty prints the RNN module into the given `stream`. void pretty_print(std::ostream& stream) const override; RNNCellOptionsBase options_base; Tensor weight_ih; Tensor weight_hh; Tensor bias_ih; Tensor bias_hh; protected: void check_forward_input(const Tensor& input, const std::string& name) const; virtual std::string get_nonlinearity_str() const; }; } // namespace detail // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RNNCell // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// An Elman RNN cell with tanh or ReLU non-linearity. /// See https://pytorch.org/docs/main/nn.html#torch.nn.RNNCell to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::RNNCellOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// RNNCell model(RNNCellOptions(20, /// 10).bias(false).nonlinearity(torch::kReLU)); /// ``` class TORCH_API RNNCellImpl : public detail::RNNCellImplBase<RNNCellImpl> { public: RNNCellImpl(int64_t input_size, int64_t hidden_size) : RNNCellImpl(RNNCellOptions(input_size, hidden_size)) {} explicit RNNCellImpl(const RNNCellOptions& options_); Tensor forward(const Tensor& input, const Tensor& hx = {}); protected: FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}) public: RNNCellOptions options; protected: std::string get_nonlinearity_str() const override; }; /// A `ModuleHolder` subclass for `RNNCellImpl`. /// See the documentation for `RNNCellImpl` class to learn what methods it /// provides, and examples of how to use `RNNCell` with /// `torch::nn::RNNCellOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(RNNCell); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LSTMCell // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// A long short-term memory (LSTM) cell. /// See https://pytorch.org/docs/main/nn.html#torch.nn.LSTMCell to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::LSTMCellOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// LSTMCell model(LSTMCellOptions(20, 10).bias(false)); /// ``` class TORCH_API LSTMCellImpl : public detail::RNNCellImplBase<LSTMCellImpl> { public: LSTMCellImpl(int64_t input_size, int64_t hidden_size) : LSTMCellImpl(LSTMCellOptions(input_size, hidden_size)) {} explicit LSTMCellImpl(const LSTMCellOptions& options_); std::tuple<Tensor, Tensor> forward( const Tensor& input, std::optional<std::tuple<Tensor, Tensor>> hx_opt = {}); protected: FORWARD_HAS_DEFAULT_ARGS( {1, AnyValue(std::optional<std::tuple<Tensor, Tensor>>())}) public: LSTMCellOptions options; }; /// A `ModuleHolder` subclass for `LSTMCellImpl`. /// See the documentation for `LSTMCellImpl` class to learn what methods it /// provides, and examples of how to use `LSTMCell` with /// `torch::nn::LSTMCellOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(LSTMCell); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GRUCell // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// A gated recurrent unit (GRU) cell. /// See https://pytorch.org/docs/main/nn.html#torch.nn.GRUCell to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::GRUCellOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// GRUCell model(GRUCellOptions(20, 10).bias(false)); /// ``` class TORCH_API GRUCellImpl : public detail::RNNCellImplBase<GRUCellImpl> { public: GRUCellImpl(int64_t input_size, int64_t hidden_size) : GRUCellImpl(GRUCellOptions(input_size, hidden_size)) {} explicit GRUCellImpl(const GRUCellOptions& options_); Tensor forward(const Tensor& input, const Tensor& hx = {}); protected: FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}) public: GRUCellOptions options; }; /// A `ModuleHolder` subclass for `GRUCellImpl`. /// See the documentation for `GRUCellImpl` class to learn what methods it /// provides, and examples of how to use `GRUCell` with /// `torch::nn::GRUCellOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(GRUCell); } // namespace torch::nn ```
=========================================================================================================================================================== SOURCE CODE FILE: transformer.h LINES: 1 SIZE: 5.33 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\transformer.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/cloneable.h> #include <torch/nn/module.h> #include <torch/nn/modules/common.h> #include <torch/nn/options/transformer.h> #include <torch/nn/pimpl.h> #include <torch/types.h> #include <ostream> namespace torch::nn { // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Transformer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// A transformer model. User is able to modify the attributes as needed. The /// architecture is based on the paper "Attention Is All You Need". Ashish /// Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N /// Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. /// In Advances in Neural Information Processing Systems, pages 6000-6010. /// /// See https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html to /// learn about the exact behavior of this transformer model /// /// See the documentation for `torch::nn::Transformer` class to learn what /// constructor arguments are supported for this encoder layer model /// /// Example: /// ``` /// Transformer trans(TransformerOptions(512, 8)); /// ``` class TORCH_API TransformerImpl : public Cloneable<TransformerImpl> { public: explicit TransformerImpl(TransformerOptions options_); /// forward function for Transformer Module /// Args: /// src: the sequence to the encoder (required). /// tgt: the sequence to the decoder (required). /// src_mask: the additive mask for the src sequence (optional). /// tgt_mask: the additive mask for the tgt sequence (optional). /// memory_mask: the additive mask for the encoder output (optional). /// src_key_padding_mask: the ByteTensor mask for src keys per batch /// (optional). tgt_key_padding_mask: the ByteTensor mask for tgt keys per /// batch (optional). memory_key_padding_mask: the ByteTensor mask for /// memory keys per batch (optional). /// /// Shape: /// src: `(S, N, E)` /// tgt: `(T, N, E)` /// src_mask: `(S, S)` /// tgt_mask: `(T, T)` /// memory_mask: `(T, S)` /// src_key_padding_mask: `(N, S)` /// tgt_key_padding_mask: `(N, T)` /// memory_key_padding_mask: `(N, S)` /// /// Note: /// [src/tgt/memory]_mask ensures that position i is allowed to attend the /// unmasked positions. If a ByteTensor is provided, the non-zero /// positions are not allowed to attend while the zero positions will be /// unchanged. If a BoolTensor is provided, positions with `True` are not /// allowed to attend while `False` values will be unchanged. If a /// FloatTensor is provided, it will be added to the attention weight. /// /// [src/tgt/memory]_key_padding_mask provides specified elements in the /// key to be ignored by the attention. If a ByteTensor is provided, the /// non-zero positions will be ignored while the zero positions will be /// unchanged. If a BoolTensor is provided, the positions with the value /// of `True` will be ignored while the position with the value of `False` /// will be unchanged. /// /// output: `(T, N, E)` /// /// Note: /// Due to the multi-head attention architecture in the transformer model, /// the output sequence length of a transformer is same as the input /// sequence (i.e. target) length of the decode. /// /// where /// S is the source sequence length, /// T is the target sequence length, /// N is the batch size, /// E is the feature number. Tensor forward( const Tensor& src, const Tensor& tgt, const Tensor& src_mask = {}, const Tensor& tgt_mask = {}, const Tensor& memory_mask = {}, const Tensor& src_key_padding_mask = {}, const Tensor& tgt_key_padding_mask = {}, const Tensor& memory_key_padding_mask = {}); void reset() override; void reset_parameters(); /// Generate a square mask for the sequence. /// The masked positions are filled with `-inf` in float type. /// Unmasked positions are filled with `0.0` in float type. /// Note: /// 1. This function will always return a CPU tensor. /// 2. This function requires the platform support IEEE754, since `-inf` is /// guaranteed to /// be valid only when IEEE754 is supported. If the platform doesn't /// support IEEE754, this function will fill the mask with the smallest /// float number instead of `-inf`, a one time warning will pop up as /// well. static Tensor generate_square_subsequent_mask(int64_t sz); protected: FORWARD_HAS_DEFAULT_ARGS( {2, AnyValue(Tensor())}, {3, AnyValue(Tensor())}, {4, AnyValue(Tensor())}, {5, AnyValue(Tensor())}, {6, AnyValue(Tensor())}, {7, AnyValue(Tensor())}) public: /// options with which this `Transformer` was constructed TransformerOptions options; /// encoder module AnyModule encoder; /// decoder module AnyModule decoder; }; /// A `ModuleHolder` subclass for `TransformerImpl`. /// See the documentation for `TransformerImpl` class to learn what /// methods it provides, and examples of how to use `Transformer` with /// `torch::nn::TransformerOptions`. /// See the documentation for `ModuleHolder` to learn about PyTorch's /// module storage semantics. TORCH_MODULE(Transformer); } // namespace torch::nn ```
================================================================================================================================================================ SOURCE CODE FILE: transformercoder.h LINES: 1 SIZE: 5.23 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\transformercoder.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/cloneable.h> #include <torch/nn/module.h> #include <torch/nn/modules/common.h> #include <torch/nn/modules/container/any.h> #include <torch/nn/modules/container/modulelist.h> #include <torch/nn/options/transformercoder.h> #include <torch/nn/pimpl.h> #include <torch/types.h> #include <utility> namespace torch::nn { // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerEncoder // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// TransformerEncoder module. /// See /// https://pytorch.org/docs/main/generated/torch.nn.TransformerEncoder.html /// to learn abouut the exact behavior of this encoder layer module. /// /// See the documentation for `torch::nn::TransformerEncoder` class to learn /// what constructor arguments are supported for this encoder module. /// /// Example: /// ``` /// TransformerEncoderLayer encoderLayer(TransformerEncoderLayerOptions(512, /// 8).dropout(0.1)); TransformerEncoder /// encoder(TransformerEncoderOptions(encoderLayer, /// 6).norm(LayerNorm(LayerNormOptions({2})))); /// ``` class TORCH_API TransformerEncoderImpl : public Cloneable<TransformerEncoderImpl> { public: TransformerEncoderImpl( TransformerEncoderLayer encoder_layer, int64_t num_layers) : TransformerEncoderImpl( TransformerEncoderOptions(std::move(encoder_layer), num_layers)) {} explicit TransformerEncoderImpl(TransformerEncoderOptions options_); Tensor forward( const Tensor& src, const Tensor& src_mask = {}, const Tensor& src_key_padding_mask = {}); void reset() override; void reset_parameters(); protected: FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}, {2, AnyValue(Tensor())}) public: /// options with which this `TransformerEncoder` was constructed TransformerEncoderOptions options; /// module list that contains all the encoder layers ModuleList layers = nullptr; /// optional normalization module AnyModule norm; }; /// A `ModuleHolder` subclass for `TransformerEncoderImpl`. /// See the documentation for `TransformerEncoderImpl` class to learn what /// methods it provides, and examples of how to use `TransformerEncoder` with /// `torch::nn::TransformerEncoderOptions`. /// See the documentation for `ModuleHolder` to learn about PyTorch's /// module storage semantics. TORCH_MODULE(TransformerEncoder); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerDecoder // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// TransformerDecoder is a stack of N decoder layers. /// See /// https://pytorch.org/docs/main/generated/torch.nn.TransformerDecoder.html /// to learn abouut the exact behavior of this decoder module /// /// See the documentation for `torch::nn::TransformerDecoderOptions` class to /// learn what constructor arguments are supported for this decoder module /// /// Example: /// ``` /// TransformerDecoderLayer decoder_layer(TransformerDecoderLayerOptions(512, /// 8).dropout(0.1)); TransformerDecoder /// transformer_decoder(TransformerDecoderOptions(decoder_layer, /// 6).norm(LayerNorm(LayerNormOptions({2})))); const auto memory = /// torch::rand({10, 32, 512}); const auto tgt = torch::rand({20, 32, 512}); /// auto out = transformer_decoder(tgt, memory); /// ``` class TORCH_API TransformerDecoderImpl : public Cloneable<TransformerDecoderImpl> { public: TransformerDecoderImpl( TransformerDecoderLayer decoder_layer, int64_t num_layers) : TransformerDecoderImpl( TransformerDecoderOptions(std::move(decoder_layer), num_layers)) {} explicit TransformerDecoderImpl(TransformerDecoderOptions options_); void reset() override; void reset_parameters(); /// Pass the inputs (and mask) through the decoder layer in turn. /// Args: /// tgt: the sequence to the decoder layer (required). /// memory: the sequence from the last layer of the encoder (required). /// tgt_mask: the mask for the tgt sequence (optional). /// memory_mask: the mask for the memory sequence (optional). /// tgt_key_padding_mask: the mask for the tgt keys per batch /// (optional). memory_key_padding_mask: the mask for the memory keys /// per batch (optional). Tensor forward( const Tensor& tgt, const Tensor& memory, const Tensor& tgt_mask = {}, const Tensor& memory_mask = {}, const Tensor& tgt_key_padding_mask = {}, const Tensor& memory_key_padding_mask = {}); /// The options used to configure this module. TransformerDecoderOptions options; /// Cloned layers of decoder layers ModuleList layers{nullptr}; /// optional layer normalization module AnyModule norm; protected: FORWARD_HAS_DEFAULT_ARGS( {2, AnyValue(Tensor())}, {3, AnyValue(Tensor())}, {4, AnyValue(Tensor())}, {5, AnyValue(Tensor())}) }; /// A `ModuleHolder` subclass for `TransformerDecoderImpl`. /// See the documentation for `TransformerDecoderImpl` class to learn what /// methods it provides, and examples of how to use `TransformerDecoder` with /// `torch::nn::TransformerDecoderOptions`. /// See the documentation for `ModuleHolder` to learn about PyTorch's /// module storage semantics. TORCH_MODULE(TransformerDecoder); } // namespace torch::nn ```
================================================================================================================================================================ SOURCE CODE FILE: transformerlayer.h LINES: 1 SIZE: 6.45 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\transformerlayer.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/cloneable.h> #include <torch/nn/module.h> #include <torch/nn/modules/activation.h> #include <torch/nn/modules/common.h> #include <torch/nn/modules/dropout.h> #include <torch/nn/modules/linear.h> #include <torch/nn/modules/normalization.h> #include <torch/nn/options/transformerlayer.h> #include <torch/nn/pimpl.h> #include <torch/types.h> #include <ostream> namespace torch::nn { // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerEncoderLayer // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// TransformerEncoderLayer module. /// See /// https://pytorch.org/docs/main/generated/torch.nn.TransformerEncoderLayer.html /// to learn abouut the exact behavior of this encoder layer model /// /// See the documentation for `torch::nn::TransformerEncoderLayer` class to /// learn what constructor arguments are supported for this encoder layer model /// /// Example: /// ``` /// TransformerEncoderLayer encoderLayer(TransformerEncoderLayerOptions(512, /// 8).dropout(0.1)); /// ``` class TORCH_API TransformerEncoderLayerImpl : public Cloneable<TransformerEncoderLayerImpl> { public: TransformerEncoderLayerImpl(int64_t d_model, int64_t nhead) : TransformerEncoderLayerImpl( TransformerEncoderLayerOptions(d_model, nhead)) {} explicit TransformerEncoderLayerImpl(TransformerEncoderLayerOptions options_); Tensor forward( const Tensor& src, const Tensor& src_mask = {}, const Tensor& src_key_padding_mask = {}); void reset() override; void reset_parameters(); protected: FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}, {2, AnyValue(Tensor())}) public: /// options with which this `TransformerEncoderLayer` was constructed TransformerEncoderLayerOptions options; /// self attention MultiheadAttention self_attn = nullptr; /// feedforward first linear layer Linear linear1 = nullptr; /// feedforward dropout layer Dropout dropout = nullptr; /// feedforward second linear layer Linear linear2 = nullptr; /// pre feedforward, normalization layer LayerNorm norm1 = nullptr; /// post feedfastward, normalization layer LayerNorm norm2 = nullptr; /// pre feedfastward, dropout layer Dropout dropout1 = nullptr; /// post feedfastward, dropout layer Dropout dropout2 = nullptr; }; /// A `ModuleHolder` subclass for `TransformerEncoderLayerImpl``. /// See the documentation for `TransformerEncoderLayerImpl` class to learn what /// methods it provides, and examples of how to use `TransformerEncoderLayer` /// with `torch::nn::TransformerEncoderLayerOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(TransformerEncoderLayer); // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerDecoderLayer // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// TransformerDecoderLayer is made up of self-attn, multi-head-attn and /// feedforward network. This standard decoder layer is based on the paper /// "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, /// Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia /// Polosukhin. 2017. Attention is all you need. In Advances in Neural /// Information Processing Systems, pages 6000-6010. Users may modify or /// implement in a different way during application. See /// https://pytorch.org/docs/main/nn.html#transformer-layers to learn about /// the exact behavior of this module. /// /// See the documentation for `torch::nn::TransformerDecoderLayerOptions` class /// to learn what constructor arguments are supported for this module. /// /// Example: /// ``` /// TransformerDecoderLayer model(TransformerDecoderLayerOptions(512, /// 8).dropout(0.2)); /// ``` class TORCH_API TransformerDecoderLayerImpl : public Cloneable<TransformerDecoderLayerImpl> { public: TransformerDecoderLayerImpl(int64_t d_model, int64_t nhead) : TransformerDecoderLayerImpl( TransformerDecoderLayerOptions(d_model, nhead)) {} explicit TransformerDecoderLayerImpl(TransformerDecoderLayerOptions options_); void reset() override; void reset_parameters(); /// Pass the inputs (and mask) through the decoder layer. /// Args: /// tgt: the sequence to the decoder layer (required). /// memory: the sequence from the last layer of the encoder (required). /// tgt_mask: the mask for the tgt sequence (optional). /// memory_mask: the mask for the memory sequence (optional). /// tgt_key_padding_mask: the mask for the tgt keys per batch /// (optional). memory_key_padding_mask: the mask for the memory keys /// per batch (optional). Tensor forward( Tensor tgt, const Tensor& memory, const Tensor& tgt_mask = {}, const Tensor& memory_mask = {}, const Tensor& tgt_key_padding_mask = {}, const Tensor& memory_key_padding_mask = {}); /// The options used to configure this module. TransformerDecoderLayerOptions options; /// self attention MultiheadAttention self_attn{nullptr}; /// Dropout, post self attention Dropout dropout1{nullptr}; /// Normalization, post self attention LayerNorm norm1{nullptr}; /// Multi-headed attention MultiheadAttention multihead_attn{nullptr}; /// Dropout, post multi-headed attention Dropout dropout2{nullptr}; /// Normalization, post multi-headed attention LayerNorm norm2{nullptr}; /// Feed forward first linear layer Linear linear1{nullptr}; /// Feed forward dropout layer Dropout dropout{nullptr}; /// Feed forward second linear layer Linear linear2{nullptr}; /// Dropout, post feed forward Dropout dropout3{nullptr}; /// Normalization, post feed forward LayerNorm norm3{nullptr}; protected: FORWARD_HAS_DEFAULT_ARGS( {2, AnyValue(Tensor())}, {3, AnyValue(Tensor())}, {4, AnyValue(Tensor())}, {5, AnyValue(Tensor())}) /// Apply activation based on configuration Tensor activation(const Tensor& input); }; /// A `ModuleHolder` subclass for `TransformerDecoderLayerImpl`. /// See the documentation for `TransformerDecoderLayerImpl` class to learn what /// methods it provides, and examples of how to use `TransformerDecoderLayer` /// with `torch::nn::TransformerDecoderLayerOptions`. See the documentation for /// `ModuleHolder` to learn about PyTorch's module storage semantics. TORCH_MODULE(TransformerDecoderLayer); } // namespace torch::nn ```
========================================================================================================================================================== SOURCE CODE FILE: upsampling.h LINES: 1 SIZE: 1.63 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\upsampling.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/cloneable.h> #include <torch/nn/functional/upsampling.h> #include <torch/nn/options/upsampling.h> #include <torch/nn/pimpl.h> #include <torch/types.h> #include <torch/csrc/Export.h> #include <cstddef> #include <ostream> namespace torch::nn { // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Upsample ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D /// (volumetric) data. /// See https://pytorch.org/docs/main/nn.html#torch.nn.Upsample to learn /// about the exact behavior of this module. /// /// See the documentation for `torch::nn::UpsampleOptions` class to learn what /// constructor arguments are supported for this module. /// /// Example: /// ``` /// Upsample /// model(UpsampleOptions().scale_factor({3}).mode(torch::kLinear).align_corners(false)); /// ``` class TORCH_API UpsampleImpl : public Cloneable<UpsampleImpl> { public: explicit UpsampleImpl(UpsampleOptions options_ = {}); void reset() override; /// Pretty prints the `Upsample` module into the given `stream`. void pretty_print(std::ostream& stream) const override; Tensor forward(const Tensor& input); /// The options with which this `Module` was constructed. UpsampleOptions options; }; /// A `ModuleHolder` subclass for `UpsampleImpl`. /// See the documentation for `UpsampleImpl` class to learn what methods it /// provides, and examples of how to use `Upsample` with /// `torch::nn::UpsampleOptions`. See the documentation for `ModuleHolder` to /// learn about PyTorch's module storage semantics. TORCH_MODULE(Upsample); } // namespace torch::nn ```
===================================================================================================================================================== SOURCE CODE FILE: utils.h LINES: 1 SIZE: 1.41 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\modules\utils.h ENCODING: utf-8 ```h #pragma once #include <c10/util/ArrayRef.h> #include <c10/util/irange.h> #include <optional> #include <vector> namespace torch::nn::modules::utils { // Reverse the order of `t` and repeat each element for `n` times. // This can be used to translate padding arg used by Conv and Pooling modules // to the ones used by `F::pad`. // // This mirrors `_reverse_repeat_tuple` in `torch/nn/modules/utils.py`. inline std::vector<int64_t> _reverse_repeat_vector( c10::ArrayRef<int64_t> t, int64_t n) { TORCH_INTERNAL_ASSERT(n >= 0); std::vector<int64_t> ret; ret.reserve(t.size() * n); for (auto rit = t.rbegin(); rit != t.rend(); ++rit) { for ([[maybe_unused]] const auto i : c10::irange(n)) { ret.emplace_back(*rit); } } return ret; } inline std::vector<int64_t> _list_with_default( c10::ArrayRef<std::optional<int64_t>> out_size, c10::IntArrayRef defaults) { TORCH_CHECK( defaults.size() > out_size.size(), "Input dimension should be at least ", out_size.size() + 1); std::vector<int64_t> ret; c10::IntArrayRef defaults_slice = defaults.slice(defaults.size() - out_size.size(), out_size.size()); for (const auto i : c10::irange(out_size.size())) { auto v = out_size.at(i); auto d = defaults_slice.at(i); ret.emplace_back(v.has_value() ? v.value() : d); } return ret; } } // namespace torch::nn::modules::utils ```
=============================================================================================================================================== SOURCE CODE FILE: options.h LINES: 1 SIZE: 0.65 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/options/batchnorm.h> #include <torch/nn/options/conv.h> #include <torch/nn/options/dropout.h> #include <torch/nn/options/fold.h> #include <torch/nn/options/linear.h> #include <torch/nn/options/loss.h> #include <torch/nn/options/normalization.h> #include <torch/nn/options/padding.h> #include <torch/nn/options/pixelshuffle.h> #include <torch/nn/options/pooling.h> #include <torch/nn/options/rnn.h> #include <torch/nn/options/transformer.h> #include <torch/nn/options/transformercoder.h> #include <torch/nn/options/transformerlayer.h> #include <torch/nn/options/upsampling.h> #include <torch/nn/options/vision.h> ```
========================================================================================================================================================== SOURCE CODE FILE: activation.h LINES: 1 SIZE: 19.27 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\activation.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> namespace torch::nn { /// Options for the `ELU` module. /// /// Example: /// ``` /// ELU model(ELUOptions().alpha(42.42).inplace(true)); /// ``` struct TORCH_API ELUOptions { /// The `alpha` value for the ELU formulation. Default: 1.0 TORCH_ARG(double, alpha) = 1.0; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; namespace functional { /// Options for `torch::nn::functional::elu`. /// /// See the documentation for `torch::nn::ELUOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::elu(x, F::ELUFuncOptions().alpha(0.42).inplace(true)); /// ``` using ELUFuncOptions = ELUOptions; } // namespace functional // ============================================================================ /// Options for the `SELU` module. /// /// Example: /// ``` /// SELU model(SELUOptions().inplace(true)); /// ``` struct TORCH_API SELUOptions { /* implicit */ SELUOptions(bool inplace = false); /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace); }; namespace functional { /// Options for `torch::nn::functional::selu`. /// /// See the documentation for `torch::nn::SELUOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::selu(input, F::SELUFuncOptions(false)); /// ``` using SELUFuncOptions = SELUOptions; } // namespace functional // ============================================================================ /// Options for the `GLU` module. /// /// Example: /// ``` /// GLU model(GLUOptions(1)); /// ``` struct TORCH_API GLUOptions { /* implicit */ GLUOptions(int64_t dim = -1); /// the dimension on which to split the input. Default: -1 TORCH_ARG(int64_t, dim); }; namespace functional { /// Options for `torch::nn::functional::glu`. /// /// See the documentation for `torch::nn::GLUOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::glu(input, GLUFuncOptions(1)); /// ``` using GLUFuncOptions = GLUOptions; } // namespace functional // ============================================================================ /// Options for the `GELU` module. /// /// Example: /// ``` /// GELU model(GELUOptions().approximate("none")); /// ``` struct TORCH_API GELUOptions { /// Specifies the approximation to apply to the output. TORCH_ARG(std::string, approximate) = "none"; }; namespace functional { /// Options for `torch::nn::functional::gelu`. /// /// See the documentation for `torch::nn::GELUOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::gelu(input, F::GELUFuncOptions().approximate("none")); /// ``` using GELUFuncOptions = GELUOptions; } // namespace functional // ============================================================================ /// Options for the `Hardshrink` module. /// /// Example: /// ``` /// Hardshrink model(HardshrinkOptions().lambda(42.42)); /// ``` struct TORCH_API HardshrinkOptions { /* implicit */ HardshrinkOptions(double lambda = 0.5); /// the `lambda` value for the Hardshrink formulation. Default: 0.5 TORCH_ARG(double, lambda); }; namespace functional { /// Options for `torch::nn::functional::hardshrink`. /// /// See the documentation for `torch::nn::HardshrinkOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::hardshrink(x, F::HardshrinkFuncOptions().lambda(0.42)); /// ``` using HardshrinkFuncOptions = HardshrinkOptions; } // namespace functional // ============================================================================ /// Options for the `Hardtanh` module. /// /// Example: /// ``` /// Hardtanh /// model(HardtanhOptions().min_val(-42.42).max_val(0.42).inplace(true)); /// ``` struct TORCH_API HardtanhOptions { /// minimum value of the linear region range. Default: -1 TORCH_ARG(double, min_val) = -1.0; /// maximum value of the linear region range. Default: 1 TORCH_ARG(double, max_val) = 1.0; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; namespace functional { /// Options for `torch::nn::functional::hardtanh`. /// /// See the documentation for `torch::nn::HardtanhOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::hardtanh(x, /// F::HardtanhFuncOptions().min_val(-1.0).max_val(1.0).inplace(true)); /// ``` using HardtanhFuncOptions = HardtanhOptions; } // namespace functional // ============================================================================ /// Options for the `LeakyReLU` module. /// /// Example: /// ``` /// LeakyReLU model(LeakyReLUOptions().negative_slope(0.42).inplace(true)); /// ``` struct TORCH_API LeakyReLUOptions { /// Controls the angle of the negative slope. Default: 1e-2 TORCH_ARG(double, negative_slope) = 1e-2; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; namespace functional { /// Options for `torch::nn::functional::leaky_relu`. /// /// See the documentation for `torch::nn::LeakyReLUOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::leaky_relu(x, /// F::LeakyReLUFuncOptions().negative_slope(0.42).inplace(true)); /// ``` using LeakyReLUFuncOptions = LeakyReLUOptions; } // namespace functional // ============================================================================ /// Options for the `Softmax` module. /// /// Example: /// ``` /// Softmax model(SoftmaxOptions(1)); /// ``` struct TORCH_API SoftmaxOptions { SoftmaxOptions(int64_t dim); /// Dimension along which Softmax will be computed. TORCH_ARG(int64_t, dim); }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::softmax`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::softmax(input, F::SoftmaxFuncOptions(1)); /// ``` struct TORCH_API SoftmaxFuncOptions { SoftmaxFuncOptions(int64_t dim); /// Dimension along which Softmax will be computed. TORCH_ARG(int64_t, dim); /// the desired data type of returned tensor. /// If specified, the input tensor is casted to `dtype` before the operation /// is performed. This is useful for preventing data type overflows. Default: /// None. TORCH_ARG(std::optional<torch::Dtype>, dtype) = std::nullopt; }; } // namespace functional // ============================================================================ /// Options for the `Softmin` module. /// /// Example: /// ``` /// Softmin model(SoftminOptions(1)); /// ``` struct TORCH_API SoftminOptions { SoftminOptions(int64_t dim); /// Dimension along which Softmin will be computed. TORCH_ARG(int64_t, dim); }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::softmin`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::softmin(input, F::SoftminFuncOptions(1)); /// ``` struct TORCH_API SoftminFuncOptions { SoftminFuncOptions(int64_t dim); /// Dimension along which Softmin will be computed. TORCH_ARG(int64_t, dim); /// the desired data type of returned tensor. /// If specified, the input tensor is casted to `dtype` before the operation /// is performed. This is useful for preventing data type overflows. Default: /// None. TORCH_ARG(std::optional<torch::Dtype>, dtype) = std::nullopt; }; } // namespace functional // ============================================================================ /// Options for the `LogSoftmax` module. /// /// Example: /// ``` /// LogSoftmax model(LogSoftmaxOptions(1)); /// ``` struct TORCH_API LogSoftmaxOptions { LogSoftmaxOptions(int64_t dim); /// Dimension along which LogSoftmax will be computed. TORCH_ARG(int64_t, dim); }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::log_softmax`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::log_softmax(input, LogSoftmaxFuncOptions(1)); /// ``` struct TORCH_API LogSoftmaxFuncOptions { LogSoftmaxFuncOptions(int64_t dim); /// Dimension along which LogSoftmax will be computed. TORCH_ARG(int64_t, dim); /// the desired data type of returned tensor. /// If specified, the input tensor is casted to `dtype` before the operation /// is performed. This is useful for preventing data type overflows. Default: /// None. TORCH_ARG(std::optional<torch::Dtype>, dtype) = std::nullopt; }; } // namespace functional // ============================================================================ /// Options for the `PReLU` module. /// /// Example: /// ``` /// PReLU model(PReLUOptions().num_parameters(42)); /// ``` struct TORCH_API PReLUOptions { /// number of `a` to learn. Although it takes an int as input, there is only /// two values are legitimate: 1, or the number of channels at input. Default: /// 1 TORCH_ARG(int64_t, num_parameters) = 1; /// the initial value of `a`. Default: 0.25 TORCH_ARG(double, init) = 0.25; }; // ============================================================================ /// Options for the `ReLU` module. /// /// Example: /// ``` /// ReLU model(ReLUOptions().inplace(true)); /// ``` struct TORCH_API ReLUOptions { /* implicit */ ReLUOptions(bool inplace = false); /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace); }; namespace functional { /// Options for `torch::nn::functional::relu`. /// /// See the documentation for `torch::nn::ReLUOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::relu(x, F::ReLUFuncOptions().inplace(true)); /// ``` using ReLUFuncOptions = ReLUOptions; } // namespace functional // ============================================================================ /// Options for the `ReLU6` module. /// /// Example: /// ``` /// ReLU6 model(ReLU6Options().inplace(true)); /// ``` struct TORCH_API ReLU6Options { /* implicit */ ReLU6Options(bool inplace = false); /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace); }; namespace functional { /// Options for `torch::nn::functional::relu6`. /// /// See the documentation for `torch::nn::ReLU6Options` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::relu6(x, F::ReLU6FuncOptions().inplace(true)); /// ``` using ReLU6FuncOptions = ReLU6Options; } // namespace functional // ============================================================================ /// Options for the `RReLU` module. /// /// Example: /// ``` /// RReLU model(RReLUOptions().lower(0.24).upper(0.42).inplace(true)); /// ``` struct TORCH_API RReLUOptions { /// lower bound of the uniform distribution. Default: 1/8 TORCH_ARG(double, lower) = 1.0 / 8.0; /// upper bound of the uniform distribution. Default: 1/3 TORCH_ARG(double, upper) = 1.0 / 3.0; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::rrelu`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::rrelu(x, F::RReLUFuncOptions().lower(0.1).upper(0.4).inplace(true)); /// ``` struct TORCH_API RReLUFuncOptions { /// lower bound of the uniform distribution. Default: 1/8 TORCH_ARG(double, lower) = 1.0 / 8.0; /// upper bound of the uniform distribution. Default: 1/3 TORCH_ARG(double, upper) = 1.0 / 3.0; TORCH_ARG(bool, training) = false; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; } // namespace functional // ============================================================================ /// Options for the `CELU` module. /// /// Example: /// ``` /// CELU model(CELUOptions().alpha(42.42).inplace(true)); /// ``` struct TORCH_API CELUOptions { /// The `alpha` value for the CELU formulation. Default: 1.0 TORCH_ARG(double, alpha) = 1.0; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; namespace functional { /// Options for `torch::nn::functional::celu`. /// /// See the documentation for `torch::nn::CELUOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::celu(x, F::CELUFuncOptions().alpha(0.42).inplace(true)); /// ``` using CELUFuncOptions = CELUOptions; } // namespace functional // ============================================================================ /// Options for the `Softplus` module. /// /// Example: /// ``` /// Softplus model(SoftplusOptions().beta(0.24).threshold(42.42)); /// ``` struct TORCH_API SoftplusOptions { /// the `beta` value for the Softplus formulation. Default: 1 TORCH_ARG(double, beta) = 1.0; /// values above this revert to a linear function. Default: 20 TORCH_ARG(double, threshold) = 20.0; }; namespace functional { /// Options for `torch::nn::functional::softplus`. /// /// See the documentation for `torch::nn::SoftplusOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::softplus(x, F::SoftplusFuncOptions().beta(0.5).threshold(3.0)); /// ``` using SoftplusFuncOptions = SoftplusOptions; } // namespace functional // ============================================================================ /// Options for the `Softshrink` module. /// /// Example: /// ``` /// Softshrink model(SoftshrinkOptions(42.42)); /// ``` struct TORCH_API SoftshrinkOptions { /* implicit */ SoftshrinkOptions(double lambda = 0.5); /// the `lambda` value for the Softshrink formulation. Default: 0.5 TORCH_ARG(double, lambda); }; namespace functional { /// Options for `torch::nn::functional::softshrink`. /// /// See the documentation for `torch::nn::SoftshrinkOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::softshrink(x, F::SoftshrinkFuncOptions(0.42)); /// ``` using SoftshrinkFuncOptions = SoftshrinkOptions; } // namespace functional // ============================================================================ /// Options for the `Threshold` module. /// /// Example: /// ``` /// Threshold model(ThresholdOptions(42.42, 24.24).inplace(true)); /// ``` struct TORCH_API ThresholdOptions { ThresholdOptions(double threshold, double value) : threshold_(threshold), value_(value) {} /// The value to threshold at TORCH_ARG(double, threshold); /// The value to replace with TORCH_ARG(double, value); /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; namespace functional { /// Options for `torch::nn::functional::threshold`. /// /// See the documentation for `torch::nn::ThresholdOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::threshold(x, F::ThresholdFuncOptions(0.5, 0.5).inplace(true)); /// ``` using ThresholdFuncOptions = ThresholdOptions; } // namespace functional // ============================================================================ namespace functional { /// Options for `torch::nn::functional::gumbel_softmax`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::gumbel_softmax(logits, F::GumbelSoftmaxFuncOptions().hard(true).dim(-1)); /// ``` struct TORCH_API GumbelSoftmaxFuncOptions { /// non-negative scalar temperature TORCH_ARG(double, tau) = 1.0; /// returned samples will be discretized as one-hot vectors, /// but will be differentiated as if it is the soft sample in autograd. /// Default: False TORCH_ARG(bool, hard) = false; /// dimension along which softmax will be computed. Default: -1 TORCH_ARG(int, dim) = -1; }; } // namespace functional // ============================================================================ /// Options for the `MultiheadAttention` module. /// /// Example: /// ``` /// MultiheadAttention model(MultiheadAttentionOptions(20, 10).bias(false)); /// ``` struct TORCH_API MultiheadAttentionOptions { MultiheadAttentionOptions(int64_t embed_dim, int64_t num_heads); /// total dimension of the model. TORCH_ARG(int64_t, embed_dim); /// parallel attention heads. TORCH_ARG(int64_t, num_heads); /// a Dropout layer on attn_output_weights. Default: 0.0. TORCH_ARG(double, dropout) = 0.0; /// add bias as module parameter. Default: true. TORCH_ARG(bool, bias) = true; /// add bias to the key and value sequences at dim=0. TORCH_ARG(bool, add_bias_kv) = false; /// add a new batch of zeros to the key and value sequences at dim=1. TORCH_ARG(bool, add_zero_attn) = false; /// total number of features in key. Default: std::nullopt. TORCH_ARG(int64_t, kdim); /// total number of features in key. Default: std::nullopt. TORCH_ARG(int64_t, vdim); }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::multi_head_attention_forward` struct TORCH_API MultiheadAttentionForwardFuncOptions { MultiheadAttentionForwardFuncOptions( int64_t embed_dim_to_check, int64_t num_heads, Tensor in_proj_weight, Tensor in_proj_bias, Tensor bias_k, Tensor bias_v, bool add_zero_attn, double dropout_p, Tensor out_proj_weight, Tensor out_proj_bias); TORCH_ARG(int64_t, embed_dim_to_check); TORCH_ARG(int64_t, num_heads); TORCH_ARG(Tensor, in_proj_weight); TORCH_ARG(Tensor, in_proj_bias); TORCH_ARG(Tensor, bias_k); TORCH_ARG(Tensor, bias_v); TORCH_ARG(bool, add_zero_attn); TORCH_ARG(double, dropout_p); TORCH_ARG(Tensor, out_proj_weight); TORCH_ARG(Tensor, out_proj_bias); TORCH_ARG(bool, training) = true; TORCH_ARG(Tensor, key_padding_mask) = {}; TORCH_ARG(bool, need_weights) = true; TORCH_ARG(Tensor, attn_mask) = {}; TORCH_ARG(bool, use_separate_proj_weight) = false; TORCH_ARG(Tensor, q_proj_weight) = {}; TORCH_ARG(Tensor, k_proj_weight) = {}; TORCH_ARG(Tensor, v_proj_weight) = {}; TORCH_ARG(Tensor, static_k) = {}; TORCH_ARG(Tensor, static_v) = {}; TORCH_ARG(bool, average_attn_weights) = true; }; } // namespace functional } // namespace torch::nn ```
======================================================================================================================================================== SOURCE CODE FILE: adaptive.h LINES: 1 SIZE: 1.07 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\adaptive.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/types.h> namespace torch::nn { /// Options for the `AdaptiveLogSoftmaxWithLoss` module. /// /// Example: /// ``` /// AdaptiveLogSoftmaxWithLoss model(AdaptiveLogSoftmaxWithLossOptions(8, 10, /// {4, 8}).div_value(2.).head_bias(true)); /// ``` struct TORCH_API AdaptiveLogSoftmaxWithLossOptions { /* implicit */ AdaptiveLogSoftmaxWithLossOptions( int64_t in_features, int64_t n_classes, std::vector<int64_t> cutoffs); /// Number of features in the input tensor TORCH_ARG(int64_t, in_features); /// Number of classes in the dataset TORCH_ARG(int64_t, n_classes); /// Cutoffs used to assign targets to their buckets TORCH_ARG(std::vector<int64_t>, cutoffs); /// value used as an exponent to compute sizes of the clusters. Default: 4.0 TORCH_ARG(double, div_value) = 4.; /// If ``true``, adds a bias term to the 'head' of /// the adaptive softmax. Default: false TORCH_ARG(bool, head_bias) = false; }; } // namespace torch::nn ```
========================================================================================================================================================= SOURCE CODE FILE: batchnorm.h LINES: 1 SIZE: 2.79 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\batchnorm.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/types.h> namespace torch::nn { /// Options for the `BatchNorm` module. struct TORCH_API BatchNormOptions { /* implicit */ BatchNormOptions(int64_t num_features); /// The number of features of the input tensor. /// Changing this parameter after construction __has no effect__. TORCH_ARG(int64_t, num_features); /// The epsilon value added for numerical stability. /// Changing this parameter after construction __is effective__. TORCH_ARG(double, eps) = 1e-5; /// A momentum multiplier for the mean and variance. /// Changing this parameter after construction __is effective__. TORCH_ARG(std::optional<double>, momentum) = 0.1; /// Whether to learn a scale and bias that are applied in an affine /// transformation on the input. /// Changing this parameter after construction __has no effect__. TORCH_ARG(bool, affine) = true; /// Whether to store and update batch statistics (mean and variance) in the /// module. /// Changing this parameter after construction __has no effect__. TORCH_ARG(bool, track_running_stats) = true; }; /// Options for the `BatchNorm1d` module. /// /// Example: /// ``` /// BatchNorm1d /// model(BatchNorm1dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); /// ``` using BatchNorm1dOptions = BatchNormOptions; /// Options for the `BatchNorm2d` module. /// /// Example: /// ``` /// BatchNorm2d /// model(BatchNorm2dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); /// ``` using BatchNorm2dOptions = BatchNormOptions; /// Options for the `BatchNorm3d` module. /// /// Example: /// ``` /// BatchNorm3d /// model(BatchNorm3dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); /// ``` using BatchNorm3dOptions = BatchNormOptions; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::batch_norm`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::batch_norm(input, mean, variance, /// F::BatchNormFuncOptions().weight(weight).bias(bias).momentum(0.1).eps(1e-05).training(false)); /// ``` struct TORCH_API BatchNormFuncOptions { TORCH_ARG(Tensor, weight) = Tensor(); TORCH_ARG(Tensor, bias) = Tensor(); TORCH_ARG(bool, training) = false; /// A momentum multiplier for the mean and variance. /// Changing this parameter after construction __is effective__. TORCH_ARG(double, momentum) = 0.1; /// The epsilon value added for numerical stability. /// Changing this parameter after construction __is effective__. TORCH_ARG(double, eps) = 1e-5; }; } // namespace functional } // namespace torch::nn ```
==================================================================================================================================================== SOURCE CODE FILE: conv.h LINES: 1 SIZE: 13.53 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\conv.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/expanding_array.h> #include <torch/types.h> namespace torch::nn { namespace detail { typedef std::variant< enumtype::kZeros, enumtype::kReflect, enumtype::kReplicate, enumtype::kCircular> conv_padding_mode_t; template <size_t D> using conv_padding_t = std::variant<ExpandingArray<D>, enumtype::kValid, enumtype::kSame>; /// Options for a `D`-dimensional convolution or convolution transpose module. template <size_t D> struct ConvNdOptions { using padding_t = conv_padding_t<D>; ConvNdOptions( int64_t in_channels, int64_t out_channels, ExpandingArray<D> kernel_size) : in_channels_(in_channels), out_channels_(out_channels), kernel_size_(std::move(kernel_size)) {} /// The number of channels the input volumes will have. /// Changing this parameter after construction __has no effect__. TORCH_ARG(int64_t, in_channels); /// The number of output channels the convolution should produce. /// Changing this parameter after construction __has no effect__. TORCH_ARG(int64_t, out_channels); /// The kernel size to use. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, kernel_size); /// The stride of the convolution. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, stride) = 1; /// The padding to add to the input volumes. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(padding_t, padding) = 0; public: decltype(auto) padding(std::initializer_list<int64_t> il) { return padding(IntArrayRef{il}); } /// The kernel dilation. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, dilation) = 1; /// If true, convolutions will be transpose convolutions (a.k.a. /// deconvolutions). /// Changing this parameter after construction __has no effect__. TORCH_ARG(bool, transposed) = false; /// For transpose convolutions, the padding to add to output volumes. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, output_padding) = 0; /// The number of convolution groups. /// This parameter __can__ be changed after construction. TORCH_ARG(int64_t, groups) = 1; /// Whether to add a bias after individual applications of the kernel. /// Changing this parameter after construction __has no effect__. TORCH_ARG(bool, bias) = true; /// Accepted values `torch::kZeros`, `torch::kReflect`, `torch::kReplicate` or /// `torch::kCircular`. Default: `torch::kZeros` TORCH_ARG(conv_padding_mode_t, padding_mode) = torch::kZeros; }; } // namespace detail // ============================================================================ /// Options for a `D`-dimensional convolution module. template <size_t D> struct ConvOptions { using padding_mode_t = detail::conv_padding_mode_t; using padding_t = detail::conv_padding_t<D>; ConvOptions( int64_t in_channels, int64_t out_channels, ExpandingArray<D> kernel_size) : in_channels_(in_channels), out_channels_(out_channels), kernel_size_(std::move(kernel_size)) {} /// The number of channels the input volumes will have. /// Changing this parameter after construction __has no effect__. TORCH_ARG(int64_t, in_channels); /// The number of output channels the convolution should produce. /// Changing this parameter after construction __has no effect__. TORCH_ARG(int64_t, out_channels); /// The kernel size to use. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, kernel_size); /// The stride of the convolution. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, stride) = 1; /// The padding to add to the input volumes. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(padding_t, padding) = 0; public: decltype(auto) padding(std::initializer_list<int64_t> il) { return padding(IntArrayRef{il}); } /// The kernel dilation. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, dilation) = 1; /// The number of convolution groups. /// This parameter __can__ be changed after construction. TORCH_ARG(int64_t, groups) = 1; /// Whether to add a bias after individual applications of the kernel. /// Changing this parameter after construction __has no effect__. TORCH_ARG(bool, bias) = true; /// Accepted values `torch::kZeros`, `torch::kReflect`, `torch::kReplicate` or /// `torch::kCircular`. Default: `torch::kZeros` TORCH_ARG(padding_mode_t, padding_mode) = torch::kZeros; }; /// `ConvOptions` specialized for the `Conv1d` module. /// /// Example: /// ``` /// Conv1d model(Conv1dOptions(3, 2, 3).stride(1).bias(false)); /// ``` using Conv1dOptions = ConvOptions<1>; /// `ConvOptions` specialized for the `Conv2d` module. /// /// Example: /// ``` /// Conv2d model(Conv2dOptions(3, 2, 3).stride(1).bias(false)); /// ``` using Conv2dOptions = ConvOptions<2>; /// `ConvOptions` specialized for the `Conv3d` module. /// /// Example: /// ``` /// Conv3d model(Conv3dOptions(3, 2, 3).stride(1).bias(false)); /// ``` using Conv3dOptions = ConvOptions<3>; // ============================================================================ namespace functional { /// Options for a `D`-dimensional convolution functional. template <size_t D> struct ConvFuncOptions { using padding_t = torch::nn::detail::conv_padding_t<D>; /// optional bias of shape `(out_channels)`. Default: ``None`` TORCH_ARG(torch::Tensor, bias) = Tensor(); /// The stride of the convolving kernel. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. TORCH_ARG(ExpandingArray<D>, stride) = 1; /// Implicit paddings on both sides of the input. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. TORCH_ARG(padding_t, padding) = 0; public: decltype(auto) padding(std::initializer_list<int64_t> il) { return padding(IntArrayRef{il}); } /// The spacing between kernel elements. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. TORCH_ARG(ExpandingArray<D>, dilation) = 1; /// Split input into groups, `in_channels` should be divisible by /// the number of groups. TORCH_ARG(int64_t, groups) = 1; }; /// `ConvFuncOptions` specialized for `torch::nn::functional::conv1d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::conv1d(x, weight, F::Conv1dFuncOptions().stride(1)); /// ``` using Conv1dFuncOptions = ConvFuncOptions<1>; /// `ConvFuncOptions` specialized for `torch::nn::functional::conv2d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::conv2d(x, weight, F::Conv2dFuncOptions().stride(1)); /// ``` using Conv2dFuncOptions = ConvFuncOptions<2>; /// `ConvFuncOptions` specialized for `torch::nn::functional::conv3d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::conv3d(x, weight, F::Conv3dFuncOptions().stride(1)); /// ``` using Conv3dFuncOptions = ConvFuncOptions<3>; } // namespace functional // ============================================================================ template <size_t D> struct ConvTransposeOptions { using padding_mode_t = detail::conv_padding_mode_t; ConvTransposeOptions( int64_t in_channels, int64_t out_channels, ExpandingArray<D> kernel_size) : in_channels_(in_channels), out_channels_(out_channels), kernel_size_(std::move(kernel_size)) {} /// The number of channels the input volumes will have. /// Changing this parameter after construction __has no effect__. TORCH_ARG(int64_t, in_channels); /// The number of output channels the convolution should produce. /// Changing this parameter after construction __has no effect__. TORCH_ARG(int64_t, out_channels); /// The kernel size to use. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, kernel_size); /// The stride of the convolution. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, stride) = 1; /// The padding to add to the input volumes. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, padding) = 0; /// For transpose convolutions, the padding to add to output volumes. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, output_padding) = 0; /// The number of convolution groups. /// This parameter __can__ be changed after construction. TORCH_ARG(int64_t, groups) = 1; /// Whether to add a bias after individual applications of the kernel. /// Changing this parameter after construction __has no effect__. TORCH_ARG(bool, bias) = true; /// The kernel dilation. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. /// This parameter __can__ be changed after construction. TORCH_ARG(ExpandingArray<D>, dilation) = 1; /// Accepted values `torch::kZeros`, `torch::kReflect`, `torch::kReplicate` or /// `torch::kCircular`. Default: `torch::kZeros` TORCH_ARG(padding_mode_t, padding_mode) = torch::kZeros; }; /// `ConvTransposeOptions` specialized for the `ConvTranspose1d` module. /// /// Example: /// ``` /// ConvTranspose1d model(ConvTranspose1dOptions(3, 2, /// 3).stride(1).bias(false)); /// ``` using ConvTranspose1dOptions = ConvTransposeOptions<1>; /// `ConvTransposeOptions` specialized for the `ConvTranspose2d` module. /// /// Example: /// ``` /// ConvTranspose2d model(ConvTranspose2dOptions(3, 2, /// 3).stride(1).bias(false)); /// ``` using ConvTranspose2dOptions = ConvTransposeOptions<2>; /// `ConvTransposeOptions` specialized for the `ConvTranspose3d` module. /// /// Example: /// ``` /// ConvTranspose3d model(ConvTranspose3dOptions(2, 2, /// 2).stride(1).bias(false)); /// ``` using ConvTranspose3dOptions = ConvTransposeOptions<3>; // ============================================================================ namespace functional { /// Options for a `D`-dimensional convolution functional. template <size_t D> struct ConvTransposeFuncOptions { /// optional bias of shape `(out_channels)`. Default: ``None`` TORCH_ARG(torch::Tensor, bias) = Tensor(); /// The stride of the convolving kernel. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. TORCH_ARG(ExpandingArray<D>, stride) = 1; /// Implicit paddings on both sides of the input. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. TORCH_ARG(ExpandingArray<D>, padding) = 0; /// Additional size added to one side of each dimension in the output shape. /// Default: 0 TORCH_ARG(ExpandingArray<D>, output_padding) = 0; /// Split input into groups, `in_channels` should be divisible by /// the number of groups. TORCH_ARG(int64_t, groups) = 1; /// The spacing between kernel elements. /// For a `D`-dim convolution, must be a single number or a list of `D` /// numbers. TORCH_ARG(ExpandingArray<D>, dilation) = 1; }; /// `ConvTransposeFuncOptions` specialized for /// `torch::nn::functional::conv_transpose1d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::conv_transpose1d(x, weight, F::ConvTranspose1dFuncOptions().stride(1)); /// ``` using ConvTranspose1dFuncOptions = ConvTransposeFuncOptions<1>; /// `ConvTransposeFuncOptions` specialized for /// `torch::nn::functional::conv_transpose2d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::conv_transpose2d(x, weight, F::ConvTranspose2dFuncOptions().stride(1)); /// ``` using ConvTranspose2dFuncOptions = ConvTransposeFuncOptions<2>; /// `ConvTransposeFuncOptions` specialized for /// `torch::nn::functional::conv_transpose3d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::conv_transpose3d(x, weight, F::ConvTranspose3dFuncOptions().stride(1)); /// ``` using ConvTranspose3dFuncOptions = ConvTransposeFuncOptions<3>; } // namespace functional } // namespace torch::nn ```
======================================================================================================================================================== SOURCE CODE FILE: distance.h LINES: 1 SIZE: 2.01 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\distance.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/types.h> namespace torch::nn { /// Options for the `CosineSimilarity` module. /// /// Example: /// ``` /// CosineSimilarity model(CosineSimilarityOptions().dim(0).eps(0.5)); /// ``` struct TORCH_API CosineSimilarityOptions { /// Dimension where cosine similarity is computed. Default: 1 TORCH_ARG(int64_t, dim) = 1; /// Small value to avoid division by zero. Default: 1e-8 TORCH_ARG(double, eps) = 1e-8; }; namespace functional { /// Options for `torch::nn::functional::cosine_similarity`. /// /// See the documentation for `torch::nn::CosineSimilarityOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::cosine_similarity(input1, input2, /// F::CosineSimilarityFuncOptions().dim(1)); /// ``` using CosineSimilarityFuncOptions = CosineSimilarityOptions; } // namespace functional // ============================================================================ /// Options for the `PairwiseDistance` module. /// /// Example: /// ``` /// PairwiseDistance /// model(PairwiseDistanceOptions().p(3).eps(0.5).keepdim(true)); /// ``` struct TORCH_API PairwiseDistanceOptions { /// The norm degree. Default: 2 TORCH_ARG(double, p) = 2.0; /// Small value to avoid division by zero. Default: 1e-6 TORCH_ARG(double, eps) = 1e-6; /// Determines whether or not to keep the vector dimension. Default: false TORCH_ARG(bool, keepdim) = false; }; namespace functional { /// Options for `torch::nn::functional::pairwise_distance`. /// /// See the documentation for `torch::nn::PairwiseDistanceOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::pairwise_distance(input1, input2, F::PairwiseDistanceFuncOptions().p(1)); /// ``` using PairwiseDistanceFuncOptions = PairwiseDistanceOptions; } // namespace functional } // namespace torch::nn ```
======================================================================================================================================================= SOURCE CODE FILE: dropout.h LINES: 1 SIZE: 3.10 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\dropout.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/types.h> namespace torch::nn { /// Options for the `Dropout` module. /// /// Example: /// ``` /// Dropout model(DropoutOptions().p(0.42).inplace(true)); /// ``` struct TORCH_API DropoutOptions { /* implicit */ DropoutOptions(double p = 0.5); /// The probability of an element to be zeroed. Default: 0.5 TORCH_ARG(double, p) = 0.5; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; /// Options for the `Dropout2d` module. /// /// Example: /// ``` /// Dropout2d model(Dropout2dOptions().p(0.42).inplace(true)); /// ``` using Dropout2dOptions = DropoutOptions; /// Options for the `Dropout3d` module. /// /// Example: /// ``` /// Dropout3d model(Dropout3dOptions().p(0.42).inplace(true)); /// ``` using Dropout3dOptions = DropoutOptions; /// Options for the `AlphaDropout` module. /// /// Example: /// ``` /// AlphaDropout model(AlphaDropoutOptions(0.2).inplace(true)); /// ``` using AlphaDropoutOptions = DropoutOptions; /// Options for the `FeatureAlphaDropout` module. /// /// Example: /// ``` /// FeatureAlphaDropout model(FeatureAlphaDropoutOptions(0.2).inplace(true)); /// ``` using FeatureAlphaDropoutOptions = DropoutOptions; namespace functional { /// Options for `torch::nn::functional::dropout`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::dropout(input, F::DropoutFuncOptions().p(0.5)); /// ``` struct TORCH_API DropoutFuncOptions { /// The probability of an element to be zeroed. Default: 0.5 TORCH_ARG(double, p) = 0.5; TORCH_ARG(bool, training) = true; /// can optionally do the operation in-place. Default: False TORCH_ARG(bool, inplace) = false; }; /// Options for `torch::nn::functional::dropout2d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::dropout2d(input, F::Dropout2dFuncOptions().p(0.5)); /// ``` using Dropout2dFuncOptions = DropoutFuncOptions; /// Options for `torch::nn::functional::dropout3d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::dropout3d(input, F::Dropout3dFuncOptions().p(0.5)); /// ``` using Dropout3dFuncOptions = DropoutFuncOptions; /// Options for `torch::nn::functional::alpha_dropout`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::alpha_dropout(input, /// F::AlphaDropoutFuncOptions().p(0.5).training(false)); /// ``` struct TORCH_API AlphaDropoutFuncOptions { TORCH_ARG(double, p) = 0.5; TORCH_ARG(bool, training) = false; TORCH_ARG(bool, inplace) = false; }; /// Options for `torch::nn::functional::feature_alpha_dropout`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::feature_alpha_dropout(input, /// F::FeatureAlphaDropoutFuncOptions().p(0.5).training(false)); /// ``` struct TORCH_API FeatureAlphaDropoutFuncOptions { TORCH_ARG(double, p) = 0.5; TORCH_ARG(bool, training) = false; TORCH_ARG(bool, inplace) = false; }; } // namespace functional } // namespace torch::nn ```
========================================================================================================================================================= SOURCE CODE FILE: embedding.h LINES: 1 SIZE: 11.60 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\embedding.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> namespace torch::nn { /// Options for the `Embedding` module. /// /// Example: /// ``` /// Embedding model(EmbeddingOptions(10, /// 2).padding_idx(3).max_norm(2).norm_type(2.5).scale_grad_by_freq(true).sparse(true)); /// ``` struct TORCH_API EmbeddingOptions { EmbeddingOptions(int64_t num_embeddings, int64_t embedding_dim); /// The size of the dictionary of embeddings. TORCH_ARG(int64_t, num_embeddings); /// The size of each embedding vector. TORCH_ARG(int64_t, embedding_dim); /// If specified, the entries at `padding_idx` do not contribute to the /// gradient; therefore, the embedding vector at `padding_idx` is not updated /// during training, i.e. it remains as a fixed "pad". For a newly constructed /// Embedding, the embedding vector at `padding_idx` will default to all /// zeros, but can be updated to another value to be used as the padding /// vector. TORCH_ARG(std::optional<int64_t>, padding_idx) = std::nullopt; /// If given, each embedding vector with norm larger than `max_norm` is /// renormalized to have norm `max_norm`. TORCH_ARG(std::optional<double>, max_norm) = std::nullopt; /// The p of the p-norm to compute for the `max_norm` option. Default ``2``. TORCH_ARG(double, norm_type) = 2.; /// If given, this will scale gradients by the inverse of frequency of the /// words in the mini-batch. Default ``false``. TORCH_ARG(bool, scale_grad_by_freq) = false; /// If ``true``, gradient w.r.t. `weight` matrix will be a sparse tensor. TORCH_ARG(bool, sparse) = false; /// The learnable weights of the module of shape (num_embeddings, /// embedding_dim) TORCH_ARG(torch::Tensor, _weight) = Tensor(); }; // ============================================================================ /// Options for the `Embedding::from_pretrained` function. struct TORCH_API EmbeddingFromPretrainedOptions { /// If ``true``, the tensor does not get updated in the learning process. /// Equivalent to ``embedding.weight.requires_grad_(false)``. Default: /// ``true`` TORCH_ARG(bool, freeze) = true; /// If specified, the entries at `padding_idx` do not contribute to the /// gradient; therefore, the embedding vector at `padding_idx` is not updated /// during training, i.e. it remains as a fixed "pad". TORCH_ARG(std::optional<int64_t>, padding_idx) = std::nullopt; /// If given, each embedding vector with norm larger than `max_norm` is /// renormalized to have norm `max_norm`. TORCH_ARG(std::optional<double>, max_norm) = std::nullopt; /// The p of the p-norm to compute for the `max_norm` option. Default ``2``. TORCH_ARG(double, norm_type) = 2.; /// If given, this will scale gradients by the inverse of frequency of the /// words in the mini-batch. Default ``false``. TORCH_ARG(bool, scale_grad_by_freq) = false; /// If ``true``, gradient w.r.t. `weight` matrix will be a sparse tensor. TORCH_ARG(bool, sparse) = false; }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::embedding`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::embedding(input, weight, /// F::EmbeddingFuncOptions().norm_type(2.5).scale_grad_by_freq(true).sparse(true)); /// ``` struct TORCH_API EmbeddingFuncOptions { /// If specified, the entries at `padding_idx` do not contribute to the /// gradient; therefore, the embedding vector at `padding_idx` is not updated /// during training, i.e. it remains as a fixed "pad". TORCH_ARG(std::optional<int64_t>, padding_idx) = std::nullopt; /// If given, each embedding vector with norm larger than `max_norm` is /// renormalized to have norm `max_norm`. TORCH_ARG(std::optional<double>, max_norm) = std::nullopt; /// The p of the p-norm to compute for the `max_norm` option. Default ``2``. TORCH_ARG(double, norm_type) = 2.; /// If given, this will scale gradients by the inverse of frequency of the /// words in the mini-batch. Default ``false``. TORCH_ARG(bool, scale_grad_by_freq) = false; /// If ``true``, gradient w.r.t. `weight` matrix will be a sparse tensor. TORCH_ARG(bool, sparse) = false; }; } // namespace functional // ============================================================================ typedef std::variant<enumtype::kSum, enumtype::kMean, enumtype::kMax> EmbeddingBagMode; /// Options for the `EmbeddingBag` module. /// /// Example: /// ``` /// EmbeddingBag model(EmbeddingBagOptions(10, /// 2).max_norm(2).norm_type(2.5).scale_grad_by_freq(true).sparse(true).mode(torch::kSum)); /// ``` struct TORCH_API EmbeddingBagOptions { EmbeddingBagOptions(int64_t num_embeddings, int64_t embedding_dim); /// The size of the dictionary of embeddings. TORCH_ARG(int64_t, num_embeddings); /// The size of each embedding vector. TORCH_ARG(int64_t, embedding_dim); /// If given, each embedding vector with norm larger than `max_norm` is /// renormalized to have norm `max_norm`. TORCH_ARG(std::optional<double>, max_norm) = std::nullopt; /// The p of the p-norm to compute for the `max_norm` option. Default ``2``. TORCH_ARG(double, norm_type) = 2.; /// If given, this will scale gradients by the inverse of frequency of the /// words in the mini-batch. Default ``false``. Note: this option is not /// supported when ``mode="kMax"``. TORCH_ARG(bool, scale_grad_by_freq) = false; /// ``"kSum"``, ``"kMean"`` or ``"kMax"``. Specifies the way to reduce the /// bag. ``"kSum"`` computes the weighted sum, taking `per_sample_weights` /// into consideration. ``"kMean"`` computes the average of the values in the /// bag, ``"kMax"`` computes the max value over each bag. TORCH_ARG(EmbeddingBagMode, mode) = torch::kMean; /// If ``true``, gradient w.r.t. `weight` matrix will be a sparse tensor. /// Note: this option is not supported when ``mode="kMax"``. TORCH_ARG(bool, sparse) = false; /// The learnable weights of the module of shape (num_embeddings, /// embedding_dim) TORCH_ARG(torch::Tensor, _weight) = Tensor(); /// If ``true``, `offsets` has one additional element, where the last element /// is equivalent to the size of `indices`. This matches the CSR format. TORCH_ARG(bool, include_last_offset) = false; /// If specified, the entries at `padding_idx` do not contribute to the /// gradient; therefore, the embedding vector at padding_idx is not updated /// during training, i.e. it remains as a fixed "pad". For a newly constructed /// EmbeddingBag, the embedding vector at `padding_idx` will default to all /// zeros, but can be updated to another value to be used as the padding /// vector. Note that the embedding vector at `padding_idx` is excluded from /// the reduction. TORCH_ARG(std::optional<int64_t>, padding_idx) = std::nullopt; }; // ============================================================================ /// Options for the `EmbeddingBag::from_pretrained` function. struct TORCH_API EmbeddingBagFromPretrainedOptions { /// If ``true``, the tensor does not get updated in the learning process. /// Equivalent to ``embeddingbag.weight.requires_grad_(false)``. Default: /// ``true`` TORCH_ARG(bool, freeze) = true; /// If given, each embedding vector with norm larger than `max_norm` is /// renormalized to have norm `max_norm`. TORCH_ARG(std::optional<double>, max_norm) = std::nullopt; /// The p of the p-norm to compute for the `max_norm` option. Default ``2``. TORCH_ARG(double, norm_type) = 2.; /// If given, this will scale gradients by the inverse of frequency of the /// words in the mini-batch. Default ``false``. Note: this option is not /// supported when ``mode="kMax"``. TORCH_ARG(bool, scale_grad_by_freq) = false; /// ``"kSum"``, ``"kMean"`` or ``"kMax"``. Specifies the way to reduce the /// bag. ``"kSum"`` computes the weighted sum, taking `per_sample_weights` /// into consideration. ``"kMean"`` computes the average of the values in the /// bag, ``"kMax"`` computes the max value over each bag. TORCH_ARG(EmbeddingBagMode, mode) = torch::kMean; /// If ``true``, gradient w.r.t. `weight` matrix will be a sparse tensor. /// Note: this option is not supported when ``mode="kMax"``. TORCH_ARG(bool, sparse) = false; /// If ``true``, `offsets` has one additional element, where the last element /// is equivalent to the size of `indices`. This matches the CSR format. Note: /// this option is currently only supported when ``mode="sum"``. TORCH_ARG(bool, include_last_offset) = false; /// If specified, the entries at `padding_idx` do not contribute to the /// gradient; therefore, the embedding vector at padding_idx is not updated /// during training, i.e. it remains as a fixed "pad". Note that the embedding /// vector at `padding_idx` is excluded from the reduction. TORCH_ARG(std::optional<int64_t>, padding_idx) = std::nullopt; }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::embedding_bag`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::embedding_bag(input, weight, /// F::EmbeddingBagFuncOptions().mode(torch::kSum).offsets(offsets)); /// ``` struct TORCH_API EmbeddingBagFuncOptions { /// Only used when `input` is 1D. `offsets` determines /// the starting index position of each bag (sequence) in `input`. TORCH_ARG(torch::Tensor, offsets) = Tensor(); /// If given, each embedding vector with norm larger than `max_norm` is /// renormalized to have norm `max_norm`. TORCH_ARG(std::optional<double>, max_norm) = std::nullopt; /// The p of the p-norm to compute for the `max_norm` option. Default ``2``. TORCH_ARG(double, norm_type) = 2.; /// If given, this will scale gradients by the inverse of frequency of the /// words in the mini-batch. Default ``false``. Note: this option is not /// supported when ``mode="kMax"``. TORCH_ARG(bool, scale_grad_by_freq) = false; /// ``"kSum"``, ``"kMean"`` or ``"kMax"``. Specifies the way to reduce the /// bag. ``"kSum"`` computes the weighted sum, taking `per_sample_weights` /// into consideration. ``"kMean"`` computes the average of the values in the /// bag, ``"kMax"`` computes the max value over each bag. TORCH_ARG(EmbeddingBagMode, mode) = torch::kMean; /// If ``true``, gradient w.r.t. `weight` matrix will be a sparse tensor. /// Note: this option is not supported when ``mode="kMax"``. TORCH_ARG(bool, sparse) = false; /// a tensor of float / double weights, or None to indicate all weights should /// be taken to be 1. If specified, `per_sample_weights` must have exactly the /// same shape as input and is treated as having the same `offsets`, if those /// are not None. TORCH_ARG(torch::Tensor, per_sample_weights) = Tensor(); /// If ``true``, `offsets` has one additional element, where the last element /// is equivalent to the size of `indices`. This matches the CSR format. Note: /// this option is currently only supported when ``mode="sum"``. TORCH_ARG(bool, include_last_offset) = false; /// If specified, the entries at `padding_idx` do not contribute to the /// gradient; therefore, the embedding vector at padding_idx is not updated /// during training, i.e. it remains as a fixed "pad". Note that the embedding /// vector at `padding_idx` is excluded from the reduction. TORCH_ARG(std::optional<int64_t>, padding_idx) = std::nullopt; }; } // namespace functional } // namespace torch::nn ```
==================================================================================================================================================== SOURCE CODE FILE: fold.h LINES: 1 SIZE: 2.94 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\fold.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/expanding_array.h> #include <torch/types.h> namespace torch::nn { /// Options for the `Fold` module. /// /// Example: /// ``` /// Fold model(FoldOptions({8, 8}, {3, 3}).dilation(2).padding({2, /// 1}).stride(2)); /// ``` struct TORCH_API FoldOptions { FoldOptions(ExpandingArray<2> output_size, ExpandingArray<2> kernel_size) : output_size_(output_size), kernel_size_(kernel_size) {} /// describes the spatial shape of the large containing tensor of the sliding /// local blocks. It is useful to resolve the ambiguity when multiple input /// shapes map to same number of sliding blocks, e.g., with stride > 0. TORCH_ARG(ExpandingArray<2>, output_size); /// the size of the sliding blocks TORCH_ARG(ExpandingArray<2>, kernel_size); /// controls the spacing between the kernel points; also known as the à trous /// algorithm. TORCH_ARG(ExpandingArray<2>, dilation) = 1; /// controls the amount of implicit zero-paddings on both sides for padding /// number of points for each dimension before reshaping. TORCH_ARG(ExpandingArray<2>, padding) = 0; /// controls the stride for the sliding blocks. TORCH_ARG(ExpandingArray<2>, stride) = 1; }; namespace functional { /// Options for `torch::nn::functional::fold`. /// /// See the documentation for `torch::nn::FoldOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::fold(input, F::FoldFuncOptions({3, 2}, {2, 2})); /// ``` using FoldFuncOptions = FoldOptions; } // namespace functional // ============================================================================ /// Options for the `Unfold` module. /// /// Example: /// ``` /// Unfold model(UnfoldOptions({2, 4}).dilation(2).padding({2, 1}).stride(2)); /// ``` struct TORCH_API UnfoldOptions { UnfoldOptions(ExpandingArray<2> kernel_size) : kernel_size_(kernel_size) {} /// the size of the sliding blocks TORCH_ARG(ExpandingArray<2>, kernel_size); /// controls the spacing between the kernel points; also known as the à trous /// algorithm. TORCH_ARG(ExpandingArray<2>, dilation) = 1; /// controls the amount of implicit zero-paddings on both sides for padding /// number of points for each dimension before reshaping. TORCH_ARG(ExpandingArray<2>, padding) = 0; /// controls the stride for the sliding blocks. TORCH_ARG(ExpandingArray<2>, stride) = 1; }; namespace functional { /// Options for `torch::nn::functional::unfold`. /// /// See the documentation for `torch::nn::UnfoldOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::unfold(input, F::UnfoldFuncOptions({2, 2}).padding(1).stride(2)); /// ``` using UnfoldFuncOptions = UnfoldOptions; } // namespace functional } // namespace torch::nn ```
============================================================================================================================================================ SOURCE CODE FILE: instancenorm.h LINES: 1 SIZE: 2.33 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\instancenorm.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/nn/options/batchnorm.h> #include <torch/types.h> namespace torch::nn { /// Options for the `InstanceNorm` module. struct TORCH_API InstanceNormOptions { /* implicit */ InstanceNormOptions(int64_t num_features); /// The number of features of the input tensor. TORCH_ARG(int64_t, num_features); /// The epsilon value added for numerical stability. TORCH_ARG(double, eps) = 1e-5; /// A momentum multiplier for the mean and variance. TORCH_ARG(double, momentum) = 0.1; /// Whether to learn a scale and bias that are applied in an affine /// transformation on the input. TORCH_ARG(bool, affine) = false; /// Whether to store and update batch statistics (mean and variance) in the /// module. TORCH_ARG(bool, track_running_stats) = false; }; /// Options for the `InstanceNorm1d` module. /// /// Example: /// ``` /// InstanceNorm1d /// model(InstanceNorm1dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); /// ``` using InstanceNorm1dOptions = InstanceNormOptions; /// Options for the `InstanceNorm2d` module. /// /// Example: /// ``` /// InstanceNorm2d /// model(InstanceNorm2dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); /// ``` using InstanceNorm2dOptions = InstanceNormOptions; /// Options for the `InstanceNorm3d` module. /// /// Example: /// ``` /// InstanceNorm3d /// model(InstanceNorm3dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); /// ``` using InstanceNorm3dOptions = InstanceNormOptions; namespace functional { /// Options for `torch::nn::functional::instance_norm`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::instance_norm(input, /// F::InstanceNormFuncOptions().running_mean(mean).running_var(variance).weight(weight).bias(bias).momentum(0.1).eps(1e-5)); /// ``` struct TORCH_API InstanceNormFuncOptions { TORCH_ARG(Tensor, running_mean) = Tensor(); TORCH_ARG(Tensor, running_var) = Tensor(); TORCH_ARG(Tensor, weight) = Tensor(); TORCH_ARG(Tensor, bias) = Tensor(); TORCH_ARG(bool, use_input_stats) = true; TORCH_ARG(double, momentum) = 0.1; TORCH_ARG(double, eps) = 1e-5; }; } // namespace functional } // namespace torch::nn ```
====================================================================================================================================================== SOURCE CODE FILE: linear.h LINES: 1 SIZE: 2.80 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\linear.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/types.h> namespace torch::nn { /// Options for the `Linear` module. /// /// Example: /// ``` /// Linear model(LinearOptions(5, 2).bias(false)); /// ``` struct TORCH_API LinearOptions { LinearOptions(int64_t in_features, int64_t out_features); /// size of each input sample TORCH_ARG(int64_t, in_features); /// size of each output sample TORCH_ARG(int64_t, out_features); /// If set to false, the layer will not learn an additive bias. Default: true TORCH_ARG(bool, bias) = true; }; // ============================================================================ /// Options for the `Flatten` module. /// /// Example: /// ``` /// Flatten model(FlattenOptions().start_dim(2).end_dim(4)); /// ``` struct TORCH_API FlattenOptions { /// first dim to flatten TORCH_ARG(int64_t, start_dim) = 1; /// last dim to flatten TORCH_ARG(int64_t, end_dim) = -1; }; // ============================================================================ /// Options for the `Unflatten` module. /// /// Note: If input tensor is named, use dimname and namedshape arguments. /// /// Example: /// ``` /// Unflatten unnamed_model(UnflattenOptions(0, {2, 2})); /// Unflatten named_model(UnflattenOptions("B", {{"B1", 2}, {"B2", 2}})); /// ``` struct TORCH_API UnflattenOptions { typedef std::vector<std::pair<std::string, int64_t>> namedshape_t; UnflattenOptions(int64_t dim, std::vector<int64_t> sizes); UnflattenOptions(const char* dimname, namedshape_t namedshape); UnflattenOptions(std::string dimname, namedshape_t namedshape); /// dim to unflatten TORCH_ARG(int64_t, dim); /// name of dim to unflatten, for use with named tensors TORCH_ARG(std::string, dimname); /// new shape of unflattened dim TORCH_ARG(std::vector<int64_t>, sizes); /// new shape of unflattened dim with names, for use with named tensors TORCH_ARG(namedshape_t, namedshape); }; // ============================================================================ /// Options for the `Bilinear` module. /// /// Example: /// ``` /// Bilinear model(BilinearOptions(3, 2, 4).bias(false)); /// ``` struct TORCH_API BilinearOptions { BilinearOptions( int64_t in1_features, int64_t in2_features, int64_t out_features); /// The number of features in input 1 (columns of the input1 matrix). TORCH_ARG(int64_t, in1_features); /// The number of features in input 2 (columns of the input2 matrix). TORCH_ARG(int64_t, in2_features); /// The number of output features to produce (columns of the output matrix). TORCH_ARG(int64_t, out_features); /// Whether to learn and add a bias after the bilinear transformation. TORCH_ARG(bool, bias) = true; }; } // namespace torch::nn ```
==================================================================================================================================================== SOURCE CODE FILE: loss.h LINES: 1 SIZE: 26.86 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\loss.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> namespace torch::nn { /// Options for the `L1Loss` module. /// /// Example: /// ``` /// L1Loss model(L1LossOptions(torch::kNone)); /// ``` struct TORCH_API L1LossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; TORCH_OPTIONS_CTOR_VARIANT_ARG3(L1LossOptions, reduction, kNone, kMean, kSum) /// Specifies the reduction to apply to the output. TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::l1_loss`. /// /// See the documentation for `torch::nn::L1LossOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::l1_loss(input, target, F::L1LossFuncOptions(torch::kNone)); /// ``` using L1LossFuncOptions = L1LossOptions; } // namespace functional // ============================================================================ /// Options for the `KLDivLoss` module. /// /// Example: /// ``` /// KLDivLoss /// model(KLDivLossOptions().reduction(torch::kNone).log_target(false)); /// ``` struct TORCH_API KLDivLossOptions { typedef std::variant< enumtype::kNone, enumtype::kBatchMean, enumtype::kSum, enumtype::kMean> reduction_t; TORCH_OPTIONS_CTOR_VARIANT_ARG4( KLDivLossOptions, reduction, kNone, kBatchMean, kSum, kMean) /// Specifies the reduction to apply to the output. /// ``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``. Default: ``'mean'`` TORCH_ARG(reduction_t, reduction) = torch::kMean; /// Specifies whether `target` is accepted in the log space. Default: False TORCH_ARG(bool, log_target) = false; }; namespace functional { /// Options for `torch::nn::functional::kl_div`. /// /// See the documentation for `torch::nn::KLDivLossOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::kl_div(input, target, /// F::KLDivFuncOptions().reduction(torch::kNone).log_target(false)); /// ``` using KLDivFuncOptions = KLDivLossOptions; } // namespace functional // ============================================================================ /// Options for the `MSELoss` module. /// /// Example: /// ``` /// MSELoss model(MSELossOptions(torch::kNone)); /// ``` struct TORCH_API MSELossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; TORCH_OPTIONS_CTOR_VARIANT_ARG3(MSELossOptions, reduction, kNone, kMean, kSum) /// Specifies the reduction to apply to the output. /// ``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'`` TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::mse_loss`. /// /// See the documentation for `torch::nn::MSELossOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::mse_loss(input, target, F::MSELossFuncOptions(torch::kNone)); /// ``` using MSELossFuncOptions = MSELossOptions; } // namespace functional // ============================================================================ /// Options for the `BCELoss` module. /// /// Example: /// ``` /// BCELoss model(BCELossOptions().reduction(torch::kNone).weight(weight)); /// ``` struct TORCH_API BCELossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// A manual rescaling weight given to the loss of each batch element. TORCH_ARG(Tensor, weight) = {}; /// Specifies the reduction to apply to the output. /// ``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'`` TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::binary_cross_entropy`. /// /// See the documentation for `torch::nn::BCELossOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::binary_cross_entropy(input, target, /// F::BinaryCrossEntropyFuncOptions().weight(weight)); /// ``` using BinaryCrossEntropyFuncOptions = BCELossOptions; } // namespace functional // ============================================================================ /// Options for the `HingeEmbeddingLoss` module. /// /// Example: /// ``` /// HingeEmbeddingLoss /// model(HingeEmbeddingLossOptions().margin(4).reduction(torch::kNone)); /// ``` struct TORCH_API HingeEmbeddingLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// Specifies the threshold for which the distance of a negative sample must /// reach in order to incur zero loss. Default: 1 TORCH_ARG(double, margin) = 1.0; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::hinge_embedding_loss`. /// /// See the documentation for `torch::nn::HingeEmbeddingLossOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::hinge_embedding_loss(input, target, /// F::HingeEmbeddingLossFuncOptions().margin(2)); /// ``` using HingeEmbeddingLossFuncOptions = HingeEmbeddingLossOptions; } // namespace functional // ============================================================================ /// Options for the `MultiMarginLoss` module. /// /// Example: /// ``` /// MultiMarginLoss model(MultiMarginLossOptions().margin(2).weight(weight)); /// ``` struct TORCH_API MultiMarginLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// Has a default value of :math:`1`. :math:`1` and :math:`2` /// are the only supported values. TORCH_ARG(int64_t, p) = 1; /// Has a default value of :math:`1`. TORCH_ARG(double, margin) = 1.0; /// A manual rescaling weight given to each /// class. If given, it has to be a Tensor of size `C`. Otherwise, it is /// treated as if having all ones. TORCH_ARG(Tensor, weight) = Tensor(); /// Specifies the reduction to apply to the output: /// ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be /// applied, /// ``'mean'``: the sum of the output will be divided by the number of /// elements in the output, ``'sum'``: the output will be summed. Default: /// ``'mean'`` TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::multi_margin_loss`. /// /// See the documentation for `torch::nn::MultiMarginLossOptions` class to learn /// what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::multi_margin_loss(input, target, /// F::MultiMarginLossFuncOptions().margin(2).weight(weight)); /// ``` using MultiMarginLossFuncOptions = MultiMarginLossOptions; } // namespace functional // ============================================================================ /// Options for the `CosineEmbeddingLoss` module. /// /// Example: /// ``` /// CosineEmbeddingLoss model(CosineEmbeddingLossOptions().margin(0.5)); /// ``` struct TORCH_API CosineEmbeddingLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// Specifies the threshold for which the distance of a negative sample must /// reach in order to incur zero loss. Should be a number from -1 to 1, 0 /// to 0.5 is suggested. Default: 0.0 TORCH_ARG(double, margin) = 0.0; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::cosine_embedding_loss`. /// /// See the documentation for `torch::nn::CosineEmbeddingLossOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::cosine_embedding_loss(input1, input2, target, /// F::CosineEmbeddingLossFuncOptions().margin(0.5)); /// ``` using CosineEmbeddingLossFuncOptions = CosineEmbeddingLossOptions; } // namespace functional // ============================================================================ /// Options for the `MultiLabelMarginLoss` module. /// /// Example: /// ``` /// MultiLabelMarginLoss model(MultiLabelMarginLossOptions(torch::kNone)); /// ``` struct TORCH_API MultiLabelMarginLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; TORCH_OPTIONS_CTOR_VARIANT_ARG3( MultiLabelMarginLossOptions, reduction, kNone, kMean, kSum) /// Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. /// 'none': no reduction will be applied, 'mean': the sum of the output will /// be divided by the number of elements in the output, 'sum': the output will /// be summed. Default: 'mean' TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::multilabel_margin_loss`. /// /// See the documentation for `torch::nn::MultiLabelMarginLossOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::multilabel_margin_loss(input, target, /// F::MultilabelMarginLossFuncOptions(torch::kNone)); /// ``` using MultilabelMarginLossFuncOptions = MultiLabelMarginLossOptions; } // namespace functional // ============================================================================ /// Options for the `SoftMarginLoss` module. /// /// Example: /// ``` /// SoftMarginLoss model(SoftMarginLossOptions(torch::kNone)); /// ``` struct TORCH_API SoftMarginLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; TORCH_OPTIONS_CTOR_VARIANT_ARG3( SoftMarginLossOptions, reduction, kNone, kMean, kSum) /// Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. /// 'none': no reduction will be applied, 'mean': the sum of the output will /// be divided by the number of elements in the output, 'sum': the output will /// be summed. Default: 'mean' TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::soft_margin_loss`. /// /// See the documentation for `torch::nn::SoftMarginLossOptions` class to learn /// what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::soft_margin_loss(input, target, /// F::SoftMarginLossFuncOptions(torch::kNone)); /// ``` using SoftMarginLossFuncOptions = SoftMarginLossOptions; } // namespace functional // ============================================================================ /// Options for the `MultiLabelSoftMarginLoss` module. /// /// Example: /// ``` /// MultiLabelSoftMarginLoss /// model(MultiLabelSoftMarginLossOptions().reduction(torch::kNone).weight(weight)); /// ``` struct TORCH_API MultiLabelSoftMarginLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// A manual rescaling weight given to each /// class. If given, it has to be a Tensor of size `C`. Otherwise, it is /// treated as if having all ones. TORCH_ARG(Tensor, weight) = Tensor(); /// Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. /// 'none': no reduction will be applied, 'mean': the sum of the output will /// be divided by the number of elements in the output, 'sum': the output will /// be summed. Default: 'mean' TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::multilabel_soft_margin_loss`. /// /// See the documentation for `torch::nn::MultiLabelSoftMarginLossOptions` class /// to learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::multilabel_soft_margin_loss(input, target, /// F::MultilabelSoftMarginLossFuncOptions().reduction(torch::kNone).weight(weight)); /// ``` using MultilabelSoftMarginLossFuncOptions = MultiLabelSoftMarginLossOptions; } // namespace functional // ============================================================================ /// Options for the `TripletMarginLoss` module. /// /// Example: /// ``` /// TripletMarginLoss /// model(TripletMarginLossOptions().margin(3).p(2).eps(1e-06).swap(false)); /// ``` struct TORCH_API TripletMarginLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// Specifies the threshold for which the distance of a negative sample must /// reach in order to incur zero loss. Default: 1 TORCH_ARG(double, margin) = 1.0; /// Specifies the norm degree for pairwise distance. Default: 2 TORCH_ARG(double, p) = 2.0; TORCH_ARG(double, eps) = 1e-6; /// The distance swap is described in detail in the paper Learning shallow /// convolutional feature descriptors with triplet losses by V. Balntas, /// E. Riba et al. Default: False TORCH_ARG(bool, swap) = false; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::triplet_margin_loss`. /// /// See the documentation for `torch::nn::TripletMarginLossOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::triplet_margin_loss(anchor, positive, negative, /// F::TripletMarginLossFuncOptions().margin(1.0)); /// ``` using TripletMarginLossFuncOptions = TripletMarginLossOptions; } // namespace functional // ============================================================================ /// Options for the `TripletMarginWithDistanceLoss` module. /// /// Example: /// ``` /// TripletMarginWithDistanceLoss /// model(TripletMarginWithDistanceLossOptions().margin(3).swap(false)); /// ``` struct TORCH_API TripletMarginWithDistanceLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; typedef std::function<Tensor(const Tensor&, const Tensor&)> distance_function_t; /// Specifies a nonnegative, real-valued function that quantifies the /// closeness of two tensors. If not specified, `F::pairwise_distance` will /// be used. Default: nullopt TORCH_ARG(std::optional<distance_function_t>, distance_function) = std::nullopt; /// Specifies a nonnegative margin representing the minimum difference /// between the positive and negative distances required for the loss to be 0. /// Larger margins penalize cases where the negative examples are not distance /// enough from the anchors, relative to the positives. Default: 1 TORCH_ARG(double, margin) = 1.0; /// Whether to use the distance swap described in the paper Learning shallow /// convolutional feature descriptors with triplet losses by V. Balntas, /// E. Riba et al. If True, and if the positive example is closer to the /// negative example than the anchor is, swaps the positive example and the /// anchor in the loss computation. Default: False TORCH_ARG(bool, swap) = false; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::triplet_margin_with_distance_loss`. /// /// See the documentation for `torch::nn::TripletMarginWithDistanceLossOptions` /// class to learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::triplet_margin_with_distance_loss(anchor, positive, negative, /// F::TripletMarginWithDistanceLossFuncOptions().margin(1.0)); /// ``` using TripletMarginWithDistanceLossFuncOptions = TripletMarginWithDistanceLossOptions; } // namespace functional // ============================================================================ /// Options for the `CTCLoss` module. /// /// Example: /// ``` /// CTCLoss /// model(CTCLossOptions().blank(42).zero_infinity(false).reduction(torch::kSum)); /// ``` struct TORCH_API CTCLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// blank label. Default `0`. TORCH_ARG(int64_t, blank) = 0; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; /// Whether to zero infinite losses and the associated gradients. /// Default: `false`. Infinite losses mainly occur when the inputs are /// too short to be aligned to the targets. TORCH_ARG(bool, zero_infinity) = false; }; namespace functional { /// Options for `torch::nn::functional::ctc_loss`. /// /// See the documentation for `torch::nn::CTCLossOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::ctc_loss(log_probs, targets, input_lengths, target_lengths, /// F::CTCLossFuncOptions().reduction(torch::kNone)); /// ``` using CTCLossFuncOptions = CTCLossOptions; } // namespace functional // ============================================================================ /// Options for the `SmoothL1Loss` module. /// /// Example: /// ``` /// SmoothL1Loss model(SmoothL1LossOptions().reduction(torch::kNone).beta(0.5)); /// ``` struct TORCH_API SmoothL1LossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; TORCH_OPTIONS_CTOR_VARIANT_ARG3( SmoothL1LossOptions, reduction, kNone, kMean, kSum) /// Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. /// 'none': no reduction will be applied, 'mean': the sum of the output will /// be divided by the number of elements in the output, 'sum': the output will /// be summed. Default: 'mean' TORCH_ARG(reduction_t, reduction) = torch::kMean; /// Specifies the threshold at which to change between L1 and L2 loss. /// If beta is not specified, a value of 1.0 will be used. /// Default: nullopt TORCH_ARG(std::optional<double>, beta) = std::nullopt; }; namespace functional { /// Options for `torch::nn::functional::smooth_l1_loss`. /// /// See the documentation for `torch::nn::SmoothL1LossOptions` class to learn /// what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::smooth_l1_loss(input, target, F::SmoothL1LossFuncOptions(torch::kNone)); /// ``` using SmoothL1LossFuncOptions = SmoothL1LossOptions; } // namespace functional // ============================================================================ /// Options for the `HuberLoss` module. /// /// Example: /// ``` /// HuberLoss model(HuberLossOptions().reduction(torch::kNone).delta(0.5)); /// ``` struct TORCH_API HuberLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; TORCH_OPTIONS_CTOR_VARIANT_ARG3( HuberLossOptions, reduction, kNone, kMean, kSum) /// Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. /// 'none': no reduction will be applied, 'mean': the sum of the output will /// be divided by the number of elements in the output, 'sum': the output will /// be summed. Default: 'mean' TORCH_ARG(reduction_t, reduction) = torch::kMean; /// Specifies the threshold at which to change between L1 and L2 loss. /// Default: 1.0 TORCH_ARG(double, delta) = 1.0; }; namespace functional { /// Options for `torch::nn::functional::huber_loss`. /// /// See the documentation for `torch::nn::HuberLossOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::huber_loss(input, target, F::HuberLossFuncOptions(torch::kNone)); /// ``` using HuberLossFuncOptions = HuberLossOptions; } // namespace functional // ============================================================================ /// Options for the `PoissonNLLLoss` module. /// /// Example: /// ``` /// PoissonNLLLoss /// model(PoissonNLLLossOptions().log_input(false).full(true).eps(0.42).reduction(torch::kSum)); /// ``` struct TORCH_API PoissonNLLLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// if true the loss is computed as `exp(input) - target * input`, /// if false the loss is `input - target * log(input + eps)`. TORCH_ARG(bool, log_input) = true; /// whether to compute full loss, i.e. to add the Stirling approximation term /// target * log(target) - target + 0.5 * log(2 * pi * target). TORCH_ARG(bool, full) = false; /// Small value to avoid evaluation of `log(0)` when `log_input = false`. /// Default: 1e-8 TORCH_ARG(double, eps) = 1e-8; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::poisson_nll_loss`. /// /// See the documentation for `torch::nn::PoissonNLLLossOptions` class to learn /// what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::poisson_nll_loss(input, target, /// F::PoissonNLLLossFuncOptions().reduction(torch::kNone)); /// ``` using PoissonNLLLossFuncOptions = PoissonNLLLossOptions; } // namespace functional // ============================================================================ /// Options for the `MarginRankingLoss` module. /// /// Example: /// ``` /// MarginRankingLoss /// model(MarginRankingLossOptions().margin(0.5).reduction(torch::kSum)); /// ``` struct TORCH_API MarginRankingLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// Has a default value of `0`. TORCH_ARG(double, margin) = 0; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::margin_ranking_loss`. /// /// See the documentation for `torch::nn::MarginRankingLossOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::margin_ranking_loss(input1, input2, target, /// F::MarginRankingLossFuncOptions().margin(0.5).reduction(torch::kSum)); /// ``` using MarginRankingLossFuncOptions = MarginRankingLossOptions; } // namespace functional // ============================================================================ /// Options for the `NLLLoss` module. /// /// Example: /// ``` /// NLLLoss model(NLLLossOptions().ignore_index(-100).reduction(torch::kMean)); /// ``` struct TORCH_API NLLLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// A manual rescaling weight given to each /// class. If given, it has to be a Tensor of size `C`. Otherwise, it is /// treated as if having all ones. TORCH_ARG(Tensor, weight) = {}; /// Specifies a target value that is ignored /// and does not contribute to the input gradient. TORCH_ARG(int64_t, ignore_index) = -100; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; }; namespace functional { /// Options for `torch::nn::functional::nll_loss`. /// /// See the documentation for `torch::nn::NLLLossOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::nll_loss(input, target, /// F::NLLLossFuncOptions().ignore_index(-100).reduction(torch::kMean)); /// ``` using NLLLossFuncOptions = NLLLossOptions; } // namespace functional // ============================================================================ /// Options for the `CrossEntropyLoss` module. /// /// Example: /// ``` /// CrossEntropyLoss /// model(CrossEntropyLossOptions().ignore_index(-100).reduction(torch::kMean)); /// ``` struct TORCH_API CrossEntropyLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// A manual rescaling weight given to each class. If given, has to be a /// Tensor of size C TORCH_ARG(Tensor, weight) = {}; /// Specifies a target value that is ignored /// and does not contribute to the input gradient. TORCH_ARG(int64_t, ignore_index) = -100; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; /// Specifies the amount of smoothing when computing the loss. Default: 0.0 TORCH_ARG(double, label_smoothing) = 0.0; }; namespace functional { /// Options for `torch::nn::functional::cross_entropy`. /// /// See the documentation for `torch::nn::CrossEntropyLossOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::cross_entropy(input, target, /// F::CrossEntropyFuncOptions().ignore_index(-100).reduction(torch::kMean)); /// ``` using CrossEntropyFuncOptions = CrossEntropyLossOptions; } // namespace functional // ============================================================================ /// Options for the `BCEWithLogitsLoss` module. /// /// Example: /// ``` /// BCEWithLogitsLoss /// model(BCEWithLogitsLossOptions().reduction(torch::kNone).weight(weight)); /// ``` struct TORCH_API BCEWithLogitsLossOptions { typedef std::variant<enumtype::kNone, enumtype::kMean, enumtype::kSum> reduction_t; /// A manual rescaling weight given to the loss of each batch element. /// If given, has to be a Tensor of size `nbatch`. TORCH_ARG(Tensor, weight) = {}; /// Specifies the reduction to apply to the output. Default: Mean TORCH_ARG(reduction_t, reduction) = torch::kMean; /// A weight of positive examples. /// Must be a vector with length equal to the number of classes. TORCH_ARG(Tensor, pos_weight) = {}; }; namespace functional { /// Options for `torch::nn::functional::binary_cross_entropy_with_logits`. /// /// See the documentation for `torch::nn::BCEWithLogitsLossOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::binary_cross_entropy_with_logits(input, target, /// F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight).reduction(torch::kSum)); /// ``` using BinaryCrossEntropyWithLogitsFuncOptions = BCEWithLogitsLossOptions; } // namespace functional } // namespace torch::nn ```
