text
stringlengths
145
7.65M
========================================================================================================================================= SOURCE CODE FILE: python_engine.h LINES: 1 SIZE: 1.27 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_engine.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/python_headers.h> #include <torch/csrc/autograd/engine.h> #include <torch/csrc/autograd/function.h> bool THPEngine_initModule(PyObject* module); namespace torch::autograd::python { struct PythonEngine : public Engine { static Engine& get_python_engine(); ~PythonEngine() override; void thread_init( int device, const std::shared_ptr<ReadyQueue>& ready_queue, bool should_increment) override; void thread_on_exception( const std::shared_ptr<GraphTask>& graph_task, const std::shared_ptr<Node>& fn, std::exception& e) override; variable_list execute( const edge_list& roots, const variable_list& inputs, bool keep_graph, bool create_graph, bool accumulate_grad, const edge_list& outputs = {}) override; c10::intrusive_ptr<at::ivalue::Future> execute_with_graph_task( const std::shared_ptr<GraphTask>& graph_task, std::shared_ptr<Node> graph_root, InputBuffer&& input_buffer) override; std::unique_ptr<AnomalyMetadata> make_anomaly_metadata() override; std::unique_ptr<SavedVariableHooks> get_default_saved_variable_hooks() override; private: PythonEngine(); }; } // namespace torch::autograd::python ```
=========================================================================================================================================== SOURCE CODE FILE: python_enum_tag.h LINES: 1 SIZE: 0.12 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_enum_tag.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/python_headers.h> namespace torch::autograd { void initEnumTag(PyObject* module); } ```
================================================================================================================================================ SOURCE CODE FILE: python_fft_functions.h LINES: 1 SIZE: 0.14 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_fft_functions.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/pythoncapi_compat.h> namespace torch::autograd { void initFFTFunctions(PyObject* module); } ```
=========================================================================================================================================== SOURCE CODE FILE: python_function.h LINES: 1 SIZE: 5.24 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_function.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/python_headers.h> #include <torch/csrc/Exceptions.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/custom_function.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/saved_variable.h> #include <torch/csrc/autograd/variable.h> #include <torch/csrc/utils/object_ptr.h> #include <c10/core/DeviceGuard.h> #include <optional> #include <memory> #include <vector> namespace torch::jit { struct Graph; } namespace torch::autograd { // A Function which is implemented by a Python object (i.e., a THPFunction). // Calls to 'apply' are forwarded to the Python method implementation. // NOLINTNEXTLINE(cppcoreguidelines-special-member-functions) struct PyNode : public Node { PyNode(THPObjectPtr obj) : obj(obj.release()) {} PyObject* to_py_args( const variable_list& inputs, at::OptionalDeviceGuard* device_guard); variable_list to_variable_list( const PyObject* r, const std::vector<bool>& is_variable_input); variable_list apply(variable_list&& inputs) override; variable_list apply_with_saved_impl( const variable_list& inputs, const SwapSavedVariables& saved); void release_variables() override; std::string name() const override; bool is_traceable() override; bool is_aot_backward() const override; void compiled_args(CompiledNodeArgs& args) const override; variable_list apply_with_saved( const variable_list& inputs, SwapSavedVariables& saved) override; // THPFunction this Function is wrapping. Owning! PyObject* obj; // NOLINTNEXTLINE(bugprone-exception-escape) ~PyNode() override { // Can't use THPObjectPtr as a field in this class; destructor won't take // out GIL! When I forgot to do this by hand // TestAutograd.test_inplace_view_python called me out about it. // If python is already dead, leak the wrapped python objects if (Py_IsInitialized()) { pybind11::gil_scoped_acquire gil; Py_DECREF(obj); } } }; /** * Cast an object into a tuple, if it is not a tuple already. Returns true * if the original object was not a tuple. */ inline bool ensure_tuple(THPObjectPtr& obj) { if (PyTuple_Check(obj.get())) return false; PyObject* tuple = PyTuple_New(1); if (!tuple) throw python_error(); PyTuple_SET_ITEM(tuple, 0, obj.release()); obj = tuple; return true; } } // namespace torch::autograd // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init) struct THPFunction { PyObject_HEAD PyObject* needs_input_grad; // Python tuple of tensors whose variables we should save. Set // by Python with 'save_for_backward'. If nullptr, no tensors were // saved. PyObject* to_save; // Python tuple of tensors which are not differentiable. Set by // Python with 'mark_non_differentiable'. If nullptr, no tensors were // non-differentiable. PyObject* non_differentiable; // Python tuple of tensors which had inplace updates in the forward() // pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were // modified inplace. PyObject* dirty_tensors; // boolean indicating whether to materialize undefined output grad tensors // into tensors full of zeros. Set by Python with 'set_materialize_grads'. // Default is true. bool materialize_grads; // boolean indicating whether to materialize output grad tensors // corresponding to non-differentiable outputs. Normally, someone would // already get this behavior by switching off materialize_grads, // but there are certain use cases where that is not feasible: // https://github.com/pytorch/pytorch/pull/98659#pullrequestreview-1376822560 bool materialize_non_diff_grads; PyObject* compiled_autograd_backward_state; std::vector<c10::SymInt> compiled_autograd_symints; std::vector<torch::autograd::VariableInfo> output_info; std::vector<torch::autograd::VariableInfo> input_info; std::vector<torch::autograd::SavedVariable> saved_variables; // For each input, true if the input is a THPVariable std::vector<bool> is_variable_input; char has_freed_buffers; PyObject* saved_for_forward; // The actual PyNode (in the autograd graph) that this data was // saved for. This field may be NULL (because a user can construct // a THPFunction directly from Python), but when this field is non-NULL, // it is guaranteed that cdata.lock()->obj == this // // In most ordinary use, this field should always be non-NULL; e.g., // when we allocate a THPFunction because we are running Node.apply, // after constructing a THPFunction, we immediately allocate a PyNode // for it. We can't enforce this directly in the constructor of // THPFunction though, because there's no way to keep it live long enough // to save an owning reference to PyNode into the grad_fn of a Variable. std::weak_ptr<torch::autograd::PyNode> cdata; }; bool THPFunction_initModule(PyObject* module); TORCH_PYTHON_API extern PyTypeObject THPFunctionType; TORCH_PYTHON_API extern PyObject* THPFunctionClass; TORCH_PYTHON_API extern PyObject* THPGradientEdgeClass; inline bool THPFunction_Check(PyObject* obj) { return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType); } ```
======================================================================================================================================= SOURCE CODE FILE: python_hook.h LINES: 1 SIZE: 2.08 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_hook.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/function_hook.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/object_ptr.h> namespace torch::dynamo::autograd { class SwapSavedVariables; } // namespace torch::dynamo::autograd namespace torch::autograd { struct PyFunctionTensorPreHook : public FunctionPreHook { PyFunctionTensorPreHook(PyObject* dict, size_t value_idx); ~PyFunctionTensorPreHook() override; variable_list operator()(const variable_list& values) override; void compiled_args( torch::dynamo::autograd::CompiledNodeArgs& args) const override; PyObject* dict; size_t value_idx; }; struct PyFunctionPreHook : public FunctionPreHook { PyFunctionPreHook(PyObject* dict); ~PyFunctionPreHook() override; variable_list operator()(const variable_list& values) override; void compiled_args( torch::dynamo::autograd::CompiledNodeArgs& args) const override; PyObject* dict; }; struct PyFunctionPostHook : public FunctionPostHook { PyFunctionPostHook(PyObject* dict); ~PyFunctionPostHook() override; variable_list operator()( const variable_list& outputs, const variable_list& inputs) override; void compiled_args( torch::dynamo::autograd::CompiledNodeArgs& args) const override; PyObject* dict; }; // PyFunctionTensorPostAccGradHooks is a dictionary of PostAccumulateGradHooks, // and it is understandable if you are confused by why it's a subclass. We are // simply following the precedent of PyFunctionPreHook and PyFunctionPostHook // above to easily enroll into existing infrastructure. struct PyFunctionTensorPostAccGradHooks : public PostAccumulateGradHook { PyFunctionTensorPostAccGradHooks(PyObject* dict); ~PyFunctionTensorPostAccGradHooks() override; void operator()(const Variable& tensor) override; void compiled_args( torch::dynamo::autograd::CompiledNodeArgs& args) const override; void apply_with_saved( Variable& tensor, torch::dynamo::autograd::SwapSavedVariables& saved) override; PyObject* dict; }; } // namespace torch::autograd ```
================================================================================================================================================== SOURCE CODE FILE: python_legacy_variable.h LINES: 1 SIZE: 0.26 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_legacy_variable.h ENCODING: utf-8 ```h #pragma once // Instantiates torch._C._LegacyVariableBase, which defines the Python // constructor (__new__) for torch.autograd.Variable. #include <torch/csrc/python_headers.h> namespace torch::autograd { void init_legacy_variable(PyObject* module); } ```
=================================================================================================================================================== SOURCE CODE FILE: python_linalg_functions.h LINES: 1 SIZE: 0.14 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_linalg_functions.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/pythoncapi_compat.h> namespace torch::autograd { void initLinalgFunctions(PyObject* module); } ```
=================================================================================================================================================== SOURCE CODE FILE: python_nested_functions.h LINES: 1 SIZE: 0.21 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_nested_functions.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/python_compat.h> namespace torch::autograd { PyMethodDef* get_nested_functions_manual(); void initNestedFunctions(PyObject* module); } // namespace torch::autograd ```
=============================================================================================================================================== SOURCE CODE FILE: python_nn_functions.h LINES: 1 SIZE: 0.13 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_nn_functions.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/python_compat.h> namespace torch::autograd { void initNNFunctions(PyObject* module); } ```
======================================================================================================================================================= SOURCE CODE FILE: python_saved_variable_hooks.h LINES: 1 SIZE: 1.09 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_saved_variable_hooks.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <c10/core/SafePyObject.h> #include <pybind11/pybind11.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/python_variable.h> #include <torch/csrc/autograd/saved_variable_hooks.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/pybind.h> namespace py = pybind11; namespace torch::autograd { struct PySavedVariableHooks : public SavedVariableHooks { PySavedVariableHooks(py::function& pack_hook, py::function& unpack_hook); void call_pack_hook(const at::Tensor& tensor) override; at::Tensor call_unpack_hook() override; ~PySavedVariableHooks() override; std::optional<std::pair<c10::SafePyObject, c10::SafePyObject>> retrieve_unpack_hook_data() const override; private: PyObject* pack_hook_; PyObject* unpack_hook_; PyObject* data_ = nullptr; }; struct PyDefaultSavedVariableHooks { static void push_hooks(py::function& pack_hook, py::function& unpack_hook); static void pop_hooks(); static std::unique_ptr<SavedVariableHooks> get_hooks(); }; } // namespace torch::autograd ```
=================================================================================================================================================== SOURCE CODE FILE: python_sparse_functions.h LINES: 1 SIZE: 0.14 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_sparse_functions.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/pythoncapi_compat.h> namespace torch::autograd { void initSparseFunctions(PyObject* module); } ```
==================================================================================================================================================== SOURCE CODE FILE: python_special_functions.h LINES: 1 SIZE: 0.14 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_special_functions.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/pythoncapi_compat.h> namespace torch::autograd { void initSpecialFunctions(PyObject* module); } ```
================================================================================================================================================== SOURCE CODE FILE: python_torch_functions.h LINES: 1 SIZE: 0.66 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_torch_functions.h ENCODING: utf-8 ```h #include <Python.h> namespace torch::autograd { extern PyObject* THPVariableFunctionsModule; // Wrapper converts a raised TypeError into returning NotImplemented // Used to implement binary arithmetic operators template <PyObject* (*Func)(PyObject*, PyObject*, PyObject*)> inline PyObject* TypeError_to_NotImplemented_( PyObject* self, PyObject* args, PyObject* kwargs) { PyObject* ret = Func(self, args, kwargs); if (!ret && PyErr_ExceptionMatches(PyExc_TypeError)) { PyErr_Clear(); Py_INCREF(Py_NotImplemented); ret = Py_NotImplemented; } return ret; } void initTorchFunctions(); } // namespace torch::autograd ```