============================================================================================================================================================= SOURCE CODE FILE: normalization.h LINES: 1 SIZE: 5.55 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\normalization.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/types.h> #include <vector> namespace torch::nn { /// Options for the `LayerNorm` module. /// /// Example: /// ``` /// LayerNorm model(LayerNormOptions({2, /// 2}).elementwise_affine(false).eps(2e-5)); /// ``` struct TORCH_API LayerNormOptions { /* implicit */ LayerNormOptions(std::vector<int64_t> normalized_shape); /// input shape from an expected input. TORCH_ARG(std::vector<int64_t>, normalized_shape); /// a value added to the denominator for numerical stability. ``Default: /// 1e-5``. TORCH_ARG(double, eps) = 1e-5; /// a boolean value that when set to ``true``, this module /// has learnable per-element affine parameters initialized to ones (for /// weights) and zeros (for biases). ``Default: true``. TORCH_ARG(bool, elementwise_affine) = true; }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::layer_norm`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::layer_norm(input, F::LayerNormFuncOptions({2, 2}).eps(2e-5)); /// ``` struct TORCH_API LayerNormFuncOptions { /* implicit */ LayerNormFuncOptions(std::vector<int64_t> normalized_shape); /// input shape from an expected input. TORCH_ARG(std::vector<int64_t>, normalized_shape); TORCH_ARG(Tensor, weight) = {}; TORCH_ARG(Tensor, bias) = {}; /// a value added to the denominator for numerical stability. ``Default: /// 1e-5``. TORCH_ARG(double, eps) = 1e-5; }; } // namespace functional // ============================================================================ /// Options for the `LocalResponseNorm` module. /// /// Example: /// ``` /// LocalResponseNorm /// model(LocalResponseNormOptions(2).alpha(0.0002).beta(0.85).k(2.)); /// ``` struct TORCH_API LocalResponseNormOptions { /* implicit */ LocalResponseNormOptions(int64_t size) : size_(size) {} /// amount of neighbouring channels used for normalization TORCH_ARG(int64_t, size); /// multiplicative factor. Default: 1e-4 TORCH_ARG(double, alpha) = 1e-4; /// exponent. Default: 0.75 TORCH_ARG(double, beta) = 0.75; /// additive factor. Default: 1 TORCH_ARG(double, k) = 1.; }; namespace functional { /// Options for `torch::nn::functional::local_response_norm`. /// /// See the documentation for `torch::nn::LocalResponseNormOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::local_response_norm(x, F::LocalResponseNormFuncOptions(2)); /// ``` using LocalResponseNormFuncOptions = LocalResponseNormOptions; } // namespace functional // ============================================================================ /// Options for the `CrossMapLRN2d` module. /// /// Example: /// ``` /// CrossMapLRN2d model(CrossMapLRN2dOptions(3).alpha(1e-5).beta(0.1).k(10)); /// ``` struct TORCH_API CrossMapLRN2dOptions { CrossMapLRN2dOptions(int64_t size); TORCH_ARG(int64_t, size); TORCH_ARG(double, alpha) = 1e-4; TORCH_ARG(double, beta) = 0.75; TORCH_ARG(int64_t, k) = 1; }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::normalize`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::normalize(input, F::NormalizeFuncOptions().p(1).dim(-1)); /// ``` struct TORCH_API NormalizeFuncOptions { /// The exponent value in the norm formulation. Default: 2.0 TORCH_ARG(double, p) = 2.0; /// The dimension to reduce. Default: 1 TORCH_ARG(int64_t, dim) = 1; /// Small value to avoid division by zero. Default: 1e-12 TORCH_ARG(double, eps) = 1e-12; /// the output tensor. If `out` is used, this /// operation won't be differentiable. TORCH_ARG(std::optional<Tensor>, out) = std::nullopt; }; } // namespace functional // ============================================================================ /// Options for the `GroupNorm` module. /// /// Example: /// ``` /// GroupNorm model(GroupNormOptions(2, 2).eps(2e-5).affine(false)); /// ``` struct TORCH_API GroupNormOptions { /* implicit */ GroupNormOptions(int64_t num_groups, int64_t num_channels); /// number of groups to separate the channels into TORCH_ARG(int64_t, num_groups); /// number of channels expected in input TORCH_ARG(int64_t, num_channels); /// a value added to the denominator for numerical stability. Default: 1e-5 TORCH_ARG(double, eps) = 1e-5; /// a boolean value that when set to ``true``, this module /// has learnable per-channel affine parameters initialized to ones (for /// weights) and zeros (for biases). Default: ``true``. TORCH_ARG(bool, affine) = true; }; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::group_norm`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::group_norm(input, F::GroupNormFuncOptions(2).eps(2e-5)); /// ``` struct TORCH_API GroupNormFuncOptions { /* implicit */ GroupNormFuncOptions(int64_t num_groups); /// number of groups to separate the channels into TORCH_ARG(int64_t, num_groups); TORCH_ARG(Tensor, weight) = {}; TORCH_ARG(Tensor, bias) = {}; /// a value added to the denominator for numerical stability. Default: 1e-5 TORCH_ARG(double, eps) = 1e-5; }; } // namespace functional } // namespace torch::nn ```
======================================================================================================================================================= SOURCE CODE FILE: padding.h LINES: 1 SIZE: 6.89 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\padding.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/expanding_array.h> #include <torch/types.h> namespace torch::nn { /// Options for a `D`-dimensional ReflectionPad module. template <size_t D> struct TORCH_API ReflectionPadOptions { ReflectionPadOptions(ExpandingArray<D * 2> padding) : padding_(padding) {} /// The size of the padding. /// If it is `int`, uses the same padding in all boundaries. /// If it is a 2-`tuple` (for ReflectionPad1d), uses (padding_left, /// padding_right). If it is a 4-`tuple` (for ReflectionPad2d), uses /// (padding_left, padding_right, padding_top, padding_bottom). If it is a /// 6-`tuple` (for ReflectionPad3d), uses (padding_left, padding_right, /// padding_top, padding_bottom, padding_front, padding_back). TORCH_ARG(ExpandingArray<D * 2>, padding); }; /// `ReflectionPadOptions` specialized for the `ReflectionPad1d` module. /// /// Example: /// ``` /// ReflectionPad1d model(ReflectionPad1dOptions({3, 1})); /// ``` using ReflectionPad1dOptions = ReflectionPadOptions<1>; /// `ReflectionPadOptions` specialized for the `ReflectionPad2d` module. /// /// Example: /// ``` /// ReflectionPad2d model(ReflectionPad2dOptions({1, 1, 2, 0})); /// ``` using ReflectionPad2dOptions = ReflectionPadOptions<2>; /// `ReflectionPadOptions` specialized for the `ReflectionPad3d` module. /// /// Example: /// ``` /// ReflectionPad3d model(ReflectionPad3dOptions({1, 1, 2, 0, 1, 1})); /// ``` using ReflectionPad3dOptions = ReflectionPadOptions<3>; // ============================================================================ /// Options for a `D`-dimensional ReplicationPad module. template <size_t D> struct TORCH_API ReplicationPadOptions { ReplicationPadOptions(ExpandingArray<D * 2> padding) : padding_(padding) {} /// The size of the padding. /// - If it is `int`, uses the same padding in all boundaries. /// - If it is a 2-`tuple` (for ReplicationPad1d), uses (padding_left, /// padding_right). /// - If it is a 4-`tuple` (for ReplicationPad2d), uses (padding_left, /// padding_right, padding_top, padding_bottom). /// - If it is a 6-`tuple` (for ReplicationPad3d), uses /// (padding_left, padding_right, padding_top, padding_bottom, /// padding_front, padding_back). TORCH_ARG(ExpandingArray<D * 2>, padding); }; /// `ReplicationPadOptions` specialized for the `ReplicationPad1d` module. /// /// Example: /// ``` /// ReplicationPad1d model(ReplicationPad1dOptions({3, 1})); /// ``` using ReplicationPad1dOptions = ReplicationPadOptions<1>; /// `ReplicationPadOptions` specialized for the `ReplicationPad2d` module. /// /// Example: /// ``` /// ReplicationPad2d model(ReplicationPad2dOptions({1, 1, 2, 0})); /// ``` using ReplicationPad2dOptions = ReplicationPadOptions<2>; /// `ReplicationPadOptions` specialized for the `ReplicationPad3d` module. /// /// Example: /// ``` /// ReplicationPad3d model(ReplicationPad3dOptions({1, 2, 1, 2, 1, 2})); /// ``` using ReplicationPad3dOptions = ReplicationPadOptions<3>; // ============================================================================ template <size_t D> struct TORCH_API ZeroPadOptions { ZeroPadOptions(ExpandingArray<D * 2> padding) : padding_(padding) {} /// The size of the padding. /// - If it is `int`, uses the same padding in all boundaries. /// - If it is a 2-`tuple` (for ZeroPad1d), uses (padding_left, /// padding_right). /// - If it is a 4-`tuple` (for ZeroPad2d), uses (padding_left, padding_right, /// padding_top, padding_bottom). /// - If it is a 6-`tuple` (for ZeroPad3d), uses /// (padding_left, padding_right, padding_top, padding_bottom, /// padding_front, padding_back). TORCH_ARG(ExpandingArray<D * 2>, padding); }; /// `ZeroPadOptions` specialized for the `ZeroPad1d` module. /// /// Example: /// ``` /// ConstantPad1d model(ConstantPad1dOptions({3, 1}); /// ``` using ZeroPad1dOptions = ZeroPadOptions<1>; /// `ZeroPadOptions` specialized for the `ZeroPad2d` module. /// /// Example: /// ``` /// ConstantPad2d model(ConstantPad2dOptions({1, 1, 2, 0}); /// ``` using ZeroPad2dOptions = ZeroPadOptions<2>; /// `ZeroPadOptions` specialized for the `ZeroPad3d` module. /// /// Example: /// ``` /// ConstantPad3d model(ConstantPad3dOptions({1, 2, 1, 2, 1, 2}); /// ``` using ZeroPad3dOptions = ZeroPadOptions<3>; // ============================================================================ /// Options for a `D`-dimensional ConstantPad module. template <size_t D> struct TORCH_API ConstantPadOptions { ConstantPadOptions(ExpandingArray<D * 2> padding, double value) : padding_(padding), value_(value) {} /// The size of the padding. /// - If it is `int`, uses the same padding in all boundaries. /// - If it is a 2-`tuple` (for ConstantPad1d), uses (padding_left, /// padding_right). /// - If it is a 4-`tuple` (for ConstantPad2d), uses (padding_left, /// padding_right, padding_top, padding_bottom). /// - If it is a 6-`tuple` (for ConstantPad3d), uses /// (padding_left, padding_right, padding_top, padding_bottom, /// padding_front, padding_back). TORCH_ARG(ExpandingArray<D * 2>, padding); /// Fill value for constant padding. TORCH_ARG(double, value); }; /// `ConstantPadOptions` specialized for the `ConstantPad1d` module. /// /// Example: /// ``` /// ConstantPad1d model(ConstantPad1dOptions({3, 1}, 3.5)); /// ``` using ConstantPad1dOptions = ConstantPadOptions<1>; /// `ConstantPadOptions` specialized for the `ConstantPad2d` module. /// /// Example: /// ``` /// ConstantPad2d model(ConstantPad2dOptions({3, 0, 2, 1}, 3.5)); /// ``` using ConstantPad2dOptions = ConstantPadOptions<2>; /// `ConstantPadOptions` specialized for the `ConstantPad3d` module. /// /// Example: /// ``` /// ConstantPad3d model(ConstantPad3dOptions({1, 2, 1, 2, 1, 2}, 3.5)); /// ``` using ConstantPad3dOptions = ConstantPadOptions<3>; // ============================================================================ namespace functional { /// Options for `torch::nn::functional::pad`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::pad(input, F::PadFuncOptions({1, 2, 2, 1, 1, /// 2}).mode(torch::kReplicate)); /// ``` struct TORCH_API PadFuncOptions { typedef std::variant< enumtype::kConstant, enumtype::kReflect, enumtype::kReplicate, enumtype::kCircular> mode_t; PadFuncOptions(std::vector<int64_t> pad); /// m-elements tuple, where m/2 <= input dimensions and m is even. TORCH_ARG(std::vector<int64_t>, pad); /// "constant", "reflect", "replicate" or "circular". Default: "constant" TORCH_ARG(mode_t, mode) = torch::kConstant; /// fill value for "constant" padding. Default: 0 TORCH_ARG(double, value) = 0; }; } // namespace functional } // namespace torch::nn ```
============================================================================================================================================================ SOURCE CODE FILE: pixelshuffle.h LINES: 1 SIZE: 1.66 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\pixelshuffle.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/types.h> namespace torch::nn { /// Options for the `PixelShuffle` module. /// /// Example: /// ``` /// PixelShuffle model(PixelShuffleOptions(5)); /// ``` struct TORCH_API PixelShuffleOptions { PixelShuffleOptions(int64_t upscale_factor) : upscale_factor_(upscale_factor) {} /// Factor to increase spatial resolution by TORCH_ARG(int64_t, upscale_factor); }; /// Options for the `PixelUnshuffle` module. /// /// Example: /// ``` /// PixelUnshuffle model(PixelUnshuffleOptions(5)); /// ``` struct TORCH_API PixelUnshuffleOptions { /* implicit */ PixelUnshuffleOptions(int64_t downscale_factor) : downscale_factor_(downscale_factor) {} /// Factor to decrease spatial resolution by TORCH_ARG(int64_t, downscale_factor); }; namespace functional { /// Options for `torch::nn::functional::pixel_shuffle`. /// /// See the documentation for `torch::nn::PixelShuffleOptions` class to learn /// what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::pixel_shuffle(x, F::PixelShuffleFuncOptions(2)); /// ``` using PixelShuffleFuncOptions = PixelShuffleOptions; /// Options for `torch::nn::functional::pixel_unshuffle`. /// /// See the documentation for `torch::nn::PixelUnshuffleOptions` class to learn /// what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::pixel_unshuffle(x, F::PixelUnshuffleFuncOptions(2)); /// ``` using PixelUnshuffleFuncOptions = PixelUnshuffleOptions; } // namespace functional } // namespace torch::nn ```
======================================================================================================================================================= SOURCE CODE FILE: pooling.h LINES: 1 SIZE: 17.88 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\pooling.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/expanding_array.h> #include <torch/types.h> namespace torch::nn { /// Options for a `D`-dimensional avgpool module. template <size_t D> struct AvgPoolOptions { AvgPoolOptions(ExpandingArray<D> kernel_size) : kernel_size_(kernel_size), stride_(kernel_size) {} /// the size of the window to take an average over TORCH_ARG(ExpandingArray<D>, kernel_size); /// the stride of the window. Default value is `kernel_size` TORCH_ARG(ExpandingArray<D>, stride); /// implicit zero padding to be added on both sides TORCH_ARG(ExpandingArray<D>, padding) = 0; /// when True, will use `ceil` instead of `floor` to compute the output shape TORCH_ARG(bool, ceil_mode) = false; /// when True, will include the zero-padding in the averaging calculation TORCH_ARG(bool, count_include_pad) = true; /// if specified, it will be used as divisor, otherwise size of the pooling /// region will be used. TORCH_ARG(std::optional<int64_t>, divisor_override) = std::nullopt; }; /// `AvgPoolOptions` specialized for the `AvgPool1d` module. /// /// Example: /// ``` /// AvgPool1d model(AvgPool1dOptions(3).stride(2)); /// ``` using AvgPool1dOptions = AvgPoolOptions<1>; /// `AvgPoolOptions` specialized for the `AvgPool2d` module. /// /// Example: /// ``` /// AvgPool2d model(AvgPool2dOptions({3, 2}).stride({2, 2})); /// ``` using AvgPool2dOptions = AvgPoolOptions<2>; /// `AvgPoolOptions` specialized for the `AvgPool3d` module. /// /// Example: /// ``` /// AvgPool3d model(AvgPool3dOptions(5).stride(2)); /// ``` using AvgPool3dOptions = AvgPoolOptions<3>; namespace functional { /// Options for `torch::nn::functional::avg_pool1d`. /// /// See the documentation for `torch::nn::AvgPool1dOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::avg_pool1d(x, F::AvgPool1dFuncOptions(3).stride(2)); /// ``` using AvgPool1dFuncOptions = AvgPool1dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::avg_pool2d`. /// /// See the documentation for `torch::nn::AvgPool2dOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::avg_pool2d(x, F::AvgPool2dFuncOptions(3).stride(2)); /// ``` using AvgPool2dFuncOptions = AvgPool2dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::avg_pool3d`. /// /// See the documentation for `torch::nn::AvgPool3dOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::avg_pool3d(x, F::AvgPool3dFuncOptions(3).stride(2)); /// ``` using AvgPool3dFuncOptions = AvgPool3dOptions; } // namespace functional // ============================================================================ /// Options for a `D`-dimensional maxpool module. template <size_t D> struct MaxPoolOptions { MaxPoolOptions(ExpandingArray<D> kernel_size) : kernel_size_(kernel_size), stride_(kernel_size) {} /// the size of the window to take a max over TORCH_ARG(ExpandingArray<D>, kernel_size); /// the stride of the window. Default value is `kernel_size TORCH_ARG(ExpandingArray<D>, stride); /// implicit zero padding to be added on both sides TORCH_ARG(ExpandingArray<D>, padding) = 0; /// a parameter that controls the stride of elements in the window TORCH_ARG(ExpandingArray<D>, dilation) = 1; /// when True, will use `ceil` instead of `floor` to compute the output shape TORCH_ARG(bool, ceil_mode) = false; }; /// `MaxPoolOptions` specialized for the `MaxPool1d` module. /// /// Example: /// ``` /// MaxPool1d model(MaxPool1dOptions(3).stride(2)); /// ``` using MaxPool1dOptions = MaxPoolOptions<1>; /// `MaxPoolOptions` specialized for the `MaxPool2d` module. /// /// Example: /// ``` /// MaxPool2d model(MaxPool2dOptions({3, 2}).stride({2, 2})); /// ``` using MaxPool2dOptions = MaxPoolOptions<2>; /// `MaxPoolOptions` specialized for the `MaxPool3d` module. /// /// Example: /// ``` /// MaxPool3d model(MaxPool3dOptions(3).stride(2)); /// ``` using MaxPool3dOptions = MaxPoolOptions<3>; namespace functional { /// Options for `torch::nn::functional::max_pool1d` and /// `torch::nn::functional::max_pool1d_with_indices`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::max_pool1d(x, F::MaxPool1dFuncOptions(3).stride(2)); /// ``` using MaxPool1dFuncOptions = MaxPool1dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::max_pool2d` and /// `torch::nn::functional::max_pool2d_with_indices`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::max_pool2d(x, F::MaxPool2dFuncOptions(3).stride(2)); /// ``` using MaxPool2dFuncOptions = MaxPool2dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::max_pool3d` and /// `torch::nn::functional::max_pool3d_with_indices`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::max_pool3d(x, F::MaxPool3dFuncOptions(3).stride(2)); /// ``` using MaxPool3dFuncOptions = MaxPool3dOptions; } // namespace functional // ============================================================================ /// Options for a `D`-dimensional adaptive maxpool module. template <typename output_size_t> struct AdaptiveMaxPoolOptions { AdaptiveMaxPoolOptions(output_size_t output_size) : output_size_(output_size) {} /// the target output size TORCH_ARG(output_size_t, output_size); }; /// `AdaptiveMaxPoolOptions` specialized for the `AdaptiveMaxPool1d` module. /// /// Example: /// ``` /// AdaptiveMaxPool1d model(AdaptiveMaxPool1dOptions(3)); /// ``` using AdaptiveMaxPool1dOptions = AdaptiveMaxPoolOptions<ExpandingArray<1>>; /// `AdaptiveMaxPoolOptions` specialized for the `AdaptiveMaxPool2d` module. /// /// Example: /// ``` /// AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2})); /// ``` using AdaptiveMaxPool2dOptions = AdaptiveMaxPoolOptions<ExpandingArrayWithOptionalElem<2>>; /// `AdaptiveMaxPoolOptions` specialized for the `AdaptiveMaxPool3d` module. /// /// Example: /// ``` /// AdaptiveMaxPool3d model(AdaptiveMaxPool3dOptions(3)); /// ``` using AdaptiveMaxPool3dOptions = AdaptiveMaxPoolOptions<ExpandingArrayWithOptionalElem<3>>; namespace functional { /// Options for `torch::nn::functional::adaptive_max_pool1d` and /// `torch::nn::functional::adaptive_max_pool1d_with_indices` /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::adaptive_max_pool1d(x, F::AdaptiveMaxPool1dFuncOptions(3)); /// ``` using AdaptiveMaxPool1dFuncOptions = AdaptiveMaxPool1dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::adaptive_max_pool2d` and /// `torch::nn::functional::adaptive_max_pool2d_with_indices` /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::adaptive_max_pool2d(x, F::AdaptiveMaxPool2dFuncOptions(3)); /// ``` using AdaptiveMaxPool2dFuncOptions = AdaptiveMaxPool2dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::adaptive_max_pool3d` and /// `torch::nn::functional::adaptive_max_pool3d_with_indices` /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::adaptive_max_pool3d(x, F::AdaptiveMaxPool3dFuncOptions(3)); /// ``` using AdaptiveMaxPool3dFuncOptions = AdaptiveMaxPool3dOptions; } // namespace functional // ============================================================================ /// Options for a `D`-dimensional adaptive avgpool module. template <typename output_size_t> struct AdaptiveAvgPoolOptions { AdaptiveAvgPoolOptions(output_size_t output_size) : output_size_(output_size) {} /// the target output size TORCH_ARG(output_size_t, output_size); }; /// `AdaptiveAvgPoolOptions` specialized for the `AdaptiveAvgPool1d` module. /// /// Example: /// ``` /// AdaptiveAvgPool1d model(AdaptiveAvgPool1dOptions(5)); /// ``` using AdaptiveAvgPool1dOptions = AdaptiveAvgPoolOptions<ExpandingArray<1>>; /// `AdaptiveAvgPoolOptions` specialized for the `AdaptiveAvgPool2d` module. /// /// Example: /// ``` /// AdaptiveAvgPool2d model(AdaptiveAvgPool2dOptions({3, 2})); /// ``` using AdaptiveAvgPool2dOptions = AdaptiveAvgPoolOptions<ExpandingArrayWithOptionalElem<2>>; /// `AdaptiveAvgPoolOptions` specialized for the `AdaptiveAvgPool3d` module. /// /// Example: /// ``` /// AdaptiveAvgPool3d model(AdaptiveAvgPool3dOptions(3)); /// ``` using AdaptiveAvgPool3dOptions = AdaptiveAvgPoolOptions<ExpandingArrayWithOptionalElem<3>>; namespace functional { /// Options for `torch::nn::functional::adaptive_avg_pool1d`. /// /// See the documentation for `torch::nn::AdaptiveAvgPool1dOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::adaptive_avg_pool1d(x, F::AdaptiveAvgPool1dFuncOptions(3)); /// ``` using AdaptiveAvgPool1dFuncOptions = AdaptiveAvgPool1dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::adaptive_avg_pool2d`. /// /// See the documentation for `torch::nn::AdaptiveAvgPool2dOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::adaptive_avg_pool2d(x, F::AdaptiveAvgPool2dFuncOptions(3)); /// ``` using AdaptiveAvgPool2dFuncOptions = AdaptiveAvgPool2dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::adaptive_avg_pool3d`. /// /// See the documentation for `torch::nn::AdaptiveAvgPool3dOptions` class to /// learn what arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::adaptive_avg_pool3d(x, F::AdaptiveAvgPool3dFuncOptions(3)); /// ``` using AdaptiveAvgPool3dFuncOptions = AdaptiveAvgPool3dOptions; } // namespace functional // ============================================================================ /// Options for a `D`-dimensional maxunpool module. template <size_t D> struct MaxUnpoolOptions { MaxUnpoolOptions(ExpandingArray<D> kernel_size) : kernel_size_(kernel_size), stride_(kernel_size) {} /// the size of the window to take a max over TORCH_ARG(ExpandingArray<D>, kernel_size); /// the stride of the window. Default value is `kernel_size TORCH_ARG(ExpandingArray<D>, stride); /// implicit zero padding to be added on both sides TORCH_ARG(ExpandingArray<D>, padding) = 0; }; /// `MaxUnpoolOptions` specialized for the `MaxUnpool1d` module. /// /// Example: /// ``` /// MaxUnpool1d model(MaxUnpool1dOptions(3).stride(2).padding(1)); /// ``` using MaxUnpool1dOptions = MaxUnpoolOptions<1>; /// `MaxUnpoolOptions` specialized for the `MaxUnpool2d` module. /// /// Example: /// ``` /// MaxUnpool2d model(MaxUnpool2dOptions(3).stride(2).padding(1)); /// ``` using MaxUnpool2dOptions = MaxUnpoolOptions<2>; /// `MaxUnpoolOptions` specialized for the `MaxUnpool3d` module. /// /// Example: /// ``` /// MaxUnpool3d model(MaxUnpool3dOptions(3).stride(2).padding(1)); /// ``` using MaxUnpool3dOptions = MaxUnpoolOptions<3>; // ============================================================================ namespace functional { /// Options for a `D`-dimensional maxunpool functional. template <size_t D> struct MaxUnpoolFuncOptions { MaxUnpoolFuncOptions(ExpandingArray<D> kernel_size) : kernel_size_(kernel_size), stride_(kernel_size) {} /// the size of the window to take a max over TORCH_ARG(ExpandingArray<D>, kernel_size); /// the stride of the window. Default value is `kernel_size TORCH_ARG(ExpandingArray<D>, stride); /// implicit zero padding to be added on both sides TORCH_ARG(ExpandingArray<D>, padding) = 0; /// the targeted output size TORCH_ARG(std::optional<std::vector<int64_t>>, output_size) = std::nullopt; }; /// `MaxUnpoolFuncOptions` specialized for /// `torch::nn::functional::max_unpool1d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::max_unpool1d(x, indices, /// F::MaxUnpool1dFuncOptions(3).stride(2).padding(1)); /// ``` using MaxUnpool1dFuncOptions = MaxUnpoolFuncOptions<1>; /// `MaxUnpoolFuncOptions` specialized for /// `torch::nn::functional::max_unpool2d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::max_unpool2d(x, indices, /// F::MaxUnpool2dFuncOptions(3).stride(2).padding(1)); /// ``` using MaxUnpool2dFuncOptions = MaxUnpoolFuncOptions<2>; /// `MaxUnpoolFuncOptions` specialized for /// `torch::nn::functional::max_unpool3d`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::max_unpool3d(x, indices, F::MaxUnpool3dFuncOptions(3)); /// ``` using MaxUnpool3dFuncOptions = MaxUnpoolFuncOptions<3>; } // namespace functional // ============================================================================ /// Options for a `D`-dimensional fractional maxpool module. template <size_t D> struct FractionalMaxPoolOptions { FractionalMaxPoolOptions(ExpandingArray<D> kernel_size) : kernel_size_(kernel_size) {} /// the size of the window to take a max over TORCH_ARG(ExpandingArray<D>, kernel_size); /// the target output size of the image TORCH_ARG(std::optional<ExpandingArray<D>>, output_size) = std::nullopt; /// If one wants to have an output size as a ratio of the input size, this /// option can be given. This has to be a number or tuple in the range (0, 1) using ExpandingArrayDouble = torch::ExpandingArray<D, double>; TORCH_ARG(std::optional<ExpandingArrayDouble>, output_ratio) = std::nullopt; TORCH_ARG(torch::Tensor, _random_samples) = Tensor(); }; /// `FractionalMaxPoolOptions` specialized for the `FractionalMaxPool2d` module. /// /// Example: /// ``` /// FractionalMaxPool2d model(FractionalMaxPool2dOptions(5).output_size(1)); /// ``` using FractionalMaxPool2dOptions = FractionalMaxPoolOptions<2>; /// `FractionalMaxPoolOptions` specialized for the `FractionalMaxPool3d` module. /// /// Example: /// ``` /// FractionalMaxPool3d model(FractionalMaxPool3dOptions(5).output_size(1)); /// ``` using FractionalMaxPool3dOptions = FractionalMaxPoolOptions<3>; namespace functional { /// Options for `torch::nn::functional::fractional_max_pool2d` and /// `torch::nn::functional::fractional_max_pool2d_with_indices` /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::fractional_max_pool2d(x, /// F::FractionalMaxPool2dFuncOptions(3).output_size(2)); /// ``` using FractionalMaxPool2dFuncOptions = FractionalMaxPool2dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::fractional_max_pool3d` and /// `torch::nn::functional::fractional_max_pool3d_with_indices` /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::fractional_max_pool3d(x, /// F::FractionalMaxPool3dFuncOptions(3).output_size(2)); /// ``` using FractionalMaxPool3dFuncOptions = FractionalMaxPool3dOptions; } // namespace functional // ============================================================================ /// Options for a `D`-dimensional lppool module. template <size_t D> struct LPPoolOptions { LPPoolOptions(double norm_type, ExpandingArray<D> kernel_size) : norm_type_(norm_type), kernel_size_(kernel_size), stride_(kernel_size) {} TORCH_ARG(double, norm_type); // the size of the window to take an average over TORCH_ARG(ExpandingArray<D>, kernel_size); // the stride of the window. Default value is `kernel_size` TORCH_ARG(ExpandingArray<D>, stride); // when True, will use `ceil` instead of `floor` to compute the output shape TORCH_ARG(bool, ceil_mode) = false; }; /// `LPPoolOptions` specialized for the `LPPool1d` module. /// /// Example: /// ``` /// LPPool1d model(LPPool1dOptions(1, 2).stride(5).ceil_mode(true)); /// ``` using LPPool1dOptions = LPPoolOptions<1>; /// `LPPoolOptions` specialized for the `LPPool2d` module. /// /// Example: /// ``` /// LPPool2d model(LPPool2dOptions(1, std::vector<int64_t>({3, 4})).stride({5, /// 6}).ceil_mode(true)); /// ``` using LPPool2dOptions = LPPoolOptions<2>; /// `LPPoolOptions` specialized for the `LPPool3d` module. /// /// Example: /// ``` /// LPPool3d model(LPPool3dOptions(1, std::vector<int64_t>({3, 4, 5})).stride( /// {5, 6, 7}).ceil_mode(true)); /// ``` using LPPool3dOptions = LPPoolOptions<3>; namespace functional { /// Options for `torch::nn::functional::lp_pool1d`. /// /// See the documentation for `torch::nn::LPPool1dOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::lp_pool1d(x, F::LPPool1dFuncOptions(2, 3).stride(2)); /// ``` using LPPool1dFuncOptions = LPPool1dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::lp_pool2d`. /// /// See the documentation for `torch::nn::LPPool2dOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::lp_pool2d(x, F::LPPool2dFuncOptions(2, {2, 3}).stride(2)); /// ``` using LPPool2dFuncOptions = LPPool2dOptions; } // namespace functional namespace functional { /// Options for `torch::nn::functional::lp_pool3d`. /// /// See the documentation for `torch::nn::LPPool3dOptions` class to learn what /// arguments are supported. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::lp_pool3d(x, F::LPPool3dFuncOptions(2, {2, 3, 4}).stride(2)); /// ``` using LPPool3dFuncOptions = LPPool3dOptions; } // namespace functional } // namespace torch::nn ```
=================================================================================================================================================== SOURCE CODE FILE: rnn.h LINES: 1 SIZE: 8.23 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\rnn.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> namespace torch::nn { namespace detail { /// Common options for RNN, LSTM and GRU modules. struct TORCH_API RNNOptionsBase { typedef std::variant< enumtype::kLSTM, enumtype::kGRU, enumtype::kRNN_TANH, enumtype::kRNN_RELU> rnn_options_base_mode_t; RNNOptionsBase( rnn_options_base_mode_t mode, int64_t input_size, int64_t hidden_size); TORCH_ARG(rnn_options_base_mode_t, mode); /// The number of features of a single sample in the input sequence `x`. TORCH_ARG(int64_t, input_size); /// The number of features in the hidden state `h`. TORCH_ARG(int64_t, hidden_size); /// The number of recurrent layers (cells) to use. TORCH_ARG(int64_t, num_layers) = 1; /// Whether a bias term should be added to all linear operations. TORCH_ARG(bool, bias) = true; /// If true, the input sequence should be provided as `(batch, sequence, /// features)`. If false (default), the expected layout is `(sequence, batch, /// features)`. TORCH_ARG(bool, batch_first) = false; /// If non-zero, adds dropout with the given probability to the output of each /// RNN layer, except the final layer. TORCH_ARG(double, dropout) = 0.0; /// Whether to make the RNN bidirectional. TORCH_ARG(bool, bidirectional) = false; /// Cell projection dimension. If 0, projections are not added. Can only be /// used for LSTMs. TORCH_ARG(int64_t, proj_size) = 0; }; } // namespace detail /// Options for the `RNN` module. /// /// Example: /// ``` /// RNN model(RNNOptions(128, /// 64).num_layers(3).dropout(0.2).nonlinearity(torch::kTanh)); /// ``` struct TORCH_API RNNOptions { typedef std::variant<enumtype::kTanh, enumtype::kReLU> nonlinearity_t; RNNOptions(int64_t input_size, int64_t hidden_size); /// The number of expected features in the input `x` TORCH_ARG(int64_t, input_size); /// The number of features in the hidden state `h` TORCH_ARG(int64_t, hidden_size); /// Number of recurrent layers. E.g., setting ``num_layers=2`` /// would mean stacking two RNNs together to form a `stacked RNN`, /// with the second RNN taking in outputs of the first RNN and /// computing the final results. Default: 1 TORCH_ARG(int64_t, num_layers) = 1; /// The non-linearity to use. Can be either ``torch::kTanh`` or /// ``torch::kReLU``. Default: ``torch::kTanh`` TORCH_ARG(nonlinearity_t, nonlinearity) = torch::kTanh; /// If ``false``, then the layer does not use bias weights `b_ih` and `b_hh`. /// Default: ``true`` TORCH_ARG(bool, bias) = true; /// If ``true``, then the input and output tensors are provided /// as `(batch, seq, feature)`. Default: ``false`` TORCH_ARG(bool, batch_first) = false; /// If non-zero, introduces a `Dropout` layer on the outputs of each /// RNN layer except the last layer, with dropout probability equal to /// `dropout`. Default: 0 TORCH_ARG(double, dropout) = 0.0; /// If ``true``, becomes a bidirectional RNN. Default: ``false`` TORCH_ARG(bool, bidirectional) = false; }; /// Options for the `LSTM` module. /// /// Example: /// ``` /// LSTM model(LSTMOptions(2, /// 4).num_layers(3).batch_first(false).bidirectional(true)); /// ``` struct TORCH_API LSTMOptions { LSTMOptions(int64_t input_size, int64_t hidden_size); /// The number of expected features in the input `x` TORCH_ARG(int64_t, input_size); /// The number of features in the hidden state `h` TORCH_ARG(int64_t, hidden_size); /// Number of recurrent layers. E.g., setting ``num_layers=2`` /// would mean stacking two LSTMs together to form a `stacked LSTM`, /// with the second LSTM taking in outputs of the first LSTM and /// computing the final results. Default: 1 TORCH_ARG(int64_t, num_layers) = 1; /// If ``false``, then the layer does not use bias weights `b_ih` and `b_hh`. /// Default: ``true`` TORCH_ARG(bool, bias) = true; /// If ``true``, then the input and output tensors are provided /// as (batch, seq, feature). Default: ``false`` TORCH_ARG(bool, batch_first) = false; /// If non-zero, introduces a `Dropout` layer on the outputs of each /// LSTM layer except the last layer, with dropout probability equal to /// `dropout`. Default: 0 TORCH_ARG(double, dropout) = 0.0; /// If ``true``, becomes a bidirectional LSTM. Default: ``false`` TORCH_ARG(bool, bidirectional) = false; /// Cell projection dimension. If 0, projections are not added TORCH_ARG(int64_t, proj_size) = 0; }; /// Options for the `GRU` module. /// /// Example: /// ``` /// GRU model(GRUOptions(2, /// 4).num_layers(3).batch_first(false).bidirectional(true)); /// ``` struct TORCH_API GRUOptions { GRUOptions(int64_t input_size, int64_t hidden_size); /// The number of expected features in the input `x` TORCH_ARG(int64_t, input_size); /// The number of features in the hidden state `h` TORCH_ARG(int64_t, hidden_size); /// Number of recurrent layers. E.g., setting ``num_layers=2`` /// would mean stacking two GRUs together to form a `stacked GRU`, /// with the second GRU taking in outputs of the first GRU and /// computing the final results. Default: 1 TORCH_ARG(int64_t, num_layers) = 1; /// If ``false``, then the layer does not use bias weights `b_ih` and `b_hh`. /// Default: ``true`` TORCH_ARG(bool, bias) = true; /// If ``true``, then the input and output tensors are provided /// as (batch, seq, feature). Default: ``false`` TORCH_ARG(bool, batch_first) = false; /// If non-zero, introduces a `Dropout` layer on the outputs of each /// GRU layer except the last layer, with dropout probability equal to /// `dropout`. Default: 0 TORCH_ARG(double, dropout) = 0.0; /// If ``true``, becomes a bidirectional GRU. Default: ``false`` TORCH_ARG(bool, bidirectional) = false; }; namespace detail { /// Common options for RNNCell, LSTMCell and GRUCell modules struct TORCH_API RNNCellOptionsBase { RNNCellOptionsBase( int64_t input_size, int64_t hidden_size, bool bias, int64_t num_chunks); TORCH_ARG(int64_t, input_size); TORCH_ARG(int64_t, hidden_size); TORCH_ARG(bool, bias); TORCH_ARG(int64_t, num_chunks); }; } // namespace detail /// Options for the `RNNCell` module. /// /// Example: /// ``` /// RNNCell model(RNNCellOptions(20, /// 10).bias(false).nonlinearity(torch::kReLU)); /// ``` struct TORCH_API RNNCellOptions { typedef std::variant<enumtype::kTanh, enumtype::kReLU> nonlinearity_t; RNNCellOptions(int64_t input_size, int64_t hidden_size); /// The number of expected features in the input `x` TORCH_ARG(int64_t, input_size); /// The number of features in the hidden state `h` TORCH_ARG(int64_t, hidden_size); /// If ``false``, then the layer does not use bias weights `b_ih` and `b_hh`. /// Default: ``true`` TORCH_ARG(bool, bias) = true; /// The non-linearity to use. Can be either ``torch::kTanh`` or /// ``torch::kReLU``. Default: ``torch::kTanh`` TORCH_ARG(nonlinearity_t, nonlinearity) = torch::kTanh; }; /// Options for the `LSTMCell` module. /// /// Example: /// ``` /// LSTMCell model(LSTMCellOptions(20, 10).bias(false)); /// ``` struct TORCH_API LSTMCellOptions { LSTMCellOptions(int64_t input_size, int64_t hidden_size); /// The number of expected features in the input `x` TORCH_ARG(int64_t, input_size); /// The number of features in the hidden state `h` TORCH_ARG(int64_t, hidden_size); /// If ``false``, then the layer does not use bias weights `b_ih` and `b_hh`. /// Default: ``true`` TORCH_ARG(bool, bias) = true; }; /// Options for the `GRUCell` module. /// /// Example: /// ``` /// GRUCell model(GRUCellOptions(20, 10).bias(false)); /// ``` struct TORCH_API GRUCellOptions { GRUCellOptions(int64_t input_size, int64_t hidden_size); /// The number of expected features in the input `x` TORCH_ARG(int64_t, input_size); /// The number of features in the hidden state `h` TORCH_ARG(int64_t, hidden_size); /// If ``false``, then the layer does not use bias weights `b_ih` and `b_hh`. /// Default: ``true`` TORCH_ARG(bool, bias) = true; }; } // namespace torch::nn ```
=========================================================================================================================================================== SOURCE CODE FILE: transformer.h LINES: 1 SIZE: 1.83 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\transformer.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> #include <torch/nn/modules/container/any.h> #include <torch/nn/options/transformerlayer.h> namespace torch::nn { /// Options for the `Transformer` module /// /// Example: /// ``` /// TransformerOptions options; /// TransformerOptions options(16, 4); /// auto options = TransformerOptions().d_model(4).nhead(2).dropout(0.0); /// ``` struct TORCH_API TransformerOptions { // The following constructors are commonly used // Please don't add more unless it is proved as a common usage TransformerOptions() = default; TransformerOptions(int64_t d_model, int64_t nhead); TransformerOptions( int64_t d_model, int64_t nhead, int64_t num_encoder_layers, int64_t num_decoder_layers); /// the number of expected features in the encoder/decoder inputs /// (default=512) TORCH_ARG(int64_t, d_model) = 512; /// the number of heads in the multiheadattention models (default=8) TORCH_ARG(int64_t, nhead) = 8; /// the number of sub-encoder-layers in the encoder (default=6) TORCH_ARG(int64_t, num_encoder_layers) = 6; /// the number of sub-decoder-layers in the decoder (default=6) TORCH_ARG(int64_t, num_decoder_layers) = 6; /// the dimension of the feedforward network model (default=2048) TORCH_ARG(int64_t, dim_feedforward) = 2048; /// the dropout value (default=0.1) TORCH_ARG(double, dropout) = 0.1; /// the activation function of encoder/decoder intermediate layer /// (default=``torch::kReLU``) TORCH_ARG(activation_t, activation) = torch::kReLU; /// custom encoder (default=None) TORCH_ARG(AnyModule, custom_encoder); /// custom decoder (default=None) TORCH_ARG(AnyModule, custom_decoder); }; } // namespace torch::nn ```
================================================================================================================================================================ SOURCE CODE FILE: transformercoder.h LINES: 1 SIZE: 2.34 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\transformercoder.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> #include <torch/nn/modules/container/any.h> #include <torch/nn/modules/transformerlayer.h> namespace torch::nn { /// Options for the `TransformerEncoder` /// /// Example: /// ``` /// TransformerEncoderLayer encoderLayer(TransformerEncoderLayerOptions(512, /// 8).dropout(0.1)); auto options = TransformerEncoderOptions(encoderLayer, /// 6).norm(LayerNorm(LayerNormOptions({2}))); /// ``` struct TORCH_API TransformerEncoderOptions { // This constructor will keep a shallow copy of encoder_layer, so it keeps all // the data in encoder_layer. TransformerEncoderOptions( TransformerEncoderLayer encoder_layer, int64_t num_layers); // This constructor will create a new TransformerEncoderLayer obj based on // passed in encoder_layer_options. TransformerEncoderOptions( const TransformerEncoderLayerOptions& encoder_layer_options, int64_t num_layers); /// transformer Encoder Layer TORCH_ARG(TransformerEncoderLayer, encoder_layer) = nullptr; /// number of encoder layers TORCH_ARG(int64_t, num_layers); /// normalization module TORCH_ARG(AnyModule, norm); }; /// Options for the `TransformerDecoder` module. /// /// Example: /// ``` /// TransformerDecoderLayer decoder_layer(TransformerDecoderLayerOptions(512, /// 8).dropout(0.1)); auto options = TransformerDecoderOptions(decoder_layer, /// 6)norm(LayerNorm(LayerNormOptions({2}))); TransformerDecoder /// transformer_decoder(options); /// ``` struct TORCH_API TransformerDecoderOptions { // This constructor will keep the a ref of passed in decoder_layer, // so it keeps all the data in decoder_layer. TransformerDecoderOptions( TransformerDecoderLayer decoder_layer, int64_t num_layers); // This constructor will create a new TransformerDecoderLayer obj, // based on passed in decoder_layer_options. TransformerDecoderOptions( const TransformerDecoderLayerOptions& decoder_layer_options, int64_t num_layers); /// decoder layer to be cloned TORCH_ARG(TransformerDecoderLayer, decoder_layer) = nullptr; /// number of decoder layers TORCH_ARG(int64_t, num_layers); /// normalization module TORCH_ARG(AnyModule, norm); }; } // namespace torch::nn ```
================================================================================================================================================================ SOURCE CODE FILE: transformerlayer.h LINES: 1 SIZE: 2.08 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\transformerlayer.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> namespace torch::nn { using activation_t = std::variant< enumtype::kReLU, enumtype::kGELU, std::function<Tensor(const Tensor&)>>; /// Options for the `TransformerEncoderLayer` /// /// Example: /// ``` /// auto options = TransformerEncoderLayer(512, 8).dropout(0.2); /// ``` struct TORCH_API TransformerEncoderLayerOptions { /* implicit */ TransformerEncoderLayerOptions(int64_t d_model, int64_t nhead); /// the number of expected features in the input TORCH_ARG(int64_t, d_model); /// the number of heads in the multiheadattention models TORCH_ARG(int64_t, nhead); /// the dimension of the feedforward network model, default is 2048 TORCH_ARG(int64_t, dim_feedforward) = 2048; /// the dropout value, default is 0.1 TORCH_ARG(double, dropout) = 0.1; /// the activation function of intermediate layer, can be ``torch::kReLU``, /// ``torch::GELU``, or a unary callable. Default: ``torch::kReLU`` TORCH_ARG(activation_t, activation) = torch::kReLU; }; // ============================================================================ /// Options for the `TransformerDecoderLayer` module. /// /// Example: /// ``` /// TransformerDecoderLayer model(TransformerDecoderLayerOptions(512, /// 8).dropout(0.2)); /// ``` struct TORCH_API TransformerDecoderLayerOptions { TransformerDecoderLayerOptions(int64_t d_model, int64_t nhead); /// number of expected features in the input TORCH_ARG(int64_t, d_model); /// number of heads in the multiheadattention models TORCH_ARG(int64_t, nhead); /// dimension of the feedforward network model. Default: 2048 TORCH_ARG(int64_t, dim_feedforward) = 2048; /// dropout value. Default: 1 TORCH_ARG(double, dropout) = 0.1; /// activation function of intermediate layer, can be ``torch::kGELU``, /// ``torch::kReLU``, or a unary callable. Default: ``torch::kReLU`` TORCH_ARG(activation_t, activation) = torch::kReLU; }; } // namespace torch::nn ```
========================================================================================================================================================== SOURCE CODE FILE: upsampling.h LINES: 1 SIZE: 4.13 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\upsampling.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/expanding_array.h> #include <torch/types.h> #include <vector> namespace torch::nn { /// Options for the `Upsample` module. /// /// Example: /// ``` /// Upsample /// model(UpsampleOptions().scale_factor(std::vector<double>({3})).mode(torch::kLinear).align_corners(false)); /// ``` struct TORCH_API UpsampleOptions { /// output spatial sizes. TORCH_ARG(std::optional<std::vector<int64_t>>, size) = std::nullopt; /// multiplier for spatial size. TORCH_ARG(std::optional<std::vector<double>>, scale_factor) = std::nullopt; /// the upsampling algorithm: one of "nearest", "linear", "bilinear", /// "bicubic" and "trilinear". Default: "nearest" typedef std::variant< enumtype::kNearest, enumtype::kLinear, enumtype::kBilinear, enumtype::kBicubic, enumtype::kTrilinear> mode_t; TORCH_ARG(mode_t, mode) = torch::kNearest; /// if "True", the corner pixels of the input and output tensors are /// aligned, and thus preserving the values at those pixels. This only has /// effect when :attr:`mode` is "linear", "bilinear", "bicubic", or /// "trilinear". Default: "False" TORCH_ARG(std::optional<bool>, align_corners) = std::nullopt; }; namespace functional { /// Options for `torch::nn::functional::interpolate`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::interpolate(input, /// F::InterpolateFuncOptions().size(std::vector<int64_t>({4})).mode(torch::kNearest)); /// ``` struct TORCH_API InterpolateFuncOptions { typedef std::variant< enumtype::kNearest, enumtype::kLinear, enumtype::kBilinear, enumtype::kBicubic, enumtype::kTrilinear, enumtype::kArea, enumtype::kNearestExact> mode_t; /// output spatial sizes. TORCH_ARG(std::optional<std::vector<int64_t>>, size) = std::nullopt; /// multiplier for spatial size. TORCH_ARG(std::optional<std::vector<double>>, scale_factor) = std::nullopt; /// the upsampling algorithm: one of "nearest", "linear", "bilinear", /// "bicubic", "trilinear", "area", "nearest-exact". Default: "nearest" TORCH_ARG(mode_t, mode) = torch::kNearest; /// Geometrically, we consider the pixels of the input and output as squares /// rather than points. If set to "True", the input and output tensors are /// aligned by the center points of their corner pixels, preserving the values /// at the corner pixels. If set to "False", the input and output tensors /// are aligned by the corner points of their corner pixels, and the /// interpolation uses edge value padding for out-of-boundary values, making /// this operation *independent* of input size when `scale_factor` is /// kept the same. It is *required* when interpolating mode is "linear", /// "bilinear", "bicubic" or "trilinear". Default: "False" TORCH_ARG(std::optional<bool>, align_corners) = std::nullopt; /// recompute the scale_factor for use in the /// interpolation calculation. When `scale_factor` is passed as a parameter, /// it is used to compute the `output_size`. If `recompute_scale_factor` is /// `true` or not specified, a new `scale_factor` will be computed based on /// the output and input sizes for use in the interpolation computation (i.e. /// the computation will be identical to if the computed `output_size` were /// passed-in explicitly). Otherwise, the passed-in `scale_factor` will be /// used in the interpolation computation. Note that when `scale_factor` is /// floating-point, the recomputed scale_factor may differ from the one passed /// in due to rounding and precision issues. TORCH_ARG(std::optional<bool>, recompute_scale_factor) = std::nullopt; /// flag to apply anti-aliasing. Using anti-alias /// option together with :attr:`align_corners` equals "False", interpolation /// result would match Pillow result for downsampling operation. Supported /// modes: "bilinear". Default: "False". TORCH_ARG(bool, antialias) = false; }; } // namespace functional } // namespace torch::nn ```
====================================================================================================================================================== SOURCE CODE FILE: vision.h LINES: 1 SIZE: 1.06 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\options\vision.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/csrc/Export.h> #include <torch/enum.h> #include <torch/types.h> namespace torch::nn::functional { /// Options for `torch::nn::functional::grid_sample`. /// /// Example: /// ``` /// namespace F = torch::nn::functional; /// F::grid_sample(input, grid, /// F::GridSampleFuncOptions().mode(torch::kBilinear).padding_mode(torch::kZeros).align_corners(true)); /// ``` struct TORCH_API GridSampleFuncOptions { typedef std::variant<enumtype::kBilinear, enumtype::kNearest> mode_t; typedef std:: variant<enumtype::kZeros, enumtype::kBorder, enumtype::kReflection> padding_mode_t; /// interpolation mode to calculate output values. Default: Bilinear TORCH_ARG(mode_t, mode) = torch::kBilinear; /// padding mode for outside grid values. Default: Zeros TORCH_ARG(padding_mode_t, padding_mode) = torch::kZeros; /// Specifies perspective to pixel as point. Default: false TORCH_ARG(std::optional<bool>, align_corners) = std::nullopt; }; } // namespace torch::nn::functional ```
============================================================================================================================================================== SOURCE CODE FILE: data_parallel.h LINES: 1 SIZE: 11.22 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\parallel\data_parallel.h ENCODING: utf-8 ```h #pragma once #include <torch/cuda.h> #include <torch/nn/module.h> #include <torch/nn/pimpl.h> #include <torch/types.h> #include <ATen/core/functional.h> #include <torch/csrc/autograd/functions/comm.h> #include <torch/csrc/autograd/functions/utils.h> #include <ATen/Device.h> #include <ATen/Parallel.h> #include <c10/core/TensorOptions.h> #include <c10/util/Exception.h> #include <c10/util/irange.h> #include <exception> #include <memory> #include <mutex> #include <vector> namespace torch::nn { namespace { // Note [Replicating Modules] // ~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Module replication is implemented in the following two steps: // 1) create a module replica on each destination device using Module.clone(). // 2) manually add a gradient edge pointing from every parameter X in every // module replica to the same parameter X in the original module, using // ReduceAdd as the grad_fn. // // ReduceAdd can ONLY be used during the backward pass of data parallel. Forward // pass cannot use this function as it does not setup gradient function and // history at all. Do NOT try to use ReduceAdd for any other purposes. // // NB: An alternative is to add Broadcast and ReduceAddCoalesce to // torch/csrc/autograd/functions/comm.cpp as normal autograd functions, // implement a Replicatable (like cloneable) class and add it as a friend class // in Module.h. In the forward pass, the Replicatable could use the Broadcast // function to replicate every module parameter and set gradient functions using // ReduceAddCoalesce (like how it is implemented in Python). However, unlike in // Python, where changes to Linear._parameters["weight"] would also apply to // Linear.weight (using Linear as an example), Linear.weight and // Linear.parameters_["weight"] are two tensor objects pointing to the same // TensorImpl. Assigning a new tensor to Linear.parameters_["weight"] will not // change Linear.weight. To make this work, we will have to: // 1) force every module to also inherit from Replicatable // 2) force every module to implement an additional function, e.g., // Replicatable::load_params(), to pick up changes from parameters_ to their // own member fields. // This will be an overkill as Replicatable will only be used in data_parallel, // not even ddp. // Autograd function for the replicate step in data parallel. This is only used // in data parallel, and should not be exposed as a user API. struct ReduceAdd : public autograd::Node { explicit ReduceAdd(const at::Device& destination_device) : destination_device_(destination_device){}; ~ReduceAdd() override = default; // NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved) autograd::variable_list apply(autograd::variable_list&& inputs) override { TORCH_CHECK( !torch::autograd::compute_requires_grad(inputs), "ReduceAdd can only be used during the backward pass of data parallel."); Tensor output = torch::zeros_like(inputs[0], {destination_device_}); for (auto& input : inputs) { TORCH_CHECK( input.sizes() == inputs[0].sizes(), "All inputs of ReduceAdd must have the same size, but got ", input.sizes(), " and ", inputs[0].sizes()); TORCH_CHECK( input.dtype() == inputs[0].dtype(), "All inputs of ReduceAdd must have the same dtype, but got ", input.dtype(), " and ", inputs[0].dtype()); // TODO: use nccl reduce output.add_(input.to(destination_device_)); } return {output}; } private: at::Device destination_device_; }; } // namespace // A friend function to Module, it recursively sets gradient edges pointing from // every parameter X in every module replica to the same parameter X in the // original module. See [Replicating Modules] template <typename ModuleType> void replicate_grad_edges( const std::shared_ptr<Module>& module, const std::vector<std::shared_ptr<ModuleType>>& replicas, const std::vector<Device>& devices) { for (auto& parameter : module->named_parameters(/*recurse=*/false)) { auto grad_fn = std::make_shared<ReduceAdd>((*parameter).device()); grad_fn->set_next_edges(autograd::collect_next_edges(*parameter)); for (const auto i : c10::irange(devices.size())) { autograd::set_history(replicas[i]->parameters_[parameter.key()], grad_fn); } } for (auto& buffer : module->named_buffers(/*recurse=*/false)) { if (buffer.value().requires_grad()) { auto grad_fn = std::make_shared<ReduceAdd>((*buffer).device()); grad_fn->set_next_edges(autograd::collect_next_edges(*buffer)); for (const auto i : c10::irange(devices.size())) { autograd::set_history(replicas[i]->buffers_[buffer.key()], grad_fn); } } } for (auto& child : module->children_) { std::vector<std::shared_ptr<Module>> child_replicas; child_replicas.reserve(devices.size()); for (auto& replica : replicas) { child_replicas.push_back(replica->children_[child.key()]); } // recursively set gradient edges for all children replicate_grad_edges(*child, child_replicas, devices); } } namespace parallel { /// Replicates a module on the given list of devices. /// A replica is created by calling `clone()` on the module. For this, the /// module must inherit from `nn::Cloneable`, or define its own `clone()` /// method, which is expected to perform a deep copy of the module. template <typename ModuleType> std::vector<std::shared_ptr<ModuleType>> replicate( const std::shared_ptr<ModuleType>& module, const std::vector<Device>& devices) { std::vector<std::shared_ptr<ModuleType>> replicas; replicas.reserve(devices.size()); for (const auto& device : devices) { replicas.push_back( std::dynamic_pointer_cast<ModuleType>(module->clone(device))); } // Configure gradient edges to point from replcia parameters to original // module parameters. See [Replicating Modules] replicate_grad_edges(module, replicas, devices); return replicas; } /// Replicates a module holder on the given list of devices. /// This method allows calling `replicate()` with a module holder, such as /// `Linear`. template <typename ModuleType> std::vector<ModuleHolder<ModuleType>> replicate( const ModuleHolder<ModuleType>& module, const std::vector<Device>& devices) { auto ptrs = replicate(module.ptr(), devices); return std::vector<ModuleHolder<ModuleType>>(ptrs.begin(), ptrs.end()); } /// Applies the given inputs to the given modules in a parallel fashion. /// Conceptually, a thread is spawned for each `(module, input)` pair, in which /// `forward()` is called on the module with its corresponding input. The /// outputs of the individual calls are stored in a vector and returned. /// /// The first exception caught by any thread is stashed and rethrown after all /// threads have completed their operation. /// /// Further remarks: /// 1. The length of the module container must match the length of the inputs. /// 2. If a list of devices is supplied, it must match the list of modules in /// length. Each device will be set to the current default device during the /// invocation of the respective module. This means any tensors allocated on the /// default device inside the module will be constructed on this device. template <typename ModuleType> std::vector<Tensor> parallel_apply( std::vector<ModuleType>& modules, const std::vector<Tensor>& inputs, const std::optional<std::vector<Device>>& devices = std::nullopt) { TORCH_CHECK( modules.size() == inputs.size(), "Must have as many inputs as modules"); if (devices) { TORCH_CHECK( modules.size() == devices->size(), "Must have as many devices as modules"); } std::vector<Tensor> outputs(modules.size()); std::mutex mutex; // std::exception_ptr can be passed between threads: // > An instance of std::exception_ptr may be passed to another function, // > possibly on another thread, where the exception may be rethrown [...]. // https://en.cppreference.com/w/cpp/error/exception_ptr std::exception_ptr exception; at::parallel_for( /*begin=*/0, /*end=*/modules.size(), /*grain_size=*/1, [&modules, &inputs, &devices, &outputs, &mutex, &exception]( int64_t index, int64_t stop) { for (; index < stop; ++index) { try { auto output = modules[index]->forward(inputs[index]); output = output.to(devices ? (*devices)[index] : inputs[index].device()); std::lock_guard<std::mutex> lock(mutex); outputs[index] = output; } catch (...) { std::lock_guard<std::mutex> lock(mutex); if (!exception) { exception = std::current_exception(); } } } }); if (exception) { std::rethrow_exception(exception); } return outputs; } /// Evaluates `module(input)` in parallel across the given `devices`. If /// `devices` is not supplied, the invocation is parallelized across all /// available CUDA devices. If `output_device` is supplied, the final, combined /// tensor will be placed on this device. If not, it defaults to the first /// device in `devices`. /// /// In detail, this method performs the following four distinct steps: /// 1. *Scatter* the input to the given devices, /// 2. *Replicate* (deep clone) the model on each device, /// 3. *Evaluate* each module with its input on its device, /// 4. *Gather* the outputs of each replica into a single output tensor, located /// on the `output_device`. template <typename ModuleType> Tensor data_parallel( ModuleType module, Tensor input, std::optional<std::vector<Device>> devices = std::nullopt, std::optional<Device> output_device = std::nullopt, int64_t dim = 0) { if (!devices) { const auto device_count = torch::cuda::device_count(); TORCH_CHECK( device_count > 0, "Expected at least one CUDA device to be available"); devices = std::vector<Device>(); devices->reserve(device_count); for (const auto index : c10::irange(device_count)) { devices->emplace_back(kCUDA, static_cast<torch::DeviceIndex>(index)); } } if (!output_device) { output_device = devices->front(); } if (devices->size() == 1) { module->to(devices->front()); input = input.to(devices->front()); return module->forward(std::move(input)).to(*output_device); } autograd::Scatter scatter(*devices, /*chunk_sizes=*/std::nullopt, dim); auto scattered_inputs = fmap<Tensor>(scatter.apply({std::move(input)})); // Input tensor might not be big enough to scale across all available devices if (scattered_inputs.size() < devices->size()) { devices->resize( scattered_inputs.size(), Device(DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)); } auto replicas = replicate(module, *devices); auto outputs = parallel_apply(replicas, scattered_inputs, *devices); return autograd::Gather(*output_device, dim) .apply(fmap<autograd::Variable>(std::move(outputs))) .front(); } } // namespace parallel } // namespace torch::nn ```
================================================================================================================================================= SOURCE CODE FILE: pimpl-inl.h LINES: 1 SIZE: 3.22 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\pimpl-inl.h ENCODING: utf-8 ```h // This class exists only to do SFINAE on abstract types `T` that are really // `ModuleHolder<ModuleType>`, because there's no good way to say that `T` is a // `ModuleHolder` over some unknown type `ModuleType`. With this, you can do // `enable_if_t<is_base_of_v<ModuleHolderIndicator, T>>`. struct ModuleHolderIndicator {}; // A type trait that is true for types that are `ModuleHolder`s. template <typename T> using is_module_holder = std::is_base_of<ModuleHolderIndicator, std::decay_t<T>>; template <typename T> using disable_if_module_holder_t = std::enable_if_t<!is_module_holder<T>::value>; // A collection of templates that answer the question whether a type `T` is a // `ModuleHolder`, and if so whether its contained type is of type `C`. This is // tricky because it is hard to short circuit in template metaprogramming. A // naive and incorrect solution to this problem would be something like // `disable_if<is_module_holder<T>::value && typename T::ContainedType == C>`. // This would disable all types that are not `ModuleHolder`s, because even // though the `is_module_holder<T>::value` may be `false` for such types the // `T::ContainedType` access would be ill-formed and thus fail the whole // expression by the rules of SFINAE. Instead we have to use template // specialization to statically branch on the first condition // (`is_module_holder<T>`) and are only then allowed to query // `T::ContainedType` in the branch for which the condition was true. // Base template. template <bool is_module_holder_value, typename T, typename C> struct is_module_holder_of_impl; // False branch. `T` is not a `ModuleHolder` and thus not a `ModuleHolder` with // contained type `C`. template <typename T, typename C> struct is_module_holder_of_impl<false, T, C> : std::false_type {}; // True branch. `T` is a `ModuleHolder` and thus we can legit access its // `ContainedType` and compare it against `C`. template <typename T, typename C> struct is_module_holder_of_impl<true, T, C> : std::is_same<typename T::ContainedType, C> {}; // Helper template. template <typename T, typename C> struct is_module_holder_of : is_module_holder_of_impl< is_module_holder<T>::value, std::decay_t<T>, std::decay_t<C>> {}; // A collection of templates that allow deducing the return type of the // `forward()` method, but only if a module actually has a `forward()` method, // and otherwise deduces to the type `void`. template <bool has_forward_value, typename C, typename... Args> struct return_type_of_forward_impl; template <typename C, typename... Args> struct return_type_of_forward_impl<true, C, Args...> { using type = decltype(::std::declval<C>().forward(::std::declval<Args>()...)); }; template <typename C, typename... Args> struct return_type_of_forward_impl<false, C, Args...> { using type = void; }; template <typename C, typename... Args> using return_type_of_forward = return_type_of_forward_impl< torch::detail::has_forward<C>::value, C, Args...>; template <typename C, typename... Args> using return_type_of_forward_t = typename return_type_of_forward<C, Args...>::type; ```
============================================================================================================================================= SOURCE CODE FILE: pimpl.h LINES: 1 SIZE: 6.67 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\pimpl.h ENCODING: utf-8 ```h #pragma once #include <torch/arg.h> #include <torch/detail/static.h> #include <torch/serialize/archive.h> #include <torch/types.h> #include <torch/csrc/utils/variadic.h> #include <memory> #include <type_traits> #include <utility> namespace torch { namespace detail { // Dump all the template metaprogramming in this file. #include <torch/csrc/api/include/torch/nn/pimpl-inl.h> } // namespace detail namespace nn { /// A `ModuleHolder` is essentially a wrapper around `std::shared_ptr<M>` where /// `M` is an `nn::Module` subclass, with convenient constructors defined for /// the kind of constructions we want to allow for our modules. template <typename Contained> class ModuleHolder : torch::detail::ModuleHolderIndicator { protected: /// The module pointer this class wraps. /// NOTE: Must be placed at the top of the class so that we can use it with /// trailing return types below. // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::shared_ptr<Contained> impl_; public: using ContainedType = Contained; /// Default constructs the contained module if if has a default constructor, /// else produces a static error. /// /// NOTE: This uses the behavior of template /// classes in C++ that constructors (or any methods) are only compiled when /// actually used. ModuleHolder() : impl_(default_construct()) { static_assert( std::is_default_constructible_v<Contained>, "You are trying to default construct a module which has " "no default constructor. Use = nullptr to give it the empty state " "(e.g. `Linear linear = nullptr;` instead of `Linear linear;`)."); } /// Constructs the `ModuleHolder` with an empty contained value. Access to /// the underlying module is not permitted and will throw an exception, until /// a value is assigned. /* implicit */ ModuleHolder(std::nullptr_t) : impl_(nullptr) {} /// Constructs the `ModuleHolder` with a contained module, forwarding all /// arguments to its constructor. template < typename Head, typename... Tail, typename = std::enable_if_t< !(torch::detail::is_module_holder_of<Head, ContainedType>::value && (sizeof...(Tail) == 0))>> explicit ModuleHolder(Head&& head, Tail&&... tail) : impl_(new Contained( std::forward<Head>(head), std::forward<Tail>(tail)...)) {} /// Constructs the `ModuleHolder` from a pointer to the contained type. /// Example: `Linear(std::make_shared<LinearImpl>(...))`. /* implicit */ ModuleHolder(std::shared_ptr<Contained> module) : impl_(std::move(module)) {} /// Returns true if the `ModuleHolder` contains a module, or false if it is /// `nullptr`. explicit operator bool() const noexcept { return !is_empty(); } /// Forwards to the contained module. Contained* operator->() { return get(); } /// Forwards to the contained module. const Contained* operator->() const { return get(); } /// Returns a reference to the contained module. Contained& operator*() { return *get(); } /// Returns a const reference to the contained module. const Contained& operator*() const { return *get(); } /// Returns a shared pointer to the underlying module. const std::shared_ptr<Contained>& ptr() const { TORCH_CHECK(!is_empty(), "Accessing empty ModuleHolder"); return impl_; } /// Returns a pointer to the underlying module. Contained* get() { TORCH_CHECK(!is_empty(), "Accessing empty ModuleHolder"); return impl_.get(); } /// Returns a const pointer to the underlying module. const Contained* get() const { TORCH_CHECK(!is_empty(), "Accessing empty ModuleHolder"); return impl_.get(); } /// Calls the `forward()` method of the contained module. template <typename... Args> auto operator()(Args&&... args) -> torch::detail::return_type_of_forward_t<Contained, Args...> { // This will not compile if the module does not have a `forward()` method // (as expected). // NOTE: `std::forward` is qualified to prevent VS2017 emitting // error C2872: 'std': ambiguous symbol return impl_->forward(::std::forward<Args>(args)...); } /// Forwards to the subscript operator of the contained module. /// NOTE: std::forward is qualified to prevent VS2017 emitting /// error C2872: 'std': ambiguous symbol template <typename Arg> decltype(auto) operator[](Arg&& arg) { return (*impl_)[::std::forward<Arg>(arg)]; } /// Returns true if the `ModuleHolder` does not contain a module. bool is_empty() const noexcept { return impl_ == nullptr; } private: template <typename T = Contained> std::shared_ptr<Contained> default_construct() { if constexpr (std::is_default_constructible_v<T>) { return std::make_shared<Contained>(); } else { return nullptr; } } }; /// Pretty prints the given `Module` into the `ostream`. template <typename ModuleType> std::ostream& operator<<( std::ostream& stream, const nn::ModuleHolder<ModuleType>& module) { return stream << *module; } /// Serializes a `ModuleHolder` into an `OutputArchive`. template <typename ModuleType> serialize::OutputArchive& operator<<( serialize::OutputArchive& archive, const nn::ModuleHolder<ModuleType>& module) { return archive << module.ptr(); } /// Deserializes a `ModuleHolder` from an `InputArchive`. template <typename ModuleType> serialize::InputArchive& operator>>( serialize::InputArchive& archive, nn::ModuleHolder<ModuleType>& module) { return archive >> module.ptr(); } } // namespace nn } // namespace torch // Workaround for CUDA 10.2 and below not allowing attribute unused on // using declarations. #ifdef __CUDACC__ #define TORCH_UNUSED_EXCEPT_CUDA #else #define TORCH_UNUSED_EXCEPT_CUDA [[maybe_unused]] #endif /// Defines a class `Name` which inherits from `nn::ModuleHolder` to provide a /// wrapper over a `std::shared_ptr<ImplType>`. /// `Impl` is a type alias for `ImplType` which provides a way to call static /// method of `ImplType`. #define TORCH_MODULE_IMPL(Name, ImplType) \ class Name : public torch::nn::ModuleHolder<ImplType> { /* NOLINT */ \ public: \ using torch::nn::ModuleHolder<ImplType>::ModuleHolder; \ using Impl TORCH_UNUSED_EXCEPT_CUDA = ImplType; \ } /// Like `TORCH_MODULE_IMPL`, but defaults the `ImplType` name to `<Name>Impl`. #define TORCH_MODULE(Name) TORCH_MODULE_IMPL(Name, Name##Impl) ```
============================================================================================================================================= SOURCE CODE FILE: utils.h LINES: 1 SIZE: 0.13 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\utils.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/utils/clip_grad.h> #include <torch/nn/utils/convert_parameters.h> #include <torch/nn/utils/rnn.h> ```
======================================================================================================================================================= SOURCE CODE FILE: clip_grad.h LINES: 1 SIZE: 4.87 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\utils\clip_grad.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/types.h> #include <utility> #include <vector> namespace torch::nn::utils { // Clips gradient norm of a vector of Tensors. // See // https://pytorch.org/docs/stable/nn.html?highlight=clip_grad_norm#torch.nn.utils.clip_grad_norm_ // for more details about this module. // // Difference with the python version: unlike the python version, even when // skipping the finiteness checks (error_if_nonfinite = false), this function // will introduce a device <=> CPU synchronization (for devices where that makes // sense!) in order to return a CPU-side `double`. This C++ version therefore // cannot be run fully asynchronously w.r.t. the device of the gradients. inline double clip_grad_norm_( const std::vector<Tensor>& parameters, double max_norm, double norm_type = 2.0, bool error_if_nonfinite = false) { std::vector<Tensor> params_with_grad; for (const auto& param : parameters) { auto& grad = param.grad(); if (grad.defined()) { params_with_grad.push_back(param); } } if (params_with_grad.empty()) { return 0.0; } Tensor total_norm_tensor; if (norm_type == std::numeric_limits<double>::infinity()) { std::vector<Tensor> norms; norms.reserve(params_with_grad.size()); for (const auto& param : params_with_grad) { norms.emplace_back(param.grad().data().abs().max()); } total_norm_tensor = (norms.size() == 1) ? norms[0] : torch::max(torch::stack(norms)); } else if (norm_type == 0) { total_norm_tensor = torch::full({}, static_cast<double>(params_with_grad.size())); } else { std::vector<Tensor> norms; norms.reserve(params_with_grad.size()); for (const auto& param : params_with_grad) { norms.emplace_back(param.grad().data().norm(norm_type)); } total_norm_tensor = (norms.size() == 1) ? norms[0] : torch::stack(norms).norm(norm_type); } // When possible (ie when skipping the finiteness check), we avoid // synchronizing the CPU and the gradients' device until the very end to // preserve async execution on the device. When checking for finite-ness, this // optional ensures we only sync once. std::optional<double> total_norm = std::nullopt; if (error_if_nonfinite) { total_norm = total_norm_tensor.item().toDouble(); TORCH_CHECK( std::isfinite(*total_norm), "The total norm of order ", norm_type, " for gradients from `parameters` ", "is non-finite, so it cannot be clipped. To disable this error and scale ", "the gradients with the non-finite norm anyway, set ", "`error_if_nonfinite=false`"); } auto clip_coef = max_norm / (total_norm_tensor + 1e-6); auto clip_coef_clamped = torch::clamp(clip_coef, std::nullopt /* min */, 1.0 /* max */); for (auto& param : params_with_grad) { param.grad().data().mul_(clip_coef_clamped); } if (!total_norm.has_value()) { total_norm = total_norm_tensor.item().toDouble(); } return *total_norm; } // A wrapper around clip_grad_norm_ that allows us to call the function with a // braced-init-list of Tensors. inline double clip_grad_norm_( std::initializer_list<Tensor> parameters, double max_norm, double norm_type = 2.0, bool error_if_nonfinite = false) { return clip_grad_norm_( std::vector<Tensor>(parameters), max_norm, norm_type, error_if_nonfinite); } // A wrapper around clip_grad_norm_ that allows us to call the function with a // single Tensor. inline double clip_grad_norm_( Tensor parameter, double max_norm, double norm_type = 2.0, bool error_if_nonfinite = false) { std::vector<Tensor> params = {std::move(parameter)}; return clip_grad_norm_(params, max_norm, norm_type, error_if_nonfinite); } // Clips gradient of an iterable of parameters at specified value. // Gradients are modified in-place. // See https://pytorch.org/docs/stable/nn.html#clip-grad-value // for more details about this module. inline void clip_grad_value_( const std::vector<Tensor>& parameters, double clip_value) { for (const auto& param : parameters) { if (param.grad().defined()) { param.grad().data().clamp_(-clip_value, clip_value); } } } // A wrapper around clip_grad_value_ that allows us to call the function with a // braced-init-list of Tensors. inline void clip_grad_value_( std::initializer_list<Tensor> parameters, double clip_value) { clip_grad_value_(std::vector<Tensor>(parameters), clip_value); } // A wrapper around clip_grad_value_ that allows us to call the function with a // single Tensor. inline void clip_grad_value_(Tensor parameter, double clip_value) { std::vector<Tensor> params = {std::move(parameter)}; clip_grad_value_(params, clip_value); } } // namespace torch::nn::utils ```
================================================================================================================================================================ SOURCE CODE FILE: convert_parameters.h LINES: 1 SIZE: 2.40 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\utils\convert_parameters.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/types.h> namespace torch::nn::utils { // This helper function is to check if the parameters are located // in the same device. Currently, the conversion between model parameters // and single vector form is not supported for multiple allocations, // e.g. parameters in different GPUs, or mixture of CPU/GPU. inline std::optional<int64_t> _check_param_device( const torch::Tensor& param, std::optional<int64_t> old_param_device) { // Meet the first parameter if (old_param_device == std::nullopt) { old_param_device = param.is_cuda() ? param.get_device() : -1; } else { bool warn = false; if (param.is_cuda()) { // Check if in same GPU warn = (param.get_device() != old_param_device); } else { // Check if in CPU warn = (old_param_device != -1); } if (warn) { TORCH_CHECK( false, "Found two parameters on different devices, ", "this is currently not supported."); } } return old_param_device; } // Convert parameters to one vector inline torch::Tensor parameters_to_vector( const std::vector<torch::Tensor>& parameters) { std::optional<int64_t> param_device; std::vector<torch::Tensor> vec; vec.reserve(parameters.size()); for (const torch::Tensor& param : parameters) { // Ensure the parameters are located in the same device param_device = _check_param_device(param, param_device); vec.push_back(param.view(-1)); } return torch::cat(vec); } // Convert one vector to the parameters inline void vector_to_parameters( const torch::Tensor& vec, const std::vector<torch::Tensor>& parameters) { // Flag for the device where the parameter is located std::optional<int64_t> param_device; // Pointer for slicing the vector for each parameter int64_t pointer = 0; for (const torch::Tensor& param : parameters) { // Ensure the parameters are located in the same device param_device = _check_param_device(param, param_device); // The length of the parameter auto num_param = param.numel(); // Slice the vector, reshape it, and replace the old data of the parameter param.set_data( vec.slice(0, pointer, pointer + num_param).view_as(param).data()); // Increment the pointer pointer += num_param; } } } // namespace torch::nn::utils ```
================================================================================================================================================= SOURCE CODE FILE: rnn.h LINES: 1 SIZE: 12.83 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\nn\utils\rnn.h ENCODING: utf-8 ```h #pragma once #include <c10/util/irange.h> #include <torch/types.h> #include <utility> namespace torch::nn::utils::rnn { inline Tensor invert_permutation(const Tensor& permutation) { if (!permutation.defined()) { return torch::Tensor(); } Tensor output = torch::empty_like(permutation, torch::MemoryFormat::Contiguous); output.scatter_( 0, permutation, torch::arange(0, permutation.numel(), permutation.device())); return output; } /// Holds the data and list of `batch_sizes` of a packed sequence. /// /// All RNN modules accept packed sequences as inputs. /// /// Note: /// Instances of this class should never be created manually. They are meant /// to be instantiated by functions like `pack_padded_sequence`. /// /// Batch sizes represent the number elements at each sequence step in /// the batch, not the varying sequence lengths passed to /// `pack_padded_sequence`. For instance, given data ``abc`` and ``x`` /// the :class:`PackedSequence` would contain data ``axbc`` with /// ``batch_sizes=[2,1,1]``. /// /// Attributes: /// data (Tensor): Tensor containing packed sequence /// batch_sizes (Tensor): Tensor of integers holding /// information about the batch size at each sequence step /// sorted_indices (Tensor, optional): Tensor of integers holding how this /// :class:`PackedSequence` is constructed from sequences. /// unsorted_indices (Tensor, optional): Tensor of integers holding how this /// to recover the original sequences with correct order. /// /// .. note:: /// `data` can be on arbitrary device and of arbitrary dtype. /// `sorted_indices` and `unsorted_indices` must be ``torch::kInt64`` /// tensors on the same device as `data`. /// /// However, `batch_sizes` should always be a CPU ``torch::kInt64`` tensor. /// /// This invariant is maintained throughout `PackedSequence` class, /// and all functions that construct a `PackedSequence` in libtorch /// (i.e., they only pass in tensors conforming to this constraint). class PackedSequence { public: explicit PackedSequence( Tensor data, Tensor batch_sizes, Tensor sorted_indices = {}, Tensor unsorted_indices = {}) { // NB: if unsorted_indices is provided, it should be the inverse permutation // to sorted_indices. Don't assert it here because the PackedSequence ctor // should only be used internally. if (!unsorted_indices.defined()) { unsorted_indices = invert_permutation(sorted_indices); } TORCH_CHECK( batch_sizes.device().type() == kCPU, "batch_sizes should always be on CPU. " "Instances of PackedSequence should never be created manually. " "They should be instantiated by functions like pack_sequence " "and pack_padded_sequences in nn::utils::rnn. " "https://pytorch.org/docs/stable/nn.html#torch.nn.utils.rnn.pack_sequence"); data_ = std::move(data); batch_sizes_ = std::move(batch_sizes); sorted_indices_ = std::move(sorted_indices); unsorted_indices_ = std::move(unsorted_indices); } const Tensor& data() const { return data_; } const Tensor& batch_sizes() const { return batch_sizes_; } const Tensor& sorted_indices() const { return sorted_indices_; } const Tensor& unsorted_indices() const { return unsorted_indices_; } PackedSequence pin_memory() const { // Why not convert `batch_sizes`? // See NOTE [ device and dtype of a PackedSequence ] return PackedSequence( data_.pin_memory(), batch_sizes_, sorted_indices_.defined() ? sorted_indices_.pin_memory() : Tensor(), unsorted_indices_.defined() ? unsorted_indices_.pin_memory() : Tensor()); } PackedSequence to(TensorOptions options) const { // Performs dtype and/or device conversion on `data_`. // // If the ``data_`` Tensor already has the correct `torch::Dtype` // and `torch::Device`, then ``self`` is returned. // Otherwise, returns a copy with the desired configuration. // Why not convert `batch_sizes`? // See NOTE [ device and dtype of a PackedSequence ] Tensor data = data_.to(options); if (data.is_same(data_)) { return *this; } else { // Does not forward device or dtype args, device is set from data.device() Tensor sorted_indices = sorted_indices_.defined() ? sorted_indices_.to( options.device(data.device()).dtype(sorted_indices_.dtype())) : Tensor(); Tensor unsorted_indices = unsorted_indices_.defined() ? unsorted_indices_.to( options.device(data.device()).dtype(unsorted_indices_.dtype())) : Tensor(); return PackedSequence( std::move(data), batch_sizes_, std::move(sorted_indices), std::move(unsorted_indices)); } } PackedSequence cuda() const { return to(kCUDA); } PackedSequence cpu() const { return to(kCPU); } /// Returns true if `data_` stored on a gpu bool is_cuda() const { return data_.is_cuda(); } /// Returns true if `data_` stored on in pinned memory bool is_pinned() const { return data_.is_pinned(); } private: Tensor data_; Tensor batch_sizes_; Tensor sorted_indices_; Tensor unsorted_indices_; }; /// Packs a Tensor containing padded sequences of variable length. /// /// `input` can be of size ``T x B x *`` where `T` is the length of the /// longest sequence (equal to ``lengths[0]``), ``B`` is the batch size, and /// ``*`` is any number of dimensions (including 0). If ``batch_first`` is /// ``true``, ``B x T x *`` `input` is expected. /// /// For unsorted sequences, use `enforce_sorted = false`. If `enforce_sorted` is /// ``true``, the sequences should be sorted by length in a decreasing order, /// i.e. /// ``input[:,0]`` should be the longest sequence, and ``input[:,B-1]`` the /// shortest one. /// /// Note: /// This function accepts any input that has at least two dimensions. You /// can apply it to pack the labels, and use the output of the RNN with /// them to compute the loss directly. A Tensor can be retrieved from /// a `PackedSequence` object by calling its ``.data()`` function. /// /// Arguments: /// input (Tensor): padded batch of variable length sequences. /// lengths (Tensor): list of sequences lengths of each batch element. /// batch_first (bool, optional): if ``true``, the input is expected in ``B /// x T x *`` /// format. Default: ``false``. /// enforce_sorted (bool, optional): if ``true``, the input is expected to /// contain sequences sorted by length in a decreasing order. If /// ``false``, this condition is not checked. Default: ``true``. /// /// Returns: /// a `PackedSequence` object inline PackedSequence pack_padded_sequence( Tensor input, Tensor lengths, bool batch_first = false, bool enforce_sorted = true) { lengths = lengths.to(kInt64); Tensor sorted_indices; if (enforce_sorted) { sorted_indices = Tensor(); } else { std::tie(lengths, sorted_indices) = torch::sort(lengths, /*dim=*/-1, /*descending=*/true); sorted_indices = sorted_indices.to(input.device()); int64_t batch_dim = batch_first ? 0 : 1; input = input.index_select(batch_dim, sorted_indices); } auto [data, batch_sizes] = torch::_pack_padded_sequence(input, lengths, batch_first); return PackedSequence( std::move(data), std::move(batch_sizes), std::move(sorted_indices), {}); } /// Pads a packed batch of variable length sequences. /// /// It is an inverse operation to `pack_padded_sequence`. /// /// The returned Tensor's data will be of size ``T x B x *``, where `T` is the /// length of the longest sequence and `B` is the batch size. If ``batch_first`` /// is true, the data will be transposed into ``B x T x *`` format. /// /// Batch elements will be ordered decreasingly by their length. /// /// Arguments: /// sequence (PackedSequence): batch to pad /// batch_first (bool, optional): if ``true``, the output will be in ``B x T /// x *`` /// format. /// padding_value (double, optional): values for padded elements. /// total_length (int64_t, optional): if specified, the output will be /// padded to /// have length `total_length`. This method will throw error /// if `total_length` is less than the max sequence length in /// `sequence`. /// /// Returns: /// Tuple of Tensor containing the padded sequence, and a Tensor /// containing the list of lengths of each sequence in the batch. inline std::tuple<Tensor, Tensor> pad_packed_sequence( const PackedSequence& sequence, bool batch_first = false, double padding_value = 0.0, std::optional<int64_t> total_length = std::nullopt) { int64_t max_seq_length = sequence.batch_sizes().size(0); if (total_length.has_value()) { int64_t total_length_val = total_length.value(); TORCH_CHECK( total_length_val >= max_seq_length, "Expected total_length to be at least the length " "of the longest sequence in input, but got " "total_length=", total_length_val, " and max sequence length being ", max_seq_length); max_seq_length = total_length_val; } auto [padded_output, lengths] = torch::_pad_packed_sequence( sequence.data(), sequence.batch_sizes(), batch_first, padding_value, max_seq_length); const Tensor& unsorted_indices = sequence.unsorted_indices(); if (unsorted_indices.defined()) { int64_t batch_dim = batch_first ? 0 : 1; return std::make_tuple( padded_output.index_select(batch_dim, unsorted_indices), lengths.index({unsorted_indices.cpu()})); } return std::make_tuple(padded_output, lengths); } /// Pad a list of variable length Tensors with ``padding_value`` /// /// ``pad_sequence`` stacks a list of Tensors along a new dimension, /// and pads them to equal length. For example, if the input is list of /// sequences with size ``L x *`` and if batch_first is false, and ``T x B x *`` /// otherwise. /// /// `B` is batch size. It is equal to the number of elements in ``sequences``. /// `T` is length of the longest sequence. /// `L` is length of the sequence. /// `*` is any number of trailing dimensions, including none. /// /// Note: /// This function returns a Tensor of size ``T x B x *`` or ``B x T x *`` /// where `T` is the length of the longest sequence. This function assumes /// trailing dimensions and type of all the Tensors in sequences are same. /// /// Arguments: /// sequences (torch::ArrayRef<Tensor>): list of variable length sequences. /// batch_first (bool, optional): output will be in ``B x T x *`` if true, /// or in /// ``T x B x *`` otherwise /// padding_value (double, optional): value for padded elements. Default: 0. /// padding_side (str, optional): the side to pad the sequences on. Default: /// "right". /// /// Returns: /// Tensor of size ``T x B x *`` if `batch_first` is ``false``. /// Tensor of size ``B x T x *`` otherwise inline Tensor pad_sequence( ArrayRef<Tensor> sequences, bool batch_first = false, double padding_value = 0, std::string_view padding_side = "right") { return at::pad_sequence(sequences, batch_first, padding_value, padding_side); } /// Packs a list of variable length Tensors /// /// ``sequences`` should be a list of Tensors of size ``L x *``, where `L` is /// the length of a sequence and `*` is any number of trailing dimensions, /// including zero. /// /// For unsorted sequences, use `enforce_sorted = false`. If ``enforce_sorted`` /// is ``true``, the sequences should be sorted in the order of decreasing /// length. /// /// /// Arguments: /// sequences (torch::ArrayRef<Tensor>): A list of sequences of decreasing /// length. enforce_sorted (bool, optional): if ``true``, checks that the /// input /// contains sequences sorted by length in a decreasing order. If /// ``false``, this condition is not checked. Default: ``true``. /// /// Returns: /// a `PackedSequence` object inline PackedSequence pack_sequence( ArrayRef<Tensor> sequences, bool enforce_sorted = true) { Tensor lengths = torch::empty({(int64_t)sequences.size()}, kInt64); for (const auto i : c10::irange(sequences.size())) { lengths[static_cast<int64_t>(i)] = sequences[i].size(0); } return pack_padded_sequence( at::pad_sequence(sequences), std::move(lengths), /*batch_first=*/false, /*enforce_sorted=*/enforce_sorted); } } // namespace torch::nn::utils::rnn ```
========================================================================================================================================== SOURCE CODE FILE: optim.h LINES: 1 SIZE: 0.40 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim.h ENCODING: utf-8 ```h #pragma once #include <torch/optim/adagrad.h> #include <torch/optim/adam.h> #include <torch/optim/adamw.h> #include <torch/optim/lbfgs.h> #include <torch/optim/optimizer.h> #include <torch/optim/rmsprop.h> #include <torch/optim/sgd.h> #include <torch/optim/schedulers/lr_scheduler.h> #include <torch/optim/schedulers/reduce_on_plateau_scheduler.h> #include <torch/optim/schedulers/step_lr.h> ```
================================================================================================================================================== SOURCE CODE FILE: adagrad.h LINES: 1 SIZE: 3.22 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\adagrad.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/pimpl.h> #include <torch/optim/optimizer.h> #include <torch/optim/serialize.h> #include <torch/serialize/archive.h> #include <torch/types.h> #include <utility> #include <vector> namespace torch::serialize { class OutputArchive; class InputArchive; } // namespace torch::serialize namespace torch::optim { struct TORCH_API AdagradOptions : public OptimizerCloneableOptions<AdagradOptions> { AdagradOptions(double lr = 1e-2); TORCH_ARG(double, lr) = 1e-2; TORCH_ARG(double, lr_decay) = 0; TORCH_ARG(double, weight_decay) = 0; TORCH_ARG(double, initial_accumulator_value) = 0; TORCH_ARG(double, eps) = 1e-10; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const AdagradOptions& lhs, const AdagradOptions& rhs); double get_lr() const override; void set_lr(const double lr) override; }; struct TORCH_API AdagradParamState : public OptimizerCloneableParamState<AdagradParamState> { TORCH_ARG(torch::Tensor, sum); TORCH_ARG(int64_t, step) = 0; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const AdagradParamState& lhs, const AdagradParamState& rhs); }; class TORCH_API Adagrad : public Optimizer { public: explicit Adagrad( const std::vector<OptimizerParamGroup>& param_groups, AdagradOptions defaults = {}) : Optimizer(param_groups, std::make_unique<AdagradOptions>(defaults)) { TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); TORCH_CHECK( defaults.lr_decay() >= 0, "Invalid lr_decay value: ", defaults.lr_decay()); TORCH_CHECK( defaults.weight_decay() >= 0, "Invalid weight_decay value: ", defaults.weight_decay()); TORCH_CHECK( defaults.initial_accumulator_value() >= 0, "Invalid initial_accumulator_value value: ", defaults.initial_accumulator_value()); TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); for (const auto& group : param_groups_) { for (const auto& p : group.params()) { auto state = std::make_unique<AdagradParamState>(); state->step(0); state->sum(torch::full_like( p.data(), defaults.initial_accumulator_value(), at::MemoryFormat::Preserve)); state_[p.unsafeGetTensorImpl()] = std::move(state); } } } explicit Adagrad(std::vector<Tensor> params, AdagradOptions defaults = {}) : Adagrad({OptimizerParamGroup(std::move(params))}, std::move(defaults)) { } torch::Tensor step(LossClosure closure = nullptr) override; void save(serialize::OutputArchive& archive) const override; void load(serialize::InputArchive& archive) override; private: template <typename Self, typename Archive> static void serialize(Self& self, Archive& archive) { _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(Adagrad); } }; } // namespace torch::optim ```
=============================================================================================================================================== SOURCE CODE FILE: adam.h LINES: 1 SIZE: 2.90 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\adam.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/module.h> #include <torch/optim/optimizer.h> #include <torch/optim/serialize.h> #include <utility> #include <vector> namespace torch::serialize { class OutputArchive; class InputArchive; } // namespace torch::serialize namespace torch::optim { struct TORCH_API AdamOptions : public OptimizerCloneableOptions<AdamOptions> { AdamOptions(double lr = 1e-3); TORCH_ARG(double, lr) = 1e-3; typedef std::tuple<double, double> betas_t; TORCH_ARG(betas_t, betas) = std::make_tuple(0.9, 0.999); TORCH_ARG(double, eps) = 1e-8; TORCH_ARG(double, weight_decay) = 0; TORCH_ARG(bool, amsgrad) = false; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const AdamOptions& lhs, const AdamOptions& rhs); double get_lr() const override; void set_lr(const double lr) override; }; struct TORCH_API AdamParamState : public OptimizerCloneableParamState<AdamParamState> { TORCH_ARG(int64_t, step) = 0; TORCH_ARG(torch::Tensor, exp_avg); TORCH_ARG(torch::Tensor, exp_avg_sq); TORCH_ARG(torch::Tensor, max_exp_avg_sq) = {}; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const AdamParamState& lhs, const AdamParamState& rhs); }; class TORCH_API Adam : public Optimizer { public: explicit Adam( const std::vector<OptimizerParamGroup>& param_groups, AdamOptions defaults = {}) : Optimizer(param_groups, std::make_unique<AdamOptions>(defaults)) { TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); auto betas = defaults.betas(); TORCH_CHECK( 0 <= std::get<0>(betas) && std::get<0>(betas) < 1.0, "Invalid beta parameter at index 0: ", std::get<0>(betas)); TORCH_CHECK( 0 <= std::get<1>(betas) && std::get<1>(betas) < 1.0, "Invalid beta parameter at index 1: ", std::get<1>(betas)); TORCH_CHECK( defaults.weight_decay() >= 0, "Invalid weight_decay value: ", defaults.weight_decay()); } explicit Adam(std::vector<Tensor> params, AdamOptions defaults = {}) : Adam({OptimizerParamGroup(std::move(params))}, std::move(defaults)) {} torch::Tensor step(LossClosure closure = nullptr) override; void save(serialize::OutputArchive& archive) const override; void load(serialize::InputArchive& archive) override; private: template <typename Self, typename Archive> static void serialize(Self& self, Archive& archive) { _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(Adam); } }; } // namespace torch::optim ```
================================================================================================================================================ SOURCE CODE FILE: adamw.h LINES: 1 SIZE: 2.92 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\adamw.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/module.h> #include <torch/optim/optimizer.h> #include <torch/optim/serialize.h> #include <utility> #include <vector> namespace torch::serialize { class OutputArchive; class InputArchive; } // namespace torch::serialize namespace torch::optim { struct TORCH_API AdamWOptions : public OptimizerCloneableOptions<AdamWOptions> { AdamWOptions(double lr = 1e-3); TORCH_ARG(double, lr) = 1e-3; typedef std::tuple<double, double> betas_t; TORCH_ARG(betas_t, betas) = std::make_tuple(0.9, 0.999); TORCH_ARG(double, eps) = 1e-8; TORCH_ARG(double, weight_decay) = 1e-2; TORCH_ARG(bool, amsgrad) = false; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const AdamWOptions& lhs, const AdamWOptions& rhs); double get_lr() const override; void set_lr(const double lr) override; }; struct TORCH_API AdamWParamState : public OptimizerCloneableParamState<AdamWParamState> { TORCH_ARG(int64_t, step) = 0; TORCH_ARG(torch::Tensor, exp_avg); TORCH_ARG(torch::Tensor, exp_avg_sq); TORCH_ARG(torch::Tensor, max_exp_avg_sq) = {}; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const AdamWParamState& lhs, const AdamWParamState& rhs); }; class TORCH_API AdamW : public Optimizer { public: explicit AdamW( const std::vector<OptimizerParamGroup>& param_groups, AdamWOptions defaults = {}) : Optimizer(param_groups, std::make_unique<AdamWOptions>(defaults)) { TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); auto betas = defaults.betas(); TORCH_CHECK( 0 <= std::get<0>(betas) && std::get<0>(betas) < 1.0, "Invalid beta parameter at index 0: ", std::get<0>(betas)); TORCH_CHECK( 0 <= std::get<1>(betas) && std::get<1>(betas) < 1.0, "Invalid beta parameter at index 1: ", std::get<1>(betas)); TORCH_CHECK( defaults.weight_decay() >= 0, "Invalid weight_decay value: ", defaults.weight_decay()); } explicit AdamW(std::vector<Tensor> params, AdamWOptions defaults = {}) : AdamW({OptimizerParamGroup(std::move(params))}, std::move(defaults)) {} torch::Tensor step(LossClosure closure = nullptr) override; void save(serialize::OutputArchive& archive) const override; void load(serialize::InputArchive& archive) override; private: template <typename Self, typename Archive> static void serialize(Self& self, Archive& archive) { _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(AdamW); } }; } // namespace torch::optim ```
================================================================================================================================================ SOURCE CODE FILE: lbfgs.h LINES: 1 SIZE: 3.46 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\lbfgs.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/module.h> #include <torch/optim/optimizer.h> #include <torch/optim/serialize.h> #include <torch/serialize/archive.h> #include <deque> #include <functional> #include <memory> #include <utility> #include <vector> namespace torch::optim { struct TORCH_API LBFGSOptions : public OptimizerCloneableOptions<LBFGSOptions> { LBFGSOptions(double lr = 1); TORCH_ARG(double, lr) = 1; TORCH_ARG(int64_t, max_iter) = 20; TORCH_ARG(std::optional<int64_t>, max_eval) = std::nullopt; TORCH_ARG(double, tolerance_grad) = 1e-7; TORCH_ARG(double, tolerance_change) = 1e-9; TORCH_ARG(int64_t, history_size) = 100; TORCH_ARG(std::optional<std::string>, line_search_fn) = std::nullopt; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const LBFGSOptions& lhs, const LBFGSOptions& rhs); double get_lr() const override; void set_lr(const double lr) override; }; struct TORCH_API LBFGSParamState : public OptimizerCloneableParamState<LBFGSParamState> { TORCH_ARG(int64_t, func_evals) = 0; TORCH_ARG(int64_t, n_iter) = 0; TORCH_ARG(double, t) = 0; TORCH_ARG(double, prev_loss) = 0; TORCH_ARG(Tensor, d) = {}; TORCH_ARG(Tensor, H_diag) = {}; TORCH_ARG(Tensor, prev_flat_grad) = {}; TORCH_ARG(std::deque<Tensor>, old_dirs); TORCH_ARG(std::deque<Tensor>, old_stps); TORCH_ARG(std::deque<Tensor>, ro); TORCH_ARG(std::optional<std::vector<Tensor>>, al) = std::nullopt; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const LBFGSParamState& lhs, const LBFGSParamState& rhs); }; class TORCH_API LBFGS : public Optimizer { public: explicit LBFGS( const std::vector<OptimizerParamGroup>& param_groups, LBFGSOptions defaults = {}) : Optimizer(param_groups, std::make_unique<LBFGSOptions>(defaults)) { TORCH_CHECK( param_groups_.size() == 1, "LBFGS doesn't support per-parameter options (parameter groups)"); if (defaults.max_eval() == std::nullopt) { auto max_eval_val = (defaults.max_iter() * 5) / 4; static_cast<LBFGSOptions&>(param_groups_[0].options()) .max_eval(max_eval_val); static_cast<LBFGSOptions&>(*defaults_).max_eval(max_eval_val); } _numel_cache = std::nullopt; } explicit LBFGS(std::vector<Tensor> params, LBFGSOptions defaults = {}) : LBFGS({OptimizerParamGroup(std::move(params))}, std::move(defaults)) {} Tensor step(LossClosure closure) override; void save(serialize::OutputArchive& archive) const override; void load(serialize::InputArchive& archive) override; private: std::optional<int64_t> _numel_cache; int64_t _numel(); Tensor _gather_flat_grad(); void _add_grad(const double step_size, const Tensor& update); std::tuple<double, Tensor> _directional_evaluate( const LossClosure& closure, const std::vector<Tensor>& x, double t, const Tensor& d); void _set_param(const std::vector<Tensor>& params_data); std::vector<Tensor> _clone_param(); template <typename Self, typename Archive> static void serialize(Self& self, Archive& archive) { _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(LBFGS); } }; } // namespace torch::optim ```
==================================================================================================================================================== SOURCE CODE FILE: optimizer.h LINES: 1 SIZE: 8.15 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\optimizer.h ENCODING: utf-8 ```h #pragma once #include <ATen/Tensor.h> #include <c10/util/Exception.h> #include <c10/util/flat_hash_map.h> #include <torch/arg.h> #include <torch/csrc/Export.h> #include <algorithm> #include <functional> #include <iterator> #include <memory> #include <string> #include <vector> // Forward declarations confuse Doxygen #ifndef DOXYGEN_SHOULD_SKIP_THIS namespace at { class Tensor; } // namespace at namespace torch { using at::Tensor; namespace serialize { class OutputArchive; class InputArchive; } // namespace serialize } // namespace torch #endif // DOXYGEN_SHOULD_SKIP_THIS namespace torch::optim { class TORCH_API OptimizerParamState { public: OptimizerParamState() = default; OptimizerParamState(const OptimizerParamState&) = default; OptimizerParamState& operator=(const OptimizerParamState&) = default; OptimizerParamState(OptimizerParamState&&) noexcept = default; OptimizerParamState& operator=(OptimizerParamState&&) noexcept = default; virtual std::unique_ptr<OptimizerParamState> clone() const; virtual void serialize(torch::serialize::InputArchive& archive); virtual void serialize(torch::serialize::OutputArchive& archive) const; virtual ~OptimizerParamState() = default; }; template <typename Derived> class OptimizerCloneableParamState : public OptimizerParamState { std::unique_ptr<OptimizerParamState> clone() const override { return std::make_unique<Derived>(static_cast<const Derived&>(*this)); } }; class TORCH_API OptimizerOptions { public: OptimizerOptions() = default; OptimizerOptions(const OptimizerOptions&) = default; OptimizerOptions& operator=(const OptimizerOptions&) = default; OptimizerOptions(OptimizerOptions&&) noexcept = default; OptimizerOptions& operator=(OptimizerOptions&&) noexcept = default; virtual std::unique_ptr<OptimizerOptions> clone() const; virtual void serialize(torch::serialize::InputArchive& archive); virtual void serialize(torch::serialize::OutputArchive& archive) const; virtual ~OptimizerOptions() = default; virtual double get_lr() const; virtual void set_lr(const double lr); }; template <typename Derived> class OptimizerCloneableOptions : public OptimizerOptions { private: std::unique_ptr<OptimizerOptions> clone() const override { return std::make_unique<Derived>(static_cast<const Derived&>(*this)); } }; /// Stores parameters in the param_group and stores a pointer to the /// OptimizerOptions class TORCH_API OptimizerParamGroup { public: // NOTE: In order to store `OptimizerParamGroup` in a `std::vector`, it has to // be copy-constructible. OptimizerParamGroup(const OptimizerParamGroup& param_group) : params_(param_group.params()), options_( param_group.has_options() ? param_group.options().clone() : nullptr) {} OptimizerParamGroup(OptimizerParamGroup&& param_group) = default; OptimizerParamGroup(std::vector<Tensor> params) : params_(std::move(params)) {} OptimizerParamGroup( std::vector<Tensor> params, std::unique_ptr<OptimizerOptions> options) : params_(std::move(params)), options_(std::move(options)) {} OptimizerParamGroup& operator=(const OptimizerParamGroup& param_group) = delete; OptimizerParamGroup& operator=(OptimizerParamGroup&& param_group) noexcept = default; ~OptimizerParamGroup() = default; bool has_options() const; OptimizerOptions& options(); const OptimizerOptions& options() const; void set_options(std::unique_ptr<OptimizerOptions> options); std::vector<Tensor>& params(); const std::vector<Tensor>& params() const; protected: std::vector<Tensor> params_; std::unique_ptr<OptimizerOptions> options_; }; class TORCH_API Optimizer { public: // The copy constructor is deleted, because the user should use the // `state_dict` / `load_state_dict` API to copy an optimizer instead. Optimizer(const Optimizer& optimizer) = delete; Optimizer(Optimizer&& optimizer) = default; Optimizer& operator=(const Optimizer& optimizer) = delete; Optimizer& operator=(Optimizer&& optimizer) = default; explicit Optimizer( const std::vector<OptimizerParamGroup>& param_groups, std::unique_ptr<OptimizerOptions> defaults) : defaults_(std::move(defaults)) { for (const auto& param_group : param_groups) { add_param_group(param_group); } } /// Constructs the `Optimizer` from a vector of parameters. explicit Optimizer( std::vector<Tensor> parameters, std::unique_ptr<OptimizerOptions> defaults) : Optimizer( {OptimizerParamGroup(std::move(parameters))}, std::move(defaults)) {} /// Adds the given param_group to the optimizer's param_group list. void add_param_group(const OptimizerParamGroup& param_group); virtual ~Optimizer() = default; using LossClosure = std::function<Tensor()>; /// A loss function closure, which is expected to return the loss value. virtual Tensor step(LossClosure closure = nullptr) = 0; /// Adds the given vector of parameters to the optimizer's parameter list. void add_parameters(const std::vector<Tensor>& parameters); /// Zeros out the gradients of all parameters. void zero_grad(bool set_to_none = true); /// Provides a const reference to the parameters in the first param_group this /// optimizer holds. const std::vector<Tensor>& parameters() const noexcept; /// Provides a reference to the parameters in the first param_group this /// optimizer holds. std::vector<Tensor>& parameters() noexcept; /// Returns the number of parameters referenced by the optimizer. size_t size() const noexcept; OptimizerOptions& defaults() noexcept; const OptimizerOptions& defaults() const noexcept; /// Provides a reference to the param_groups this optimizer holds. std::vector<OptimizerParamGroup>& param_groups() noexcept; /// Provides a const reference to the param_groups this optimizer holds. const std::vector<OptimizerParamGroup>& param_groups() const noexcept; /// Provides a reference to the state this optimizer holds ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>>& state() noexcept; /// Provides a const reference to the state this optimizer holds const ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>>& state() const noexcept; /// Serializes the optimizer state into the given `archive`. virtual void save(serialize::OutputArchive& archive) const; /// Deserializes the optimizer state from the given `archive`. virtual void load(serialize::InputArchive& archive); protected: std::vector<OptimizerParamGroup> param_groups_; ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>> state_; std::unique_ptr<OptimizerOptions> defaults_; }; /* How do we decide whether to serialize undefined tensors or std::nullopt values into the output archive? Answer: we strictly follow the behavior of Python API. To be more specific: For optimizer options: a) For undefined tensor: currently no tensor is used as an options argument in Python API, so we don't need to worry about it now. b) For std::nullopt value: we serialize std::nullopt values into the output archive, to follow the exact same behavior as Python API. For optimizer param state: a) For undefined tensor: in param state, undefined tensor in C++ impl is equivalent to missing key in Python impl. Since we don't serialize missing keys in Python API, we skip undefined tensors when serializing the param state. b) For std::nullopt value: in param state, std::nullopt value in C++ impl is equivalent to missing key in Python impl. Since we don't serialize missing keys in Python API, we skip std::nullopt values when serializing the param state. */ /// Serializes an `Optimizer` into an `OutputArchive`. TORCH_API serialize::OutputArchive& operator<<( serialize::OutputArchive& archive, const Optimizer& optimizer); /// Deserializes a `Tensor` from an `InputArchive`. TORCH_API serialize::InputArchive& operator>>( serialize::InputArchive& archive, Optimizer& optimizer); } // namespace torch::optim ```
================================================================================================================================================== SOURCE CODE FILE: rmsprop.h LINES: 1 SIZE: 2.92 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\rmsprop.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/module.h> #include <torch/optim/optimizer.h> #include <torch/optim/serialize.h> #include <torch/serialize/archive.h> #include <torch/types.h> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> namespace torch::serialize { class OutputArchive; class InputArchive; } // namespace torch::serialize namespace torch::optim { struct TORCH_API RMSpropOptions : public OptimizerCloneableOptions<RMSpropOptions> { RMSpropOptions(double lr = 1e-2); TORCH_ARG(double, lr) = 1e-2; TORCH_ARG(double, alpha) = 0.99; TORCH_ARG(double, eps) = 1e-8; TORCH_ARG(double, weight_decay) = 0; TORCH_ARG(double, momentum) = 0; TORCH_ARG(bool, centered) = false; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const RMSpropOptions& lhs, const RMSpropOptions& rhs); double get_lr() const override; void set_lr(const double lr) override; }; struct TORCH_API RMSpropParamState : public OptimizerCloneableParamState<RMSpropParamState> { TORCH_ARG(int64_t, step) = 0; TORCH_ARG(torch::Tensor, square_avg); TORCH_ARG(torch::Tensor, momentum_buffer) = {}; TORCH_ARG(torch::Tensor, grad_avg) = {}; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const RMSpropParamState& lhs, const RMSpropParamState& rhs); }; class TORCH_API RMSprop : public Optimizer { public: explicit RMSprop( const std::vector<OptimizerParamGroup>& param_groups, RMSpropOptions defaults = {}) : Optimizer(param_groups, std::make_unique<RMSpropOptions>(defaults)) { TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); TORCH_CHECK( defaults.momentum() >= 0, "Invalid momentum value: ", defaults.momentum()); TORCH_CHECK( defaults.weight_decay() >= 0, "Invalid weight_decay value: ", defaults.weight_decay()); TORCH_CHECK( defaults.alpha() >= 0, "Invalid alpha value: ", defaults.alpha()); } explicit RMSprop(std::vector<Tensor> params, RMSpropOptions defaults = {}) : RMSprop({OptimizerParamGroup(std::move(params))}, std::move(defaults)) { } torch::Tensor step(LossClosure closure = nullptr) override; void save(serialize::OutputArchive& archive) const override; void load(serialize::InputArchive& archive) override; private: template <typename Self, typename Archive> static void serialize(Self& self, Archive& archive) { _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(RMSprop); } }; } // namespace torch::optim ```
================================================================================================================================================================== SOURCE CODE FILE: lr_scheduler.h LINES: 1 SIZE: 1.13 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\schedulers\lr_scheduler.h ENCODING: utf-8 ```h #pragma once #include <torch/optim/optimizer.h> #include <torch/csrc/Export.h> namespace torch::optim { class TORCH_API LRScheduler { public: // This class needs to take a reference of an optimizer from outside such that // it can modify its learning rates; due to this the lifetime of said // optimizer must be maintained LRScheduler(torch::optim::Optimizer& optimizer); virtual ~LRScheduler() = default; void step(); protected: // A vector of learning rates is calculated and returned from the specific // subclass. A vector is returned with each element being a separate learning // rate for each param group - although the normal use case would be to return // a vector of identical elements. virtual std::vector<double> get_lrs() = 0; // Get current learning rates from the optimizer std::vector<double> get_current_lrs() const; unsigned step_count_{}; private: void set_optimizer_lrs(const std::vector<double>& learning_rates); // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) torch::optim::Optimizer& optimizer_; }; } // namespace torch::optim ```
================================================================================================================================================================================= SOURCE CODE FILE: reduce_on_plateau_scheduler.h LINES: 1 SIZE: 1.41 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\schedulers\reduce_on_plateau_scheduler.h ENCODING: utf-8 ```h #pragma once #include <torch/optim/optimizer.h> #include <torch/optim/schedulers/lr_scheduler.h> #include <torch/csrc/Export.h> #include <cmath> namespace torch::optim { class TORCH_API ReduceLROnPlateauScheduler { public: enum SchedulerMode { min, max }; enum ThresholdMode { rel, abs }; ReduceLROnPlateauScheduler( Optimizer& optimizer, SchedulerMode mode = min, float factor = 0.1, int patience = 10, double threshold = 1e-4, ThresholdMode threshold_mode = rel, int cooldown = 0, const std::vector<float>& min_lr = std::vector<float>(), double eps = 1e-8, bool verbose = false); virtual ~ReduceLROnPlateauScheduler() = default; void step(float metric); private: void reset(); void reduce_lr(int epoch); bool in_cooldown() const; bool is_better(float a); void init_is_better( SchedulerMode mode, double threshold, ThresholdMode threshold_mode); // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) Optimizer& optimizer; SchedulerMode mode{}; float mode_worse{}; float factor; int patience; double threshold{}; ThresholdMode threshold_mode{}; int cooldown{}; int cooldown_counter{}; std::vector<float> min_lrs; double eps; float best{}; bool verbose; int last_epoch{}; int num_bad_epochs{}; }; } // namespace torch::optim ```
============================================================================================================================================================= SOURCE CODE FILE: step_lr.h LINES: 1 SIZE: 0.41 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\schedulers\step_lr.h ENCODING: utf-8 ```h #pragma once #include <torch/optim/schedulers/lr_scheduler.h> namespace torch::optim { class TORCH_API StepLR : public LRScheduler { public: StepLR( torch::optim::Optimizer& optimizer, const unsigned step_size, const double gamma = 0.1); private: std::vector<double> get_lrs() override; const unsigned step_size_; const double gamma_; }; } // namespace torch::optim ```
==================================================================================================================================================== SOURCE CODE FILE: serialize.h LINES: 1 SIZE: 12.68 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\serialize.h ENCODING: utf-8 ```h #pragma once #include <c10/util/irange.h> #include <torch/optim/optimizer.h> #include <torch/serialize/archive.h> #include <torch/types.h> #include <cstddef> #include <cstdint> #include <deque> #include <string> #include <vector> namespace torch::optim { namespace detail { // Utility function to save state template <typename DerivedOptimizerParamState> void serialize( serialize::OutputArchive& archive, const ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>>& state) { for (const auto& item : state) { serialize::OutputArchive param_state_archive(archive.compilation_unit()); std::string tensorimpl_key = std::to_string(reinterpret_cast<size_t>(item.first)); const DerivedOptimizerParamState& curr_state = static_cast<const DerivedOptimizerParamState&>(*(item.second)); curr_state.serialize(param_state_archive); archive.write(tensorimpl_key, param_state_archive); } } // Utility function to load state template <typename DerivedOptimizerParamState> void serialize( serialize::InputArchive& archive, ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>>& state) { std::vector<std::string> tensorimpl_keys = archive.keys(); for (const std::string& tensorimpl_key : tensorimpl_keys) { serialize::InputArchive param_state_archive; archive.read(tensorimpl_key, param_state_archive); DerivedOptimizerParamState param_state; param_state.serialize(param_state_archive); // NOLINTNEXTLINE(performance-no-int-to-ptr) state[reinterpret_cast<void*>(std::stoull(tensorimpl_key))] = std::make_unique<DerivedOptimizerParamState>(param_state); } } // Utility function to save param_groups template <typename DerivedOptimizerParamOptions> void serialize( serialize::OutputArchive& archive, const std::vector<OptimizerParamGroup>& param_groups) { archive.write( "param_groups/size", torch::tensor(static_cast<int64_t>(param_groups.size()))); for (const auto i : c10::irange(param_groups.size())) { serialize::OutputArchive param_group_archive(archive.compilation_unit()); std::vector<Tensor> params = param_groups[i].params(); param_group_archive.write( "params/size", torch::tensor(static_cast<int64_t>(params.size()))); for (const auto index : c10::irange(params.size())) { param_group_archive.write( "params/" + std::to_string(index), IValue(std::to_string( reinterpret_cast<size_t>(params[index].unsafeGetTensorImpl())))); } const DerivedOptimizerParamOptions& param_group_options = static_cast<const DerivedOptimizerParamOptions&>( param_groups[i].options()); serialize::OutputArchive param_group_options_archive( param_group_archive.compilation_unit()); param_group_options.serialize(param_group_options_archive); param_group_archive.write("options", param_group_options_archive); archive.write("param_groups/" + std::to_string(i), param_group_archive); } } // Utility function to load param_groups // We take as input vector of pair of string and unique_ptr to optimizer options // so that we can retain the state for each param by using the old tensor impl // keys (saved during serialization) and map the new tensor impl keys to the // correct state for each param template <typename DerivedOptimizerParamOptions> void serialize( serialize::InputArchive& archive, std::vector< std::pair<std::vector<std::string>, std::unique_ptr<OptimizerOptions>>>& param_groups) { torch::Tensor param_groups_size_tensor; archive.read("param_groups/size", param_groups_size_tensor); const int64_t param_groups_size = param_groups_size_tensor.item<int64_t>(); for (const auto i : c10::irange(param_groups_size)) { serialize::InputArchive param_group_archive; archive.read("param_groups/" + std::to_string(i), param_group_archive); torch::Tensor size_tensor; param_group_archive.read("params/size", size_tensor); const int64_t size = size_tensor.item<int64_t>(); std::vector<std::string> params; for (const auto index : c10::irange(size)) { IValue ivalue; param_group_archive.read("params/" + std::to_string(index), ivalue); std::string element = ivalue.toStringRef(); params.emplace_back(element); } serialize::InputArchive param_group_options_archive; param_group_archive.read("options", param_group_options_archive); DerivedOptimizerParamOptions param_group_options(0); param_group_options.serialize(param_group_options_archive); param_groups.emplace_back(std::make_pair( params, std::make_unique<DerivedOptimizerParamOptions>(param_group_options))); } } } // namespace detail // Note: These functions are all called `serialize()` so they can be called // inside a template where the archive type is a template type and can thus be // passed such that the appropriate overload is selected. /// Utility function to save a value of `int64_t` type. void serialize( serialize::OutputArchive& archive, const std::string& key, const int64_t& value); /// Utility function to load a value of `int64_t` type. void serialize( serialize::InputArchive& archive, const std::string& key, int64_t& value); /// Utility function to save a vector of step buffers. void serialize( serialize::OutputArchive& archive, const std::string& key, const std::vector<int64_t>& steps); /// Utility function to load a vector of step buffers. void serialize( serialize::InputArchive& archive, const std::string& key, std::vector<int64_t>& steps); // Utility function to save state and param_groups template < typename DerivedOptimizerParamState, typename DerivedOptimizerParamOptions> void serialize(serialize::OutputArchive& archive, const Optimizer& optimizer) { archive.write("pytorch_version", IValue("1.5.0")); serialize::OutputArchive state_archive(archive.compilation_unit()); detail::serialize<DerivedOptimizerParamState>( state_archive, optimizer.state()); archive.write("state", state_archive); serialize::OutputArchive param_groups_archive(archive.compilation_unit()); detail::serialize<DerivedOptimizerParamOptions>( param_groups_archive, optimizer.param_groups()); archive.write("param_groups", param_groups_archive); } // Utility function to load state and param_groups and update state template < typename DerivedOptimizerParamState, typename DerivedOptimizerParamOptions> void serialize(serialize::InputArchive& archive, Optimizer& optimizer) { IValue pytorch_version; archive.read("pytorch_version", pytorch_version); TORCH_INTERNAL_ASSERT(pytorch_version.toStringRef() == "1.5.0"); serialize::InputArchive state_archive; archive.read("state", state_archive); ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>> saved_state; detail::serialize<DerivedOptimizerParamState>(state_archive, saved_state); serialize::InputArchive param_groups_archive; archive.read("param_groups", param_groups_archive); std::vector< std::pair<std::vector<std::string>, std::unique_ptr<OptimizerOptions>>> saved_param_groups; detail::serialize<DerivedOptimizerParamOptions>( param_groups_archive, saved_param_groups); // update state and optimizer options TORCH_CHECK( saved_param_groups.size() == optimizer.param_groups().size(), "loaded state dict has a different number of parameter groups"); for (const auto i : c10::irange(saved_param_groups.size())) { std::vector<std::string> param_group_old_keys = saved_param_groups[i].first; std::vector<Tensor> params = optimizer.param_groups()[i].params(); TORCH_CHECK( param_group_old_keys.size() == params.size(), "loaded state dict contains a parameter group that has a different size than the optimizer's parameter group"); for (const auto idx : c10::irange(params.size())) { auto param_group_old_key = // NOLINTNEXTLINE(performance-no-int-to-ptr) reinterpret_cast<void*>(std::stoull(param_group_old_keys[idx])); if (saved_state.find(param_group_old_key) != saved_state.end()) { optimizer.state()[params[idx].unsafeGetTensorImpl()] = std::move(saved_state[param_group_old_key]); } } auto& saved_options = reinterpret_cast<DerivedOptimizerParamOptions&>( *saved_param_groups[i].second); auto& current_options = reinterpret_cast<DerivedOptimizerParamOptions&>( optimizer.param_groups()[i].options()); current_options = saved_options; } } /// Utility function to save a vector of buffers. template <typename BufferContainer> void serialize( serialize::OutputArchive& archive, const std::string& key, const BufferContainer& buffers) { archive.write( key + "/size", torch::tensor(static_cast<int64_t>(buffers.size()))); for (const auto index : c10::irange(buffers.size())) { archive.write( key + "/" + std::to_string(index), buffers[index], /*is_buffer=*/true); } } /// Utility function to load a vector of buffers. template <typename BufferContainer> void serialize( serialize::InputArchive& archive, const std::string& key, BufferContainer& buffers) { buffers.clear(); torch::Tensor size_tensor; archive.read(key + "/size", size_tensor); const size_t size = size_tensor.item<int64_t>(); for (const auto index : c10::irange(size)) { buffers.emplace_back(); archive.read( key + "/" + std::to_string(index), buffers.back(), /*is_buffer=*/true); } } template <typename T> c10::List<T> deque_to_list(const std::deque<T>& dq) { c10::List<T> list; list.reserve(dq.size()); for (const auto& e : dq) { list.emplace_back(e); } return list; } template <typename T> std::deque<T> list_to_deque(const c10::List<T>& list) { std::deque<T> dq; for (const auto& e : list) { dq.emplace_back(e); } return dq; } #define _TORCH_OPTIM_SERIALIZE(name) \ torch::optim::serialize(archive, #name, self.name) #define _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(OptimizerName) \ torch::optim::serialize<OptimizerName##ParamState, OptimizerName##Options>( \ archive, self) #define _TORCH_OPTIM_SERIALIZE_TORCH_ARG(name) \ { \ auto ivalue = torch::IValue(name()); \ /* do not serialize if name is an undefined tensor*/ \ if (!(ivalue.isTensor() && \ ivalue.unsafeToTensorImpl() == \ at::UndefinedTensorImpl::singleton())) { \ archive.write(#name, ivalue); \ } \ } #define _TORCH_OPTIM_SERIALIZE_TORCH_ARG_DEQUE(name) \ { \ c10::IValue ivalue = torch::IValue(deque_to_list(name())); \ archive.write(#name, ivalue); \ } #define _TORCH_OPTIM_DESERIALIZE_TORCH_ARG(T, name) \ { \ c10::IValue ivalue; \ bool exists = archive.try_read(#name, ivalue); \ if (exists) { \ name(ivalue.to<T>()); \ } else { \ constexpr bool is_tensor_type = std::is_base_of_v<torch::Tensor, T>; \ TORCH_INTERNAL_ASSERT(is_tensor_type); \ } \ } #define _TORCH_OPTIM_DESERIALIZE_TORCH_ARG_OPTIONAL(T, name) \ { \ c10::IValue ivalue; \ bool exists = archive.try_read(#name, ivalue); \ if (exists) { \ name(ivalue.toOptional<T>()); \ } \ } #define _TORCH_OPTIM_DESERIALIZE_TORCH_ARG_DEQUE(T, name) \ { \ c10::IValue ivalue; \ archive.read(#name, ivalue); \ auto list = ivalue.to<c10::List<T::value_type>>(); \ name(list_to_deque(list)); \ } } // namespace torch::optim ```
============================================================================================================================================== SOURCE CODE FILE: sgd.h LINES: 1 SIZE: 2.64 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\optim\sgd.h ENCODING: utf-8 ```h #pragma once #include <torch/nn/module.h> #include <torch/optim/optimizer.h> #include <torch/optim/serialize.h> #include <torch/serialize/archive.h> #include <torch/types.h> #include <cstddef> #include <utility> #include <vector> namespace torch::serialize { class OutputArchive; class InputArchive; } // namespace torch::serialize namespace torch::optim { struct TORCH_API SGDOptions : public OptimizerCloneableOptions<SGDOptions> { SGDOptions(double lr); TORCH_ARG(double, lr); TORCH_ARG(double, momentum) = 0; TORCH_ARG(double, dampening) = 0; TORCH_ARG(double, weight_decay) = 0; TORCH_ARG(bool, nesterov) = false; public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const SGDOptions& lhs, const SGDOptions& rhs); double get_lr() const override; void set_lr(const double lr) override; }; struct TORCH_API SGDParamState : public OptimizerCloneableParamState<SGDParamState> { TORCH_ARG(torch::Tensor, momentum_buffer); public: void serialize(torch::serialize::InputArchive& archive) override; void serialize(torch::serialize::OutputArchive& archive) const override; TORCH_API friend bool operator==( const SGDParamState& lhs, const SGDParamState& rhs); }; class TORCH_API SGD : public Optimizer { public: explicit SGD( const std::vector<OptimizerParamGroup>& param_groups, SGDOptions defaults) : Optimizer(param_groups, std::make_unique<SGDOptions>(defaults)) { TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); TORCH_CHECK( defaults.momentum() >= 0, "Invalid momentum value: ", defaults.momentum()); TORCH_CHECK( defaults.weight_decay() >= 0, "Invalid weight_decay value: ", defaults.weight_decay()); TORCH_CHECK( !defaults.nesterov() || (defaults.momentum() > 0 && defaults.dampening() == 0), "Nesterov momentum requires a momentum and zero dampening"); } explicit SGD(std::vector<Tensor> params, SGDOptions defaults) : SGD({OptimizerParamGroup(std::move(params))}, std::move(defaults)) {} torch::Tensor step(LossClosure closure = nullptr) override; void save(serialize::OutputArchive& archive) const override; void load(serialize::InputArchive& archive) override; private: template <typename Self, typename Archive> static void serialize(Self& self, Archive& archive) { _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(SGD); } }; } // namespace torch::optim ```
================================================================================================================================================= SOURCE CODE FILE: ordered_dict.h LINES: 1 SIZE: 16.39 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\ordered_dict.h ENCODING: utf-8 ```h #pragma once #include <cstdint> #include <initializer_list> #include <string> #include <unordered_map> #include <utility> #include <vector> namespace torch { /// An ordered dictionary implementation, akin to Python's `OrderedDict`. template <typename Key, typename Value> class OrderedDict { public: /// A (key, value) pair. class Item; // The lifetime of an iterator is bound to the lifetime of the `OrderedDict`. // Further, any `insert()` operation may invalidate all iterators // pointing into the vector. using Iterator = typename std::vector<Item>::iterator; using ConstIterator = typename std::vector<Item>::const_iterator; /// Constructs the `OrderedDict` with a short description of the kinds of keys /// stored in the `OrderedDict`. This description is used in error messages /// thrown by the `OrderedDict`. explicit OrderedDict(std::string key_description = "Key"); /// Copy constructs this `OrderedDict` from `other`. OrderedDict(const OrderedDict& other); /// Assigns items from `other` to this `OrderedDict`. OrderedDict& operator=(const OrderedDict& other); // NB: Move works by default, because you can move-construct vectors of const // values. I tried to make this noexcept (conditional on the move constructors // of index_ and items_ being noexcept) but the obvious spelling didn't // compile on Windows. OrderedDict(OrderedDict&& other) noexcept = default; OrderedDict& operator=(OrderedDict&& other) noexcept = default; ~OrderedDict() = default; /// Constructs a new `OrderedDict` and pre-populates it with the given /// `Item`s. /*implicit */ OrderedDict(std::initializer_list<Item> initializer_list); /// Returns the key description string the `OrderedDict` was constructed with. const std::string& key_description() const noexcept; // Element Access /// Returns the very first item in the `OrderedDict` and throws an exception /// if it is empty. Item& front(); /// Returns the very first item in the `OrderedDict` and throws an exception /// if it is empty. const Item& front() const; /// Returns the very last item in the `OrderedDict` and throws an exception /// if it is empty. Item& back(); /// Returns the very last item in the `OrderedDict` and throws an exception /// if it is empty. const Item& back() const; /// Returns the item at the `index`-th position in the `OrderedDict`. Throws /// an exception if the index is out of bounds. Item& operator[](size_t index); /// Returns the item at the `index`-th position in the `OrderedDict`. Throws /// an exception if the index is out of bounds. const Item& operator[](size_t index) const; /// Returns the value associated with the given `key`. Throws an exception if /// no such key is stored in the `OrderedDict`. Use `find()` for a /// non-throwing way of accessing a value if it is present. Value& operator[](const Key& key); /// Returns the value associated with the given `key`. Throws an exception if /// no such key is stored in the `OrderedDict`. Use `find()` for a /// non-throwing way of accessing a value if it is present. const Value& operator[](const Key& key) const; // Lookup /// Returns a pointer to the value associated with the given key, or a /// `nullptr` if no such key is stored in the `OrderedDict`. Value* find(const Key& key) noexcept; /// Returns a pointer to the value associated with the given key, or a /// `nullptr` if no such key is stored in the `OrderedDict`. const Value* find(const Key& key) const noexcept; /// Returns true if the key is present in the `OrderedDict`. bool contains(const Key& key) const noexcept; // Iterators /// Returns an iterator to the first item in the `OrderedDict`. Iteration is /// ordered. Iterator begin(); /// Returns an iterator to the first item in the `OrderedDict`. Iteration is /// ordered. ConstIterator begin() const; /// Returns an iterator one past the last item in the `OrderedDict`. Iterator end(); /// Returns an iterator one past the last item in the `OrderedDict`. ConstIterator end() const; // Capacity /// Returns the number of items currently stored in the `OrderedDict`. size_t size() const noexcept; /// Returns true if the `OrderedDict` contains no elements. bool is_empty() const noexcept; /// Resizes internal storage to fit at least `requested_capacity` items /// without requiring reallocation. void reserve(size_t requested_capacity); // Modifiers /// Inserts a new `(key, value)` pair into the `OrderedDict`. Throws an /// exception if the key is already present. If insertion is successful, /// immediately returns a reference to the inserted value. template <typename K, typename V> Value& insert(K&& key, V&& value); /// Inserts a new `(key, value)` pair into the `OrderedDict`. Throws an /// exception if the key is already present. If insertion is successful, /// immediately returns a reference to the inserted value. Value& insert(Key key, Value&& value); /// Inserts all items from `other` into this `OrderedDict`. If any key from /// `other` is already present in this `OrderedDict`, an exception is thrown. void update(OrderedDict&& other); /// Inserts all items from `other` into this `OrderedDict`. If any key from /// `other` is already present in this `OrderedDict`, an exception is thrown. void update(const OrderedDict& other); /// Removes the item that has `key` from this `OrderedDict` if exists and if /// it doesn't an exception is thrown. void erase(const Key& key); /// Removes all items from this `OrderedDict`. void clear(); // Observers /// Returns the items stored in the `OrderedDict`. const std::vector<Item>& items() const noexcept; /// Returns a newly allocated vector and copies all keys from this /// `OrderedDict` into the vector. ::std::vector<Key> keys() const; /// Returns a newly allocated vector and copies all values from this /// `OrderedDict` into the vector. ::std::vector<Value> values() const; /// Returns a newly allocated vector and copies all keys and values from this /// `OrderedDict` into a vector of `std::pair<Key, Value>`. ::std::vector<std::pair<Key, Value>> pairs() const; /// Returns true if both dicts contain the same keys and values, in the same /// order. template <typename K, typename V> friend bool operator==( const OrderedDict<K, V>& a, const OrderedDict<K, V>& b); private: /// A mapping from a key to an index into the `items_` vector. ::std::unordered_map<Key, size_t> index_; /// The items stored in the `OrderedDict`. ::std::vector<Item> items_; /// A description of the keys stored in the `OrderedDict`. ::std::string key_description_{"Key"}; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OrderedDict::Item ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ template <typename Key, typename Value> class OrderedDict<Key, Value>::Item { public: /// Constructs a new item. Item(Key key, Value value) : pair_(std::move(key), std::move(value)) {} /// Returns a reference to the value. Value& operator*() { return value(); } /// Returns a reference to the value. const Value& operator*() const { return value(); } /// Allows access to the value using the arrow operator. Value* operator->() { return &value(); } /// Allows access to the value using the arrow operator. const Value* operator->() const { return &value(); } /// Returns a reference to the key. const Key& key() const noexcept { return pair_.first; } /// Returns a reference to the value. Value& value() noexcept { return pair_.second; } /// Returns a reference to the value. const Value& value() const noexcept { return pair_.second; } /// Returns a `(key, value)` pair. const std::pair<Key, Value>& pair() const noexcept { return pair_; } private: /// This is stored as an std::pair because it will make Python binding a lot, /// lot easier. ::std::pair<Key, Value> pair_; }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OrderedDict ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ template <typename Key, typename Value> OrderedDict<Key, Value>::OrderedDict(std::string key_description) : key_description_(std::move(key_description)) {} template <typename Key, typename Value> OrderedDict<Key, Value>::OrderedDict(const OrderedDict& other) : index_(other.index_), key_description_(other.key_description_) { // Copy we have to do ourselves, because items' keys are const, so we have to // re-insert the items. for (const auto& item : other.items_) { items_.push_back(item); } } template <typename Key, typename Value> OrderedDict<Key, Value>& OrderedDict<Key, Value>::operator=( const OrderedDict& other) { index_ = other.index_; items_.clear(); for (auto& item : other.items_) { items_.push_back(item); } key_description_ = other.key_description_; return *this; } template <typename Key, typename Value> OrderedDict<Key, Value>::OrderedDict( std::initializer_list<Item> initializer_list) : OrderedDict("Key") { items_.reserve(initializer_list.size()); for (auto& item : initializer_list) { // Copy the key here and move it into the index. items_.emplace_back(item.key(), std::move(item.value())); index_.emplace(std::move(item.key()), size() - 1); } } template <typename Key, typename Value> typename OrderedDict<Key, Value>::Iterator OrderedDict<Key, Value>::begin() { return items_.begin(); } template <typename Key, typename Value> typename OrderedDict<Key, Value>::ConstIterator OrderedDict<Key, Value>::begin() const { return items_.begin(); } template <typename Key, typename Value> typename OrderedDict<Key, Value>::Iterator OrderedDict<Key, Value>::end() { return items_.end(); } template <typename Key, typename Value> typename OrderedDict<Key, Value>::ConstIterator OrderedDict<Key, Value>::end() const { return items_.end(); } template <typename Key, typename Value> typename OrderedDict<Key, Value>::Item& OrderedDict<Key, Value>::front() { TORCH_CHECK(!items_.empty(), "Called front() on an empty OrderedDict"); return items_.front(); } template <typename Key, typename Value> const typename OrderedDict<Key, Value>::Item& OrderedDict<Key, Value>::front() const { TORCH_CHECK(!items_.empty(), "Called front() on an empty OrderedDict"); return items_.front(); } template <typename Key, typename Value> typename OrderedDict<Key, Value>::Item& OrderedDict<Key, Value>::back() { TORCH_CHECK(!items_.empty(), "Called back() on an empty OrderedDict"); return items_.back(); } template <typename Key, typename Value> const typename OrderedDict<Key, Value>::Item& OrderedDict<Key, Value>::back() const { TORCH_CHECK(!items_.empty(), "Called back() on an empty OrderedDict"); return items_.back(); } template <typename Key, typename Value> typename OrderedDict<Key, Value>::Item& OrderedDict<Key, Value>::operator[]( size_t index) { TORCH_CHECK(index < items_.size(), "Index ", index, " is out of bounds"); return items_[index]; } template <typename Key, typename Value> const typename OrderedDict<Key, Value>::Item& OrderedDict<Key, Value>:: operator[](size_t index) const { TORCH_CHECK(index < items_.size(), "Index ", index, " is out of bounds"); return items_[index]; } template <typename Key, typename Value> Value& OrderedDict<Key, Value>::operator[](const Key& key) { if (auto* value = find(key)) { return *value; } TORCH_CHECK(false, key_description_, " '", key, "' is not defined"); } template <typename Key, typename Value> const Value& OrderedDict<Key, Value>::operator[](const Key& key) const { if (auto* value = find(key)) { return *value; } TORCH_CHECK(false, key_description_, " '", key, "' is not defined"); } template <typename Key, typename Value> template <typename K, typename V> Value& OrderedDict<Key, Value>::insert(K&& key, V&& value) { TORCH_CHECK( index_.count(key) == 0, key_description_, " '", key, "' already defined"); // Copy `key` here and move it into the index. items_.emplace_back(key, std::forward<V>(value)); index_.emplace(std::forward<K>(key), size() - 1); return items_.back().value(); } template <typename Key, typename Value> Value& OrderedDict<Key, Value>::insert(Key key, Value&& value) { return insert<Key, Value>(std::move(key), std::move(value)); } template <typename Key, typename Value> void OrderedDict<Key, Value>::update(OrderedDict&& other) { reserve(size() + other.size()); for (auto&& item : std::move(other)) { // We want to call `insert()` to prevent duplicate keys. insert(std::move(item.key()), std::move(item.value())); } } template <typename Key, typename Value> void OrderedDict<Key, Value>::update(const OrderedDict& other) { reserve(size() + other.size()); for (auto& item : other) { // We want to call `insert()` to prevent duplicate keys. insert(item.key(), item.value()); } } template <typename Key, typename Value> Value* OrderedDict<Key, Value>::find(const Key& key) noexcept { auto iterator = index_.find(key); if (iterator == index_.end()) { return nullptr; } return &items_[iterator->second].value(); } template <typename Key, typename Value> const Value* OrderedDict<Key, Value>::find(const Key& key) const noexcept { auto iterator = index_.find(key); if (iterator == index_.end()) { return nullptr; } return &items_[iterator->second].value(); } template <typename Key, typename Value> void OrderedDict<Key, Value>::erase(const Key& key) { auto it = index_.find(key); TORCH_CHECK(it != index_.end(), "Key '", key, "' doesn't exist"); auto index = it->second; index_.erase(it); items_.erase(items_.begin() + index); for (auto& pair : index_) if (pair.second > index) --pair.second; } template <typename Key, typename Value> bool OrderedDict<Key, Value>::contains(const Key& key) const noexcept { return find(key) != nullptr; } template <typename Key, typename Value> void OrderedDict<Key, Value>::clear() { index_.clear(); items_.clear(); } template <typename Key, typename Value> size_t OrderedDict<Key, Value>::size() const noexcept { return items_.size(); } template <typename Key, typename Value> bool OrderedDict<Key, Value>::is_empty() const noexcept { return items_.empty(); } template <typename Key, typename Value> const std::string& OrderedDict<Key, Value>::key_description() const noexcept { return key_description_; } template <typename Key, typename Value> const std::vector<typename OrderedDict<Key, Value>::Item>& OrderedDict< Key, Value>::items() const noexcept { return items_; } template <typename Key, typename Value> ::std::vector<Key> OrderedDict<Key, Value>::keys() const { std::vector<Key> keys; keys.reserve(size()); for (const auto& item : items_) { keys.push_back(item.key()); } return keys; } template <typename Key, typename Value> ::std::vector<Value> OrderedDict<Key, Value>::values() const { std::vector<Value> values; values.reserve(size()); for (const auto& item : items_) { values.push_back(item.value()); } return values; } template <typename Key, typename Value> ::std::vector<std::pair<Key, Value>> OrderedDict<Key, Value>::pairs() const { std::vector<std::pair<Key, Value>> values; values.reserve(size()); for (const auto& item : items_) { values.push_back(item.pair()); } return values; } template <typename Key, typename Value> void OrderedDict<Key, Value>::reserve(size_t requested_capacity) { index_.reserve(requested_capacity); items_.reserve(requested_capacity); } template <typename K, typename V> bool operator==( const torch::OrderedDict<K, V>& a, const torch::OrderedDict<K, V>& b) { using Item = typename torch::OrderedDict<K, V>::Item; if (a.index_ != b.index_) return false; if (a.items_.size() != b.items_.size()) return false; // NOTE: There's no point in comparing keys for items_, as we already know // that index is equal. return std::equal( a.items_.begin(), a.items_.end(), b.items_.begin(), [](const Item& a, const Item& b) { return a.value() == b.value(); }); } } // namespace torch ```
=========================================================================================================================================== SOURCE CODE FILE: python.h LINES: 1 SIZE: 9.92 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\python.h ENCODING: utf-8 ```h #pragma once #include <torch/detail/static.h> #include <torch/nn/module.h> #include <torch/ordered_dict.h> #include <torch/types.h> #include <torch/csrc/Device.h> #include <torch/csrc/Dtype.h> #include <torch/csrc/DynamicTypes.h> #include <torch/csrc/Exceptions.h> #include <torch/csrc/autograd/python_variable.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/pybind.h> #include <torch/csrc/utils/python_numbers.h> #include <torch/csrc/utils/python_tuples.h> #include <iterator> #include <string> #include <utility> namespace torch::python { namespace detail { inline Device py_object_to_device(py::object object) { PyObject* obj = object.ptr(); if (THPDevice_Check(obj)) { return reinterpret_cast<THPDevice*>(obj)->device; } throw TypeError("Expected device"); } inline Dtype py_object_to_dtype(py::object object) { PyObject* obj = object.ptr(); if (THPDtype_Check(obj)) { return reinterpret_cast<THPDtype*>(obj)->scalar_type; } throw TypeError("Expected dtype"); } template <typename ModuleType> using PyModuleClass = py::class_<ModuleType, torch::nn::Module, std::shared_ptr<ModuleType>>; /// Dynamically creates a subclass of `torch.nn.cpp.ModuleWrapper` that is also /// a subclass of `torch.nn.Module`, and passes it the user-provided C++ module /// to which it delegates all calls. template <typename ModuleType> void bind_cpp_module_wrapper( const py::module& module, PyModuleClass<ModuleType> cpp_class, const char* name) { // Grab the `torch.nn.cpp.ModuleWrapper` class, which we'll subclass // with a dynamically created class below. py::object cpp_module = py::module::import("torch.nn.cpp").attr("ModuleWrapper"); // Grab the `type` class which we'll use as a metaclass to create a new class // dynamically. py::object type_metaclass = py::reinterpret_borrow<py::object>((PyObject*)&PyType_Type); // The `ModuleWrapper` constructor copies all functions to its own `__dict__` // in its constructor, but we do need to give our dynamic class a constructor. // Inside, we construct an instance of the original C++ module we're binding // (the `torch::nn::Module` subclass), and then forward it to the // `ModuleWrapper` constructor. py::dict attributes; // `type()` always needs a `str`, but pybind11's `str()` method always creates // a `unicode` object. py::object name_str = py::str(name); // Dynamically create the subclass of `ModuleWrapper`, which is a subclass of // `torch.nn.Module`, and will delegate all calls to the C++ module we're // binding. py::object wrapper_class = type_metaclass(name_str, py::make_tuple(cpp_module), attributes); // The constructor of the dynamic class calls `ModuleWrapper.__init__()`, // which replaces its methods with those of the C++ module. wrapper_class.attr("__init__") = py::cpp_function( [cpp_module, cpp_class]( const py::object& self, const py::args& args, const py::kwargs& kwargs) { cpp_module.attr("__init__")(self, cpp_class(*args, **kwargs)); }, py::is_method(wrapper_class)); // Calling `my_module.my_class` now means that `my_class` is a subclass of // `ModuleWrapper`, and whose methods call into the C++ module we're binding. module.attr(name) = wrapper_class; } } // namespace detail /// Adds method bindings for a pybind11 `class_` that binds an `nn::Module` /// subclass. /// /// Say you have a pybind11 class object created with `py::class_<Net>(m, /// "Net")`. This function will add all the necessary `.def()` calls to bind the /// `nn::Module` base class' methods, such as `train()`, `eval()` etc. into /// Python. /// /// Users should prefer to use `bind_module` if possible. template <typename ModuleType, typename... Extra> py::class_<ModuleType, Extra...> add_module_bindings( py::class_<ModuleType, Extra...> module) { // clang-format off return module .def("train", [](ModuleType& module, bool mode) { module.train(mode); }, py::arg("mode") = true) .def("eval", [](ModuleType& module) { module.eval(); }) .def("clone", [](ModuleType& module) { return module.clone(); }) .def_property_readonly( "training", [](ModuleType& module) { return module.is_training(); }) .def("zero_grad", [](ModuleType& module) { module.zero_grad(); }) .def_property_readonly( "_parameters", [](ModuleType& module) { return module.named_parameters(/*recurse=*/false); }) .def("parameters", [](ModuleType& module, bool recurse) { return module.parameters(recurse); }, py::arg("recurse") = true) .def("named_parameters", [](ModuleType& module, bool recurse) { return module.named_parameters(recurse); }, py::arg("recurse") = true) .def_property_readonly("_buffers", [](ModuleType& module) { return module.named_buffers(/*recurse=*/false); }) .def("buffers", [](ModuleType& module, bool recurse) { return module.buffers(recurse); }, py::arg("recurse") = true) .def("named_buffers", [](ModuleType& module, bool recurse) { return module.named_buffers(recurse); }, py::arg("recurse") = true) .def_property_readonly( "_modules", [](ModuleType& module) { return module.named_children(); }) .def("modules", [](ModuleType& module) { return module.modules(); }) .def("named_modules", [](ModuleType& module, const py::object& /* unused */, std::string prefix, bool remove_duplicate /* unused */) { return module.named_modules(std::move(prefix)); }, py::arg("memo") = py::none(), py::arg("prefix") = std::string(), py::arg("remove_duplicate") = true) .def("children", [](ModuleType& module) { return module.children(); }) .def("named_children", [](ModuleType& module) { return module.named_children(); }) .def("to", [](ModuleType& module, py::object object, bool non_blocking) { if (THPDevice_Check(object.ptr())) { module.to( reinterpret_cast<THPDevice*>(object.ptr())->device, non_blocking); } else { module.to(detail::py_object_to_dtype(object), non_blocking); } }, py::arg("dtype_or_device"), py::arg("non_blocking") = false) .def("to", [](ModuleType& module, const py::object& device, const py::object& dtype, bool non_blocking) { if (device.is_none()) { module.to(detail::py_object_to_dtype(dtype), non_blocking); } else if (dtype.is_none()) { module.to(detail::py_object_to_device(device), non_blocking); } else { module.to( detail::py_object_to_device(device), detail::py_object_to_dtype(dtype), non_blocking); } }, py::arg("device"), py::arg("dtype"), py::arg("non_blocking") = false) .def("cuda", [](ModuleType& module) { module.to(kCUDA); }) .def("cpu", [](ModuleType& module) { module.to(kCPU); }) .def("float", [](ModuleType& module) { module.to(kFloat32); }) .def("double", [](ModuleType& module) { module.to(kFloat64); }) .def("half", [](ModuleType& module) { module.to(kFloat16); }) .def("__str__", [](ModuleType& module) { return module.name(); }) .def("__repr__", [](ModuleType& module) { return module.name(); }); // clang-format on } /// Creates a pybind11 class object for an `nn::Module` subclass type and adds /// default bindings. /// /// After adding the default bindings, the class object is returned, such that /// you can add more bindings. /// /// Example usage: /// \rst /// .. code-block:: cpp /// /// struct Net : torch::nn::Module { /// Net(int in, int out) { } /// torch::Tensor forward(torch::Tensor x) { return x; } /// }; /// /// PYBIND11_MODULE(my_module, m) { /// torch::python::bind_module<Net>(m, "Net") /// .def(py::init<int, int>()) /// .def("forward", &Net::forward); /// } /// \endrst template <typename ModuleType, bool force_enable = false> std::enable_if_t< !torch::detail::has_forward<ModuleType>::value || force_enable, detail::PyModuleClass<ModuleType>> bind_module(py::module module, const char* name) { py::module cpp = module.def_submodule("cpp"); auto cpp_class = add_module_bindings(detail::PyModuleClass<ModuleType>(cpp, name)); detail::bind_cpp_module_wrapper(module, cpp_class, name); return cpp_class; } /// Creates a pybind11 class object for an `nn::Module` subclass type and adds /// default bindings. /// /// After adding the default bindings, the class object is returned, such that /// you can add more bindings. /// /// If the class has a `forward()` method, it is automatically exposed as /// `forward()` and `__call__` in Python. /// /// Example usage: /// \rst /// .. code-block:: cpp /// /// struct Net : torch::nn::Module { /// Net(int in, int out) { } /// torch::Tensor forward(torch::Tensor x) { return x; } /// }; /// /// PYBIND11_MODULE(my_module, m) { /// torch::python::bind_module<Net>(m, "Net") /// .def(py::init<int, int>()) /// .def("forward", &Net::forward); /// } /// \endrst template < typename ModuleType, typename = std::enable_if_t<torch::detail::has_forward<ModuleType>::value>> detail::PyModuleClass<ModuleType> bind_module( py::module module, const char* name) { return bind_module<ModuleType, /*force_enable=*/true>(module, name) .def("forward", &ModuleType::forward) .def("__call__", &ModuleType::forward); } } // namespace torch::python ```
============================================================================================================================================== SOURCE CODE FILE: serialize.h LINES: 1 SIZE: 5.26 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\serialize.h ENCODING: utf-8 ```h #pragma once #include <c10/util/irange.h> #include <torch/csrc/Export.h> #include <torch/serialize/archive.h> #include <torch/serialize/tensor.h> #include <utility> namespace torch { /// Serializes the given `value`. /// There must be an overload of `operator<<` between `serialize::OutputArchive` /// and `Value` for this method to be well-formed. Currently, such an overload /// is provided for (subclasses of): /// /// - `torch::nn::Module`, /// - `torch::optim::Optimizer` /// - `torch::Tensor` /// /// To perform the serialization, a `serialize::OutputArchive` is constructed, /// and all arguments after the `value` are forwarded to its `save_to` method. /// For example, you can pass a filename, or an `ostream`. /// /// \rst /// .. code-block:: cpp /// /// torch::nn::Linear model(3, 4); /// torch::save(model, "model.pt"); /// /// torch::optim::SGD sgd(model->parameters(), 0.9); // 0.9 is learning rate /// std::ostringstream stream; /// // Note that the same stream cannot be used in multiple torch::save(...) /// // invocations, otherwise the header will be corrupted. /// torch::save(sgd, stream); /// /// auto tensor = torch::ones({3, 4}); /// torch::save(tensor, "my_tensor.pt"); /// \endrst template <typename Value, typename... SaveToArgs> void save(const Value& value, SaveToArgs&&... args) { serialize::OutputArchive archive(std::make_shared<jit::CompilationUnit>()); archive << value; archive.save_to(std::forward<SaveToArgs>(args)...); } /// Serializes the given `tensor_vec` of type `std::vector<torch::Tensor>`. /// /// To perform the serialization, a `serialize::OutputArchive` is constructed, /// and all arguments after the `tensor_vec` are forwarded to its `save_to` /// method. For example, you can pass a filename, or an `ostream`. /// /// \rst /// .. code-block:: cpp /// /// std::vector<torch::Tensor> tensor_vec = { torch::randn({1, 2}), /// torch::randn({3, 4}) }; torch::save(tensor_vec, "my_tensor_vec.pt"); /// /// std::vector<torch::Tensor> tensor_vec = { torch::randn({5, 6}), /// torch::randn({7, 8}) }; std::ostringstream stream; /// // Note that the same stream cannot be used in multiple torch::save(...) /// // invocations, otherwise the header will be corrupted. /// torch::save(tensor_vec, stream); /// \endrst template <typename... SaveToArgs> void save(const std::vector<torch::Tensor>& tensor_vec, SaveToArgs&&... args) { serialize::OutputArchive archive(std::make_shared<jit::CompilationUnit>()); for (const auto i : c10::irange(tensor_vec.size())) { auto& value = tensor_vec[i]; archive.write(std::to_string(i), value); } archive.save_to(std::forward<SaveToArgs>(args)...); } TORCH_API std::vector<char> pickle_save(const torch::IValue& ivalue); TORCH_API torch::IValue pickle_load(const std::vector<char>& data); /// Deserializes the given `value`. /// There must be an overload of `operator>>` between `serialize::InputArchive` /// and `Value` for this method to be well-formed. Currently, such an overload /// is provided for (subclasses of): /// /// - `torch::nn::Module`, /// - `torch::optim::Optimizer` /// - `torch::Tensor` /// /// To perform the serialization, a `serialize::InputArchive` is constructed, /// and all arguments after the `value` are forwarded to its `load_from` method. /// For example, you can pass a filename, or an `istream`. /// /// \rst /// .. code-block:: cpp /// /// torch::nn::Linear model(3, 4); /// torch::load(model, "model.pt"); /// /// torch::optim::SGD sgd(model->parameters(), 0.9); // 0.9 is learning rate /// std::istringstream stream("..."); /// torch::load(sgd, stream); /// /// auto tensor = torch::ones({3, 4}); /// torch::load(tensor, "my_tensor.pt"); /// \endrst template <typename Value, typename... LoadFromArgs> void load(Value& value, LoadFromArgs&&... args) { serialize::InputArchive archive; archive.load_from(std::forward<LoadFromArgs>(args)...); archive >> value; } /// Deserializes the given `tensor_vec` of type `std::vector<torch::Tensor>`. /// /// To perform the serialization, a `serialize::InputArchive` is constructed, /// and all arguments after the `value` are forwarded to its `load_from` method. /// For example, you can pass a filename, or an `istream`. /// /// \rst /// .. code-block:: cpp /// /// std::vector<torch::Tensor> tensor_vec; /// torch::load(tensor_vec, "my_tensor_vec.pt"); /// /// std::vector<torch::Tensor> tensor_vec; /// std::istringstream stream("..."); /// torch::load(tensor_vec, stream); /// \endrst template <typename... LoadFromArgs> void load(std::vector<torch::Tensor>& tensor_vec, LoadFromArgs&&... args) { serialize::InputArchive archive; archive.load_from(std::forward<LoadFromArgs>(args)...); // NOTE: The number of elements in the serialized `std::vector<torch::Tensor>` // is not known ahead of time, so we need a while-loop to increment the index, // and use `archive.try_read(...)` to check whether we have reached the end of // the serialized `std::vector<torch::Tensor>`. size_t index = 0; torch::Tensor value; while (archive.try_read(std::to_string(index), value)) { tensor_vec.push_back(std::move(value)); value = torch::Tensor(); index++; } } } // namespace torch ```
====================================================================================================================================================== SOURCE CODE FILE: archive.h LINES: 1 SIZE: 0.10 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\serialize\archive.h ENCODING: utf-8 ```h #pragma once #include <torch/serialize/input-archive.h> #include <torch/serialize/output-archive.h> ```
============================================================================================================================================================ SOURCE CODE FILE: input-archive.h LINES: 1 SIZE: 3.98 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\serialize\input-archive.h ENCODING: utf-8 ```h #pragma once #include <c10/core/Device.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/api/module.h> #include <torch/types.h> #include <optional> #include <iosfwd> #include <memory> #include <string> #include <utility> namespace at { class Tensor; } // namespace at namespace torch { using at::Tensor; namespace jit { struct Module; } // namespace jit } // namespace torch namespace torch::serialize { /// A recursive representation of tensors that can be deserialized from a file /// or stream. In most cases, users should not have to interact with this class, /// and should instead use `torch::load`. class TORCH_API InputArchive final { public: /// Default-constructs the `InputArchive`. InputArchive(); // Move is allowed. InputArchive(InputArchive&&) = default; InputArchive& operator=(InputArchive&&) = default; // Copy is disallowed. InputArchive(InputArchive&) = delete; InputArchive& operator=(InputArchive&) = delete; ~InputArchive() = default; /// Reads an `IValue` associated with a given `key`. void read(const std::string& key, c10::IValue& ivalue); /// Reads an `IValue` associated with a given `key`. If there is no `IValue` /// associated with the `key`, this returns false, otherwise it returns true. bool try_read(const std::string& key, c10::IValue& ivalue); /// Reads a `tensor` associated with a given `key`. If there is no `tensor` /// associated with the `key`, this returns false, otherwise it returns true. /// If the tensor is expected to be a buffer (not differentiable), `is_buffer` /// must be `true`. bool try_read(const std::string& key, Tensor& tensor, bool is_buffer = false); /// Reads a `tensor` associated with a given `key`. /// If the tensor is expected to be a buffer (not differentiable), `is_buffer` /// must be `true`. void read(const std::string& key, Tensor& tensor, bool is_buffer = false); /// Reads a `InputArchive` associated with a given `key`. If there is no /// `InputArchive` associated with the `key`, this returns false, otherwise /// it returns true. bool try_read(const std::string& key, InputArchive& archive); /// Reads an `InputArchive` associated with a given `key`. /// The archive can thereafter be used for further deserialization of the /// nested data. void read(const std::string& key, InputArchive& archive); /// Loads the `InputArchive` from a serialized representation stored in the /// file at `filename`. Storage are remapped using device option. If device /// is not specified, the module is loaded to the original device. void load_from( const std::string& filename, std::optional<torch::Device> device = std::nullopt); /// Loads the `InputArchive` from a serialized representation stored in the /// given `stream`. Storage are remapped using device option. If device /// is not specified, the module is loaded to the original device. void load_from( std::istream& stream, std::optional<torch::Device> device = std::nullopt); // Loads given the specified flat array. void load_from( const char* data, size_t size, std::optional<torch::Device> device = std::nullopt); // Loads given the specified read and size functions. void load_from( const std::function<size_t(uint64_t pos, void* buf, size_t nbytes)>& read_func, const std::function<size_t(void)>& size_func, std::optional<torch::Device> device = std::nullopt); // Returns the vector of keys in the input archive. std::vector<std::string> keys(); /// Forwards all arguments to `read()`. /// Useful for generic code that can be re-used for both `InputArchive` and /// `OutputArchive` (where `operator()` forwards to `write()`). template <typename... Ts> void operator()(Ts&&... ts) { read(std::forward<Ts>(ts)...); } private: jit::Module module_; std::string hierarchy_prefix_; }; } // namespace torch::serialize ```
============================================================================================================================================================= SOURCE CODE FILE: output-archive.h LINES: 1 SIZE: 2.31 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\serialize\output-archive.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/jit/api/module.h> #include <iosfwd> #include <memory> #include <string> #include <utility> namespace at { class Tensor; } // namespace at namespace torch { using at::Tensor; namespace jit { struct Module; } // namespace jit } // namespace torch namespace torch::serialize { class TORCH_API OutputArchive final { public: explicit OutputArchive(std::shared_ptr<jit::CompilationUnit> cu); explicit OutputArchive() : cu_(std::make_shared<jit::CompilationUnit>()), module_("__torch__.Module", cu_) {} // Move is allowed. OutputArchive(OutputArchive&&) = default; OutputArchive& operator=(OutputArchive&&) = default; // Copy is disallowed. OutputArchive(OutputArchive&) = delete; OutputArchive& operator=(OutputArchive&) = delete; std::shared_ptr<jit::CompilationUnit> compilation_unit() const { return cu_; } /// Writes an `IValue` to the `OutputArchive`. void write(const std::string& key, const c10::IValue& ivalue); /// Writes a `(key, tensor)` pair to the `OutputArchive`, and marks it as /// being or not being a buffer (non-differentiable tensor). void write( const std::string& key, const Tensor& tensor, bool is_buffer = false); /// Writes a nested `OutputArchive` under the given `key` to this /// `OutputArchive`. void write(const std::string& key, OutputArchive& nested_archive); /// Saves the `OutputArchive` into a serialized representation in a file at /// `filename`. void save_to(const std::string& filename); /// Saves the `OutputArchive` into a serialized representation into the given /// `stream`. void save_to(std::ostream& stream); /// Saves the `OutputArchive` into a serialized representation using the /// given writer function. void save_to(const std::function<size_t(const void*, size_t)>& func); /// Forwards all arguments to `write()`. /// Useful for generic code that can be re-used for both `OutputArchive` and /// `InputArchive` (where `operator()` forwards to `read()`). template <typename... Ts> void operator()(Ts&&... ts) { write(std::forward<Ts>(ts)...); } private: std::shared_ptr<jit::CompilationUnit> cu_; jit::Module module_; }; } // namespace torch::serialize ```
===================================================================================================================================================== SOURCE CODE FILE: tensor.h LINES: 1 SIZE: 0.44 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\serialize\tensor.h ENCODING: utf-8 ```h #pragma once #include <torch/serialize/archive.h> #include <torch/types.h> namespace torch { inline serialize::OutputArchive& operator<<( serialize::OutputArchive& archive, const Tensor& tensor) { archive.write("0", tensor); return archive; } inline serialize::InputArchive& operator>>( serialize::InputArchive& archive, Tensor& tensor) { archive.read("0", tensor); return archive; } } // namespace torch ```
=========================================================================================================================================== SOURCE CODE FILE: sparse.h LINES: 1 SIZE: 0.04 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\sparse.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> ```
============================================================================================================================================ SOURCE CODE FILE: special.h LINES: 1 SIZE: 38.76 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\special.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <torch/types.h> namespace torch::special { /// Computes the natural logarithm of the absolute value of the gamma function /// See https://pytorch.org/docs/main/special.html#torch.special.gammaln. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::gammaln(t); /// ``` inline Tensor gammaln(const Tensor& self) { return torch::special_gammaln(self); } inline Tensor& gammaln_out(Tensor& result, const Tensor& self) { return torch::special_gammaln_out(result, self); } /// Computes the regularized lower incomplete gamma function /// See https://pytorch.org/docs/main/special.html#torch.special.gammainc. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// auto s = torch::randn(128, dtype=kDouble); /// torch::special::gammainc(s, t); /// ``` inline Tensor gammainc(const Tensor& self, const Tensor& other) { return torch::special_gammainc(self, other); } inline Tensor& gammainc_out( Tensor& result, const Tensor& self, const Tensor& other) { return torch::special_gammainc_out(result, self, other); } /// Computes the regularized upper incomplete gamma function /// See https://pytorch.org/docs/main/special.html#torch.special.gammainc. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// auto s = torch::randn(128, dtype=kDouble); /// torch::special::gammaincc(s, t); /// ``` inline Tensor gammaincc(const Tensor& self, const Tensor& other) { return torch::special_gammaincc(self, other); } inline Tensor& gammaincc_out( Tensor& result, const Tensor& self, const Tensor& other) { return torch::special_gammaincc_out(result, self, other); } /// Computes the multivariate log-gamma function with dimension `p`, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.multigammaln. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::multigammaln(t, 1); /// ``` inline Tensor multigammaln(const Tensor& self, int64_t p) { return torch::special_multigammaln(self, p); } inline Tensor& multigammaln_out(Tensor& result, const Tensor& self, int64_t p) { return torch::special_multigammaln_out(result, self, p); } /// Computes the nth derivative of the digamma function on the input. /// See https:://pytorch.org/docs/main/special.html#torch.special.polygamma. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::polygamma(2, t); /// ``` inline Tensor polygamma(int64_t n, const Tensor& self) { return torch::special_polygamma(n, self); } inline Tensor& polygamma_out(Tensor& result, int64_t n, const Tensor& self) { return torch::special_polygamma_out(result, n, self); } /// Computes the logarithmic derivative of the gamma function on input /// See https://pytorch.org/docs/main/special.html#torch.special.psi /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::psi(t); /// ``` inline Tensor psi(const Tensor& self) { return torch::special_psi(self); } inline Tensor& psi_out(Tensor& result, const Tensor& self) { return torch::special_psi_out(result, self); } /// Computes the logarithmic derivative of the gamma function on input /// See https://pytorch.org/docs/main/special.html#torch.special.digamma /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::digamma(t); /// ``` inline Tensor digamma(const Tensor& self) { return torch::special_digamma(self); } inline Tensor& digamma_out(Tensor& result, const Tensor& self) { return torch::special_digamma_out(result, self); } /// Computes entropy of input, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.entr. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::entr(t); /// ``` inline Tensor entr(const Tensor& self) { return torch::special_entr(self); } inline Tensor& entr_out(Tensor& result, const Tensor& self) { return torch::special_entr_out(result, self); } /// Computes the error function /// See https://pytorch.org/docs/main/special.html#torch.special.erf. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::erf(t); /// ``` inline Tensor erf(const Tensor& self) { return torch::special_erf(self); } inline Tensor& erf_out(Tensor& result, const Tensor& self) { return torch::special_erf_out(result, self); } /// Computes the complementary error function /// See https://pytorch.org/docs/main/special.html#torch.special.erfc. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::erfc(t); /// ``` inline Tensor erfc(const Tensor& self) { return torch::special_erfc(self); } inline Tensor& erfc_out(Tensor& result, const Tensor& self) { return torch::special_erfc_out(result, self); } /// Computes the scaled complementary error function /// See https://pytorch.org/docs/main/special.html#torch.special.erfcx. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::erfcx(t); /// ``` inline Tensor erfcx(const Tensor& self) { return torch::special_erfcx(self); } inline Tensor& erfcx_out(Tensor& result, const Tensor& self) { return torch::special_erfcx_out(result, self); } /// Computes the inverse error function /// See https://pytorch.org/docs/main/special.html#torch.special.erfinv. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::erfinv(t); /// ``` inline Tensor erfinv(const Tensor& self) { return torch::special_erfinv(self); } inline Tensor& erfinv_out(Tensor& result, const Tensor& self) { return torch::special_erfinv_out(result, self); } /// Computes the log of summed exponentials of each row of input in the given /// dimension dim See /// https://pytorch.org/docs/main/special.html#torch.special.logsumexp. /// /// Example: /// ``` /// auto t = torch::randn(3, 3); /// torch::special::logsumexp(t, 1); /// ``` inline Tensor logsumexp(const Tensor& self, IntArrayRef dims, bool keepdim) { return torch::special_logsumexp(self, dims, keepdim); } inline Tensor& logsumexp_out( Tensor& result, const Tensor& self, IntArrayRef dims, bool keepdim) { return torch::special_logsumexp_out(result, self, dims, keepdim); } /// Computes the argument, x, for which the area under the Gaussian probability /// density function (integrated from minus infinity to x) is equal to input, /// elementwise. See /// https://pytorch.org/docs/main/special.html#torch.special.ndtri /// /// Example: /// ``` /// auto t = torch::rand(128, dtype=kDouble); /// torch::special::ndtri(t); /// ``` inline Tensor ndtri(const Tensor& self) { return torch::special_ndtri(self); } inline Tensor& ndtri_out(Tensor& result, const Tensor& self) { return torch::special_ndtri_out(result, self); } /// Computes the log of area under the standard Gaussian probability density /// function, integrated from minus infinity to :attr:`input`, elementwise See /// https://pytorch.org/docs/main/special.html#torch.special.log_ndtr /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::log_ndtr(t); /// ``` inline Tensor log_ndtr(const Tensor& self) { return torch::special_log_ndtr(self); } inline Tensor& log_ndtr_out(Tensor& result, const Tensor& self) { return torch::special_log_ndtr_out(result, self); } /// Computes the logit of input, elementwise. /// See https://pytorch.org/docs/main/special.html#torch.special.logit. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::logit(t); /// ``` inline Tensor logit(const Tensor& self) { return torch::special_logit(self); } inline Tensor& logit_out(Tensor& result, const Tensor& self) { return torch::special_logit_out(result, self); } /// Computes the expit (also known as the logistic sigmoid function) of input, /// elementwise See /// https://pytorch.org/docs/main/special.html#torch.special.expit. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::expit(t); /// ``` inline Tensor expit(const Tensor& self) { return torch::special_expit(self); } inline Tensor& expit_out(Tensor& result, const Tensor& self) { return torch::special_expit_out(result, self); } /// Computes the base two exponential function of :attr:`input`, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.exp2. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::exp2(t); /// ``` inline Tensor exp2(const Tensor& self) { return torch::special_exp2(self); } inline Tensor& exp2_out(Tensor& result, const Tensor& self) { return torch::special_exp2_out(result, self); } /// Computes the exponential of the elements minus 1, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.expm1. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::expm1(t); /// ``` inline Tensor expm1(const Tensor& self) { return torch::special_expm1(self); } inline Tensor& expm1_out(Tensor& result, const Tensor& self) { return torch::special_expm1_out(result, self); } /// Computes x * log(y) for inputs, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.xlogy. /// /// Example: /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto y = torch::randn(128, dtype=kDouble); /// torch::special::xlogy(x, y); /// ``` inline Tensor xlogy(const Tensor& self, const Tensor& other) { return torch::special_xlogy(self, other); } inline Tensor xlogy(const Scalar& self, const Tensor& other) { return torch::special_xlogy(self, other); } inline Tensor xlogy(const Tensor& self, const Scalar& other) { return torch::special_xlogy(self, other); } inline Tensor& xlogy_out( Tensor& result, const Tensor& self, const Tensor& other) { return torch::special_xlogy_out(result, self, other); } inline Tensor& xlogy_out( Tensor& result, const Scalar& self, const Tensor& other) { return torch::special_xlogy_out(result, self, other); } inline Tensor& xlogy_out( Tensor& result, const Tensor& self, const Scalar& other) { return torch::special_xlogy_out(result, self, other); } /// Computes x * log1p(y) for inputs, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.xlog1py. /// /// Example: /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto y = torch::randn(128, dtype=kDouble); /// torch::special::xlog1py(x, y); /// ``` inline Tensor xlog1py(const Tensor& self, const Tensor& other) { return torch::special_xlog1py(self, other); } inline Tensor xlog1py(const Scalar& self, const Tensor& other) { return torch::special_xlog1py(self, other); } inline Tensor xlog1py(const Tensor& self, const Scalar& other) { return torch::special_xlog1py(self, other); } inline Tensor& xlog1py_out( Tensor& result, const Tensor& self, const Tensor& other) { return torch::special_xlog1py_out(result, self, other); } inline Tensor& xlog1py_out( Tensor& result, const Scalar& self, const Tensor& other) { return torch::special_xlog1py_out(result, self, other); } inline Tensor& xlog1py_out( Tensor& result, const Tensor& self, const Scalar& other) { return torch::special_xlog1py_out(result, self, other); } /// Computes Hurwitz Zeta function for inputs, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.zeta. /// /// Example: /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto y = torch::randn(128, dtype=kDouble); /// torch::special::zeta(x, y); /// ``` inline Tensor zeta(const Tensor& self, const Tensor& other) { return torch::special_zeta(self, other); } inline Tensor zeta(const Scalar& self, const Tensor& other) { return torch::special_zeta(self, other); } inline Tensor zeta(const Tensor& self, const Scalar& other) { return torch::special_zeta(self, other); } inline Tensor& zeta_out( Tensor& result, const Tensor& self, const Tensor& other) { return torch::special_zeta_out(result, self, other); } inline Tensor& zeta_out( Tensor& result, const Scalar& self, const Tensor& other) { return torch::special_zeta_out(result, self, other); } inline Tensor& zeta_out( Tensor& result, const Tensor& self, const Scalar& other) { return torch::special_zeta_out(result, self, other); } /// Computes the zeroth order modified Bessel function of the first kind of /// input, elementwise See /// https://pytorch.org/docs/main/special.html#torch.special.i0 /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::i0(t); /// ``` inline Tensor i0(const Tensor& self) { return torch::special_i0(self); } inline Tensor& i0_out(Tensor& result, const Tensor& self) { return torch::special_i0_out(result, self); } /// Computes the area under the standard Gaussian probability density function, /// integrated from minus infinity to :attr:`input`, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.ndtr /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::ndtr(t); /// ``` inline Tensor ndtr(const Tensor& self) { return torch::special_ndtr(self); } inline Tensor& ndtr_out(Tensor& result, const Tensor& self) { return torch::special_ndtr_out(result, self); } /// Computes the exponentially scaled zeroth order modified Bessel function of /// the first kind See /// https://pytorch.org/docs/main/special.html#torch.special.i0e. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::i0e(t); /// ``` inline Tensor i0e(const Tensor& self) { return torch::special_i0e(self); } inline Tensor& i0e_out(Tensor& result, const Tensor& self) { return torch::special_i0e_out(result, self); } /// Computes the first order modified Bessel function of the first kind /// See https://pytorch.org/docs/main/special.html#torch.special.i1. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::i1(t); /// ``` inline Tensor i1(const Tensor& self) { return torch::special_i1(self); } inline Tensor& i1_out(Tensor& result, const Tensor& self) { return torch::special_i1_out(result, self); } /// Computes the exponentially scaled first order modified Bessel function of /// the first kind See /// https://pytorch.org/docs/main/special.html#torch.special.i1e. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::i1e(t); /// ``` inline Tensor i1e(const Tensor& self) { return torch::special_i1e(self); } inline Tensor& i1e_out(Tensor& result, const Tensor& self) { return torch::special_i1e_out(result, self); } /// Computes the sinc of input, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.sinc. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::sinc(t); /// ``` inline Tensor sinc(const Tensor& self) { return torch::special_sinc(self); } inline Tensor& sinc_out(Tensor& result, const Tensor& self) { return torch::special_sinc_out(result, self); } /// Rounds the elements of the input /// See https://pytorch.org/docs/main/special.html#torch.special.round. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::round(t); /// ``` inline Tensor round(const Tensor& self) { return torch::special_round(self); } inline Tensor& round_out(Tensor& result, const Tensor& self) { return torch::special_round_out(result, self); } /// Computes log(1 + x) of the input, elementwise /// See https://pytorch.org/docs/main/special.html#torch.special.log1p. /// /// Example: /// ``` /// auto t = torch::randn(128, dtype=kDouble); /// torch::special::log1p(t); /// ``` inline Tensor log1p(const Tensor& self) { return torch::special_log1p(self); } inline Tensor& log1p_out(Tensor& result, const Tensor& self) { return torch::special_log1p_out(result, self); } /// Computes log followed by softmax(x) of the input /// See https://pytorch.org/docs/main/special.html#torch.special.log_softmax. /// /// Example: /// ``` /// auto t = torch::randn(128, 128, dtype=kDouble); /// torch::special::log_softmax(t, 0); /// ``` inline Tensor log_softmax( const Tensor& self, int64_t dim, std::optional<ScalarType> dtype) { return torch::special_log_softmax(self, dim, dtype); } /// Computes softmax of the input along a given dimension /// See https://pytorch.org/docs/main/special.html#torch.special.softmax. /// /// Example: /// ``` /// auto t = torch::randn(128, 128, dtype=kDouble); /// torch::special::softmax(t, 0); /// ``` inline Tensor softmax( const Tensor& self, int64_t dim, std::optional<ScalarType> dtype) { return torch::special_softmax(self, dim, dtype); } /// Airy function Ai. /// /// See https://pytorch.org/docs/main/special.html#torch.special.airy_ai. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::airy_ai(x); /// ``` inline Tensor airy_ai(const Tensor& x) { return torch::special_airy_ai(x); } inline Tensor& airy_ai_out(Tensor& y, const Tensor& x) { return torch::special_airy_ai_out(y, x); } /// Bessel function of the first kind of order 0. /// /// See https://pytorch.org/docs/main/special.html#torch.special.bessel_j0. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::bessel_j0(x); /// ``` inline Tensor bessel_j0(const Tensor& self) { return torch::special_bessel_j0(self); } inline Tensor& bessel_j0_out(Tensor& result, const Tensor& self) { return torch::special_bessel_j0_out(result, self); } /// Bessel function of the first kind of order 1. /// /// See https://pytorch.org/docs/main/special.html#torch.special.bessel_j1. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::bessel_j1(x); /// ``` inline Tensor bessel_j1(const Tensor& self) { return torch::special_bessel_j1(self); } inline Tensor& bessel_j1_out(Tensor& result, const Tensor& self) { return torch::special_bessel_j1_out(result, self); } /// Bessel function of the second kind of order 0. /// /// See https://pytorch.org/docs/main/special.html#torch.special.bessel_y0. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::bessel_y0(x); /// ``` inline Tensor bessel_y0(const Tensor& self) { return torch::special_bessel_y0(self); } inline Tensor& bessel_y0_out(Tensor& result, const Tensor& self) { return torch::special_bessel_y0_out(result, self); } /// Bessel function of the second kind of order 1. /// /// See https://pytorch.org/docs/main/special.html#torch.special.bessel_y1. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::bessel_y1(x); /// ``` inline Tensor bessel_y1(const Tensor& self) { return torch::special_bessel_y1(self); } inline Tensor& bessel_y1_out(Tensor& result, const Tensor& self) { return torch::special_bessel_y1_out(result, self); } /// Chebyshev polynomial of the first kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.chebyshev_polynomial_t. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::chebyshev_polynomial_t(x, n); /// ``` inline Tensor chebyshev_polynomial_t(const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_t(x, n); } inline Tensor chebyshev_polynomial_t(const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_t(x, n); } inline Tensor chebyshev_polynomial_t(const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_t(x, n); } inline Tensor& chebyshev_polynomial_t_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_t_out(output, x, n); } inline Tensor& chebyshev_polynomial_t_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_t_out(output, x, n); } inline Tensor& chebyshev_polynomial_t_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_t_out(output, x, n); } /// Chebyshev polynomial of the second kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.chebyshev_polynomial_u. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::chebyshev_polynomial_u(x, n); /// ``` inline Tensor chebyshev_polynomial_u(const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_u(x, n); } inline Tensor chebyshev_polynomial_u(const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_u(x, n); } inline Tensor chebyshev_polynomial_u(const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_u(x, n); } inline Tensor& chebyshev_polynomial_u_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_u_out(output, x, n); } inline Tensor& chebyshev_polynomial_u_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_u_out(output, x, n); } inline Tensor& chebyshev_polynomial_u_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_u_out(output, x, n); } /// Chebyshev polynomial of the third kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.chebyshev_polynomial_v. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::chebyshev_polynomial_v(x, n); /// ``` inline Tensor chebyshev_polynomial_v(const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_v(x, n); } inline Tensor chebyshev_polynomial_v(const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_v(x, n); } inline Tensor chebyshev_polynomial_v(const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_v(x, n); } inline Tensor& chebyshev_polynomial_v_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_v_out(output, x, n); } inline Tensor& chebyshev_polynomial_v_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_v_out(output, x, n); } inline Tensor& chebyshev_polynomial_v_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_v_out(output, x, n); } /// Chebyshev polynomial of the fourth kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.chebyshev_polynomial_w. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::chebyshev_polynomial_w(x, n); /// ``` inline Tensor chebyshev_polynomial_w(const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_w(x, n); } inline Tensor chebyshev_polynomial_w(const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_w(x, n); } inline Tensor chebyshev_polynomial_w(const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_w(x, n); } inline Tensor& chebyshev_polynomial_w_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_chebyshev_polynomial_w_out(output, x, n); } inline Tensor& chebyshev_polynomial_w_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_chebyshev_polynomial_w_out(output, x, n); } inline Tensor& chebyshev_polynomial_w_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_chebyshev_polynomial_w_out(output, x, n); } /// Physicist’s Hermite polynomial. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.hermite_polynomial_h. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::hermite_polynomial_h(x, n); /// ``` inline Tensor hermite_polynomial_h(const Tensor& x, const Tensor& n) { return torch::special_hermite_polynomial_h(x, n); } inline Tensor hermite_polynomial_h(const Scalar& x, const Tensor& n) { return torch::special_hermite_polynomial_h(x, n); } inline Tensor hermite_polynomial_h(const Tensor& x, const Scalar& n) { return torch::special_hermite_polynomial_h(x, n); } inline Tensor& hermite_polynomial_h_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_hermite_polynomial_h_out(output, x, n); } inline Tensor& hermite_polynomial_h_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_hermite_polynomial_h_out(output, x, n); } inline Tensor& hermite_polynomial_h_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_hermite_polynomial_h_out(output, x, n); } /// Probabilist’s Hermite polynomial. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.hermite_polynomial_he. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::hermite_polynomial_he(x, n); /// ``` inline Tensor hermite_polynomial_he(const Tensor& x, const Tensor& n) { return torch::special_hermite_polynomial_he(x, n); } inline Tensor hermite_polynomial_he(const Scalar& x, const Tensor& n) { return torch::special_hermite_polynomial_he(x, n); } inline Tensor hermite_polynomial_he(const Tensor& x, const Scalar& n) { return torch::special_hermite_polynomial_he(x, n); } inline Tensor& hermite_polynomial_he_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_hermite_polynomial_he_out(output, x, n); } inline Tensor& hermite_polynomial_he_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_hermite_polynomial_he_out(output, x, n); } inline Tensor& hermite_polynomial_he_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_hermite_polynomial_he_out(output, x, n); } /// Laguerre polynomial. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.laguerre_polynomial_l. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::laguerre_polynomial_l(x, n); /// ``` inline Tensor laguerre_polynomial_l(const Tensor& x, const Tensor& n) { return torch::special_laguerre_polynomial_l(x, n); } inline Tensor laguerre_polynomial_l(const Scalar& x, const Tensor& n) { return torch::special_laguerre_polynomial_l(x, n); } inline Tensor laguerre_polynomial_l(const Tensor& x, const Scalar& n) { return torch::special_laguerre_polynomial_l(x, n); } inline Tensor& laguerre_polynomial_l_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_laguerre_polynomial_l_out(output, x, n); } inline Tensor& laguerre_polynomial_l_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_laguerre_polynomial_l_out(output, x, n); } inline Tensor& laguerre_polynomial_l_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_laguerre_polynomial_l_out(output, x, n); } /// Legendre polynomial. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.legendre_polynomial_p. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::legendre_polynomial_p(x, n); /// ``` inline Tensor legendre_polynomial_p(const Tensor& x, const Tensor& n) { return torch::special_legendre_polynomial_p(x, n); } inline Tensor legendre_polynomial_p(const Scalar& x, const Tensor& n) { return torch::special_legendre_polynomial_p(x, n); } inline Tensor legendre_polynomial_p(const Tensor& x, const Scalar& n) { return torch::special_legendre_polynomial_p(x, n); } inline Tensor& legendre_polynomial_p_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_legendre_polynomial_p_out(output, x, n); } inline Tensor& legendre_polynomial_p_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_legendre_polynomial_p_out(output, x, n); } inline Tensor& legendre_polynomial_p_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_legendre_polynomial_p_out(output, x, n); } /// Modified Bessel function of the first kind of order 0. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.modified_bessel_i0. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::modified_bessel_i0(x); /// ``` inline Tensor modified_bessel_i0(const Tensor& self) { return torch::special_modified_bessel_i0(self); } inline Tensor& modified_bessel_i0_out(Tensor& result, const Tensor& self) { return torch::special_modified_bessel_i0_out(result, self); } /// Modified Bessel function of the first kind of order 1. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.modified_bessel_i1. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::modified_bessel_i1(x); /// ``` inline Tensor modified_bessel_i1(const Tensor& self) { return torch::special_modified_bessel_i1(self); } inline Tensor& modified_bessel_i1_out(Tensor& result, const Tensor& self) { return torch::special_modified_bessel_i1_out(result, self); } /// Modified Bessel function of the second kind of order 0. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.modified_bessel_k0. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::modified_bessel_k0(x); /// ``` inline Tensor modified_bessel_k0(const Tensor& self) { return torch::special_modified_bessel_k0(self); } inline Tensor& modified_bessel_k0_out(Tensor& result, const Tensor& self) { return torch::special_modified_bessel_k0_out(result, self); } /// Modified Bessel function of the second kind of order 1. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.modified_bessel_k1. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::modified_bessel_k1(x); /// ``` inline Tensor modified_bessel_k1(const Tensor& self) { return torch::special_modified_bessel_k1(self); } inline Tensor& modified_bessel_k1_out(Tensor& result, const Tensor& self) { return torch::special_modified_bessel_k1_out(result, self); } /// Scaled modified Bessel function of the second kind of order 0. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.scaled_modified_bessel_k0. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::scaled_modified_bessel_k0(x); /// ``` inline Tensor scaled_modified_bessel_k0(const Tensor& x) { return torch::special_scaled_modified_bessel_k0(x); } inline Tensor& scaled_modified_bessel_k0_out(Tensor& y, const Tensor& x) { return torch::special_scaled_modified_bessel_k0_out(y, x); } /// Scaled modified Bessel function of the second kind of order 1. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.scaled_modified_bessel_k1. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::scaled_modified_bessel_k1(x); /// ``` inline Tensor scaled_modified_bessel_k1(const Tensor& x) { return torch::special_scaled_modified_bessel_k1(x); } inline Tensor& scaled_modified_bessel_k1_out(Tensor& y, const Tensor& x) { return torch::special_scaled_modified_bessel_k1_out(y, x); } /// Shifted Chebyshev polynomial of the first kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.shifted_chebyshev_polynomial_t. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::shifted_chebyshev_polynomial_t(x, n); /// ``` inline Tensor shifted_chebyshev_polynomial_t(const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_t(x, n); } inline Tensor shifted_chebyshev_polynomial_t(const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_t(x, n); } inline Tensor shifted_chebyshev_polynomial_t(const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_t(x, n); } inline Tensor& shifted_chebyshev_polynomial_t_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_t_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_t_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_t_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_t_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_t_out(output, x, n); } /// Shifted Chebyshev polynomial of the second kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.shifted_chebyshev_polynomial_u. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::shifted_chebyshev_polynomial_u(x, n); /// ``` inline Tensor shifted_chebyshev_polynomial_u(const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_u(x, n); } inline Tensor shifted_chebyshev_polynomial_u(const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_u(x, n); } inline Tensor shifted_chebyshev_polynomial_u(const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_u(x, n); } inline Tensor& shifted_chebyshev_polynomial_u_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_u_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_u_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_u_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_u_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_u_out(output, x, n); } /// Shifted Chebyshev polynomial of the third kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.shifted_chebyshev_polynomial_v. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::shifted_chebyshev_polynomial_v(x, n); /// ``` inline Tensor shifted_chebyshev_polynomial_v(const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_v(x, n); } inline Tensor shifted_chebyshev_polynomial_v(const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_v(x, n); } inline Tensor shifted_chebyshev_polynomial_v(const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_v(x, n); } inline Tensor& shifted_chebyshev_polynomial_v_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_v_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_v_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_v_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_v_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_v_out(output, x, n); } /// Shifted Chebyshev polynomial of the fourth kind. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.shifted_chebyshev_polynomial_w. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// auto n = torch::randn(128, dtype=kDouble); /// /// torch::special::shifted_chebyshev_polynomial_w(x, n); /// ``` inline Tensor shifted_chebyshev_polynomial_w(const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_w(x, n); } inline Tensor shifted_chebyshev_polynomial_w(const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_w(x, n); } inline Tensor shifted_chebyshev_polynomial_w(const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_w(x, n); } inline Tensor& shifted_chebyshev_polynomial_w_out( Tensor& output, const Tensor& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_w_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_w_out( Tensor& output, const Scalar& x, const Tensor& n) { return torch::special_shifted_chebyshev_polynomial_w_out(output, x, n); } inline Tensor& shifted_chebyshev_polynomial_w_out( Tensor& output, const Tensor& x, const Scalar& n) { return torch::special_shifted_chebyshev_polynomial_w_out(output, x, n); } /// Spherical Bessel function of the first kind of order 0. /// /// See /// https://pytorch.org/docs/main/special.html#torch.special.spherical_bessel_j0. /// /// Example: /// /// ``` /// auto x = torch::randn(128, dtype=kDouble); /// /// torch::special::spherical_bessel_j0(x); /// ``` inline Tensor spherical_bessel_j0(const Tensor& x) { return torch::special_spherical_bessel_j0(x); } inline Tensor& spherical_bessel_j0_out(Tensor& y, const Tensor& x) { return torch::special_spherical_bessel_j0_out(y, x); } } // namespace torch::special ```