=========================================================================================================================================== SOURCE CODE FILE: python_variable.h LINES: 1 SIZE: 3.54 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_variable.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/Tensor.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/pythoncapi_compat.h> #include <ATen/core/function_schema.h> #include <pybind11/pybind11.h> #include <torch/csrc/Exceptions.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/variable.h> #include <torch/csrc/utils/pybind.h> namespace py = pybind11; // Python object that backs torch.autograd.Variable struct THPVariable { PyObject_HEAD // Payload c10::MaybeOwned<at::Tensor> cdata; // Hooks to be run on backwards pass (corresponds to Python attr // '_backwards_hooks', set by 'register_hook') PyObject* backward_hooks = nullptr; // Hooks to be run in the backwards pass after accumulate grad, // i.e., after the .grad has been set (corresponds to Python attr // '_post_accumulate_grad_hooks', set by 'register_post_accumulate_grad_hook') PyObject* post_accumulate_grad_hooks = nullptr; }; TORCH_PYTHON_API void registerPythonTensorClass( const std::string& device, PyObject* python_tensor_class); TORCH_PYTHON_API void activateGPUTrace(); TORCH_PYTHON_API extern PyObject* THPVariableClass; TORCH_PYTHON_API extern PyObject* ParameterClass; bool THPVariable_initModule(PyObject* module); TORCH_PYTHON_API PyObject* THPVariable_Wrap(const at::TensorBase& var); inline bool THPVariable_CheckTypeExact(PyTypeObject* tp) { // Check that a python object is a `Tensor`, but not a `Tensor` subclass. // (A subclass could have different semantics.) The one exception is // Parameter, which is used for Python bookkeeping but is equivalent to // Tensor as far as C++ is concerned. return ( tp == (PyTypeObject*)THPVariableClass || tp == (PyTypeObject*)ParameterClass); } inline bool THPVariable_CheckExact(PyObject* obj) { return THPVariable_CheckTypeExact(Py_TYPE(obj)); } inline bool THPVariable_Check(PyObject* obj) { if (!THPVariableClass) return false; // Fast path if (THPVariable_CheckExact(obj)) { return true; } const auto result = PyObject_IsInstance(obj, THPVariableClass); if (result == -1) throw python_error(); return result; } inline const at::Tensor& THPVariable_Unpack(THPVariable* var) { return *var->cdata; } inline const at::Tensor& THPVariable_Unpack(PyObject* obj) { return THPVariable_Unpack(reinterpret_cast<THPVariable*>(obj)); } std::pair<py::object, py::dict> parseIValuesToPyArgsKwargs( const c10::OperatorHandle& op, const std::vector<c10::IValue>& arguments); void pushPyOutToStack( const c10::OperatorHandle& op, torch::jit::Stack* stack, py::object out, const char* msg); inline PyObject* THPVariable_WrapList( const torch::autograd::variable_list& inputs) { PyObject* pyinput = PyList_New(static_cast<Py_ssize_t>(inputs.size())); for (const auto i : c10::irange(inputs.size())) { PyList_SET_ITEM(pyinput, i, THPVariable_Wrap(inputs[i])); } return pyinput; } inline torch::autograd::variable_list THPVariable_UnpackList( PyObject* pyresult) { TORCH_CHECK(PyList_CheckExact(pyresult)); auto result_len = PyList_GET_SIZE(pyresult); torch::autograd::variable_list result; result.reserve(result_len); for (const auto i : c10::irange(result_len)) { PyObject* item = PyList_GET_ITEM(pyresult, i); if (!Py_IsNone(item)) { TORCH_INTERNAL_ASSERT_DEBUG_ONLY(THPVariable_Check(item)); result.emplace_back(THPVariable_Unpack(item)); } else { result.emplace_back(); } } return result; } ```
==================================================================================================================================================== SOURCE CODE FILE: python_variable_indexing.h LINES: 1 SIZE: 2.78 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\python_variable_indexing.h ENCODING: utf-8 ```h #pragma once #include <c10/core/SymInt.h> #include <torch/csrc/autograd/python_variable.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/pybind.h> #include <torch/csrc/utils/python_symnode.h> namespace torch::autograd { struct UnpackedSlice { c10::SymInt start; c10::SymInt stop; c10::SymInt step; }; // This mirrors Cpython's PySlice_Unpack method inline UnpackedSlice __PySlice_Unpack(PyObject* _r) { PySliceObject* r = (PySliceObject*)_r; /* this is harder to get right than you might think */ c10::SymInt start_sym, stop_sym, step_sym; auto clip_val = [](Py_ssize_t val) { if (val < c10::SymInt::min_representable_int()) { auto r = PyErr_WarnEx( PyExc_UserWarning, "Truncating the start/stop/step " "of slice. This is likely because of " "saved old models when the start/stop/step were larger.", 1); if (r != 0) { throw python_error(); } return (Py_ssize_t)(c10::SymInt::min_representable_int()); } return val; }; if (r->step == Py_None) { step_sym = c10::SymInt(1); } else { if (torch::is_symint(r->step)) { step_sym = py::handle(r->step).cast<c10::SymInt>(); } else { Py_ssize_t step = 0; if (!_PyEval_SliceIndex(r->step, &step)) { throw python_error(); } if (step == 0) { PyErr_SetString(PyExc_ValueError, "slice step cannot be zero"); } step = clip_val(step); step_sym = c10::SymInt(step); } } if (torch::is_symint(r->start)) { start_sym = py::handle(r->start).cast<c10::SymInt>(); } else if (r->start == Py_None) { start_sym = c10::SymInt(step_sym < 0 ? PY_SSIZE_T_MAX : 0); } else { Py_ssize_t start = 0; if (!_PyEval_SliceIndex(r->start, &start)) { throw python_error(); } start = clip_val(start); start_sym = c10::SymInt(start); } if (torch::is_symint(r->stop)) { stop_sym = py::handle(r->stop).cast<c10::SymInt>(); } else if (r->stop == Py_None) { stop_sym = c10::SymInt( step_sym < 0 ? c10::SymInt::min_representable_int() : PY_SSIZE_T_MAX); } else { Py_ssize_t stop = 0; if (!_PyEval_SliceIndex(r->stop, &stop)) { throw python_error(); } stop = clip_val(stop); stop_sym = c10::SymInt(stop); } return UnpackedSlice{ std::move(start_sym), std::move(stop_sym), std::move(step_sym)}; } Py_ssize_t THPVariable_length(PyObject* self); PyObject* THPVariable_getitem(PyObject* self, PyObject* index); int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* value); Variable valueToTensor( c10::TensorOptions options, PyObject* value, const at::Device& device); } // namespace torch::autograd ```
=============================================================================================================================================== SOURCE CODE FILE: record_function_ops.h LINES: 1 SIZE: 0.94 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\record_function_ops.h ENCODING: utf-8 ```h #pragma once #include <ATen/record_function.h> #include <torch/custom_class.h> #include <optional> namespace torch::autograd::profiler { struct PythonRecordFunction : public torch::CustomClassHolder { at::RecordFunction record; explicit PythonRecordFunction( at::RecordScope scope = at::RecordScope::FUNCTION) : record(scope) {} }; // Creates a new profiling scope using RecordFunction and invokes its starting // callbacks. TORCH_API c10::intrusive_ptr<PythonRecordFunction> record_function_enter_new( const std::string& name, const std::optional<std::string>& args = std::nullopt); // Schedules RecordFunction's end callbacks to be run on completion of a future. TORCH_API c10::intrusive_ptr<c10::ivalue::Future> _call_end_callbacks_on_fut_new( const c10::intrusive_ptr<PythonRecordFunction>& record, const c10::intrusive_ptr<c10::ivalue::Future>& fut); } // namespace torch::autograd::profiler ```
========================================================================================================================================== SOURCE CODE FILE: saved_variable.h LINES: 1 SIZE: 5.04 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\saved_variable.h ENCODING: utf-8 ```h #pragma once #include <c10/core/SafePyObject.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/forward_grad.h> #include <torch/csrc/autograd/saved_variable_hooks.h> #include <ATen/core/Tensor.h> #include <cstdint> #include <memory> namespace torch::autograd { using Variable = at::Tensor; struct Node; TORCH_API extern const char* ERR_BACKWARD_TWICE; /// A snapshot of a variable at a certain version. A `SavedVariable` stores /// enough information to reconstruct a variable from a certain point in time. class TORCH_API SavedVariable { public: SavedVariable() = default; SavedVariable( const Variable& variable, bool is_output, bool is_inplace_on_view = false); SavedVariable( const std::optional<Variable>& variable, bool is_output, bool is_inplace_on_view = false); SavedVariable(const SavedVariable&) = delete; SavedVariable(SavedVariable&&) = default; SavedVariable& operator=(const SavedVariable&) = delete; SavedVariable& operator=(SavedVariable&&) = default; ~SavedVariable() { if (fw_grad_) { // See note [ Using ForwardGrad ] fw_grad_->clear(); } } /// Reconstructs the saved variable. Pass `saved_for` as the gradient /// function if constructing the `SavedVariable` with it would have caused a /// circular reference. Variable unpack(std::shared_ptr<Node> saved_for = nullptr) const; void register_hooks(std::unique_ptr<SavedVariableHooks>&& hooks); void reset_data(); bool has_hooks() const { return (bool)hooks_; } // Used by compiled autograd std::optional<std::pair<c10::SafePyObject, c10::SafePyObject>> retrieve_unpack_hook_data() const { if (!hooks_) { return std::nullopt; } return hooks_->retrieve_unpack_hook_data(); } private: // This field contains either: // 1. the variable to save // 2. or its tensor_data. // If storing the variable itself would create a circular reference, // we fall into the second case and its metadata is also saved separately. // In that case, the grad_fn must be passed in to the unpack function when // reconstructing the Variable (except when we are doing an inplace operation // on a view, see below). The field saved_original_ below reflects the two // cases: its value is true in the first case and false in the second case. // The value data_.defined() can be false in three cases: // 1. SavedVariable was constructed without a Tensor (the value to save is // None), in that case was_default_constructed_ will be kept at true // 2. The saved variable has been released by calling // SavedVariable::reset_data(), typically during the backward pass // 3. Hooks have been registered. In that case, hooks_ will be defined // instead. Note that the value of saved_original_ only reflects what happened // during the construction of the SavedVariable. If saved_original_ is true, // we saved the original tensor in data_, but if the user registers hooks, we // will no longer have it (despite the saved_original_ still being true) at::Tensor data_; // This field is used to store the forward AD gradients associated with // the saved Tensor. Note that this shared_ptr must never be shared with // either the saved Tensor or the unpacked Tensor. See note [ Using // ForwardGrad ] std::shared_ptr<ForwardGrad> fw_grad_; // Weak version of grad_fn_ that prevents leaks in rebase_history() for // inplace views. // This variable is used when the user chooses to create a SavedVariable with // is_inplace_on_view = true. // In that case, the grad_fn passed in to the unpack function at unwrapping // time is unused. std::weak_ptr<Node> weak_grad_fn_; uint32_t saved_version_ = 0; uint32_t output_nr_ = 0; bool was_default_constructed_ = true; bool is_inplace_on_view_ = false; bool saved_original_ = false; bool is_leaf_ = false; bool is_output_ = false; // Hooks are a pair of functions pack_hook/unpack_hook that provides // fine-grained control over how the SavedVariable should save its data. // pack_hook is called upon registration, while unpack_hook is called when // unpacking. std::unique_ptr<SavedVariableHooks> hooks_; // Fields grad_fn_, grad_accumulator_, and requires_grad_ are only used if // hooks are defined. They are set before pack_hook is called and used after // unpack_hook is called. std::shared_ptr<Node> grad_fn_; // For the usual case where leaf tensors are the input, we expect its // grad_acc to be kept alive by the graph. The reason SavedVariable holds // a owning reference is to support the case where a custom autograd Function // saves an intermediate. std::shared_ptr<Node> grad_accumulator_; bool requires_grad_ = false; void save_metadata(const Variable& data); static std::unique_ptr<SavedVariableHooks> get_default_hooks(); void set_hooks_and_pack_data( std::unique_ptr<SavedVariableHooks>&& hooks, const Variable& data); }; } // namespace torch::autograd ```
================================================================================================================================================ SOURCE CODE FILE: saved_variable_hooks.h LINES: 1 SIZE: 0.55 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\saved_variable_hooks.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/Tensor.h> #include <c10/core/SafePyObject.h> namespace torch::autograd { struct TORCH_API SavedVariableHooks { virtual void call_pack_hook(const at::Tensor& tensor) = 0; virtual at::Tensor call_unpack_hook() = 0; virtual ~SavedVariableHooks() = default; virtual std::optional<std::pair<c10::SafePyObject, c10::SafePyObject>> retrieve_unpack_hook_data() const { throw std::runtime_error( "Compiled Autograd only supports python saved tensor hooks "); } }; } // namespace torch::autograd ```
==================================================================================================================================== SOURCE CODE FILE: symbolic.h LINES: 1 SIZE: 0.31 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\symbolic.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> #include <torch/csrc/onnx/onnx.h> namespace torch::autograd { struct SymbolicContext { jit::Block* block; }; struct symbolic_unconvertible : public std::runtime_error { using std::runtime_error::runtime_error; }; } // namespace torch::autograd ```
================================================================================================================================================ SOURCE CODE FILE: error_messages.h LINES: 1 SIZE: 0.50 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\utils\error_messages.h ENCODING: utf-8 ```h #pragma once #include <sstream> namespace torch::autograd::utils { inline std::string requires_grad_leaf_error(bool requires_grad) { std::ostringstream oss; oss << "you can only change requires_grad flags of leaf variables."; if (requires_grad == false) { oss << " If you want to use a computed variable in a subgraph " "that doesn't require differentiation use " "var_no_grad = var.detach()."; } return oss.str(); } } // namespace torch::autograd::utils ```
====================================================================================================================================================== SOURCE CODE FILE: grad_layout_contract.h LINES: 1 SIZE: 2.83 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\utils\grad_layout_contract.h ENCODING: utf-8 ```h #pragma once #include <ATen/Tensor.h> namespace torch::autograd::utils { // Helper functions to enforce the "Gradient Layout Contract" described in // torch/csrc/autograd/functions/accumulate_grad.h. // Checks if grad obeys the contract with variable. inline bool obeys_layout_contract( const at::Tensor& grad, const at::Tensor& variable) { TORCH_INTERNAL_ASSERT(!grad.is_sparse()); TORCH_INTERNAL_ASSERT(!grad.is_sparse_csr()); TORCH_INTERNAL_ASSERT(!variable.is_sparse_csr()); // NOLINTNEXTLINE(bugprone-branch-clone) if (variable.is_nested()) { // TODO: Nested Tensor does not have an implementation of detach. The // current implementation of nested tensor likely does obey the gradient // contract and should return true, but this would likely change in the // future return false; } else if (variable.is_sparse()) { // Gradient Layout Contract is not applicable for sparse layouts return false; } else if (variable.is_non_overlapping_and_dense()) { // Only look at stride for dimensions that are not of size 1. const auto& grad_sizes = grad.sym_sizes(); const auto& grad_strides = grad.sym_strides(); const auto& variable_strides = variable.sym_strides(); for (const auto idx : c10::irange(grad_sizes.size())) { if (grad_sizes[idx] != 1) { if (grad_strides[idx] != variable_strides[idx]) { return false; } } else { // This should not be needed but we don't check if a Tensor has views // before stashing it. And 0-strided Tensors of size 1 are actually // views for ops like cat. // TODO: Actually detect views in the accumulateGrad function so that // this Tensor is not considered at all. if (grad_strides[idx] == 0) { return false; } } } return true; } else { return grad.is_contiguous(at::MemoryFormat::Contiguous); } } // Creates a clone of new_grad that obeys the contract with variable. // The clone should attach to new_grad's history if GradMode::is_enabled(). inline at::Tensor clone_obey_contract( const at::Tensor& new_grad, const at::Tensor& variable) { if (variable.is_non_overlapping_and_dense()) { // (1) // Does this dicey-looking sequence attach the result to new_grad's // history if GradMode::is_enabled()? Yes, and @alband says it should. return std::move(new_grad .new_empty_strided_symint( variable.sym_sizes(), variable.sym_strides(), variable.options().memory_format(std::nullopt)) .copy_(new_grad)); } else { // (2) return new_grad.clone(at::MemoryFormat::Contiguous); } } } // namespace torch::autograd::utils ```
================================================================================================================================================== SOURCE CODE FILE: lambda_post_hook.h LINES: 1 SIZE: 1.29 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\utils\lambda_post_hook.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/function_hook.h> #include <torch/csrc/dynamo/compiled_autograd.h> namespace torch::autograd::utils { // Turns lambda into a torch::autograd::FunctionPostHook. class LambdaPostHook : public torch::autograd::FunctionPostHook { using variable_list = std::vector<torch::autograd::Variable>; using fn_type = std::function<variable_list(const variable_list&, const variable_list&)>; using compiled_fn_type = std::function<void(CompiledNodeArgs&)>; public: // The lambda function takes as arguments the outputs and inputs of the // autograd function and can modify the outputs of the autograd function by // returning a new output if needed. /* implicit */ LambdaPostHook(fn_type fn) : fn_(std::move(fn)) {} LambdaPostHook(fn_type fn, compiled_fn_type compiled_fn) : fn_(std::move(fn)), compiled_fn_(std::move(compiled_fn)) {} variable_list operator()( const variable_list& outputs, const variable_list& inputs) override { return fn_(outputs, inputs); } void compiled_args(CompiledNodeArgs& args) const override {} protected: std::function<variable_list(const variable_list&, const variable_list&)> fn_; compiled_fn_type compiled_fn_{}; }; } // namespace torch::autograd::utils ```
==================================================================================================================================================== SOURCE CODE FILE: python_arg_parsing.h LINES: 1 SIZE: 1.44 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\utils\python_arg_parsing.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/Tensor.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/python_arg_parser.h> namespace torch::autograd::utils { // The parameter allow_copy is to accept copy for Tensor.to (and by proxy // PackedSequences.to) but not nn.Module.to. inline std::tuple< std::optional<at::Device>, std::optional<at::ScalarType>, bool, bool, std::optional<at::MemoryFormat>> parse_to_conversion(PythonArgs& r, bool allow_copy) { if (r.idx == 0) { if (!allow_copy && !r.isNone(3)) throw std::runtime_error(".to() does not accept copy argument"); return std::make_tuple( r.deviceOptional(0), r.scalartypeOptional(1), r.toBool(2), r.toBool(3), r.memoryformatOptional(4)); } else if (r.idx == 1) { if (!allow_copy && !r.isNone(2)) throw std::runtime_error(".to() does not accept copy argument"); return std::make_tuple( std::nullopt, r.scalartype(0), r.toBool(1), r.toBool(2), r.memoryformatOptional(3)); } else { auto tensor = r.tensor(0); if (!allow_copy && !r.isNone(2)) throw std::runtime_error(".to() does not accept copy argument"); return std::make_tuple( tensor.device(), tensor.scalar_type(), r.toBool(1), r.toBool(2), r.memoryformatOptional(3)); } } } // namespace torch::autograd::utils ```
========================================================================================================================================== SOURCE CODE FILE: warnings.h LINES: 1 SIZE: 0.59 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\utils\warnings.h ENCODING: utf-8 ```h #pragma once #include <c10/util/Exception.h> #include <mutex> #include <vector> namespace torch::autograd::utils { // Warning handler for multi-threaded contexts. Gather warnings from // all threads into a single queue, then process together at the end // in the main thread. class DelayWarningHandler : public at::WarningHandler { public: ~DelayWarningHandler() override = default; void replay_warnings(); private: void process(const c10::Warning& warning) override; std::vector<c10::Warning> warnings_; std::mutex mutex_; }; } // namespace torch::autograd::utils ```
============================================================================================================================================== SOURCE CODE FILE: wrap_outputs.h LINES: 1 SIZE: 3.80 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\utils\wrap_outputs.h ENCODING: utf-8 ```h #pragma once // Wrap tensor operation outputs as PyObject* #include <ATen/ScalarOps.h> #include <ATen/core/Tensor.h> #include <c10/util/irange.h> #include <torch/csrc/python_headers.h> #include <initializer_list> #include <tuple> #include <torch/csrc/Dtype.h> #include <torch/csrc/DynamicTypes.h> #include <torch/csrc/Layout.h> #include <torch/csrc/QScheme.h> #include <torch/csrc/autograd/python_variable.h> #include <torch/csrc/autograd/variable.h> #include <torch/csrc/utils/python_numbers.h> #include <torch/csrc/utils/tensor_qschemes.h> namespace torch::autograd::utils { inline PyObject* wrap(bool value) { if (value) { Py_RETURN_TRUE; } else { Py_RETURN_FALSE; } } inline PyObject* wrap(c10::DeviceIndex value) { return THPUtils_packDeviceIndex(value); } inline PyObject* wrap(int64_t value) { return THPUtils_packInt64(value); } inline PyObject* wrap(double value) { return PyFloat_FromDouble(value); } inline PyObject* wrap(c10::complex<double> value) { // I could probably also use FromComplex with a reinterpret cast, // but... eh. return PyComplex_FromDoubles(value.real(), value.imag()); } inline PyObject* wrap(void* value) { return PyLong_FromVoidPtr(value); } inline PyObject* wrap(THPDtype* dtype) { return Py_NewRef(dtype); } inline PyObject* wrap(at::ScalarType scalarType) { return Py_NewRef(getTHPDtype(scalarType)); } inline PyObject* wrap(THPLayout* layout) { return Py_NewRef(layout); } inline PyObject* wrap(at::Layout layout) { return Py_NewRef(getTHPLayout(layout)); } inline PyObject* wrap(const at::Tensor& tensor) { return THPVariable_Wrap(tensor); } inline PyObject* wrap(const at::Scalar& scalar) { return wrap(scalar_to_tensor(scalar)); } inline PyObject* wrap(at::QScheme qscheme) { auto* thp_qscheme = torch::utils::getTHPQScheme(qscheme); Py_INCREF(thp_qscheme); return thp_qscheme; } inline PyObject* wrap(at::TensorList tl) { auto r = THPObjectPtr{PyTuple_New(static_cast<Py_ssize_t>(tl.size()))}; if (!r) throw python_error(); for (const auto i : c10::irange(tl.size())) { PyTuple_SET_ITEM(r.get(), i, wrap(tl[i])); } return r.release(); } inline PyObject* wrap(at::IntArrayRef list) { auto r = THPObjectPtr{PyTuple_New(static_cast<Py_ssize_t>(list.size()))}; if (!r) throw python_error(); for (const auto i : c10::irange(list.size())) { PyTuple_SET_ITEM(r.get(), i, wrap(list[i])); } return r.release(); } inline PyObject* wrap(at::Stream stream) { return THPStream_Wrap(stream); } namespace detail { template <typename F, typename Tuple, size_t... Is> void apply_with_idx_impl( const F& f, Tuple& t, std::index_sequence<Is...> /*indices*/) { (void)std::initializer_list<int>{(f(std::get<Is>(t), Is), 0)...}; } // For tuple(a, b, c), calls f(a, 0), f(b, 1), f(c, 2) template <typename F, typename... Ts> void apply_with_idx(const F& f, std::tuple<Ts...>& t) { apply_with_idx_impl(f, t, std::index_sequence_for<Ts...>{}); } } // namespace detail template <typename... Ts> PyObject* wrap(std::tuple<Ts...> values) { auto r = THPObjectPtr{PyTuple_New(sizeof...(Ts))}; if (!r) throw python_error(); detail::apply_with_idx( [&](auto& value, size_t idx) { PyTuple_SET_ITEM(r.get(), idx, wrap(std::move(value))); }, values); return r.release(); } template <typename... Ts> PyObject* wrap(PyTypeObject* type, std::tuple<Ts...> values) { auto r = THPObjectPtr{PyStructSequence_New(type)}; if (!r) throw python_error(); detail::apply_with_idx( [&](auto& value, size_t idx) { PyStructSequence_SET_ITEM(r.get(), idx, wrap(std::move(value))); }, values); return r.release(); } } // namespace torch::autograd::utils ```
==================================================================================================================================== SOURCE CODE FILE: variable.h LINES: 1 SIZE: 40.34 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\variable.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/python_stub.h> #include <torch/csrc/Export.h> #include <torch/csrc/autograd/cpp_hook.h> #include <torch/csrc/autograd/edge.h> #include <torch/csrc/autograd/forward_grad.h> #include <torch/csrc/autograd/function_hook.h> #include <ATen/NamedTensorUtils.h> #include <ATen/core/Tensor.h> #include <ATen/core/VariableHooksInterface.h> #include <c10/util/Exception.h> #include <cstdint> #include <memory> #include <mutex> #include <string> #include <utility> #include <vector> namespace torch::autograd { /// `Variable` is exactly the same as `Tensor` (i.e. we have `using Variable = /// at::Tensor`). This means you can perform all the usual mathematical and /// other operations you can perform on `Tensor`s also on `Variable`s. /// /// The only reason we are keeping the `Variable` class is backward /// compatibility with external user's legacy C++ frontend code. Our intention /// is to eliminate the `Variable` class in the near future. using Variable = at::Tensor; } // namespace torch::autograd // The following are all internal APIs and should not be shown in libtorch docs. // Therefore, we wrap the following code with `#ifndef DOXYGEN_SHOULD_SKIP_THIS // ... #endif` #ifndef DOXYGEN_SHOULD_SKIP_THIS namespace torch::autograd { /// Check if this type is supported by the autograd engine. /// If you change this, update the doc at the top of the /// torch/autograd/__init__.py file and /// "test_set_requires_grad_only_for_continuous_types" in test/test_autograd.py static inline bool isDifferentiableType(at::ScalarType t) { return isFloatingType(t) || isComplexType(t); } struct Node; ///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Variable ///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// A `Variable` augments a `Tensor` with the ability to interact in our /// autograd machinery. Conceptually, `Variable`s travel along `Edge`s between /// `Node`s in the autograd graph. A `Variable` can either be a leaf, like a /// weight in a neural network, or an interior variable, when it is the result /// of an operation between variables. Every `Variable` also stores another /// `Variable` called its `grad` (gradient). If the variable is a leaf, its /// gradient will be accumulated into this variable. /// /// Every Tensor is a Variable, but sometimes we colloquially refer to Variables /// that don't require gradients as Tensors (since none of the autograd /// machinery for Variables applies). Historically, Variables and Tensors /// were separate concepts, but now they are exactly the same (i.e. we have /// `using Variable = at::Tensor`). /// /// Gradient Edges ///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Furthermore, `Variable`s have the notion of a `gradient_edge`, which is the /// edge in the autograd graph that connects the variable to a particular input /// of the gradient function that will be invoked with the variable during the /// backward pass. More precisely, this gradient function can be one of two /// things: /// 1. A `grad_fn`, if the variable is in the interior of the graph. This is the /// gradient of the function that produced the variable. /// 2. A `grad_accumulator`, if the variable is a leaf, which accumulates a /// scalar gradient value into its `grad` variable. /// /// Versioning ///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Another major feature of `Variable`s are *versions*. Versions are /// incremented when an in-place mutation of a variable occurs. Versions are /// useful when constructing `SavedVariable`s, which take a snapshot of a /// `Variable` at a certain version. You can retrieve a `Variable`'s version /// through its `current_version()` method. /// /// Views ///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// It is possible for a `Variable` to be a *view* of another `Variable`, in /// which case it tracks that `Variable`'s data and autograd history. Beyond /// construction, the interface of a view is identical to that of a regular /// `Variable`. You can determine whether `Variable` is in fact a view by /// probing its `is_view()` method. Note that the *view* semantics are only /// meaningful for `Variable` relations that are relevant to autograd. /// See NOTE [ Autograd View Variables ] for more details. ///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ struct AutogradMeta; struct DifferentiableViewMeta; // Private-ish functions for manipulating variables; we don't want to put them // on Tensor proper namespace impl { // WARNING: This may return a nullptr. If you require AutogradMeta to return // a materialized structure, use materialize_autograd_meta instead. TORCH_API AutogradMeta* get_autograd_meta(const at::TensorBase&); // WARNING: This will return a nullptr if the Tensor is not a view. TORCH_API DifferentiableViewMeta* get_view_autograd_meta(const at::TensorBase&); // Returns the current autograd meta, materializing it if it was previously // none. This counts as a *mutating* operation, so do not call it on // "read-only" operators; in particular, this is NOT thread safe TORCH_API AutogradMeta* materialize_autograd_meta(const at::TensorBase&); /// Set the gradient accumulator of the `Variable`. This is only applicable to /// leaf variables. Interior variables should call `set_gradient_edge()`. TORCH_API void set_grad_accumulator( const Variable&, std::weak_ptr<Node> grad_accumulator); /// Attempts to get a pointer to the gradient accumulator of the `Variable`, /// if it still exists. If the gradient accumulator function has been /// destroyed, returns a `nullptr`. TORCH_API std::shared_ptr<Node> try_get_grad_accumulator(const Variable&); /// Gets the gradient accumulator of the `Variable` if it has one, or else /// create one on the fly and return it. TORCH_API std::shared_ptr<Node> grad_accumulator(const Variable&); /// Returns the "canonical" gradient edge of this `Variable`, i.e. either the /// gradient function if this is an interior `Variable`, or the gradient /// accumulator otherwise. If the `Variable` is interior, the returned `Edge` /// will store the input index of the `Node` to which this variable is /// connected in its `input_nr` field. For leaves, the `input_nr` is always /// zero. Note that `set_gradient_edge` and `gradient_edge` are not /// symmetric. You must use `set_gradient_edge` to set the `grad_fn` and /// `set_grad_accumulator` to set the accumulator. TORCH_API Edge gradient_edge(const Variable&); /// Set the gradient edge -- i.e. `grad_fn` and `input_nr` -- of the /// `Variable`. /// NOTE: This will always set the `grad_fn`, even if this is a leaf variable, /// and never the `grad_accumulator`. For the latter, use /// `set_grad_accumulator`. This allows late construction of an interior /// `Variable`. TORCH_API void set_gradient_edge(const Variable&, Edge edge); // Autograd Graph Interaction //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Update the `grad_fn` of an existing Variable. Called after in-place /// modifications. /// /// For View Variables: /// Called after in-place modifications. Modifies the grad_fn of the base /// Variable. TORCH_API void rebase_history(const Variable&, Edge gradient_edge); /// Gets the raw gradient function pointer, whatever it currently is. TORCH_API Node* grad_fn_unsafe(const Variable&); /// Increments the version count of this `Variable`. TORCH_API void bump_version(const Variable&); TORCH_API void set_version_counter( const Variable&, const