========================================================================================================================================== SOURCE CODE FILE: torch.h LINES: 1 SIZE: 0.16 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\torch.h ENCODING: utf-8 ```h #pragma once #include <torch/all.h> #ifdef TORCH_API_INCLUDE_EXTENSION_H #include <torch/extension.h> #endif // defined(TORCH_API_INCLUDE_EXTENSION_H) ```
========================================================================================================================================== SOURCE CODE FILE: types.h LINES: 1 SIZE: 2.59 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\types.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <optional> #include <torch/csrc/autograd/generated/variable_factories.h> #include <torch/csrc/autograd/variable.h> // TODO: These don't really belong here but torchvision builds in CI need them // Remove once the torchvision version being compiled in CI is updated #include <ATen/core/dispatch/Dispatcher.h> #include <torch/library.h> namespace torch { // NOTE [ Exposing declarations in `at::` to `torch::` ] // // The following line `using namespace at;` is responsible for exposing all // declarations in `at::` namespace to `torch::` namespace. // // According to the rules laid out in // https://en.cppreference.com/w/cpp/language/qualified_lookup, section // "Namespace members": // ``` // Qualified lookup within the scope of a namespace N first considers all // declarations that are located in N and all declarations that are located in // the inline namespace members of N (and, transitively, in their inline // namespace members). If there are no declarations in that set then it // considers declarations in all namespaces named by using-directives found in N // and in all transitive inline namespace members of N. // ``` // // This means that if both `at::` and `torch::` namespaces have a function with // the same signature (e.g. both `at::func()` and `torch::func()` exist), after // `namespace torch { using namespace at; }`, when we call `torch::func()`, the // `func()` function defined in `torch::` namespace will always be called, and // the `func()` function defined in `at::` namespace is always hidden. using namespace at; // NOLINT #if !defined(FBCODE_CAFFE2) && !defined(C10_NODEPRECATED) using std::nullopt; // NOLINT using std::optional; // NOLINT #endif using Dtype = at::ScalarType; /// Fixed width dtypes. constexpr auto kUInt8 = at::kByte; constexpr auto kInt8 = at::kChar; constexpr auto kInt16 = at::kShort; constexpr auto kInt32 = at::kInt; constexpr auto kInt64 = at::kLong; constexpr auto kUInt16 = at::kUInt16; constexpr auto kUInt32 = at::kUInt32; constexpr auto kUInt64 = at::kUInt64; constexpr auto kFloat16 = at::kHalf; constexpr auto kFloat32 = at::kFloat; constexpr auto kFloat64 = at::kDouble; /// Rust-style short dtypes. constexpr auto kU8 = kUInt8; constexpr auto kU16 = kUInt16; constexpr auto kU32 = kUInt32; constexpr auto kU64 = kUInt64; constexpr auto kI8 = kInt8; constexpr auto kI16 = kInt16; constexpr auto kI32 = kInt32; constexpr auto kI64 = kInt64; constexpr auto kF16 = kFloat16; constexpr auto kF32 = kFloat32; constexpr auto kF64 = kFloat64; } // namespace torch ```
========================================================================================================================================== SOURCE CODE FILE: utils.h LINES: 1 SIZE: 3.62 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\utils.h ENCODING: utf-8 ```h #pragma once #include <ATen/Parallel.h> #include <ATen/record_function.h> #include <torch/csrc/api/include/torch/types.h> #include <torch/csrc/autograd/grad_mode.h> #include <torch/csrc/autograd/profiler.h> // NOLINTBEGIN(misc-unused-using-decls) namespace torch { /// A RAII, thread-local guard that disabled gradient calculation. /// /// Disabling gradient calculation is useful for inference, when you are sure /// that you will not call `at::Tensor::backward`. It will reduce memory /// consumption for computations that would otherwise have `requires_grad() == /// true`. /// /// In this mode, the result of every computation will have /// `requires_grad() == false`, even when the inputs have `requires_grad() == /// true`. /// /// This context manager is thread-local; it will not affect computation /// in other threads. /// /// Example: /// @code /// auto x = torch::tensor({1.}, torch::requires_grad()); /// { /// torch::NoGradGuard no_grad; /// auto y = x * 2; /// std::cout << y.requires_grad() << std::endl; // prints `false` /// } /// { /// auto doubler = [](torch::Tensor x) { /// torch::NoGradGuard no_grad; /// return x * 2; /// }; /// auto z = doubler(x); /// std::cout << z.requires_grad() << std::endl; // prints `false` /// } /// @endcode using NoGradGuard = at::NoGradGuard; /// A RAII, thread-local guard that sets gradient calculation to on or off. /// /// ``AutoGradMode`` will enable or disable grads based on its argument /// `enabled`. /// /// This context manager is thread-local; it will not affect computation /// in other threads. /// /// \param enabled: Flag whether to enable grad (``true``), or disable /// (``false``). This can be used to conditionally enable /// gradients. /// /// Example: /// @code /// auto x = torch::tensor({1.}, torch::requires_grad()); /// { /// torch::AutoGradMode enable_grad(true); /// auto y = x * 2; /// std::cout << y.requires_grad() << std::endl; // prints `true` /// } /// { /// torch::AutoGradMode enable_grad(false); /// auto y = x * 2; /// std::cout << y.requires_grad() << std::endl; // prints `false` /// } /// @endcode using AutoGradMode = at::AutoGradMode; /// Sets the global random seed for all newly created CPU and CUDA tensors. using at::manual_seed; // Called during new thread initialization using at::init_num_threads; // Returns the number of threads used in parallel region. using at::get_num_threads; // Sets the number of threads to be used in parallel region. using at::set_num_threads; // Returns the number of threads used for inter-op parallelism. using at::get_num_interop_threads; // Sets the number of threads to be used for inter-op parallelism. using at::set_num_interop_threads; // Returns true if both t1, t2 are undefined or both are defined and equal inline bool equal_if_defined(const Tensor& t1, const Tensor& t2) { return ( (!t1.defined() && !t2.defined()) || (t1.defined() && t2.defined() && torch::equal(t1, t2))); } // RecordFunction API using at::addGlobalCallback; using at::addThreadLocalCallback; using at::CallbackHandle; using at::clearCallbacks; using at::clearGlobalCallbacks; using at::clearThreadLocalCallbacks; using at::DisableRecordFunctionGuard; using at::enableRecordFunction; using at::hasCallbacks; using at::hasGlobalCallbacks; using at::hasThreadLocalCallbacks; using at::isRecordFunctionEnabled; using at::RecordFunction; using at::RecordFunctionCallback; using at::RecordFunctionGuard; using at::removeCallback; } // namespace torch // NOLINTEND(misc-unused-using-decls) ```
============================================================================================================================================ SOURCE CODE FILE: version.h LINES: 1 SIZE: 0.81 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\version.h ENCODING: utf-8 ```h #pragma once /// Indicates the major version of LibTorch. #define TORCH_VERSION_MAJOR 2 /// Indicates the minor version of LibTorch. #define TORCH_VERSION_MINOR 7 /// Indicates the patch version of LibTorch. #define TORCH_VERSION_PATCH 0 /// Indicates the ABI version tag of LibTorch. #define TORCH_VERSION_ABI_TAG 0 /// Indicates the version of LibTorch as a string literal. #define TORCH_VERSION \ "2.7.0" /// Indicates the ABI version of LibTorch as a single uint64. /// [ byte ][ byte ][ byte ][ byte ][ byte ][ byte ][ byte ][ byte ] /// [ MAJ ][ MIN ][ PATCH][ ABI TAG ] #define TORCH_ABI_VERSION \ (uint64_t)TORCH_VERSION_MAJOR << 56 | \ (uint64_t)TORCH_VERSION_MINOR << 48 | \ (uint64_t)TORCH_VERSION_PATCH << 40 | \ TORCH_VERSION_ABI_TAG << 0 ```
======================================================================================================================================== SOURCE CODE FILE: xpu.h LINES: 1 SIZE: 0.61 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\api\include\torch\xpu.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <cstddef> #include <cstdint> namespace torch::xpu { /// Returns the number of XPU devices available. size_t TORCH_API device_count(); /// Returns true if at least one XPU device is available. bool TORCH_API is_available(); /// Sets the seed for the current GPU. void TORCH_API manual_seed(uint64_t seed); /// Sets the seed for all available GPUs. void TORCH_API manual_seed_all(uint64_t seed); /// Waits for all kernels in all streams on a XPU device to complete. void TORCH_API synchronize(int64_t device_index); } // namespace torch::xpu ```
=========================================================================================================================================== SOURCE CODE FILE: FunctionsManual.h LINES: 1 SIZE: 32.89 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\FunctionsManual.h ENCODING: utf-8 ```h #pragma once // NB: Must be at the top of file to avoid including the deprecated "math.h". // https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio #ifdef _MSC_VER #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #include <cmath> #endif #include <ATen/ATen.h> #include <torch/csrc/autograd/generated/Functions.h> namespace torch::autograd::generated::details { extern const char* kCudnnDoubleBackwardMsg; // A simple way to imperatively compute index ranges for slots // that have been flattened struct TORCH_API IndexRangeGenerator { IndexRange range(size_t range_size) { i += range_size; return {i - range_size, i}; } size_t size() { return i; } private: size_t i = 0; }; TORCH_API Tensor toNonOptFwGrad(const std::optional<Tensor>& t); TORCH_API Tensor toNonOptPrimal(const std::optional<Tensor>& t); TORCH_API Tensor toNonOptTensor(const std::optional<Tensor>& t); TORCH_API inline std::optional<Tensor> wrap_opt_if( const Tensor& t, const bool cond) { using OptTensor = std::optional<Tensor>; return cond ? OptTensor(t) : static_cast<OptTensor>(std::nullopt); } TORCH_API Tensor apply_loss_reduction(const Tensor& unreduced, int64_t reduction); TORCH_API bool any_variable_defined(const variable_list& variables); TORCH_API void copy_range( variable_list& out, IndexRange range, const at::Tensor& t); TORCH_API void copy_range( variable_list& out, IndexRange range, at::ArrayRef<at::Tensor> t); TORCH_API at::Tensor copysign_tensor_self_backward( const Tensor& grad, const Tensor& self, const Tensor& result); TORCH_API at::Tensor not_implemented(const char* name, const char* reason = ""); TORCH_API std::vector<Tensor> not_implemented_list( const char* name, const char* reason = ""); at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result); at::Tensor maybe_multiply(const at::Tensor& t, const at::Scalar& s); int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim); Tensor restore_reduced_dims( const Tensor& output, IntArrayRef dims, bool keepdim); Tensor scale_grad_by_count( const Tensor& grad, const Tensor& mask, IntArrayRef dims); at::Tensor norm_backward( const at::Tensor& grad, const at::Tensor& self, const std::optional<at::Scalar>& p_, const at::Tensor& norm); at::Tensor norm_backward( at::Tensor grad, const at::Tensor& self, const std::optional<at::Scalar>& p_, at::Tensor norm, at::IntArrayRef dim, bool keepdim); Tensor norm_jvp( const Tensor& self_p, const Tensor& self_t, const std::optional<Scalar>& p_, Tensor norm, IntArrayRef dim, bool keepdim); Tensor norm_jvp( const Tensor& grad, const Tensor& self, const std::optional<Scalar>& p_, Tensor norm); Tensor _nested_from_padded_backward( const Tensor& grad, const Tensor& input, const bool do_transform_0213); std::tuple<Tensor, Tensor, Tensor> linear_double_backward( const variable_list& grads, const Tensor& self, const Tensor& grad_output, const Tensor& weight); Tensor linalg_vector_norm_jvp( const Tensor& self_p, const Tensor& self_t, const Scalar& scalar_ord, Tensor norm, const at::OptionalIntArrayRef& opt_dim, bool keepdim); at::Tensor linalg_vector_norm_backward( at::Tensor grad, const at::Tensor& self, const at::Scalar& ord, at::Tensor norm, const at::OptionalIntArrayRef& opt_dim, bool keepdim); at::Tensor pow_backward( at::Tensor grad, const at::Tensor& self, const at::Scalar& exponent_); at::Tensor pow_backward_self( const at::Tensor& grad, const at::Tensor& self, const at::Tensor& exponent); at::Tensor pow_backward_exponent( const at::Tensor& grad, const at::Tensor& self, const at::Tensor& exponent, const at::Tensor& result); at::Tensor pow_backward_exponent( const at::Tensor& grad, const at::Scalar& base, const at::Tensor& exponent, const at::Tensor& result); at::Tensor angle_backward(const at::Tensor& grad, const at::Tensor& self); template <typename T> at::Tensor mul_tensor_backward(const Tensor& grad, T other, ScalarType self_st); template <typename T> at::Tensor div_tensor_self_backward( const Tensor& grad, T other, ScalarType self_st, const std::optional<std::string_view>& rounding_mode = std::nullopt); at::Tensor div_tensor_other_backward( const Tensor& grad, const Tensor& self, const Tensor& other, const std::optional<std::string_view>& rounding_mode = std::nullopt); at::Tensor mvlgamma_backward( const at::Tensor& grad, const at::Tensor& self, int64_t p); at::Tensor permute_backwards(const at::Tensor& grad, at::IntArrayRef fwd_dims); at::Tensor rad2deg_backward(const at::Tensor& grad); at::Tensor deg2rad_backward(const at::Tensor& grad); at::Tensor unsqueeze_multiple( const at::Tensor& t, at::OptionalIntArrayRef opt_dim, size_t n_dims); at::Tensor sum_backward( const at::Tensor& grad, at::SymIntArrayRef sizes, at::OptionalIntArrayRef opt_dims, bool keepdim); at::Tensor sum_backward( const at::Tensor& grad, c10::SymIntArrayRef sizes, c10::IntArrayRef dims, bool keepdim); at::Tensor nansum_backward( const at::Tensor& grad, const at::Tensor& self, at::OptionalIntArrayRef dims, bool keepdim); std::vector<int64_t> reverse_list(const at::IntArrayRef list); std::vector<c10::SymInt> reverse_list_symint(const c10::SymIntArrayRef list); at::Tensor reverse_dim(const at::Tensor& t, int64_t dim); at::Tensor prod_safe_zeros_backward( const at::Tensor& grad, const at::Tensor& inp, int64_t dim); at::Tensor prod_backward( const at::Tensor& grad, const at::Tensor& input, const at::Tensor& result); at::Tensor prod_backward( at::Tensor grad, const at::Tensor& input, at::Tensor result, int64_t dim, bool keepdim); at::Tensor solve_jvp( const Tensor& X, const Tensor& A, const Tensor& dA, const Tensor& dB); at::Tensor solve_backward_self( const at::Tensor& grad, const at::Tensor& self, const at::Tensor& A); at::Tensor solve_backward_A( const at::Tensor& grad, const at::Tensor& self, const at::Tensor& A, const at::Tensor& solution); at::Tensor cumsum_backward(const at::Tensor& grad, int64_t dim); at::Tensor logsumexp_backward( at::Tensor grad, const at::Tensor& self, at::Tensor result, at::IntArrayRef dim, bool keepdim); at::Tensor logsumexp_jvp( const at::Tensor& self_p, const at::Tensor& self_t, IntArrayRef dim, bool keepdim); at::Tensor safe_logsumexp_jvp( const at::Tensor& self_p, const at::Tensor& self_t, IntArrayRef dim, bool keepdim); at::Tensor logcumsumexp_backward( at::Tensor grad, const at::Tensor& self, const at::Tensor& result, int64_t dim); at::Tensor logcumsumexp_jvp( const at::Tensor& self_p, const at::Tensor& self_t, int64_t dim); at::Tensor unbind_backward(const variable_list& grads, int64_t dim); at::Tensor unbind_backward_nested( const variable_list& grads, const Tensor& nt_sizes, int64_t dim, const at::TensorOptions& options); at::Tensor unbind_backward_nested_jagged( const variable_list& grads, const Tensor& self, int64_t dim); at::Tensor unsqueeze_to(const at::Tensor& self, c10::SymIntArrayRef sym_sizes); at::Tensor unsqueeze_to( const at::Tensor& self, int64_t dim, c10::SymIntArrayRef sym_sizes); at::Tensor unsqueeze_to( const at::Tensor& self, IntArrayRef dim, c10::SymIntArrayRef sym_sizes); std::vector<at::Tensor> cat_tensors_backward( const at::Tensor& grad, const std::vector<std::vector<c10::SymInt>>& sizes, const std::vector<ScalarType>& dtypes, int64_t dim); std::vector<at::Tensor> stack_tensors_backward( const at::Tensor& grad, int64_t dim, const std::vector<ScalarType>& dtypes); std::vector<at::Tensor> block_diag_backward( const at::Tensor& grad, const std::vector<std::vector<int64_t>>& sizes, const std::vector<ScalarType>& dtypes); at::Tensor clamp_backward( const at::Tensor& grad, const at::Tensor& self, const std::optional<at::Scalar>& min, const std::optional<at::Scalar>& max); at::Tensor clamp_backward( const at::Tensor& grad, const at::Tensor& self, const at::Tensor& min, const at::Tensor& max); std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max( const at::Tensor& grad, const at::Tensor& self, const at::Tensor& min, const at::Tensor& max, const std::array<bool, 2>&); at::Tensor clamp_jvp( const Tensor& self_p, const Tensor& self_t, const Tensor& min_p, const Tensor& min_t, const Tensor& max_p, const Tensor& max_t); at::SymIntArrayRef strides_or_error( const Tensor& input, std::string_view const& input_name); at::Tensor mm_mat1_backward( const Tensor& grad, const Tensor& mat2, at::SymIntArrayRef mat1_sizes, at::SymIntArrayRef mat1_strides, c10::Layout mat1_layout, const Scalar& alpha); at::Tensor mm_mat2_backward( const at::Tensor& grad, const at::Tensor& mat1, at::SymIntArrayRef sizes, at::SymIntArrayRef strides, c10::Layout layout, const at::Scalar& alpha); at::Tensor mm_mat1_sparse_backward( const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2, const at::Scalar& alpha); std::tuple<Tensor, Tensor, Tensor> sparse_sampled_addmm_backward( const Tensor& grad, const Tensor& self, const std::optional<Tensor>& mat1, const std::optional<Tensor>& mat2, const Scalar& alpha, const Scalar& beta, const std::array<bool, 3>& grad_input_mask); at::Tensor sparse_mask_backward( const at::Tensor& grad, const at::Tensor& mask, c10::Layout self_layout); at::Tensor sparse_sparse_matmul_backward( const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2, int64_t grad_order); at::Tensor renorm_backward( const at::Tensor& grad, const at::Tensor& self, const at::Scalar& p, int64_t dim, const at::Scalar& maxnorm); at::Tensor renorm_jvp( const at::Tensor& self_p, const at::Tensor& self_t, const at::Scalar& p, int64_t dim, const at::Scalar& maxnorm); at::Tensor repeat_backward( at::Tensor grad, at::SymIntArrayRef repeats, at::SymIntArrayRef input_shape); at::Tensor _fused_dropout_backward( const at::Tensor& grad, const at::Tensor& mask, double p1m); at::Tensor infinitely_differentiable_native_dropout_backward( const at::Tensor& grad, const at::Tensor& mask, double scale); at::Tensor native_dropout_double_backward( const at::Tensor& ggI, const at::Tensor& grad, const at::Tensor& mask, double scale); at::Tensor evenly_distribute_backward( const at::Tensor& grad, const at::Tensor& input, const at::Tensor& value); Tensor sgn_backward(const Tensor& x, const Tensor& gx, const Tensor& sgn); Tensor masked_fill_backward(const Tensor& grad, const Tensor& mask); at::Tensor var_backward( at::Tensor grad, const at::Tensor& self, at::OptionalIntArrayRef dim, const std::optional<c10::Scalar>& correction, bool keepdim); at::Tensor var_jvp( const at::Tensor& self_t, const at::Tensor& self_p, const at::Tensor& result, at::OptionalIntArrayRef dim_opt, const std::optional<c10::Scalar>& correction, bool keepdim); at::Tensor std_backward( const at::Tensor& result, const at::Tensor& grad, const at::Tensor& self, at::OptionalIntArrayRef dim, const std::optional<c10::Scalar>& correction, bool keepdim); Tensor mean_backward( const Tensor& grad, c10::SymIntArrayRef shape, at::OptionalIntArrayRef opt_dim, c10::SymInt numel, bool keepdim); Tensor var_mean_backward( const Tensor& gvar, const Tensor& gmean, const Tensor& self, at::OptionalIntArrayRef dim_opt, const std::optional<c10::Scalar>& correction, bool keepdim); Tensor std_mean_backward( const Tensor& gstd, const Tensor& gmean, const Tensor& self, const Tensor& std, at::OptionalIntArrayRef dim_opt, const std::optional<c10::Scalar>& correction, bool keepdim); at::Tensor cholesky_backward( const at::Tensor& grad, bool upper, const at::Tensor& L); at::Tensor cholesky_jvp( const at::Tensor& input_tangent, const at::Tensor& L, bool upper); at::Tensor cholesky_inverse_backward( const at::Tensor& grad, const at::Tensor& L, bool upper, const at::Tensor& inverse); at::Tensor cholesky_inverse_jvp( const at::Tensor& F, const at::Tensor& dF, const at::Tensor& X, bool upper); Tensor pinv_jvp(const Tensor& A, const Tensor& pinvA, const Tensor& dA); Tensor pinv_backward(const Tensor& grad, const Tensor& pinvA, const Tensor& A); Tensor chunk_backward_nested( const std::vector<torch::autograd::Variable>& grads, const Tensor& self, int64_t chunks, int64_t dim); at::Tensor split_with_sizes_backward( const std::vector<torch::autograd::Variable>& grads, c10::SymIntArrayRef split_sizes, int64_t dim, c10::SymIntArrayRef sizes, const at::TensorOptions& options); at::Tensor _nested_split_with_sizes_backward( const std::vector<torch::autograd::Variable>& grads, c10::SymIntArrayRef split_sizes, int64_t dim, const Tensor& nt_sizes, const at::TensorOptions& options); at::Tensor split_backward( const std::vector<torch::autograd::Variable>& grads, const c10::SymInt& split_size, int64_t dim, c10::SymIntArrayRef sizes, const at::TensorOptions& options); at::Tensor max_pool_double_backward( const at::Tensor& grad, const at::Tensor& indices, int dim); at::Tensor error_for_max_pool2d_double_backward(); at::Tensor glu_double_backward( const at::Tensor& grad, const at::Tensor& grad_output, const at::Tensor& input, int64_t dim); at::Tensor glu_double_backward_grad_output( const at::Tensor& grad, const at::Tensor& input, int64_t dim); at::Tensor infinitely_differentiable_silu_backward( const at::Tensor& grad_output, const at::Tensor& input); at::Tensor infinitely_differentiable_mish_backward( const at::Tensor& grad_output, const at::Tensor& input); Tensor infinitely_differentiable_logit_backward( const Tensor& grad, const Tensor& self, std::optional<double> eps); Tensor binary_cross_entropy_target_backward( const Tensor& grad, const Tensor& self, const Tensor& target, const std::optional<Tensor>& weight, int64_t reduction); Tensor binary_cross_entropy_double_backward_target( const Tensor& grad, const Tensor& grad_output, const Tensor& self, const Tensor& target, const std::optional<Tensor>& weight, int64_t reduction); Tensor binary_cross_entropy_with_logits_backward( const Tensor& grad, const Tensor& input, const Tensor& target, const std::optional<Tensor>& weight_opt, const std::optional<Tensor>& pos_weight_opt, int64_t reduction); at::Tensor binary_cross_entropy_with_logits_target_backward( const at::Tensor& grad_output, const at::Tensor& self, const at::Tensor& target, const std::optional<at::Tensor>& weight, const std::optional<at::Tensor>& pos_weight, int64_t reduction); at::Tensor log_sigmoid_double_backward( const at::Tensor& grad, const at::Tensor& input); at::Tensor softmax_double_backward( const at::Tensor& grad, const at::Tensor& grad_output, int dim, const at::Tensor& output); at::Tensor binary_cross_entropy_double_backward( const at::Tensor& grad_output, const at::Tensor& grad, const at::Tensor& input, const at::Tensor& target, const std::optional<at::Tensor>& weight, int64_t reduction); at::Tensor binary_cross_entropy_double_backward_grad_output( const at::Tensor& grad, const at::Tensor& input, const at::Tensor& target, const std::optional<at::Tensor>& weight, int64_t reduction); at::Tensor smooth_l1_loss_double_backward( const at::Tensor& grad, const at::Tensor& input, const at::Tensor& target, int64_t reduction, double beta); at::Tensor huber_loss_double_backward( const at::Tensor& grad, const at::Tensor& input, const at::Tensor& target, int64_t reduction, double delta); at::Tensor huber_loss_double_backward_grad_output( const at::Tensor& grad, const at::Tensor& grad_output, const at::Tensor& input, const at::Tensor& target, int64_t reduction, double delta); at::Tensor mse_loss_double_backward( const at::Tensor& grad, const at::Tensor& input, int64_t reduction); at::Tensor soft_margin_loss_double_backward( const at::Tensor& grad, const at::Tensor& input, const at::Tensor& target, int64_t reduction); at::Tensor soft_margin_loss_double_backward_grad_output( const at::Tensor& grad, const at::Tensor& grad_output, const at::Tensor& input, const at::Tensor& target, int64_t reduction); at::Tensor softplus_double_backward( const at::Tensor& grad, const at::Tensor& input, const at::Scalar& beta, const at::Scalar& threshold); std::tuple<at::Tensor, at::Tensor> slogdet_jvp( const at::Tensor& LU, const at::Tensor& pivots, const at::Tensor& dA, const at::Tensor& sign, const bool use_A_T); at::Tensor slogdet_backward( const at::Tensor& grad_sign, const at::Tensor& grad_logabsdet, const at::Tensor& A, const at::Tensor& signdet, const at::Tensor& LU, const at::Tensor& pivots); at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self); at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self); at::Tensor sparse_constructor_values_backward( const at::Tensor& sparse_grad_out, const at::Tensor& indices); at::Tensor embedding_dense_double_backward_symint( const at::Tensor& grad, const at::Tensor& indices, const c10::SymInt& padding_idx); at::Tensor index_backward( at::Tensor zeros_like_self, const torch::List<std::optional<Tensor>>& indices, const at::Tensor& grad); at::Tensor _cudnn_ctc_loss_backward( const at::Tensor& grad_out, const at::Tensor& loss, const at::Tensor& raw_grad, bool zero_infinity); at::Tensor elu_double_backward( const Tensor& grad, const Tensor& grad_output, const Scalar& alpha, const Scalar& scale, const Scalar& input_scale, bool is_result, const Tensor& self_or_result); Tensor svd_backward( const Tensor& gU, const Tensor& gS, const Tensor& gVh, const Tensor& U, const Tensor& S, const Tensor& Vh); std::tuple<Tensor, Tensor, Tensor> linalg_svd_jvp( const Tensor& dA, const Tensor& U, const Tensor& S, const Tensor& Vh, const bool full_matrices); Tensor slice_backward_wrapper( const at::Tensor& grad, const c10::SymIntArrayRef& input_sizes, int64_t dim, std::optional<c10::SymInt> start, std::optional<c10::SymInt> end, c10::SymInt step); std::tuple<Tensor, Tensor> linalg_eig_jvp( const Tensor& dA, const Tensor& L, const Tensor& V, const bool is_hermitian); Tensor linalg_eig_backward( const Tensor& gL, const Tensor& gV, const Tensor& L, const Tensor& V, const bool is_hermitian, const bool symeig_eigenvectors = true); Tensor linalg_lstsq_solution_jvp( const Tensor& A, const Tensor& B_, const Tensor& dA, const Tensor& dB_); Tensor linalg_lstsq_residuals_jvp( const Tensor& A, const Tensor& B_, const Tensor& dA, const Tensor& dB_, const Tensor& X_, const Tensor& L); std::tuple<Tensor, Tensor> triangular_solve_backward( const Tensor& grad_x, const Tensor& grad_m, const Tensor& b, const Tensor& a, const Tensor& x, const bool upper, const bool transpose, const bool unitriangular, std::array<bool, 2> output_mask); Tensor triangular_solve_jvp( const Tensor& X, const Tensor& A, const Tensor& dA, const Tensor& dB, const bool upper, const bool transpose, const bool unitriangular); Tensor linalg_solve_triangular_forward_AD( const Tensor& A_t, const Tensor& B_t, const Tensor& A, const Tensor& X, const bool upper, const bool left, const bool unitriangular); std::tuple<Tensor, Tensor> linalg_solve_triangular_backward( const Tensor& grad, const Tensor& A, const Tensor& X, const bool upper, const bool left, const bool unitriangular, std::array<bool, 2> output_mask); std::tuple<Tensor, Tensor, Tensor> _trilinear_backward( const Tensor& grad_out, const std::optional<Tensor>& i1, const std::optional<Tensor>& i2, const std::optional<Tensor>& i3, IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, IntArrayRef sumdim, std::array<bool, 3> grad_mask); std::tuple<Tensor, Tensor> linalg_qr_jvp( const Tensor& dA, const Tensor& Q, const Tensor& R, const std::string_view mode); Tensor linalg_qr_backward( const Tensor& gQ, const Tensor& gR, const Tensor& Q, const Tensor& R, const std::string_view mode); Tensor linalg_matrix_exp_differential( const Tensor& self, const Tensor& grad, bool adjoint); std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward( const Tensor& input, const std::optional<Tensor>& gamma, const Tensor& ggI, const Tensor& ggG, const Tensor& ggB, const Tensor& gO, const std::optional<Tensor>& running_mean, const std::optional<Tensor>& running_var, bool training, double eps, const std::optional<Tensor>& save_mean, const std::optional<Tensor>& save_invstd, std::array<bool, 3> output_mask); std::tuple<Tensor, Tensor> _euclidean_dist_backward( const Tensor& grad, const Tensor& x1, const Tensor& x2, const Tensor& res); Tensor fft_backward( const Tensor& self, const Tensor& grad, int64_t signal_ndim, bool complex_input, bool complex_output, bool inverse, IntArrayRef checked_signal_sizes, int64_t normalization, bool onesided, IntArrayRef output_sizes); Tensor fft_r2c_backward( const Tensor& grad, at::IntArrayRef dim, int64_t normalization, bool onesided, const c10::SymInt& last_dim_size); Tensor fft_c2r_backward( const Tensor& grad, IntArrayRef dim, int64_t normalization); Tensor constant_pad_nd_backward(const Tensor& grad, c10::SymIntArrayRef pad); std::tuple<Tensor, Tensor> cholesky_solve_backward( const Tensor& grad_x, const Tensor& self, const Tensor& input2, const Tensor& result, const bool upper, std::array<bool, 2> output_mask); Tensor cholesky_solve_jvp( const Tensor& X, const Tensor& U, const Tensor& dU, const Tensor& dB, const bool upper); std::tuple<Tensor, Tensor, Tensor> infinitely_differentiable_native_group_norm_backward( const Tensor& dY, const Tensor& dmean, const Tensor& drstd, const Tensor& X, const Tensor& mean, const Tensor& rstd, const std::optional<Tensor>& gamma, c10::SymInt N, const c10::SymInt& C, c10::SymInt HxW, int64_t group, double eps, std::array<bool, 3> grad_input_mask); Tensor gelu_double_backward( const Tensor& ggI, const Tensor& gO, const Tensor& input, std::string_view approximate); Tensor as_strided_backward( Tensor grad, const TensorGeometry& input_geometry, c10::SymIntArrayRef sizes, c10::SymIntArrayRef strides, const std::optional<c10::SymInt>& storage_offset_); Tensor as_strided_scatter_backward( const Tensor& grad, const TensorGeometry& input_geometry, const TensorGeometry& src_geometry, c10::SymIntArrayRef sizes, c10::SymIntArrayRef strides, std::optional<c10::SymInt> storage_offset); std::tuple<Tensor, Tensor> atan2_backward( const Tensor& grad, const Tensor& self, const Tensor& other, std::array<bool, 2> output_mask); Tensor amaxamin_jvp( const Tensor& x, const Tensor& dx, const Tensor& result, IntArrayRef dim, bool keepdim); std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward( const Tensor& input, const std::optional<Tensor>& gamma, const Tensor& ggI, const Tensor& ggG, const Tensor& ggB, const Tensor& gO, const Tensor& save_mean, const Tensor& save_invstd, c10::SymIntArrayRef normalized_shape, std::array<bool, 3> output_mask); std::tuple<Tensor, Tensor> householder_product_backward( const Tensor& grad, const Tensor& result, const Tensor& input, const Tensor& tau, const bool flip_order = false); Tensor householder_product_jvp( const Tensor& dV, const Tensor& dtau, const Tensor& prod, const Tensor& V, const Tensor& tau); std::tuple<Tensor, Tensor, Tensor> ormqr_backward( const Tensor& grad, const Tensor& result, const Tensor& self, const Tensor& tau, const Tensor& other, bool left, bool transpose, std::array<bool, 3> grad_output_mask); std::tuple<Tensor, Tensor> polar_backward( const Tensor& grad, const Tensor& result); Tensor i1_backward( const Tensor& grad, const Tensor& self, const Tensor& result); Tensor i1e_backward( const Tensor& grad, const Tensor& self, const Tensor& result); Tensor linalg_lu_solve_LU( const Tensor& grad, const Tensor& LU, const Tensor& pivots, const Tensor& X, const bool left, const bool adjoint); Tensor linalg_lu_solve_jvp( const Tensor& X, const Tensor& LU, const Tensor& pivots, const Tensor& dLU, const Tensor& dB, const bool left, const bool adjoint); std::tuple<Tensor, Tensor> linalg_solve_backward( const Tensor& gX, const Tensor& X, const Tensor& A, const Tensor& LU, const Tensor& pivots, const bool left, const bool B_requires_grad); Tensor linalg_solve_jvp( const Tensor& dA, const Tensor& dB, const Tensor& X, const Tensor& LU, const Tensor& pivots, const bool left, const bool use_A_T); Tensor lu_unpack_backward( const Tensor& L_grad, const Tensor& U_grad, const c10::SymInt& m, const c10::SymInt& n); Tensor linalg_det_backward( const Tensor& grad, const Tensor& det, const Tensor& A, const Tensor& LU, const Tensor& pivots); Tensor linalg_det_jvp( const Tensor& dA, const Tensor& det, const Tensor& LU, const Tensor& pivots, const bool use_A_T); std::tuple<Tensor, Tensor> linalg_lstsq_backward( const Tensor& gX_, const Tensor& gL, const Tensor& A, const Tensor& B_, const Tensor& X_, const std::array<bool, 2>& grad_input_mask); Tensor linalg_lu_backward( const Tensor& L_grad, const Tensor& U_grad, const Tensor& P, const Tensor& L, const Tensor& U, const bool pivot); std::tuple<Tensor, Tensor> linalg_lu_jvp( const Tensor& dA, const Tensor& P, const Tensor& L, const Tensor& U, const bool pivot); Tensor lu_factor_ex_backward( const Tensor& grad, const Tensor& LU, const Tensor& pivs, const bool pivot); Tensor lu_factor_ex_jvp( const Tensor& dX, const Tensor& LU, const Tensor& pivs, const bool pivot); Tensor batch_norm_jvp( const Tensor& input_p, const Tensor& input_t, const Tensor& weight_p, const Tensor& weight_t, const Tensor& bias_p, const Tensor& bias_t, const std::optional<Tensor>& running_mean, const std::optional<Tensor>& running_var, const Tensor& saved_mean, const Tensor& saved_invstd, bool train, double eps); Tensor layer_norm_jvp( const Tensor& input_p, const Tensor& input_t, const Tensor& weight_p, const Tensor& weight_t, const Tensor& bias_p, const Tensor& bias_t, const Tensor& saved_mean, const Tensor& saved_invstd, c10::SymIntArrayRef normalized_shape); Tensor group_norm_jvp( const Tensor& input_p, const Tensor& input_t, const Tensor& weight_p, const Tensor& weight_t, const Tensor& bias_p, const Tensor& bias_t, const Tensor& saved_mean, const Tensor& saved_invstd, int64_t groups); Tensor group_norm_mean_jvp( const Tensor& input_t, const Tensor& mean_p, int64_t groups); Tensor group_norm_invstd_jvp( const Tensor& input_p, const Tensor& input_t, const Tensor& mean_p, const Tensor& invstd_p, int64_t groups); Tensor convolution_jvp( const Tensor& input_p, const Tensor& input_t, const Tensor& weight_p, const Tensor& weight_t, const Tensor& bias_p, const Tensor& bias_t, at::SymIntArrayRef stride, at::SymIntArrayRef padding, at::SymIntArrayRef dilation, bool transposed, at::SymIntArrayRef output_padding, const c10::SymInt& groups); Tensor _convolution_jvp( const Tensor& input_p, const Tensor& input_t, const Tensor& weight_p, const Tensor& weight_t, const Tensor& bias_p, const Tensor& bias_t, at::SymIntArrayRef stride, at::SymIntArrayRef padding, at::SymIntArrayRef dilation, bool transposed, at::SymIntArrayRef output_padding, const c10::SymInt& groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32); Tensor convolution_backward_jvp_grad_bias( const Tensor& grad_out_t, const Tensor& grad_bias); Tensor cat_jvp(const at::ITensorListRef& tensors, int64_t dim); Tensor block_diag_jvp(at::TensorList tensors); Tensor stack_jvp(at::TensorList tensors, int64_t dim); Tensor cumprod_jvp( const Tensor& self_t, const Tensor& self_p, const Tensor& result, int dim); Tensor gather_with_keepdimed_indices( const Tensor& input, int64_t dim, const Tensor& indices, bool keepdim); Tensor evenly_read_jvp( const Tensor& fw_grad, const Tensor& input, const Tensor& value); Tensor warn_backwards(const Tensor& grad_output); std::tuple<Tensor, Tensor> _cudnn_convolution_backward( const at::Tensor& self, const at::Tensor& grad_output, const at::Tensor& weight, at::SymIntArrayRef padding, at::SymIntArrayRef output_padding, at::SymIntArrayRef stride, at::SymIntArrayRef dilation, bool transposed, c10::SymInt groups, ::std::array<bool, 2> output_mask); Tensor scatter_reduce_jvp( const Tensor& self_p, const Tensor& self_t, int dim, const Tensor& index, const Tensor& src_p, const Tensor& src_t, std::string_view reduce, bool include_self, const Tensor& result); std::tuple<Tensor, Tensor> scatter_reduce_backward( const Tensor& grad, const Tensor& self, int dim, const Tensor& index, const Tensor& src, std::string_view reduce, bool include_self, const Tensor& result); Tensor _to_copy_backward( const Tensor& grad, const c10::TensorOptions& self_options); std::tuple<Tensor, Tensor> index_reduce_backward( const Tensor& grad, const Tensor& self, int dim, const Tensor& index, const Tensor& source, std::string_view reduce, bool include_self, const Tensor& result); Tensor take_backward( const Tensor& grad, const Tensor& self, const Tensor& indices); Tensor to_sparse_backward( const Tensor& grad, const c10::Layout self_layout, const c10::OptionalArrayRef<c10::SymInt>& self_blocksize); std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> mkldnn_rnn_layer_differentiable_backward( const Tensor& input, const Tensor& weight0, const Tensor& weight1, const Tensor& weight2, const Tensor& weight3, const Tensor& hx_, const Tensor& cx_tmp, const Tensor& output, const Tensor& hy_, const Tensor& cy_, const std::optional<Tensor>& grad_output_r_opt, const std::optional<Tensor>& grad_hy_r_opt, const std::optional<Tensor>& grad_cy_r_opt, bool reverse, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool train, bool bidirectional, at::IntArrayRef batch_sizes, bool batch_first, const at::Tensor& workspace); Tensor values_backward(const Tensor& grad, const Tensor& self); } // namespace torch::autograd::generated::details ```
========================================================================================================================================= SOURCE CODE FILE: InferenceMode.h LINES: 1 SIZE: 0.16 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\InferenceMode.h ENCODING: utf-8 ```h #pragma once #include <c10/core/InferenceMode.h> #include <torch/csrc/Export.h> namespace torch::autograd { using InferenceMode = c10::InferenceMode; } ```
============================================================================================================================================= SOURCE CODE FILE: VariableTypeUtils.h LINES: 2 SIZE: 14.66 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\VariableTypeUtils.h ENCODING: utf-8 ```h #pragma once #include <c10/util/irange.h> #include <ATen/core/boxing/KernelFunction.h> #include <ATen/core/dispatch/Dispatcher.h> #include <torch/csrc/autograd/edge.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/functions/basic_ops.h> #include <torch/csrc/autograd/functions/tensor.h> #include <torch/csrc/autograd/grad_mode.h> #include <torch/csrc/autograd/saved_variable.h> #include <torch/csrc/autograd/variable.h> #include <torch/csrc/autograd/functions/utils.h> #include <torch/csrc/autograd/jit_decomp_interface.h> #include <torch/csrc/utils/variadic.h> #include <cstddef> #include <functional> #include <memory> #include <utility> #include <vector> #ifdef _MSC_VER #ifdef Type #undef Type #endif #endif namespace torch::autograd { enum class can_mutate_inplace_result { success, non_default_backward_view, view_of_leaf, is_leaf, }; // The requires_grad argument is used to know if the inplace operation needs // gradient to be setup for it. // In particular, we can have tensor.requires_grad() != requires_grad when // writing a Tensor that requires gradients inplace into a Tensor that does not // require gradients: a = torch.rand(2) b = torch.rand(2, requires_grad=True) // a.copy_(b) inline can_mutate_inplace_result can_mutate_inplace( const at::Tensor& tensor, bool requires_grad) { if (!requires_grad || !GradMode::is_enabled()) { return can_mutate_inplace_result::success; } auto diff_view_meta = impl::get_view_autograd_meta(tensor); if (diff_view_meta && diff_view_meta->has_bw_view()) { if (diff_view_meta->get_creation_meta() != CreationMeta::DEFAULT) { return can_mutate_inplace_result::non_default_backward_view; } if (tensor.requires_grad() && tensor._base().is_leaf()) { return can_mutate_inplace_result::view_of_leaf; } } if (tensor.requires_grad() && tensor.is_leaf()) { return can_mutate_inplace_result::is_leaf; } return can_mutate_inplace_result::success; } inline void check_inplace(const at::Tensor& tensor, bool requires_grad) { switch (can_mutate_inplace(tensor, requires_grad)) { case can_mutate_inplace_result::success: return; case can_mutate_inplace_result::non_default_backward_view: { return handle_view_on_rebase(impl::get_view_autograd_meta(tensor)); } case can_mutate_inplace_result::view_of_leaf: TORCH_CHECK( false, "a view of a leaf Variable that requires grad is being used in an in-place operation."); break; case can_mutate_inplace_result::is_leaf: TORCH_CHECK( false, "a leaf Variable that requires grad is being used in an in-place operation."); break; } TORCH_INTERNAL_ASSERT(false); } inline void check_inplace(at::ITensorListRef tensors, bool requires_grad) { for (const auto& tensor : tensors) { check_inplace(tensor, requires_grad); } } inline void throw_error_out_requires_grad(const char* name) { TORCH_CHECK( false, name, "(): functions with out=... arguments don't support automatic differentiation, " "but one of the arguments requires grad."); } inline void throw_error_for_complex_autograd( const at::Tensor& tensor, const char* name) { if (tensor.requires_grad()) { TORCH_CHECK( !tensor.is_complex(), name, " does not support automatic differentiation for outputs with complex dtype."); } } inline void throw_error_if_base_and_tensor_are_same( const at::Tensor& base, const at::Tensor& tensor) { TORCH_CHECK( base.unsafeGetTensorImpl() != tensor.unsafeGetTensorImpl(), "View operation returned a tensor that is the same as the input base tensor. This " "is no longer allowed; you must explicitly create a new tensor (e.g., using .detach()). " "As a user, you could have made a mistake implementing __torch_dispatch__ or a Python " "operator decomposition or meta registration; if that's not the case, please " "report a bug to PyTorch or the backend you are using."); } inline void throw_error_for_complex_autograd( at::ITensorListRef tensorlist, const char* name) { for (const auto& tensor : tensorlist) { throw_error_for_complex_autograd(tensor, name); } } // TODO: Blegh, bare references inline void rebase_history(const Variable& var, std::shared_ptr<Node> grad_fn) { if (grad_fn && var.defined()) { grad_fn->add_input_metadata(var); impl::rebase_history(var, {std::move(grad_fn), 0}); } } inline void rebase_history( const std::vector<Variable>& vars, const std::shared_ptr<Node>& grad_fn) { if (grad_fn) { for (auto& var : vars) { if (var.defined()) { auto output_nr = grad_fn->add_input_metadata(var); impl::rebase_history(var, {grad_fn, output_nr}); } else { grad_fn->add_input_metadata(Node::undefined_input()); } } } } inline void increment_version(const at::Tensor& t) { impl::bump_version(t); } struct Flatten : IterArgs<Flatten> { Flatten(variable_list& out) : out(out) {} // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) variable_list& out; void operator()(const at::Tensor& x) { out.emplace_back(x); } void operator()(const std::optional<at::Tensor>& x) { if (x.has_value()) out.emplace_back(x.value()); } void operator()(at::ArrayRef<at::Tensor> xs) { out.insert(out.end(), xs.begin(), xs.end()); } }; template <typename... Args> inline variable_list flatten_tensor_args(Args&&... args) { variable_list out; out.reserve(count_tensors(std::forward<Args>(args)...)); Flatten(out).apply(std::forward<Args>(args)...); return out; // RVO } // See NOTE [ Autograd View Variables ] for details. inline at::Tensor as_view( const at::Tensor& base, const at::Tensor& tensor, bool is_bw_differentiable, bool is_fw_differentiable, std::unique_ptr<ViewFunc> view_func = nullptr, std::function<at::Tensor(const at::Tensor&)> rev_view_func = nullptr, CreationMeta creation_meta = CreationMeta::DEFAULT, bool allow_tensor_metadata_change = true) { // Note [View of inference tensor] // For inference tensor this code can only be hit outside InferenceMode // since ADInplaceOrView is in the default_included_set. // If Inplace and View were separate dispatch keys we can just put Inplace // in the default_included_set, so that view ops on inference tensor doesn't // have to go through as_view even outside InferenceMode. if (base.is_inference()) return tensor; auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(base); // To speed up the most common case, we specially handle when both the forward // and backward view infos are the same, and so a single shared ViewInfo can // be used for both of them. if ((!diff_view_meta || diff_view_meta->shared_view_info()) && is_bw_differentiable && is_fw_differentiable) { throw_error_if_base_and_tensor_are_same(base, tensor); if (diff_view_meta) { creation_meta = propagate_creation_meta( diff_view_meta->get_creation_meta(), creation_meta); return make_variable_differentiable_view( tensor, diff_view_meta->get_backward_view().chain( base, tensor, std::move(view_func), std::move(rev_view_func)), std::nullopt, /*shared_view_info*/ true, creation_meta, allow_tensor_metadata_change); } else { return make_variable_differentiable_view( tensor, ViewInfo(base, std::move(view_func), std::move(rev_view_func)), std::nullopt, /*shared_view_info*/ true, creation_meta, allow_tensor_metadata_change); } } // If they cannot be shared, create the required view infos std::optional<ViewInfo> new_bw_info; std::optional<ViewInfo> new_fw_info; if (is_bw_differentiable) { auto bw_view_func = view_func ? view_func->clone_and_set() : nullptr; if (diff_view_meta && diff_view_meta->has_bw_view()) { const auto& base_bw_info = diff_view_meta->get_backward_view(); new_bw_info = base_bw_info.chain( base, tensor, std::move(bw_view_func), rev_view_func); } else { new_bw_info = ViewInfo(base, std::move(bw_view_func), rev_view_func); } } else { TORCH_CHECK( creation_meta == CreationMeta::DEFAULT, "Non-backward differentiable views must have creation_meta=CreationMeta::DEFAULT"); } if (is_fw_differentiable) { // Check if base is a forward differentiable view if (diff_view_meta && diff_view_meta->has_fw_view()) { const auto& base_fw_info = diff_view_meta->get_forward_view(); new_fw_info = base_fw_info.chain( base, tensor, std::move(view_func), std::move(rev_view_func)); } else { new_fw_info = ViewInfo(base, std::move(view_func), std::move(rev_view_func)); } } if (is_fw_differentiable || is_bw_differentiable) { if (diff_view_meta && diff_view_meta->has_bw_view()) { creation_meta = propagate_creation_meta( diff_view_meta->get_creation_meta(), creation_meta); } throw_error_if_base_and_tensor_are_same(base, tensor); return make_variable_differentiable_view( tensor, std::move(new_bw_info), std::move(new_fw_info), /*shared_view_info*/ false, creation_meta, allow_tensor_metadata_change); } else { return make_variable_non_differentiable_view( base, tensor, allow_tensor_metadata_change); } } inline void check_no_requires_grad( const at::Tensor& tensor, const char* name, const char* fn_name = "", bool check_grad_mode = true) { TORCH_CHECK( !(tensor.defined() && tensor.requires_grad()) || !(check_grad_mode && GradMode::is_enabled()), "The function '", fn_name, "' is not differentiable with respect to argument '", name, "'. This input cannot have requires_grad True."); } inline void check_no_requires_grad( const std::optional<at::Tensor>& tensor, const char* name, const char* fn_name = "") { if (tensor.has_value()) { check_no_requires_grad(*tensor, name, fn_name); } } inline void check_no_requires_grad( at::ITensorListRef tensors, const char* name, const char* fn_name = "") { // GradMode check is expensive, so check it only once for TensorLists if (!GradMode::is_enabled()) { return; } for (auto& tensor : tensors) { check_no_requires_grad(tensor, name, fn_name, /*check_grad_mode*/ false); } } inline void check_no_requires_grad( const c10::List<std::optional<at::Tensor>>& tensors, const char* name, const char* fn_name = "") { // GradMode check is expensive, so check it only once for TensorLists if (!GradMode::is_enabled()) { return; } for (std::optional<at::Tensor> tensor : tensors) { if (tensor.has_value()) { check_no_requires_grad(*tensor, name, fn_name, /*check_grad_mode*/ false); } } } // Assumed that saved tensor lists are never inplace outputs inline std::vector<SavedVariable> make_saved_variable_list( at::ITensorListRef tensors, const bool is_output = false) { return fmap(tensors, [&is_output](const at::Tensor& tensor) -> SavedVariable { return SavedVariable{tensor, is_output /* is output */}; }); } // Assumed that saved tensor lists are never inplace outputs inline std::vector<SavedVariable> make_saved_variable_list( const c10::List<std::optional<at::Tensor>>& tensors, const bool is_output = false) { return fmap( tensors, [&is_output](const std::optional<at::Tensor>& tensor) -> SavedVariable { if (tensor.has_value()) { return SavedVariable{*tensor, is_output /* is output */}; } else { return SavedVariable{at::Tensor(), is_output /* is output */}; } }); } inline std::vector<std::vector<int64_t>> to_args_sizes( at::ITensorListRef tensors) { std::vector<std::vector<int64_t>> args_sizes(tensors.size()); size_t i = 0; for (const auto& t : tensors) { args_sizes[i++] = t.sizes().vec(); } return args_sizes; } inline std::vector<std::vector<c10::SymInt>> to_args_sizes_symint( at::ITensorListRef tensors) { std::vector<std::vector<c10::SymInt>> args_sizes(tensors.size()); size_t i = 0; for (const auto& t : tensors) { args_sizes[i++] = t.sym_sizes().vec(); } return args_sizes; } inline std::vector<c10::ScalarType> to_args_scalartypes( at::ITensorListRef tensors) { std::vector<c10::ScalarType> args_scalartypes(tensors.size()); size_t i = 0; for (const auto& t : tensors) { args_scalartypes[i++] = t.scalar_type(); } return args_scalartypes; } namespace impl { namespace { // If run_jit_decomposition were not a member function, we would be able // to pass this as a template parameter to c10::Boxedkernel::makeFromFunction. // However, member functions cannot be passed this way - instead we wrap our // call in this functor so it can be passed to c10::BoxedKernel::makeFromFunctor class WrapperFunctor final : public c10::OperatorKernel { public: WrapperFunctor(JitDecompInterface* impl) : impl_(impl) {} void operator()( const c10::OperatorHandle& op, c10::DispatchKeySet ks, torch::jit::Stack* stack) { impl_->run_jit_decomposition(op, stack); } JitDecompInterface* impl_; }; } // namespace template <class Return, class... Args> Return run_jit_decomposition_with_args_for_jvp( std::string_view name, const c10::OperatorHandle& opHandle, c10::DispatchKeySet dispatchKeySet, Args&&... args) { // see NOTE: [Jit Decomposition Interface] JitDecompInterface* impl = getJitDecompImpl(); TORCH_CHECK_NOT_IMPLEMENTED( impl && impl->has_jit_decomposition(opHandle.schema()), "Trying to use forward AD with ", name, " that does not support it because it has not been implemented yet.\nPlease file an issue " "to PyTorch at https://github.com/pytorch/pytorch/issues/new?template=feature-request.yml " "so that we can prioritize its implementation or submit a PR adding the implementation to " "derivatives.yaml"); return c10::KernelFunction::makeFromBoxedKernel( c10::BoxedKernel::makeFromFunctor( std::make_unique<WrapperFunctor>(impl))) .call<Return, Args...>( opHandle, dispatchKeySet, std::forward<Args>(args)...); } } // namespace impl } // namespace torch::autograd ```
======================================================================================================================================== SOURCE CODE FILE: anomaly_mode.h LINES: 1 SIZE: 1.75 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\anomaly_mode.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <memory> #include <string> namespace torch::autograd { // forward declaration of Node from function.h struct Node; struct TORCH_API AnomalyMode { static bool is_enabled() { return _enabled; } static bool should_check_nan() { return _check_nan; } static void set_enabled(bool enabled, bool check_nan = true) { _enabled = enabled; _check_nan = check_nan; } private: static bool _enabled; static bool _check_nan; }; /// A RAII guard that enables Anomaly Detection Mode. /// /// Anomaly detection mode is useful for debugging problems happening /// in the backward, such as unexpectedly modified tensors or NaNs /// occuring in the backward. /// /// The enabling of anomaly mode is global - as soon as there is one /// such guard, it is enabled for all computation and threads. It also /// comes with a significant performance penalty. /// /// Example: /// @code /// auto x = torch::tensor({1.}, torch::requires_grad()); /// { /// torch::autograd::DetectAnomalyGuard detect_anomaly; /// auto x = torch::tensor({5.0}, torch::requires_grad()); /// auto y = x * x; /// auto z = y * y; /// y += 1; /// z.backward(); /// } /// @endcode class TORCH_API DetectAnomalyGuard { public: DetectAnomalyGuard(bool check_nan = true); ~DetectAnomalyGuard(); private: bool prev_check_nan_; }; struct TORCH_API AnomalyMetadata { virtual ~AnomalyMetadata(); virtual void store_stack(); virtual void print_stack(const std::string& current_node_name); virtual void assign_parent(const std::shared_ptr<Node>& parent_node); private: std::string traceback_; std::shared_ptr<Node> parent_; }; } // namespace torch::autograd ```
==================================================================================================================================== SOURCE CODE FILE: autograd.h LINES: 1 SIZE: 5.29 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\autograd.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/variable.h> namespace torch::autograd { /// Computes the sum of gradients of given tensors with respect to graph leaves. /// /// The graph is differentiated using the chain rule. If any of ``tensors`` /// are non-scalar (i.e. their data has more than one element) and require /// gradient, then the Jacobian-vector product would be computed, in this case /// the function additionally requires specifying `grad_tensors`. It should be a /// sequence of matching length, that contains the "vector" in the /// Jacobian-vector product, usually the gradient of the differentiated function /// w.r.t. corresponding tensors /// (`torch::Tensor()` is an acceptable value for all tensors that don't need /// gradient tensors). /// /// This function accumulates gradients in the leaves - you might need to zero /// them before calling it. /// /// \param tensors Tensors of which the derivative will be computed. /// \param grad_tensors The "vector" in the Jacobian-vector product, usually /// gradients /// w.r.t. each element of corresponding tensors. `torch::Tensor()` values /// can be specified for scalar Tensors or ones that don't require grad. If /// a `torch::Tensor()` value would be acceptable for all grad_tensors, then /// this argument is optional. /// \param retain_graph If `false`, the graph used to compute the grad will be /// freed. /// Note that in nearly all cases setting this option to `true` is not /// needed and often can be worked around in a much more efficient way. /// Defaults to the value of `create_graph`. /// \param create_graph If `true`, graph of the derivative will be constructed, /// allowing /// to compute higher order derivative products. Defaults to `false`. /// \param inputs Inputs w.r.t. which the gradient will be accumulated into /// `at::Tensor::grad`. All other Tensors will be ignored. If not provided, /// the gradient is accumulated into all the leaf Tensors that were used to /// compute param `tensors`. // When inputs are provided and a given input is not a leaf, // the current implementation will call its grad_fn (even though it is not // strictly needed to get this gradients). It is an implementation detail // on which the user should not rely. See // https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for // more details. TORCH_API void backward( const variable_list& tensors, const variable_list& grad_tensors = {}, std::optional<bool> retain_graph = std::nullopt, bool create_graph = false, const variable_list& inputs = {}); /// Computes and returns the sum of gradients of outputs with respect to the /// inputs. /// /// ``grad_outputs`` should be a sequence of length matching ``output`` /// containing the "vector" in Jacobian-vector product, usually the pre-computed /// gradients w.r.t. each of the outputs. If an output doesn't require_grad, /// then the gradient can be ``torch::Tensor()``). /// /// \param outputs outputs of the differentiated function. /// \param inputs Inputs w.r.t. which the gradient will be /// returned (and not accumulated into ``at::Tensor::grad``). /// \param grad_outputs The "vector" in the Jacobian-vector product. /// Usually gradients w.r.t. each output. `torch::Tensor()` values can be /// specified for scalar Tensors or ones that don't require grad. If a /// `torch::Tensor()` value would be acceptable for all grad_tensors, then /// this argument is optional. Default: `{}`. /// \param retain_graph If ``false``, the graph used to compute the grad /// will be freed. Note that in nearly all cases setting this option to /// ``true`` is not needed and often can be worked around in a much more /// efficient way. Defaults to the value of ``create_graph``. /// \param create_graph If ``true``, graph of the derivative will /// be constructed, allowing to compute higher order derivative products. /// Default: ``false``. /// \param allow_unused If ``false``, specifying inputs that were not /// used when computing outputs (and therefore their grad is always zero) /// is an error. Defaults to ``false``. TORCH_API variable_list grad( const variable_list& outputs, const variable_list& inputs, const variable_list& grad_outputs = {}, std::optional<bool> retain_graph = std::nullopt, bool create_graph = false, bool allow_unused = false); namespace forward_ad { /// Creates a new dual level and returns its index. This level index should then /// be used to call into the other functions below. This API supports entering a /// new level before the previous one is exited. We call them nested forward AD /// levels. These can be used to compute higher order derivatives. TORCH_API uint64_t enter_dual_level(); /// Exits the given level. This will clear up all the gradients from this level /// and all dual Tensors that had gradients for this level will become regular /// Tensors again. This function can only be used to exit the innermost nesting /// level and so exiting must happen in reverse order compared to the entering /// that was done with the function above. TORCH_API void exit_dual_level(uint64_t level); } // namespace forward_ad } // namespace torch::autograd ```
============================================================================================================================================================= SOURCE CODE FILE: autograd_not_implemented_fallback.h LINES: 1 SIZE: 1.15 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\autograd_not_implemented_fallback.h ENCODING: utf-8 ```h #pragma once #include <torch/library.h> namespace torch::autograd { // Default DispatchKey::Autograd fallback for built-in operators. // Can be registered for custom operators. TORCH_API torch::CppFunction autogradNotImplementedFallback(); // Default DispatchKey::AdInplaceOrView fallback for built-in operators // Can be registered for custom operators. TORCH_API torch::CppFunction autogradNotImplementedInplaceOrViewFallback(); // Default DispatchKey::Autograd fallback for all other operators (i.e. custom // operators) TORCH_API torch::CppFunction basicAutogradNotImplementedFallback(); enum class AutogradFallbackMode { Nothing, // Fallback is a redispatch Warn, // Fallback raises a warning if backward is called Error, // Fallback raises an error if backward is called }; // Change the behavior of "basicAutogradNotImplementedFallback" // In Python this is: // - torch._C._set_autograd_fallback_mode(str) -> None // - torch._C._get_autograd_fallback_mode() -> str TORCH_API void setAutogradFallbackMode(AutogradFallbackMode mode); TORCH_API AutogradFallbackMode getAutogradFallbackMode(); } // namespace torch::autograd ```
==================================================================================================================================== SOURCE CODE FILE: cpp_hook.h LINES: 1 SIZE: 0.87 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\cpp_hook.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/function_hook.h> #include <functional> #include <memory> namespace torch::autograd { using hooks_list = std::vector<std::function<at::TensorBase(const at::TensorBase&)>>; struct CppFunctionTensorPreHook : public FunctionPreHook { CppFunctionTensorPreHook(std::shared_ptr<hooks_list> hooks, size_t value_idx); variable_list operator()(const variable_list& values) override; std::shared_ptr<hooks_list> hooks_; size_t value_idx_; }; struct CppFunctionSingleTensorPreHook : public FunctionPreHook { CppFunctionSingleTensorPreHook( std::function<at::TensorBase(const at::TensorBase&)> hook, size_t value_idx); variable_list operator()(const variable_list& values) override; std::function<at::TensorBase(const at::TensorBase&)> hook_; size_t value_idx_; }; } // namespace torch::autograd ```
=========================================================================================================================================== SOURCE CODE FILE: custom_function.h LINES: 1 SIZE: 21.42 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\custom_function.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/ivalue.h> #include <c10/core/SymInt.h> #include <c10/util/flat_hash_map.h> #include <c10/util/irange.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/variable.h> #include <torch/csrc/autograd/variable_info.h> #include <torch/csrc/dynamo/compiled_autograd.h> #include <vector> namespace torch::autograd { using optional_variable_list = std::vector<std::optional<Variable>>; using _jvp_fn_t = std::function<variable_list(variable_list, variable_list)>; using _view_as_self_fn_t = std::function<at::Tensor(at::Tensor)>; TORCH_API std::vector<std::optional<Variable>> _wrap_outputs( const variable_list& input_vars, const std::unordered_set<at::TensorImpl*>& non_differentiable, const std::unordered_set<at::TensorImpl*>& dirty_inputs, const at::ArrayRef<std::optional<Variable>> raw_outputs, const std::shared_ptr<Node>& cdata, const _jvp_fn_t& jvp_user_function, const std::unordered_set<at::TensorImpl*>& to_save_if_setup_context, const _view_as_self_fn_t& view_as_self_fn); TORCH_API void check_variable_result( const at::TensorBase& original, const at::TensorBase& result, const std::string& hook_name); // Get the return type of the forward function of the custom Function class X template <typename X, typename... Args> using forward_t = decltype(X::forward(nullptr, std::declval<Args>()...)); /// To use custom autograd operations, implement a Function subclass with /// static forward and backward functions: /// /// `forward` can take as many arguments as you want and should return either a /// variable list or a Variable. Use of any direct Variable arguments will be /// registered in the graph but no vectors/sets or any other data structures /// will be traversed. You can use std::optional<Tensor> as one of the arguments /// and it will be registered as a variable in the graph if the argument has a /// value. It should take a pointer to `torch::autograd::AutogradContext` as the /// first argument. Variables can be saved in the `ctx` using /// `ctx->save_for_backward` /// (see `torch::autograd::AutogradContext::save_for_backward`) and other data /// can be saved in the `ctx->saved_data` map /// (see `torch::autograd::AutogradContext::saved_data`) /// in the form of `<std::string, at::IValue>` pairs. /// /// `backward` should take a pointer to `torch::autograd::AutogradContext` /// and a variable list containing as many Variables as there were outputs from /// `forward` as arguments. It should return as many Variables as there were /// inputs with each of them containing the gradient w.r.t. its corresponding /// input. Variables saved in `forward` can be accessed with /// `ctx->get_saved_variables` (see /// `torch::autograd::AutogradContext::get_saved_variables`) and other saved /// data can be accessed from `ctx->saved_data`. /// To enable compiled autograd support (torch.compile for backward) for your /// custom autograd operation, you can set MyFunction::is_traceable /// (see Function::istraceable notes below). /// /// For example: /// ``` /// class MyFunction : public Function<MyFunction> { /// public: /// static constexpr bool is_traceable = true; /// /// static variable_list forward(AutogradContext *ctx, int n, Variable var) { /// // Save data for backward in context /// ctx->saved_data["n"] = n; /// var.mul_(n); /// // Mark var as modified by inplace operation /// ctx->mark_dirty({var}); /// return {var}; /// } /// /// static variable_list backward(AutogradContext *ctx, variable_list /// grad_output) { /// // Use data saved in forward /// auto n = ctx->saved_data["n"].toInt(); /// return {grad_output[0]*n}; /// } /// }; /// ``` /// /// To use `MyFunction`: /// ``` /// Variable x; /// auto y = MyFunction::apply(6, x); /// // Example backward call /// y[0].sum().backward(); /// ``` template <class T> struct TORCH_API Function { // We need to use a different template parameter than T here because T will // inherit from Function, and when Function<T> is instantiated, T::forward // is not declared yet. // The enable_if check is to ensure that the user doesn't explicitly provide // the parameter X. template <typename X = T, typename... Args> static auto apply(Args&&... args) -> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>>; // This flag is for an experimental feature: compiled autograd. Not all // built-in APIs are supported at the moment e.g. mark_dirty and // mark_non_differentiable. Before setting this flag to enable tracing for // your custom function <T>, you need to ensure that the backward function is // traceable i.e. any variables accessed in the backward other than the input // arguments must be handled in a similar manner to built-ins in // CppNode::compiled_args and CppNode::apply_with_saved. static constexpr bool is_traceable = false; }; /// Context to save information during `forward` that can be accessed in /// `backward` in custom autograd operations (see `torch::autograd::Function` /// for details). struct TORCH_API AutogradContext { AutogradContext() = default; AutogradContext(const AutogradContext& other) = delete; AutogradContext& operator=(const AutogradContext& other) = delete; AutogradContext(AutogradContext&& other) = delete; AutogradContext& operator=(AutogradContext&& other) = delete; ~AutogradContext() = default; AutogradContext(PackedArgs& packed_args); /// Can be used to save non-variable data for `backward`. ska::flat_hash_map<std::string, at::IValue> saved_data; /// Saves the list of variables for a future call to `backward`. This /// should be called at most once from inside of `forward`. void save_for_backward(variable_list to_save); /// Marks variables in the list as modified in an in-place operation. This /// should be called at most once from inside of `forward` and all arguments /// should be inputs. void mark_dirty(const variable_list& inputs); /// Marks outputs in the list as not requiring gradients. This should be /// called at most once from inside of `forward` and all arguments should be /// outputs. void mark_non_differentiable(const variable_list& outputs); // Sets whether undefined output grad tensors should be expanded to tensors // full of zeros before calling backward function. Default value is true. void set_materialize_grads(bool value); /// Get the list of variables that were saved in `forward` using /// `save_for_backward()`. Before returning them to the user, a check is made /// to ensure that they were not modified by any in-place operations. variable_list get_saved_variables() const; const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const; const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const; /// Expose the Node's `task_should_compute_output` method to the cpp /// custom autograd Function as `needs_input_grad`. bool needs_input_grad(size_t output_edge_index) const; bool needs_input_grad(std::initializer_list<IndexRange> idxs) const; private: std::unordered_set<at::TensorImpl*> non_differentiable_; std::unordered_set<at::TensorImpl*> dirty_inputs_; std::vector<torch::autograd::SavedVariable> saved_variables_; variable_list to_save_; bool materialize_grads_{true}; // The CppNode in the autograd graph that owns this AutogradContext. We need a // weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it // will always be alive when we want to use it. std::weak_ptr<Node> grad_fn_; bool has_freed_buffers_{false}; // Compiled autograd overrides saved_variables() and needs_input_grad(). // We store the values we want to return here. std::optional<variable_list> saved_variables_override_; std::optional<std::vector<bool>> needs_input_grad_override_; void save_variables(); template <class T> friend struct CppNode; template <class T> friend variable_list CppNode_apply_functional( variable_list&& inputs, AutogradContext& ctx_, const std::vector<bool>& is_variable_input_, const std::vector<VariableInfo>& output_info_, const std::string& name); }; template <typename T> inline variable_list CppNode_apply_functional( // NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved) variable_list&& inputs, AutogradContext& ctx_, const std::vector<bool>& is_variable_input_, const std::vector<VariableInfo>& output_info_, const std::string& name) { at::OptionalDeviceGuard _device_guard; auto num_inputs = inputs.size(); variable_list backward_inputs; backward_inputs.reserve(num_inputs); for (const auto i : c10::irange(num_inputs)) { if (inputs[i].defined() || !ctx_.materialize_grads_) { backward_inputs.emplace_back(std::move(inputs[i])); } else { backward_inputs.emplace_back(output_info_[i].zeros(_device_guard)); } } auto outputs = T::backward(&ctx_, backward_inputs); const auto num_forward_inputs = static_cast<int64_t>(is_variable_input_.size()); auto num_outputs = static_cast<int64_t>(outputs.size()); // Returning too many results is ok, but only as long as they're all // undefined. Truncate the result vector in that case. if (num_outputs > num_forward_inputs) { bool all_undef = true; for (const auto i : c10::irange(num_forward_inputs, num_outputs)) { all_undef &= (!outputs[i].defined()); } if (all_undef) { outputs.resize(num_forward_inputs); num_outputs = num_forward_inputs; } } if (num_outputs != num_forward_inputs) { std::string msg("function "); msg += name + " returned an incorrect number of gradients (expected "; msg += std::to_string(num_forward_inputs) + ", got "; msg += std::to_string(num_outputs) + ")"; throw std::runtime_error(msg); } variable_list results; results.reserve(num_outputs); for (const auto i : c10::irange(num_outputs)) { if (!is_variable_input_[i]) { if (outputs[i].defined()) { std::string msg("function "); msg += name + " returned a gradient different that is defined at position "; msg += std::to_string(i + 1) + ", std the corresponding forward input was not a Variable"; throw std::runtime_error(msg); } continue; } results.emplace_back(outputs[i]); } return results; } template <typename T> inline variable_list CppNode_apply_functional_ivalue( const variable_list& inputs, const std::vector<c10::IValue>& args) { auto packed_args = PackedArgs(args); auto ctx = AutogradContext(packed_args); auto output_info = packed_args.unpack<std::vector<VariableInfo>>(); auto is_variable_input = packed_args.unpack<std::vector<bool>>(); auto name = packed_args.unpack<std::string>(); return CppNode_apply_functional<T>( variable_list(inputs), ctx, is_variable_input, output_info, name); } // CppNode<T> is the Node in the autograd graph that represents the user defined // backward function for Function<T>. Calls to CppNode::apply are forward to // T::backward(). template <class T> struct CppNode : public Node { variable_list apply(variable_list&& inputs) override; AutogradContext ctx_; std::vector<bool> is_variable_input_; std::vector<VariableInfo> input_info_; std::vector<VariableInfo> output_info_; void release_variables() override; void set_ctx_grad_fn(const std::shared_ptr<Node>& node); void save_variables_to_ctx(); void compiled_args(CompiledNodeArgs& args) const override { // although neither of the 2 methods below have uniqueness guarantees // it is unlikely for them to collide at the same time args.collect(static_cast<uint64_t>(typeid(T).hash_code())); args.collect(std::string(typeid(T).name())); args.collect(ctx_.saved_data); TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty()); TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty()); args.collect( ctx_.saved_variables_, true); // always unpacked as output in eager TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty()); args.collect(ctx_.materialize_grads_); args.collect(ctx_.has_freed_buffers_); args.collect(is_variable_input_); args.collect(input_info_); args.collect(output_info_); } variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override { saved.before(ctx_.saved_data); TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty()); TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty()); saved.before(ctx_.saved_variables_); TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty()); saved.before(ctx_.materialize_grads_); saved.before(ctx_.has_freed_buffers_); saved.before(input_info_); saved.before(output_info_); PackedArgs packed_args; packed_args.pack_saved_data(ctx_.saved_data); variable_list saved_variables = ctx_.get_saved_variables(); packed_args.pack(saved_variables); packed_args.pack(ctx_.materialize_grads_); packed_args.pack(ctx_.has_freed_buffers_); std::vector<bool> needs_input_grad; { auto ptr = ctx_.grad_fn_.lock(); TORCH_INTERNAL_ASSERT(ptr); for (const auto i : c10::irange(ptr->next_edges().size())) { needs_input_grad.push_back(ptr->task_should_compute_output(i)); } } packed_args.pack(needs_input_grad); packed_args.pack(output_info_); packed_args.pack(is_variable_input_); packed_args.pack(name()); auto args = std::move(packed_args).vec(); auto output_metadata = torch::dynamo::autograd:: IValuePacker<std::vector<std::optional<InputMetadata>>>::pack( torch::dynamo::autograd::get_input_metadata(next_edges())); const auto& pyinterface = torch::dynamo::autograd::getPyCompilerInterface(); // Each time apply_with_saved is called, we bind a new function to Python. // This is because the schema might be different on compiled autograd cache // misses. An alternative is to pass the schema to Python so that it can be // an input to a function, but the schema can't be put into an FX graph // right now. std::vector<at::TypePtr> schema; schema.reserve(args.size()); for (const auto& ivalue : args) { if (ivalue.isTensor()) { schema.emplace_back(at::TensorType::get()); } else { schema.emplace_back(ivalue.type()); } } static_assert( std::is_same_v<std::remove_cv_t<decltype(T::is_traceable)>, bool>); auto fn_name = pyinterface->bind_function( saved.get_py_compiler(), std::string(typeid(T).name()), CppNode_apply_functional_ivalue<T>, schema, /*is_custom_function*/ true, /*is_traceable*/ T::is_traceable); auto results = pyinterface->call_function( saved.get_py_compiler(), "apply_functional", fn_name, inputs, args, output_metadata); saved.after(ctx_.saved_data); TORCH_INTERNAL_ASSERT(ctx_.non_differentiable_.empty()); TORCH_INTERNAL_ASSERT(ctx_.dirty_inputs_.empty()); saved.after(ctx_.saved_variables_); TORCH_INTERNAL_ASSERT(ctx_.to_save_.empty()); saved.after(ctx_.materialize_grads_); saved.after(ctx_.has_freed_buffers_); saved.after(input_info_); saved.after(output_info_); return results; } }; struct ExtractVariables : IterArgs<ExtractVariables> { // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) std::vector<bool>& is_var_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) variable_list& list_; ExtractVariables(std::vector<bool>& is_var, variable_list& list) : is_var_(is_var), list_(list) {} void operator()(const std::optional<at::Tensor>& x) { if (x.has_value() && x.value().defined()) { is_var_.push_back(true); list_.emplace_back(x.value()); } else { is_var_.push_back(false); } } void operator()(const at::Tensor& x) { is_var_.push_back(true); list_.emplace_back(x); } void operator()(const at::TensorList& list) { for (const at::Tensor& x : list) { is_var_.push_back(true); list_.emplace_back(x); } } template <typename T> void operator()(const T& x) { is_var_.push_back(false); } }; template <typename... Args> inline void extract_vars( std::vector<bool>& is_var, variable_list& list, Args&&... args) { ExtractVariables(is_var, list).apply(std::forward<Args>(args)...); } template <typename T> std::enable_if_t<std::is_same_v<T, variable_list>, T> to_output_type( std::vector<std::optional<Variable>>& output_list) { variable_list result; std::transform( output_list.begin(), output_list.end(), std::back_inserter(result), [](const std::optional<Variable>& var) { return *var; }); return result; } template <typename T> std::enable_if_t<std::is_same_v<T, Variable>, T> to_output_type( std::vector<std::optional<Variable>>& output_list) { return *output_list[0]; } inline std::vector<std::optional<Variable>> to_optional(Variable& output) { return std::vector<std::optional<Variable>>{output}; } inline std::vector<std::optional<Variable>> to_optional(variable_list& output) { std::vector<std::optional<Variable>> result; std::transform( output.begin(), output.end(), std::back_inserter(result), [](const Variable& var) { return var; }); return result; } template <class T> template <typename X, typename... Args> auto Function<T>::apply(Args&&... args) -> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>> { const auto& functorch_tls = at::functorch::functorchTLSAccessor(); if (functorch_tls) { // Function support for functorch is handled in Python. // Here we are dealing with a (C++) Function, which is not supported. // Let's raise an error instead of being silently incorrect. functorch_tls->checkSupportsCppAutogradFunction(); } std::shared_ptr<CppNode<T>> node(new CppNode<T>(), deleteNode); variable_list input_vars; const size_t num_inputs = sizeof...(Args); input_vars.reserve(num_inputs); node->is_variable_input_.reserve(num_inputs); // TODO Add tracing here extract_vars(node->is_variable_input_, input_vars, args...); bool is_executable = GradMode::is_enabled() && any_variable_requires_grad(input_vars); auto next_edges = (is_executable ? collect_next_edges(input_vars) : edge_list()); node->set_ctx_grad_fn(node); node->set_next_edges(std::move(next_edges)); node->clear_input_metadata(); node->input_info_.reserve(input_vars.size()); for (auto& var : input_vars) { node->input_info_.emplace_back(var); } using forward_return_t = forward_t<X, Args...>; forward_return_t outputs; { AutoGradMode grad_mode(false); outputs = T::forward(&node->ctx_, std::forward<Args>(args)...); } _jvp_fn_t jvp_fn = [](const variable_list& inputs, const variable_list& gI) -> variable_list { TORCH_CHECK( false, "jvp is not implemented for the c++ API of custom Function yet.", "Please open a feature request on GitHub if you need this."); }; auto view_as_self_fn = [](const at::Tensor& x) -> at::Tensor { return x.view_as(x); }; auto wrapped_outputs = _wrap_outputs( input_vars, node->ctx_.get_non_differentiable(), node->ctx_.get_and_bump_dirty(), to_optional(outputs), is_executable ? node : nullptr, jvp_fn, {}, view_as_self_fn); node->output_info_.reserve(wrapped_outputs.size()); for (auto& output : wrapped_outputs) { if (is_executable && output.has_value()) { node->output_info_.emplace_back(output.value()); } else if (is_executable) { node->output_info_.emplace_back(); } } if (is_executable) { node->save_variables_to_ctx(); } // wrapped_outputs will be a variable_list so, convert it to the correct // return type. Only Variable and variable_list are accepted as return types. return to_output_type<forward_return_t>(wrapped_outputs); } // The logic here is the same as PyNode::apply, so changes to it should be done // in both the places template <class T> // NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved) variable_list CppNode<T>::apply(variable_list&& inputs) { // Acquire lock to here protect thread safety on custom C++ Autograd Node // This is needed for the custom Autograd Node since we don't know if the // user defined Node will write to the shared data during backward. // see Note [Thread Safety on Autograd Node] std::lock_guard<std::mutex> lock(mutex_); return CppNode_apply_functional<T>( std::move(inputs), ctx_, is_variable_input_, output_info_, name()); } template <class T> void CppNode<T>::release_variables() { // lock to ensure thread safety, see [Thread Safety on Autograd Node] std::lock_guard<std::mutex> lock(mutex_); ctx_.saved_variables_.clear(); ctx_.has_freed_buffers_ = true; } template <class T> void CppNode<T>::save_variables_to_ctx() { ctx_.save_variables(); } template <class T> void CppNode<T>::set_ctx_grad_fn(const std::shared_ptr<Node>& node) { ctx_.grad_fn_ = node; } } // namespace torch::autograd ```
================================================================================================================================ SOURCE CODE FILE: edge.h LINES: 1 SIZE: 1.63 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\edge.h ENCODING: utf-8 ```h #pragma once #include <cstdint> #include <functional> #include <memory> #include <c10/util/hash.h> namespace torch::autograd { struct Node; /// Represents a particular input of a function. struct Edge { Edge() noexcept : function(nullptr), input_nr(0) {} Edge(std::shared_ptr<Node> function_, uint32_t input_nr_) noexcept : function(std::move(function_)), input_nr(input_nr_) {} /// Convenience method to test if an edge is valid. bool is_valid() const noexcept { return function != nullptr; } // Required for use in associative containers. bool operator==(const Edge& other) const noexcept { return this->function == other.function && this->input_nr == other.input_nr; } bool operator!=(const Edge& other) const noexcept { return !(*this == other); } /// The function this `Edge` points to. std::shared_ptr<Node> function; /// The identifier of a particular input to the function. uint32_t input_nr; }; } // namespace torch::autograd // The idiomatic way of enabling use of a custom type as the key of hash // containers in C++11. This method removes the requirement of having to pass // a custom hasher to std::unordered_{map, set}. // See http://en.cppreference.com/w/cpp/utility/hash for more information. namespace std { template <> struct hash<torch::autograd::Edge> { // These type aliases are required by the standard. using argument_type = torch::autograd::Edge; using return_type = size_t; return_type operator()(const argument_type& edge) const noexcept { return c10::get_hash(edge.function, edge.input_nr); } }; } // namespace std ```