c10::VariableVersion& version_counter); /// Retrieves this `Variable`s version counter. TORCH_API const c10::VariableVersion& version_counter(const Variable&); TORCH_API void set_name(const Variable&, const std::string& name); TORCH_API void add_hook( const at::TensorBase&, std::unique_ptr<FunctionPreHook> hook); TORCH_API std::vector<std::unique_ptr<FunctionPreHook>>& hooks(const Variable&); TORCH_API void clear_hooks(const at::TensorBase&); TORCH_API void set_post_acc_grad_hooks( const at::TensorBase&, std::unique_ptr<PostAccumulateGradHook> dict); TORCH_API std::unique_ptr<PostAccumulateGradHook>& post_acc_grad_hooks( const Variable&); TORCH_API void create_cpp_hook( const at::TensorBase&, bool is_retains_grad_hooks = false); } // namespace impl //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // AutogradMeta //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Each `Variable` has one unique `AutogradMeta` struct, which stores autograd /// metadata fields that are necessary for tracking the Variable's autograd /// history. As an optimization, a Variable may store a nullptr, in lieu of a /// default constructed AutogradMeta. struct TORCH_API AutogradMeta : public c10::AutogradMetaInterface { std::string name_; Variable grad_; std::shared_ptr<Node> grad_fn_; std::weak_ptr<Node> grad_accumulator_; // This field is used to store all the forward AD gradients // associated with this AutogradMeta (and the Tensor it corresponds to) // There is a semantic 1:1 correspondence between AutogradMeta and // ForwardGrad but: // - This field is lazily populated. // - This field is a shared_ptr but it must never be // shared by multiple Tensors. See Note [ Using ForwardGrad ] // Any transition from not_initialized to initialized // must be protected by mutex_ mutable std::shared_ptr<ForwardGrad> fw_grad_; // The hooks_ field is actually reused by both python and cpp logic // For both cases, we have a data structure, cpp_hooks_list_ (cpp) // or dict (python) which is the canonical copy. // Then, for both cases, we always register a single hook to // hooks_ which wraps all the hooks in the list/dict. // And, again in both cases, if the grad_fn exists on that tensor // we will additionally register a single hook to the grad_fn. // // Note that the cpp and python use cases aren't actually aware of // each other, so using both is not defined behavior. std::vector<std::unique_ptr<FunctionPreHook>> hooks_; std::shared_ptr<hooks_list> cpp_hooks_list_; // The post_acc_grad_hooks_ field stores only Python hooks // (PyFunctionTensorPostAccGradHooks) that are called after the // .grad field has been accumulated into. This is less complicated // than the hooks_ field, which encapsulates a lot more. std::unique_ptr<PostAccumulateGradHook> post_acc_grad_hooks_ = nullptr; // Only meaningful on leaf variables (must be false otherwise) bool requires_grad_{false}; // Only meaningful on non-leaf variables (must be false otherwise) bool retains_grad_{false}; bool is_view_{false}; // The "output number" of this variable; e.g., if this variable // was the second output of a function, then output_nr == 1. // We use this to make sure we can setup the backwards trace // correctly when this variable is passed to another function. uint32_t output_nr_; // Mutex to ensure that concurrent read operations that modify internal // state are still thread-safe. Used by grad_fn(), grad_accumulator(), // fw_grad() and set_fw_grad() // This is mutable because we need to be able to acquire this from const // version of this class for the functions above mutable std::mutex mutex_; /// Sets the `requires_grad` property of `Variable`. This should be true for /// leaf variables that want to accumulate gradients, and false for all other /// variables. void set_requires_grad(bool requires_grad, at::TensorImpl* self_impl) final { TORCH_CHECK( !requires_grad || isDifferentiableType(at::typeMetaToScalarType(self_impl->dtype())), "Only Tensors of floating point and complex dtype can require gradients"); requires_grad_ = requires_grad; } bool requires_grad() const override { return requires_grad_ || grad_fn_; } /// Accesses the gradient `Variable` of this `Variable`. Variable& mutable_grad() override { return grad_; } const Variable& grad() const override { return grad_; } const Variable& fw_grad(uint64_t level, const at::TensorBase& self) const override; void set_fw_grad( const at::TensorBase& new_grad, const at::TensorBase& self, uint64_t level, bool is_inplace_op) override; AutogradMeta( at::TensorImpl* self_impl = nullptr, bool requires_grad = false, Edge gradient_edge = Edge()) : grad_fn_(std::move(gradient_edge.function)), output_nr_(gradient_edge.input_nr) { // set_requires_grad also checks error conditions. if (requires_grad) { TORCH_INTERNAL_ASSERT(self_impl); set_requires_grad(requires_grad, self_impl); } TORCH_CHECK( !grad_fn_ || !requires_grad_, "requires_grad should be false if grad_fn is set"); } ~AutogradMeta() override { // If AutogradMeta is being destroyed, it means that there is no other // reference to its corresponding Tensor. It implies that no other thread // can be using this object and so there is no need to lock mutex_ here to // guard the check if fw_grad_ is populated. if (fw_grad_) { // See note [ Using ForwardGrad ] fw_grad_->clear(); } } }; /// Base class for view functions, providing reapplication of a view on a new /// base. Each view op should get a codegenerated subclass of this class /// containing any state needed to reconstruct the view. The class also provides /// convenience accessors for saved SymInts / tensor state. This is useful for /// e.g. fake-ification, where we want to use symbolic values or fake tensors /// instead. struct TORCH_API ViewFunc { virtual ~ViewFunc() = default; /// Returns any SymInts in the saved state. virtual std::vector<c10::SymInt> get_symints() const { return {}; } /// Returns the number of SymInts in the saved state. virtual size_t num_symints() const { return 0; } /// Returns any tensors in the saved state. virtual std::vector<at::Tensor> get_tensors() const { return {}; } /// Returns the number of tensors in the saved state. virtual size_t num_tensors() const { return 0; } /// Reapplies the view on the given base using the saved state. virtual at::Tensor operator()(const at::Tensor&) const = 0; /// Returns a clone of this ViewFunc, optionally with the specified saved /// state. virtual std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = std::nullopt, std::optional<std::vector<at::Tensor>> = std::nullopt) const = 0; protected: /// Sets the values of any SymInts in the saved state. The input vector size /// must match the number of SymInts in the saved state (i.e. the size of the /// list returned by get_symints()). /// NOLINTNEXTLINE(performance-unnecessary-value-param) virtual void set_symints(std::vector<c10::SymInt>) {} /// Sets the values of any Tensors in the saved state. The input vector size /// must match the number of Tensors in the saved state (i.e. the size of the /// list returned by get_tensors()). /// NOLINTNEXTLINE(performance-unnecessary-value-param) virtual void set_tensors(std::vector<at::Tensor>) {} }; /// ViewFunc that represents a chain of two ViewFuncs. struct ChainedViewFunc : public ViewFunc { ChainedViewFunc( std::unique_ptr<ViewFunc> first, std::unique_ptr<ViewFunc> second) : first(std::move(first)), second(std::move(second)) {} ~ChainedViewFunc() override = default; std::vector<c10::SymInt> get_symints() const override; size_t num_symints() const override { return first->num_symints() + second->num_symints(); } std::vector<at::Tensor> get_tensors() const override; size_t num_tensors() const override { return first->num_tensors() + second->num_tensors(); } at::Tensor operator()(const at::Tensor&) const override; std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = std::nullopt, std::optional<std::vector<at::Tensor>> = std::nullopt) const override; private: std::unique_ptr<ViewFunc> first; std::unique_ptr<ViewFunc> second; }; /// ViewFunc that errors with a specified error message when called. struct ErroringViewFunc : public ViewFunc { ErroringViewFunc(std::string error_msg) : error_msg(std::move(error_msg)) {} ~ErroringViewFunc() override = default; at::Tensor operator()(const at::Tensor&) const override { TORCH_CHECK(false, error_msg); } std::unique_ptr<ViewFunc> clone_and_set( std::optional<std::vector<c10::SymInt>> = std::nullopt, std::optional<std::vector<at::Tensor>> = std::nullopt) const override { return std::make_unique<ErroringViewFunc>(error_msg); } private: std::string error_msg; }; struct TORCH_API ViewInfo { /// The base `Variable` /// If this ViewInfo represents a forward (respectively backward) AD gradient, /// then this Tensor cannot be a forward (respectively backward) view. Variable base_; /// By default we use as_strided to recover views which is more efficient. /// view_fn is only saved when as_strided is not supported. /// If view_fn has value, we use it to recover views in backward. std::unique_ptr<ViewFunc> view_fn_; /// Analogue of view_fn but in reverse: given a view -> produce the base by /// applying the inverse view. std::function<Variable(const Variable&)> rev_view_fn_; /// Accessors for the view function bool has_view_fn() const { // assume either BOTH or NEITHER of view_fn_ and rev_view_fn_ exist return view_fn_ != nullptr; } const ViewFunc& view_fn() const { TORCH_CHECK( has_view_fn(), "Can only access the view function if it exists."); return *view_fn_; } std::function<Variable(const Variable&)> rev_view_fn() const { TORCH_CHECK( has_view_fn(), "Can only access the reverse view function if it exists."); return rev_view_fn_; } /// The chain function can be used to build a new ViewInfo for a /// differentiable view function. It will return a new view info that /// accurately represents how "tensor" is a view of this instance's "base_". /// The "base" and "tensor" are respectively the input and output of the /// differentiable view function that happened. They are required to properly /// set the optional view_fn_ when it is not provided. The "view_func", if /// provided, should be a function that allows to re-do the view between /// "base" and "tensor". ViewInfo chain( const Variable& base, const Variable& tensor, std::unique_ptr<ViewFunc> view_func = nullptr, std::function<Variable(const Variable&)> rev_view_func = nullptr) const; ViewInfo( Variable base, std::unique_ptr<ViewFunc> view_fn, std::function<Variable(const Variable&)> rev_view_fn) : base_(std::move(base)), view_fn_(std::move(view_fn)), rev_view_fn_(std::move(rev_view_fn)) { TORCH_CHECK(base_.defined(), "base is undefined"); } }; //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // DifferentiableViewMeta //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// NOTE [ Autograd View Variables ] /// /// Many operations return Variable that shares storage with an input Variable. /// The returned Variable is called a **view** Variable on the input **base** /// Variable. /// /// In PyTorch, we have two types of views: differentiable views, and /// non-differentiable views. In either type, to support proper version /// checking, the base and view Variables must always share the same /// version_counter. /// /// /// Differentiable Views /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// This class allows to track both forward and backward AD differentiable /// views. These views can have different base as non-differentiable view for /// forward and backward mode AD are not the same. /// /// Most function are either both forward and backward differentiable views (for /// example: view, select, narrow, transpose, etc) or both not forward and not /// backward differentiable views (for example: indices, values, eq, lt, etc). /// But there are also functions that are forward but not backward /// differentiable views (only detach for now) or functions that are backward /// but not forward differentiable view (only make_dual and unpack dual for /// now). /// /// A concrete example of two views with different bases is as follow: /// /// # Have: /// # dual is a dual Tensor that is neither a forward or backward view /// detached_dual = dual.detach() /// view = detached_dual.view_as(dual) /// # The forward base of view is dual /// # The backward base of view is detached_dual /// /// - Backward Mode View /// Differentiable views are the view variables where you want gradients to flow /// back to the base variables. Out-of-place operations on views are quite /// straightforward, but in-place ones are very tricky. Even if the base /// variable may not require grad when we create the view, we still need to /// track the view relation because future in-place ops may require back-proping /// through it. For example, we need to support /// /// (1) in-place operation on view, e.g., /// /// # Have: /// # base.requires_grad = False /// # var.requires_grad = True /// base[1] = var # i.e., base[1].copy_(var) /// torch.autograd.grad(base.sum(), var) <- should return an all ones /// tensor /// /// (2) in-place operation on base after view is created, e.g., /// /// # Have: /// # base.requires_grad = False /// # var.requires_grad = True /// view = base[1] /// base.copy_(var) /// torch.autograd.grad(view.sum(), var) <- should return a tensor with /// var[1] filled with all ones and /// zeros everywhere else /// /// - Forward Mode View /// Forward differentiable views follow the same semantic as backward ones but /// show up differently as they are computed along with the forward evaluation. /// The hard examples above are thus very similar /// /// (1) in-place operation on view, e.g., /// /// # Have: /// # base is a regular Tensor /// # var is a dual Tensor whose tangent is all ones /// base[1] = var # i.e., base[1].copy_(var) /// # Now, base is a dual Tensor /// _, fw_grad = fwAD.unpack_dual(base) <- fw_grad should be a tensor with /// fw_grad[1] filled with all ones /// and zeros everywhere else /// /// (2) in-place operation on base after view is created, e.g., /// /// # Have: /// # base is a regular Tensor /// # var is a dual Tensor whose tangent is all ones /// view = base[1] /// base.copy_(var) /// _, fw_grad = fwAD.unpack_dual(view) <- fw_grad should be an all ones /// tensor /// /// See Note [Forward Grad View/inplace] for more details on how we handle these /// hard cases. /// /// /// DifferentiableViewMeta is created to support gradient tracking of /// such **in-place** operations. In particular, /// + if an in-place op is done on base, the grad_fn field of the view may /// become stale. So accesses should always go through grad_fn(), which /// reconstructs an updated grad_fn if the version_counter has incremented. /// All other fields are always valid. /// + if an in-place op is done on view, in rebase_history() of view, which is /// called after every in-place op in VariableType.cpp, the grad_fn of base /// is updated. /// + if a single autograd Node returns multiple differentiable views, if any /// output is modified by an inplace operation, the autograd engine will /// make an equivalent graph (corresponding to the view operations) without /// using equivalent graph, where each output is treated as if it were /// produced by a distinct view operation. This discards the original (e.g., /// user provided) grad_fn. If the provided grad_fn does more than the /// backward of the view, then the DifferentiableViewMeta must be created /// with creation_meta= CreationMeta::MULTI_OUTPUT_NODE to prevent the /// engine from ignoring the provided grad_fn. /// /// Interaction with GradMode: /// The particular case that we consider here is: /// /// # Have: /// # base.requires_grad = True or False /// with torch.no_grad(): /// view = base[1] /// base.requires_grad_() /// view.copy_(var) /// torch.autograd.grad(base.sum(), var) <- what should it return? /// /// Given