================================================================================================================================== SOURCE CODE FILE: engine.h LINES: 1 SIZE: 10.83 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\engine.h ENCODING: utf-8 ```h #pragma once // Engine implements backpropagation from output variables and their gradients // to "root" variables (variables created by the user with requires_grad=True). #include <ATen/Tensor.h> #include <ATen/ThreadLocalState.h> #include <ATen/core/ivalue.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/anomaly_mode.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/functions/basic_ops.h> #include <torch/csrc/autograd/graph_task.h> #include <torch/csrc/autograd/input_buffer.h> #include <torch/csrc/autograd/saved_variable_hooks.h> #include <torch/csrc/autograd/utils/warnings.h> #include <exception> #include <functional> #include <memory> #include <queue> #include <utility> #include <vector> namespace torch::autograd { struct ReadyQueue; } namespace torch::autograd { // Maximum reentrant backward depth before switching to a new thread // This limit is based on the TSAN's deadlock detector, where it will // fail if a program hold more than 65 locks in one thread at once. // As we hold mutex in every of our custom C++ autograd Node, we would // like to avoid TSAN complains on this when doing reentrant backwards // For reference, see https://github.com/google/sanitizers/issues/950 static constexpr int MAX_DEPTH = 60; void set_device(int device); TORCH_API void validate_outputs( const edge_list& edges, variable_list& grads, const std::function<std::string(const std::string&)>& format_error); TORCH_API void validate_outputs( const std::vector<std::optional<InputMetadata>>& input_metadata, variable_list& grads, const std::function<std::string(const std::string&)>& format_error); TORCH_API std::vector<std::optional<InputMetadata>> collect_input_metadata( const edge_list& edges); struct NodeTask { std::weak_ptr<GraphTask> base_; std::shared_ptr<Node> fn_; // This buffer serves as an implicit "addition" node for all of the // gradients flowing here. Once all the dependencies are finished, we // use the contents of this buffer to run the function. InputBuffer inputs_; // When worker receives a task with isShutdownTask = true, it will immediately // exit. The engine sends a shutdown task to every queue upon its destruction. bool isShutdownTask_; int getReentrantDepth() const; NodeTask( std::weak_ptr<GraphTask> base, std::shared_ptr<Node> fn, InputBuffer inputs, bool isShutdownTask = false) : base_(std::move(base)), fn_(std::move(fn)), inputs_(std::move(inputs)), isShutdownTask_(isShutdownTask) {} }; // Guard that sets and restores checkpoint_valid class CheckpointValidGuard { public: explicit CheckpointValidGuard( const std::shared_ptr<const GraphTask>& graph_task); ~CheckpointValidGuard(); private: bool prev_checkpoint_valid_state; }; struct ReadyQueue { private: // Returns true when t2 should be (weakly) BEFORE t1 in the queue. // Shutdown tasks are first and then empty NodeTask are next. struct CompareNodeTaskTime { bool operator()(NodeTask const& t1, NodeTask const& t2) { // NOLINTNEXTLINE(bugprone-branch-clone) if (t2.isShutdownTask_) { return true; } else if (!t1.fn_ || t1.isShutdownTask_) { return false; } else if (!t2.fn_) { return true; } else if (t1.getReentrantDepth() == t2.getReentrantDepth()) { return t1.fn_->sequence_nr() < t2.fn_->sequence_nr(); } else { return t1.getReentrantDepth() < t2.getReentrantDepth(); } } }; // To notify threads waiting on the ReadyQueue of available tasks on the heap_ std::condition_variable not_empty_; // To protect read and writes to heap_ mutable std::mutex mutex_; std::priority_queue<NodeTask, std::vector<NodeTask>, CompareNodeTaskTime> heap_; public: // incrementOutstandingTasks indicates whether or not we should increment // 'outstanding_tasks_' for the associated GraphTask. This should mostly // always be true and is only set false in certain cases (see docs for // DistEngine.execute_graph_task_until_ready_queue_empty) void push(NodeTask item, bool incrementOutstandingTasks = true); void pushShutdownTask(); NodeTask pop(); bool empty() const; size_t size() const; }; // A single instance of this struct should be created through the whole process // lifetime. The worker thread creation logic and Engine's destructor rely on // this. struct TORCH_API Engine { /// Returns a reference to a static `Engine` instance. static Engine& get_default_engine(); static Engine& get_base_engine(); // compiled_autograd needs to live in a different .so file so that it // can have python symbols, so we add a layer of indirection // see [Note: Compiled Autograd] typedef variable_list (*compiled_autograd_fn)( const std::shared_ptr<Node>& graph_root, const GraphTask& graph_task, bool accumulate_grad, const edge_list& outputs); static void set_compiled_autograd(compiled_autograd_fn fn); Engine(const Engine&) = delete; Engine(Engine&&) = delete; virtual ~Engine(); // Given a list of (Node, input number) pairs computes the value of the graph // by following next_edge references. virtual variable_list execute( const edge_list& roots, const variable_list& inputs, bool keep_graph, bool create_graph, bool accumulate_grad, const edge_list& outputs = {}); // Given a pre-populated GraphTask and GraphRoot, computes the backward pass // for the graph. // // NB: This API should only be used by internal autograd specific // machinery and shouldn't be exposed to users in anyway. virtual c10::intrusive_ptr<at::ivalue::Future> execute_with_graph_task( const std::shared_ptr<GraphTask>& graph_task, std::shared_ptr<Node> graph_root, InputBuffer&& input_buffer); virtual std::unique_ptr<AnomalyMetadata> make_anomaly_metadata() { return std::make_unique<AnomalyMetadata>(); } virtual std::unique_ptr<SavedVariableHooks> get_default_saved_variable_hooks() { return nullptr; } // We pass cpu_ready_queue to evaluate_function, so that it knows // the correct ready queue to push to after a NodeTask is ready void evaluate_function( std::shared_ptr<GraphTask>& graph_task, Node* func, InputBuffer& inputs, const std::shared_ptr<ReadyQueue>& cpu_ready_queue); void initialize_device_threads_pool(); virtual void thread_on_exception( const std::shared_ptr<GraphTask>& graph_task, const std::shared_ptr<Node>& fn, std::exception& e); void queue_callback(std::function<void()> callback); bool is_checkpoint_valid(); // Should be called after fork to notify that worker threads are gone void release_workers(); // Must be called by subclass before destructing to avoid a data-race-on-vptr. void stop(); // Initializes a device thread for the autograd engine. virtual void thread_init( int device, const std::shared_ptr<ReadyQueue>& ready_queue, bool should_increment = true); protected: Engine(); void compute_dependencies(Node* root, GraphTask& task, uint64_t min_topo_nr); // initialize the thread local ready queue with the ready queue that is // created elsewhere (i.e. thread_init, Engine::execute, etc), or create a new // ready queue if ready_queue is not provided. void init_local_ready_queue( std::shared_ptr<ReadyQueue> ready_queue = nullptr); std::shared_ptr<ReadyQueue> ready_queue( std::shared_ptr<ReadyQueue> cpu_ready_queue, at::Device device); std::shared_ptr<ReadyQueue> ready_queue_by_index( std::shared_ptr<ReadyQueue> cpu_ready_queue, int device_index); // start device threads (CUDA, XLA, etc.) in Engine, // note that it does NOT start CPU thread. void start_device_threads(); void increment_non_reentrant_thread_count(); void decrement_non_reentrant_thread_count(); virtual void thread_main(const std::shared_ptr<GraphTask>& task); void reentrant_thread_init(); void add_thread_pool_task(const std::weak_ptr<GraphTask>& graph_task); // Safe to read device_ready_queues_ without synchronization after // initialization // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::vector<std::shared_ptr<ReadyQueue>> device_ready_queues_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::vector<std::function<void()>> final_callbacks_; // To protect reads and writes to final_callbacks_ // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::mutex post_callbacks_lock_; // How many nested reentrant calls are allowed until a new thread is used // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) int max_recursion_depth_; struct ThreadPoolShared { // Data structures used by the threads for executing reentrant backwards // tasks. See Note [Reentrant backwards] // Number of available threads for processing new GraphTasks. unsigned int num_workers_{0}; // The threads will wait on work_ to be notified of GraphTasks std::condition_variable work_; // To protect reads and writes to graphtask_queue_ and num_workers_ // and for synchronizing creating new threads when needed std::mutex mutex_; // Workers will process the GraphTasks added to this queue. A GraphTask is // allocated inside Engine::execute and lives for the duration of execute std::queue<std::weak_ptr<GraphTask>> graphtasks_queue_; ThreadPoolShared() = default; }; // Temporary workaround until shutting down threads is done // We need shared ownership of all these objects because the threads are // leaked when Engine shuts down, so there may be threads waiting on work_ for // the graphtasks_queue_ to be nonempty. // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::shared_ptr<ThreadPoolShared> thread_pool_shared_; private: // Number of non-reentrant threads std::atomic<uint32_t> non_reentrant_device_thread_count_; // Destructor will wait for non-reentrant threads to finish std::condition_variable non_reentrant_device_thread_condvar_; std::mutex non_reentrant_device_thread_mutex_; // stop() must be called before the destruction path goes down to the base // class, in order to avoid a data-race-on-vptr. Use this boolean to guard // whether stop() has already been called, so we can call this in every // destructor of the class hierarchy. bool stopped_{false}; }; // allow python_engine to override the default engine when it loads using EngineStub = Engine& (*)(); TORCH_API void set_default_engine_stub(EngineStub stub); } // namespace torch::autograd ```
======================================================================================================================================== SOURCE CODE FILE: forward_grad.h LINES: 1 SIZE: 8.93 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\forward_grad.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/Tensor.h> #include <unordered_set> namespace torch::autograd { // [ Using ForwardGrad ] // ForwardGrad needs to be a shared_ptr to satisfy constraints of its inner // design. But this shared_ptr must be uniquely associated with the object that // stores it (as of writing, either AutogradMeta or SavedVariable). This object // is called the "owning object" in the discussions below. This owning object // must call `ForwardGrad::clear()` when it is destroyed to ensure that the // ForwardGrad is properly de-allocated. struct ForwardGrad; // This file contains two classes that are used to store forward AD gradients // and ensure that they are scoped properly. Because forward AD runs // concurrently with the evaluation of the function, we need a mechanism to // separate different forward AD invocations and be able to compute the right // gradients. We model such invocations as levels here. The particular scoping // issue mentioned above has two main drivers: // - Ensure that we can conveniently use forward AD within a high level API // without // leaking the forward AD states outside. // - Ensure that we can keep the level that we expose to the user API simple // (an integer // that represents the nesting depth) while avoiding confusions when the // level index is re-used. // The important external APIs from this file are: // - ForwardADLevel::get_next_idx() that can be used to enter a new level and // get its index // - ForwardADLevel::release_idx() that can be used to exit a given level. // - ForwardGrad() can be used to store a given forward gradient that will // handle the level // tracking automatically. // The basic implementation strategy is as follows: // Every tensor has a ForwardGrad, maintaining a map from levels to tangents. // ForwardGrad is responsible for registering itself to the appropriate // ForwardADLevel when a new tangent is added to it via ForwardGrad::set_value // and to un-register itself from this same level if that tangent is removed via // ForwardGrad::reset. The ForwardADLevel is created when a new level is entered // via ForwardADLevel::get_next_idx. A reference to the new ForwardADLevel is // stored into a global (for the whole process) vector that ensure it can be // accessed via ForwardADLevel::get_by_idx. This reference is deleted when the // index is released by the user when calling ForwardADLevel::release_idx. When // it is destructed, the ForwardADLevel is responsible for clearing all the // tangents for its level stored in all the ForwardGrad that registered with it. // // This process-wide level design, compared to a thread local one, allows us to // use very simple user facing handle for the level (an int) while enabling // cross-thread forward AD. The only required synchronization for the user is // when entering and exiting the levels. Some discussion on alternative design // is in https://github.com/pytorch/pytorch/pull/49097#discussion_r543716453 and // can be refined in the future. // Correctness of concurrency: // Each class uses its own lock when reading or modifying internal storages. // This allows in particular to safely remove tangents from ForwardGrad when the // ForwardADLevel is being exited. We ensure no deadlock by ensuring that a // methods never calls into another class's method while the local class's lock // is held except in one single case: calling from ForwardADLevel's destructor // into ForwardGrad::reset with update_level=false. // The lifetime of these objects is as follows: // The ForwardADLevel can be in three states: // - Initialized: where one of its reference is held by the global vector // and there may be more // references held by temporary variables in ForwardGrad's methods. // - About to be destructed: where "release_idx" has been called and the // only reason for the // ForwardADLevel not to be destructed right away is that some methods in // ForwardGrad have owning reference to it. This is done so that a // ForwardADLevel can never be destructed when a ForwardGrad is // registered with it and in the process of adding something to its // internal state. // - Being destructed: Here the ForwardADLevel is not referenced anymore // and can be safely reset // all of the ForwardGrad. Note that we can have more than one reset // being called here (which is ok) but we are guaranteed that there is at // least one. // The ForwardGrad is simpler as there is no intermediary state and no special // destructor for. The logic to unregister it from the different ForwardADLevel // is done when the owning object (AutogradMeta or SavedVariable) is being // destroyed. // Other considered design: // To avoid having the ForwardGrad::clear, we considered storing weak_ptr inside // the ForwardADLevel. While this would work, it would mean that the set inside // the ForwardADLevel would only grow unless we do an expensive linear scan to // remove all the dangling weak pointers. Hence this approach was not used. // Data structures in this file are optimized for this maximum number of levels. // The number of levels corresponds to the degree of the gradient being // computed using forward AD and we don't expect more than second order // gradients to be common. #define EXPECTED_MAX_LEVEL 2 struct TORCH_API ForwardADLevel { ForwardADLevel(uint64_t idx) : idx_(idx) {} ~ForwardADLevel(); static uint64_t get_next_idx(); static void release_idx(uint64_t idx); static std::shared_ptr<ForwardADLevel> get_by_idx(uint64_t idx); static std::shared_ptr<ForwardADLevel> try_get_by_idx(uint64_t idx); void erase(const std::shared_ptr<ForwardGrad>& grad) { std::lock_guard<std::mutex> lock(mutex_); grads_.erase(grad); } void insert(const std::shared_ptr<ForwardGrad>& grad) { std::lock_guard<std::mutex> lock(mutex_); grads_.insert(grad); } private: std::unordered_set<std::shared_ptr<ForwardGrad>> grads_; std::mutex mutex_; uint64_t idx_; }; struct TORCH_API ForwardGrad : std::enable_shared_from_this<ForwardGrad> { ForwardGrad() = default; // This function must only be called when AutogradMeta or SavedVariable is // being destructed as it ensures that: // - The only (potential) other references to this ForwardGrad are the // different level it is registered to // - No other thread will try to call `set_value` or `value` ever from now // on // - Any of the ForwardADLevel that this ForwardGrad is registered with // might // call `reset` at any point during this function void clear() { c10::SmallVector<uint64_t, EXPECTED_MAX_LEVEL> levels_idx; { std::lock_guard<std::mutex> lock(mutex_); for (auto& c : content_) { levels_idx.push_back(c.first); } } for (auto l_idx : levels_idx) { // Use "try" version here as another thread might have deleted this // level before we got here // This is an owning reference as we want to keep the level alive // until we successfully unregister ourselves auto level = ForwardADLevel::try_get_by_idx(l_idx); if (level) { level->erase(shared_from_this()); } } } void set_value(const at::Tensor& value, uint64_t level) { // Owning reference to ensure the forward_level is not destroyed // while we are updating our internal state auto forward_level = ForwardADLevel::get_by_idx(level); forward_level->insert(shared_from_this()); std::lock_guard<std::mutex> lock(mutex_); content_.insert({level, value}); } // This function removes the tangent for a given level from this ForwardGrad // Use the update_level flag to disable notifying the level about this reset // This flag is most notably used by the ForwardADLevel destructor. void reset(uint64_t level, bool update_level = true) { if (update_level) { ForwardADLevel::get_by_idx(level)->erase(shared_from_this()); } std::unique_lock<std::mutex> lock(mutex_); const auto& it = content_.find(level); TORCH_INTERNAL_ASSERT( it != content_.end(), "Resetting a non-existent level."); // Keep the Tensor alive until we have released the lock // This is needed as we can be in a case where this function is called by // ForwardADLevel destructor auto t = (*it).second; content_.erase(level); lock.unlock(); } const at::Tensor& value(uint64_t level) const; bool contains(uint64_t level) { std::lock_guard<std::mutex> lock(mutex_); return content_.count(level) > 0; } bool empty() const { return content_.empty(); } static const at::Tensor& undef_grad(); private: // TODO(albanD): replace this with a SmallVector std::unordered_map<uint64_t, at::Tensor> content_; mutable std::mutex mutex_; }; } // namespace torch::autograd ```
==================================================================================================================================== SOURCE CODE FILE: function.h LINES: 1 SIZE: 30.69 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\function.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/anomaly_mode.h> #include <torch/csrc/autograd/edge.h> #include <torch/csrc/autograd/grad_mode.h> #include <torch/csrc/autograd/graph_task.h> #include <torch/csrc/autograd/input_metadata.h> #include <torch/csrc/autograd/saved_variable.h> #include <torch/csrc/autograd/variable.h> #include <torch/csrc/utils/python_stub.h> #include <torch/csrc/utils/variadic.h> #include <ATen/SequenceNumber.h> #include <ATen/core/Tensor.h> #include <ATen/record_function.h> #include <c10/util/Exception.h> #include <c10/util/irange.h> #include <algorithm> #include <cstdint> #include <initializer_list> #include <memory> #include <string> #include <utility> #include <vector> namespace torch::autograd { struct Edge; struct FunctionPostHook; struct FunctionPreHook; using tensor_list = std::vector<at::Tensor>; using variable_list = std::vector<Variable>; using edge_list = std::vector<Edge>; using saved_variable_list = std::vector<SavedVariable>; using ivalue_list = std::vector<c10::IValue>; using functional_apply_t = std::function< variable_list(const variable_list&, const std::vector<c10::IValue>&)>; using IndexRange = std::pair<size_t, size_t>; using torch::dynamo::autograd::CompiledNodeArgs; using torch::dynamo::autograd::PackedArgs; using torch::dynamo::autograd::SwapSavedVariables; // Custom deleter to prevent stack overflows. TORCH_API void deleteNode(Node* function); // Guard that sets and restores the evaluating node class NodeGuard { public: explicit NodeGuard(std::shared_ptr<Node> node); ~NodeGuard(); private: std::shared_ptr<Node> last_evaluating_node_; }; // Return the Node currently being evaluated (if any) // This is only set during the backward pass while a Node is being // executed. TORCH_API std::shared_ptr<Node> get_current_node(); //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Node //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // A `Node` is an abstract class that represents an operation taking zero // or more input `Variable`s and producing zero or more output `Variable`s. All // functions in PyTorch's autograd machinery derive from this class and // override its `apply` method. Instances of such subclasses will then be // invokable via the call operator. // // Nodes in the Autograd Graph //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // When viewing the autograd system as a graph, `Node`s are the vertices or // nodes, connected to each other via (directed) `Edge`s, which themselves are // represented via (`Node`, input_nr) pairs. `Variable`s are the outputs to // and inputs of `Node`s, and travel between these edges during execution // of the graph. When two or more `Edge`s (from different sources) point at the // same input to a `Node`, the values produced along all of these edges are // implicitly summed prior to being forwarded to the target `Node`. // // Hierarchy //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Subclasses usually represent differentiable functions as well as their // gradient operators. Note, however, that due to the very general definition // of a `Node` taking *zero* or more inputs and producing *zero* or more // outputs, uses of `Node`s are flexible and extend beyond purely // mathematical operations. For example, the `AccumulateGrad` function is a // *sink*: it takes one input, but produces no outputs, instead accumulating // the input as a side effect. At the other extreme, the `GraphRoot` function // receives no inputs from other functions, but produces multiple outputs. // // Interface //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // The most important method on `Node` is the call operator, which takes in // a list of variables and produces a list of variables. The precise size of // these lists can be determined with `num_inputs()` and `num_outputs()`. // `Node`s are stitched together via their `next_edge` interface, which let // you manipulate the set of outgoing edges of a `Node`. You can add an // edge with `add_next_edge()`, retrieve an edge with `next_edge(index)` and // iterate over them via the `next_edges()` method. Other methods exist for // integration with the JIT and other parts of PyTorch. Every `Node` has a // *sequence number* that increases monotonically in the order of `Node` // construction. It can be retrieved via the `sequence_nr()` method. Note that // this sequence number is *thread local*. This means that when `Node`s // `A`, `B` and `C` are created consecutively in the same thread, their // sequence numbers will be ordered `A` < `B` < `C`. If, however, `A` and `B` // are created in one thread and `C` is created in a new thread, there are *no // guarantees* w.r.t. the ordering of `C` relative to `A` or `B`. // See NOTE [ Sequence Number] for more details on the usages of sequence // number. //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ struct TORCH_API Node : std::enable_shared_from_this<Node> { public: /// Construct a new `Node` with the given `next_edges` explicit Node(uint64_t sequence_nr, edge_list&& next_edges = edge_list()) : sequence_nr_(sequence_nr), next_edges_(std::move(next_edges)) { for (const Edge& edge : next_edges_) { update_topological_nr(edge); } if (AnomalyMode::is_enabled()) { metadata()->store_stack(); // If anomaly mode is enabled and graph is constructed, then assign the // currently evaluating node as the parent of this node. // A parent is a Node where this Node is created. // We are tracking the parents to track multiple backward operations. assign_parent(); } // Store the thread_id of the forward operator. // See NOTE [ Sequence Numbers ] thread_id_ = at::RecordFunction::currentThreadId(); } explicit Node(edge_list&& next_edges = edge_list()) : Node( /*sequence_nr=*/at::sequence_number::get_and_increment(), std::move(next_edges)) {} /// Nodes are neither copyable nor moveable. Node(const Node& other) = delete; Node(Node&& other) = delete; Node& operator=(const Node& other) = delete; Node& operator=(Node&& other) = delete; virtual ~Node() = default; std::shared_ptr<Node> getptr() { return shared_from_this(); } /// Evaluates the function on the given inputs and returns the result of the /// function call. variable_list operator()(variable_list&& inputs) { // In the first iteration of named tensors, autograd ignores names and // operates on unnamed tensors. In the long term, autograd should // probably operate with names. at::NoNamesGuard no_names_guard; #ifdef USE_ROCM // Keep track of backward pass for rocblas. at::ROCmBackwardPassGuard in_backward; #endif auto step_callbacks = at::getStepCallbacksUnlessEmpty(at::RecordScope::BACKWARD_FUNCTION); if (C10_UNLIKELY(step_callbacks.has_value())) { at::RecordFunction guard(std::move(*step_callbacks)); // Using sequence number and thread id to correlate with // the forward pass function guard.setForwardThreadId(thread_id_); if (guard.needsInputs()) { std::vector<c10::IValue> inputs_vec(inputs.begin(), inputs.end()); guard.before( name(), c10::ArrayRef<const c10::IValue>( inputs_vec.data(), inputs_vec.size()), static_cast<int64_t>(sequence_nr())); } else { guard.before(name(), static_cast<int64_t>(sequence_nr())); } return apply(std::move(inputs)); } else { return apply(std::move(inputs)); } } // Graph Connectivity API //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Inputs. NOTE: inputs of the grad_fn correspond to Tensor outputs of the // forward function. // Marker for expected undefined input struct undefined_input {}; /// Adds the type and shape metadata for a new input. Returns the index of /// of the new input. uint32_t add_input_metadata( const at::TensorOptions& options, c10::SymIntArrayRef shape, bool is_tensor_subclass, bool is_nested) noexcept { uint32_t input_nr = input_metadata_.size(); auto meta_shape = MetadataShape{std::in_place_type<SymIntSmallVec>, shape}; input_metadata_.emplace_back( options, meta_shape, is_tensor_subclass, is_nested); return input_nr; } uint32_t add_input_metadata(const at::Tensor& t) noexcept { uint32_t input_nr = input_metadata_.size(); input_metadata_.emplace_back(t); return input_nr; } /// Adds a placeholder for an input that will not be used. uint32_t add_input_metadata(undefined_input u) noexcept { uint32_t input_nr = input_metadata_.size(); input_metadata_.emplace_back(); return input_nr; } uint32_t num_inputs() const noexcept { return input_metadata_.size(); } const InputMetadata& input_metadata(size_t index) const { return input_metadata_[index]; } // Danger: not thread safe, caller must protect with lock InputMetadata& mutable_input_metadata(size_t index) { return input_metadata_[index]; } /** * Note: Function Streams * A function's stream (for a given device type) is the stream of the first * element of its input buffer on a device of that type. * * If all elements are on the same device they MUST share a stream. If * elements are on different devices (across multiple GPUs, for example) * they may have different streams. */ std::optional<c10::Stream> stream() { auto opt_device_type = at::getAccelerator(); if (!opt_device_type.has_value()) { return std::nullopt; } for (const auto& metadata : input_metadata_) { if (metadata.device().type() == opt_device_type.value()) return metadata.stream(); } return std::nullopt; } // Used by the engine to determine what device thread to run on at::Device device() { // Since we pick the first non-CPU tensor, this won't work with // mixed device-type operations (e.g., an op that is both CUDA // and XLA). This is *incredibly* unlikely, so we don't worry // about it. for (const auto& metadata : input_metadata_) { auto device = metadata.device(); if (device.type() != at::kCPU) { return device; } } // Only report to the CPU thread if there really were no tensors // from other devices. return at::kCPU; } void clear_input_metadata() { input_metadata_.clear(); } // Outputs ("Next Edges") void update_topological_nr(const Edge& edge) { TORCH_INTERNAL_ASSERT( !has_parent_, "Cannot update a node's topological_nr after it already has a parent." " If we allow this, we can no longer guarantee that a parent's" " topo_nr is always greater than those of all its children") Node* node = edge.function.get(); if (node) { auto topo_nr = node->topological_nr(); if (topological_nr_ <= topo_nr) { topological_nr_ = topo_nr + 1; } } } void set_next_edge(size_t index, Edge edge) { update_topological_nr(edge); next_edges_[index] = std::move(edge); } void add_next_edge(Edge edge) { update_topological_nr(edge); next_edges_.emplace_back(std::move(edge)); } void set_next_edges(edge_list&& next_edges) { next_edges_ = std::move(next_edges); for (const auto& next_edge : next_edges_) { update_topological_nr(next_edge); } } const Edge& next_edge(size_t index) const noexcept { return next_edges_[index]; } const edge_list& next_edges() const noexcept { return next_edges_; } edge_list& next_edges() noexcept { return next_edges_; } uint32_t num_outputs() const noexcept { return next_edges_.size(); } // Miscellaneous Methods //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// NOTE [ Sequence Number] /// /// The sequence_nr has two main usages in autograd: /// /// 1) Helps determine the node's execution priority in the engine. /// All else being equal, nodes with higher priority numbers are executed /// first. Thus, nodes corresponding to ops executed later are the first to /// be executed in the backward pass. One caveat is that we prioritize /// AccumulateGrad nodes by explicitly setting its sequence_nr to be /// UINT64_MAX. /// 2) The sequence number of this `Node` is paired with with thread_id it was /// created in /// as a unique identifier by the profiler to annotate recorded events. /// The purpose of this is to help users (and possibly programs) /// interpreting the profiler's output to correlate backward nodes with its /// forward ops. We need both sequence_nr and thread_id to identify a node /// because sequence_nr is thread_local, i.e., starts counting up from zero /// in a new thread uint64_t sequence_nr() const noexcept { return sequence_nr_; } void set_sequence_nr(uint64_t sequence_nr) { sequence_nr_ = sequence_nr; } // NOTE [ Topological Number ] // // topological_nr is used to prune branches in the DAG during autograd // discovery as maintaining topological_nr helps us check in O(1) if there // does NOT exist a directed path between two nodes. // // The topological order number of this `Node` representing the length of the // longest possible path from this Node to any leaf node. If you are leaf // node, aka AccumulateGrad, this will be zero. This value has the property // that For every pair of nodes X, Y in G, existence of a directed path from X // to Y implies topo_nr(X) > topo_nr(Y). The converse is not true, however, so // we cannot prove existence of a path from X to Y, only non-existence. // // One assumption we make when using topo_nr is that once a node // has been used, i.e., has a parent node, its own topo_nr does not change // we have added some checks with the `has_parent_` field to enforce this. // // What NOT to do: // // 1) 2 -> 1 -> 0 In this diagram we label nodes with their // topo_nr. // 2 -> 1 -> 0 We have two simple graphs that can each // arise from // `t.exp().exp()`, for example. // 2) 2 -> 1 -> 0 // / // 2 -> 1 -> 0 We add 2 as a next edge to 1 even though 1 // already // has a parent. // 3) 2 -> 1 -> 0 // / // 2 -> 3 -> 0 2 < 3, yet there exists a path from 2 to 3! // uint64_t topological_nr() const noexcept { has_parent_ = true; return topological_nr_; } // assigning a node as a parent to this node void assign_parent(); /// Id of the thread that created Node uint64_t thread_id() const noexcept { return thread_id_; } /// Returns the name of the dynamic type of the function, for debugging. virtual std::string name() const; /// The difference between functions `should_compute_output` and /// `task_should_compute_output`: /// - `should_compute_output` should only be used during graph construction /// and takes into account only requires_grad information /// - `task_should_compute_output` should only be called during the backward /// pass (unless called directly through grad_fn) and takes into account the /// current graph task. Specifically, the autograd engine trims unnecessary /// edges when `inputs` are specified, and during backward untrimmed nodes /// left on the graph can/should check `task_should_compute_output` to see if /// any outgoing edges have been trimmed by the engine. If that is the case, /// gradient computation wrt those edges can be omitted. /// /// Returns true if the particular output edge is active, and that particular /// output of this function should be computed. bool should_compute_output(size_t output_edge_index) const { TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range"); return next_edges_[output_edge_index].is_valid(); } /// Returns true if any of the output edges in any of the ranges are active. bool should_compute_output(std::initializer_list<IndexRange> idxs) const { return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) { for (const auto i : c10::irange(range.first, range.second)) { if (should_compute_output(i)) return true; } return false; }); } /// Same as the above `should_compute_output` function but will also /// check whether this edge is needed within the current graph task. bool task_should_compute_output(size_t output_edge_index) const { TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range"); const auto& next = next_edges_[output_edge_index]; if (next.is_valid()) { const auto exec_info = get_current_graph_task_exec_info(); if (exec_info && !exec_info->empty()) { auto it = exec_info->find(next.function.get()); if (it == exec_info->end() || !it->second.should_execute()) { return false; // this edge is not needed for the current graph_task } } return true; } return false; } /// Returns true if any of the output edges in any of the ranges are active /// and should be computed in the current graph task. bool task_should_compute_output( std::initializer_list<IndexRange> idxs) const { return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) { for (const auto i : c10::irange(range.first, range.second)) { if (task_should_compute_output(i)) return true; } return false; }); } /// Returns the `PyObject` stored for this `Node` (for Python /// interaction). PyObject* pyobj() const noexcept { return pyobj_; } /// Sets the `PyObject` stored for this `Node` (for Python interaction). void set_pyobj(PyObject* pyobj) noexcept { pyobj_ = pyobj; } /// Returns the anomaly metadata stored for this `Node`. /// If none exist, creates a new empty one. AnomalyMetadata* metadata() noexcept; // Hook API //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ uintptr_t add_post_hook(std::unique_ptr<FunctionPostHook>&& post_hook) { post_hooks_.emplace_back(std::move(post_hook)); // Use the raw pointer as the unique key to identify this hook. This key // can then be used in del_post_hook(key) to remove this hook. return reinterpret_cast<std::uintptr_t>(post_hooks_.back().get()); } const std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks() const noexcept { return post_hooks_; } // delete a post hook matching the key bool del_post_hook(const uintptr_t& key) { for (auto it = post_hooks_.begin(); it != post_hooks_.end(); ++it) { if (key == reinterpret_cast<std::uintptr_t>(it->get())) { post_hooks_.erase(it); return true; } } return false; } std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks() noexcept { return post_hooks_; } void add_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) { pre_hooks_.emplace_back(std::move(pre_hook)); } void add_tensor_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) { tensor_pre_hooks_.emplace_back(std::move(pre_hook)); } void add_retains_grad_hook( std::unique_ptr<FunctionPreHook>&& pre_hook, size_t output_idx) { retains_grad_hooks_[output_idx] = std::move(pre_hook); } std::unique_ptr<FunctionPreHook> pop_retains_grad_hook(size_t output_idx) { auto ret = std::move(retains_grad_hooks_[output_idx]); retains_grad_hooks_.erase(output_idx); return ret; } const std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks() const noexcept { return pre_hooks_; } std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks() noexcept { return pre_hooks_; } virtual std::vector<std::unique_ptr<FunctionPreHook>>& tensor_pre_hooks() noexcept { return tensor_pre_hooks_; } virtual std::unique_ptr<PostAccumulateGradHook>& tensor_post_acc_grad_hooks() const noexcept { static std::unique_ptr<PostAccumulateGradHook> empty = nullptr; return empty; } std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>>& retains_grad_hooks() noexcept { return retains_grad_hooks_; } // Customization Points for Subclasses //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Releases saved variables if the operation won't be reused. virtual void release_variables() {} /// Called before an apply if `release_variables()` is going to be called. /// Allows larger ops like `InterpreterAutogradFunction` to incrementally /// release variables as they run. virtual void will_release_variables() {} /// Returns true if this function is traceable. An op is traceable if all /// operations happening within `apply()` are performed on autograd /// `Variables` (i.e. apply mostly instantiates and applies other functions). virtual bool is_traceable() { return false; } /// A `Node` is said to pass state transparently to backward, if the /// state consists only of (Saved)Variables and only non-variable objects /// that parameterize the operation in some way that defines the graph /// structure AND the backward function is traceable. In particular, /// parametrization MUST NOT depend on the data of any `Variable`. /// TODO: it might be possible to handle cases where backward is /// non-traceable but state passing could be considered transparent. This /// will probably depend on saved_variable_list being mutable. /// NOTE: this value matters only if is_traceable() returns false. virtual bool passes_state_transparently() { return false; } // see [Note: Compiled Autograd] // Used by compiled autograd to // 1) Extract tensors/symint args // 2) Collect node information for specialization and caching // Implementations in subclasses should call args.collect() with all node // attrs. These functions are only called durring backward. virtual void compiled_args(CompiledNodeArgs& args) const { throw std::runtime_error( std::string("compiled_args not implemented: ") + name()); } // Used by compiled autograd to call apply() with different saved tensors // Implementations should call saved.before() on all attrs, then apply(), then // saved.after() on all attrs in the same order. virtual variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) { throw std::runtime_error( std::string("apply_with_saved not implemented: ") + name()); } // If this node is the AOTBackward node produced by torch.compile. // Compiled Autograd special-cases on this information. virtual bool is_aot_backward() const { return false; } protected: /// Performs the `Node`'s actual operation. virtual variable_list apply(variable_list&& inputs) = 0; /// Calls `apply()`, but instruments it with tracing machinery. variable_list traced_apply(variable_list inputs); // Sequence number used to correlate backward nodes with forward ops in the // profiler and provide determinism in the engine. // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) uint64_t sequence_nr_; // See NOTE [ Topological Number ] uint64_t topological_nr_ = 0; // Tracks whether this node has been added as the next_edge of another node // via set_next_edge(s), which always calls topological_nr() of all its // children See NOTE [ Topological Number ] for why we need this. mutable bool has_parent_ = false; // Id of the thread that created the instance uint64_t thread_id_ = 0; // Note [Thread Safety on Autograd Node] // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Autograd Engine let the owning thread which calls Engine::execute to drive // the GraphTask execution, there might be cases that part of the GraphTask is // shared across different `backward()` or `grad()` calls, i.e. fork new // threads in the middle of the forward and call `backward()` separately from // different threads. We need to protect the thread safety on NodeTask to // prevent data racing on shared variables read/write. // // NB: This is only needed for Autograd Nodes that runs on CPU, technically // "CUDA", "XLA" nodes don't need locking because device threads are always // single threaded. // // Here we add a thread mutex to help protect the Node's thread safety, so // that different threads cannot race the shared data when executing the same // NodeTask from multiple CPU threads. It IS the user/developer responsibility // to take advantage of this mutex to protect the thread safety of their // autograd Node. The general strategy of thread safety on autograd Node: // // 1. User should lock the mutex during Node::release_variables() if the Node // needs // to release the variables on the fly, this serve the purpose that when we // release saved_variables from one thread, no other threads can release // the saved variables concurrently. call the Node::apply(), // 2. User should lock the mutex during Node::apply(), this is to ensure Node // that // writing to the shared variable are not racing across threads (i.e. // AccumulateGrad and custom C++ Autograd Node if writing to shared // variables ) // 3. item 2 and item 3 should work together so that when we release saved // variables // from one thread, no other threads can call Node::apply(), this ensures // the variable references from other threads aren't dangling. // 4. if the Node don't release any variables and no shared data read/write in // the Node // i.e. purely functional, user don't need to lock the mutex // // This way we could protect the thread safety on Autograd Node, but we could // still not protect the thread safety on Node pre/post C++ hooks (python // hooks are automatically thread safe), we rely on the user to write thread // safe C++ hooks if they want the hook to be correctly applied in // multithreading environment. std::mutex mutex_; edge_list next_edges_; PyObject* pyobj_ = nullptr; // weak reference std::unique_ptr<AnomalyMetadata> anomaly_metadata_ = nullptr; // NOTE [Hooks ordering] // We have 3 separate fields for pre hooks registered to the autograd nodes // because the conditions under which they execute are different, and we // want more fine-grained control over the order in which different types // of hooks are executed. // - pre_hooks are only executed when the node itself is executed // - tensor_pre_hook is executed as long as the engine traverses over it // even if that node won't be executed. // - retains_grad_hook are like tensor_pre_hooks except they are always // ordered after all other tensor pre hooks std::vector<std::unique_ptr<FunctionPreHook>> pre_hooks_; std::vector<std::unique_ptr<FunctionPreHook>> tensor_pre_hooks_; std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>> retains_grad_hooks_; std::vector<std::unique_ptr<FunctionPostHook>> post_hooks_; at::SmallVector<InputMetadata, 2> input_metadata_; }; /// See Node::is_traceable() for definition. struct TraceableFunction : public Node { using Node::Node; bool is_traceable() final { return true; } }; //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Associated Free Nodes //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ namespace detail { // Implementation of `collect_next_edges` (see below). struct MakeNextFunctionList : IterArgs<MakeNextFunctionList> { edge_list next_edges; using IterArgs<MakeNextFunctionList>::operator(); void operator()(const Variable& variable) { if (variable.defined()) { next_edges.emplace_back(impl::gradient_edge(variable)); } else { next_edges.emplace_back(); } } void operator()(const Variable* variable) { operator()(*variable); } void operator()(const std::optional<Variable>& variable) { if (variable.has_value()) { operator()(*variable); } else { next_edges.emplace_back(); } } }; } // namespace detail /// Create an `Edge` between the given `variable` and the `function`, which is /// assumed to be the gradient function of this variable (i.e. the function /// through which this variable is backpropagated during the backward pass). /// This sets the `grad_fn` property of the `variable`. This function assumes /// that the `Variable` is a new input to the gradient function and its /// `input_nr` thus equal to `function->num_inputs()`. Additionally, it /// increments the `Node`'s number of inputs by one. Approximately /// equivalent to `variable.set_gradient_edge(function, /// function->add_input_metadata(variable.dispatch_type(), variable.sizes()))`. /// If you don't want the `Node`'s `num_inputs` to be incremented, use /// `set_gradient_edge` directly. inline void create_gradient_edge( Variable& variable, std::shared_ptr<Node> function) { // Copy before move. const auto input_nr = function->add_input_metadata(variable); impl::set_gradient_edge(variable, {std::move(function), input_nr}); } /// Return true if any of the variables in the list require a gradient. inline bool any_variable_requires_grad(const variable_list& variables) { return std::any_of( variables.begin(), variables.end(), [](const Variable& variable) { return variable.defined() && variable.requires_grad(); }); } /// Return the next edges of all the given variables, or tuples of variables. template <typename... Variables> edge_list collect_next_edges(Variables&&... variables) { detail::MakeNextFunctionList make; make.apply(std::forward<Variables>(variables)...); return std::move(make.next_edges); } struct TypeAndSize { TypeAndSize() = default; /* implicit */ TypeAndSize(const at::Tensor& t) : sym_sizes(t.sym_sizes().vec()), options(t.options()) {} at::Tensor zeros(); std::vector<c10::SymInt> sym_sizes; at::TensorOptions options; }; } // namespace torch::autograd ```
========================================================================================================================================= SOURCE CODE FILE: function_hook.h LINES: 1 SIZE: 2.15 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\function_hook.h ENCODING: utf-8 ```h #pragma once #include <ATen/Tensor.h> #include <torch/csrc/Export.h> #include <string> #include <vector> namespace torch::dynamo::autograd { class CompiledNodeArgs; class SwapSavedVariables; struct PackedArgs; } // namespace torch::dynamo::autograd // A hook that's called on gradients namespace torch::autograd { using Variable = at::Tensor; using variable_list = std::vector<Variable>; struct TORCH_API FunctionPreHook { virtual ~FunctionPreHook() = default; virtual variable_list operator()(const variable_list& grads) = 0; // only implemented for python hooks, registers hook with compiled autograd virtual void compiled_args( torch::dynamo::autograd::CompiledNodeArgs& args) const { throw std::runtime_error( std::string("compiled_args nyi, see [Note: Compiled Autograd] ") + typeid(*this).name()); } }; struct TORCH_API FunctionPostHook { virtual ~FunctionPostHook() = default; virtual variable_list operator()( const variable_list& outputs /* grad_inputs */, const variable_list& inputs /* grad_outputs */) = 0; // only implemented for python hooks, registers hook with compiled autograd virtual void compiled_args( torch::dynamo::autograd::CompiledNodeArgs& args) const { throw std::runtime_error( std::string("compiled_args nyi, see [Note: Compiled Autograd] ") + typeid(*this).name()); } }; struct TORCH_API PostAccumulateGradHook { virtual ~PostAccumulateGradHook() = default; virtual void operator()(const Variable& tensor) = 0; // only implemented for python hooks on nodes, registers hook with compiled // autograd virtual void compiled_args( torch::dynamo::autograd::CompiledNodeArgs& args) const { throw std::runtime_error( std::string("not yet implemented for compiled autograd: ") + typeid(*this).name()); } virtual void apply_with_saved( Variable&, torch::dynamo::autograd::SwapSavedVariables&) { throw std::runtime_error( std::string("not yet implemented for compiled autograd: ") + typeid(*this).name()); } }; } // namespace torch::autograd ```
===================================================================================================================================================== SOURCE CODE FILE: accumulate_grad.h LINES: 3 SIZE: 13.59 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\functions\accumulate_grad.h ENCODING: utf-8 ```h #pragma once #include <ATen/CachedTensorUtils.h> #include <ATen/LegacyBatchedTensorImpl.h> #include <ATen/TensorOperators.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/utils/grad_layout_contract.h> #include <torch/csrc/autograd/variable.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Functions.h> #else #include <ATen/ops/_sparse_coo_tensor_unsafe.h> #endif #include <mutex> namespace torch::autograd { #define CHECK_RESULT(RESULT, VAR) \ if (!(RESULT.is_sparse() || VAR.is_sparse() || RESULT.is_sparse_csr() || \ VAR.is_sparse_csr())) { \ if (!utils::obeys_layout_contract(RESULT, VAR)) { \ TORCH_WARN_ONCE( \ "grad and param do not obey the gradient layout contract. " \ "This is not an error, but may impair performance.\n" \ "grad.sizes() = ", \ RESULT.sizes(), \ ", strides() = ", \ RESULT.strides(), \ "\n", \ "param.sizes() = ", \ VAR.sizes(), \ ", strides() = ", \ VAR.strides()); \ } \ } struct TORCH_API AccumulateGrad : public Node { explicit AccumulateGrad(Variable variable_); variable_list apply(variable_list&& grads) override; std::vector<std::unique_ptr<FunctionPreHook>>& tensor_pre_hooks() noexcept override { // NB: Since the AccumulateGrad Node is only a weak ref from the Tensor, // it can be destroyed even though the Tensor is still alive (contrary // to all other Nodes). So we must lazily read the Tensor hooks here. return impl::hooks(variable); } std::unique_ptr<PostAccumulateGradHook>& tensor_post_acc_grad_hooks() const noexcept override { // NB: Since the AccumulateGrad Node is only a weak ref from the Tensor, // it can be destroyed even though the Tensor is still alive (contrary // to all other Nodes). So we must lazily read the Tensor hooks here. return impl::post_acc_grad_hooks(variable); } // Given a variable with its current grad as variable_grad, accumulates // new_grad into variable_grad if in place accumulation is possible. // Otherwise, uses 'update_grad' to update the grad for the variable. // "Gradient Layout Contract" // // AccumulateGrad tries to stash strided (non-sparse) grads with memory layout // (strides) such that variables and grads interact efficiently in later // optimizer kernels, and grads interact efficiently with c10d::Reducer.cpp. // // Specifically, AccumulateGrad tries to ensure the following // (cf torch/csrc/autograd/utils/grad_layout_contract.h): // (1) if variable.is_non_overlapping_and_dense(), the stashed grad's // strides match variable. // (2) else, stashed grad is rowmajor contiguous. // If variable's grad does not exist (!variable_grad.defined()) // AccumulateGrad steals new_grad if it's stealable and obeys the contract // already, otherwise it deep copies new_grad into an obedient clone. // // If variable's grad already exists (variable_grad.defined()), new_grad must // be added to variable_grad. If we aren't setting up for double backward // (!GradMode::is_enabled()), AccumulateGrad performs "variable_grad += // new_grad" in-place, which keeps variable_grad's layout. We assume (hope) // variable_grad was created obeying (1) or (2) at some point in the past. // // If we are setting up for double backward, AccumulateGrad updates the grad // out-of-place via "variable_grad + new_grad." TensorIterator operator+ // decides result's layout. Typically TensorIterator matches strides of the // first arg, so we once again assume (hope) variable_grad was originally // created obeying (1) or (2). // // AccumulateGrad does not enforce the contract with 100% certainty. Examples: // - If a user manually permutes a param or its grad, then runs a fwd+bwd, // variable_grad += new_grad keeps variable_grad's layout without // rechecking the contract. // - If TensorIterator changes its corner cases about operator+'s result // (for example, giving more or less priority to channels_last inputs, see // https://github.com/pytorch/pytorch/pull/37968) the result may not obey. // // Fortunately, if a given grad doesn't satisfy (1) or (2), the penalty is // degraded performance in Reducer.cpp or optimizer kernels, not death by // assert or silently bad numerics. // variable: the variable whose grad we're accumulating. // variable_grad: the current grad for the variable. // new_grad: new grad we want to accumulate for the variable. // num_expected_refs: the number of refs we expect to hold internally // such that it is safe to avoid cloning the grad // if use_count() of the grad is less than or equal // to this value (in addition to post_hooks). // update_grad: Function that is used to update grad for the variable. // The argument to the function is a Tensor which // is used to set a new value for the grad. template <typename T> static void accumulateGrad( const Variable& variable, at::Tensor& variable_grad, const at::Tensor& new_grad, size_t num_expected_refs, const T& update_grad) { if (!variable_grad.defined()) { if (!GradMode::is_enabled() && !new_grad.is_sparse() && !new_grad.is_sparse_csr() && !(variable.is_sparse_csr() && new_grad.layout() == at::kStrided) && at::caching::adjusted_use_count(new_grad) <= num_expected_refs && (new_grad.is_mkldnn() || utils::obeys_layout_contract(new_grad, variable))) { // we aren't setting up for double-backward // not sparse // no other user-visible tensor references new_grad // new_grad obeys the "Gradient Layout Contract", there has a special // case, For MKLDNN tensor, which is a opaque tensor, assuming it obeys // layout_contract. Under these conditions, we can steal new_grad // without a deep copy. update_grad(new_grad.detach()); } else if ( !GradMode::is_enabled() && new_grad.is_sparse() && new_grad._indices().is_contiguous() && new_grad._values().is_contiguous() && // Use count for indices and values should always be <=1 since the // SparseTensor should be the only one holding a reference to these. new_grad._indices().use_count() <= 1 && new_grad._values().use_count() <= 1 && new_grad.use_count() <= num_expected_refs) { // Can't detach sparse tensor (since metadata changes are not allowed // after detach), so just create a new one for the grad which is a // shallow copy. We need a shallow copy so that modifying the original // grad tensor doesn't modify the grad we accumulate. // We only skip clone if indices and values themselves are contiguous // for backward compatibility reasons. Since without this optimization, // earlier we would clone the entire SparseTensor which cloned indices // and values. // For details see https://github.com/pytorch/pytorch/issues/34375. // No scenario where we expect this to be true currently TORCH_INTERNAL_ASSERT_DEBUG_ONLY( !at::caching::is_cached_tensor(new_grad._indices()) && !at::caching::is_cached_tensor(new_grad._values()) && !at::caching::is_cached_tensor(new_grad)); update_grad(at::_sparse_coo_tensor_unsafe( new_grad._indices(), new_grad._values(), new_grad.sizes(), new_grad.options())); } else { if (new_grad.is_sparse() || new_grad.is_sparse_csr() || new_grad.is_nested()) { update_grad(new_grad.clone()); } else { if (new_grad.is_mkldnn()) { update_grad(new_grad.clone()); } else { // Deep copies new_grad according to the "Gradient Layout Contract." update_grad(utils::clone_obey_contract(new_grad, variable)); } } } } else if (!GradMode::is_enabled()) { // This case is not strictly necessary, but it makes the first-order only // case slightly more efficient. if (variable_grad.is_sparse() && !new_grad.is_sparse()) { // If `variable_grad` is sparse and `new_grad` is not sparse, their // sum is not sparse, and we must change the TensorImpl type of // `variable_grad` for it to store the result. However, changing the // TensorImpl type of a tensor requires changing the tensor itself, and // thus in this case we have to change the grad tensor. auto result = new_grad + variable_grad; CHECK_RESULT(result, variable); update_grad(std::move(result)); } else if (!at::inplaceIsVmapCompatible(variable_grad, new_grad)) { // Ideally we'd perform an in-place operation to avoid changing // the grad tensor. However, if that's impossible because the grads // are vmap-incompatible (See NOTE: [vmap-incompatible in-place // operations]), then we just add them out-of-place. auto result = variable_grad + new_grad; CHECK_RESULT(result, variable); update_grad(std::move(result)); } else { // In this case we can avoid changing the grad tensor. There are three // scenarios when we'll hit this case: // // 1. `variable_grad` is sparse, and `new_grad` is sparse. // 2. `variable_grad` is dense, and `new_grad` is sparse. // 3. `variable_grad` is dense, and `new_grad` is dense. // 4. `variable_grad` is mkldnn, and `new_grad` is mkldnn. // // In all of these four cases, `variable_grad += new_grad` is a // valid operation which adds `new_grad` to `variable_grad` in // place. `variable_grad` is thus still referring to the same tensor // after the operation. // Also DistributedDataParallel(DDP) package relies on grad being // mutated in place for saving peak memory usage. DDP will still // work correctly if it is mutated out of place here, but DDP will // maintain one extra copy of grad tensors in buffer and thus // increase peak memory usage. variable_grad += new_grad; CHECK_RESULT(variable_grad, variable); // ^ We could enforce the contract more aggressively here by writing: // if (variable_grad.is_sparse() || new_grad.is_sparse()) { // variable_grad += new_grad; // } else if (obeys_layout_contract(variable_grad, variable)) { // variable_grad += new_grad; // } else { // result = at::empty_strided(variable.sizes(), variable.strides(), // variable.options().memory_format(std::nullopt)); // update_grad(at::native::add_out(result, variable_grad, // new_grad, 1.0); // } // However, that accumulation is sometimes in place and sometimes not, // which may break user code. } } else { at::Tensor result; if (variable_grad.is_sparse() && !new_grad.is_sparse()) { // CPU backend throws an error on sparse + dense, so prefer dense + // sparse here. result = new_grad + variable_grad; } else { // Assumes operator+ result typically matches strides of first arg, // and hopes variable_grad was originally created obeying layout // contract. result = variable_grad + new_grad; } CHECK_RESULT(result, variable); update_grad(std::move(result)); // ^ We could enforce the contract more aggressively here by saying // if (obeys_layout_contract(new_grad, variable)) { // update_grad(new_grad + variable_grad); // } else { // update_grad(variable_grad + new_grad); // } // such that the stashed grad is likely to have the right strides if // either variable_grad or new_grad already has the right strides. // We could enforce the contract with certainty by saying // auto result = variable_grad + new_grad (or vice versa), checking // result's layout, and copying to an obedient clone if necessary before // update_grad. The copy would require another gmem pass. We can't create // empty result with the right layout then add_out into it with a single // kernel, because GradMode is enabled in this branch, and add_out isn't // differentiable. Maybe more trouble than it's worth. } } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override; Variable variable; }; #undef CHECK_RESULT } // namespace torch::autograd ```
=============================================================================================================================================== SOURCE CODE FILE: basic_ops.h LINES: 1 SIZE: 3.43 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\functions\basic_ops.h ENCODING: utf-8 ```h #pragma once #include <c10/util/irange.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/variable.h> #include <memory> #include <string> #include <vector> namespace torch::autograd { struct TORCH_API Error : public Node { Error(std::string msg, edge_list&& next_edges) : Node(std::move(next_edges)), msg(std::move(msg)) {} Error(std::string msg) : msg(std::move(msg)) {} variable_list apply(variable_list&& inputs) override; variable_list apply(variable_list&& inputs) const; void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override; std::string msg; }; // We print grad_fn names in tensor printing. For functions with backward // NYI, grad_fn=<Error> will be printed if we use Error, which is confusing. So // special case with a new NotImplemented function here. struct TORCH_API NotImplemented : public Error { NotImplemented(const std::string& forward_fn, edge_list&& next_edges) : Error( "derivative for " + forward_fn + " is not implemented", std::move(next_edges)) {} NotImplemented(const std::string& forward_fn) : Error("derivative for " + forward_fn + " is not implemented") {} }; // Identity in forward, Error in backward. Used to implement // @once_differentiable struct TORCH_API DelayedError : public Node { DelayedError(std::string msg, int64_t num_inputs) : msg(std::move(msg)) { for ([[maybe_unused]] const auto _ [[maybe_unused]] : c10::irange(num_inputs)) { add_input_metadata(Node::undefined_input()); } } variable_list apply(variable_list&& inputs) override; variable_list apply(variable_list&& inputs) const; std::string msg; }; struct TORCH_API UndefinedGrad : public Node { UndefinedGrad() { add_input_metadata(Node::undefined_input()); } variable_list apply(variable_list&& inputs) override; variable_list apply(variable_list&& inputs) const; }; struct TORCH_API UndefinedGradBackward : public Node { UndefinedGradBackward(edge_list&& next_edges) : Node(std::move(next_edges)) {} UndefinedGradBackward() = default; variable_list apply(variable_list&& inputs) override; variable_list apply(variable_list&& inputs) const; void compiled_args(CompiledNodeArgs& args) const override {} variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override { return apply(variable_list(inputs)); } }; struct TORCH_API GraphRoot : public Node { GraphRoot(edge_list functions, variable_list inputs) : Node(std::move(functions)), outputs(std::move(inputs)) { // Ensures calls to stream() on a GraphRoot instance reflect current // stream(s) on devices of root grad tensors at the time the instance is // constructed. for (const auto& t : outputs) { add_input_metadata(t); } } variable_list apply(variable_list&& inputs) override { return outputs; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override; variable_list outputs; }; struct TORCH_API Identity : public Node { variable_list apply(variable_list&& inputs) override; }; } // namespace torch::autograd ```
========================================================================================================================================== SOURCE CODE FILE: comm.h LINES: 1 SIZE: 1.21 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\functions\comm.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/variable.h> #include <ATen/ATen.h> #include <c10/cuda/CUDAStream.h> #include <optional> #include <cstddef> #include <vector> namespace torch::autograd { struct TORCH_CUDA_CU_API Scatter : public Node { explicit Scatter( std::vector<at::Device> devices, std::optional<std::vector<int64_t>> chunk_sizes = std::nullopt, int64_t dim = 0, std::optional<std::vector<std::optional<at::cuda::CUDAStream>>> streams = std::nullopt, bool unsqueeze_scalars = false); ~Scatter() override; variable_list apply(variable_list&& inputs) override; std::vector<at::Device> devices_; std::optional<std::vector<int64_t>> chunk_sizes_; int64_t dim_; std::optional<std::vector<std::optional<at::cuda::CUDAStream>>> streams_; bool unsqueeze_scalars_; }; struct TORCH_CUDA_CU_API Gather : public Node { explicit Gather(const at::Device& destination_device, int64_t dim = 0); ~Gather() override; variable_list apply(variable_list&& inputs) override; at::Device destination_device_; int64_t dim_; }; } // namespace torch::autograd ```
============================================================================================================================================ SOURCE CODE FILE: pybind.h LINES: 1 SIZE: 0.38 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\functions\pybind.h ENCODING: utf-8 ```h #pragma once #include <pybind11/pybind11.h> #include <pybind11/stl.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/pybind.h> #include <torch/csrc/autograd/python_cpp_function.h> #include <torch/csrc/autograd/python_function.h> // NOLINTNEXTLINE(misc-unused-alias-decls) namespace py = pybind11; namespace pybind11::detail {} // namespace pybind11::detail ```
============================================================================================================================================ SOURCE CODE FILE: tensor.h LINES: 1 SIZE: 7.28 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\functions\tensor.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/variable.h> #include <ATen/TensorGeometry.h> #include <ATen/core/DeprecatedTypeProperties.h> #include <optional> #include <cstdint> #include <memory> namespace torch::autograd { struct TORCH_API CopyBackwards : public Node { variable_list apply(variable_list&& grads) override; void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override; at::TensorOptions src_options; }; // Note [View + Inplace update for base tensor] // // This note covers a few important topics related to view + inplace handling. // - It explains what is the CopySlices Node and why we need it. // - It explains the considerations on what is saved for backward in // CopySlices. // - It explains why we need to sometimes change the exec_info of the current // backward // // What is CopySlices? // ~~~~~~~~~~~~~~~~~~~ // // We support autograd with inplace mutation; e.g., if you write x.mul_(2) // the autograd will work as if you now had multiple Tensors under the hood and // you did // x = t.clone() // x0 = x // x1 = x0 * 2 // x = x1 // As you can see here, after this operation, x.grad_fn now points to x1.grad_fn // (the MulBackward node) and this node points to x's original grad_fn (which is // also x0.grad_fn). It is important to keep in mind that after the inplace, // there is no Tensor object that represents the x0 state anymore. But the graph // for it is still around in autograd (in case x was used before being modified // inplace). See Example 1 in // https://docs.google.com/drawings/d/1-T5DyYfChMX1ONQkY-zU-hj_ayQ2zmA5CBOKDWqvEhE // We call this rebasing the history of the Tensor. // // Now, a difficult situation is what happens if x is a differentiable view // of a base b. // b = t.clone() // x = b.select(0, 0) // x *= 2 // With the same approach as above, this will become // b = t.clone() // x = b.select(0, 0) // b0 = b // x0 = x // x1 = x0 * 2 // b1 = b0.select_scatter(x1, 0, 0) // x2 = b1.select(0, 0) // x = x2 // b = b1 // As you can see here, not only we need to modify x's grad_fn, we also need to // modify the one from b. We also need to ensure that the new grad_fn on x is // linked to b's new grad_fn. The chain the select_scatter, multiplication and // select is what CopySlices does, all wrapped into a single Node. // // See Example 1 in // https://docs.google.com/drawings/d/1-T5DyYfChMX1ONQkY-zU-hj_ayQ2zmA5CBOKDWqvEhE // // What do we need to save in CopySlices to run backward? // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // We need to perform grad_view = fn(grad_view), but out-of-place. // view_fn_ is an optional function saved in DifferentiableViewMeta // from forward pass, so that we can recover we when as_strided is not // supported. It preserves the invariants: // view = view_fn_(base) // grad_view = view_fn_(grad_base) // // When as_strided is supported (e.g. strided CPU/CUDA Tensors), view_fn_ // is empty and we save TensorGeometry(view) instead. // With the TensorGeometry information we can use `as_strided` call which // is more efficient to recover views in backward. // // For example: // view_1 = view_op_1(base) // view_2 = view_op_2(view_1) // ... // view_n = view_op_n(view_n-1) // view_n = inplace_op(view_n) // // In CPU/CUDA case where we support efficient as_strided implementation, // grad_view_n can be calculated through 1 step. // // grad_view_n = grad_base.as_strided(view_sizes, view_strides, view_offset); // // But in XLA backend where we don't have full support of as_strided, // it has to save a chained lambda function view_fn_, to exactly // replay how the view was done in forward. // // view_fn_ = view_op_n(...(view_op_2(view_op_1()))) // grad_view_n = view_fn_(grad_base) // // This chain view_fn_ works as long as forward view ops are implemented, // e.g XLA simulates view without a real Storage behind Tensor, but it's less // efficient than the as_strided one so we should be careful to only use it when // necessary. // // - For CPU/CUDA we save TensorGeometry of both base and view tensors, // That's all we need to pass into as_strided. // E.g. int[] sizes, int[] strides, and int storage_offset. // - For XLA we use view_fn_, which captures all forward view op arguments // by **value**. // E.g for at::narrow, int dim, int start, in length are saved. // // Theoretically we could also save Tensor `view` in CopySlices Node, but // it's far more expensive than what we currently save. // 1. We cannot afford keeping large tensors alive to recover views only. // 2. There are inplace checks when Tensors are loaded back to make sure // they haven't been changed (including size metadata). // So saving metadata like TensorGeometry/view arguments is much better // because it is minimal information needed to recover views, as well as it // allows the user to modify the original Tensor without preventing the // backward pass from running. // // Why do we manually change exec_info in the apply? // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Using the same example as before, // b = t.clone() // x = b.select(0, 0) // x *= y // // You can see the visualization at // https://docs.google.com/drawings/d/1Bx-Hcz-zlIv7PabQqnPhUIVIs9F8WWi48svqMsAUMFs // which contains the wrapped MulBackward Node and show what it links to. // Since a backward can happen between any subset of the inputs (t and y) and // outputs (o, x, b). It is possible to get into a state where CopySlices's 0th // next function (CloneBackward) needs gradient but MulBackward's 0th next // function (SelectBackward) is not. This happens if you do autograd.grad // between x and t for example. // In such a case, we do need to mark SelectBackward as requiring gradient such // that, during the execution of MulBackward, we will actually compute gradient // for the 0th input. // // All the other next functions are always shared (this is asserted in the apply // code) and so nothing needs to be done for them. // See Note [View + Inplace update for view tensor] for what we do to view // tensor when an in-place operation happens. struct TORCH_API CopySlices : public Node { CopySlices( const Variable& base_var, at::TensorGeometry view_, std::unique_ptr<ViewFunc> view_fn_, std::shared_ptr<Node> fn_); // common code between apply/apply_with_saved template <typename T> variable_list apply_impl(variable_list&& inputs, const T& call_fn); variable_list apply(variable_list&& inputs) override; void release_variables() override; void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override; void update_exec_info(); at::TensorGeometry base; // view and view_fn are redundant and view_fn will be used if available. // See Note [View + Inplace update for base tensor] for details. at::TensorGeometry view; std::unique_ptr<ViewFunc> view_fn; std::shared_ptr<Node> fn; }; } // namespace torch::autograd ```
=========================================================================================================================================== SOURCE CODE FILE: utils.h LINES: 1 SIZE: 3.19 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\functions\utils.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/autograd/InferenceMode.h> #include <torch/csrc/autograd/autograd.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/variable.h> #include <torch/csrc/utils/variadic.h> #include <ATen/core/Tensor.h> #include <functional> #include <memory> #include <vector> namespace torch::autograd { using function_constructor = std::function<std::shared_ptr<Node>(edge_list&&)>; /** * Wraps the tensor outputs in variables and creates the grad_fn and sets the * grad_fn if necessary. */ TORCH_API variable_list wrap_outputs( const variable_list& inputs, tensor_list&& outputs, const function_constructor& ctr); /// Checks that inputs contains exactly `args` items and that the first /// `required_args` /// items are not nullptr. If not specified, `required_args` defaults to `args`. TORCH_API void check_input_variables( const char* name, const variable_list& inputs, int args, int required_args = -1, bool allow_undefined = false); struct ComputeRequiresGrad : IterArgs<ComputeRequiresGrad> { bool out = false; using IterArgs<ComputeRequiresGrad>::operator(); void operator()(const at::Tensor& tensor) { const auto& var = static_cast<const Variable&>(tensor); if (var.defined() && var.requires_grad()) { out = true; } } void operator()(const std::optional<at::Tensor>& tensor) { if (tensor.has_value()) { (*this)(*tensor); } } bool short_circuit() { return out; } }; template <typename... Args> inline bool compute_requires_grad(Args&&... args) { if (!GradMode::is_enabled()) { return false; } return ComputeRequiresGrad().apply(std::forward<Args>(args)...).out; } inline void set_history( const at::Tensor& variable, const std::shared_ptr<Node>& grad_fn) { TORCH_CHECK(grad_fn != nullptr); if (variable.defined()) { // If the codegen triggers this, you most likely want to add your newly // added function to the DONT_REQUIRE_DERIVATIVE list in // tools/autograd/gen_variable_type.py TORCH_INTERNAL_ASSERT(isDifferentiableType(variable.scalar_type())); auto output_nr = grad_fn->add_input_metadata(variable); impl::set_gradient_edge(variable, {grad_fn, output_nr}); } else { grad_fn->add_input_metadata(Node::undefined_input()); } } inline void set_history( const std::vector<Variable>& variables, const std::shared_ptr<Node>& grad_fn) { for (auto& variable : variables) { set_history(variable, grad_fn); } } inline bool isFwGradDefined(const std::optional<at::Tensor>& t) { return t.has_value() && t->defined() && t->_fw_grad(/*level */ 0).defined(); } inline bool isFwGradDefinedTensorList(const at::ITensorListRef& variables) { bool ret = false; for (auto& variable : variables) { ret |= isFwGradDefined(variable); } return ret; } inline bool isFwGradDefinedTensorList( const c10::List<std::optional<at::Tensor>>& li) { bool ret = false; for (auto i : c10::irange(li.size())) { auto t = li.get(i); ret |= isFwGradDefined(t); } return ret; } } // namespace torch::autograd ```
=============================================================================================================================================== SOURCE CODE FILE: Functions.h LINES: 1 SIZE: 516.83 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\generated\Functions.h ENCODING: utf-8 ```h #pragma once // @generated from ..\tools\autograd\templates/Functions.h #include <ATen/ATen.h> #include <ATen/core/functional.h> #include <ATen/TensorGeometry.h> #include "torch/csrc/autograd/function.h" #include "torch/csrc/autograd/variable.h" #include "torch/csrc/autograd/saved_variable.h" #include <torch/csrc/Export.h> #include <c10/core/SymIntArrayRef.h> namespace torch { namespace autograd { namespace generated { using at::Scalar; using at::Tensor; using at::IntArrayRef; using at::ArrayRef; using at::Type; using at::TensorGeometry; using at::ScalarType; using std::optional; using c10::fmap; inline std::vector<Tensor> unpack_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) { // NB: we must explicitly do the conversion in the lambda, otherwise template // deduction will give a Tensor of Variable which is not convertible return fmap(xs, [&saved_for](const SavedVariable& x) { // TODO(crcrpar): Use `std::move(saved_for)` to avoid incrementing refcount, which would need refactoring. return static_cast<Tensor>(x.unpack(saved_for)); }); } inline c10::List<std::optional<Tensor>> unpack_opt_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) { torch::List<std::optional<Tensor>> result; result.reserve(xs.size()); for (const SavedVariable& v : xs) { auto var = v.unpack(saved_for); result.push_back(var.defined() ? std::optional<Tensor>(var) : ::std::nullopt); } return result; } using torch::autograd::TypeAndSize; #ifdef _WIN32 struct AbsBackward0 : public TraceableFunction { TORCH_API AbsBackward0() = default; #else struct TORCH_API AbsBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AbsBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AcosBackward0 : public TraceableFunction { TORCH_API AcosBackward0() = default; #else struct TORCH_API AcosBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AcosBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AddBackward0 : public TraceableFunction { TORCH_API AddBackward0() = default; #else struct TORCH_API AddBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::ScalarType other_scalar_type; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct AddBackward1 : public TraceableFunction { TORCH_API AddBackward1() = default; #else struct TORCH_API AddBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct AddbmmBackward0 : public TraceableFunction { TORCH_API AddbmmBackward0() = default; #else struct TORCH_API AddbmmBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddbmmBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); batch1_.reset_data(); batch2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; SavedVariable batch1_; c10::SymInt batch1_sym_argsize_0; c10::SymInt batch1_sym_argsize_1; SavedVariable batch2_; c10::SymInt batch2_sym_argsize_2; at::Scalar beta; }; #ifdef _WIN32 struct AddcdivBackward0 : public TraceableFunction { TORCH_API AddcdivBackward0() = default; #else struct TORCH_API AddcdivBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddcdivBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); tensor1_.reset_data(); tensor2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::ScalarType self_scalar_type; SavedVariable tensor1_; at::ScalarType tensor1_scalar_type; SavedVariable tensor2_; at::ScalarType tensor2_scalar_type; at::Scalar value; }; #ifdef _WIN32 struct AddcmulBackward0 : public TraceableFunction { TORCH_API AddcmulBackward0() = default; #else struct TORCH_API AddcmulBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddcmulBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); tensor1_.reset_data(); tensor2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::ScalarType self_scalar_type; SavedVariable tensor1_; at::ScalarType tensor1_scalar_type; SavedVariable tensor2_; at::ScalarType tensor2_scalar_type; at::Scalar value; }; #ifdef _WIN32 struct AddmmBackward0 : public TraceableFunction { TORCH_API AddmmBackward0() = default; #else struct TORCH_API AddmmBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddmmBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mat1_.reset_data(); mat2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::Scalar beta; SavedVariable mat1_; at::Layout mat1_layout; std::vector<c10::SymInt> mat1_sym_sizes; std::vector<c10::SymInt> mat1_sym_strides; SavedVariable mat2_; at::Layout mat2_layout; std::vector<c10::SymInt> mat2_sym_sizes; std::vector<c10::SymInt> mat2_sym_strides; }; #ifdef _WIN32 struct SparseAddmmBackward0 : public TraceableFunction { TORCH_API SparseAddmmBackward0() = default; #else struct TORCH_API SparseAddmmBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseAddmmBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mat1_.reset_data(); mat2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::Scalar beta; SavedVariable mat1_; SavedVariable mat2_; at::Layout mat2_layout; std::vector<c10::SymInt> mat2_sym_sizes; std::vector<c10::SymInt> mat2_sym_strides; }; #ifdef _WIN32 struct AddmvBackward0 : public TraceableFunction { TORCH_API AddmvBackward0() = default; #else struct TORCH_API AddmvBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddmvBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mat_.reset_data(); vec_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::Scalar beta; SavedVariable mat_; SavedVariable vec_; }; #ifdef _WIN32 struct AddrBackward0 : public TraceableFunction { TORCH_API AddrBackward0() = default; #else struct TORCH_API AddrBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AddrBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); vec1_.reset_data(); vec2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::Scalar beta; SavedVariable vec1_; SavedVariable vec2_; }; #ifdef _WIN32 struct AffineGridGeneratorBackward0 : public TraceableFunction { TORCH_API AffineGridGeneratorBackward0() = default; #else struct TORCH_API AffineGridGeneratorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AffineGridGeneratorBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> size; }; #ifdef _WIN32 struct AliasBackward0 : public Node { TORCH_API AliasBackward0() = default; #else struct TORCH_API AliasBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AliasBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct AngleBackward0 : public TraceableFunction { TORCH_API AngleBackward0() = default; #else struct TORCH_API AngleBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AngleBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AcoshBackward0 : public TraceableFunction { TORCH_API AcoshBackward0() = default; #else struct TORCH_API AcoshBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AcoshBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AcoshBackward1 : public TraceableFunction { TORCH_API AcoshBackward1() = default; #else struct TORCH_API AcoshBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AcoshBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct AsinhBackward0 : public TraceableFunction { TORCH_API AsinhBackward0() = default; #else struct TORCH_API AsinhBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AsinhBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AsinhBackward1 : public TraceableFunction { TORCH_API AsinhBackward1() = default; #else struct TORCH_API AsinhBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AsinhBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct AtanhBackward0 : public TraceableFunction { TORCH_API AtanhBackward0() = default; #else struct TORCH_API AtanhBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AtanhBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AtanhBackward1 : public TraceableFunction { TORCH_API AtanhBackward1() = default; #else struct TORCH_API AtanhBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AtanhBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct AsStridedBackward0 : public Node { TORCH_API AsStridedBackward0() = default; #else struct TORCH_API AsStridedBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AsStridedBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::TensorGeometry self_geometry; std::vector<c10::SymInt> size; ::std::optional<c10::SymInt> storage_offset; std::vector<c10::SymInt> stride; }; #ifdef _WIN32 struct AsStridedBackward1 : public TraceableFunction { TORCH_API AsStridedBackward1() = default; #else struct TORCH_API AsStridedBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AsStridedBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::TensorGeometry self_geometry; std::vector<c10::SymInt> size; ::std::optional<c10::SymInt> storage_offset; std::vector<c10::SymInt> stride; }; #ifdef _WIN32 struct AsinBackward0 : public TraceableFunction { TORCH_API AsinBackward0() = default; #else struct TORCH_API AsinBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AsinBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AtanBackward0 : public TraceableFunction { TORCH_API AtanBackward0() = default; #else struct TORCH_API AtanBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AtanBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct Atan2Backward0 : public TraceableFunction { TORCH_API Atan2Backward0() = default; #else struct TORCH_API Atan2Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Atan2Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct BaddbmmBackward0 : public TraceableFunction { TORCH_API BaddbmmBackward0() = default; #else struct TORCH_API BaddbmmBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BaddbmmBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); batch1_.reset_data(); batch2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; SavedVariable batch1_; SavedVariable batch2_; at::Scalar beta; }; #ifdef _WIN32 struct BernoulliBackward0 : public TraceableFunction { TORCH_API BernoulliBackward0() = default; #else struct TORCH_API BernoulliBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BernoulliBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct BernoulliBackward1 : public TraceableFunction { TORCH_API BernoulliBackward1() = default; #else struct TORCH_API BernoulliBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BernoulliBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize p_info; }; #ifdef _WIN32 struct BernoulliBackward2 : public TraceableFunction { TORCH_API BernoulliBackward2() = default; #else struct TORCH_API BernoulliBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BernoulliBackward2"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct BmmBackward0 : public TraceableFunction { TORCH_API BmmBackward0() = default; #else struct TORCH_API BmmBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BmmBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mat2_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mat2_; SavedVariable self_; }; #ifdef _WIN32 struct MatmulBackward0 : public TraceableFunction { TORCH_API MatmulBackward0() = default; #else struct TORCH_API MatmulBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MatmulBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct CatBackward0 : public TraceableFunction { TORCH_API CatBackward0() = default; #else struct TORCH_API CatBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CatBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; ::std::vector<at::ScalarType> tensors_args_scalartypes; ::std::vector<::std::vector<c10::SymInt>> tensors_args_sizes_symint; size_t tensors_size_; }; #ifdef _WIN32 struct CauchyBackward0 : public TraceableFunction { TORCH_API CauchyBackward0() = default; #else struct TORCH_API CauchyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CauchyBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct CeilBackward0 : public TraceableFunction { TORCH_API CeilBackward0() = default; #else struct TORCH_API CeilBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CeilBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct CholeskyBackward0 : public TraceableFunction { TORCH_API CholeskyBackward0() = default; #else struct TORCH_API CholeskyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CholeskyBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool upper; SavedVariable result_; }; #ifdef _WIN32 struct ChunkBackward0 : public TraceableFunction { TORCH_API ChunkBackward0() = default; #else struct TORCH_API ChunkBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ChunkBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ChunkBackwardAutogradNestedTensor0 : public TraceableFunction { TORCH_API ChunkBackwardAutogradNestedTensor0() = default; #else struct TORCH_API ChunkBackwardAutogradNestedTensor0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ChunkBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t chunks = 0; int64_t dim = 0; SavedVariable self_; }; #ifdef _WIN32 struct LinalgCholeskyExBackward0 : public TraceableFunction { TORCH_API LinalgCholeskyExBackward0() = default; #else struct TORCH_API LinalgCholeskyExBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgCholeskyExBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); L_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool upper; SavedVariable L_; }; #ifdef _WIN32 struct CholeskySolveBackward0 : public TraceableFunction { TORCH_API CholeskySolveBackward0() = default; #else struct TORCH_API CholeskySolveBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CholeskySolveBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input2_.reset_data(); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable input2_; SavedVariable self_; bool upper; SavedVariable result_; }; #ifdef _WIN32 struct CholeskyInverseBackward0 : public TraceableFunction { TORCH_API CholeskyInverseBackward0() = default; #else struct TORCH_API CholeskyInverseBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CholeskyInverseBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; bool upper; SavedVariable result_; }; #ifdef _WIN32 struct ClampBackward0 : public TraceableFunction { TORCH_API ClampBackward0() = default; #else struct TORCH_API ClampBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ClampBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); max_.reset_data(); min_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable max_; SavedVariable min_; SavedVariable self_; }; #ifdef _WIN32 struct ClampBackward1 : public TraceableFunction { TORCH_API ClampBackward1() = default; #else struct TORCH_API ClampBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ClampBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<at::Scalar> max; ::std::optional<at::Scalar> min; SavedVariable self_; }; #ifdef _WIN32 struct ClampMinBackward0 : public TraceableFunction { TORCH_API ClampMinBackward0() = default; #else struct TORCH_API ClampMinBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ClampMinBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar min; SavedVariable self_; }; #ifdef _WIN32 struct ClampMinBackward1 : public TraceableFunction { TORCH_API ClampMinBackward1() = default; #else struct TORCH_API ClampMinBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ClampMinBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); min_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable min_; SavedVariable self_; }; #ifdef _WIN32 struct ClampMaxBackward0 : public TraceableFunction { TORCH_API ClampMaxBackward0() = default; #else struct TORCH_API ClampMaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ClampMaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar max; SavedVariable self_; }; #ifdef _WIN32 struct ClampMaxBackward1 : public TraceableFunction { TORCH_API ClampMaxBackward1() = default; #else struct TORCH_API ClampMaxBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ClampMaxBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); max_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable max_; SavedVariable self_; }; #ifdef _WIN32 struct CloneBackward0 : public TraceableFunction { TORCH_API CloneBackward0() = default; #else struct TORCH_API CloneBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CloneBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct LazyCloneBackward0 : public TraceableFunction { TORCH_API LazyCloneBackward0() = default; #else struct TORCH_API LazyCloneBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LazyCloneBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ToCopyBackward0 : public TraceableFunction { TORCH_API ToCopyBackward0() = default; #else struct TORCH_API ToCopyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToCopyBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::TensorOptions self_options; }; #ifdef _WIN32 struct CoalesceBackward0 : public TraceableFunction { TORCH_API CoalesceBackward0() = default; #else struct TORCH_API CoalesceBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CoalesceBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ComplexBackward0 : public TraceableFunction { TORCH_API ComplexBackward0() = default; #else struct TORCH_API ComplexBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ComplexBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); imag_.reset_data(); real_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable imag_; SavedVariable real_; }; #ifdef _WIN32 struct PolarBackward0 : public TraceableFunction { TORCH_API PolarBackward0() = default; #else struct TORCH_API PolarBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PolarBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct ConjBackward0 : public Node { TORCH_API ConjBackward0() = default; #else struct TORCH_API ConjBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConjBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NegViewBackward0 : public Node { TORCH_API NegViewBackward0() = default; #else struct TORCH_API NegViewBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NegViewBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ConjPhysicalBackward0 : public TraceableFunction { TORCH_API ConjPhysicalBackward0() = default; #else struct TORCH_API ConjPhysicalBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConjPhysicalBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ConjPhysicalBackward1 : public TraceableFunction { TORCH_API ConjPhysicalBackward1() = default; #else struct TORCH_API ConjPhysicalBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConjPhysicalBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct CopysignBackward0 : public TraceableFunction { TORCH_API CopysignBackward0() = default; #else struct TORCH_API CopysignBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CopysignBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize other_info; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct CopysignBackward1 : public TraceableFunction { TORCH_API CopysignBackward1() = default; #else struct TORCH_API CopysignBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CopysignBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct CosBackward0 : public TraceableFunction { TORCH_API CosBackward0() = default; #else struct TORCH_API CosBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CosBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct CoshBackward0 : public TraceableFunction { TORCH_API CoshBackward0() = default; #else struct TORCH_API CoshBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CoshBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct LinalgCrossBackward0 : public TraceableFunction { TORCH_API LinalgCrossBackward0() = default; #else struct TORCH_API LinalgCrossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgCrossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct LogcumsumexpBackward0 : public TraceableFunction { TORCH_API LogcumsumexpBackward0() = default; #else struct TORCH_API LogcumsumexpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogcumsumexpBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct CumprodBackward0 : public TraceableFunction { TORCH_API CumprodBackward0() = default; #else struct TORCH_API CumprodBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CumprodBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; at::ScalarType self_scalar_type; SavedVariable result_; }; #ifdef _WIN32 struct CumsumBackward0 : public TraceableFunction { TORCH_API CumsumBackward0() = default; #else struct TORCH_API CumsumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CumsumBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct CummaxBackward0 : public TraceableFunction { TORCH_API CummaxBackward0() = default; #else struct TORCH_API CummaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CummaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; SavedVariable indices_; }; #ifdef _WIN32 struct CumminBackward0 : public TraceableFunction { TORCH_API CumminBackward0() = default; #else struct TORCH_API CumminBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CumminBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; SavedVariable indices_; }; #ifdef _WIN32 struct ConvTbcBackward0 : public TraceableFunction { TORCH_API ConvTbcBackward0() = default; #else struct TORCH_API ConvTbcBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvTbcBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); bias_.reset_data(); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable bias_; int64_t pad = 0; SavedVariable self_; SavedVariable weight_; }; #ifdef _WIN32 struct CtcLossBackward0 : public TraceableFunction { TORCH_API CtcLossBackward0() = default; #else struct TORCH_API CtcLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CtcLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); log_probs_.reset_data(); targets_.reset_data(); result0_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t blank = 0; std::vector<int64_t> input_lengths; SavedVariable log_probs_; std::vector<int64_t> target_lengths; SavedVariable targets_; bool zero_infinity; SavedVariable result0_; SavedVariable result1_; }; #ifdef _WIN32 struct CtcLossBackward1 : public TraceableFunction { TORCH_API CtcLossBackward1() = default; #else struct TORCH_API CtcLossBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CtcLossBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_lengths_.reset_data(); log_probs_.reset_data(); target_lengths_.reset_data(); targets_.reset_data(); result0_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t blank = 0; SavedVariable input_lengths_; SavedVariable log_probs_; SavedVariable target_lengths_; SavedVariable targets_; bool zero_infinity; SavedVariable result0_; SavedVariable result1_; }; #ifdef _WIN32 struct Deg2RadBackward0 : public TraceableFunction { TORCH_API Deg2RadBackward0() = default; #else struct TORCH_API Deg2RadBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Deg2RadBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct LinalgDetBackward0 : public TraceableFunction { TORCH_API LinalgDetBackward0() = default; #else struct TORCH_API LinalgDetBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgDetBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); A_.reset_data(); LU_.reset_data(); pivots_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable A_; SavedVariable LU_; SavedVariable pivots_; SavedVariable result_; }; #ifdef _WIN32 struct LinalgSlogdetBackward0 : public TraceableFunction { TORCH_API LinalgSlogdetBackward0() = default; #else struct TORCH_API LinalgSlogdetBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgSlogdetBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); A_.reset_data(); LU_.reset_data(); pivots_.reset_data(); sign_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable A_; SavedVariable LU_; SavedVariable pivots_; SavedVariable sign_; }; #ifdef _WIN32 struct BlockDiagBackward0 : public TraceableFunction { TORCH_API BlockDiagBackward0() = default; #else struct TORCH_API BlockDiagBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BlockDiagBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::vector<at::ScalarType> tensors_args_scalartypes; ::std::vector<::std::vector<int64_t>> tensors_args_sizes; size_t tensors_size_; }; #ifdef _WIN32 struct DiagEmbedBackward0 : public TraceableFunction { TORCH_API DiagEmbedBackward0() = default; #else struct TORCH_API DiagEmbedBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DiagEmbedBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim1 = 0; int64_t dim2 = 0; int64_t offset = 0; }; #ifdef _WIN32 struct DiagonalBackward0 : public Node { TORCH_API DiagonalBackward0() = default; #else struct TORCH_API DiagonalBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DiagonalBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim1 = 0; int64_t dim2 = 0; int64_t offset = 0; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct DiagonalBackwardBackward0 : public TraceableFunction { TORCH_API DiagonalBackwardBackward0() = default; #else struct TORCH_API DiagonalBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DiagonalBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim1 = 0; int64_t dim2 = 0; int64_t offset = 0; }; #ifdef _WIN32 struct DistBackward0 : public TraceableFunction { TORCH_API DistBackward0() = default; #else struct TORCH_API DistBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DistBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; at::Scalar p; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct DivBackward0 : public TraceableFunction { TORCH_API DivBackward0() = default; #else struct TORCH_API DivBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DivBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct DivBackward1 : public TraceableFunction { TORCH_API DivBackward1() = default; #else struct TORCH_API DivBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DivBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar other; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct DivBackward2 : public TraceableFunction { TORCH_API DivBackward2() = default; #else struct TORCH_API DivBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DivBackward2"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; std::optional<std::string> rounding_mode; SavedVariable self_; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct DivBackward3 : public TraceableFunction { TORCH_API DivBackward3() = default; #else struct TORCH_API DivBackward3 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DivBackward3"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar other; std::optional<std::string> rounding_mode; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct DotBackward0 : public