that this particular code example is ambiguous and can easily be /// replace by either moving both inside the no_grad block or both outside, we /// explicitly forbid it. For now, it is deprecated by a warning. This is /// achieved by setting creation_meta=CreationMeta::NO_GRAD_MODE for all /// differentiable views created in no_grad mode. /// /// See Note [View + Inplace update for base tensor] /// and Note [View + Inplace update for view tensor] for the details how /// autograd handles inplace update with view ops. /// /// Non-Differentiable Views /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// In certain cases, although function outputs share storage with inputs, they /// will **never** require gradient history tracking. Instead of registering the /// view relation via DifferentiableViewMeta in autograd, the views will be /// using usual AutogradMeta and just share the version counters with the base /// Variables. /// Such views include: /// 1. Views created from .detach() /// 2. Views that are non-differentiable by its nature. /// E.g., `sparse_tensor.indices()` is a integral view on a (possibly) /// floating point tensor. /// See top of `derivatives.yaml` on how to specify that outputs of a /// function are non-differentiable. /// These are called non-differentiable views as the gradients do not flow /// through the view relation. /// /// Relevant logic for both differentiable and non-differentiable views is /// implemented in make_variable_(non_)differentiable_view below, and /// wrap_output of gen_variable_type.py. /// NOTE [ View + Inplace detection ] /// /// We want to detect views followed by inplace as they are often forbidden to /// ensure correctness of the computed gradients. But since we want to only /// notify the user when both happen, we tag the DifferentiableViewMeta when the /// view is created via the `make_variable_*_view()` functions. This tag is then /// checked by the `check_inplace()` function from `VariableTypeUtils.h` that /// should be called before every inplace operation and to detect cases where /// other views are modified and this one is rebased by side effect, we also /// check in the `VariableHooks::grad_fn()`. /// Flag that gives more information about when this view was created: /// - IN_CUSTOM_FUNCTION should be set when the view is created inside a custom /// autograd Function is returned. /// - NO_GRAD_MODE should be set when a view in created when GradMode is /// disabled /// - MULTI_OUTPUT_NODE should be set when a Node created by codegen code /// returns /// multiple differentiable views /// - Inference_MODE should be set when a view of normal tensor is created in /// InferenceMode. /// - DEFAULT is for all other cases enum class CreationMeta : uint8_t { DEFAULT, IN_CUSTOM_FUNCTION, MULTI_OUTPUT_NODE, NO_GRAD_MODE, INFERENCE_MODE }; /// Handles correctly propagating CreationMeta when a new view is created from a /// previous view. In general, we don't want the new view to be _less_ /// restrictive than the previous view (it's okay to be _more_ restrictive). A /// CreationMeta value of DEFAULT is currently the least restrictive, as the /// behavior for all other CreationMeta values is to error out for in-place ops. /// A CreationMeta value of INFERENCE_MODE is currently the most restrictive, so /// it takes precedence in propagation. If this changes, the logic here will /// need to be updated to properly handle the new semantics. inline CreationMeta propagate_creation_meta( CreationMeta prev_view_creation_meta, CreationMeta new_view_creation_meta) { return (new_view_creation_meta == CreationMeta::DEFAULT) ? prev_view_creation_meta : (prev_view_creation_meta == CreationMeta::INFERENCE_MODE ? prev_view_creation_meta : new_view_creation_meta); } /// Unified function to handle error checking when rebase happens /// indirect=true means that the caller is not doing the inplace, but the /// inplace happened somewhere else. TORCH_API void handle_view_on_rebase( DifferentiableViewMeta* diff_view_meta, bool indirect = false); struct TORCH_API DifferentiableViewMeta : public AutogradMeta { private: /// Information about the views std::optional<ViewInfo> backward_info_; std::optional<ViewInfo> forward_info_; // Optimization to reduce the number of ViewInfo we create. // In the (very common) case where backward_info_ == forward_info_, we only // populate backward_info_ (that should be used as both the forward and // backward view information) and set shared_view_info_ = true. Invariants: // - If shared_view_info_ is false, there is no special constraints on // backward_info_ and forward_info_ // - If shared_view_info_ is true, we must have: // - backward_info_.has_value() == true // - forward_info_.has_value() == false bool shared_view_info_; /// The two following fields are extra information that we track to ensure /// that any operation on this backward view is valid. /// The value of the version_counter at the time grad_fn was created. The /// grad_fn field is stale if attr_version_ != /// version_counter.current_version(). uint32_t attr_version_; CreationMeta creation_meta_; public: /// requires_grad is a backward AD field so we only use the view specific /// logic for backward differentiable views bool requires_grad() const override { return requires_grad_ || grad_fn_ || (has_bw_view() && get_backward_view().base_.requires_grad()); } bool shared_view_info() const { return shared_view_info_; } bool has_bw_view() const { return backward_info_.has_value(); } const ViewInfo& get_backward_view() const { TORCH_CHECK( has_bw_view(), "backward view info can only exist for backward views."); // NOLINTNEXTLINE(bugprone-unchecked-optional-access) return backward_info_.value(); } uint32_t get_attr_version() const { TORCH_CHECK( has_bw_view(), "attr_version can only exist for backward views."); return attr_version_; } void set_attr_version(uint32_t new_attr_version) { TORCH_CHECK( has_bw_view(), "attr_version can only exist for backward views."); attr_version_ = new_attr_version; } CreationMeta get_creation_meta() const { TORCH_CHECK( has_bw_view(), "creation_meta can only exist for backward views."); return creation_meta_; } void set_creation_meta(CreationMeta new_creation_meta) { TORCH_CHECK( has_bw_view(), "creation_meta can only exist for backward views."); creation_meta_ = new_creation_meta; } bool has_fw_view() const { return shared_view_info_ || forward_info_.has_value(); } const ViewInfo& get_forward_view() const { TORCH_CHECK( has_fw_view(), "forward view info can only exist for forward views."); TORCH_CHECK( !shared_view_info_ || has_bw_view(), "forward view info can only exist for forward views."); // NOLINTNEXTLINE(bugprone-unchecked-optional-access) return shared_view_info_ ? backward_info_.value() : forward_info_.value(); } DifferentiableViewMeta( at::TensorImpl* self_impl, std::optional<ViewInfo> backward_info, std::optional<ViewInfo> forward_info, bool shared_view_info, CreationMeta creation_meta = CreationMeta::DEFAULT); }; //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Variable Implementation //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Factory Functions //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// Creates a `Variable` that is a *view* of another (*base*) variable. /// The `gradient_edge` is an optional (gradient_function, input_number) pair. /// `is_differentiable` is a bool that specifies whether this view is /// differentiable, i.e., whether the relation should be tracked by autograd. /// See NOTE [ Autograd View Variables ] for details. /// NOTE: `allow_tensor_metadata_change` is set to true by default, because /// there are a lot of call sites to these factory functions that need to change /// the variable's size or storage afterwards, and they don't expect the /// original tensor (where the variable is created from) to be updated. Setting /// `allow_tensor_metadata_change_` to false by default would unnecessarily /// prevent those changes from happening and is undesirable. // See NOTE [ Autograd View Variables ] for details. // Differentiable view. Track history with DifferentiableViewMeta. inline Variable make_variable_differentiable_view( const at::Tensor& data, std::optional<ViewInfo> backward_info, std::optional<ViewInfo> forward_info, bool shared_view_info, CreationMeta creation_meta, bool allow_tensor_metadata_change = true) { if (data.defined()) { TORCH_CHECK( data.getIntrusivePtr()->autograd_meta() == nullptr, "Attempted to make a tensor into a differentiable view, but the " "tensor already had autograd metadata associated with it. If you are " "using a __torch_dispatch__ mode, the most common cause for this " "problem is that you used torch.overrides.enable_reentrant_dispatch() " "improperly; tensors created within the extent of reentrant dispatch " "MUST NOT be directly returned from __torch_dispatch__; instead, they " "must be wrapped into fresh tensors that serve as the output. If you " "are not using wrappers, you probably don't need reentrant dispatch. " "If this doesn't seem applicable, please file a bug to PyTorch."); at::TensorImpl* data_impl = data.unsafeGetTensorImpl(); data_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change); data_impl->set_autograd_meta(std::make_unique<DifferentiableViewMeta>( data_impl, std::move(backward_info), std::move(forward_info), shared_view_info, creation_meta)); return data; } return Variable(); } // See NOTE [ Autograd View Variables ] for details. // Non-differentiable view. Just share version counter. inline Variable make_variable_non_differentiable_view( const Variable& base, const at::Tensor& data, bool allow_tensor_metadata_change = true) { if (data.defined()) { // Currently all of non-differentiable view ops(detach/_indices/_values) // share the same TensorImpl as their base Tensor. Thus a new TensorImpl // allocation here is required. auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach( /*version_counter=*/impl::version_counter(base), /*allow_tensor_metadata_change=*/allow_tensor_metadata_change); data_impl_copy->set_autograd_meta(nullptr); return Variable(data_impl_copy); } return Variable(); } /// Creates a `Variable` from the given `Tensor`, copying its underlying /// `TensorImpl`. `requires_grad` should be set only for leaves, and determines /// whether the `Variable` will accumulate gradients. NOTE: `data` must *not* be /// a `Variable` already. Its dynamic type *must* be `Tensor`. /// /// TODO: Eliminate this function as much as possible, as it can be expressed /// more clearly as detach() or a no-op in most call sites (especially when /// there is only one use of the variable). inline Variable make_variable( at::Tensor data, bool requires_grad = false, bool allow_tensor_metadata_change = true) { if (data.defined()) { if (data.getIntrusivePtr().use_count() == 1 && data.getIntrusivePtr()->unique_version()) { auto data_impl = data.unsafeReleaseIntrusivePtr(); data_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change); if (requires_grad) { data_impl->set_autograd_meta( std::make_unique<AutogradMeta>(data_impl.get(), requires_grad)); } else { data_impl->set_autograd_meta(nullptr); } return Variable(std::move(data_impl)); } else { auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach( /*version_counter=*/0, /*allow_tensor_metadata_change=*/allow_tensor_metadata_change); if (requires_grad) { data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>( data_impl_copy.get(), requires_grad)); } else { data_impl_copy->set_autograd_meta(nullptr); } return Variable(std::move(data_impl_copy)); } } return Variable(); } /// Creates a `Variable` from the given `Tensor`, copying its underlying /// `TensorImpl`. `gradient_edge` should be a (function, input_nr) pair /// specifying the function in the autograd graph, and what particular input of /// that function, this variable is connected to. inline Variable make_variable( const at::Tensor& data, Edge gradient_edge, bool allow_tensor_metadata_change = true) { if (data.defined()) { auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach( /*version_counter=*/0, /*allow_tensor_metadata_change=*/allow_tensor_metadata_change); data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>( data_impl_copy.get(), false, std::move(gradient_edge))); return Variable(data_impl_copy); } return Variable(); } struct VariableHooks final : at::impl::VariableHooksInterface { at::TensorBase tensor_data(const at::TensorBase&) const override; at::TensorBase variable_data(const at::TensorBase&) const override; const std::shared_ptr<torch::autograd::Node>& grad_fn( const at::TensorBase&) const override; unsigned _register_hook( const at::TensorBase&, std::function<at::TensorBase(const at::TensorBase&)> hook) const override; void remove_hook(const at::TensorBase&, unsigned pos) const override; bool is_view(const at::TensorBase&) const override; const at::TensorBase& base(const at::TensorBase&) const override; const std::string& name(const at::TensorBase&) const override; bool is_leaf(const at::TensorBase&) const override; int64_t output_nr(const at::TensorBase&) const override; void set_data(const at::TensorBase& self, const at::TensorBase& new_data) const override; at::TensorBase data(const at::TensorBase& self) const override; int64_t _version(const at::TensorBase& self) const override; void retain_grad(const at::TensorBase& self) const override; bool retains_grad(const at::TensorBase& self) const override; void _backward( const at::Tensor& self, at::TensorList inputs, const std::optional<at::Tensor>& gradient, std::optional<bool> keep_graph, bool create_graph) const override; void requires_grad_(const at::TensorBase& self, bool _requires_grad) const override; void basic_autograd_not_implemented_fallback( const c10::OperatorHandle& op, c10::DispatchKeySet dispatch_keys, torch::jit::Stack* stack) const override; }; namespace utils { TORCH_API bool has_same_meta(const Variable& base, const Variable& other); } // namespace utils } // namespace torch::autograd #endif /* DOXYGEN_SHOULD_SKIP_THIS */ ```
========================================================================================================================================= SOURCE CODE FILE: variable_info.h LINES: 1 SIZE: 0.62 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\autograd\variable_info.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/variable.h> namespace torch::autograd { struct TORCH_API VariableInfo { explicit VariableInfo(); explicit VariableInfo(const Variable& var, bool use_zeros_like = false); Variable zeros(at::OptionalDeviceGuard& device_guard) const; at::Layout layout = at::Layout::Strided; at::Device device = at::kCPU; at::ScalarType scalar_type = at::kFloat; std::vector<c10::SymInt> size; bool requires_grad; bool is_empty; // needed for e.g. NJTs since they only support zeros_like() std::optional<Variable> the_var; }; } // namespace torch::autograd ```
============================================================================================================================= SOURCE CODE FILE: copy_utils.h LINES: 1 SIZE: 1.44 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\copy_utils.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Types.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils.h> #include <functional> #include <vector> typedef std::function<void(PyObject*, PyObject*, bool)> THPCopyFunction; // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init) struct THPCopyInfo { PyTypeObject* srcType; // Python type of src tensor/storage THPCopyFunction copy; // copy function bool non_blocking; // true if copy implements an 'non_blocking' copy bool broadcast; // true if the copy implements a broadcast copy }; typedef std::vector<THPCopyInfo> THPCopyList; inline bool tryTHPCopy( const THPCopyList& v, PyObject* dst, PyObject* src, bool non_blocking, bool broadcast) { for (auto& i : v) { if (i.non_blocking == non_blocking && PyType_IsSubtype(Py_TYPE(src), i.srcType)) { (i.copy)(dst, src, broadcast); return true; } } return false; } inline bool THPCopy( const THPCopyList& v, PyObject* dst, PyObject* src, bool non_blocking, bool broadcast) { // NOLINTNEXTLINE(bugprone-branch-clone) if (tryTHPCopy(v, dst, src, non_blocking, broadcast)) { return true; } else if (non_blocking && tryTHPCopy(v, dst, src, false, broadcast)) { return true; } THPUtils_setError( "copy from %s to %s isn't implemented", THPUtils_typename(src), THPUtils_typename(dst)); return false; } ```
============================================================================================================================================== SOURCE CODE FILE: CUDAPluggableAllocator.h LINES: 1 SIZE: 6.99 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\CUDAPluggableAllocator.h ENCODING: utf-8 ```h #pragma once #include <c10/core/Allocator.h> #include <c10/cuda/CUDAGraphsC10Utils.h> #include <c10/cuda/CUDAMacros.h> #include <c10/cuda/CUDAStream.h> #include <c10/cuda/CUDACachingAllocator.h> #include <mutex> namespace torch::cuda::CUDAPluggableAllocator { using MallocFuncType = void*(size_t, int, cudaStream_t); using FreeFuncType = void(void*, size_t, int, cudaStream_t); // A CUDAPluggableAllocatorDeleterContext object is used as the `ctx` // argument for DataPtr. We need context because a user can use // multiple allocators in the same PyTorch program, and // the allocators can have different free functions, such as: // free, cudaFree, cudaFreeAsync, ncclMemFree etc. struct TORCH_CUDA_CPP_API CUDAPluggableAllocatorDeleterContext { explicit CUDAPluggableAllocatorDeleterContext( std::function<FreeFuncType> free_fn, void* data, size_t size, int device, cudaStream_t stream); void free(); private: std::function<FreeFuncType> free_fn_; void* data_; size_t size_; int device_; cudaStream_t stream_{}; }; #if defined(TORCH_HIP_VERSION) using streamType = c10::hip::HIPStream; #else using streamType = c10::cuda::CUDAStream; #endif TORCH_CUDA_CPP_API std::shared_ptr< c10::cuda::CUDACachingAllocator::CUDAAllocator> getCurrentAllocator(); TORCH_CUDA_CPP_API std::shared_ptr< c10::cuda::CUDACachingAllocator::CUDAAllocator> createCustomAllocator( std::function<MallocFuncType> alloc_fn, std::function<FreeFuncType> free_fn); TORCH_CUDA_CPP_API void changeCurrentAllocator( const std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>& allocator); struct _AllocationMetadata { _AllocationMetadata(); _AllocationMetadata( size_t size, c10::DeviceIndex device_idx, cudaStream_t stream); size_t size; c10::DeviceIndex device_idx; cudaStream_t stream{}; }; struct TORCH_CUDA_CPP_API CUDAPluggableAllocator : public c10::cuda::CUDACachingAllocator::CUDAAllocator { CUDAPluggableAllocator( std::function<MallocFuncType> alloc_fn, std::function<FreeFuncType> free_fn); CUDAPluggableAllocator(CUDAPluggableAllocator& other); CUDAPluggableAllocator(CUDAPluggableAllocator&& other) = delete; CUDAPluggableAllocator& operator=(const CUDAPluggableAllocator& other) = delete; CUDAPluggableAllocator& operator=(CUDAPluggableAllocator&& other) = delete; ~CUDAPluggableAllocator() override = default; void set_init_fn(std::function<void(int)> init_fn); void set_reset_fn(std::function<void()> reset_fn); void set_memory_fraction_fn( std::function<void(double, int)> memory_fraction_fn); void set_base_alloc_fn(std::function<void*(void*, size_t*)> base_alloc_fn); void set_record_stream_fn( std::function<void(void* ptr, cudaStream_t stream)> record_stream_fn); void set_begin_allocate_to_pool( std::function< void(int, c10::cuda::MempoolId_t, std::function<bool(cudaStream_t)>)> capture_begin_fn); void set_end_allocate_to_pool_fn( std::function<void(int, c10::cuda::MempoolId_t)> capture_about_to_end_fn); void set_release_pool( std::function<void(int, c10::cuda::MempoolId_t)> capture_destroy_fn); void* malloc(size_t size, c10::DeviceIndex device, cudaStream_t stream); c10::DataPtr allocate(size_t size) override; c10::DeleterFnPtr raw_deleter() const override; void* raw_alloc(size_t nbytes) override; void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) override; void raw_delete(void* ptr) override; void init(int device_count) override; bool initialized() override; double getMemoryFraction(c10::DeviceIndex device) override; void setMemoryFraction(double fraction, c10::DeviceIndex device) override; void emptyCache() override; void enable(bool) override {} bool isEnabled() const override { return true; } void cacheInfo(c10::DeviceIndex device, size_t* largestBlock) override; void* getBaseAllocation(void* ptr, size_t* size) override; void recordStream(const c10::DataPtr&, streamType stream) override; c10::CachingDeviceAllocator::DeviceStats getDeviceStats( c10::DeviceIndex device) override; void resetAccumulatedStats(c10::DeviceIndex device) override; void resetPeakStats(c10::DeviceIndex device) override; c10::cuda::CUDACachingAllocator::SnapshotInfo snapshot() override; void beginAllocateToPool( c10::DeviceIndex device, c10::cuda::MempoolId_t mempool_id, std::function<bool(cudaStream_t)>) override; void endAllocateToPool( c10::DeviceIndex device, c10::cuda::MempoolId_t mempool_id) override; void releasePool(c10::DeviceIndex device, c10::cuda::MempoolId_t mempool_id) override; std::shared_ptr<void> getIpcDevPtr(std::string handle) override; c10::cuda::CUDACachingAllocator::ShareableHandle shareIpcHandle( void*) override; void recordHistory( bool enabled, c10::cuda::CUDACachingAllocator::CreateContextFn context_recorder, size_t alloc_trace_max_entries, c10::cuda::CUDACachingAllocator::RecordContext when) override; void attachOutOfMemoryObserver( c10::cuda::CUDACachingAllocator::OutOfMemoryObserver observer) override; void attachAllocatorTraceTracker( c10::cuda::CUDACachingAllocator::AllocatorTraceTracker tracker) override; std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState> getCheckpointState(c10::DeviceIndex device, at::cuda::MempoolId_t id) override; c10::cuda::CUDACachingAllocator::CheckpointDelta setCheckpointPoolState( c10::DeviceIndex device, std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState> pps) override; void enablePeerAccess(c10::DeviceIndex dev, c10::DeviceIndex dev_to_access) override; cudaError_t memcpyAsync( void* dst, int dstDevice, const void* src, int srcDevice, size_t count, cudaStream_t stream, bool p2p_enabled) override; std::string name() override; void copy_data(void* dest, const void* src, std::size_t count) const final; protected: std::function<MallocFuncType> alloc_fn_; std::function<FreeFuncType> free_fn_; std::function<void(int)> init_fn_; std::function<void()> reset_fn_; std::function<void(double, int)> memory_fraction_fn_; std::function<void*(void*, size_t*)> base_alloc_fn_; std::function<void(void* ptr, cudaStream_t stream)> record_stream_fn_; std::function< void(int, c10::cuda::MempoolId_t, std::function<bool(cudaStream_t)>)> begin_allocate_to_pool_fn_; std::function<void(int, c10::cuda::MempoolId_t)> end_allocate_to_pool_fn_; std::function<void(int, c10::cuda::MempoolId_t)> relase_pool_fn_; std::mutex allocator_mutex_; // We do the bookeeping here in order to simplify custom allocators std::unordered_map<void*, _AllocationMetadata> allocation_metadata_; bool initialized_ = false; }; } // namespace torch::cuda::CUDAPluggableAllocator ```
============================================================================================================================= SOURCE CODE FILE: Event.h LINES: 1 SIZE: 0.44 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\Event.h ENCODING: utf-8 ```h #ifndef THCP_EVENT_INC #define THCP_EVENT_INC #include <ATen/cuda/CUDAEvent.h> #include <torch/csrc/Event.h> #include <torch/csrc/python_headers.h> struct THCPEvent : THPEvent { at::cuda::CUDAEvent cuda_event; }; extern PyObject* THCPEventClass; void THCPEvent_init(PyObject* module); inline bool THCPEvent_Check(PyObject* obj) { return THCPEventClass && PyObject_IsInstance(obj, THCPEventClass); } #endif // THCP_EVENT_INC ```
=============================================================================================================================== SOURCE CODE FILE: GdsFile.h LINES: 1 SIZE: 0.16 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\GdsFile.h ENCODING: utf-8 ```h #ifndef THCP_GDSFILE_INC #define THCP_GDSFILE_INC #include <torch/csrc/python_headers.h> void initGdsBindings(PyObject* module); #endif // THCP_GDSFILE_INC ```
============================================================================================================================== SOURCE CODE FILE: Module.h LINES: 1 SIZE: 0.48 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\Module.h ENCODING: utf-8 ```h #ifndef THCP_CUDA_MODULE_INC #define THCP_CUDA_MODULE_INC #include <torch/csrc/utils/pythoncapi_compat.h> PyObject* THCPModule_getDevice_wrap(PyObject* self); PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg); PyObject* THCPModule_getDeviceName_wrap(PyObject* self, PyObject* arg); PyObject* THCPModule_getDriverVersion(PyObject* self); PyObject* THCPModule_isDriverSufficient(PyObject* self); PyObject* THCPModule_getCurrentBlasHandle_wrap(PyObject* self); #endif ```
============================================================================================================================== SOURCE CODE FILE: Stream.h LINES: 1 SIZE: 0.51 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\Stream.h ENCODING: utf-8 ```h #ifndef THCP_STREAM_INC #define THCP_STREAM_INC #include <c10/cuda/CUDAStream.h> #include <torch/csrc/Stream.h> #include <torch/csrc/python_headers.h> // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init) struct THCPStream : THPStream { at::cuda::CUDAStream cuda_stream; }; extern PyObject* THCPStreamClass; void THCPStream_init(PyObject* module); inline bool THCPStream_Check(PyObject* obj) { return THCPStreamClass && PyObject_IsInstance(obj, THCPStreamClass); } #endif // THCP_STREAM_INC ```
============================================================================================================================ SOURCE CODE FILE: THCP.h LINES: 1 SIZE: 0.22 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\THCP.h ENCODING: utf-8 ```h #ifndef THCP_H #define THCP_H #include <torch/csrc/THP.h> #include <torch/csrc/cuda/Event.h> #include <torch/csrc/cuda/Module.h> #include <torch/csrc/cuda/Stream.h> #include <torch/csrc/python_headers.h> #endif ```
============================================================================================================================ SOURCE CODE FILE: comm.h LINES: 1 SIZE: 1.53 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\comm.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/cuda/ATenCUDAGeneral.h> #include <ATen/cuda/CUDAContext.h> #include <torch/csrc/Export.h> #include <optional> #include <cstddef> #include <vector> namespace torch::cuda { using tensor_list2d = std::vector<std::vector<at::Tensor>>; TORCH_CUDA_CU_API std::vector<at::Tensor>& broadcast_out( const at::Tensor& tensor, std::vector<at::Tensor>& out_tensors); TORCH_CUDA_CU_API std::vector<at::Tensor> broadcast( const at::Tensor& tensor, at::IntArrayRef devices); TORCH_CUDA_CU_API tensor_list2d broadcast_coalesced( at::TensorList tensors, at::IntArrayRef devices, size_t buffer_size); TORCH_CUDA_CU_API std::vector<at::Tensor>& scatter_out( const at::Tensor& tensor, std::vector<at::Tensor>& out_tensors, int64_t dim = 0, const std::optional<std::vector<std::optional<at::cuda::CUDAStream>>>& streams = std::nullopt); TORCH_CUDA_CU_API std::vector<at::Tensor> scatter( const at::Tensor& tensor, at::IntArrayRef devices, const std::optional<std::vector<int64_t>>& chunk_sizes = std::nullopt, int64_t dim = 0, const std::optional<std::vector<std::optional<at::cuda::CUDAStream>>>& streams = std::nullopt); TORCH_CUDA_CU_API at::Tensor& gather_out( at::TensorList tensors, at::Tensor& out_tensor, int64_t dim); TORCH_CUDA_CU_API at::Tensor gather( at::TensorList tensors, int64_t dim, std::optional<int32_t> destination_index); } // namespace torch::cuda ```
================================================================================================================================== SOURCE CODE FILE: device_set.h LINES: 1 SIZE: 0.19 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\device_set.h ENCODING: utf-8 ```h #pragma once #include <c10/cuda/CUDAMacros.h> #include <bitset> #include <cstddef> namespace torch { using device_set = std::bitset<C10_COMPILE_TIME_MAX_GPUS>; } // namespace torch ```
======================================================================================================================================= SOURCE CODE FILE: memory_snapshot.h LINES: 1 SIZE: 0.78 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\memory_snapshot.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <cstdint> #include <optional> #include <string> namespace torch::cuda { // C++-only versions of these, for python use // those defined in cuda/Module.cpp which also record python state. TORCH_CUDA_CU_API void _record_memory_history( bool enabled, bool record_context = true, int64_t trace_alloc_max_entries = 1, bool trace_alloc_record_context = false, bool record_cpp_context = false); TORCH_CUDA_CU_API void _record_memory_history( std::optional<std::string> enabled = "all", std::optional<std::string> context = "all", const std::string& stacks = "all", size_t max_entries = SIZE_MAX); TORCH_CUDA_CU_API std::string _memory_snapshot_pickled(); } // namespace torch::cuda ```