TraceableFunction { TORCH_API DotBackward0() = default; #else struct TORCH_API DotBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DotBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); tensor_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable tensor_; }; #ifdef _WIN32 struct VdotBackward0 : public TraceableFunction { TORCH_API VdotBackward0() = default; #else struct TORCH_API VdotBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "VdotBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct FusedDropoutBackward0 : public TraceableFunction { TORCH_API FusedDropoutBackward0() = default; #else struct TORCH_API FusedDropoutBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FusedDropoutBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double p; SavedVariable result1_; }; #ifdef _WIN32 struct NativeDropoutBackward0 : public TraceableFunction { TORCH_API NativeDropoutBackward0() = default; #else struct TORCH_API NativeDropoutBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeDropoutBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double p; ::std::optional<bool> train; SavedVariable result1_; }; #ifdef _WIN32 struct NativeDropoutBackwardBackward0 : public TraceableFunction { TORCH_API NativeDropoutBackwardBackward0() = default; #else struct TORCH_API NativeDropoutBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeDropoutBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; SavedVariable mask_; double scale; }; #ifdef _WIN32 struct EqBackward0 : public TraceableFunction { TORCH_API EqBackward0() = default; #else struct TORCH_API EqBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EqBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct EqBackward1 : public TraceableFunction { TORCH_API EqBackward1() = default; #else struct TORCH_API EqBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EqBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize other_info; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct ErfBackward0 : public TraceableFunction { TORCH_API ErfBackward0() = default; #else struct TORCH_API ErfBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ErfBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ErfcBackward0 : public TraceableFunction { TORCH_API ErfcBackward0() = default; #else struct TORCH_API ErfcBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ErfcBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SpecialErfcxBackward0 : public TraceableFunction { TORCH_API SpecialErfcxBackward0() = default; #else struct TORCH_API SpecialErfcxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialErfcxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct ErfinvBackward0 : public TraceableFunction { TORCH_API ErfinvBackward0() = default; #else struct TORCH_API ErfinvBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ErfinvBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ExpBackward0 : public TraceableFunction { TORCH_API ExpBackward0() = default; #else struct TORCH_API ExpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ExpBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct Exp2Backward0 : public TraceableFunction { TORCH_API Exp2Backward0() = default; #else struct TORCH_API Exp2Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Exp2Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct Expm1Backward0 : public TraceableFunction { TORCH_API Expm1Backward0() = default; #else struct TORCH_API Expm1Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Expm1Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct ExpandBackward0 : public Node { TORCH_API ExpandBackward0() = default; #else struct TORCH_API ExpandBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ExpandBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct ExponentialBackward0 : public TraceableFunction { TORCH_API ExponentialBackward0() = default; #else struct TORCH_API ExponentialBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ExponentialBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FakeQuantizePerTensorAffineCachemaskBackward0 : public TraceableFunction { TORCH_API FakeQuantizePerTensorAffineCachemaskBackward0() = default; #else struct TORCH_API FakeQuantizePerTensorAffineCachemaskBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FakeQuantizePerTensorAffineCachemaskBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; }; #ifdef _WIN32 struct FakeQuantizePerTensorAffineCachemaskTensorQparamsBackward0 : public TraceableFunction { TORCH_API FakeQuantizePerTensorAffineCachemaskTensorQparamsBackward0() = default; #else struct TORCH_API FakeQuantizePerTensorAffineCachemaskTensorQparamsBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FakeQuantizePerTensorAffineCachemaskTensorQparamsBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; }; #ifdef _WIN32 struct FakeQuantizeLearnablePerTensorAffineBackward0 : public TraceableFunction { TORCH_API FakeQuantizeLearnablePerTensorAffineBackward0() = default; #else struct TORCH_API FakeQuantizeLearnablePerTensorAffineBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FakeQuantizeLearnablePerTensorAffineBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scale_.reset_data(); self_.reset_data(); zero_point_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double grad_factor; int64_t quant_max = 0; int64_t quant_min = 0; SavedVariable scale_; SavedVariable self_; SavedVariable zero_point_; }; #ifdef _WIN32 struct FakeQuantizePerChannelAffineCachemaskBackward0 : public TraceableFunction { TORCH_API FakeQuantizePerChannelAffineCachemaskBackward0() = default; #else struct TORCH_API FakeQuantizePerChannelAffineCachemaskBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FakeQuantizePerChannelAffineCachemaskBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; }; #ifdef _WIN32 struct FakeQuantizeLearnablePerChannelAffineBackward0 : public TraceableFunction { TORCH_API FakeQuantizeLearnablePerChannelAffineBackward0() = default; #else struct TORCH_API FakeQuantizeLearnablePerChannelAffineBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FakeQuantizeLearnablePerChannelAffineBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scale_.reset_data(); self_.reset_data(); zero_point_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t axis = 0; double grad_factor; int64_t quant_max = 0; int64_t quant_min = 0; SavedVariable scale_; SavedVariable self_; SavedVariable zero_point_; }; #ifdef _WIN32 struct FusedMovingAvgObsFqHelperBackward0 : public TraceableFunction { TORCH_API FusedMovingAvgObsFqHelperBackward0() = default; #else struct TORCH_API FusedMovingAvgObsFqHelperBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FusedMovingAvgObsFqHelperBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; }; #ifdef _WIN32 struct FillBackward0 : public TraceableFunction { TORCH_API FillBackward0() = default; #else struct TORCH_API FillBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FillBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FillBackward1 : public TraceableFunction { TORCH_API FillBackward1() = default; #else struct TORCH_API FillBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FillBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FillBackward2 : public TraceableFunction { TORCH_API FillBackward2() = default; #else struct TORCH_API FillBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FillBackward2"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FillBackward3 : public TraceableFunction { TORCH_API FillBackward3() = default; #else struct TORCH_API FillBackward3 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FillBackward3"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FloorBackward0 : public TraceableFunction { TORCH_API FloorBackward0() = default; #else struct TORCH_API FloorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FloorBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FmodBackward0 : public TraceableFunction { TORCH_API FmodBackward0() = default; #else struct TORCH_API FmodBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FmodBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FmodBackward1 : public TraceableFunction { TORCH_API FmodBackward1() = default; #else struct TORCH_API FmodBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FmodBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct FracBackward0 : public TraceableFunction { TORCH_API FracBackward0() = default; #else struct TORCH_API FracBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FracBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FrexpBackward0 : public TraceableFunction { TORCH_API FrexpBackward0() = default; #else struct TORCH_API FrexpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FrexpBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); exponent_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable exponent_; }; #ifdef _WIN32 struct GatherBackward0 : public TraceableFunction { TORCH_API GatherBackward0() = default; #else struct TORCH_API GatherBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GatherBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; SavedVariable self_; bool sparse_grad; }; #ifdef _WIN32 struct GeBackward0 : public TraceableFunction { TORCH_API GeBackward0() = default; #else struct TORCH_API GeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GeBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct GeBackward1 : public TraceableFunction { TORCH_API GeBackward1() = default; #else struct TORCH_API GeBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GeBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize other_info; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct GeometricBackward0 : public TraceableFunction { TORCH_API GeometricBackward0() = default; #else struct TORCH_API GeometricBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GeometricBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct GeqrfBackward0 : public TraceableFunction { TORCH_API GeqrfBackward0() = default; #else struct TORCH_API GeqrfBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GeqrfBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct GridSampler2DBackward0 : public TraceableFunction { TORCH_API GridSampler2DBackward0() = default; #else struct TORCH_API GridSampler2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GridSampler2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grid_.reset_data(); input_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; SavedVariable grid_; SavedVariable input_; int64_t interpolation_mode = 0; int64_t padding_mode = 0; }; #ifdef _WIN32 struct GridSampler3DBackward0 : public TraceableFunction { TORCH_API GridSampler3DBackward0() = default; #else struct TORCH_API GridSampler3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GridSampler3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grid_.reset_data(); input_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; SavedVariable grid_; SavedVariable input_; int64_t interpolation_mode = 0; int64_t padding_mode = 0; }; #ifdef _WIN32 struct GridSampler2DCpuFallbackBackward0 : public TraceableFunction { TORCH_API GridSampler2DCpuFallbackBackward0() = default; #else struct TORCH_API GridSampler2DCpuFallbackBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GridSampler2DCpuFallbackBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grid_.reset_data(); input_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; SavedVariable grid_; SavedVariable input_; int64_t interpolation_mode = 0; int64_t padding_mode = 0; }; #ifdef _WIN32 struct GtBackward0 : public TraceableFunction { TORCH_API GtBackward0() = default; #else struct TORCH_API GtBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GtBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct GtBackward1 : public TraceableFunction { TORCH_API GtBackward1() = default; #else struct TORCH_API GtBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GtBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize other_info; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct HardsigmoidBackward0 : public TraceableFunction { TORCH_API HardsigmoidBackward0() = default; #else struct TORCH_API HardsigmoidBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HardsigmoidBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct HardswishBackward0 : public TraceableFunction { TORCH_API HardswishBackward0() = default; #else struct TORCH_API HardswishBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HardswishBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct HardswishBackwardBackward0 : public TraceableFunction { TORCH_API HardswishBackwardBackward0() = default; #else struct TORCH_API HardswishBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HardswishBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; SavedVariable self_; at::TensorOptions self_options; }; #ifdef _WIN32 struct HypotBackward0 : public TraceableFunction { TORCH_API HypotBackward0() = default; #else struct TORCH_API HypotBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HypotBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct I0Backward0 : public TraceableFunction { TORCH_API I0Backward0() = default; #else struct TORCH_API I0Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "I0Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SpecialI0EBackward0 : public TraceableFunction { TORCH_API SpecialI0EBackward0() = default; #else struct TORCH_API SpecialI0EBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialI0EBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct SpecialI1Backward0 : public TraceableFunction { TORCH_API SpecialI1Backward0() = default; #else struct TORCH_API SpecialI1Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialI1Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct SpecialI1EBackward0 : public TraceableFunction { TORCH_API SpecialI1EBackward0() = default; #else struct TORCH_API SpecialI1EBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialI1EBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct IgammaBackward0 : public TraceableFunction { TORCH_API IgammaBackward0() = default; #else struct TORCH_API IgammaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IgammaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct IgammacBackward0 : public TraceableFunction { TORCH_API IgammacBackward0() = default; #else struct TORCH_API IgammacBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IgammacBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct IndexBackward0 : public TraceableFunction { TORCH_API IndexBackward0() = default; #else struct TORCH_API IndexBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.clear(); indices_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> indices_; bool indices_released_ = false; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UnsafeIndexBackward0 : public TraceableFunction { TORCH_API UnsafeIndexBackward0() = default; #else struct TORCH_API UnsafeIndexBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsafeIndexBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.clear(); indices_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> indices_; bool indices_released_ = false; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UnsafeMaskedIndexBackward0 : public TraceableFunction { TORCH_API UnsafeMaskedIndexBackward0() = default; #else struct TORCH_API UnsafeMaskedIndexBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsafeMaskedIndexBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.clear(); indices_released_ = true; mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> indices_; bool indices_released_ = false; SavedVariable mask_; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UnsafeMaskedIndexPutAccumulateBackward0 : public TraceableFunction { TORCH_API UnsafeMaskedIndexPutAccumulateBackward0() = default; #else struct TORCH_API UnsafeMaskedIndexPutAccumulateBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsafeMaskedIndexPutAccumulateBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.clear(); indices_released_ = true; mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> indices_; bool indices_released_ = false; SavedVariable mask_; }; #ifdef _WIN32 struct IndexAddBackward0 : public TraceableFunction { TORCH_API IndexAddBackward0() = default; #else struct TORCH_API IndexAddBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexAddBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); source_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; int64_t dim = 0; SavedVariable index_; SavedVariable source_; int64_t source_dim = 0; }; #ifdef _WIN32 struct IndexReduceBackward0 : public TraceableFunction { TORCH_API IndexReduceBackward0() = default; #else struct TORCH_API IndexReduceBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexReduceBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); self_.reset_data(); source_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool include_self; SavedVariable index_; std::string reduce; SavedVariable self_; SavedVariable source_; SavedVariable result_; }; #ifdef _WIN32 struct IndexCopyBackward0 : public TraceableFunction { TORCH_API IndexCopyBackward0() = default; #else struct TORCH_API IndexCopyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexCopyBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); source_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; SavedVariable source_; int64_t source_dim = 0; }; #ifdef _WIN32 struct IndexFillBackward0 : public TraceableFunction { TORCH_API IndexFillBackward0() = default; #else struct TORCH_API IndexFillBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexFillBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; }; #ifdef _WIN32 struct IndexFillBackward1 : public TraceableFunction { TORCH_API IndexFillBackward1() = default; #else struct TORCH_API IndexFillBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexFillBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; }; #ifdef _WIN32 struct IndexPutBackward0 : public TraceableFunction { TORCH_API IndexPutBackward0() = default; #else struct TORCH_API IndexPutBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexPutBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.clear(); indices_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool accumulate; std::vector<SavedVariable> indices_; bool indices_released_ = false; torch::autograd::generated::TypeAndSize values_info; }; #ifdef _WIN32 struct UnsafeIndexPutBackward0 : public TraceableFunction { TORCH_API UnsafeIndexPutBackward0() = default; #else struct TORCH_API UnsafeIndexPutBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsafeIndexPutBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.clear(); indices_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool accumulate; std::vector<SavedVariable> indices_; bool indices_released_ = false; torch::autograd::generated::TypeAndSize values_info; }; #ifdef _WIN32 struct IndexPutImplBackward0 : public TraceableFunction { TORCH_API IndexPutImplBackward0() = default; #else struct TORCH_API IndexPutImplBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexPutImplBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.clear(); indices_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool accumulate; std::vector<SavedVariable> indices_; bool indices_released_ = false; torch::autograd::generated::TypeAndSize values_info; }; #ifdef _WIN32 struct IndexSelectBackward0 : public TraceableFunction { TORCH_API IndexSelectBackward0() = default; #else struct TORCH_API IndexSelectBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "IndexSelectBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct LinalgInvExBackward0 : public TraceableFunction { TORCH_API LinalgInvExBackward0() = default; #else struct TORCH_API LinalgInvExBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgInvExBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); inverse_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable inverse_; }; #ifdef _WIN32 struct LinalgPinvBackward0 : public TraceableFunction { TORCH_API LinalgPinvBackward0() = default; #else struct TORCH_API LinalgPinvBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgPinvBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct KthvalueBackward0 : public TraceableFunction { TORCH_API KthvalueBackward0() = default; #else struct TORCH_API KthvalueBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "KthvalueBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool keepdim; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct LeBackward0 : public TraceableFunction { TORCH_API LeBackward0() = default; #else struct TORCH_API LeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LeBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct LeBackward1 : public TraceableFunction { TORCH_API LeBackward1() = default; #else struct TORCH_API LeBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LeBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize other_info; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct LerpBackward0 : public TraceableFunction { TORCH_API LerpBackward0() = default; #else struct TORCH_API LerpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LerpBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar weight; }; #ifdef _WIN32 struct LerpBackward1 : public TraceableFunction { TORCH_API LerpBackward1() = default; #else struct TORCH_API LerpBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LerpBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); end_.reset_data(); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable end_; SavedVariable self_; SavedVariable weight_; }; #ifdef _WIN32 struct LgammaBackward0 : public TraceableFunction { TORCH_API LgammaBackward0() = default; #else struct TORCH_API LgammaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LgammaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct DigammaBackward0 : public TraceableFunction { TORCH_API DigammaBackward0() = default; #else struct TORCH_API DigammaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DigammaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct PolygammaBackward0 : public TraceableFunction { TORCH_API PolygammaBackward0() = default; #else struct TORCH_API PolygammaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PolygammaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t n = 0; SavedVariable self_; }; #ifdef _WIN32 struct PolygammaBackward1 : public TraceableFunction { TORCH_API PolygammaBackward1() = default; #else struct TORCH_API PolygammaBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PolygammaBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t n = 0; SavedVariable self_; }; #ifdef _WIN32 struct LogBackward0 : public TraceableFunction { TORCH_API LogBackward0() = default; #else struct TORCH_API LogBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct Log10Backward0 : public TraceableFunction { TORCH_API Log10Backward0() = default; #else struct TORCH_API Log10Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Log10Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct Log1PBackward0 : public TraceableFunction { TORCH_API Log1PBackward0() = default; #else struct TORCH_API Log1PBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Log1PBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct Log2Backward0 : public TraceableFunction { TORCH_API Log2Backward0() = default; #else struct TORCH_API Log2Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Log2Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct LogaddexpBackward0 : public TraceableFunction { TORCH_API LogaddexpBackward0() = default; #else struct TORCH_API LogaddexpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogaddexpBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct Logaddexp2Backward0 : public TraceableFunction { TORCH_API Logaddexp2Backward0() = default; #else struct TORCH_API Logaddexp2Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Logaddexp2Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct XlogyBackward0 : public TraceableFunction { TORCH_API XlogyBackward0() = default; #else struct TORCH_API XlogyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "XlogyBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct XlogyBackward1 : public TraceableFunction { TORCH_API XlogyBackward1() = default; #else struct TORCH_API XlogyBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "XlogyBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; at::Scalar self; }; #ifdef _WIN32 struct XlogyBackward2 : public TraceableFunction { TORCH_API XlogyBackward2() = default; #else struct TORCH_API XlogyBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "XlogyBackward2"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar other; SavedVariable self_; }; #ifdef _WIN32 struct SpecialXlog1PyBackward0 : public TraceableFunction { TORCH_API SpecialXlog1PyBackward0() = default; #else struct TORCH_API SpecialXlog1PyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialXlog1PyBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct SpecialXlog1PyBackward1 : public TraceableFunction { TORCH_API SpecialXlog1PyBackward1() = default; #else struct TORCH_API SpecialXlog1PyBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialXlog1PyBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; at::Scalar self; }; #ifdef _WIN32 struct SpecialXlog1PyBackward2 : public TraceableFunction { TORCH_API SpecialXlog1PyBackward2() = default; #else struct TORCH_API SpecialXlog1PyBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialXlog1PyBackward2"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar other; SavedVariable self_; }; #ifdef _WIN32 struct SpecialZetaBackward0 : public TraceableFunction { TORCH_API SpecialZetaBackward0() = default; #else struct TORCH_API SpecialZetaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialZetaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct SpecialZetaBackward1 : public TraceableFunction { TORCH_API SpecialZetaBackward1() = default; #else struct TORCH_API SpecialZetaBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialZetaBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; at::Scalar self; }; #ifdef _WIN32 struct SpecialZetaBackward2 : public TraceableFunction { TORCH_API SpecialZetaBackward2() = default; #else struct TORCH_API SpecialZetaBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialZetaBackward2"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct LogNormalBackward0 : public TraceableFunction { TORCH_API LogNormalBackward0() = default; #else struct TORCH_API LogNormalBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogNormalBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct LogsumexpBackward0 : public TraceableFunction { TORCH_API LogsumexpBackward0() = default; #else struct TORCH_API LogsumexpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogsumexpBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; bool keepdim; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct LinalgLstsqBackward0 : public TraceableFunction { TORCH_API LinalgLstsqBackward0() = default; #else struct TORCH_API LinalgLstsqBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgLstsqBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); b_.reset_data(); self_.reset_data(); solution_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable b_; SavedVariable self_; SavedVariable solution_; }; #ifdef _WIN32 struct LtBackward0 : public TraceableFunction { TORCH_API LtBackward0() = default; #else struct TORCH_API LtBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LtBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct LtBackward1 : public TraceableFunction { TORCH_API LtBackward1() = default; #else struct TORCH_API LtBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LtBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize other_info; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct LinalgLuFactorExBackward0 : public TraceableFunction { TORCH_API LinalgLuFactorExBackward0() = default; #else struct TORCH_API LinalgLuFactorExBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgLuFactorExBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); LU_.reset_data(); pivots_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool pivot; SavedVariable LU_; SavedVariable pivots_; }; #ifdef _WIN32 struct LinalgLuFactorBackward0 : public TraceableFunction { TORCH_API LinalgLuFactorBackward0() = default; #else struct TORCH_API LinalgLuFactorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgLuFactorBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); LU_.reset_data(); pivots_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool pivot; SavedVariable LU_; SavedVariable pivots_; }; #ifdef _WIN32 struct LinalgLuBackward0 : public TraceableFunction { TORCH_API LinalgLuBackward0() = default; #else struct TORCH_API LinalgLuBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgLuBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); L_.reset_data(); P_.reset_data(); U_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool pivot; SavedVariable L_; SavedVariable P_; SavedVariable U_; }; #ifdef _WIN32 struct LinalgLuSolveBackward0 : public TraceableFunction { TORCH_API LinalgLuSolveBackward0() = default; #else struct TORCH_API LinalgLuSolveBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgLuSolveBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); LU_.reset_data(); pivots_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable LU_; bool adjoint; bool left; SavedVariable pivots_; SavedVariable result_; }; #ifdef _WIN32 struct LuUnpackBackward0 : public TraceableFunction { TORCH_API LuUnpackBackward0() = default; #else struct TORCH_API LuUnpackBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LuUnpackBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt LU_data_sym_argsize_minus_1; c10::SymInt LU_data_sym_argsize_minus_2; }; #ifdef _WIN32 struct MaskedFillBackward0 : public TraceableFunction { TORCH_API MaskedFillBackward0() = default; #else struct TORCH_API MaskedFillBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaskedFillBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; }; #ifdef _WIN32 struct MaskedFillBackward1 : public TraceableFunction { TORCH_API MaskedFillBackward1() = default; #else struct TORCH_API MaskedFillBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaskedFillBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; }; #ifdef _WIN32 struct MaskedScatterBackward0 : public TraceableFunction { TORCH_API MaskedScatterBackward0() = default; #else struct TORCH_API MaskedScatterBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaskedScatterBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; std::vector<c10::SymInt> source_sym_sizes; }; #ifdef _WIN32 struct MaskedScatterBackwardBackward0 : public TraceableFunction { TORCH_API MaskedScatterBackwardBackward0() = default; #else struct TORCH_API MaskedScatterBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaskedScatterBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize grad_output_info; SavedVariable mask_; }; #ifdef _WIN32 struct MaskedSelectBackward0 : public TraceableFunction { TORCH_API MaskedSelectBackward0() = default; #else struct TORCH_API MaskedSelectBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaskedSelectBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; SavedVariable self_; }; #ifdef _WIN32 struct LinalgMatrixExpBackward0 : public TraceableFunction { TORCH_API LinalgMatrixExpBackward0() = default; #else struct TORCH_API LinalgMatrixExpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgMatrixExpBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct MaxBackward0 : public TraceableFunction { TORCH_API MaxBackward0() = default; #else struct TORCH_API MaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool keepdim; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct MaxBackward1 : public TraceableFunction { TORCH_API MaxBackward1() = default; #else struct TORCH_API MaxBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct MaximumBackward0 : public TraceableFunction { TORCH_API MaximumBackward0() = default; #else struct TORCH_API MaximumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaximumBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct FmaxBackward0 : public TraceableFunction { TORCH_API FmaxBackward0() = default; #else struct TORCH_API FmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct MeanBackward0 : public TraceableFunction { TORCH_API MeanBackward0() = default; #else struct TORCH_API MeanBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MeanBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt self_sym_numel; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct MeanBackwardAutogradNestedTensor0 : public TraceableFunction { TORCH_API MeanBackwardAutogradNestedTensor0() = default; #else struct TORCH_API MeanBackwardAutogradNestedTensor0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MeanBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; c10::SymInt self_sym_numel; }; #ifdef _WIN32 struct MeanBackward1 : public TraceableFunction { TORCH_API MeanBackward1() = default; #else struct TORCH_API MeanBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MeanBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<int64_t> dim; bool keepdim; c10::SymInt self_sym_numel; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct MedianBackward0 : public TraceableFunction { TORCH_API MedianBackward0() = default; #else struct TORCH_API MedianBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MedianBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct NanmedianBackward0 : public TraceableFunction { TORCH_API NanmedianBackward0() = default; #else struct TORCH_API NanmedianBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NanmedianBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct MedianBackward1 : public TraceableFunction { TORCH_API MedianBackward1() = default; #else struct TORCH_API MedianBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MedianBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool keepdim; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct NanmedianBackward1 : public TraceableFunction { TORCH_API NanmedianBackward1() = default; #else struct TORCH_API NanmedianBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NanmedianBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool keepdim; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct MinBackward0 : public TraceableFunction { TORCH_API MinBackward0() = default; #else struct TORCH_API MinBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MinBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool keepdim; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct MinBackward1 : public TraceableFunction { TORCH_API MinBackward1() = default; #else struct TORCH_API MinBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MinBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct MinimumBackward0 : public TraceableFunction { TORCH_API MinimumBackward0() = default; #else struct TORCH_API MinimumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MinimumBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct FminBackward0 : public TraceableFunction { TORCH_API FminBackward0() = default; #else struct TORCH_API FminBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FminBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct AmaxBackward0 : public TraceableFunction { TORCH_API AmaxBackward0() = default; #else struct TORCH_API AmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; bool keepdim; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct AminBackward0 : public TraceableFunction { TORCH_API AminBackward0() = default; #else struct TORCH_API AminBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AminBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; bool keepdim; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct MmBackward0 : public TraceableFunction { TORCH_API MmBackward0() = default; #else struct TORCH_API MmBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MmBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mat2_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mat2_; at::Layout mat2_layout; std::vector<c10::SymInt> mat2_sym_sizes; std::vector<c10::SymInt> mat2_sym_strides; SavedVariable self_; at::Layout self_layout; std::vector<c10::SymInt> self_sym_sizes; std::vector<c10::SymInt> self_sym_strides; }; #ifdef _WIN32 struct ModeBackward0 : public TraceableFunction { TORCH_API ModeBackward0() = default; #else struct TORCH_API ModeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ModeBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool keepdim; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct MulBackward0 : public TraceableFunction { TORCH_API MulBackward0() = default; #else struct TORCH_API MulBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MulBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; at::ScalarType other_scalar_type; SavedVariable self_; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct MulBackward1 : public TraceableFunction { TORCH_API MulBackward1() = default; #else struct TORCH_API MulBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MulBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar other; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct MvBackward0 : public TraceableFunction { TORCH_API MvBackward0() = default; #else struct TORCH_API MvBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MvBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); vec_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable vec_; }; #ifdef _WIN32 struct MvlgammaBackward0 : public TraceableFunction { TORCH_API MvlgammaBackward0() = default; #else struct TORCH_API MvlgammaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MvlgammaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t p = 0; SavedVariable self_; }; #ifdef _WIN32 struct NanToNumBackward0 : public TraceableFunction { TORCH_API NanToNumBackward0() = default; #else struct TORCH_API NanToNumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NanToNumBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct NativeBatchNormBackward0 : public TraceableFunction { TORCH_API NativeBatchNormBackward0() = default; #else struct TORCH_API NativeBatchNormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeBatchNormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; bool training; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct NativeBatchNormLegitBackward0 : public TraceableFunction { TORCH_API NativeBatchNormLegitBackward0() = default; #else struct TORCH_API NativeBatchNormLegitBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeBatchNormLegitBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; bool training; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct NativeBatchNormLegitNoTrainingBackward0 : public TraceableFunction { TORCH_API NativeBatchNormLegitNoTrainingBackward0() = default; #else struct TORCH_API NativeBatchNormLegitNoTrainingBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeBatchNormLegitNoTrainingBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct NativeBatchNormLegitBackward1 : public TraceableFunction { TORCH_API NativeBatchNormLegitBackward1() = default; #else struct TORCH_API NativeBatchNormLegitBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeBatchNormLegitBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable input_; bool training; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct NativeBatchNormBackwardBackward0 : public TraceableFunction { TORCH_API NativeBatchNormBackwardBackward0() = default; #else struct TORCH_API NativeBatchNormBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeBatchNormBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_out_.reset_data(); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); save_invstd_.reset_data(); save_mean_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable grad_out_; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; SavedVariable save_invstd_; SavedVariable save_mean_; bool train; SavedVariable weight_; }; #ifdef _WIN32 struct NativeLayerNormBackward0 : public TraceableFunction { TORCH_API NativeLayerNormBackward0() = default; #else struct TORCH_API NativeLayerNormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeLayerNormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); bias_.reset_data(); input_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable bias_; SavedVariable input_; std::vector<c10::SymInt> normalized_shape; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct NativeLayerNormBackwardBackward0 : public TraceableFunction { TORCH_API NativeLayerNormBackwardBackward0() = default; #else struct TORCH_API NativeLayerNormBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeLayerNormBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_out_.reset_data(); input_.reset_data(); mean_.reset_data(); rstd_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_out_; SavedVariable input_; SavedVariable mean_; std::vector<c10::SymInt> normalized_shape; SavedVariable rstd_; SavedVariable weight_; }; #ifdef _WIN32 struct NativeGroupNormBackward0 : public TraceableFunction { TORCH_API NativeGroupNormBackward0() = default; #else struct TORCH_API NativeGroupNormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NativeGroupNormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt C; c10::SymInt HxW; c10::SymInt N; double eps; int64_t group = 0; SavedVariable input_; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct NeBackward0 : public TraceableFunction { TORCH_API NeBackward0() = default; #else struct TORCH_API NeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NeBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct NeBackward1 : public TraceableFunction { TORCH_API NeBackward1() = default; #else struct TORCH_API NeBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NeBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize other_info; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct NegBackward0 : public TraceableFunction { TORCH_API NegBackward0() = default; #else struct TORCH_API NegBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NegBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct BatchNormWithUpdateBackward0 : public TraceableFunction { TORCH_API BatchNormWithUpdateBackward0() = default; #else struct TORCH_API BatchNormWithUpdateBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BatchNormWithUpdateBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); result3_.reset_data(); } bool retain_variables = true; void will_release_variables() override { retain_variables = false; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; SavedVariable result3_; }; #ifdef _WIN32 struct BatchNormNoUpdateBackward0 : public TraceableFunction { TORCH_API BatchNormNoUpdateBackward0() = default; #else struct TORCH_API BatchNormNoUpdateBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BatchNormNoUpdateBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); result3_.reset_data(); } bool retain_variables = true; void will_release_variables() override { retain_variables = false; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; SavedVariable result3_; }; #ifdef _WIN32 struct BatchNormBackwardBackward0 : public TraceableFunction { TORCH_API BatchNormBackwardBackward0() = default; #else struct TORCH_API BatchNormBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BatchNormBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_out_.reset_data(); input_.reset_data(); reserve_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); save_mean_.reset_data(); save_var_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double eps; SavedVariable grad_out_; SavedVariable input_; SavedVariable reserve_; SavedVariable running_mean_; SavedVariable running_var_; SavedVariable save_mean_; SavedVariable save_var_; bool update; SavedVariable weight_; }; #ifdef _WIN32 struct NextafterBackward0 : public TraceableFunction { TORCH_API NextafterBackward0() = default; #else struct TORCH_API NextafterBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NextafterBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NormBackward0 : public TraceableFunction { TORCH_API NormBackward0() = default; #else struct TORCH_API NormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar p; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct NormBackward1 : public TraceableFunction { TORCH_API NormBackward1() = default; #else struct TORCH_API NormBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; bool keepdim; ::std::optional<at::Scalar> p; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct NormBackward2 : public TraceableFunction { TORCH_API NormBackward2() = default; #else struct TORCH_API NormBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormBackward2"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<at::Scalar> p; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct NormBackward3 : public TraceableFunction { TORCH_API NormBackward3() = default; #else struct TORCH_API NormBackward3 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormBackward3"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; bool keepdim; ::std::optional<at::Scalar> p; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct LinalgVectorNormBackward0 : public TraceableFunction { TORCH_API LinalgVectorNormBackward0() = default; #else struct TORCH_API LinalgVectorNormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgVectorNormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<int64_t> dim; bool keepdim; at::Scalar ord; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct PdistBackward0 : public TraceableFunction { TORCH_API PdistBackward0() = default; #else struct TORCH_API PdistBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PdistBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double p; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct PdistBackwardBackward0 : public TraceableFunction { TORCH_API PdistBackwardBackward0() = default; #else struct TORCH_API PdistBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PdistBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct EuclideanDistBackward0 : public TraceableFunction { TORCH_API EuclideanDistBackward0() = default; #else struct TORCH_API EuclideanDistBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EuclideanDistBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); x1_.reset_data(); x2_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable x1_; SavedVariable x2_; SavedVariable result_; }; #ifdef _WIN32 struct CdistBackward0 : public TraceableFunction { TORCH_API CdistBackward0() = default; #else struct TORCH_API CdistBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CdistBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); x1_.reset_data(); x2_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double p; SavedVariable x1_; SavedVariable x2_; SavedVariable result_; }; #ifdef _WIN32 struct CdistBackwardBackward0 : public TraceableFunction { TORCH_API CdistBackwardBackward0() = default; #else struct TORCH_API CdistBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CdistBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NormalBackward0 : public TraceableFunction { TORCH_API NormalBackward0() = default; #else struct TORCH_API NormalBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormalBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NormalBackward1 : public TraceableFunction { TORCH_API NormalBackward1() = default; #else struct TORCH_API NormalBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormalBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> mean_sym_sizes; }; #ifdef _WIN32 struct NormalBackward2 : public TraceableFunction { TORCH_API NormalBackward2() = default; #else struct TORCH_API NormalBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormalBackward2"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> std_sym_sizes; }; #ifdef _WIN32 struct NormalBackward3 : public TraceableFunction { TORCH_API NormalBackward3() = default; #else struct TORCH_API NormalBackward3 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NormalBackward3"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> mean_sym_sizes; std::vector<c10::SymInt> std_sym_sizes; }; #ifdef _WIN32 struct LinalgHouseholderProductBackward0 : public TraceableFunction { TORCH_API LinalgHouseholderProductBackward0() = default; #else struct TORCH_API LinalgHouseholderProductBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgHouseholderProductBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); tau_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable input_; SavedVariable tau_; SavedVariable result_; }; #ifdef _WIN32 struct OrmqrBackward0 : public TraceableFunction { TORCH_API OrmqrBackward0() = default; #else struct TORCH_API OrmqrBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "OrmqrBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input2_.reset_data(); input3_.reset_data(); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable input2_; SavedVariable input3_; bool left; SavedVariable self_; bool transpose; SavedVariable result_; }; #ifdef _WIN32 struct PermuteBackward0 : public Node { TORCH_API PermuteBackward0() = default; #else struct TORCH_API PermuteBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PermuteBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dims; }; #ifdef _WIN32 struct PoissonBackward0 : public TraceableFunction { TORCH_API PoissonBackward0() = default; #else struct TORCH_API PoissonBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PoissonBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct PowBackward0 : public TraceableFunction { TORCH_API PowBackward0() = default; #else struct TORCH_API PowBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PowBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar exponent; SavedVariable self_; }; #ifdef _WIN32 struct PowBackward1 : public TraceableFunction { TORCH_API PowBackward1() = default; #else struct TORCH_API PowBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PowBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); exponent_.reset_data(); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable exponent_; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct PowBackward2 : public TraceableFunction { TORCH_API PowBackward2() = default; #else struct TORCH_API PowBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PowBackward2"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); exponent_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable exponent_; at::Scalar self; SavedVariable result_; }; #ifdef _WIN32 struct ProdBackward0 : public TraceableFunction { TORCH_API ProdBackward0() = default; #else struct TORCH_API ProdBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ProdBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct ProdBackward1 : public TraceableFunction { TORCH_API ProdBackward1() = default; #else struct TORCH_API ProdBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ProdBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool keepdim; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct PutBackward0 : public TraceableFunction { TORCH_API PutBackward0() = default; #else struct TORCH_API PutBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PutBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); source_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool accumulate; SavedVariable index_; SavedVariable source_; torch::autograd::generated::TypeAndSize source_info; }; #ifdef _WIN32 struct LinalgQrBackward0 : public TraceableFunction { TORCH_API LinalgQrBackward0() = default; #else struct TORCH_API LinalgQrBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgQrBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); Q_.reset_data(); R_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::string mode; SavedVariable Q_; SavedVariable R_; }; #ifdef _WIN32 struct Rad2DegBackward0 : public TraceableFunction { TORCH_API Rad2DegBackward0() = default; #else struct TORCH_API Rad2DegBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Rad2DegBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct RandomBackward0 : public TraceableFunction { TORCH_API RandomBackward0() = default; #else struct TORCH_API RandomBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RandomBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct RandomBackward1 : public TraceableFunction { TORCH_API RandomBackward1() = default; #else struct TORCH_API RandomBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RandomBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct RandomBackward2 : public TraceableFunction { TORCH_API RandomBackward2() = default; #else struct TORCH_API RandomBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RandomBackward2"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ReciprocalBackward0 : public TraceableFunction { TORCH_API ReciprocalBackward0() = default; #else struct TORCH_API ReciprocalBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReciprocalBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct RemainderBackward0 : public TraceableFunction { TORCH_API RemainderBackward0() = default; #else struct TORCH_API RemainderBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RemainderBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct RemainderBackward1 : public TraceableFunction { TORCH_API RemainderBackward1() = default; #else struct TORCH_API RemainderBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RemainderBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct RenormBackward0 : public TraceableFunction { TORCH_API RenormBackward0() = default; #else struct TORCH_API RenormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RenormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::Scalar maxnorm; at::Scalar p; SavedVariable self_; }; #ifdef _WIN32 struct RepeatBackward0 : public TraceableFunction { TORCH_API RepeatBackward0() = default; #else struct TORCH_API RepeatBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RepeatBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> repeats; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SpecialEntrBackward0 : public TraceableFunction { TORCH_API SpecialEntrBackward0() = default; #else struct TORCH_API SpecialEntrBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialEntrBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SpecialNdtriBackward0 : public TraceableFunction { TORCH_API SpecialNdtriBackward0() = default; #else struct TORCH_API SpecialNdtriBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialNdtriBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct SpecialLogNdtrBackward0 : public TraceableFunction { TORCH_API SpecialLogNdtrBackward0() = default; #else struct TORCH_API SpecialLogNdtrBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SpecialLogNdtrBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct ReshapeAliasBackward0 : public Node { TORCH_API ReshapeAliasBackward0() = default; #else struct TORCH_API ReshapeAliasBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReshapeAliasBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct RoundBackward0 : public TraceableFunction { TORCH_API RoundBackward0() = default; #else struct TORCH_API RoundBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RoundBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct RoundBackward1 : public TraceableFunction { TORCH_API RoundBackward1() = default; #else struct TORCH_API RoundBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RoundBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct RsqrtBackward0 : public TraceableFunction { TORCH_API RsqrtBackward0() = default; #else struct TORCH_API RsqrtBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RsqrtBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct ScatterBackward0 : public TraceableFunction { TORCH_API ScatterBackward0() = default; #else struct TORCH_API ScatterBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScatterBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; }; #ifdef _WIN32 struct ScatterBackward1 : public TraceableFunction { TORCH_API ScatterBackward1() = default; #else struct TORCH_API ScatterBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScatterBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; }; #ifdef _WIN32 struct ScatterAddBackward0 : public TraceableFunction { TORCH_API ScatterAddBackward0() = default; #else struct TORCH_API ScatterAddBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScatterAddBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable index_; }; #ifdef _WIN32 struct SelectBackward0 : public Node { TORCH_API SelectBackward0() = default; #else struct TORCH_API SelectBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SelectBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; c10::SymInt index; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SelectBackwardAutogradNestedTensor0 : public Node { TORCH_API SelectBackwardAutogradNestedTensor0() = default; #else struct TORCH_API SelectBackwardAutogradNestedTensor0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SelectBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; c10::SymInt index; SavedVariable self_; }; #ifdef _WIN32 struct SelectBackwardBackward0 : public TraceableFunction { TORCH_API SelectBackwardBackward0() = default; #else struct TORCH_API SelectBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SelectBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; c10::SymInt index; }; #ifdef _WIN32 struct SigmoidBackward0 : public TraceableFunction { TORCH_API SigmoidBackward0() = default; #else struct TORCH_API SigmoidBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SigmoidBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct LogitBackward0 : public TraceableFunction { TORCH_API LogitBackward0() = default; #else struct TORCH_API LogitBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogitBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<double> eps; SavedVariable self_; }; #ifdef _WIN32 struct SignBackward0 : public TraceableFunction { TORCH_API SignBackward0() = default; #else struct TORCH_API SignBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SignBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct SgnBackward0 : public TraceableFunction { TORCH_API SgnBackward0() = default; #else struct TORCH_API SgnBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SgnBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct SinBackward0 : public TraceableFunction { TORCH_API SinBackward0() = default; #else struct TORCH_API SinBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SinBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SincBackward0 : public TraceableFunction { TORCH_API SincBackward0() = default; #else struct TORCH_API SincBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SincBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SinhBackward0 : public TraceableFunction { TORCH_API SinhBackward0() = default; #else struct TORCH_API SinhBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SinhBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SliceBackward0 : public Node { TORCH_API SliceBackward0() = default; #else struct TORCH_API SliceBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SliceBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; ::std::optional<c10::SymInt> end; std::vector<c10::SymInt> self_sym_sizes; ::std::optional<c10::SymInt> start; c10::SymInt step; }; #ifdef _WIN32 struct SliceBackwardBackward0 : public TraceableFunction { TORCH_API SliceBackwardBackward0() = default; #else struct TORCH_API SliceBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SliceBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; c10::SymInt end; c10::SymInt start; c10::SymInt step; }; #ifdef _WIN32 struct SliceInverseBackward0 : public Node { TORCH_API SliceInverseBackward0() = default; #else struct TORCH_API SliceInverseBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SliceInverseBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; ::std::optional<c10::SymInt> end; torch::autograd::generated::TypeAndSize self_info; ::std::optional<c10::SymInt> start; c10::SymInt step; }; #ifdef _WIN32 struct SliceScatterBackward0 : public TraceableFunction { TORCH_API SliceScatterBackward0() = default; #else struct TORCH_API SliceScatterBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SliceScatterBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; ::std::optional<c10::SymInt> end; torch::autograd::generated::TypeAndSize src_info; ::std::optional<c10::SymInt> start; c10::SymInt step; }; #ifdef _WIN32 struct SelectScatterBackward0 : public TraceableFunction { TORCH_API SelectScatterBackward0() = default; #else struct TORCH_API SelectScatterBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SelectScatterBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; c10::SymInt index; torch::autograd::generated::TypeAndSize src_info; }; #ifdef _WIN32 struct DiagonalScatterBackward0 : public TraceableFunction { TORCH_API DiagonalScatterBackward0() = default; #else struct TORCH_API DiagonalScatterBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DiagonalScatterBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim1 = 0; int64_t dim2 = 0; int64_t offset = 0; torch::autograd::generated::TypeAndSize src_info; }; #ifdef _WIN32 struct AsStridedScatterBackward0 : public TraceableFunction { TORCH_API AsStridedScatterBackward0() = default; #else struct TORCH_API AsStridedScatterBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AsStridedScatterBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::TensorGeometry self_geometry; std::vector<c10::SymInt> size; at::TensorGeometry src_geometry; ::std::optional<c10::SymInt> storage_offset; std::vector<c10::SymInt> stride; }; #ifdef _WIN32 struct LinalgSolveExBackward0 : public TraceableFunction { TORCH_API LinalgSolveExBackward0() = default; #else struct TORCH_API LinalgSolveExBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgSolveExBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); A_.reset_data(); LU_.reset_data(); pivots_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable A_; bool left; SavedVariable LU_; SavedVariable pivots_; SavedVariable result_; }; #ifdef _WIN32 struct SortBackward0 : public TraceableFunction { TORCH_API SortBackward0() = default; #else struct TORCH_API SortBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SortBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct SortBackward1 : public TraceableFunction { TORCH_API SortBackward1() = default; #else struct TORCH_API SortBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SortBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct SplitBackward0 : public Node { TORCH_API SplitBackward0() = default; #else struct TORCH_API SplitBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SplitBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; c10::SymInt split_size; }; #ifdef _WIN32 struct UnsafeSplitBackward0 : public TraceableFunction { TORCH_API UnsafeSplitBackward0() = default; #else struct TORCH_API UnsafeSplitBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsafeSplitBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; c10::SymInt split_size; }; #ifdef _WIN32 struct SplitWithSizesBackward0 : public Node { TORCH_API SplitWithSizesBackward0() = default; #else struct TORCH_API SplitWithSizesBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SplitWithSizesBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; std::vector<c10::SymInt> split_sizes; }; #ifdef _WIN32 struct SplitWithSizesBackwardAutogradNestedTensor0 : public Node { TORCH_API SplitWithSizesBackwardAutogradNestedTensor0() = default; #else struct TORCH_API SplitWithSizesBackwardAutogradNestedTensor0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SplitWithSizesBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; at::TensorOptions self_options; std::vector<c10::SymInt> split_sizes; }; #ifdef _WIN32 struct UnsafeSplitWithSizesBackward0 : public TraceableFunction { TORCH_API UnsafeSplitWithSizesBackward0() = default; #else struct TORCH_API UnsafeSplitWithSizesBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsafeSplitWithSizesBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; std::vector<c10::SymInt> split_sizes; }; #ifdef _WIN32 struct SqrtBackward0 : public TraceableFunction { TORCH_API SqrtBackward0() = default; #else struct TORCH_API SqrtBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqrtBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct SqueezeBackward0 : public Node { TORCH_API SqueezeBackward0() = default; #else struct TORCH_API SqueezeBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackward1 : public Node { TORCH_API SqueezeBackward1() = default; #else struct TORCH_API SqueezeBackward1 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackwardAutogradNestedTensor0 : public Node { TORCH_API SqueezeBackwardAutogradNestedTensor0() = default; #else struct TORCH_API SqueezeBackwardAutogradNestedTensor0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackwardAutogradNestedTensor0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; }; #ifdef _WIN32 struct SqueezeBackward2 : public Node { TORCH_API SqueezeBackward2() = default; #else struct TORCH_API SqueezeBackward2 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward2"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackwardAutogradNestedTensor1 : public Node { TORCH_API SqueezeBackwardAutogradNestedTensor1() = default; #else struct TORCH_API SqueezeBackwardAutogradNestedTensor1 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackwardAutogradNestedTensor1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; int64_t self_dim = 0; }; #ifdef _WIN32 struct SqueezeBackward3 : public TraceableFunction { TORCH_API SqueezeBackward3() = default; #else struct TORCH_API SqueezeBackward3 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward3"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackward4 : public TraceableFunction { TORCH_API SqueezeBackward4() = default; #else struct TORCH_API SqueezeBackward4 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward4"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackward5 : public TraceableFunction { TORCH_API SqueezeBackward5() = default; #else struct TORCH_API SqueezeBackward5 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward5"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct StdBackward0 : public TraceableFunction { TORCH_API StdBackward0() = default; #else struct TORCH_API StdBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "StdBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<at::Scalar> correction; c10::OptionalArray<int64_t> dim; bool keepdim; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct StdMeanBackward0 : public TraceableFunction { TORCH_API StdMeanBackward0() = default; #else struct TORCH_API StdMeanBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "StdMeanBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result0_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<at::Scalar> correction; c10::OptionalArray<int64_t> dim; bool keepdim; SavedVariable self_; SavedVariable result0_; }; #ifdef _WIN32 struct SubBackward0 : public TraceableFunction { TORCH_API SubBackward0() = default; #else struct TORCH_API SubBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SubBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::ScalarType other_scalar_type; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct SubBackward1 : public TraceableFunction { TORCH_API SubBackward1() = default; #else struct TORCH_API SubBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SubBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct RsubBackward0 : public TraceableFunction { TORCH_API RsubBackward0() = default; #else struct TORCH_API RsubBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RsubBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::ScalarType other_scalar_type; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct RsubBackward1 : public TraceableFunction { TORCH_API RsubBackward1() = default; #else struct TORCH_API RsubBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RsubBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct SumBackward0 : public TraceableFunction { TORCH_API SumBackward0() = default; #else struct TORCH_API SumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SumBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SumBackwardAutogradNestedTensor0 : public TraceableFunction { TORCH_API SumBackwardAutogradNestedTensor0() = default; #else struct TORCH_API SumBackwardAutogradNestedTensor0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SumBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SumBackward1 : public TraceableFunction { TORCH_API SumBackward1() = default; #else struct TORCH_API SumBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SumBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<int64_t> dim; bool keepdim; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SumBackwardAutogradNestedTensor1 : public TraceableFunction { TORCH_API SumBackwardAutogradNestedTensor1() = default; #else struct TORCH_API SumBackwardAutogradNestedTensor1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SumBackwardAutogradNestedTensor1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<int64_t> dim; bool keepdim; SavedVariable self_; }; #ifdef _WIN32 struct NansumBackward0 : public TraceableFunction { TORCH_API NansumBackward0() = default; #else struct TORCH_API NansumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NansumBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<int64_t> dim; bool keepdim; SavedVariable self_; at::ScalarType self_scalar_type; }; #ifdef _WIN32 struct LinalgSvdBackward0 : public TraceableFunction { TORCH_API LinalgSvdBackward0() = default; #else struct TORCH_API LinalgSvdBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgSvdBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); S_.reset_data(); U_.reset_data(); Vh_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool full_matrices; SavedVariable S_; c10::SymInt S_sym_argsize_minus_1; SavedVariable U_; SavedVariable Vh_; }; #ifdef _WIN32 struct LinalgEighBackward0 : public TraceableFunction { TORCH_API LinalgEighBackward0() = default; #else struct TORCH_API LinalgEighBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgEighBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); eigenvalues_.reset_data(); eigenvectors_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable eigenvalues_; SavedVariable eigenvectors_; }; #ifdef _WIN32 struct LinalgEigBackward0 : public TraceableFunction { TORCH_API LinalgEigBackward0() = default; #else struct TORCH_API LinalgEigBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgEigBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); eigenvalues_.reset_data(); eigenvectors_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::ScalarType self_scalar_type; SavedVariable eigenvalues_; SavedVariable eigenvectors_; }; #ifdef _WIN32 struct TBackward0 : public Node { TORCH_API TBackward0() = default; #else struct TORCH_API TBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct TBackward1 : public TraceableFunction { TORCH_API TBackward1() = default; #else struct TORCH_API TBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct FlipBackward0 : public TraceableFunction { TORCH_API FlipBackward0() = default; #else struct TORCH_API FlipBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FlipBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dims; }; #ifdef _WIN32 struct RollBackward0 : public TraceableFunction { TORCH_API RollBackward0() = default; #else struct TORCH_API RollBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RollBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dims; std::vector<c10::SymInt> shifts; }; #ifdef _WIN32 struct Rot90Backward0 : public TraceableFunction { TORCH_API Rot90Backward0() = default; #else struct TORCH_API Rot90Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Rot90Backward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dims; int64_t k = 0; }; #ifdef _WIN32 struct TakeBackward0 : public TraceableFunction { TORCH_API TakeBackward0() = default; #else struct TORCH_API TakeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TakeBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable index_; SavedVariable self_; }; #ifdef _WIN32 struct TanBackward0 : public TraceableFunction { TORCH_API TanBackward0() = default; #else struct TORCH_API TanBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TanBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct TanhBackward0 : public TraceableFunction { TORCH_API TanhBackward0() = default; #else struct TORCH_API TanhBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TanhBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct TopkBackward0 : public TraceableFunction { TORCH_API TopkBackward0() = default; #else struct TORCH_API TopkBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TopkBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; std::vector<c10::SymInt> self_sym_sizes; SavedVariable indices_; }; #ifdef _WIN32 struct TraceBackward0 : public TraceableFunction { TORCH_API TraceBackward0() = default; #else struct TORCH_API TraceBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TraceBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct TransposeBackward0 : public Node { TORCH_API TransposeBackward0() = default; #else struct TORCH_API TransposeBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TransposeBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim0 = 0; int64_t dim1 = 0; }; #ifdef _WIN32 struct TransposeBackward1 : public TraceableFunction { TORCH_API TransposeBackward1() = default; #else struct TORCH_API TransposeBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TransposeBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim0 = 0; int64_t dim1 = 0; }; #ifdef _WIN32 struct TriangularSolveBackward0 : public TraceableFunction { TORCH_API TriangularSolveBackward0() = default; #else struct TORCH_API TriangularSolveBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TriangularSolveBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); A_.reset_data(); self_.reset_data(); solution_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable A_; SavedVariable self_; bool transpose; bool unitriangular; bool upper; SavedVariable solution_; }; #ifdef _WIN32 struct LinalgSolveTriangularBackward0 : public TraceableFunction { TORCH_API LinalgSolveTriangularBackward0() = default; #else struct TORCH_API LinalgSolveTriangularBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinalgSolveTriangularBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool left; SavedVariable self_; bool unitriangular; bool upper; SavedVariable result_; }; #ifdef _WIN32 struct TrilBackward0 : public TraceableFunction { TORCH_API TrilBackward0() = default; #else struct TORCH_API TrilBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TrilBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t diagonal = 0; }; #ifdef _WIN32 struct TriuBackward0 : public TraceableFunction { TORCH_API TriuBackward0() = default; #else struct TORCH_API TriuBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TriuBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t diagonal = 0; }; #ifdef _WIN32 struct TruncBackward0 : public TraceableFunction { TORCH_API TruncBackward0() = default; #else struct TORCH_API TruncBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TruncBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ToDenseBackward0 : public TraceableFunction { TORCH_API ToDenseBackward0() = default; #else struct TORCH_API ToDenseBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToDenseBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<bool> masked_grad; SavedVariable self_; }; #ifdef _WIN32 struct ToSparseBackward0 : public TraceableFunction { TORCH_API ToSparseBackward0() = default; #else struct TORCH_API ToSparseBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToSparseBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Layout self_layout; c10::OptionalArray<c10::SymInt> self_self_sym_blocksize_opt; }; #ifdef _WIN32 struct ToSparseBackward1 : public TraceableFunction { TORCH_API ToSparseBackward1() = default; #else struct TORCH_API ToSparseBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToSparseBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Layout self_layout; c10::OptionalArray<c10::SymInt> self_self_sym_blocksize_opt; }; #ifdef _WIN32 struct ToSparseCsrBackward0 : public TraceableFunction { TORCH_API ToSparseCsrBackward0() = default; #else struct TORCH_API ToSparseCsrBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToSparseCsrBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Layout self_layout; c10::OptionalArray<c10::SymInt> self_self_sym_blocksize_opt; }; #ifdef _WIN32 struct ToSparseCscBackward0 : public TraceableFunction { TORCH_API ToSparseCscBackward0() = default; #else struct TORCH_API ToSparseCscBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToSparseCscBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Layout self_layout; c10::OptionalArray<c10::SymInt> self_self_sym_blocksize_opt; }; #ifdef _WIN32 struct ToSparseBsrBackward0 : public TraceableFunction { TORCH_API ToSparseBsrBackward0() = default; #else struct TORCH_API ToSparseBsrBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToSparseBsrBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Layout self_layout; c10::OptionalArray<c10::SymInt> self_self_sym_blocksize_opt; }; #ifdef _WIN32 struct ToSparseBscBackward0 : public TraceableFunction { TORCH_API ToSparseBscBackward0() = default; #else struct TORCH_API ToSparseBscBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToSparseBscBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Layout self_layout; c10::OptionalArray<c10::SymInt> self_self_sym_blocksize_opt; }; #ifdef _WIN32 struct ToMkldnnBackward0 : public TraceableFunction { TORCH_API ToMkldnnBackward0() = default; #else struct TORCH_API ToMkldnnBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToMkldnnBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct UnfoldBackward0 : public Node { TORCH_API UnfoldBackward0() = default; #else struct TORCH_API UnfoldBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnfoldBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dimension = 0; std::vector<c10::SymInt> self_sym_sizes; int64_t size = 0; int64_t step = 0; }; #ifdef _WIN32 struct UnfoldBackwardBackward0 : public TraceableFunction { TORCH_API UnfoldBackwardBackward0() = default; #else struct TORCH_API UnfoldBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnfoldBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; int64_t size = 0; int64_t step = 0; }; #ifdef _WIN32 struct UniformBackward0 : public TraceableFunction { TORCH_API UniformBackward0() = default; #else struct TORCH_API UniformBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UniformBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct UniqueBackward0 : public TraceableFunction { TORCH_API UniqueBackward0() = default; #else struct TORCH_API UniqueBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UniqueBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct UniqueDimBackward0 : public TraceableFunction { TORCH_API UniqueDimBackward0() = default; #else struct TORCH_API UniqueDimBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UniqueDimBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct UniqueConsecutiveBackward0 : public TraceableFunction { TORCH_API UniqueConsecutiveBackward0() = default; #else struct TORCH_API UniqueConsecutiveBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UniqueConsecutiveBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct UniqueDimConsecutiveBackward0 : public TraceableFunction { TORCH_API UniqueDimConsecutiveBackward0() = default; #else struct TORCH_API UniqueDimConsecutiveBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UniqueDimConsecutiveBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct Unique2Backward0 : public TraceableFunction { TORCH_API Unique2Backward0() = default; #else struct TORCH_API Unique2Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Unique2Backward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct UnsafeViewBackward0 : public TraceableFunction { TORCH_API UnsafeViewBackward0() = default; #else struct TORCH_API UnsafeViewBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsafeViewBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct LiftBackward0 : public TraceableFunction { TORCH_API LiftBackward0() = default; #else struct TORCH_API LiftBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LiftBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct LiftFreshBackward0 : public TraceableFunction { TORCH_API LiftFreshBackward0() = default; #else struct TORCH_API LiftFreshBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LiftFreshBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct UnsqueezeBackward0 : public Node { TORCH_API UnsqueezeBackward0() = default; #else struct TORCH_API UnsqueezeBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsqueezeBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; }; #ifdef _WIN32 struct UnsqueezeBackward1 : public TraceableFunction { TORCH_API UnsqueezeBackward1() = default; #else struct TORCH_API UnsqueezeBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsqueezeBackward1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; }; #ifdef _WIN32 struct VarBackward0 : public TraceableFunction { TORCH_API VarBackward0() = default; #else struct TORCH_API VarBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "VarBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<at::Scalar> correction; c10::OptionalArray<int64_t> dim; bool keepdim; SavedVariable self_; }; #ifdef _WIN32 struct VarMeanBackward0 : public TraceableFunction { TORCH_API VarMeanBackward0() = default; #else struct TORCH_API VarMeanBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "VarMeanBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<at::Scalar> correction; c10::OptionalArray<int64_t> dim; bool keepdim; SavedVariable self_; }; #ifdef _WIN32 struct ViewBackward0 : public Node { TORCH_API ViewBackward0() = default; #else struct TORCH_API ViewBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct ViewBackwardAutogradNestedTensor0 : public Node { TORCH_API ViewBackwardAutogradNestedTensor0() = default; #else struct TORCH_API ViewBackwardAutogradNestedTensor0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ViewAsRealBackward0 : public Node { TORCH_API ViewAsRealBackward0() = default; #else struct TORCH_API ViewAsRealBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewAsRealBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ViewAsComplexBackward0 : public Node { TORCH_API ViewAsComplexBackward0() = default; #else struct TORCH_API ViewAsComplexBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewAsComplexBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct WhereBackward0 : public TraceableFunction { TORCH_API WhereBackward0() = default; #else struct TORCH_API WhereBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "WhereBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); condition_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable condition_; }; #ifdef _WIN32 struct WeightNormInterfaceBackward0 : public TraceableFunction { TORCH_API WeightNormInterfaceBackward0() = default; #else struct TORCH_API WeightNormInterfaceBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "WeightNormInterfaceBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); g_.reset_data(); v_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable g_; SavedVariable v_; SavedVariable result1_; }; #ifdef _WIN32 struct ZeroBackward0 : public TraceableFunction { TORCH_API ZeroBackward0() = default; #else struct TORCH_API ZeroBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ZeroBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct SparseMaskBackward0 : public TraceableFunction { TORCH_API SparseMaskBackward0() = default; #else struct TORCH_API SparseMaskBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseMaskBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable mask_; at::Layout self_layout; }; #ifdef _WIN32 struct SparseCooTensorWithDimsAndTensorsBackward0 : public TraceableFunction { TORCH_API SparseCooTensorWithDimsAndTensorsBackward0() = default; #else struct TORCH_API SparseCooTensorWithDimsAndTensorsBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseCooTensorWithDimsAndTensorsBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct SparseCompressedTensorBackward0 : public TraceableFunction { TORCH_API SparseCompressedTensorBackward0() = default; #else struct TORCH_API SparseCompressedTensorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseCompressedTensorBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); values_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable values_; SavedVariable result_; }; #ifdef _WIN32 struct SparseSumBackward0 : public TraceableFunction { TORCH_API SparseSumBackward0() = default; #else struct TORCH_API SparseSumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseSumBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; SavedVariable self_; }; #ifdef _WIN32 struct StandardGammaBackward0 : public TraceableFunction { TORCH_API StandardGammaBackward0() = default; #else struct TORCH_API StandardGammaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "StandardGammaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct StandardGammaGradBackward0 : public TraceableFunction { TORCH_API StandardGammaGradBackward0() = default; #else struct TORCH_API StandardGammaGradBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "StandardGammaGradBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ValuesBackward0 : public Node { TORCH_API ValuesBackward0() = default; #else struct TORCH_API ValuesBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ValuesBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ValuesBackwardAutogradNestedTensor0 : public Node { TORCH_API ValuesBackwardAutogradNestedTensor0() = default; #else struct TORCH_API ValuesBackwardAutogradNestedTensor0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ValuesBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct TrilinearBackward0 : public TraceableFunction { TORCH_API TrilinearBackward0() = default; #else struct TORCH_API TrilinearBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TrilinearBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); i1_.reset_data(); i2_.reset_data(); i3_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> expand1; std::vector<int64_t> expand2; std::vector<int64_t> expand3; SavedVariable i1_; SavedVariable i2_; SavedVariable i3_; std::vector<int64_t> sumdim; }; #ifdef _WIN32 struct ConstantPadNdBackward0 : public TraceableFunction { TORCH_API ConstantPadNdBackward0() = default; #else struct TORCH_API ConstantPadNdBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConstantPadNdBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> pad; }; #ifdef _WIN32 struct BinaryCrossEntropyBackward0 : public TraceableFunction { TORCH_API BinaryCrossEntropyBackward0() = default; #else struct TORCH_API BinaryCrossEntropyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BinaryCrossEntropyBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; SavedVariable weight_; }; #ifdef _WIN32 struct BinaryCrossEntropyBackwardBackward0 : public TraceableFunction { TORCH_API BinaryCrossEntropyBackwardBackward0() = default; #else struct TORCH_API BinaryCrossEntropyBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BinaryCrossEntropyBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); target_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; SavedVariable weight_; }; #ifdef _WIN32 struct BinaryCrossEntropyWithLogitsBackward0 : public TraceableFunction { TORCH_API BinaryCrossEntropyWithLogitsBackward0() = default; #else struct TORCH_API BinaryCrossEntropyWithLogitsBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "BinaryCrossEntropyWithLogitsBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); pos_weight_.reset_data(); self_.reset_data(); target_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable pos_weight_; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; SavedVariable weight_; }; #ifdef _WIN32 struct EmbeddingBackward0 : public TraceableFunction { TORCH_API EmbeddingBackward0() = default; #else struct TORCH_API EmbeddingBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EmbeddingBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; c10::SymInt padding_idx; bool scale_grad_by_freq; bool sparse; c10::SymInt weight_sym_argsize_0; }; #ifdef _WIN32 struct EmbeddingDenseBackwardBackward0 : public TraceableFunction { TORCH_API EmbeddingDenseBackwardBackward0() = default; #else struct TORCH_API EmbeddingDenseBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EmbeddingDenseBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; c10::SymInt padding_idx; }; #ifdef _WIN32 struct EmbeddingBagBackward0 : public TraceableFunction { TORCH_API EmbeddingBagBackward0() = default; #else struct TORCH_API EmbeddingBagBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EmbeddingBagBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); offsets_.reset_data(); per_sample_weights_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); result3_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; int64_t mode = 0; SavedVariable offsets_; int64_t padding_idx = 0; SavedVariable per_sample_weights_; bool scale_grad_by_freq; bool sparse; SavedVariable weight_; c10::SymInt weight_sym_argsize_0; SavedVariable result1_; SavedVariable result2_; SavedVariable result3_; }; #ifdef _WIN32 struct EmbeddingBagBackwardBackward0 : public TraceableFunction { TORCH_API EmbeddingBagBackwardBackward0() = default; #else struct TORCH_API EmbeddingBagBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EmbeddingBagBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct EmbeddingBagDenseBackwardBackward0 : public TraceableFunction { TORCH_API EmbeddingBagDenseBackwardBackward0() = default; #else struct TORCH_API EmbeddingBagDenseBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EmbeddingBagDenseBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct EmbeddingRenormBackward0 : public TraceableFunction { TORCH_API EmbeddingRenormBackward0() = default; #else struct TORCH_API EmbeddingRenormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EmbeddingRenormBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct MseLossBackward0 : public TraceableFunction { TORCH_API MseLossBackward0() = default; #else struct TORCH_API MseLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MseLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct MultiMarginLossBackward0 : public TraceableFunction { TORCH_API MultiMarginLossBackward0() = default; #else struct TORCH_API MultiMarginLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MultiMarginLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar margin; at::Scalar p; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; SavedVariable weight_; }; #ifdef _WIN32 struct MultilabelMarginLossBackward0 : public TraceableFunction { TORCH_API MultilabelMarginLossBackward0() = default; #else struct TORCH_API MultilabelMarginLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MultilabelMarginLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); is_target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; SavedVariable is_target_; }; #ifdef _WIN32 struct NllLossBackward0 : public TraceableFunction { TORCH_API NllLossBackward0() = default; #else struct TORCH_API NllLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NllLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); weight_.reset_data(); total_weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt ignore_index; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; SavedVariable weight_; SavedVariable total_weight_; }; #ifdef _WIN32 struct NllLoss2DBackward0 : public TraceableFunction { TORCH_API NllLoss2DBackward0() = default; #else struct TORCH_API NllLoss2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NllLoss2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); weight_.reset_data(); total_weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt ignore_index; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; SavedVariable weight_; SavedVariable total_weight_; }; #ifdef _WIN32 struct SmoothL1LossBackward0 : public TraceableFunction { TORCH_API SmoothL1LossBackward0() = default; #else struct TORCH_API SmoothL1LossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SmoothL1LossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double beta; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct HuberLossBackward0 : public TraceableFunction { TORCH_API HuberLossBackward0() = default; #else struct TORCH_API HuberLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HuberLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double delta; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct SoftMarginLossBackward0 : public TraceableFunction { TORCH_API SoftMarginLossBackward0() = default; #else struct TORCH_API SoftMarginLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftMarginLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct ReluBackward0 : public TraceableFunction { TORCH_API ReluBackward0() = default; #else struct TORCH_API ReluBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReluBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable result_; }; #ifdef _WIN32 struct SiluBackward0 : public TraceableFunction { TORCH_API SiluBackward0() = default; #else struct TORCH_API SiluBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SiluBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct MishBackward0 : public TraceableFunction { TORCH_API MishBackward0() = default; #else struct TORCH_API MishBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MishBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct EluBackward0 : public TraceableFunction { TORCH_API EluBackward0() = default; #else struct TORCH_API EluBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EluBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::Scalar input_scale; at::Scalar scale; SavedVariable self_; }; #ifdef _WIN32 struct EluBackward1 : public TraceableFunction { TORCH_API EluBackward1() = default; #else struct TORCH_API EluBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EluBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::Scalar input_scale; at::Scalar scale; SavedVariable result_; }; #ifdef _WIN32 struct CeluBackward0 : public TraceableFunction { TORCH_API CeluBackward0() = default; #else struct TORCH_API CeluBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CeluBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; SavedVariable self_; }; #ifdef _WIN32 struct CeluBackward1 : public TraceableFunction { TORCH_API CeluBackward1() = default; #else struct TORCH_API CeluBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CeluBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; SavedVariable result_; }; #ifdef _WIN32 struct GeluBackward0 : public TraceableFunction { TORCH_API GeluBackward0() = default; #else struct TORCH_API GeluBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GeluBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::string approximate; SavedVariable self_; }; #ifdef _WIN32 struct GeluBackwardBackward0 : public TraceableFunction { TORCH_API GeluBackwardBackward0() = default; #else struct TORCH_API GeluBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GeluBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::string approximate; SavedVariable grad_output_; SavedVariable self_; }; #ifdef _WIN32 struct GluBackward0 : public TraceableFunction { TORCH_API GluBackward0() = default; #else struct TORCH_API GluBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GluBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; }; #ifdef _WIN32 struct HardshrinkBackward0 : public TraceableFunction { TORCH_API HardshrinkBackward0() = default; #else struct TORCH_API HardshrinkBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HardshrinkBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lambd; SavedVariable self_; }; #ifdef _WIN32 struct HardshrinkBackwardBackward0 : public TraceableFunction { TORCH_API HardshrinkBackwardBackward0() = default; #else struct TORCH_API HardshrinkBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HardshrinkBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lambd; SavedVariable self_; }; #ifdef _WIN32 struct HardtanhBackward0 : public TraceableFunction { TORCH_API HardtanhBackward0() = default; #else struct TORCH_API HardtanhBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HardtanhBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar max_val; at::Scalar min_val; SavedVariable self_; }; #ifdef _WIN32 struct LeakyReluBackward0 : public TraceableFunction { TORCH_API LeakyReluBackward0() = default; #else struct TORCH_API LeakyReluBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LeakyReluBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar negative_slope; SavedVariable self_; }; #ifdef _WIN32 struct LeakyReluBackward1 : public TraceableFunction { TORCH_API LeakyReluBackward1() = default; #else struct TORCH_API LeakyReluBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LeakyReluBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar negative_slope; SavedVariable result_; }; #ifdef _WIN32 struct LogSigmoidBackward0 : public TraceableFunction { TORCH_API LogSigmoidBackward0() = default; #else struct TORCH_API LogSigmoidBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogSigmoidBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); buffer_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable buffer_; }; #ifdef _WIN32 struct LogSoftmaxBackward0 : public TraceableFunction { TORCH_API LogSoftmaxBackward0() = default; #else struct TORCH_API LogSoftmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogSoftmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::ScalarType self_scalar_type; SavedVariable result_; }; #ifdef _WIN32 struct SparseLogSoftmaxBackward0 : public TraceableFunction { TORCH_API SparseLogSoftmaxBackward0() = default; #else struct TORCH_API SparseLogSoftmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseLogSoftmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct MaskedSoftmaxBackward0 : public TraceableFunction { TORCH_API MaskedSoftmaxBackward0() = default; #else struct TORCH_API MaskedSoftmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaskedSoftmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mask_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; ::std::optional<int64_t> dim; SavedVariable mask_; SavedVariable result_; }; #ifdef _WIN32 struct PreluKernelBackward0 : public TraceableFunction { TORCH_API PreluKernelBackward0() = default; #else struct TORCH_API PreluKernelBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PreluKernelBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable weight_; }; #ifdef _WIN32 struct PreluKernelBackwardBackward0 : public TraceableFunction { TORCH_API PreluKernelBackwardBackward0() = default; #else struct TORCH_API PreluKernelBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PreluKernelBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; at::TensorOptions grad_output_options; SavedVariable self_; torch::autograd::generated::TypeAndSize self_info; at::TensorOptions self_options; SavedVariable weight_; at::TensorOptions weight_options; }; #ifdef _WIN32 struct RreluWithNoiseBackward0 : public TraceableFunction { TORCH_API RreluWithNoiseBackward0() = default; #else struct TORCH_API RreluWithNoiseBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RreluWithNoiseBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); noise_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lower; SavedVariable noise_; SavedVariable self_; bool training; at::Scalar upper; }; #ifdef _WIN32 struct RreluWithNoiseBackward1 : public TraceableFunction { TORCH_API RreluWithNoiseBackward1() = default; #else struct TORCH_API RreluWithNoiseBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RreluWithNoiseBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); noise_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lower; SavedVariable noise_; bool training; at::Scalar upper; SavedVariable result_; }; #ifdef _WIN32 struct RreluWithNoiseFunctionalBackward0 : public TraceableFunction { TORCH_API RreluWithNoiseFunctionalBackward0() = default; #else struct TORCH_API RreluWithNoiseFunctionalBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RreluWithNoiseFunctionalBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); noise_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lower; SavedVariable noise_; SavedVariable self_; bool training; at::Scalar upper; }; #ifdef _WIN32 struct SoftmaxBackward0 : public TraceableFunction { TORCH_API SoftmaxBackward0() = default; #else struct TORCH_API SoftmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::ScalarType self_scalar_type; SavedVariable result_; }; #ifdef _WIN32 struct SparseSoftmaxBackward0 : public TraceableFunction { TORCH_API SparseSoftmaxBackward0() = default; #else struct TORCH_API SparseSoftmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseSoftmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; SavedVariable result_; }; #ifdef _WIN32 struct SparseSparseMatmulBackward0 : public TraceableFunction { TORCH_API SparseSparseMatmulBackward0() = default; #else struct TORCH_API SparseSparseMatmulBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseSparseMatmulBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; SavedVariable self_; }; #ifdef _WIN32 struct SoftplusBackward0 : public TraceableFunction { TORCH_API SoftplusBackward0() = default; #else struct TORCH_API SoftplusBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftplusBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar beta; SavedVariable self_; at::Scalar threshold; }; #ifdef _WIN32 struct SoftshrinkBackward0 : public TraceableFunction { TORCH_API SoftshrinkBackward0() = default; #else struct TORCH_API SoftshrinkBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftshrinkBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lambd; SavedVariable self_; }; #ifdef _WIN32 struct ThresholdBackward0 : public TraceableFunction { TORCH_API ThresholdBackward0() = default; #else struct TORCH_API ThresholdBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ThresholdBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; at::Scalar threshold; }; #ifdef _WIN32 struct ThresholdBackward1 : public TraceableFunction { TORCH_API ThresholdBackward1() = default; #else struct TORCH_API ThresholdBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ThresholdBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; at::Scalar threshold; }; #ifdef _WIN32 struct ReflectionPad1DBackward0 : public TraceableFunction { TORCH_API ReflectionPad1DBackward0() = default; #else struct TORCH_API ReflectionPad1DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReflectionPad1DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; SavedVariable self_; }; #ifdef _WIN32 struct ReflectionPad2DBackward0 : public TraceableFunction { TORCH_API ReflectionPad2DBackward0() = default; #else struct TORCH_API ReflectionPad2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReflectionPad2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; SavedVariable self_; }; #ifdef _WIN32 struct ReflectionPad3DBackward0 : public TraceableFunction { TORCH_API ReflectionPad3DBackward0() = default; #else struct TORCH_API ReflectionPad3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReflectionPad3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; SavedVariable self_; }; #ifdef _WIN32 struct ReplicationPad1DBackward0 : public TraceableFunction { TORCH_API ReplicationPad1DBackward0() = default; #else struct TORCH_API ReplicationPad1DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReplicationPad1DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; SavedVariable self_; }; #ifdef _WIN32 struct ReplicationPad2DBackward0 : public TraceableFunction { TORCH_API ReplicationPad2DBackward0() = default; #else struct TORCH_API ReplicationPad2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReplicationPad2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; SavedVariable self_; }; #ifdef _WIN32 struct ReplicationPad3DBackward0 : public TraceableFunction { TORCH_API ReplicationPad3DBackward0() = default; #else struct TORCH_API ReplicationPad3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReplicationPad3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; SavedVariable self_; }; #ifdef _WIN32 struct UpsampleLinear1DBackward0 : public TraceableFunction { TORCH_API UpsampleLinear1DBackward0() = default; #else struct TORCH_API UpsampleLinear1DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleLinear1DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleBilinear2DBackward0 : public TraceableFunction { TORCH_API UpsampleBilinear2DBackward0() = default; #else struct TORCH_API UpsampleBilinear2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBilinear2DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleBilinear2DAaBackward0 : public TraceableFunction { TORCH_API UpsampleBilinear2DAaBackward0() = default; #else struct TORCH_API UpsampleBilinear2DAaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBilinear2DAaBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleBicubic2DBackward0 : public TraceableFunction { TORCH_API UpsampleBicubic2DBackward0() = default; #else struct TORCH_API UpsampleBicubic2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBicubic2DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleBicubic2DAaBackward0 : public TraceableFunction { TORCH_API UpsampleBicubic2DAaBackward0() = default; #else struct TORCH_API UpsampleBicubic2DAaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBicubic2DAaBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleTrilinear3DBackward0 : public TraceableFunction { TORCH_API UpsampleTrilinear3DBackward0() = default; #else struct TORCH_API UpsampleTrilinear3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleTrilinear3DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_d; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleNearest1DBackward0 : public TraceableFunction { TORCH_API UpsampleNearest1DBackward0() = default; #else struct TORCH_API UpsampleNearest1DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearest1DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleNearestExact1DBackward0 : public TraceableFunction { TORCH_API UpsampleNearestExact1DBackward0() = default; #else struct TORCH_API UpsampleNearestExact1DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearestExact1DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleNearest2DBackward0 : public TraceableFunction { TORCH_API UpsampleNearest2DBackward0() = default; #else struct TORCH_API UpsampleNearest2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearest2DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleNearestExact2DBackward0 : public TraceableFunction { TORCH_API UpsampleNearestExact2DBackward0() = default; #else struct TORCH_API UpsampleNearestExact2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearestExact2DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleNearest3DBackward0 : public TraceableFunction { TORCH_API UpsampleNearest3DBackward0() = default; #else struct TORCH_API UpsampleNearest3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearest3DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_d; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct UpsampleNearestExact3DBackward0 : public TraceableFunction { TORCH_API UpsampleNearestExact3DBackward0() = default; #else struct TORCH_API UpsampleNearestExact3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearestExact3DBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_d; ::std::optional<double> scales_h; ::std::optional<double> scales_w; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct PixelShuffleBackward0 : public TraceableFunction { TORCH_API PixelShuffleBackward0() = default; #else struct TORCH_API PixelShuffleBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PixelShuffleBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t upscale_factor = 0; }; #ifdef _WIN32 struct PixelUnshuffleBackward0 : public TraceableFunction { TORCH_API PixelUnshuffleBackward0() = default; #else struct TORCH_API PixelUnshuffleBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PixelUnshuffleBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t downscale_factor = 0; }; #ifdef _WIN32 struct ChannelShuffleBackward0 : public TraceableFunction { TORCH_API ChannelShuffleBackward0() = default; #else struct TORCH_API ChannelShuffleBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ChannelShuffleBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt groups; }; #ifdef _WIN32 struct AdaptiveAvgPool2DBackward0 : public TraceableFunction { TORCH_API AdaptiveAvgPool2DBackward0() = default; #else struct TORCH_API AdaptiveAvgPool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveAvgPool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AdaptiveAvgPool3DBackward0 : public TraceableFunction { TORCH_API AdaptiveAvgPool3DBackward0() = default; #else struct TORCH_API AdaptiveAvgPool3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveAvgPool3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct AdaptiveMaxPool2DBackward0 : public TraceableFunction { TORCH_API AdaptiveMaxPool2DBackward0() = default; #else struct TORCH_API AdaptiveMaxPool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveMaxPool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result1_; }; #ifdef _WIN32 struct AdaptiveMaxPool3DBackward0 : public TraceableFunction { TORCH_API AdaptiveMaxPool3DBackward0() = default; #else struct TORCH_API AdaptiveMaxPool3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveMaxPool3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable result1_; }; #ifdef _WIN32 struct AvgPool2DBackward0 : public TraceableFunction { TORCH_API AvgPool2DBackward0() = default; #else struct TORCH_API AvgPool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AvgPool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; bool count_include_pad; ::std::optional<int64_t> divisor_override; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; SavedVariable self_; std::vector<int64_t> stride; }; #ifdef _WIN32 struct AvgPool3DBackward0 : public TraceableFunction { TORCH_API AvgPool3DBackward0() = default; #else struct TORCH_API AvgPool3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AvgPool3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; bool count_include_pad; ::std::optional<int64_t> divisor_override; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; SavedVariable self_; std::vector<int64_t> stride; }; #ifdef _WIN32 struct FractionalMaxPool2DBackward0 : public TraceableFunction { TORCH_API FractionalMaxPool2DBackward0() = default; #else struct TORCH_API FractionalMaxPool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FractionalMaxPool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> kernel_size; std::vector<int64_t> output_size; SavedVariable self_; SavedVariable result1_; }; #ifdef _WIN32 struct FractionalMaxPool3DBackward0 : public TraceableFunction { TORCH_API FractionalMaxPool3DBackward0() = default; #else struct TORCH_API FractionalMaxPool3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FractionalMaxPool3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> kernel_size; std::vector<int64_t> output_size; SavedVariable self_; SavedVariable result1_; }; #ifdef _WIN32 struct LinearBackward0 : public TraceableFunction { TORCH_API LinearBackward0() = default; #else struct TORCH_API LinearBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinearBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable input_; SavedVariable weight_; }; #ifdef _WIN32 struct LinearBackwardBackward0 : public TraceableFunction { TORCH_API LinearBackwardBackward0() = default; #else struct TORCH_API LinearBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LinearBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; SavedVariable self_; SavedVariable weight_; }; #ifdef _WIN32 struct MaxPool2DBackward0 : public TraceableFunction { TORCH_API MaxPool2DBackward0() = default; #else struct TORCH_API MaxPool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxPool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; std::vector<int64_t> dilation; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; SavedVariable self_; std::vector<int64_t> stride; }; #ifdef _WIN32 struct MpsConvolutionBackward0 : public TraceableFunction { TORCH_API MpsConvolutionBackward0() = default; #else struct TORCH_API MpsConvolutionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MpsConvolutionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct MpsConvolutionBackwardBackward0 : public TraceableFunction { TORCH_API MpsConvolutionBackwardBackward0() = default; #else struct TORCH_API MpsConvolutionBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MpsConvolutionBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; SavedVariable grad_output_; c10::SymInt groups; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct MaxPool2DWithIndicesBackward0 : public TraceableFunction { TORCH_API MaxPool2DWithIndicesBackward0() = default; #else struct TORCH_API MaxPool2DWithIndicesBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxPool2DWithIndicesBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; std::vector<int64_t> dilation; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; SavedVariable self_; std::vector<int64_t> stride; SavedVariable result1_; }; #ifdef _WIN32 struct MaxPool3DWithIndicesBackward0 : public TraceableFunction { TORCH_API MaxPool3DWithIndicesBackward0() = default; #else struct TORCH_API MaxPool3DWithIndicesBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxPool3DWithIndicesBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; std::vector<int64_t> dilation; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; SavedVariable self_; std::vector<int64_t> stride; SavedVariable result1_; }; #ifdef _WIN32 struct MaxUnpool2DBackward0 : public TraceableFunction { TORCH_API MaxUnpool2DBackward0() = default; #else struct TORCH_API MaxUnpool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxUnpool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; }; #ifdef _WIN32 struct MaxUnpool3DBackward0 : public TraceableFunction { TORCH_API MaxUnpool3DBackward0() = default; #else struct TORCH_API MaxUnpool3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxUnpool3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; }; #ifdef _WIN32 struct ConvolutionBackward0 : public TraceableFunction { TORCH_API ConvolutionBackward0() = default; #else struct TORCH_API ConvolutionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvolutionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; c10::SymInt groups; SavedVariable input_; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; std::vector<c10::SymInt> stride; bool transposed; SavedVariable weight_; }; #ifdef _WIN32 struct ConvolutionBackward1 : public TraceableFunction { TORCH_API ConvolutionBackward1() = default; #else struct TORCH_API ConvolutionBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvolutionBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; c10::SymInt groups; SavedVariable input_; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; std::vector<c10::SymInt> stride; bool transposed; SavedVariable weight_; }; #ifdef _WIN32 struct ConvolutionBackwardBackward0 : public TraceableFunction { TORCH_API ConvolutionBackwardBackward0() = default; #else struct TORCH_API ConvolutionBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvolutionBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); input_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; SavedVariable grad_output_; c10::SymInt groups; SavedVariable input_; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; std::vector<c10::SymInt> stride; bool transposed; SavedVariable weight_; }; #ifdef _WIN32 struct ConvolutionOverrideableBackward0 : public TraceableFunction { TORCH_API ConvolutionOverrideableBackward0() = default; #else struct TORCH_API ConvolutionOverrideableBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvolutionOverrideableBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; c10::SymInt groups; SavedVariable input_; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; std::vector<c10::SymInt> stride; bool transposed; SavedVariable weight_; }; #ifdef _WIN32 struct ConvolutionBackwardOverrideableBackward0 : public TraceableFunction { TORCH_API ConvolutionBackwardOverrideableBackward0() = default; #else struct TORCH_API ConvolutionBackwardOverrideableBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvolutionBackwardOverrideableBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); input_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; SavedVariable grad_output_; c10::SymInt groups; SavedVariable input_; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; std::vector<c10::SymInt> stride; bool transposed; SavedVariable weight_; }; #ifdef _WIN32 struct SlowConvTranspose2DBackward0 : public TraceableFunction { TORCH_API SlowConvTranspose2DBackward0() = default; #else struct TORCH_API SlowConvTranspose2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SlowConvTranspose2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct SlowConvTranspose3DBackward0 : public TraceableFunction { TORCH_API SlowConvTranspose3DBackward0() = default; #else struct TORCH_API SlowConvTranspose3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SlowConvTranspose3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct SlowConv2DBackward0 : public TraceableFunction { TORCH_API SlowConv2DBackward0() = default; #else struct TORCH_API SlowConv2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SlowConv2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> kernel_size; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct SlowConv2DBackwardBackward0 : public TraceableFunction { TORCH_API SlowConv2DBackwardBackward0() = default; #else struct TORCH_API SlowConv2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SlowConv2DBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct ConvDepthwise2DBackward0 : public TraceableFunction { TORCH_API ConvDepthwise2DBackward0() = default; #else struct TORCH_API ConvDepthwise2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvDepthwise2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct ConvDepthwise3DBackward0 : public TraceableFunction { TORCH_API ConvDepthwise3DBackward0() = default; #else struct TORCH_API ConvDepthwise3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConvDepthwise3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct SlowConv3DBackward0 : public TraceableFunction { TORCH_API SlowConv3DBackward0() = default; #else struct TORCH_API SlowConv3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SlowConv3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct SlowConvDilated2DBackward0 : public TraceableFunction { TORCH_API SlowConvDilated2DBackward0() = default; #else struct TORCH_API SlowConvDilated2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SlowConvDilated2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct SlowConvDilated3DBackward0 : public TraceableFunction { TORCH_API SlowConvDilated3DBackward0() = default; #else struct TORCH_API SlowConvDilated3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SlowConvDilated3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct Col2ImBackward0 : public TraceableFunction { TORCH_API Col2ImBackward0() = default; #else struct TORCH_API Col2ImBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Col2ImBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dilation; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; std::vector<int64_t> stride; }; #ifdef _WIN32 struct Im2ColBackward0 : public TraceableFunction { TORCH_API Im2ColBackward0() = default; #else struct TORCH_API Im2ColBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "Im2ColBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dilation; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; c10::SymInt self_sym_argsize_minus_1; c10::SymInt self_sym_argsize_minus_2; std::vector<int64_t> stride; }; #ifdef _WIN32 struct AdaptiveAvgPool2DBackwardBackward0 : public TraceableFunction { TORCH_API AdaptiveAvgPool2DBackwardBackward0() = default; #else struct TORCH_API AdaptiveAvgPool2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveAvgPool2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt grad_output_sym_argsize_minus_1; c10::SymInt grad_output_sym_argsize_minus_2; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct AdaptiveAvgPool3DBackwardBackward0 : public TraceableFunction { TORCH_API AdaptiveAvgPool3DBackwardBackward0() = default; #else struct TORCH_API AdaptiveAvgPool3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveAvgPool3DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt grad_output_sym_argsize_minus_1; c10::SymInt grad_output_sym_argsize_minus_2; c10::SymInt grad_output_sym_argsize_minus_3; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct AdaptiveMaxPool2DBackwardBackward0 : public TraceableFunction { TORCH_API AdaptiveMaxPool2DBackwardBackward0() = default; #else struct TORCH_API AdaptiveMaxPool2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveMaxPool2DBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct AdaptiveMaxPool3DBackwardBackward0 : public TraceableFunction { TORCH_API AdaptiveMaxPool3DBackwardBackward0() = default; #else struct TORCH_API AdaptiveMaxPool3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AdaptiveMaxPool3DBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct AvgPool2DBackwardBackward0 : public TraceableFunction { TORCH_API AvgPool2DBackwardBackward0() = default; #else struct TORCH_API AvgPool2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AvgPool2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; bool count_include_pad; ::std::optional<int64_t> divisor_override; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; torch::autograd::generated::TypeAndSize self_info; std::vector<int64_t> stride; }; #ifdef _WIN32 struct AvgPool3DBackwardBackward0 : public TraceableFunction { TORCH_API AvgPool3DBackwardBackward0() = default; #else struct TORCH_API AvgPool3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AvgPool3DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; bool count_include_pad; ::std::optional<int64_t> divisor_override; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; torch::autograd::generated::TypeAndSize self_info; std::vector<int64_t> stride; }; #ifdef _WIN32 struct EluBackwardBackward0 : public TraceableFunction { TORCH_API EluBackwardBackward0() = default; #else struct TORCH_API EluBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EluBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_or_result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; SavedVariable grad_output_; at::Scalar input_scale; bool is_result; at::Scalar scale; SavedVariable self_or_result_; }; #ifdef _WIN32 struct FractionalMaxPool2DBackwardBackward0 : public TraceableFunction { TORCH_API FractionalMaxPool2DBackwardBackward0() = default; #else struct TORCH_API FractionalMaxPool2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FractionalMaxPool2DBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct FractionalMaxPool3DBackwardBackward0 : public TraceableFunction { TORCH_API FractionalMaxPool3DBackwardBackward0() = default; #else struct TORCH_API FractionalMaxPool3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FractionalMaxPool3DBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct GluBackwardBackward0 : public TraceableFunction { TORCH_API GluBackwardBackward0() = default; #else struct TORCH_API GluBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "GluBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable grad_output_; SavedVariable self_; }; #ifdef _WIN32 struct HardtanhBackwardBackward0 : public TraceableFunction { TORCH_API HardtanhBackwardBackward0() = default; #else struct TORCH_API HardtanhBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HardtanhBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar max_val; at::Scalar min_val; SavedVariable self_; }; #ifdef _WIN32 struct LogSigmoidBackwardBackward0 : public TraceableFunction { TORCH_API LogSigmoidBackwardBackward0() = default; #else struct TORCH_API LogSigmoidBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogSigmoidBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); buffer_.reset_data(); grad_output_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable buffer_; SavedVariable grad_output_; SavedVariable self_; }; #ifdef _WIN32 struct LogSoftmaxBackwardDataBackward0 : public TraceableFunction { TORCH_API LogSoftmaxBackwardDataBackward0() = default; #else struct TORCH_API LogSoftmaxBackwardDataBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LogSoftmaxBackwardDataBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); output_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable grad_output_; SavedVariable output_; }; #ifdef _WIN32 struct LeakyReluBackwardBackward0 : public TraceableFunction { TORCH_API LeakyReluBackwardBackward0() = default; #else struct TORCH_API LeakyReluBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LeakyReluBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar negative_slope; SavedVariable self_; }; #ifdef _WIN32 struct MaxPool2DBackwardBackward0 : public TraceableFunction { TORCH_API MaxPool2DBackwardBackward0() = default; #else struct TORCH_API MaxPool2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxPool2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct MaxPool2DWithIndicesBackwardBackward0 : public TraceableFunction { TORCH_API MaxPool2DWithIndicesBackwardBackward0() = default; #else struct TORCH_API MaxPool2DWithIndicesBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxPool2DWithIndicesBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct MaxPool3DWithIndicesBackwardBackward0 : public TraceableFunction { TORCH_API MaxPool3DWithIndicesBackwardBackward0() = default; #else struct TORCH_API MaxPool3DWithIndicesBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MaxPool3DWithIndicesBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); indices_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable indices_; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct MseLossBackwardBackward0 : public TraceableFunction { TORCH_API MseLossBackwardBackward0() = default; #else struct TORCH_API MseLossBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MseLossBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct NllLossBackwardBackward0 : public TraceableFunction { TORCH_API NllLossBackwardBackward0() = default; #else struct TORCH_API NllLossBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NllLossBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); target_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt ignore_index; int64_t reduction = 0; SavedVariable target_; SavedVariable weight_; }; #ifdef _WIN32 struct NllLoss2DBackwardBackward0 : public TraceableFunction { TORCH_API NllLoss2DBackwardBackward0() = default; #else struct TORCH_API NllLoss2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NllLoss2DBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); target_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::SymInt ignore_index; int64_t reduction = 0; SavedVariable target_; SavedVariable weight_; }; #ifdef _WIN32 struct RreluWithNoiseBackwardBackward0 : public TraceableFunction { TORCH_API RreluWithNoiseBackwardBackward0() = default; #else struct TORCH_API RreluWithNoiseBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "RreluWithNoiseBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); noise_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lower; SavedVariable noise_; SavedVariable self_; bool training; at::Scalar upper; }; #ifdef _WIN32 struct ReflectionPad1DBackwardBackward0 : public TraceableFunction { TORCH_API ReflectionPad1DBackwardBackward0() = default; #else struct TORCH_API ReflectionPad1DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReflectionPad1DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct ReflectionPad2DBackwardBackward0 : public TraceableFunction { TORCH_API ReflectionPad2DBackwardBackward0() = default; #else struct TORCH_API ReflectionPad2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReflectionPad2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct ReflectionPad3DBackwardBackward0 : public TraceableFunction { TORCH_API ReflectionPad3DBackwardBackward0() = default; #else struct TORCH_API ReflectionPad3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReflectionPad3DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct ReplicationPad1DBackwardBackward0 : public TraceableFunction { TORCH_API ReplicationPad1DBackwardBackward0() = default; #else struct TORCH_API ReplicationPad1DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReplicationPad1DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct ReplicationPad2DBackwardBackward0 : public TraceableFunction { TORCH_API ReplicationPad2DBackwardBackward0() = default; #else struct TORCH_API ReplicationPad2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReplicationPad2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct ReplicationPad3DBackwardBackward0 : public TraceableFunction { TORCH_API ReplicationPad3DBackwardBackward0() = default; #else struct TORCH_API ReplicationPad3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReplicationPad3DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padding; torch::autograd::generated::TypeAndSize self_info; }; #ifdef _WIN32 struct SparseSampledAddmmBackward0 : public TraceableFunction { TORCH_API SparseSampledAddmmBackward0() = default; #else struct TORCH_API SparseSampledAddmmBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseSampledAddmmBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); mat1_.reset_data(); mat2_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; at::Scalar beta; SavedVariable mat1_; SavedVariable mat2_; SavedVariable self_; }; #ifdef _WIN32 struct SparseMmReduceImplBackward0 : public TraceableFunction { TORCH_API SparseMmReduceImplBackward0() = default; #else struct TORCH_API SparseMmReduceImplBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SparseMmReduceImplBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; std::string reduce; SavedVariable self_; SavedVariable result1_; }; #ifdef _WIN32 struct SmoothL1LossBackwardBackward0 : public TraceableFunction { TORCH_API SmoothL1LossBackwardBackward0() = default; #else struct TORCH_API SmoothL1LossBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SmoothL1LossBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double beta; SavedVariable grad_output_; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct HuberLossBackwardBackward0 : public TraceableFunction { TORCH_API HuberLossBackwardBackward0() = default; #else struct TORCH_API HuberLossBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "HuberLossBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double delta; SavedVariable grad_output_; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct SoftplusBackwardBackward0 : public TraceableFunction { TORCH_API SoftplusBackwardBackward0() = default; #else struct TORCH_API SoftplusBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftplusBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar beta; SavedVariable grad_output_; SavedVariable self_; at::Scalar threshold; }; #ifdef _WIN32 struct SoftmaxBackwardDataBackward0 : public TraceableFunction { TORCH_API SoftmaxBackwardDataBackward0() = default; #else struct TORCH_API SoftmaxBackwardDataBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftmaxBackwardDataBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); output_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable grad_output_; at::ScalarType input_dtype; SavedVariable output_; }; #ifdef _WIN32 struct SoftMarginLossBackwardBackward0 : public TraceableFunction { TORCH_API SoftMarginLossBackwardBackward0() = default; #else struct TORCH_API SoftMarginLossBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftMarginLossBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); self_.reset_data(); target_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; int64_t reduction = 0; SavedVariable self_; SavedVariable target_; }; #ifdef _WIN32 struct SoftshrinkBackwardBackward0 : public TraceableFunction { TORCH_API SoftshrinkBackwardBackward0() = default; #else struct TORCH_API SoftshrinkBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SoftshrinkBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar lambd; SavedVariable self_; }; #ifdef _WIN32 struct ThresholdBackwardBackward0 : public TraceableFunction { TORCH_API ThresholdBackwardBackward0() = default; #else struct TORCH_API ThresholdBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ThresholdBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; at::Scalar threshold; }; #ifdef _WIN32 struct UpsampleLinear1DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleLinear1DBackwardBackward0() = default; #else struct TORCH_API UpsampleLinear1DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleLinear1DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales; }; #ifdef _WIN32 struct UpsampleBilinear2DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleBilinear2DBackwardBackward0() = default; #else struct TORCH_API UpsampleBilinear2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBilinear2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleBilinear2DAaBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleBilinear2DAaBackwardBackward0() = default; #else struct TORCH_API UpsampleBilinear2DAaBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBilinear2DAaBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleBicubic2DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleBicubic2DBackwardBackward0() = default; #else struct TORCH_API UpsampleBicubic2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBicubic2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleBicubic2DAaBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleBicubic2DAaBackwardBackward0() = default; #else struct TORCH_API UpsampleBicubic2DAaBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleBicubic2DAaBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleTrilinear3DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleTrilinear3DBackwardBackward0() = default; #else struct TORCH_API UpsampleTrilinear3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleTrilinear3DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool align_corners; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_d; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleNearest1DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleNearest1DBackwardBackward0() = default; #else struct TORCH_API UpsampleNearest1DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearest1DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales; }; #ifdef _WIN32 struct UpsampleNearestExact1DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleNearestExact1DBackwardBackward0() = default; #else struct TORCH_API UpsampleNearestExact1DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearestExact1DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales; }; #ifdef _WIN32 struct UpsampleNearest2DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleNearest2DBackwardBackward0() = default; #else struct TORCH_API UpsampleNearest2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearest2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleNearestExact2DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleNearestExact2DBackwardBackward0() = default; #else struct TORCH_API UpsampleNearestExact2DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearestExact2DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleNearest3DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleNearest3DBackwardBackward0() = default; #else struct TORCH_API UpsampleNearest3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearest3DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_d; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct UpsampleNearestExact3DBackwardBackward0 : public TraceableFunction { TORCH_API UpsampleNearestExact3DBackwardBackward0() = default; #else struct TORCH_API UpsampleNearestExact3DBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UpsampleNearestExact3DBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> output_size; ::std::optional<double> scales_d; ::std::optional<double> scales_h; ::std::optional<double> scales_w; }; #ifdef _WIN32 struct SigmoidBackwardBackward0 : public TraceableFunction { TORCH_API SigmoidBackwardBackward0() = default; #else struct TORCH_API SigmoidBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SigmoidBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); output_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; SavedVariable output_; }; #ifdef _WIN32 struct TanhBackwardBackward0 : public TraceableFunction { TORCH_API TanhBackwardBackward0() = default; #else struct TORCH_API TanhBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TanhBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); output_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grad_output_; SavedVariable output_; }; #ifdef _WIN32 struct CudnnCtcLossBackward0 : public TraceableFunction { TORCH_API CudnnCtcLossBackward0() = default; #else struct TORCH_API CudnnCtcLossBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnCtcLossBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result0_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool zero_infinity; SavedVariable result0_; SavedVariable result1_; }; #ifdef _WIN32 struct CudnnCtcLossBackward1 : public TraceableFunction { TORCH_API CudnnCtcLossBackward1() = default; #else struct TORCH_API CudnnCtcLossBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnCtcLossBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result0_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool zero_infinity; SavedVariable result0_; SavedVariable result1_; }; #ifdef _WIN32 struct CudnnConvolutionTransposeBackward0 : public TraceableFunction { TORCH_API CudnnConvolutionTransposeBackward0() = default; #else struct TORCH_API CudnnConvolutionTransposeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnConvolutionTransposeBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct MpsConvolutionTransposeBackward0 : public TraceableFunction { TORCH_API MpsConvolutionTransposeBackward0() = default; #else struct TORCH_API MpsConvolutionTransposeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MpsConvolutionTransposeBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct CudnnConvolutionBackward0 : public TraceableFunction { TORCH_API CudnnConvolutionBackward0() = default; #else struct TORCH_API CudnnConvolutionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnConvolutionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct CudnnGridSamplerBackward0 : public TraceableFunction { TORCH_API CudnnGridSamplerBackward0() = default; #else struct TORCH_API CudnnGridSamplerBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnGridSamplerBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grid_.reset_data(); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable grid_; SavedVariable self_; }; #ifdef _WIN32 struct CudnnAffineGridGeneratorBackward0 : public TraceableFunction { TORCH_API CudnnAffineGridGeneratorBackward0() = default; #else struct TORCH_API CudnnAffineGridGeneratorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnAffineGridGeneratorBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t C = 0; int64_t H = 0; int64_t N = 0; int64_t W = 0; }; #ifdef _WIN32 struct CudnnBatchNormBackward0 : public TraceableFunction { TORCH_API CudnnBatchNormBackward0() = default; #else struct TORCH_API CudnnBatchNormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnBatchNormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); result3_.reset_data(); } bool retain_variables = true; void will_release_variables() override { retain_variables = false; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double epsilon; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; bool training; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; SavedVariable result3_; }; #ifdef _WIN32 struct CudnnBatchNormBackwardBackward0 : public TraceableFunction { TORCH_API CudnnBatchNormBackwardBackward0() = default; #else struct TORCH_API CudnnBatchNormBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnBatchNormBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); input_.reset_data(); reserveSpace_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); save_mean_.reset_data(); save_var_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double epsilon; SavedVariable grad_output_; SavedVariable input_; SavedVariable reserveSpace_; SavedVariable running_mean_; SavedVariable running_var_; SavedVariable save_mean_; SavedVariable save_var_; SavedVariable weight_; }; #ifdef _WIN32 struct NnpackSpatialConvolutionBackward0 : public TraceableFunction { TORCH_API NnpackSpatialConvolutionBackward0() = default; #else struct TORCH_API NnpackSpatialConvolutionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NnpackSpatialConvolutionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; SavedVariable input_; std::vector<c10::SymInt> padding; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct LstmMpsBackward0 : public TraceableFunction { TORCH_API LstmMpsBackward0() = default; #else struct TORCH_API LstmMpsBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LstmMpsBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); hx_.clear(); hx_released_ = true; input_.reset_data(); params_.clear(); params_released_ = true; result3_.reset_data(); result4_.reset_data(); result5_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool batch_first; bool bidirectional; double dropout; bool has_biases; std::vector<SavedVariable> hx_; bool hx_released_ = false; SavedVariable input_; int64_t num_layers = 0; std::vector<SavedVariable> params_; bool params_released_ = false; bool train; SavedVariable result3_; SavedVariable result4_; SavedVariable result5_; size_t hx_size_; size_t params_size_; }; #ifdef _WIN32 struct CudnnRnnBackward0 : public TraceableFunction { TORCH_API CudnnRnnBackward0() = default; #else struct TORCH_API CudnnRnnBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnRnnBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); cx_.reset_data(); dropout_state_.reset_data(); hx_.reset_data(); input_.reset_data(); weight_.clear(); weight_released_ = true; result0_.reset_data(); result3_.reset_data(); result4_.reset_data(); } bool retain_variables = true; void will_release_variables() override { retain_variables = false; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool batch_first; std::vector<c10::SymInt> batch_sizes; bool bidirectional; SavedVariable cx_; double dropout; SavedVariable dropout_state_; c10::SymInt hidden_size; SavedVariable hx_; SavedVariable input_; int64_t mode = 0; int64_t num_layers = 0; c10::SymInt proj_size; bool train; std::vector<SavedVariable> weight_; bool weight_released_ = false; int64_t weight_stride0 = 0; SavedVariable result0_; SavedVariable result3_; SavedVariable result4_; size_t weight_size_; }; #ifdef _WIN32 struct CudnnRnnBackwardBackward0 : public TraceableFunction { TORCH_API CudnnRnnBackwardBackward0() = default; #else struct TORCH_API CudnnRnnBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "CudnnRnnBackwardBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t weight_size_; }; #ifdef _WIN32 struct MiopenConvolutionTransposeBackward0 : public TraceableFunction { TORCH_API MiopenConvolutionTransposeBackward0() = default; #else struct TORCH_API MiopenConvolutionTransposeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MiopenConvolutionTransposeBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> output_padding; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct MiopenConvolutionBackward0 : public TraceableFunction { TORCH_API MiopenConvolutionBackward0() = default; #else struct TORCH_API MiopenConvolutionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MiopenConvolutionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct MiopenDepthwiseConvolutionBackward0 : public TraceableFunction { TORCH_API MiopenDepthwiseConvolutionBackward0() = default; #else struct TORCH_API MiopenDepthwiseConvolutionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MiopenDepthwiseConvolutionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct MiopenBatchNormBackward0 : public TraceableFunction { TORCH_API MiopenBatchNormBackward0() = default; #else struct TORCH_API MiopenBatchNormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MiopenBatchNormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); weight_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double epsilon; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; bool training; SavedVariable weight_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct MiopenBatchNormBackwardBackward0 : public TraceableFunction { TORCH_API MiopenBatchNormBackwardBackward0() = default; #else struct TORCH_API MiopenBatchNormBackwardBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MiopenBatchNormBackwardBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); grad_output_.reset_data(); input_.reset_data(); running_mean_.reset_data(); running_var_.reset_data(); save_mean_.reset_data(); save_var_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double epsilon; SavedVariable grad_output_; SavedVariable input_; SavedVariable running_mean_; SavedVariable running_var_; SavedVariable save_mean_; SavedVariable save_var_; SavedVariable weight_; }; #ifdef _WIN32 struct MiopenRnnBackward0 : public TraceableFunction { TORCH_API MiopenRnnBackward0() = default; #else struct TORCH_API MiopenRnnBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MiopenRnnBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); cx_.reset_data(); dropout_state_.reset_data(); hx_.reset_data(); input_.reset_data(); weight_.clear(); weight_released_ = true; result0_.reset_data(); result3_.reset_data(); result4_.reset_data(); } bool retain_variables = true; void will_release_variables() override { retain_variables = false; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool batch_first; std::vector<int64_t> batch_sizes; bool bidirectional; SavedVariable cx_; double dropout; SavedVariable dropout_state_; int64_t hidden_size = 0; SavedVariable hx_; SavedVariable input_; int64_t mode = 0; int64_t num_layers = 0; bool train; std::vector<SavedVariable> weight_; bool weight_released_ = false; int64_t weight_stride0 = 0; SavedVariable result0_; SavedVariable result3_; SavedVariable result4_; size_t weight_size_; }; #ifdef _WIN32 struct MkldnnRnnLayerBackward0 : public TraceableFunction { TORCH_API MkldnnRnnLayerBackward0() = default; #else struct TORCH_API MkldnnRnnLayerBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MkldnnRnnLayerBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); cx__.reset_data(); hx__.reset_data(); input_.reset_data(); weight0_.reset_data(); weight1_.reset_data(); weight2_.reset_data(); weight3_.reset_data(); result0_.reset_data(); result1_.reset_data(); result2_.reset_data(); result3_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool batch_first; std::vector<int64_t> batch_sizes; bool bidirectional; SavedVariable cx__; bool has_biases; int64_t hidden_size = 0; SavedVariable hx__; SavedVariable input_; int64_t mode = 0; int64_t num_layers = 0; bool reverse; bool train; SavedVariable weight0_; SavedVariable weight1_; SavedVariable weight2_; SavedVariable weight3_; SavedVariable result0_; SavedVariable result1_; SavedVariable result2_; SavedVariable result3_; }; #ifdef _WIN32 struct MkldnnConvolutionBackward0 : public TraceableFunction { TORCH_API MkldnnConvolutionBackward0() = default; #else struct TORCH_API MkldnnConvolutionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MkldnnConvolutionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; c10::OptionalArray<c10::SymInt> bias_sym_sizes_opt; std::vector<c10::SymInt> dilation; c10::SymInt groups; std::vector<c10::SymInt> padding; SavedVariable self_; std::vector<c10::SymInt> stride; SavedVariable weight_; }; #ifdef _WIN32 struct MkldnnLinearBackward0 : public TraceableFunction { TORCH_API MkldnnLinearBackward0() = default; #else struct TORCH_API MkldnnLinearBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MkldnnLinearBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); weight_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; SavedVariable weight_; }; #ifdef _WIN32 struct MkldnnMaxPool2DBackward0 : public TraceableFunction { TORCH_API MkldnnMaxPool2DBackward0() = default; #else struct TORCH_API MkldnnMaxPool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MkldnnMaxPool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; std::vector<int64_t> dilation; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; SavedVariable self_; std::vector<int64_t> stride; SavedVariable result_; }; #ifdef _WIN32 struct MkldnnMaxPool3DBackward0 : public TraceableFunction { TORCH_API MkldnnMaxPool3DBackward0() = default; #else struct TORCH_API MkldnnMaxPool3DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MkldnnMaxPool3DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool ceil_mode; std::vector<int64_t> dilation; std::vector<int64_t> kernel_size; std::vector<int64_t> padding; SavedVariable self_; std::vector<int64_t> stride; SavedVariable result_; }; #ifdef _WIN32 struct MkldnnAdaptiveAvgPool2DBackward0 : public TraceableFunction { TORCH_API MkldnnAdaptiveAvgPool2DBackward0() = default; #else struct TORCH_API MkldnnAdaptiveAvgPool2DBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MkldnnAdaptiveAvgPool2DBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct MkldnnReshapeBackward0 : public TraceableFunction { TORCH_API MkldnnReshapeBackward0() = default; #else struct TORCH_API MkldnnReshapeBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "MkldnnReshapeBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct NestedTensorFromTensorListBackward0 : public TraceableFunction { TORCH_API NestedTensorFromTensorListBackward0() = default; #else struct TORCH_API NestedTensorFromTensorListBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedTensorFromTensorListBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); list_.clear(); list_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> list_; bool list_released_ = false; size_t list_size_; }; #ifdef _WIN32 struct NestedTensorFromMaskBackward0 : public TraceableFunction { TORCH_API NestedTensorFromMaskBackward0() = default; #else struct TORCH_API NestedTensorFromMaskBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedTensorFromMaskBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> t_sym_sizes; }; #ifdef _WIN32 struct NestedFromPaddedBackward0 : public TraceableFunction { TORCH_API NestedFromPaddedBackward0() = default; #else struct TORCH_API NestedFromPaddedBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedFromPaddedBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); padded_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool fuse_transform_0213; SavedVariable padded_; }; #ifdef _WIN32 struct ToPaddedTensorBackward0 : public TraceableFunction { TORCH_API ToPaddedTensorBackward0() = default; #else struct TORCH_API ToPaddedTensorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ToPaddedTensorBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; at::Layout self_layout; }; #ifdef _WIN32 struct NestedFromPaddedTensorBackward0 : public TraceableFunction { TORCH_API NestedFromPaddedTensorBackward0() = default; #else struct TORCH_API NestedFromPaddedTensorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedFromPaddedTensorBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> padded_sym_sizes; }; #ifdef _WIN32 struct NestedViewFromBufferBackward0 : public Node { TORCH_API NestedViewFromBufferBackward0() = default; #else struct TORCH_API NestedViewFromBufferBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedViewFromBufferBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NestedViewFromJaggedBackward0 : public Node { TORCH_API NestedViewFromJaggedBackward0() = default; #else struct TORCH_API NestedViewFromJaggedBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedViewFromJaggedBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NestedGetValuesBackward0 : public Node { TORCH_API NestedGetValuesBackward0() = default; #else struct TORCH_API NestedGetValuesBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedGetValuesBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct SafeSoftmaxBackward0 : public TraceableFunction { TORCH_API SafeSoftmaxBackward0() = default; #else struct TORCH_API SafeSoftmaxBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SafeSoftmaxBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::ScalarType self_scalar_type; SavedVariable result_; }; #ifdef _WIN32 struct ScaledDotProductEfficientAttentionBackward0 : public TraceableFunction { TORCH_API ScaledDotProductEfficientAttentionBackward0() = default; #else struct TORCH_API ScaledDotProductEfficientAttentionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScaledDotProductEfficientAttentionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); attn_bias_.reset_data(); key_.reset_data(); query_.reset_data(); value_.reset_data(); log_sumexp_.reset_data(); output_.reset_data(); philox_offset_.reset_data(); philox_seed_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable attn_bias_; double dropout_p; bool is_causal; SavedVariable key_; SavedVariable query_; ::std::optional<double> scale; SavedVariable value_; SavedVariable log_sumexp_; SavedVariable output_; SavedVariable philox_offset_; SavedVariable philox_seed_; }; #ifdef _WIN32 struct ScaledDotProductFlashAttentionBackward0 : public TraceableFunction { TORCH_API ScaledDotProductFlashAttentionBackward0() = default; #else struct TORCH_API ScaledDotProductFlashAttentionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScaledDotProductFlashAttentionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); key_.reset_data(); query_.reset_data(); value_.reset_data(); cum_seq_k_.reset_data(); cum_seq_q_.reset_data(); logsumexp_.reset_data(); output_.reset_data(); rng_state_.reset_data(); unused_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; double dropout_p; bool is_causal; SavedVariable key_; SavedVariable query_; ::std::optional<double> scale; SavedVariable value_; SavedVariable cum_seq_k_; SavedVariable cum_seq_q_; SavedVariable logsumexp_; c10::SymInt max_k; c10::SymInt max_q; SavedVariable output_; SavedVariable rng_state_; SavedVariable unused_; }; #ifdef _WIN32 struct ScaledDotProductFlashAttentionForCpuBackward0 : public TraceableFunction { TORCH_API ScaledDotProductFlashAttentionForCpuBackward0() = default; #else struct TORCH_API ScaledDotProductFlashAttentionForCpuBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScaledDotProductFlashAttentionForCpuBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); attn_mask_.reset_data(); key_.reset_data(); query_.reset_data(); value_.reset_data(); logsumexp_.reset_data(); output_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable attn_mask_; double dropout_p; bool is_causal; SavedVariable key_; SavedVariable query_; ::std::optional<double> scale; SavedVariable value_; SavedVariable logsumexp_; SavedVariable output_; }; #ifdef _WIN32 struct FlashAttentionBackward0 : public TraceableFunction { TORCH_API FlashAttentionBackward0() = default; #else struct TORCH_API FlashAttentionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FlashAttentionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); cum_seq_k_.reset_data(); cum_seq_q_.reset_data(); key_.reset_data(); query_.reset_data(); value_.reset_data(); output_.reset_data(); rng_state_.reset_data(); softmax_logsumexp_.reset_data(); unused_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable cum_seq_k_; SavedVariable cum_seq_q_; double dropout_p; bool is_causal; SavedVariable key_; c10::SymInt max_k; c10::SymInt max_q; SavedVariable query_; ::std::optional<double> scale; SavedVariable value_; ::std::optional<c10::SymInt> window_size_left; ::std::optional<c10::SymInt> window_size_right; SavedVariable output_; SavedVariable rng_state_; SavedVariable softmax_logsumexp_; SavedVariable unused_; }; #ifdef _WIN32 struct EfficientAttentionBackward0 : public TraceableFunction { TORCH_API EfficientAttentionBackward0() = default; #else struct TORCH_API EfficientAttentionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "EfficientAttentionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); bias_.reset_data(); cu_seqlens_k_.reset_data(); cu_seqlens_q_.reset_data(); key_.reset_data(); query_.reset_data(); value_.reset_data(); logsumexp_.reset_data(); output_.reset_data(); philox_offset_.reset_data(); philox_seed_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable bias_; SavedVariable cu_seqlens_k_; SavedVariable cu_seqlens_q_; int64_t custom_mask_type = 0; double dropout_p; SavedVariable key_; SavedVariable query_; ::std::optional<double> scale; SavedVariable value_; SavedVariable logsumexp_; c10::SymInt max_seqlen_batch_k; c10::SymInt max_seqlen_batch_q; SavedVariable output_; SavedVariable philox_offset_; SavedVariable philox_seed_; }; #ifdef _WIN32 struct ScaledDotProductCudnnAttentionBackward0 : public TraceableFunction { TORCH_API ScaledDotProductCudnnAttentionBackward0() = default; #else struct TORCH_API ScaledDotProductCudnnAttentionBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScaledDotProductCudnnAttentionBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); attn_bias_.reset_data(); key_.reset_data(); query_.reset_data(); value_.reset_data(); cum_seq_k_.reset_data(); cum_seq_q_.reset_data(); logsumexp_.reset_data(); output_.reset_data(); philox_offset_.reset_data(); philox_seed_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable attn_bias_; double dropout_p; bool is_causal; SavedVariable key_; SavedVariable query_; ::std::optional<double> scale; SavedVariable value_; SavedVariable cum_seq_k_; SavedVariable cum_seq_q_; SavedVariable logsumexp_; c10::SymInt max_k; c10::SymInt max_q; SavedVariable output_; SavedVariable philox_offset_; SavedVariable philox_seed_; }; #ifdef _WIN32 struct ScaledDotProductFusedAttentionOverrideableBackward0 : public TraceableFunction { TORCH_API ScaledDotProductFusedAttentionOverrideableBackward0() = default; #else struct TORCH_API ScaledDotProductFusedAttentionOverrideableBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScaledDotProductFusedAttentionOverrideableBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); attn_bias_.reset_data(); key_.reset_data(); query_.reset_data(); value_.reset_data(); cum_seq_k_.reset_data(); cum_seq_q_.reset_data(); logsumexp_.reset_data(); output_.reset_data(); philox_offset_.reset_data(); philox_seed_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable attn_bias_; double dropout_p; bool is_causal; SavedVariable key_; SavedVariable query_; ::std::optional<double> scale; SavedVariable value_; SavedVariable cum_seq_k_; SavedVariable cum_seq_q_; SavedVariable logsumexp_; c10::SymInt max_k; c10::SymInt max_q; SavedVariable output_; SavedVariable philox_offset_; SavedVariable philox_seed_; }; #ifdef _WIN32 struct FftR2CBackward0 : public TraceableFunction { TORCH_API FftR2CBackward0() = default; #else struct TORCH_API FftR2CBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FftR2CBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; int64_t normalization = 0; bool onesided; SavedVariable self_; }; #ifdef _WIN32 struct FftC2RBackward0 : public TraceableFunction { TORCH_API FftC2RBackward0() = default; #else struct TORCH_API FftC2RBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FftC2RBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; int64_t normalization = 0; }; #ifdef _WIN32 struct FftC2CBackward0 : public TraceableFunction { TORCH_API FftC2CBackward0() = default; #else struct TORCH_API FftC2CBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "FftC2CBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> dim; bool forward; int64_t normalization = 0; }; #ifdef _WIN32 struct UnbindBackward0 : public Node { TORCH_API UnbindBackward0() = default; #else struct TORCH_API UnbindBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnbindBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; }; #ifdef _WIN32 struct UnbindBackwardAutogradNestedTensor0 : public Node { TORCH_API UnbindBackwardAutogradNestedTensor0() = default; #else struct TORCH_API UnbindBackwardAutogradNestedTensor0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnbindBackwardAutogradNestedTensor0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; at::Layout self_layout; at::TensorOptions self_options; }; #ifdef _WIN32 struct StackBackward0 : public TraceableFunction { TORCH_API StackBackward0() = default; #else struct TORCH_API StackBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "StackBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; ::std::vector<at::ScalarType> tensors_args_scalartypes; size_t tensors_size_; }; #ifdef _WIN32 struct ThnnFusedLstmCellBackward0 : public TraceableFunction { TORCH_API ThnnFusedLstmCellBackward0() = default; #else struct TORCH_API ThnnFusedLstmCellBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ThnnFusedLstmCellBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); cx_.reset_data(); hidden_bias_.reset_data(); hidden_gates_.reset_data(); input_bias_.reset_data(); input_gates_.reset_data(); result1_.reset_data(); result2_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable cx_; SavedVariable hidden_bias_; SavedVariable hidden_gates_; SavedVariable input_bias_; SavedVariable input_gates_; SavedVariable result1_; SavedVariable result2_; }; #ifdef _WIN32 struct ThnnFusedGruCellBackward0 : public TraceableFunction { TORCH_API ThnnFusedGruCellBackward0() = default; #else struct TORCH_API ThnnFusedGruCellBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ThnnFusedGruCellBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); hidden_bias_.reset_data(); hidden_gates_.reset_data(); hx_.reset_data(); input_bias_.reset_data(); input_gates_.reset_data(); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable hidden_bias_; SavedVariable hidden_gates_; SavedVariable hx_; SavedVariable input_bias_; SavedVariable input_gates_; SavedVariable result1_; }; #ifdef _WIN32 struct PackPaddedSequenceBackward0 : public TraceableFunction { TORCH_API PackPaddedSequenceBackward0() = default; #else struct TORCH_API PackPaddedSequenceBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PackPaddedSequenceBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result1_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; bool batch_first; std::vector<c10::SymInt> input_sym_sizes; SavedVariable result1_; }; #ifdef _WIN32 struct SegmentReduceBackward0 : public TraceableFunction { TORCH_API SegmentReduceBackward0() = default; #else struct TORCH_API SegmentReduceBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SegmentReduceBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); data_.reset_data(); lengths_.reset_data(); offsets_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t axis = 0; SavedVariable data_; ::std::optional<at::Scalar> initial; SavedVariable lengths_; SavedVariable offsets_; std::string reduce; SavedVariable result_; }; #ifdef _WIN32 struct PinMemoryBackward0 : public TraceableFunction { TORCH_API PinMemoryBackward0() = default; #else struct TORCH_API PinMemoryBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PinMemoryBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct TestWarnInAutogradBackward0 : public TraceableFunction { TORCH_API TestWarnInAutogradBackward0() = default; #else struct TORCH_API TestWarnInAutogradBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestWarnInAutogradBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchBackward0 : public TraceableFunction { TORCH_API TestAutogradMultipleDispatchBackward0() = default; #else struct TORCH_API TestAutogradMultipleDispatchBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchBackwardAutogradNestedTensor0 : public TraceableFunction { TORCH_API TestAutogradMultipleDispatchBackwardAutogradNestedTensor0() = default; #else struct TORCH_API TestAutogradMultipleDispatchBackwardAutogradNestedTensor0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchBackwardAutogradNestedTensor0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchBackwardAutogradCUDA0 : public TraceableFunction { TORCH_API TestAutogradMultipleDispatchBackwardAutogradCUDA0() = default; #else struct TORCH_API TestAutogradMultipleDispatchBackwardAutogradCUDA0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchBackwardAutogradCUDA0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchBackwardAutogradNestedTensor1 : public TraceableFunction { TORCH_API TestAutogradMultipleDispatchBackwardAutogradNestedTensor1() = default; #else struct TORCH_API TestAutogradMultipleDispatchBackwardAutogradNestedTensor1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchBackwardAutogradNestedTensor1"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchViewBackward0 : public Node { TORCH_API TestAutogradMultipleDispatchViewBackward0() = default; #else struct TORCH_API TestAutogradMultipleDispatchViewBackward0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchViewBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchViewBackwardAutogradCUDA0 : public Node { TORCH_API TestAutogradMultipleDispatchViewBackwardAutogradCUDA0() = default; #else struct TORCH_API TestAutogradMultipleDispatchViewBackwardAutogradCUDA0 : public Node { #endif using Node::Node; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchViewBackwardAutogradCUDA0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ScatterReduceBackward0 : public TraceableFunction { TORCH_API ScatterReduceBackward0() = default; #else struct TORCH_API ScatterReduceBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ScatterReduceBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); index_.reset_data(); self_.reset_data(); src_.reset_data(); result_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; bool include_self; SavedVariable index_; std::string reduce; SavedVariable self_; SavedVariable src_; SavedVariable result_; }; #ifdef _WIN32 struct ReshapeCopyBackward0 : public TraceableFunction { TORCH_API ReshapeCopyBackward0() = default; #else struct TORCH_API ReshapeCopyBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReshapeCopyBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct ForeachDivBackward0 : public TraceableFunction { TORCH_API ForeachDivBackward0() = default; #else struct TORCH_API ForeachDivBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachDivBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachPowBackward0 : public TraceableFunction { TORCH_API ForeachPowBackward0() = default; #else struct TORCH_API ForeachPowBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachPowBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); exponent_.clear(); exponent_released_ = true; self_.clear(); self_released_ = true; result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> exponent_; bool exponent_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; size_t exponent_size_; }; #ifdef _WIN32 struct ForeachPowBackward1 : public TraceableFunction { TORCH_API ForeachPowBackward1() = default; #else struct TORCH_API ForeachPowBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachPowBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); exponent.clear(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> exponent; bool exponent_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachPowBackward2 : public TraceableFunction { TORCH_API ForeachPowBackward2() = default; #else struct TORCH_API ForeachPowBackward2 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachPowBackward2"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); exponent_.clear(); exponent_released_ = true; result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> exponent_; bool exponent_released_ = false; at::Scalar self; std::vector<SavedVariable> result_; bool result_released_ = false; size_t exponent_size_; }; #ifdef _WIN32 struct ForeachMinimumBackward0 : public TraceableFunction { TORCH_API ForeachMinimumBackward0() = default; #else struct TORCH_API ForeachMinimumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMinimumBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar scalar; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachMinimumBackward1 : public TraceableFunction { TORCH_API ForeachMinimumBackward1() = default; #else struct TORCH_API ForeachMinimumBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMinimumBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachMaximumBackward0 : public TraceableFunction { TORCH_API ForeachMaximumBackward0() = default; #else struct TORCH_API ForeachMaximumBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMaximumBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar scalar; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachMaximumBackward1 : public TraceableFunction { TORCH_API ForeachMaximumBackward1() = default; #else struct TORCH_API ForeachMaximumBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMaximumBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachNormBackward0 : public TraceableFunction { TORCH_API ForeachNormBackward0() = default; #else struct TORCH_API ForeachNormBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachNormBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar ord; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct AliasBackward0_copy : public TraceableFunction { TORCH_API AliasBackward0_copy() = default; #else struct TORCH_API AliasBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AliasBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct AsStridedBackward0_copy : public TraceableFunction { TORCH_API AsStridedBackward0_copy() = default; #else struct TORCH_API AsStridedBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "AsStridedBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::TensorGeometry self_geometry; std::vector<c10::SymInt> size; ::std::optional<c10::SymInt> storage_offset; std::vector<c10::SymInt> stride; }; #ifdef _WIN32 struct ConjBackward0_copy : public TraceableFunction { TORCH_API ConjBackward0_copy() = default; #else struct TORCH_API ConjBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ConjBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NegViewBackward0_copy : public TraceableFunction { TORCH_API NegViewBackward0_copy() = default; #else struct TORCH_API NegViewBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NegViewBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct DiagonalBackward0_copy : public TraceableFunction { TORCH_API DiagonalBackward0_copy() = default; #else struct TORCH_API DiagonalBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "DiagonalBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim1 = 0; int64_t dim2 = 0; int64_t offset = 0; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct ExpandBackward0_copy : public TraceableFunction { TORCH_API ExpandBackward0_copy() = default; #else struct TORCH_API ExpandBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ExpandBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct PermuteBackward0_copy : public TraceableFunction { TORCH_API PermuteBackward0_copy() = default; #else struct TORCH_API PermuteBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "PermuteBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dims; }; #ifdef _WIN32 struct ReshapeAliasBackward0_copy : public TraceableFunction { TORCH_API ReshapeAliasBackward0_copy() = default; #else struct TORCH_API ReshapeAliasBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ReshapeAliasBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SelectBackward0_copy : public TraceableFunction { TORCH_API SelectBackward0_copy() = default; #else struct TORCH_API SelectBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SelectBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; c10::SymInt index; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SelectBackwardAutogradNestedTensor0_copy : public TraceableFunction { TORCH_API SelectBackwardAutogradNestedTensor0_copy() = default; #else struct TORCH_API SelectBackwardAutogradNestedTensor0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SelectBackwardAutogradNestedTensor0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; c10::SymInt index; SavedVariable self_; }; #ifdef _WIN32 struct SliceBackward0_copy : public TraceableFunction { TORCH_API SliceBackward0_copy() = default; #else struct TORCH_API SliceBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SliceBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; ::std::optional<c10::SymInt> end; std::vector<c10::SymInt> self_sym_sizes; ::std::optional<c10::SymInt> start; c10::SymInt step; }; #ifdef _WIN32 struct SplitBackward0_copy : public TraceableFunction { TORCH_API SplitBackward0_copy() = default; #else struct TORCH_API SplitBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SplitBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; c10::SymInt split_size; }; #ifdef _WIN32 struct SplitWithSizesBackward0_copy : public TraceableFunction { TORCH_API SplitWithSizesBackward0_copy() = default; #else struct TORCH_API SplitWithSizesBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SplitWithSizesBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; at::TensorOptions self_options; std::vector<c10::SymInt> self_sym_sizes; std::vector<c10::SymInt> split_sizes; }; #ifdef _WIN32 struct SplitWithSizesBackwardAutogradNestedTensor0_copy : public TraceableFunction { TORCH_API SplitWithSizesBackwardAutogradNestedTensor0_copy() = default; #else struct TORCH_API SplitWithSizesBackwardAutogradNestedTensor0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SplitWithSizesBackwardAutogradNestedTensor0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; at::TensorOptions self_options; std::vector<c10::SymInt> split_sizes; }; #ifdef _WIN32 struct SqueezeBackward0_copy : public TraceableFunction { TORCH_API SqueezeBackward0_copy() = default; #else struct TORCH_API SqueezeBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackward1_copy : public TraceableFunction { TORCH_API SqueezeBackward1_copy() = default; #else struct TORCH_API SqueezeBackward1_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward1_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackwardAutogradNestedTensor0_copy : public TraceableFunction { TORCH_API SqueezeBackwardAutogradNestedTensor0_copy() = default; #else struct TORCH_API SqueezeBackwardAutogradNestedTensor0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackwardAutogradNestedTensor0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; }; #ifdef _WIN32 struct SqueezeBackward2_copy : public TraceableFunction { TORCH_API SqueezeBackward2_copy() = default; #else struct TORCH_API SqueezeBackward2_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackward2_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct SqueezeBackwardAutogradNestedTensor1_copy : public TraceableFunction { TORCH_API SqueezeBackwardAutogradNestedTensor1_copy() = default; #else struct TORCH_API SqueezeBackwardAutogradNestedTensor1_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "SqueezeBackwardAutogradNestedTensor1_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<int64_t> dim; int64_t self_dim = 0; }; #ifdef _WIN32 struct TBackward0_copy : public TraceableFunction { TORCH_API TBackward0_copy() = default; #else struct TORCH_API TBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct TransposeBackward0_copy : public TraceableFunction { TORCH_API TransposeBackward0_copy() = default; #else struct TORCH_API TransposeBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TransposeBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim0 = 0; int64_t dim1 = 0; }; #ifdef _WIN32 struct UnfoldBackward0_copy : public TraceableFunction { TORCH_API UnfoldBackward0_copy() = default; #else struct TORCH_API UnfoldBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnfoldBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dimension = 0; std::vector<c10::SymInt> self_sym_sizes; int64_t size = 0; int64_t step = 0; }; #ifdef _WIN32 struct LiftFreshBackward0_copy : public TraceableFunction { TORCH_API LiftFreshBackward0_copy() = default; #else struct TORCH_API LiftFreshBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "LiftFreshBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct UnsqueezeBackward0_copy : public TraceableFunction { TORCH_API UnsqueezeBackward0_copy() = default; #else struct TORCH_API UnsqueezeBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnsqueezeBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; }; #ifdef _WIN32 struct ViewBackward0_copy : public TraceableFunction { TORCH_API ViewBackward0_copy() = default; #else struct TORCH_API ViewBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<c10::SymInt> self_sym_sizes; }; #ifdef _WIN32 struct ViewBackwardAutogradNestedTensor0_copy : public TraceableFunction { TORCH_API ViewBackwardAutogradNestedTensor0_copy() = default; #else struct TORCH_API ViewBackwardAutogradNestedTensor0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewBackwardAutogradNestedTensor0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ViewAsRealBackward0_copy : public TraceableFunction { TORCH_API ViewAsRealBackward0_copy() = default; #else struct TORCH_API ViewAsRealBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewAsRealBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ViewAsComplexBackward0_copy : public TraceableFunction { TORCH_API ViewAsComplexBackward0_copy() = default; #else struct TORCH_API ViewAsComplexBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ViewAsComplexBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct ValuesBackward0_copy : public TraceableFunction { TORCH_API ValuesBackward0_copy() = default; #else struct TORCH_API ValuesBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ValuesBackward0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ValuesBackwardAutogradNestedTensor0_copy : public TraceableFunction { TORCH_API ValuesBackwardAutogradNestedTensor0_copy() = default; #else struct TORCH_API ValuesBackwardAutogradNestedTensor0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ValuesBackwardAutogradNestedTensor0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct NestedViewFromBufferBackward0_copy : public TraceableFunction { TORCH_API NestedViewFromBufferBackward0_copy() = default; #else struct TORCH_API NestedViewFromBufferBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedViewFromBufferBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NestedViewFromJaggedBackward0_copy : public TraceableFunction { TORCH_API NestedViewFromJaggedBackward0_copy() = default; #else struct TORCH_API NestedViewFromJaggedBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedViewFromJaggedBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; }; #ifdef _WIN32 struct NestedGetValuesBackward0_copy : public TraceableFunction { TORCH_API NestedGetValuesBackward0_copy() = default; #else struct TORCH_API NestedGetValuesBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "NestedGetValuesBackward0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct UnbindBackward0_copy : public TraceableFunction { TORCH_API UnbindBackward0_copy() = default; #else struct TORCH_API UnbindBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnbindBackward0_copy"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; }; #ifdef _WIN32 struct UnbindBackwardAutogradNestedTensor0_copy : public TraceableFunction { TORCH_API UnbindBackwardAutogradNestedTensor0_copy() = default; #else struct TORCH_API UnbindBackwardAutogradNestedTensor0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "UnbindBackwardAutogradNestedTensor0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; int64_t dim = 0; SavedVariable self_; at::Layout self_layout; at::TensorOptions self_options; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchViewBackward0_copy : public TraceableFunction { TORCH_API TestAutogradMultipleDispatchViewBackward0_copy() = default; #else struct TORCH_API TestAutogradMultipleDispatchViewBackward0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchViewBackward0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct TestAutogradMultipleDispatchViewBackwardAutogradCUDA0_copy : public TraceableFunction { TORCH_API TestAutogradMultipleDispatchViewBackwardAutogradCUDA0_copy() = default; #else struct TORCH_API TestAutogradMultipleDispatchViewBackwardAutogradCUDA0_copy : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "TestAutogradMultipleDispatchViewBackwardAutogradCUDA0_copy"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.reset_data(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable self_; }; #ifdef _WIN32 struct ForeachAbsBackward0 : public TraceableFunction { TORCH_API ForeachAbsBackward0() = default; #else struct TORCH_API ForeachAbsBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAbsBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachAcosBackward0 : public TraceableFunction { TORCH_API ForeachAcosBackward0() = default; #else struct TORCH_API ForeachAcosBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAcosBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachAddBackward1Scalar : public TraceableFunction { TORCH_API ForeachAddBackward1Scalar() = default; #else struct TORCH_API ForeachAddBackward1Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddBackward1Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachAddBackward0List : public TraceableFunction { TORCH_API ForeachAddBackward0List() = default; #else struct TORCH_API ForeachAddBackward0List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddBackward0List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachAddBackward1ScalarList : public TraceableFunction { TORCH_API ForeachAddBackward1ScalarList() = default; #else struct TORCH_API ForeachAddBackward1ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddBackward1ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachAddBackward0Tensor : public TraceableFunction { TORCH_API ForeachAddBackward0Tensor() = default; #else struct TORCH_API ForeachAddBackward0Tensor : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddBackward0Tensor"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; SavedVariable other_; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachAddcdivBackward0Scalar : public TraceableFunction { TORCH_API ForeachAddcdivBackward0Scalar() = default; #else struct TORCH_API ForeachAddcdivBackward0Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddcdivBackward0Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; tensor1_.clear(); tensor1_released_ = true; tensor2_.clear(); tensor2_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> tensor1_; bool tensor1_released_ = false; std::vector<SavedVariable> tensor2_; bool tensor2_released_ = false; at::Scalar value; size_t self_size_; size_t tensor1_size_; size_t tensor2_size_; }; #ifdef _WIN32 struct ForeachAddcdivBackward0ScalarList : public TraceableFunction { TORCH_API ForeachAddcdivBackward0ScalarList() = default; #else struct TORCH_API ForeachAddcdivBackward0ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddcdivBackward0ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; tensor1_.clear(); tensor1_released_ = true; tensor2_.clear(); tensor2_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> tensor1_; bool tensor1_released_ = false; std::vector<SavedVariable> tensor2_; bool tensor2_released_ = false; size_t self_size_; size_t tensor1_size_; size_t tensor2_size_; }; #ifdef _WIN32 struct ForeachAddcmulBackward0Scalar : public TraceableFunction { TORCH_API ForeachAddcmulBackward0Scalar() = default; #else struct TORCH_API ForeachAddcmulBackward0Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddcmulBackward0Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; tensor1_.clear(); tensor1_released_ = true; tensor2_.clear(); tensor2_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> tensor1_; bool tensor1_released_ = false; std::vector<SavedVariable> tensor2_; bool tensor2_released_ = false; at::Scalar value; size_t self_size_; size_t tensor1_size_; size_t tensor2_size_; }; #ifdef _WIN32 struct ForeachAddcmulBackward0ScalarList : public TraceableFunction { TORCH_API ForeachAddcmulBackward0ScalarList() = default; #else struct TORCH_API ForeachAddcmulBackward0ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAddcmulBackward0ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; tensor1_.clear(); tensor1_released_ = true; tensor2_.clear(); tensor2_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> tensor1_; bool tensor1_released_ = false; std::vector<SavedVariable> tensor2_; bool tensor2_released_ = false; size_t self_size_; size_t tensor1_size_; size_t tensor2_size_; }; #ifdef _WIN32 struct ForeachAsinBackward0 : public TraceableFunction { TORCH_API ForeachAsinBackward0() = default; #else struct TORCH_API ForeachAsinBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAsinBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachAtanBackward0 : public TraceableFunction { TORCH_API ForeachAtanBackward0() = default; #else struct TORCH_API ForeachAtanBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachAtanBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachCeilBackward0 : public TraceableFunction { TORCH_API ForeachCeilBackward0() = default; #else struct TORCH_API ForeachCeilBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachCeilBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t self_size_; }; #ifdef _WIN32 struct ForeachClampMaxBackward0Scalar : public TraceableFunction { TORCH_API ForeachClampMaxBackward0Scalar() = default; #else struct TORCH_API ForeachClampMaxBackward0Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachClampMaxBackward0Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar scalar; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachClampMaxBackward1List : public TraceableFunction { TORCH_API ForeachClampMaxBackward1List() = default; #else struct TORCH_API ForeachClampMaxBackward1List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachClampMaxBackward1List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachClampMaxBackward0ScalarList : public TraceableFunction { TORCH_API ForeachClampMaxBackward0ScalarList() = default; #else struct TORCH_API ForeachClampMaxBackward0ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachClampMaxBackward0ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachClampMinBackward0Scalar : public TraceableFunction { TORCH_API ForeachClampMinBackward0Scalar() = default; #else struct TORCH_API ForeachClampMinBackward0Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachClampMinBackward0Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar scalar; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachClampMinBackward1List : public TraceableFunction { TORCH_API ForeachClampMinBackward1List() = default; #else struct TORCH_API ForeachClampMinBackward1List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachClampMinBackward1List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachClampMinBackward0ScalarList : public TraceableFunction { TORCH_API ForeachClampMinBackward0ScalarList() = default; #else struct TORCH_API ForeachClampMinBackward0ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachClampMinBackward0ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachCosBackward0 : public TraceableFunction { TORCH_API ForeachCosBackward0() = default; #else struct TORCH_API ForeachCosBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachCosBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachCoshBackward0 : public TraceableFunction { TORCH_API ForeachCoshBackward0() = default; #else struct TORCH_API ForeachCoshBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachCoshBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachDivBackward1Scalar : public TraceableFunction { TORCH_API ForeachDivBackward1Scalar() = default; #else struct TORCH_API ForeachDivBackward1Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachDivBackward1Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar scalar; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachDivBackward1ScalarList : public TraceableFunction { TORCH_API ForeachDivBackward1ScalarList() = default; #else struct TORCH_API ForeachDivBackward1ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachDivBackward1ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachDivBackward0Tensor : public TraceableFunction { TORCH_API ForeachDivBackward0Tensor() = default; #else struct TORCH_API ForeachDivBackward0Tensor : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachDivBackward0Tensor"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachErfBackward0 : public TraceableFunction { TORCH_API ForeachErfBackward0() = default; #else struct TORCH_API ForeachErfBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachErfBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachErfcBackward0 : public TraceableFunction { TORCH_API ForeachErfcBackward0() = default; #else struct TORCH_API ForeachErfcBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachErfcBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachExpBackward0 : public TraceableFunction { TORCH_API ForeachExpBackward0() = default; #else struct TORCH_API ForeachExpBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachExpBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachExpm1Backward0 : public TraceableFunction { TORCH_API ForeachExpm1Backward0() = default; #else struct TORCH_API ForeachExpm1Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachExpm1Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachFloorBackward0 : public TraceableFunction { TORCH_API ForeachFloorBackward0() = default; #else struct TORCH_API ForeachFloorBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachFloorBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t self_size_; }; #ifdef _WIN32 struct ForeachFracBackward0 : public TraceableFunction { TORCH_API ForeachFracBackward0() = default; #else struct TORCH_API ForeachFracBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachFracBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t self_size_; }; #ifdef _WIN32 struct ForeachLerpBackward1List : public TraceableFunction { TORCH_API ForeachLerpBackward1List() = default; #else struct TORCH_API ForeachLerpBackward1List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLerpBackward1List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; tensors1_.clear(); tensors1_released_ = true; weights_.clear(); weights_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> tensors1_; bool tensors1_released_ = false; std::vector<SavedVariable> weights_; bool weights_released_ = false; size_t self_size_; size_t tensors1_size_; size_t weights_size_; }; #ifdef _WIN32 struct ForeachLerpBackward0Scalar : public TraceableFunction { TORCH_API ForeachLerpBackward0Scalar() = default; #else struct TORCH_API ForeachLerpBackward0Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLerpBackward0Scalar"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar weight; size_t self_size_; size_t tensors1_size_; }; #ifdef _WIN32 struct ForeachLerpBackward0ScalarList : public TraceableFunction { TORCH_API ForeachLerpBackward0ScalarList() = default; #else struct TORCH_API ForeachLerpBackward0ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLerpBackward0ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); weight.clear(); } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> weight; bool weight_released_ = false; size_t self_size_; size_t tensors1_size_; }; #ifdef _WIN32 struct ForeachLgammaBackward0 : public TraceableFunction { TORCH_API ForeachLgammaBackward0() = default; #else struct TORCH_API ForeachLgammaBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLgammaBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachLogBackward0 : public TraceableFunction { TORCH_API ForeachLogBackward0() = default; #else struct TORCH_API ForeachLogBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLogBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachLog10Backward0 : public TraceableFunction { TORCH_API ForeachLog10Backward0() = default; #else struct TORCH_API ForeachLog10Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLog10Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachLog1PBackward0 : public TraceableFunction { TORCH_API ForeachLog1PBackward0() = default; #else struct TORCH_API ForeachLog1PBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLog1PBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachLog2Backward0 : public TraceableFunction { TORCH_API ForeachLog2Backward0() = default; #else struct TORCH_API ForeachLog2Backward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachLog2Backward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachMaxBackward1 : public TraceableFunction { TORCH_API ForeachMaxBackward1() = default; #else struct TORCH_API ForeachMaxBackward1 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMaxBackward1"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachMaximumBackward0List : public TraceableFunction { TORCH_API ForeachMaximumBackward0List() = default; #else struct TORCH_API ForeachMaximumBackward0List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMaximumBackward0List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachMinimumBackward0List : public TraceableFunction { TORCH_API ForeachMinimumBackward0List() = default; #else struct TORCH_API ForeachMinimumBackward0List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMinimumBackward0List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachMulBackward1Scalar : public TraceableFunction { TORCH_API ForeachMulBackward1Scalar() = default; #else struct TORCH_API ForeachMulBackward1Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMulBackward1Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar scalar; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachMulBackward0List : public TraceableFunction { TORCH_API ForeachMulBackward0List() = default; #else struct TORCH_API ForeachMulBackward0List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMulBackward0List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachMulBackward1ScalarList : public TraceableFunction { TORCH_API ForeachMulBackward1ScalarList() = default; #else struct TORCH_API ForeachMulBackward1ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMulBackward1ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); scalars.clear(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<at::Scalar> scalars; bool scalars_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachMulBackward0Tensor : public TraceableFunction { TORCH_API ForeachMulBackward0Tensor() = default; #else struct TORCH_API ForeachMulBackward0Tensor : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachMulBackward0Tensor"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.reset_data(); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; SavedVariable other_; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachNegBackward0 : public TraceableFunction { TORCH_API ForeachNegBackward0() = default; #else struct TORCH_API ForeachNegBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachNegBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t self_size_; }; #ifdef _WIN32 struct ForeachPowBackward0Scalar : public TraceableFunction { TORCH_API ForeachPowBackward0Scalar() = default; #else struct TORCH_API ForeachPowBackward0Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachPowBackward0Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar exponent; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachReciprocalBackward0 : public TraceableFunction { TORCH_API ForeachReciprocalBackward0() = default; #else struct TORCH_API ForeachReciprocalBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachReciprocalBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachRoundBackward0 : public TraceableFunction { TORCH_API ForeachRoundBackward0() = default; #else struct TORCH_API ForeachRoundBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachRoundBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t self_size_; }; #ifdef _WIN32 struct ForeachRsqrtBackward0 : public TraceableFunction { TORCH_API ForeachRsqrtBackward0() = default; #else struct TORCH_API ForeachRsqrtBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachRsqrtBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachSigmoidBackward0 : public TraceableFunction { TORCH_API ForeachSigmoidBackward0() = default; #else struct TORCH_API ForeachSigmoidBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSigmoidBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachSignBackward0 : public TraceableFunction { TORCH_API ForeachSignBackward0() = default; #else struct TORCH_API ForeachSignBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSignBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t self_size_; }; #ifdef _WIN32 struct ForeachSinBackward0 : public TraceableFunction { TORCH_API ForeachSinBackward0() = default; #else struct TORCH_API ForeachSinBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSinBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachSinhBackward0 : public TraceableFunction { TORCH_API ForeachSinhBackward0() = default; #else struct TORCH_API ForeachSinhBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSinhBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachSqrtBackward0 : public TraceableFunction { TORCH_API ForeachSqrtBackward0() = default; #else struct TORCH_API ForeachSqrtBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSqrtBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachSubBackward1Scalar : public TraceableFunction { TORCH_API ForeachSubBackward1Scalar() = default; #else struct TORCH_API ForeachSubBackward1Scalar : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSubBackward1Scalar"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachSubBackward0List : public TraceableFunction { TORCH_API ForeachSubBackward0List() = default; #else struct TORCH_API ForeachSubBackward0List : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSubBackward0List"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); other_.clear(); other_released_ = true; self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; at::Scalar alpha; std::vector<SavedVariable> other_; bool other_released_ = false; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; size_t other_size_; }; #ifdef _WIN32 struct ForeachSubBackward1ScalarList : public TraceableFunction { TORCH_API ForeachSubBackward1ScalarList() = default; #else struct TORCH_API ForeachSubBackward1ScalarList : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachSubBackward1ScalarList"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); self_.clear(); self_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> self_; bool self_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachTanBackward0 : public TraceableFunction { TORCH_API ForeachTanBackward0() = default; #else struct TORCH_API ForeachTanBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachTanBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachTanhBackward0 : public TraceableFunction { TORCH_API ForeachTanhBackward0() = default; #else struct TORCH_API ForeachTanhBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachTanhBackward0"; } void release_variables() override { std::lock_guard<std::mutex> lock(mutex_); result_.clear(); result_released_ = true; } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; std::vector<SavedVariable> result_; bool result_released_ = false; size_t self_size_; }; #ifdef _WIN32 struct ForeachTruncBackward0 : public TraceableFunction { TORCH_API ForeachTruncBackward0() = default; #else struct TORCH_API ForeachTruncBackward0 : public TraceableFunction { #endif using TraceableFunction::TraceableFunction; variable_list apply(variable_list&& grads) override; std::string name() const override { return "ForeachTruncBackward0"; } void release_variables() override { } void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override; size_t self_size_; }; }}} // namespace torch::autograd::generated ```