============================================================================================================================ SOURCE CODE FILE: nccl.h LINES: 1 SIZE: 5.95 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\nccl.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <cstddef> #include <optional> #include <vector> // NCCL BFloat16 is enabled only for CUDA 11+ and NCCL versions 2.10+, or for // HIP 3.1+ #if defined(__CUDA_BF16_TYPES_EXIST__) #define HAS_NCCL_BF16_DATATYPE \ ((NCCL_MAJOR > 2) || (NCCL_MAJOR == 2) && (NCCL_MINOR >= 10)) #elif defined(USE_ROCM) && (TORCH_HIP_VERSION >= 301) #define HAS_NCCL_BF16_DATATYPE 1 #else #define HAS_NCCL_BF16_DATATYPE 0 #endif namespace torch::cuda::nccl { /* The following are copied from <nccl.h> and redefined in torch::cuda::nccl * namespace */ /* pytorch should only use the following definition within pytorch scope */ /* Opaque handle to communicator to ncclComm*, this will reinterpret as ncclComm * in nccl.cpp */ typedef void* ncclComm_t; /** redefine nccl unique ID in torch scope. this should be identical to native * nccl impp. */ #define NCCL_UNIQUE_ID_BYTES 128 typedef struct { // NOLINTNEXTLINE(*array*) char internal[NCCL_UNIQUE_ID_BYTES]; } ncclUniqueId; /* Error type */ enum class ncclResult { Success = 0, UnhandledCudaError = 1, SystemError = 2, InternalError = 3, InvalidArgument = 4, InvalidUsage = 5, RemoteError = 6, InProgress = 7, NumResults = 8 }; /* Reduction operation selector */ enum class ncclRedOp { Sum = 0, Prod = 1, Max = 2, Min = 3, NumOps = 4 }; /* Data types */ enum class ncclDataType { Int8 = 0, Char = 0, Uint8 = 1, Int32 = 2, Int = 2, Uint32 = 3, Int64 = 4, Uint64 = 5, Float16 = 6, Half = 6, Float32 = 7, Float = 7, Float64 = 8, Double = 8, Bfloat16 = 9, NumTypes = 10 }; // RAII helper class to manage NCCL group API and CUDA free mutex. // The destructor is allowed to throw since this helper class only // manages group and lock lifetimes. struct TORCH_CUDA_CPP_API AutoNcclGroup { AutoNcclGroup(); AutoNcclGroup(ncclComm_t comm, bool comm_nonblocking); ~AutoNcclGroup() noexcept(false); ncclComm_t comm_; bool comm_nonblocking_; }; // NOTE: this is exposed only so that python_nccl.cpp can some of these helpers. // Don't use them outside of these files. namespace detail { TORCH_CUDA_CPP_API void throw_nccl_error(ncclResult status); inline void NCCL_CHECK(ncclResult status) { if (status != ncclResult::Success) { throw_nccl_error(status); } } TORCH_CUDA_CPP_API at::ArrayRef<ncclComm_t> get_communicators( at::TensorList inputs); TORCH_CUDA_CPP_API void check_inputs( at::TensorList inputs, at::TensorList outputs, size_t input_multiplier, size_t output_multiplier); TORCH_CUDA_CPP_API void check_inputs( at::TensorList inputs, const at::Tensor& output, int root, size_t input_multiplier, size_t output_multiplier); } // namespace detail using comm_list = std::vector<ncclComm_t>; using stream_list = std::vector<std::optional<at::cuda::CUDAStream>>; TORCH_CUDA_CPP_API std::uint64_t version(); TORCH_CUDA_CPP_API const char* version_suffix(); bool is_available(at::TensorList tensors); TORCH_CUDA_CPP_API void get_unique_id(ncclUniqueId& id); TORCH_CUDA_CPP_API ncclComm_t comm_init_rank(int nranks, const ncclUniqueId& comm_id, int rank); TORCH_CUDA_CPP_API void comm_destroy(ncclComm_t comm); TORCH_CUDA_CPP_API void broadcast( at::TensorList tensors, const stream_list& streams = {}, const comm_list& user_comms = {}); size_t get_max_count(); TORCH_CUDA_CPP_API void reduce( const std::vector<at::Tensor>& inputs, at::Tensor& output, int32_t root = 0, int32_t op = static_cast<int>(ncclRedOp::Sum), const stream_list& streams = {}, const comm_list& user_comms = {}); TORCH_CUDA_CPP_API void reduce( std::vector<at::Tensor>& inputs, int32_t root = 0, int32_t op = static_cast<int>(ncclRedOp::Sum), const stream_list& streams = {}, const comm_list& user_comms = {}); TORCH_CUDA_CPP_API void all_reduce( const std::vector<at::Tensor>& inputs, std::vector<at::Tensor>& outputs, int32_t op = static_cast<int>(ncclRedOp::Sum), const stream_list& streams = {}, const comm_list& user_comms = {}); TORCH_CUDA_CPP_API void reduce_scatter( const std::vector<at::Tensor>& inputs, std::vector<at::Tensor>& outputs, int32_t op = static_cast<int>(ncclRedOp::Sum), const stream_list& streams = {}, const comm_list& user_comms = {}); TORCH_CUDA_CPP_API void scatter( const std::vector<at::Tensor>& inputs, at::Tensor& outputs, ncclComm_t comm, at::cuda::CUDAStream& stream, int32_t root = 0); TORCH_CUDA_CPP_API void all_gather( const std::vector<at::Tensor>& inputs, std::vector<at::Tensor>& outputs, const stream_list& streams = {}, const comm_list& user_comms = {}); TORCH_CUDA_CPP_API void gather( const at::Tensor& inputs, std::vector<at::Tensor>& outputs, ncclComm_t comm, at::cuda::CUDAStream& stream, int32_t root = 0); TORCH_CUDA_CPP_API void all2all_single_equal_split( at::Tensor& input, at::Tensor& output, int size, ncclComm_t comm, at::cuda::CUDAStream& stream); TORCH_CUDA_CPP_API void all2all_single_unequal_split( void* sendbuff, const size_t* sendcounts, const size_t* senddispls, void* recvbuff, const size_t* recvcounts, const size_t* recvdispls, size_t size, c10::ScalarType type, ncclComm_t comm, at::cuda::CUDAStream& stream); TORCH_CUDA_CPP_API void all2all( std::vector<at::Tensor>& outputTensors, std::vector<at::Tensor>& inputTensors, ncclComm_t _comm, at::cuda::CUDAStream& stream); TORCH_CUDA_CPP_API void send( const at::Tensor& input, ncclComm_t comm, at::cuda::CUDAStream stream, int dst); TORCH_CUDA_CPP_API void recv( at::Tensor& output, ncclComm_t comm, at::cuda::CUDAStream stream, int src); } // namespace torch::cuda::nccl ```
=================================================================================================================================== SOURCE CODE FILE: python_comm.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\python_comm.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/pythoncapi_compat.h> namespace torch::cuda::python { void initCommMethods(PyObject* module); } // namespace torch::cuda::python ```
=================================================================================================================================== SOURCE CODE FILE: python_nccl.h LINES: 1 SIZE: 0.68 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\cuda\python_nccl.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/python_headers.h> PyObject* THCPModule_nccl_version(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_version_suffix(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_unique_id(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_init_rank(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_reduce(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_all_reduce(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_broadcast(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_all_gather(PyObject* self, PyObject* args); PyObject* THCPModule_nccl_reduce_scatter(PyObject* self, PyObject* args); ```
========================================================================================================================================================= SOURCE CODE FILE: container.h LINES: 1 SIZE: 6.39 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\context\container.h ENCODING: utf-8 ```h #pragma once #include <mutex> #include <unordered_map> #include <torch/csrc/distributed/autograd/context/context.h> namespace torch::distributed::autograd { // Singleton class per worker which is responsible for storing the distributed // autograd context for each autograd pass and also cleans up data for an // autograd pass once its done. // // Each autograd pass is assigned a unique autograd_context_id and all data for // that pass (DistAutogradContext) is stored in this container indexed by the // autograd_context_id. The autograd_context_id itself is a 64 bit globally // unique id. The first 16 bits is the worker_id and the next 48 bits is an // auto-incrementing id for each worker. // // This container is also responsible for maintaining a globally unique message // id, which is used to associate send/recv autograd function pairs. The format // is similar to the autograd_context_id where we have a 64 bit integer with // first 16 bits being the worker id and next 48 bits are auto-incrementing. class TORCH_API DistAutogradContainer { public: explicit DistAutogradContainer(uint32_t num_shards); // One time initialization of the container. static DistAutogradContainer& init(int64_t worker_id); // Retrieve the singleton instance of the container, ensures we have // initialized the container. static DistAutogradContainer& getInstance(); // Create a new context for a distributed autograd pass. const ContextPtr newContext(); // Clean up resources for a given context_id once the autograd pass is done. // Sends RPC to other workers this worker knows about, telling them to clean // up their context as well. Throws an exception if the context_id does not // exist. void releaseContext(int64_t context_id); // Releases an autograd context if it is present on this node. Also sends RPC // to other workers this worker knows about, telling them to clean up their // context. Does nothing if it is not present. void releaseContextIfPresent(int64_t context_id); // Checks if the passed in context_id is valid. void isValidContext(int64_t context_id); // Retrieve the autograd context for a given context_id. ContextPtr retrieveContext(int64_t context_id); // Retrieves the currently active autograd context for the current thread. ContextPtr currentContext(); // Checks whether or not the current thread has a valid autograd context. bool hasValidContext() const; // Generate a new autograd_message_id for send/recv autograd functions. int64_t newAutogradMessageId(); // Creates a new autograd context with the provided context_id. If a context // already exists with the provided context_id, we just return it. // This does not set the current context for the current thread. ContextPtr getOrCreateContext(int64_t context_id); // Retrieves the maximum possible autograd_context_id/autograd_message_id that // can be generated by this worker. int64_t getMaxId(); // Retrieves the worker ID for this node rpc::worker_id_t getWorkerId() const; // Can set current context id if there is no valid context yet static void setCurrentContextId(int64_t contextId); // Forcibly sets the thread local current context id. Should only be used in // cases where you know what you're doing and need to override the thread // local. Otherwise, use setCurrentContextId instead. static void forceCurrentContextId(int64_t contextId); // Clear current context id void clearCurrentContext(); // Returns the number of autograd contexts in the container. size_t numAutogradContexts() const; // Returns the current thread local context id for this thread. static int64_t currentContextId(); DistAutogradContainer() = delete; ~DistAutogradContainer() = default; DistAutogradContainer(const DistAutogradContainer&) = delete; DistAutogradContainer& operator=(const DistAutogradContainer&) = delete; DistAutogradContainer(DistAutogradContainer&&) = delete; DistAutogradContainer& operator=(DistAutogradContainer&&) = delete; private: // Number of shards for the map storing autograd contexts. We'd like this // to be a power of 2 and we don't expect a value much higher than the // number of cores would provide much benefit. static constexpr uint32_t kNumDefaultShards = 128; // Use cache line size for alignment. static constexpr int kCacheLineSize = 64; // Structure holding one shard of the sharded autograd context map with its // associated lock. Align to cache line size to avoid contention between // adjacent entries. struct alignas(kCacheLineSize) ContextsShard { // Lock for this shard. mutable std::mutex lock; // Map storing autograd contexts for this shard. std::unordered_map<int64_t, ContextPtr> contexts; }; static DistAutogradContainer& getInstanceInternal(); // Retrieve the shard for given context_id. ContextsShard& getShard(int64_t context_id); // Sends an RPC to the workers that have a context corresponding to passed in // context_id. This function should be called with the lock. void sendReleaseContextRpc( const std::unordered_set<rpc::worker_id_t>& workerIds, int64_t context_id); // Erase context_id from the autograd context map, and reset the thread local // current context id if it corresponds to the passed in context id. This // function should be called with the lock. void eraseContextIdAndReset(ContextsShard& shard, int64_t context_id); // Compute the number of shards for the autograd_contexts_ map. static uint32_t computeNumShards(); // Auto incrementing context id used to identify unique autograd passes. // Initialized with the first 16 bits being the worker_id. std::atomic<int64_t> next_context_id_; // Unique id to identify a worker in the distributed setting. int16_t worker_id_; // Whether or not the container has been initialized appropriately. bool initialized_; // Sharded autograd context map. std::vector<ContextsShard> autograd_contexts_; // Number of shards for the sharded autograd_contexts_ map. uint32_t num_shards_; // Autograd message id to identify unique send/recv autograd function pairs. std::atomic<int64_t> next_autograd_message_id_; // Maximum allowed value for autograd_context_id or autograd_message_id. int64_t max_id_; }; } // namespace torch::distributed::autograd ```
======================================================================================================================================================= SOURCE CODE FILE: context.h LINES: 1 SIZE: 6.63 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\context\context.h ENCODING: utf-8 ```h #pragma once #include <cstdint> #include <functional> #include <ATen/core/Dict.h> #include <torch/csrc/autograd/engine.h> #include <torch/csrc/distributed/autograd/functions/recvrpc_backward.h> #include <torch/csrc/distributed/autograd/functions/sendrpc_backward.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> namespace torch::distributed::autograd { class RecvRpcBackward; // DistAutogradContext which stores information for a single distributed // autograd pass on a worker. class TORCH_API DistAutogradContext { public: using GradCallback = std::function<bool(torch::Tensor&)>; explicit DistAutogradContext(int64_t contextId); ~DistAutogradContext() = default; // Retrieves the autograd context id for this context. int64_t contextId() const; // Records a 'send' autograd function for this context with the provided // message id. void addSendFunction( const std::shared_ptr<SendRpcBackward>& func, int64_t autograd_message_id); // Records a 'recv' autograd function for this context with the provided // message id. void addRecvFunction( std::shared_ptr<RecvRpcBackward>& func, int64_t autograd_message_id); // Given an autograd_message_id, retrieve the appropriate send function. std::shared_ptr<SendRpcBackward> retrieveSendFunction( int64_t autograd_message_id); // Return all send functions for this context. std::unordered_map<int64_t, std::shared_ptr<SendRpcBackward>> sendFunctions() const; // Return all recv functions for this context. std::unordered_map<int64_t, std::shared_ptr<RecvRpcBackward>> recvFunctions() const; // Adds a future message recording an outstanding RPC. void addOutstandingRpc(const c10::intrusive_ptr<rpc::JitFuture>& jitFuture); // Returns all gradients. const c10::Dict<torch::Tensor, torch::Tensor> getGradients() const; // This function gives a mutable grad reference to the callback. // If the callback returns true, it means the grad in the context // needs to be updated. void runGradCallbackForVariable( const torch::autograd::Variable& variable, const GradCallback& cb); DistAutogradContext(const DistAutogradContext&) = delete; DistAutogradContext& operator=(const DistAutogradContext&) = delete; DistAutogradContext(DistAutogradContext&&) = delete; DistAutogradContext& operator=(DistAutogradContext&&) = delete; // records the workerID of a node that we sent an RPC to. // workerIDs are added here when we attach a send function to this autograd // context void addKnownWorkerId(const rpc::worker_id_t workerId); // Retrieves a set containing the known workerIds for this context // These are the different workers that this context has sent RPCs to. std::unordered_set<rpc::worker_id_t> getKnownWorkerIds() const; private: friend class BackwardPassCleanupGuard; friend class DistEngine; friend class RecvRpcBackward; friend class DistAccumulateGradCaptureHook; // Record that we would like to accumulate the provided gradient on the given // variable. void accumulateGrad( const torch::autograd::Variable& variable, const torch::Tensor& grad, size_t num_expected_refs); // Retrieve the GraphTask. std::shared_ptr<torch::autograd::GraphTask> retrieveGraphTask(); // Set the appropriate graph task for the backward pass. Can be called only // once. void setGraphTask(std::shared_ptr<torch::autograd::GraphTask> graphTask); // Resets the graph task to ensure we can run another distributed backward // pass for the same autograd context. void resetGraphTask(); // Waits for all outstanding RPCs for this context to finish and clears all // outstanding rpcs held in this context. This should be called only once. c10::intrusive_ptr<c10::ivalue::Future> clearAndWaitForOutstandingRpcsAsync(); void clearOutstandingRpcs(); // Record an event to mark the completion of gradient computation. These // events will later help to properly synchronize gradients consumptions // in getGradients(). We need these events because backward and // optimizer.step are separate RPC calls, and will occur on different CUDA // streams. Without synchronization, it is possible that gradients are // consumed before they are ready. void recordGradEvent(c10::Device device); const int64_t contextId_; // Set containing known worker IDs, used in cleaning up autograd context. // Whenever a sendRpcBackward is attached to the autograd graph for this // context, the destination is added here. std::unordered_set<rpc::worker_id_t> knownWorkerIds_; // Map from autograd_message_id to appropriate 'send' autograd function. std::unordered_map<int64_t, std::shared_ptr<SendRpcBackward>> sendAutogradFunctions_; // Map from autograd_message_id to appropriate 'recv' autograd function. std::unordered_map<int64_t, std::shared_ptr<RecvRpcBackward>> recvAutogradFunctions_; // Gradients accumulated in this context so far. The key is the variable on // which the gradient needs to be accumulated and the value is the gradient // that needs to be accumulated on that variable.. c10::Dict<torch::Tensor, torch::Tensor> accumulatedGrads_; // See comments for recordGradEvent(c10::Device device); std::unordered_map<c10::Device, c10::Event> gradReadyEvents_; const c10::impl::VirtualGuardImpl impl_; // The autograd GraphTask for the backward pass on this node for this context. std::shared_ptr<torch::autograd::GraphTask> graphTask_; // List of futures for RPCs initiated by this node to propagate gradients to // other nodes. The distributed autograd engine on this node can return // successfully only if all these futures are done and are successful. std::vector<c10::intrusive_ptr<rpc::JitFuture>> outStandingRpcs_; // Lock to protect concurrent modification of the context. mutable std::mutex lock_; }; using ContextPtr = std::shared_ptr<DistAutogradContext>; // This class stores a shared_ptr to a DistAutogradContext instance in a // thread local variable. The instance is given by the call site. The class // doesn't know the current context. It's just a util class. class TORCH_API ThreadLocalDistAutogradContext { public: // Store 'new_context' to the thread local variable maintained by this class. explicit ThreadLocalDistAutogradContext(ContextPtr&& new_context); ~ThreadLocalDistAutogradContext(); // Retrieve the stored DistAutogradContext instance. static ContextPtr getContextPtr(); private: ContextPtr prev_context_ptr_; }; } // namespace torch::distributed::autograd ```