================================================================================================================================================== SOURCE CODE FILE: VariableType.h LINES: 1 SIZE: 1.52 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\generated\VariableType.h ENCODING: utf-8 ```h #pragma once // @generated from ..\tools\autograd\templates/VariableType.h #include <ATen/core/Tensor.h> #include <ATen/Context.h> #include <c10/util/intrusive_ptr.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/autograd_not_implemented_fallback.h> #include <cstdint> // for size_t #include <functional> // for function #include <memory> // for unique_ptr #include <string> #include <vector> namespace at { struct Quantizer; } namespace torch { namespace autograd { using Variable = at::Tensor; using at::Context; using at::Device; using at::Dimname; using at::DimnameList; using at::Generator; using at::IntArrayRef; using at::MemoryFormat; using at::QScheme; using at::Scalar; using at::ScalarType; using at::Storage; using at::Tensor; using at::TensorList; using at::TensorOptions; using at::Quantizer; using std::optional; namespace VariableType { TORCH_API std::vector<at::DeprecatedTypeProperties*> allCUDATypes(); TORCH_API std::vector<at::DeprecatedTypeProperties*> allXPUTypes(); TORCH_API std::vector<at::DeprecatedTypeProperties*> allCPUTypes(); TORCH_API std::vector<at::DeprecatedTypeProperties*> allPrivateUser1Types(); at::Tensor & unpack(Tensor & t, const char * name, int pos); const at::Tensor & unpack(const Tensor & t, const char * name, int pos); at::Tensor unpack_opt(const Tensor & t, const char * name, int pos); std::vector<at::Tensor> unpack(const at::ITensorListRef& tl, const char *name, int pos); } }} // namespace torch::autograd ```
=============================================================================================================================================== SOURCE CODE FILE: ViewFuncs.h LINES: 1 SIZE: 37.40 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\generated\ViewFuncs.h ENCODING: utf-8 ```h #pragma once // @generated from ..\tools\autograd\templates/ViewFuncs.h #include <torch/library.h> #include <torch/csrc/autograd/variable.h> #include <c10/core/SymIntArrayRef.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Operators.h> #else #include <ATen/ops/_conj_ops.h> #include <ATen/ops/_indices_ops.h> #include <ATen/ops/_neg_view_ops.h> #include <ATen/ops/_nested_get_values_ops.h> #include <ATen/ops/_nested_view_from_buffer_ops.h> #include <ATen/ops/_nested_view_from_jagged_ops.h> #include <ATen/ops/_reshape_alias_ops.h> #include <ATen/ops/_test_autograd_multiple_dispatch_view_ops.h> #include <ATen/ops/_values_ops.h> #include <ATen/ops/alias_ops.h> #include <ATen/ops/as_strided_ops.h> #include <ATen/ops/ccol_indices_ops.h> #include <ATen/ops/chunk_ops.h> #include <ATen/ops/col_indices_ops.h> #include <ATen/ops/crow_indices_ops.h> #include <ATen/ops/diagonal_ops.h> #include <ATen/ops/expand_ops.h> #include <ATen/ops/indices_ops.h> #include <ATen/ops/narrow_ops.h> #include <ATen/ops/permute_ops.h> #include <ATen/ops/row_indices_ops.h> #include <ATen/ops/select_ops.h> #include <ATen/ops/slice_ops.h> #include <ATen/ops/slice_inverse_ops.h> #include <ATen/ops/split_ops.h> #include <ATen/ops/split_with_sizes_ops.h> #include <ATen/ops/squeeze_ops.h> #include <ATen/ops/squeeze_ops.h> #include <ATen/ops/squeeze_ops.h> #include <ATen/ops/t_ops.h> #include <ATen/ops/transpose_ops.h> #include <ATen/ops/unbind_ops.h> #include <ATen/ops/unfold_ops.h> #include <ATen/ops/unsqueeze_ops.h> #include <ATen/ops/values_ops.h> #include <ATen/ops/view_ops.h> #include <ATen/ops/view_ops.h> #include <ATen/ops/view_as_complex_ops.h> #include <ATen/ops/view_as_real_ops.h> #endif namespace torch::autograd::generated { using at::Scalar; using at::Tensor; using at::IntArrayRef; using at::ArrayRef; using at::Type; using at::ScalarType; using std::optional; using c10::fmap; #define _CONJ_VIEW_FUNC_AVAILABLE struct _ConjViewFunc : public torch::autograd::ViewFunc { _ConjViewFunc() {} virtual ~_ConjViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define _INDICES_VIEW_FUNC_AVAILABLE struct _IndicesViewFunc : public torch::autograd::ViewFunc { _IndicesViewFunc() {} virtual ~_IndicesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define _NEG_VIEW_VIEW_FUNC_AVAILABLE struct _NegViewViewFunc : public torch::autograd::ViewFunc { _NegViewViewFunc() {} virtual ~_NegViewViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define _NESTED_GET_VALUES_VIEW_FUNC_AVAILABLE struct _NestedGetValuesViewFunc : public torch::autograd::ViewFunc { _NestedGetValuesViewFunc() {} virtual ~_NestedGetValuesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define _NESTED_VIEW_FROM_BUFFER_VIEW_FUNC_AVAILABLE struct _NestedViewFromBufferViewFunc : public torch::autograd::ViewFunc { _NestedViewFromBufferViewFunc(const at::Tensor & nested_size, const at::Tensor & nested_strides, const at::Tensor & offsets) : nested_size(nested_size), nested_strides(nested_strides), offsets(offsets) {} virtual ~_NestedViewFromBufferViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: at::Tensor nested_size; at::Tensor nested_strides; at::Tensor offsets; }; #define _NESTED_VIEW_FROM_JAGGED_VIEW_FUNC_AVAILABLE struct _NestedViewFromJaggedViewFunc : public torch::autograd::ViewFunc { _NestedViewFromJaggedViewFunc(const at::Tensor & offsets, const at::Tensor & dummy, const ::std::optional<at::Tensor> & lengths, int64_t ragged_idx, const ::std::optional<at::Tensor> & min_seqlen, const ::std::optional<at::Tensor> & max_seqlen) : offsets(offsets), dummy(dummy), lengths(lengths), ragged_idx(ragged_idx), min_seqlen(min_seqlen), max_seqlen(max_seqlen) {} virtual ~_NestedViewFromJaggedViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: at::Tensor offsets; at::Tensor dummy; ::std::optional<at::Tensor> lengths; int64_t ragged_idx; ::std::optional<at::Tensor> min_seqlen; ::std::optional<at::Tensor> max_seqlen; }; #define _RESHAPE_ALIAS_VIEW_FUNC_AVAILABLE struct _ReshapeAliasViewFunc : public torch::autograd::ViewFunc { _ReshapeAliasViewFunc(c10::SymIntArrayRef size, c10::SymIntArrayRef stride) : size(size.vec()), stride(stride.vec()) {} virtual ~_ReshapeAliasViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: ::std::vector<c10::SymInt> size; ::std::vector<c10::SymInt> stride; }; #define _TEST_AUTOGRAD_MULTIPLE_DISPATCH_VIEW_VIEW_FUNC_AVAILABLE struct _TestAutogradMultipleDispatchViewViewFunc : public torch::autograd::ViewFunc { _TestAutogradMultipleDispatchViewViewFunc() {} virtual ~_TestAutogradMultipleDispatchViewViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define _VALUES_VIEW_FUNC_AVAILABLE struct _ValuesViewFunc : public torch::autograd::ViewFunc { _ValuesViewFunc() {} virtual ~_ValuesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define ALIAS_VIEW_FUNC_AVAILABLE struct AliasViewFunc : public torch::autograd::ViewFunc { AliasViewFunc() {} virtual ~AliasViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define AS_STRIDED_VIEW_FUNC_AVAILABLE struct AsStridedViewFunc : public torch::autograd::ViewFunc { AsStridedViewFunc(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, ::std::optional<c10::SymInt> storage_offset) : size(size.vec()), stride(stride.vec()), storage_offset(storage_offset) {} virtual ~AsStridedViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: ::std::vector<c10::SymInt> size; ::std::vector<c10::SymInt> stride; ::std::optional<c10::SymInt> storage_offset; }; #define CCOL_INDICES_VIEW_FUNC_AVAILABLE struct CcolIndicesViewFunc : public torch::autograd::ViewFunc { CcolIndicesViewFunc() {} virtual ~CcolIndicesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define CHUNK_VIEW_FUNC_AVAILABLE struct ChunkViewFunc : public torch::autograd::ViewFunc { ChunkViewFunc(int64_t chunks, int64_t dim, int64_t view_idx) : chunks(chunks), dim(dim), view_idx(view_idx) {} virtual ~ChunkViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t chunks; int64_t dim; int64_t view_idx; }; #define COL_INDICES_VIEW_FUNC_AVAILABLE struct ColIndicesViewFunc : public torch::autograd::ViewFunc { ColIndicesViewFunc() {} virtual ~ColIndicesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define CROW_INDICES_VIEW_FUNC_AVAILABLE struct CrowIndicesViewFunc : public torch::autograd::ViewFunc { CrowIndicesViewFunc() {} virtual ~CrowIndicesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define DIAGONAL_VIEW_FUNC_AVAILABLE struct DiagonalViewFunc : public torch::autograd::ViewFunc { DiagonalViewFunc(int64_t offset, int64_t dim1, int64_t dim2) : offset(offset), dim1(dim1), dim2(dim2) {} virtual ~DiagonalViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t offset; int64_t dim1; int64_t dim2; }; #define EXPAND_VIEW_FUNC_AVAILABLE struct ExpandViewFunc : public torch::autograd::ViewFunc { ExpandViewFunc(c10::SymIntArrayRef size, bool implicit) : size(size.vec()), implicit(implicit) {} virtual ~ExpandViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: ::std::vector<c10::SymInt> size; bool implicit; }; #define INDICES_VIEW_FUNC_AVAILABLE struct IndicesViewFunc : public torch::autograd::ViewFunc { IndicesViewFunc() {} virtual ~IndicesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define NARROW_VIEW_FUNC_AVAILABLE struct NarrowViewFunc : public torch::autograd::ViewFunc { NarrowViewFunc(int64_t dim, c10::SymInt start, c10::SymInt length) : dim(dim), start(start), length(length) {} virtual ~NarrowViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dim; c10::SymInt start; c10::SymInt length; }; #define PERMUTE_VIEW_FUNC_AVAILABLE struct PermuteViewFunc : public torch::autograd::ViewFunc { PermuteViewFunc(at::IntArrayRef dims) : dims(dims.vec()) {} virtual ~PermuteViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: ::std::vector<int64_t> dims; }; #define ROW_INDICES_VIEW_FUNC_AVAILABLE struct RowIndicesViewFunc : public torch::autograd::ViewFunc { RowIndicesViewFunc() {} virtual ~RowIndicesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define SELECT_INT_VIEW_FUNC_AVAILABLE struct SelectIntViewFunc : public torch::autograd::ViewFunc { SelectIntViewFunc(int64_t dim, c10::SymInt index) : dim(dim), index(index) {} virtual ~SelectIntViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dim; c10::SymInt index; }; #define SLICE_TENSOR_VIEW_FUNC_AVAILABLE struct SliceTensorViewFunc : public torch::autograd::ViewFunc { SliceTensorViewFunc(int64_t dim, ::std::optional<c10::SymInt> start, ::std::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step) {} virtual ~SliceTensorViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dim; ::std::optional<c10::SymInt> start; ::std::optional<c10::SymInt> end; c10::SymInt step; }; #define SLICE_INVERSE_VIEW_FUNC_AVAILABLE struct SliceInverseViewFunc : public torch::autograd::ViewFunc { SliceInverseViewFunc(const at::Tensor & src, int64_t dim, ::std::optional<c10::SymInt> start, ::std::optional<c10::SymInt> end, c10::SymInt step) : src(src), dim(dim), start(start), end(end), step(step) {} virtual ~SliceInverseViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: at::Tensor src; int64_t dim; ::std::optional<c10::SymInt> start; ::std::optional<c10::SymInt> end; c10::SymInt step; }; #define SPLIT_TENSOR_VIEW_FUNC_AVAILABLE struct SplitTensorViewFunc : public torch::autograd::ViewFunc { SplitTensorViewFunc(c10::SymInt split_size, int64_t dim, int64_t view_idx) : split_size(split_size), dim(dim), view_idx(view_idx) {} virtual ~SplitTensorViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: c10::SymInt split_size; int64_t dim; int64_t view_idx; }; #define SPLIT_WITH_SIZES_VIEW_FUNC_AVAILABLE struct SplitWithSizesViewFunc : public torch::autograd::ViewFunc { SplitWithSizesViewFunc(c10::SymIntArrayRef split_sizes, int64_t dim, int64_t view_idx) : split_sizes(split_sizes.vec()), dim(dim), view_idx(view_idx) {} virtual ~SplitWithSizesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: ::std::vector<c10::SymInt> split_sizes; int64_t dim; int64_t view_idx; }; #define SQUEEZE_VIEW_FUNC_AVAILABLE struct SqueezeViewFunc : public torch::autograd::ViewFunc { SqueezeViewFunc() {} virtual ~SqueezeViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define SQUEEZE_DIM_VIEW_FUNC_AVAILABLE struct SqueezeDimViewFunc : public torch::autograd::ViewFunc { SqueezeDimViewFunc(int64_t dim) : dim(dim) {} virtual ~SqueezeDimViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dim; }; #define SQUEEZE_DIMS_VIEW_FUNC_AVAILABLE struct SqueezeDimsViewFunc : public torch::autograd::ViewFunc { SqueezeDimsViewFunc(at::IntArrayRef dim) : dim(dim.vec()) {} virtual ~SqueezeDimsViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: ::std::vector<int64_t> dim; }; #define T_VIEW_FUNC_AVAILABLE struct TViewFunc : public torch::autograd::ViewFunc { TViewFunc() {} virtual ~TViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define TRANSPOSE_INT_VIEW_FUNC_AVAILABLE struct TransposeIntViewFunc : public torch::autograd::ViewFunc { TransposeIntViewFunc(int64_t dim0, int64_t dim1) : dim0(dim0), dim1(dim1) {} virtual ~TransposeIntViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dim0; int64_t dim1; }; #define UNBIND_INT_VIEW_FUNC_AVAILABLE struct UnbindIntViewFunc : public torch::autograd::ViewFunc { UnbindIntViewFunc(int64_t dim, int64_t view_idx) : dim(dim), view_idx(view_idx) {} virtual ~UnbindIntViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dim; int64_t view_idx; }; #define UNFOLD_VIEW_FUNC_AVAILABLE struct UnfoldViewFunc : public torch::autograd::ViewFunc { UnfoldViewFunc(int64_t dimension, int64_t size, int64_t step) : dimension(dimension), size(size), step(step) {} virtual ~UnfoldViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dimension; int64_t size; int64_t step; }; #define UNSQUEEZE_VIEW_FUNC_AVAILABLE struct UnsqueezeViewFunc : public torch::autograd::ViewFunc { UnsqueezeViewFunc(int64_t dim) : dim(dim) {} virtual ~UnsqueezeViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: int64_t dim; }; #define VALUES_VIEW_FUNC_AVAILABLE struct ValuesViewFunc : public torch::autograd::ViewFunc { ValuesViewFunc() {} virtual ~ValuesViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define VIEW_VIEW_FUNC_AVAILABLE struct ViewViewFunc : public torch::autograd::ViewFunc { ViewViewFunc(c10::SymIntArrayRef size) : size(size.vec()) {} virtual ~ViewViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: ::std::vector<c10::SymInt> size; }; #define VIEW_DTYPE_VIEW_FUNC_AVAILABLE struct ViewDtypeViewFunc : public torch::autograd::ViewFunc { ViewDtypeViewFunc(at::ScalarType dtype) : dtype(dtype) {} virtual ~ViewDtypeViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: at::ScalarType dtype; }; #define VIEW_AS_COMPLEX_VIEW_FUNC_AVAILABLE struct ViewAsComplexViewFunc : public torch::autograd::ViewFunc { ViewAsComplexViewFunc() {} virtual ~ViewAsComplexViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; #define VIEW_AS_REAL_VIEW_FUNC_AVAILABLE struct ViewAsRealViewFunc : public torch::autograd::ViewFunc { ViewAsRealViewFunc() {} virtual ~ViewAsRealViewFunc() override = default; virtual std::vector<c10::SymInt> get_symints() const override; virtual size_t num_symints() const override; virtual std::vector<at::Tensor> get_tensors() const override; virtual size_t num_tensors() const override; virtual at::Tensor operator()(const at::Tensor&) const override; virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = ::std::nullopt, std::optional<std::vector<at::Tensor>> = ::std::nullopt) const override; protected: virtual void set_symints(std::vector<c10::SymInt>) override; virtual void set_tensors(std::vector<at::Tensor>) override; private: }; } // namespace torch::autograd::generated ```
====================================================================================================================================================== SOURCE CODE FILE: python_functions.h LINES: 1 SIZE: 0.89 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\generated\python_functions.h ENCODING: utf-8 ```h #pragma once #include <Python.h> // @generated from ..\tools\autograd\templates/python_functions.h // Python bindings for automatically generated autograd functions namespace torch { namespace autograd { namespace generated { void initialize_autogenerated_functions_0(PyObject* module); void initialize_autogenerated_functions_1(PyObject* module); void initialize_autogenerated_functions_2(PyObject* module); void initialize_autogenerated_functions_3(PyObject* module); void initialize_autogenerated_functions_4(PyObject* module); inline void initialize_autogenerated_functions(PyObject* module) { initialize_autogenerated_functions_0(module); initialize_autogenerated_functions_1(module); initialize_autogenerated_functions_2(module); initialize_autogenerated_functions_3(module); initialize_autogenerated_functions_4(module); } }}} // namespace torch::autograd::generated ```
========================================================================================================================================================= SOURCE CODE FILE: python_return_types.h LINES: 1 SIZE: 4.06 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\generated\python_return_types.h ENCODING: utf-8 ```h #pragma once namespace torch { namespace autograd { namespace generated { PyTypeObject* get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_structseq(); PyTypeObject* get__fused_moving_avg_obs_fq_helper_structseq(); PyTypeObject* get__linalg_det_structseq(); PyTypeObject* get__linalg_det_out_structseq(); PyTypeObject* get__linalg_eigh_structseq(); PyTypeObject* get__linalg_eigh_out_structseq(); PyTypeObject* get__linalg_slogdet_structseq(); PyTypeObject* get__linalg_slogdet_out_structseq(); PyTypeObject* get__linalg_solve_ex_structseq(); PyTypeObject* get__linalg_solve_ex_out_structseq(); PyTypeObject* get__linalg_svd_structseq(); PyTypeObject* get__linalg_svd_out_structseq(); PyTypeObject* get__lu_with_info_structseq(); PyTypeObject* get__scaled_dot_product_cudnn_attention_structseq(); PyTypeObject* get__scaled_dot_product_efficient_attention_structseq(); PyTypeObject* get__scaled_dot_product_flash_attention_structseq(); PyTypeObject* get__scaled_dot_product_flash_attention_for_cpu_structseq(); PyTypeObject* get__unpack_dual_structseq(); PyTypeObject* get_aminmax_structseq(); PyTypeObject* get_aminmax_out_structseq(); PyTypeObject* get_cummax_structseq(); PyTypeObject* get_cummax_out_structseq(); PyTypeObject* get_cummin_structseq(); PyTypeObject* get_cummin_out_structseq(); PyTypeObject* get_frexp_structseq(); PyTypeObject* get_frexp_out_structseq(); PyTypeObject* get_geqrf_out_structseq(); PyTypeObject* get_geqrf_structseq(); PyTypeObject* get_histogram_out_structseq(); PyTypeObject* get_histogram_structseq(); PyTypeObject* get_histogramdd_structseq(); PyTypeObject* get_kthvalue_structseq(); PyTypeObject* get_kthvalue_out_structseq(); PyTypeObject* get_linalg_cholesky_ex_structseq(); PyTypeObject* get_linalg_cholesky_ex_out_structseq(); PyTypeObject* get_linalg_eig_structseq(); PyTypeObject* get_linalg_eig_out_structseq(); PyTypeObject* get_linalg_eigh_structseq(); PyTypeObject* get_linalg_eigh_out_structseq(); PyTypeObject* get_linalg_inv_ex_structseq(); PyTypeObject* get_linalg_inv_ex_out_structseq(); PyTypeObject* get_linalg_ldl_factor_structseq(); PyTypeObject* get_linalg_ldl_factor_out_structseq(); PyTypeObject* get_linalg_ldl_factor_ex_structseq(); PyTypeObject* get_linalg_ldl_factor_ex_out_structseq(); PyTypeObject* get_linalg_lstsq_structseq(); PyTypeObject* get_linalg_lstsq_out_structseq(); PyTypeObject* get_linalg_lu_structseq(); PyTypeObject* get_linalg_lu_out_structseq(); PyTypeObject* get_linalg_lu_factor_structseq(); PyTypeObject* get_linalg_lu_factor_out_structseq(); PyTypeObject* get_linalg_lu_factor_ex_structseq(); PyTypeObject* get_linalg_lu_factor_ex_out_structseq(); PyTypeObject* get_linalg_qr_structseq(); PyTypeObject* get_linalg_qr_out_structseq(); PyTypeObject* get_linalg_slogdet_structseq(); PyTypeObject* get_linalg_slogdet_out_structseq(); PyTypeObject* get_linalg_solve_ex_structseq(); PyTypeObject* get_linalg_solve_ex_out_structseq(); PyTypeObject* get_linalg_svd_structseq(); PyTypeObject* get_linalg_svd_out_structseq(); PyTypeObject* get_lu_unpack_structseq(); PyTypeObject* get_lu_unpack_out_structseq(); PyTypeObject* get_max_structseq(); PyTypeObject* get_max_out_structseq(); PyTypeObject* get_median_structseq(); PyTypeObject* get_median_out_structseq(); PyTypeObject* get_min_structseq(); PyTypeObject* get_min_out_structseq(); PyTypeObject* get_mode_structseq(); PyTypeObject* get_mode_out_structseq(); PyTypeObject* get_nanmedian_structseq(); PyTypeObject* get_nanmedian_out_structseq(); PyTypeObject* get_qr_out_structseq(); PyTypeObject* get_qr_structseq(); PyTypeObject* get_slogdet_structseq(); PyTypeObject* get_slogdet_out_structseq(); PyTypeObject* get_sort_out_structseq(); PyTypeObject* get_sort_structseq(); PyTypeObject* get_svd_out_structseq(); PyTypeObject* get_svd_structseq(); PyTypeObject* get_topk_out_structseq(); PyTypeObject* get_topk_structseq(); PyTypeObject* get_triangular_solve_out_structseq(); PyTypeObject* get_triangular_solve_structseq(); } void initReturnTypes(PyObject* module); } // namespace autograd } // namespace torch ```
======================================================================================================================================================== SOURCE CODE FILE: variable_factories.h LINES: 1 SIZE: 55.62 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\generated\variable_factories.h ENCODING: utf-8 ```h #pragma once // @generated from ..\tools\autograd\templates/variable_factories.h #include <ATen/core/Tensor.h> #include <ATen/TracerMode.h> #include <ATen/core/grad_mode.h> #include <c10/util/ArrayRef.h> #include <c10/core/MemoryFormat.h> #include <torch/csrc/api/include/torch/detail/TensorDataContainer.h> #include <torch/csrc/autograd/variable.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Functions.h> #else #include <ATen/ops/from_blob.h> #include <ATen/ops/_make_dep_token.h> #include <ATen/ops/_cudnn_init_dropout_state.h> #include <ATen/ops/arange.h> #include <ATen/ops/arange.h> #include <ATen/ops/arange.h> #include <ATen/ops/bartlett_window.h> #include <ATen/ops/bartlett_window.h> #include <ATen/ops/blackman_window.h> #include <ATen/ops/blackman_window.h> #include <ATen/ops/empty.h> #include <ATen/ops/empty.h> #include <ATen/ops/empty_permuted.h> #include <ATen/ops/_empty_affine_quantized.h> #include <ATen/ops/_empty_per_channel_affine_quantized.h> #include <ATen/ops/empty_quantized.h> #include <ATen/ops/empty_like.h> #include <ATen/ops/empty_strided.h> #include <ATen/ops/eye.h> #include <ATen/ops/eye.h> #include <ATen/ops/full.h> #include <ATen/ops/full.h> #include <ATen/ops/full_like.h> #include <ATen/ops/from_file.h> #include <ATen/ops/hann_window.h> #include <ATen/ops/hann_window.h> #include <ATen/ops/hamming_window.h> #include <ATen/ops/hamming_window.h> #include <ATen/ops/hamming_window.h> #include <ATen/ops/hamming_window.h> #include <ATen/ops/kaiser_window.h> #include <ATen/ops/kaiser_window.h> #include <ATen/ops/kaiser_window.h> #include <ATen/ops/linspace.h> #include <ATen/ops/linspace.h> #include <ATen/ops/linspace.h> #include <ATen/ops/linspace.h> #include <ATen/ops/logspace.h> #include <ATen/ops/logspace.h> #include <ATen/ops/logspace.h> #include <ATen/ops/logspace.h> #include <ATen/ops/ones.h> #include <ATen/ops/ones.h> #include <ATen/ops/ones_like.h> #include <ATen/ops/scalar_tensor.h> #include <ATen/ops/rand.h> #include <ATen/ops/rand.h> #include <ATen/ops/rand.h> #include <ATen/ops/rand.h> #include <ATen/ops/rand_like.h> #include <ATen/ops/randint.h> #include <ATen/ops/randint.h> #include <ATen/ops/randint.h> #include <ATen/ops/randint.h> #include <ATen/ops/randint_like.h> #include <ATen/ops/randint_like.h> #include <ATen/ops/randn.h> #include <ATen/ops/randn.h> #include <ATen/ops/randn.h> #include <ATen/ops/randn.h> #include <ATen/ops/randn_like.h> #include <ATen/ops/randperm.h> #include <ATen/ops/randperm.h> #include <ATen/ops/range.h> #include <ATen/ops/range.h> #include <ATen/ops/zeros.h> #include <ATen/ops/_efficientzerotensor.h> #include <ATen/ops/zeros.h> #include <ATen/ops/zeros_like.h> #include <ATen/ops/_sparse_compressed_tensor_with_dims.h> #include <ATen/ops/sparse_compressed_tensor.h> #include <ATen/ops/sparse_csr_tensor.h> #include <ATen/ops/sparse_csc_tensor.h> #include <ATen/ops/sparse_bsr_tensor.h> #include <ATen/ops/sparse_bsc_tensor.h> #include <ATen/ops/sparse_compressed_tensor.h> #include <ATen/ops/sparse_csr_tensor.h> #include <ATen/ops/sparse_csc_tensor.h> #include <ATen/ops/sparse_bsr_tensor.h> #include <ATen/ops/sparse_bsc_tensor.h> #include <ATen/ops/_sparse_compressed_tensor_unsafe.h> #include <ATen/ops/_sparse_csr_tensor_unsafe.h> #include <ATen/ops/_sparse_csc_tensor_unsafe.h> #include <ATen/ops/_sparse_bsr_tensor_unsafe.h> #include <ATen/ops/_sparse_bsc_tensor_unsafe.h> #include <ATen/ops/sparse_coo_tensor.h> #include <ATen/ops/sparse_coo_tensor.h> #include <ATen/ops/sparse_coo_tensor.h> #include <ATen/ops/_sparse_coo_tensor_unsafe.h> #include <ATen/ops/_sparse_coo_tensor_with_dims.h> #include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors.h> #include <ATen/ops/_to_copy.h> #include <ATen/ops/tril_indices.h> #include <ATen/ops/triu_indices.h> #include <ATen/ops/normal.h> #include <ATen/ops/fft_fftfreq.h> #include <ATen/ops/fft_rfftfreq.h> #endif #include <functional> #include <initializer_list> #include <utility> namespace torch { /// NOTE: Currently `torch::tensor(...)` doesn't support mixed data types /// (i.e. `torch::tensor({{bool, 2.0}})` doesn't work). We might be able to /// support it in the future by iterating over all sub-lists to find /// the largest data type that can represent all of the elements, or by using /// variadic templates. /// /// NOTE: C++ `torch::tensor` with a floating-point type or an `at::ArrayRef` / `std::vector` / /// (nested) braced-init-list of floating-point types always produces a tensor of dtype /// `torch::get_default_dtype()`, matching Python `torch.tensor` behavior. /// /// NOTE: C++ `torch::tensor` with an integer type or an `at::ArrayRef` / `std::vector` / /// (nested) braced-init-list of integer types always produces a tensor of dtype `at::kLong` /// (aka. int64_t), matching Python `torch.tensor` behavior. /// /// NOTE: The following dtypes are not supported by `torch::tensor` currently: /// - `unsigned int` /// - `unsigned long int` /// - `unsigned long long int` /// - `long long int` inline at::Tensor tensor(detail::TensorDataContainer tensor_data_container, const at::TensorOptions& options = {}) { return autograd::make_variable( // note: we remove the requires_grad setting from the TensorOptions because // it is ignored anyways (and we actually have an assertion that it isn't set // which would fail otherwise). We handle requires_grad explicitly here // instead of passing it through to the kernel. tensor_data_container.convert_to_tensor(options.requires_grad(::std::nullopt)), options.requires_grad()); } /// A generic deleter function. using Deleter = std::function<void(void*)>; using at::MemoryFormat; /// Exposes the given `data` as a `Tensor` without taking ownership of the /// original data. `sizes` should specify the shape of the tensor, `strides` the /// stride in each dimension. The `deleter` function (a /// `std::function<void(void*)>`) will be called on the `data` when the Tensor /// data would normally be deallocated. The `TensorOptions` specify additional /// configuration options for the returned tensor, such as what type to /// interpret the `data` as. inline at::Tensor from_blob( void* data, at::IntArrayRef sizes, at::IntArrayRef strides, const Deleter& deleter, const at::TensorOptions& options = at::TensorOptions()) { at::Tensor tensor = ([&]() { at::AutoDispatchBelowAutograd guard; // TODO: remove at::tracer::impl::NoTracerDispatchMode tracer_guard; return at::from_blob(data, sizes, strides, deleter, options.requires_grad(::std::nullopt)); })(); return autograd::make_variable(tensor, options.requires_grad()); } /// Exposes the given `data` as a `Tensor` without taking ownership of the /// original data. `sizes` should specify the shape of the tensor, `strides` the /// stride in each dimension. The `TensorOptions` /// specify additional configuration options for the returned tensor, such as /// what type to interpret the `data` as. inline at::Tensor from_blob( void* data, at::IntArrayRef sizes, at::IntArrayRef strides, const at::TensorOptions& options = at::TensorOptions()) { at::Tensor tensor = ([&]() { at::AutoDispatchBelowAutograd guard; // TODO: remove at::tracer::impl::NoTracerDispatchMode tracer_guard; return at::from_blob(data, sizes, strides, options.requires_grad(::std::nullopt)); })(); return autograd::make_variable(tensor, options.requires_grad()); } /// Exposes the given `data` as a `Tensor` without taking ownership of the /// original data. `sizes` should specify the shape of the tensor. The `deleter` /// (a `std::function<void(void*)>`) function will be called on the `data` when /// the Tensor data would normally be deallocated. The `TensorOptions` specify /// additional configuration options for the returned tensor, such as what type /// to interpret the `data` as. inline at::Tensor from_blob( void* data, at::IntArrayRef sizes, const Deleter& deleter, const at::TensorOptions& options = at::TensorOptions()) { at::Tensor tensor = ([&]() { at::AutoDispatchBelowAutograd guard; // TODO: remove at::tracer::impl::NoTracerDispatchMode tracer_guard; return at::from_blob(data, sizes, deleter, options.requires_grad(::std::nullopt)); })(); return autograd::make_variable(tensor, options.requires_grad()); } /// Exposes the given `data` as a `Tensor` without taking ownership of the /// original data. `sizes` should specify the shape of the tensor. The /// `TensorOptions` specify additional configuration options for the returned /// tensor, such as what type to interpret the `data` as. inline at::Tensor from_blob( void* data, at::IntArrayRef sizes, const at::TensorOptions& options = at::TensorOptions()) { at::Tensor tensor = ([&]() { at::AutoDispatchBelowAutograd guard; // TODO: remove at::tracer::impl::NoTracerDispatchMode tracer_guard; return at::from_blob(data, sizes, options.requires_grad(::std::nullopt)); })(); return autograd::make_variable(tensor, options.requires_grad()); } inline at::Tensor _make_dep_token(at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_make_dep_token(at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _cudnn_init_dropout_state(double dropout, bool train, int64_t dropout_seed, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_cudnn_init_dropout_state(dropout, train, dropout_seed, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor arange(const at::Scalar & end, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::arange(end, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor arange(const at::Scalar & start, const at::Scalar & end, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::arange(start, end, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor arange(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::arange(start, end, step, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor bartlett_window(int64_t window_length, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::bartlett_window(window_length, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor bartlett_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::bartlett_window(window_length, periodic, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor blackman_window(int64_t window_length, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::blackman_window(window_length, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor blackman_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::blackman_window(window_length, periodic, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty(at::IntArrayRef size, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty(size, names, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty(at::IntArrayRef size, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty(size, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty_symint(size, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty_permuted(at::IntArrayRef size, at::IntArrayRef physical_layout, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty_permuted(size, physical_layout, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty_permuted_symint(c10::SymIntArrayRef size, at::IntArrayRef physical_layout, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty_permuted_symint(size, physical_layout, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options = {}, double scale = 1, int64_t zero_point = 0, ::std::optional<at::MemoryFormat> memory_format = c10::MemoryFormat::Contiguous) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_empty_affine_quantized(size, at::TensorOptions(options).requires_grad(::std::nullopt), scale, zero_point, memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}, double scale = 1, int64_t zero_point = 0, ::std::optional<at::MemoryFormat> memory_format = c10::MemoryFormat::Contiguous) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_empty_affine_quantized_symint(size, at::TensorOptions(options).requires_grad(::std::nullopt), scale, zero_point, memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _empty_per_channel_affine_quantized(at::IntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = c10::MemoryFormat::Contiguous) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_empty_per_channel_affine_quantized(size, scales, zero_points, axis, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _empty_per_channel_affine_quantized_symint(c10::SymIntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = c10::MemoryFormat::Contiguous) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_empty_per_channel_affine_quantized_symint(size, scales, zero_points, axis, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty_quantized(at::IntArrayRef size, const at::Tensor & qtensor, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty_quantized(size, qtensor, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty_like(const at::Tensor & self, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty_like(self, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty_strided(size, stride, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor empty_strided_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::empty_strided_symint(size, stride, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor eye(int64_t n, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::eye(n, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor eye_symint(c10::SymInt n, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::eye_symint(n, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor eye(int64_t n, int64_t m, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::eye(n, m, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor eye_symint(c10::SymInt n, c10::SymInt m, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::eye_symint(n, m, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor full(at::IntArrayRef size, const at::Scalar & fill_value, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::full(size, fill_value, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor full(at::IntArrayRef size, const at::Scalar & fill_value, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::full(size, fill_value, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor full_symint(c10::SymIntArrayRef size, const at::Scalar & fill_value, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::full_symint(size, fill_value, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor full_like(const at::Tensor & self, const at::Scalar & fill_value, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::full_like(self, fill_value, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor from_file(c10::string_view filename, ::std::optional<bool> shared = ::std::nullopt, ::std::optional<int64_t> size = 0, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::from_file(filename, shared, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor hann_window(int64_t window_length, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::hann_window(window_length, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor hann_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::hann_window(window_length, periodic, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor hamming_window(int64_t window_length, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::hamming_window(window_length, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor hamming_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::hamming_window(window_length, periodic, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::hamming_window(window_length, periodic, alpha, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, double beta, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::hamming_window(window_length, periodic, alpha, beta, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor kaiser_window(int64_t window_length, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::kaiser_window(window_length, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor kaiser_window(int64_t window_length, bool periodic, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::kaiser_window(window_length, periodic, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor kaiser_window(int64_t window_length, bool periodic, double beta, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::kaiser_window(window_length, periodic, beta, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::linspace(start, end, steps, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor logspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor logspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor logspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor logspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, double base = 10.0, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::logspace(start, end, steps, base, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor ones(at::IntArrayRef size, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::ones(size, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor ones(at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::ones(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor ones_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::ones_symint(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor ones_like(const at::Tensor & self, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::ones_like(self, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor scalar_tensor(const at::Scalar & s, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::scalar_tensor(s, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand(at::IntArrayRef size, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand(size, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand_symint(c10::SymIntArrayRef size, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand_symint(size, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand(at::IntArrayRef size, ::std::optional<at::Generator> generator, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand(size, generator, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand_symint(c10::SymIntArrayRef size, ::std::optional<at::Generator> generator, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand_symint(size, generator, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand(at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand_symint(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand(at::IntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand(size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand_symint(c10::SymIntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand_symint(size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor rand_like(const at::Tensor & self, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::rand_like(self, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint(int64_t high, at::IntArrayRef size, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint(high, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_symint(c10::SymInt high, c10::SymIntArrayRef size, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_symint(high, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint(int64_t high, at::IntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint(high, size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_symint(c10::SymInt high, c10::SymIntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_symint(high, size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint(int64_t low, int64_t high, at::IntArrayRef size, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint(low, high, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_symint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_symint(low, high, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint(int64_t low, int64_t high, at::IntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint(low, high, size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_symint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_symint(low, high, size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_like(const at::Tensor & self, int64_t high, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_like(self, high, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_like_symint(const at::Tensor & self, c10::SymInt high, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_like_symint(self, high, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_like(const at::Tensor & self, int64_t low, int64_t high, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_like(self, low, high, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randint_like_symint(const at::Tensor & self, c10::SymInt low, c10::SymInt high, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randint_like_symint(self, low, high, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn(at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn_symint(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn(at::IntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn(size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn_symint(c10::SymIntArrayRef size, ::std::optional<at::Generator> generator, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn_symint(size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn(at::IntArrayRef size, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn(size, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn_symint(c10::SymIntArrayRef size, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn_symint(size, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn(at::IntArrayRef size, ::std::optional<at::Generator> generator, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn(size, generator, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn_symint(c10::SymIntArrayRef size, ::std::optional<at::Generator> generator, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn_symint(size, generator, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randn_like(const at::Tensor & self, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randn_like(self, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randperm(int64_t n, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randperm(n, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randperm_symint(c10::SymInt n, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randperm_symint(n, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randperm(int64_t n, ::std::optional<at::Generator> generator, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randperm(n, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor randperm_symint(c10::SymInt n, ::std::optional<at::Generator> generator, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::randperm_symint(n, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor range(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step = 1, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::range(start, end, step, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor range(const at::Scalar & start, const at::Scalar & end, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::range(start, end, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor zeros(at::IntArrayRef size, ::std::optional<at::DimnameList> names, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::zeros(size, names, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _efficientzerotensor(at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_efficientzerotensor(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_efficientzerotensor_symint(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor zeros(at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::zeros(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor zeros_symint(c10::SymIntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::zeros_symint(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor zeros_like(const at::Tensor & self, at::TensorOptions options = {}, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::zeros_like(self, at::TensorOptions(options).requires_grad(::std::nullopt), memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_compressed_tensor_with_dims(int64_t nnz, int64_t dense_dim, at::IntArrayRef size, at::IntArrayRef blocksize, at::ScalarType index_dtype, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_compressed_tensor_with_dims(nnz, dense_dim, size, blocksize, index_dtype, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_compressed_tensor(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_compressed_tensor(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_compressed_tensor_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_compressed_tensor_symint(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_csr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_csr_tensor(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_csc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_csc_tensor(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_bsr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_bsr_tensor(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_bsc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_bsc_tensor(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_compressed_tensor(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_compressed_tensor(compressed_indices, plain_indices, values, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_csr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_csr_tensor(crow_indices, col_indices, values, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_csc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_csc_tensor(ccol_indices, row_indices, values, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_bsr_tensor(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_bsr_tensor(crow_indices, col_indices, values, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_bsc_tensor(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_bsc_tensor(ccol_indices, row_indices, values, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_compressed_tensor_unsafe(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_compressed_tensor_unsafe_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_compressed_tensor_unsafe_symint(compressed_indices, plain_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_csr_tensor_unsafe(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_csc_tensor_unsafe(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_csc_tensor_unsafe(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_bsr_tensor_unsafe(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_bsr_tensor_unsafe(crow_indices, col_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_bsc_tensor_unsafe(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_bsc_tensor_unsafe(ccol_indices, row_indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_coo_tensor(at::IntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_coo_tensor(size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_coo_tensor(const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options = {}, ::std::optional<bool> is_coalesced = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_coo_tensor(indices, values, at::TensorOptions(options).requires_grad(::std::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad()); } inline at::Tensor sparse_coo_tensor(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}, ::std::optional<bool> is_coalesced = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::sparse_coo_tensor(indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options = {}, ::std::optional<bool> is_coalesced = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_coo_tensor_unsafe(indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_coo_tensor_unsafe_symint(const at::Tensor & indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options = {}, ::std::optional<bool> is_coalesced = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_coo_tensor_unsafe_symint(indices, values, size, at::TensorOptions(options).requires_grad(::std::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::TensorOptions options) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_coo_tensor_with_dims(sparse_dim, dense_dim, size, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_coo_tensor_with_dims_and_tensors(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options, ::std::optional<bool> is_coalesced = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_coo_tensor_with_dims_and_tensors(sparse_dim, dense_dim, size, indices, values, at::TensorOptions(options).requires_grad(::std::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _sparse_coo_tensor_with_dims_and_tensors_symint(int64_t sparse_dim, int64_t dense_dim, c10::SymIntArrayRef size, const at::Tensor & indices, const at::Tensor & values, at::TensorOptions options, ::std::optional<bool> is_coalesced = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_sparse_coo_tensor_with_dims_and_tensors_symint(sparse_dim, dense_dim, size, indices, values, at::TensorOptions(options).requires_grad(::std::nullopt), is_coalesced), /*requires_grad=*/options.requires_grad()); } inline at::Tensor _to_copy(const at::Tensor & self, at::TensorOptions options = {}, bool non_blocking = false, ::std::optional<at::MemoryFormat> memory_format = ::std::nullopt) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::_to_copy(self, at::TensorOptions(options).requires_grad(::std::nullopt), non_blocking, memory_format), /*requires_grad=*/options.requires_grad()); } inline at::Tensor tril_indices(int64_t row, int64_t col, int64_t offset = 0, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::tril_indices(row, col, offset, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor triu_indices(int64_t row, int64_t col, int64_t offset = 0, at::TensorOptions options = at::kLong) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::triu_indices(row, col, offset, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor normal(double mean, double std, at::IntArrayRef size, ::std::optional<at::Generator> generator = ::std::nullopt, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::normal(mean, std, size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor normal_symint(double mean, double std, c10::SymIntArrayRef size, ::std::optional<at::Generator> generator = ::std::nullopt, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::normal_symint(mean, std, size, generator, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor fft_fftfreq(int64_t n, double d = 1.0, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::fft_fftfreq(n, d, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } inline at::Tensor fft_rfftfreq(int64_t n, double d = 1.0, at::TensorOptions options = {}) { at::AutoDispatchBelowADInplaceOrView guard; return autograd::make_variable(at::fft_rfftfreq(n, d, at::TensorOptions(options).requires_grad(::std::nullopt)), /*requires_grad=*/options.requires_grad()); } } // namespace torch ```
===================================================================================================================================== SOURCE CODE FILE: grad_mode.h LINES: 1 SIZE: 0.22 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\grad_mode.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/grad_mode.h> #include <torch/csrc/Export.h> namespace torch::autograd { using GradMode = at::GradMode; using AutoGradMode = at::AutoGradMode; } // namespace torch::autograd ```
====================================================================================================================================== SOURCE CODE FILE: graph_task.h LINES: 1 SIZE: 9.38 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\graph_task.h ENCODING: utf-8 ```h #pragma once #include <ATen/ThreadLocalState.h> #include <ATen/core/Tensor.h> #include <c10/util/ThreadLocal.h> #include <torch/csrc/autograd/input_buffer.h> #include <torch/csrc/autograd/utils/warnings.h> #include <vector> namespace torch::autograd { using edge_list = std::vector<Edge>; struct ReadyQueue; static constexpr int NO_DEVICE = -2; static constexpr int CPU_DEVICE = -1; // GraphTask holds metadata needed for a single execution of backward() struct GraphTask : std::enable_shared_from_this<GraphTask> { std::atomic<uint64_t> outstanding_tasks_{0}; // Indicates if an error occurred while executing any task. When this is // true, it signals all threads to stop executing. std::atomic_bool has_error_{false}; std::atomic_bool future_completed_{false}; // It is safe to read keep_graph_ without synchronization bool keep_graph_; // To protect reads/writes to not_ready_, dependencies_, captured_vars_, // has_error_, future_result_, cpu_ready_queue_, and leaf_streams. std::mutex mutex_; std::unordered_map<Node*, InputBuffer> not_ready_; std::unordered_map<Node*, int> dependencies_; // Records the nodes that are in the graph std::unordered_set<Node*> nodes_in_graph_; c10::SmallVector<Node*, 4> graph_roots_; // Note [Exec info] // Exec info is created for each GraphTask, which allows filtering paths on // the graph that are not needed. It has a bit complicated semantics. If it's // empty, it means the task is run in a "default" mode, which means that all // next_edges we encounter should get executed. If it's not empty, only // functions that have an entry and this entry has needed == True should be // executed. exec_info is only empty when the graph is executed via // .backward() and the inputs parameter is not passed. Otherwise, when // executed through .grad(), or when inputs arg is specified for .backward(), // exec_info will be non-empty. // struct ExecInfo { struct Capture { Capture(const Capture&) = delete; Capture(Capture&&) = default; Capture& operator=(const Capture&) = delete; Capture& operator=(Capture&&) = default; ~Capture() = default; Capture(int input_idx, int output_idx) : input_idx_(input_idx), output_idx_(output_idx) {} int input_idx_; // within Node inputs int output_idx_; // within the output vector of a GraphTask // This hook will be executed after a grad is captured. The captured // grad will be replaced by the return value of the hook. struct GradCaptureHook { virtual ~GradCaptureHook() = default; virtual at::Tensor operator()(const at::Tensor& grad) = 0; }; // NOTE [Deprecated capture hooks] // // The current status of capture hooks is that we continue to support // the single usage of it by distributed in the dist_engine. If anyone // else needs to use it for other purposes, they should file an issue. // // Capture hooks were originally created because there did not exist // any way to register pre/post hooks to grad_fn in a way such that it // would still be executed even if that is the grad_fn of a Tensor // passed as input= of .grad. As far as I know, only dist_engine uses // this hook. // // However, there are other alternatives today like tensor hooks that can // replace the usage that originally motivated its creation. Also, // Captures hooks are an outlier in terms of the types of hook that // autograd offers in how it is registered and behaves, e.g. it is a hook // registered not to the graph, but to a particular graph_task! This makes // it a burden to maintain. // // It would be very nice to clean up/do a migration from pre/post // hooks used in distributed to use tensor hooks, but for now we just // mark this method as deprecated to prevent additional usage. // // If you still think you really need to capture hooks, please file an // issue (and tag autograd). const std::vector<std::unique_ptr<GradCaptureHook>>& DO_NOT_USE_DEPRECATED_get_capture_hooks() const { return hooks_; } // See NOTE [deprecated capture hooks] void DO_NOT_USE_DEPRECATED_register_capture_hook( std::unique_ptr<GradCaptureHook> hook) { hooks_.push_back(std::move(hook)); } private: // The hooks will be called one by one in the order as they were added. // The input grad of a hook will be the output of its preceding hook. The // first hook will take the captured grad as the input. The output of the // last hook will replace the captured grad. std::vector<std::unique_ptr<GradCaptureHook>> hooks_; }; bool should_execute() const { return needed_ || captures_; } bool needed_ = false; std::unique_ptr<std::vector<Capture>> captures_; }; // exec_info_ is safe to read without synchronization std::unordered_map<Node*, ExecInfo> exec_info_; // Captures variables are grads captured that we return to the user. After // execution of the GraphTask is completed, the captured_vars_ are moved // out of the GraphTask and are no longer valid. std::vector<Variable> captured_vars_; // Note: this field is not ready to be used until the proper // `thread_locals_.set_grad_mode()` call in the constructor. at::ThreadLocalState thread_locals_ = at::ThreadLocalState(); std::unordered_set<c10::Stream> leaf_streams; // Per-device current streams of the execute() that called this GraphTask. // These will be synced with leaf_streams in exec_post_processing. std::vector<std::optional<c10::Stream>> caller_current_streams_; // Collects caller_current_streams_ for the accelerator device. void stash_current_streams(); void init_to_execute( Node& graph_root, const edge_list& outputs, bool accumulate_grad, uint64_t min_topo_nr); // The value of worker_device in the thread that created this task. // See Note [Reentrant backwards] // Safe to read owner_ and reentrant_depth_ without synchronization int owner_; // The number of parent graph tasks for this graph task // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const int reentrant_depth_; bool can_checkpoint() const { return exec_info_.empty(); } // check if the GraphTask is completed or not bool completed(); // mark the graph task as completed and trigger post processing void mark_as_completed_and_run_post_processing(); // Set an appropriate exception on this graph_task which was encountered while // running the provided function. void set_exception(std::exception_ptr eptr, const std::shared_ptr<Node>& fn); // Set an appropriate exception on this graph_task which was encountered while // running the provided function. But doesn't signal completion on // 'future_result_' right away. The user needs to explicitly mark // 'future_result_' completed with an appropriate exception. void set_exception_without_signal(const std::shared_ptr<Node>& fn); // Whether or not to stop execution for this GraphTask when an error is // encountered. When set to true, this would cause Engine::execute() to throw // an exception as soon as the autograd engine receives an exception. bool exit_on_error_; // CPU threads are dedicated to processing CPU work for the backward they // invoked. So any given graph task maintains its own cpu_ready_queue_ where // you should send work for it to be done. We memoize the cpu_ready_queue_ per // GraphTask so that we know which ready queue we should push to if we are on // device thread (i.e. GPU) and but next NodeTask should be run on CPU. std::shared_ptr<ReadyQueue> cpu_ready_queue_; // Future representing the completion of the graph task. Notified when all // tasks are done. c10::intrusive_ptr<at::ivalue::Future> future_result_; // Final callbacks installed during execution of this GraphTask std::vector<std::function<void()>> final_callbacks_; // To protect reads and writes to final_callbacks_. Intentionally no reusing // mutex_ as the two are protecting different data structures. std::mutex final_callbacks_lock_; utils::DelayWarningHandler warning_handler_; uint64_t id_; GraphTask( bool keep_graph, bool grad_mode, int reentrant_depth, std::shared_ptr<ReadyQueue> cpu_ready_queue, c10::SmallVector<Node*, 4> graph_roots, bool exit_on_error = false); private: // run GraphTask post processing void exec_post_processing(); }; // The guard that sets and restores current_graph_task. class GraphTaskGuard { public: explicit GraphTaskGuard(std::shared_ptr<GraphTask> graph_task); ~GraphTaskGuard(); void restore_current_graph_task(); private: std::shared_ptr<GraphTask> last_graph_task_; }; TORCH_API const std::unordered_map<Node*, GraphTask::ExecInfo>* get_current_graph_task_exec_info(); TORCH_API const std::unordered_set<Node*>* get_current_graph_task_nodes_in_graph(); TORCH_API bool get_current_graph_task_keep_graph(); TORCH_API std::vector<Node*> get_current_graph_task_execution_order(); TORCH_API int get_current_graph_task_id(); void add_node_to_current_graph_task_exec_info(Node* fn); } // namespace torch::autograd ```
======================================================================================================================================== SOURCE CODE FILE: input_buffer.h LINES: 1 SIZE: 1.39 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\input_buffer.h ENCODING: utf-8 ```h #pragma once // The InputBuffer class accumulates a list of Variables for use by a // function. It implements logic to avoid modifying the passed // values in-place (adding an input twice will accumulate the result). // This behaviour is needed and used only in backward graphs. #include <utility> #include <vector> #include <c10/core/Stream.h> #include <torch/csrc/autograd/variable.h> #include <optional> namespace torch::autograd { struct InputBuffer { explicit InputBuffer(size_t size) : buffer(size) {} InputBuffer(const InputBuffer& other) = delete; InputBuffer(InputBuffer&& other) = default; explicit InputBuffer(variable_list&& inputs) : buffer(std::move(inputs)) {} InputBuffer& operator=(InputBuffer&& other) = default; // Accumulates the variable at a specified index. // The optional CUDA streams determine which stream the accumulation // is run on and how the addition is synchronized. TORCH_API void add( size_t pos, Variable&& var, const std::optional<c10::Stream>& opt_producer_stream, const std::optional<c10::Stream>& opt_consumer_stream); Variable operator[](size_t pos) { return buffer[pos]; } // Returns the inputs as a list of variables. Destroys given InputBuffer. static std::vector<Variable> variables(InputBuffer&& g); std::vector<Variable> buffer; }; } // namespace torch::autograd ```
========================================================================================================================================== SOURCE CODE FILE: input_metadata.h LINES: 1 SIZE: 3.02 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\input_metadata.h ENCODING: utf-8 ```h #pragma once #include <ATen/ExpandUtils.h> #include <ATen/NestedTensorImpl.h> #include <ATen/core/Tensor.h> #include <c10/core/Device.h> #include <c10/core/DeviceType.h> #include <c10/core/Stream.h> #include <c10/core/SymIntArrayRef.h> #include <c10/core/TensorImpl.h> #include <c10/core/impl/DeviceGuardImplInterface.h> #include <c10/util/DimVector.h> #include <c10/util/Exception.h> #include <c10/util/SmallVector.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Functions.h> #else #include <ATen/ops/zeros.h> #endif namespace torch::autograd { using SymIntSmallVec = c10::SmallVector<c10::SymInt, c10::kDimVectorStaticSize>; using MetadataShape = std::variant<SymIntSmallVec, at::Tensor>; /** * Records TensorOptions, shape of the tensor, whether or not the Python * dispatch key is set (tensor subclass), and, where applicable, the stream the * corresponding operation took place on. * * If is_valid() is false, then the corresponding input is not used and may be * an undefined tensor. */ struct TORCH_API InputMetadata { InputMetadata() = default; InputMetadata( const at::TensorOptions& options, MetadataShape input_shape, bool is_tensor_subclass, bool is_nested); InputMetadata(const at::Tensor& t); const at::TensorOptions& options() const { return options_; } caffe2::TypeMeta dtype() const { return options_.dtype(); } at::Device device() const { return options_.device(); } at::Layout layout() const { return options_.layout(); } c10::Stream stream() const { return stream_; } bool is_tensor_subclass() const { return is_tensor_subclass_; } at::Tensor zeros_like() const; bool is_same_shape(const at::Tensor& grad) const; bool is_expandable_to_shape(const at::Tensor& grad) const; at::Tensor reduce_grad(at::Tensor& grad) const; at::Tensor maybe_reduce( const size_t index, at::Tensor grad, const std::function<std::string(const std::string&)>& format_error) const; std::stringstream incompatible_shape_error_message( const size_t index, const at::Tensor& grad) const; bool was_default_constructed() const { return was_default_constructed_; } bool is_cpp_nested_tensor() const; bool is_nested_tensor() const { return is_nested_; } c10::SymIntArrayRef shape_as_dim_vector() const; // Danger: not thread safe, caller must protect with lock SymIntSmallVec& mutable_shape_as_dim_vector(); private: at::Tensor shape_as_tensor() const; bool is_nestedness_same(const at::Tensor& grad) const; bool maybe_expandable_to(const at::Tensor& grad) const; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const at::TensorOptions options_; MetadataShape shape_; c10::Stream stream_ = c10::Stream(c10::Stream::Default::DEFAULT, device()); bool is_tensor_subclass_ = false; bool is_nested_ = false; bool was_default_constructed_ = true; }; } // namespace torch::autograd ```
================================================================================================================================================ SOURCE CODE FILE: jit_decomp_interface.h LINES: 1 SIZE: 1.80 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\jit_decomp_interface.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/Tensor.h> #include <ATen/core/function_schema.h> #include <c10/macros/Export.h> // NOTE: [Jit Decomposition Interface] // // For some context of why we need this at all, see NOTE: [forward-mode AD // decompositions mechanism] // // Introducing that mechanism from the NOTE is problematic because: // - it relies on TorchScript, so now VariableTypeX.cpp depends on TorchScript. // - there exist internal builds like lite_trainer, which depend on VariableType // but do not depend on TorchScript. // // For internal builds like lite_trainer builds to pass, and for OSS builds that // do depend on TorchScript to still support the forward AD decomp mechanism, we // implement a PImpl pattern to avoid a static dependency in favor of a dynamic // one // - during static initialization time, if the library is built with TorchScript // setJitDecompImpl is called in decomposition_registry.cpp setting a global // ptr to the impl // - when the program is run,if getJitDecompImpl returns a non null ptr, we can // carry on normally, otherwise we gracefully error out // // For extra context, see VariableHooksInterface.h, where a similar technique // is used namespace torch::autograd::impl { struct TORCH_API JitDecompInterface { virtual ~JitDecompInterface() = default; virtual bool has_jit_decomposition( const c10::FunctionSchema& schema) const = 0; virtual void run_jit_decomposition( const c10::OperatorHandle& op, jit::Stack* stack) const = 0; }; TORCH_API void setJitDecompImpl(JitDecompInterface* impl); TORCH_API JitDecompInterface* getJitDecompImpl(); struct TORCH_API JitDecompRegisterer { explicit JitDecompRegisterer(JitDecompInterface* impl) { setJitDecompImpl(impl); } }; } // namespace torch::autograd::impl ```
==================================================================================================================================== SOURCE CODE FILE: profiler.h LINES: 1 SIZE: 0.11 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\profiler.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/profiler_kineto.h> #include <torch/csrc/autograd/profiler_legacy.h> ```
=========================================================================================================================================== SOURCE CODE FILE: profiler_kineto.h LINES: 1 SIZE: 8.08 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\profiler_kineto.h ENCODING: utf-8 ```h #pragma once #include <string> #include <vector> #include <torch/csrc/profiler/api.h> #include <torch/csrc/profiler/events.h> #include <torch/csrc/profiler/stubs/base.h> #include <torch/csrc/profiler/util.h> namespace torch { namespace profiler::impl { struct Result; namespace kineto { struct ActivityTraceWrapper; } // namespace kineto } // namespace profiler::impl namespace autograd::profiler { using experimental_event_t = std::shared_ptr<torch::profiler::impl::Result>; using extra_meta_t = std::unordered_map<std::string, std::string>; struct TORCH_API KinetoEvent { KinetoEvent( const std::shared_ptr<const torch::profiler::impl::Result>&, const bool verbose); uint64_t startThreadId() const; uint64_t endThreadId() const; uint8_t activityType() const; uint64_t fwdThreadId() const; bool hasShapes() const; const c10::ArrayRef<std::vector<int64_t>> shapes() const; bool hasTypes() const; const c10::ArrayRef<std::string> dtypes() const; bool hasConcreteInputs() const; const c10::ArrayRef<c10::IValue> concreteInputs() const; bool hasKwinputs() const; const std::unordered_map<std::string, c10::IValue> kwinputs() const; uint64_t flops() const; int64_t sequenceNr() const; bool hasStack() const; const c10::ArrayRef<std::string> stack() const; uint8_t scope() const; bool hasModuleHierarchy() const; const c10::ArrayRef<std::string> moduleHierarchy() const; int64_t debugHandle() const; std::string name() const; std::string overload_name() const; c10::DeviceType deviceType() const; int deviceIndex() const; int64_t nBytes() const; uint64_t startNs() const; uint64_t endNs() const; uint64_t durationNs() const; bool isAsync() const; uint64_t correlationId() const; uint64_t linkedCorrelationId() const; int64_t deviceResourceId() const; std::string backend() const; bool isPythonFunction() const; int64_t cudaElapsedUs() const; int64_t privateuse1ElapsedUs() const; void getPerfEventCounters(torch::profiler::perf_counters_t&) const; extra_meta_t extraMeta() const; private: torch::profiler::impl::ProfilerVoidEventStub fallbackStart() const; torch::profiler::impl::ProfilerVoidEventStub fallbackEnd() const; std::shared_ptr<const torch::profiler::impl::Result> result_; std::vector<std::string> python_stack_; // Copy fields from result so we can return ArrayRefs. std::vector<std::vector<int64_t>> shapes_; std::vector<std::string> dtypes_; std::vector<c10::IValue> concrete_inputs_; std::unordered_map<std::string, c10::IValue> kwinputs_; }; // Consolidating events returned directly from Kineto // with events manually created by us (e.g. start/stop marks, // memory allocation events) struct TORCH_API ProfilerResult { ProfilerResult(); ProfilerResult( uint64_t start_time, std::vector<KinetoEvent> events, std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>&& trace, std::vector<experimental_event_t>&& event_tree); ~ProfilerResult(); uint64_t trace_start_ns() const { return trace_start_ns_; } const std::vector<KinetoEvent>& events() const { return events_; } const std::vector<experimental_event_t>& event_tree() const { return event_tree_; } void save(const std::string& path); private: uint64_t trace_start_ns_ = 0; std::vector<KinetoEvent> events_; std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper> trace_; std::vector<experimental_event_t> event_tree_; }; /* * This API is used by backends to record latency of events that * happened in the backend but were not visible to pytorch runtime. * For example, if part of the model is lowered to a dsp backend, then * the execution of that part of the model is delegated to the backend. * When backend finishes execution it has an option to provide profiling * information (latency only at the moment) corresponding to different operators * that were executed in the backend. * When such events are recorded by backend using this API, the event * records will be collected by active kineto profiler. If no kineto profiler * is active then the event is ignored. * This provides us with a way to generate all the profiling information * for a model regardless of where model (or part of it) executed. * @param start_time_us: start time in us of the event * @param end_time_us: end time in us of the event * @param debug_handle: debug handle to correlate this event/op with * model level module/source information * @param scope: scope of the event, e.g. LITE_INTERPRETER, RECORD_FN etc. * @param event_name: name of the event, e.g. op name * @param backend_name: name of the backend where the event took place. */ TORCH_API void reportBackendEventToActiveKinetoProfiler( const int64_t start_time_us, const int64_t end_time_us, const int64_t debug_handle, const at::RecordScope scope, const std::string& event_name, const std::string& backend_name); TORCH_API void enableProfiler( const torch::profiler::impl::ProfilerConfig& config, const std::set<torch::profiler::impl::ActivityType>& activities, const std::unordered_set<at::RecordScope>& scopes = {}); /* * Same as enableProfiler but with callback to do post-processing of * KinetoEvents. * enableProfilerWithEventPostProcess enables profiler to capture * specified activities, with specified RecordFunction scope, if any. * Additionally, it takes a functor that does in-place post processing of * events, e.g. populate stack trace or module hierarchy information lazily * using debug_handle. * Example usage is with lite interpreter that has recording scope of * LITE_INTERPRETER. In this case lite interpreter runtime, records debug * handles in RecordFunction, along with other information. Debug handles are * eventually passed down to KinetoEvent and recorded as part of the event. * KinetoEdgeCPUProfiler, in torch/csrc/jit/mobile/profiler_edge.cpp, enables * profiler using post-processing callback, via * enableProfilerWithEventPostProcess, that takes these debug handles and * generates stack trace and module hierarchy information, once profiling is * done. */ using post_process_t = std::function<void( /*debug_handle */ int64_t, /*jit_stack */ std::vector<std::string>&, /*jit_modules */ std::vector<std::string>&)>; TORCH_API void enableProfilerWithEventPostProcess( const torch::profiler::impl::ProfilerConfig& config, const std::set<torch::profiler::impl::ActivityType>& activities, post_process_t&& cb, const std::unordered_set<at::RecordScope>& scopes = {}); TORCH_API std::unique_ptr<ProfilerResult> disableProfiler(); TORCH_API void prepareProfiler( const torch::profiler::impl::ProfilerConfig& config, const std::set<torch::profiler::impl::ActivityType>& activities); TORCH_API void toggleCollectionDynamic( const bool enable, const std::set<torch::profiler::impl::ActivityType>& activities); /** * When a C++ thread really has no control over how the profiler was enabled, * for example, by some unreachable Python code, it can call these functions * to test/join/unjoin itself into the collection set of a profiler, if any. * Without calling these functions, the symptom may be "not seeing GPU events * from some child C++ threads". This is an example on how to use them, * * using namespace torch::autograd::profiler; * bool enabled = isProfilerEnabledInMainThread(); * if (enabled != saved_enabled_state) { * if (enabled) { * enableProfilerInChildThread(); * } else { * disableProfilerInChildThread(); * } * saved_enabled_state = enabled; * } */ TORCH_API bool isProfilerEnabledInMainThread(); TORCH_API void enableProfilerInChildThread(); TORCH_API void disableProfilerInChildThread(); } // namespace autograd::profiler namespace profiler::impl { // Experimental. TORCH_API void _reportVulkanEventToProfiler(vulkan_id_t id); } // namespace profiler::impl } // namespace torch ```
=========================================================================================================================================== SOURCE CODE FILE: profiler_legacy.h LINES: 1 SIZE: 10.82 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\profiler_legacy.h ENCODING: utf-8 ```h #pragma once #include <cstdint> #include <iostream> #include <memory> #include <mutex> #include <string> #include <vector> #include <torch/csrc/Export.h> #include <torch/csrc/profiler/api.h> #include <torch/csrc/profiler/stubs/base.h> #include <torch/csrc/profiler/util.h> namespace torch::autograd::profiler { enum class C10_API_ENUM EventKind : uint16_t { Mark, PushRange, PopRange, MemoryAlloc, }; // To be deprecated, once we switch to Kineto profiling struct TORCH_API LegacyEvent { LegacyEvent( EventKind kind, at::StringView name, uint16_t thread_id, bool record_cuda, at::RecordFunctionHandle handle = 0, std::vector<std::vector<int64_t>>&& shapes = {}, int64_t node_id = -1, bool is_async = false) : name_(std::move(name)), kind_(kind), thread_id_(thread_id), handle_(handle), shapes_(std::move(shapes)), node_id_(node_id), is_async_(is_async) { record(record_cuda); } // Constructor to be used in conjunction with LegacyEvent::fromIValue. LegacyEvent( EventKind kind, at::StringView name, uint16_t thread_id, at::RecordFunctionHandle handle, std::vector<std::vector<int64_t>>&& shapes, int64_t node_id, bool is_remote, int64_t cpu_memory_usage, int64_t cpu_ns, bool cuda_recorded, int64_t cuda_memory_usage = 0, c10::DeviceIndex device = -1, double cuda_us = -1) : cpu_ns_(cpu_ns), name_(std::move(name)), kind_(kind), thread_id_(thread_id), handle_(handle), shapes_(std::move(shapes)), cpu_memory_usage_(cpu_memory_usage), cuda_memory_usage_(cuda_memory_usage), device_(device), node_id_(node_id), is_remote_(is_remote), cuda_us_(static_cast<int64_t>(cuda_us)) { // Sanity check values that were deserialized TORCH_INTERNAL_ASSERT(cpu_ns_ > 0); if (cuda_recorded) { TORCH_INTERNAL_ASSERT(device_ >= 0); TORCH_INTERNAL_ASSERT(cuda_us_ >= 0); } } // Returns IValues corresponding to event structure, to be used for // serialization. at::IValue toIValue() const; // Reconstructs an event from IValues given by toIValue. static LegacyEvent fromIValue(const at::IValue& eventIValue); void record(bool record_cuda); std::string kindStr() const { switch (kind_) { case EventKind::Mark: return "mark"; case EventKind::PushRange: return "push"; case EventKind::PopRange: return "pop"; case EventKind::MemoryAlloc: return "memory_alloc"; } throw std::runtime_error("unknown event kind"); } EventKind kind() const { return kind_; } const char* name() const { return name_.str(); } uint64_t threadId() const { return thread_id_; } std::vector<std::vector<int64_t>> shapes() const { return shapes_; } double cpuElapsedUs(const LegacyEvent& e) const { return static_cast<double>(e.cpu_ns_ - cpu_ns_) / (1000.0); } void setCpuUs(int64_t cpu_us) { cpu_ns_ = cpu_us * 1000; } double cpuUs() const { return static_cast<double>(cpu_ns_) / (1000.0); } double cudaElapsedUs(const LegacyEvent& e) const; bool hasCuda() const { return cuda_event != nullptr || (isRemote() && device_ != -1); } c10::DeviceIndex device() const { return device_; } void updateMemoryStats(int64_t alloc_size, c10::Device device) { if (device.is_cuda() || device.type() == c10::DeviceType::HIP) { cuda_memory_usage_ = alloc_size; } else if ( device.is_cpu() || device.type() == c10::DeviceType::MKLDNN || device.type() == c10::DeviceType::IDEEP) { cpu_memory_usage_ = alloc_size; } else { LOG(WARNING) << "Unsupported memory profiling device: " << device; } } int64_t cpuMemoryUsage() const { return cpu_memory_usage_; } int64_t cudaMemoryUsage() const { return cuda_memory_usage_; } at::RecordFunctionHandle handle() const { return handle_; } // Node ID corresponding to this event. int64_t nodeId() const { return node_id_; } // Set Node ID on this event. void setNodeId(int64_t node_id) { node_id_ = node_id; } void setName(at::StringView newName_) { name_ = std::move(newName_); } bool isRemote() const { return is_remote_; } void setCudaUs(int64_t cuda_us) { cuda_us_ = cuda_us; } void setSequenceNr(int64_t sequence_nr) { sequence_nr_ = sequence_nr; } int64_t sequenceNr() const { return sequence_nr_; } void setCorrelationId(uint64_t correlation_id) { correlation_id_ = correlation_id; } uint64_t correlationId() const { return correlation_id_; } const std::vector<std::string>& stack() const { return stack_; } void setStack(const std::vector<std::string>& stack) { stack_ = stack; } uint64_t fwdThreadId() const { return fwd_thread_id_; } void setFwdThreadId(uint64_t fwd_thread_id) { fwd_thread_id_ = fwd_thread_id; } uint8_t scope() const { return scope_; } void setScope(uint8_t scope) { scope_ = scope; } const std::unordered_map<std::string, c10::IValue>& extraArgs() const { return extra_args_; } void setExtraArgs(std::unordered_map<std::string, c10::IValue>&& save_args) { extra_args_ = std::move(save_args); } uint64_t flops() { return flops_; } bool isAsync() { return is_async_; } void setFlops(uint64_t flops) { flops_ = flops; } private: // signed to allow for negative intervals, initialized for safety. int64_t cpu_ns_ = 0; at::StringView name_; EventKind kind_; uint64_t thread_id_; uint64_t fwd_thread_id_{0}; at::RecordFunctionHandle handle_{0}; std::vector<std::vector<int64_t>> shapes_; int64_t cpu_memory_usage_ = 0; int64_t cuda_memory_usage_ = 0; c10::DeviceIndex device_ = -1; torch::profiler::impl::ProfilerVoidEventStub cuda_event = nullptr; int64_t node_id_ = 0; bool is_remote_ = false; int64_t cuda_us_ = -1; int64_t sequence_nr_ = -1; bool is_async_ = false; std::vector<std::string> stack_; uint8_t scope_{0}; uint64_t correlation_id_{0}; // Extra arguments for computing op flops std::unordered_map<std::string, c10::IValue> extra_args_; uint64_t flops_ = 0; }; // a linked-list of fixed sized vectors, to avoid // a std::vector resize from taking a large amount of time inside // a profiling event struct RangeEventList { RangeEventList() { events_.reserve(kReservedCapacity); } template <typename... Args> void record(Args&&... args) { std::lock_guard<std::mutex> guard(mutex_); events_.emplace_back(std::forward<Args>(args)...); } std::vector<LegacyEvent> consolidate() { std::lock_guard<std::mutex> lock(mutex_); std::vector<LegacyEvent> result; result.insert( result.begin(), std::make_move_iterator(events_.begin()), std::make_move_iterator(events_.end())); events_.erase(events_.begin(), events_.end()); return result; } size_t size() { std::lock_guard<std::mutex> lock(mutex_); return events_.size(); } private: // This mutex is used to serialize access when different threads are writing // to the same instance of RangeEventList. std::mutex mutex_; std::vector<LegacyEvent> events_; static const size_t kReservedCapacity = 1024; }; // A struct to control settings of disableProfiler options. struct TORCH_API ProfilerDisableOptions { ProfilerDisableOptions() = default; ProfilerDisableOptions(bool shouldCleanupTLSState, bool shouldConsolidate) : cleanupTLSState(shouldCleanupTLSState), consolidate(shouldConsolidate) {} // Whether we should clean up profiler states that are thread local, such as // ThreadLocalDebugInfo and thread local RecordFunction callbacks. bool cleanupTLSState = true; // Whether we should consolidate all currently recorded profiled events. If // false, will not consolidate and other threads can continue to write to the // event lists. bool consolidate = true; }; // NOTE: profiler mode is thread local, with automatic propagation // across thread boundary (e.g. at::launch tasks) TORCH_API void enableProfilerLegacy( const torch::profiler::impl::ProfilerConfig&); using thread_event_lists = std::vector<std::vector<LegacyEvent>>; TORCH_API thread_event_lists disableProfilerLegacy( std::optional<ProfilerDisableOptions> profilerDisableOptions = std::nullopt); // adds profiledEvents to the current thread local recorded events. Each event // will be marked with node ID given by fromNodeId. TORCH_API void addEventList(std::vector<LegacyEvent>&& profiledEvents); // Writes profiled events to a stream. TORCH_API void writeProfilerEventsToStream( std::ostream& out, const std::vector<LegacyEvent*>& events); // Usage: // { // RecordProfile guard("filename.trace"); // // code you want to profile // } // Then open filename.trace in chrome://tracing struct TORCH_API RecordProfile { RecordProfile(std::ostream& out); RecordProfile(const std::string& filename); ~RecordProfile(); private: void init(); std::unique_ptr<std::ofstream> file_; std::ostream& out_; void processEvents(const std::vector<LegacyEvent*>& events); }; // A guard that enables the legacy profiler, taking in an optional callback to // process the results Usage: // { // TLSLegacyProfilerGuard g([](thread_event_lists profilerResults) { // // process profilerResults // }); // Code to profile // } struct TORCH_API TLSLegacyProfilerGuard { explicit TLSLegacyProfilerGuard( const torch::profiler::impl::ProfilerConfig& cfg, std::optional<std::function<void(const thread_event_lists&)>> resultCallback = std::nullopt, std::optional<ProfilerDisableOptions> profilerDisableOptions = std::nullopt) : cb_(std::move(resultCallback)), profilerDisableOptions_(profilerDisableOptions) { enableProfilerLegacy(cfg); } ~TLSLegacyProfilerGuard() { thread_event_lists event_lists = disableProfilerLegacy(profilerDisableOptions_); if (cb_) { try { (*cb_)(event_lists); } catch (const std::exception& e) { LOG(ERROR) << "Got error processing profiler events: " << e.what(); } } } private: std::optional<std::function<void(const thread_event_lists&)>> cb_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::optional<ProfilerDisableOptions> profilerDisableOptions_; }; } // namespace torch::autograd::profiler ```
=========================================================================================================================================== SOURCE CODE FILE: profiler_python.h LINES: 1 SIZE: 0.09 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\profiler_python.h ENCODING: utf-8 ```h #pragma once namespace torch::autograd::profiler::python_tracer { void init(); } ```
=============================================================================================================================================== SOURCE CODE FILE: python_anomaly_mode.h LINES: 1 SIZE: 1.20 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_anomaly_mode.h ENCODING: utf-8 ```h #pragma once #include <pybind11/pybind11.h> #include <torch/csrc/autograd/anomaly_mode.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/pybind.h> namespace torch::autograd { struct PyAnomalyMetadata : public AnomalyMetadata { static constexpr const char* ANOMALY_TRACE_KEY = "traceback_"; static constexpr const char* ANOMALY_PARENT_KEY = "parent_"; PyAnomalyMetadata() { pybind11::gil_scoped_acquire gil; // NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer) dict_ = PyDict_New(); } // NOLINTNEXTLINE(bugprone-exception-escape) ~PyAnomalyMetadata() override { // If python is already dead, leak the wrapped python objects if (Py_IsInitialized()) { pybind11::gil_scoped_acquire gil; Py_DECREF(dict_); } } void store_stack() override; void print_stack(const std::string& current_node_name) override; void assign_parent(const std::shared_ptr<Node>& parent_node) override; PyObject* dict() { return dict_; } private: PyObject* dict_{nullptr}; }; void _print_stack( PyObject* trace_stack, const std::string& current_node_name, bool is_parent); } // namespace torch::autograd ```
=========================================================================================================================================== SOURCE CODE FILE: python_autograd.h LINES: 1 SIZE: 0.43 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_autograd.h ENCODING: utf-8 ```h #ifndef THP_AUTOGRAD_H #define THP_AUTOGRAD_H #include <torch/csrc/utils/pythoncapi_compat.h> PyObject* THPAutograd_initExtension(PyObject* _unused, PyObject* unused); void THPAutograd_initFunctions(); namespace torch::autograd { PyMethodDef* python_functions(); } #include <torch/csrc/autograd/python_engine.h> #include <torch/csrc/autograd/python_function.h> #include <torch/csrc/autograd/python_variable.h> #endif ```
=============================================================================================================================================== SOURCE CODE FILE: python_cpp_function.h LINES: 1 SIZE: 5.25 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_cpp_function.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/python_headers.h> #include <memory> #include <typeinfo> #include <torch/csrc/Exceptions.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/utils/object_ptr.h> namespace torch::autograd { struct THPCppFunction { PyObject_HEAD std::shared_ptr<Node> cdata; }; template <typename Ctor> TORCH_PYTHON_API PyObject* CppFunction_pynew( PyTypeObject* type, PyObject* args, PyObject* kwds) { THPObjectPtr obj(type->tp_alloc(type, 0)); if (!obj) return nullptr; THPCppFunction* f = (THPCppFunction*)obj.get(); HANDLE_TH_ERRORS new (&f->cdata) std::shared_ptr<Node>(Ctor()(args)); END_HANDLE_TH_ERRORS if (!f->cdata) { return nullptr; } return obj.release(); } #define THP_FUNCTION_DEFAULT_METHODS \ {(char*)"_register_hook_dict", \ THPCppFunction_register_hook_dict, \ METH_O, \ nullptr}, \ {(char*)"register_hook", THPCppFunction_register_hook, METH_O, nullptr}, \ {(char*)"register_prehook", \ THPCppFunction_register_prehook, \ METH_O, \ nullptr}, \ {(char*)"name", THPCppFunction_name, METH_NOARGS, nullptr}, \ {(char*)"_sequence_nr", \ THPCppFunction_sequence_nr, \ METH_NOARGS, \ nullptr}, \ { \ (char*)"_set_sequence_nr", THPCppFunction_set_sequence_nr, METH_O, nullptr \ } #define THP_FUNCTION_DEFAULT_PROPERTIES \ {(char*)"next_functions", \ THPCppFunction_next_functions, \ nullptr, \ nullptr, \ nullptr}, \ {(char*)"requires_grad", \ THPCppFunction_requires_grad, \ nullptr, \ nullptr, \ nullptr}, \ {(char*)"metadata", THPCppFunction_metadata, nullptr, nullptr, nullptr}, \ { \ (char*)"_input_metadata", THPCppFunction_input_metadata, nullptr, nullptr, \ nullptr \ } TORCH_PYTHON_API PyObject* THPCppFunction_next_functions( PyObject* self, void* _unused); TORCH_PYTHON_API PyObject* THPCppFunction_metadata( PyObject* self, void* _unused); TORCH_PYTHON_API PyObject* THPCppFunction_requires_grad( PyObject* self, void* _unused); TORCH_PYTHON_API PyObject* THPCppFunction_register_hook_dict( PyObject* self, PyObject* _var); TORCH_PYTHON_API PyObject* THPCppFunction_register_hook( PyObject* self, PyObject* hook); TORCH_PYTHON_API PyObject* THPCppFunction_register_prehook( PyObject* self, PyObject* hook); TORCH_PYTHON_API PyObject* THPCppFunction_name( PyObject* self, PyObject* noargs); TORCH_PYTHON_API PyObject* THPCppFunction_sequence_nr( PyObject* self, PyObject* noargs); TORCH_PYTHON_API PyObject* THPCppFunction_input_metadata( PyObject* self, void* _unused); TORCH_PYTHON_API PyTypeObject* _initFunctionPyTypeObject( PyTypeObject& type, const char* name, PyGetSetDef* function_properties, PyMethodDef* function_methods); TORCH_PYTHON_API PyObject* registerFunctionHook(Node& fn, PyObject* hook); TORCH_PYTHON_API PyObject* registerFunctionPreHook(Node& fn, PyObject* hook); template <typename Ctor> TORCH_PYTHON_API PyTypeObject* createForwardFunctionPyTypeObject( PyTypeObject& type, const char* name, PyGetSetDef* function_properties = nullptr, PyMethodDef* function_methods = nullptr) { type.tp_new = &CppFunction_pynew<Ctor>; return _initFunctionPyTypeObject( type, name, function_properties, function_methods); } TORCH_PYTHON_API void registerCppFunction( const std::type_info& type, PyTypeObject* pytype); TORCH_PYTHON_API PyObject* functionToPyObject( const std::shared_ptr<Node>& cdata); TORCH_PYTHON_API bool THPCppFunction_Check(PyObject* obj); } // namespace torch::autograd ```