================================================================================================================================================================== SOURCE CODE FILE: recvrpc_backward.h LINES: 1 SIZE: 1.67 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\functions\recvrpc_backward.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/function.h> #include <torch/csrc/distributed/autograd/context/context.h> #include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> namespace torch::distributed::autograd { // Forward declarations. class DistAutogradContext; // As part of our distributed autograd implementation, whenever we receive an // RPC from a node, we add a 'RecvRpcBackward' autograd function to the // autograd graph. This is more or less a placeholder function that is used to // pass gradients to the remote host during the backward pass. The inputs to the // RPC function are the inputs to this autograd function. class TORCH_API RecvRpcBackward : public torch::autograd::Node { public: explicit RecvRpcBackward( const AutogradMetadata& autogradMetadata, const std::shared_ptr<DistAutogradContext>& autogradContext, rpc::worker_id_t fromWorkerId, rpc::DeviceMap deviceMap); torch::autograd::variable_list apply( torch::autograd::variable_list&& grads) override; private: const AutogradMetadata autogradMetadata_; // Hold a weak reference to the autograd context to avoid circular // dependencies with the context (since it holds a reference to // RecvRpcBackward). std::weak_ptr<DistAutogradContext> autogradContext_; // The worker id from which the RPC was received. During the backward pass, // we need to propagate the gradients to this workerId. rpc::worker_id_t fromWorkerId_; // Device mapping for tensors sent over RPC. const rpc::DeviceMap deviceMap_; }; } // namespace torch::distributed::autograd ```
================================================================================================================================================================== SOURCE CODE FILE: sendrpc_backward.h LINES: 1 SIZE: 1.32 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\functions\sendrpc_backward.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/function.h> namespace torch::distributed::autograd { // As part of our distributed autograd implementation, whenever we send an RPC // from one node to another, we add a 'SendRpcBackward' autograd function to the // autograd graph. This is more or less a placeholder function that is used to // kickoff the autograd engine on the current worker on the backward pass. The // edges for this autograd function are the inputs to the RPC method. // // During the backward pass, this function is queued for execution in the // autograd engine which eventually runs the rest of the autograd graph. struct TORCH_API SendRpcBackward : public torch::autograd::Node { public: torch::autograd::variable_list apply( torch::autograd::variable_list&& inputs) override; // SendRpcBackward is actually the root of an autograd graph on the local // node. As a result, it doesn't receive any 'inputs', but rather the RPC // framework passes gradients over to this function to kickoff local autograd // computation. void setGrads(const torch::autograd::variable_list& grads); // Retrieve the grads for the function. const torch::autograd::variable_list& getGrads() const; private: torch::autograd::variable_list grads_; }; } // namespace torch::distributed::autograd ```
====================================================================================================================================================================== SOURCE CODE FILE: autograd_metadata.h LINES: 1 SIZE: 0.70 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\autograd_metadata.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <cstdint> namespace torch::distributed::autograd { // This structure represents autograd metadata that we need to pass across // different nodes when we call an RPC which needs autograd computation. struct TORCH_API AutogradMetadata { AutogradMetadata(int64_t autogradContextId, int64_t autogradMessageId); // autogradContextId_ is a globally unique integer that identifies a // particular distributed autograd pass. int64_t autogradContextId; // autogradMessageId_ is a globally unique integer that identifies a pair // of send/recv autograd functions. int64_t autogradMessageId; }; } // namespace torch::distributed::autograd ```
================================================================================================================================================================================= SOURCE CODE FILE: cleanup_autograd_context_req.h LINES: 1 SIZE: 0.84 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\cleanup_autograd_context_req.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h> #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> namespace torch::distributed::autograd { // Used to request other workers to clean up their autograd context. class TORCH_API CleanupAutogradContextReq : public rpc::RpcCommandBase { public: explicit CleanupAutogradContextReq(int64_t context_id); // Serialization and deserialization methods. c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<CleanupAutogradContextReq> fromMessage( const rpc::Message& message); // Retrieve the context id we are cleaning up with this message. int64_t getContextId(); private: int64_t context_id_; }; } // namespace torch::distributed::autograd ```
================================================================================================================================================================================== SOURCE CODE FILE: cleanup_autograd_context_resp.h LINES: 1 SIZE: 0.66 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\cleanup_autograd_context_resp.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> namespace torch::distributed::autograd { // Empty response for CleanupAutogradContextReq. Send to acknowledge receipt of // a CleanupAutogradContextReq. class TORCH_API CleanupAutogradContextResp : public rpc::RpcCommandBase { public: CleanupAutogradContextResp() = default; // Serialization and deserialization methods. c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<CleanupAutogradContextResp> fromMessage( const rpc::Message& message); }; } // namespace torch::distributed::autograd ```
============================================================================================================================================================================ SOURCE CODE FILE: propagate_gradients_req.h LINES: 1 SIZE: 1.26 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\propagate_gradients_req.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h> #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <vector> namespace torch::distributed::autograd { // Used to propagate gradients from one node to another during a distributed // backwards pass. This RPC call is invoked when we hit a `recv` autograd // function during backward pass execution. class TORCH_API PropagateGradientsReq : public rpc::RpcCommandBase { public: PropagateGradientsReq( const AutogradMetadata& autogradMetadata, std::vector<torch::autograd::Variable> grads, bool retainGraph = false); const AutogradMetadata& getAutogradMetadata(); const std::vector<torch::autograd::Variable>& getGrads(); // Serialization and deserialization methods. c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<PropagateGradientsReq> fromMessage( const rpc::Message& message); // Whether or not to retain the autograd graph. bool retainGraph(); private: AutogradMetadata autogradMetadata_; std::vector<torch::autograd::Variable> grads_; bool retainGraph_; }; } // namespace torch::distributed::autograd ```
============================================================================================================================================================================= SOURCE CODE FILE: propagate_gradients_resp.h LINES: 1 SIZE: 0.76 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\propagate_gradients_resp.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> namespace torch::distributed::autograd { // Response for the PropagateGradients call. Currently, this class is mostly // just a placeholder and sends an empty message over the wire. The purpose of // this RPC command is to indicate whether or not the PropagateGradientsReq call // was successfully or not. class TORCH_API PropagateGradientsResp : public rpc::RpcCommandBase { public: PropagateGradientsResp() = default; c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<PropagateGradientsResp> fromMessage( const rpc::Message& message); }; } // namespace torch::distributed::autograd ```
====================================================================================================================================================================== SOURCE CODE FILE: rpc_with_autograd.h LINES: 1 SIZE: 3.52 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\rpc_with_autograd.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> namespace torch::distributed::autograd { // Represents an RPC that includes autograd information. This class basically // wraps another `RpcCommandBase` object which represents the actual RPC and has // additional autograd information associated with that RPC. class TORCH_API RpcWithAutograd final : public rpc::RpcCommandBase { public: // Used when we are sending an RPC over the wire. RpcWithAutograd( rpc::worker_id_t fromWorkerId, rpc::MessageType messageType, const AutogradMetadata& autogradMetadata, c10::intrusive_ptr<rpc::Message> wrappedMessage, rpc::DeviceMap deviceMap = {}); // Used when receiving an RPC over the wire. RpcWithAutograd( rpc::worker_id_t fromWorkerId, rpc::MessageType messageType, const AutogradMetadata& autogradMetadata, std::unique_ptr<rpc::RpcCommandBase> wrappedRpc, rpc::MessageType wrappedMessageType, std::vector<torch::Tensor> tensors, rpc::DeviceMap deviceMap = {}); c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<RpcWithAutograd> fromMessage( const rpc::Message& message); // Retrieves tensors as part of this RPC, which need to be considered for // autograd computations. std::vector<torch::Tensor>& tensors(); const AutogradMetadata& autogradMetadata() const; RpcCommandBase& wrappedRpc(); void setWrappedRpc(std::unique_ptr<RpcCommandBase> wrappedRpc); std::unique_ptr<RpcCommandBase> moveWrappedRpc() &&; // Message type of the wrapped RPC. rpc::MessageType wrappedMessageType() const; // Retrieve the worker id from which the RPC originated. rpc::worker_id_t fromWorkerId() const; // Retrieve the device map. const rpc::DeviceMap& deviceMap(); private: // WorkerId from which this RPC originated. This is necessary for knowing // which worker we need to contact during the backward pass. rpc::worker_id_t fromWorkerId_; // Message type for this call. rpc::MessageType messageType_; AutogradMetadata autogradMetadata_; // Since wrappedMessage_ is destructively constructed from wrappedRpc_, // they are valid exclusively. They are used for different purpose. // wrappedRpc_ is used while constructing receive rpcWithAutograd; // wrappedMessage_ is used while constructing send rpcWithAutograd; // When receive rpcWithAutograd is constructed fromMessage, it is valid; // When send rpcWithAutograd is constructed before toMessage, it is nullptr; std::unique_ptr<RpcCommandBase> wrappedRpc_; // Serialized message representing wrappedRpc_. Used mostly as a cache to // avoid serializing the request twice. // When receive rpcWithAutograd is constructed fromMessage, it is nullptr; // When send rpcWithAutograd is constructed before toMessage, it is valid; c10::intrusive_ptr<rpc::Message> wrappedMessage_; // message type of the wrappedMessage, this is stored separately since // wrappedMessage_ is not always guaranteed to be populated. rpc::MessageType wrappedMessageType_; // Tensors part of the wrappedRpc that need to be considered for autograd. std::vector<torch::Tensor> tensors_; // Device mapping for tensors that are sent across an RPC to another node. rpc::DeviceMap deviceMap_; }; } // namespace torch::distributed::autograd ```
=========================================================================================================================================================================== SOURCE CODE FILE: rpc_with_profiling_req.h LINES: 1 SIZE: 2.51 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\rpc_with_profiling_req.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/profiler.h> #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> namespace torch::distributed::autograd { class TORCH_API RpcWithProfilingReq : public rpc::RpcCommandBase { public: // For sending RPCs, invoked when client is creating this RPC command. RpcWithProfilingReq( rpc::MessageType messageType, c10::intrusive_ptr<rpc::Message> wrappedMessage, torch::autograd::profiler::ProfilerConfig&& profilerConfig, rpc::ProfilingId profilingKeyId); // For receiving an RPC // Used in fromMessage. RpcWithProfilingReq( rpc::MessageType messageType, std::unique_ptr<rpc::RpcCommandBase> wrappedRpc, rpc::MessageType wrappedMessageType, std::vector<torch::Tensor> tensors, torch::autograd::profiler::ProfilerConfig&& profilerConfig, rpc::ProfilingId profilingKeyId); // Convert this RPC Command to a Message that can be sent over the wire. c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<RpcWithProfilingReq> fromMessage( const rpc::Message& message); // Retrieve the profiling data that is associated with this command. torch::autograd::profiler::ProfilerConfig getProfilingConfig() const; // Retrieve the globally unique profiling ID corresponding to this command. const rpc::ProfilingId& getProfilingId() const; // Retrieve the original RPC which this ProfilingRPC wraps. RpcCommandBase& wrappedRpc(); // Destructively move the wrapped RPC. std::unique_ptr<RpcCommandBase> moveWrappedRpc() &&; // Message type of the wrapped RPC rpc::MessageType wrappedMessageType() const; void setWrappedRpc(std::unique_ptr<RpcCommandBase> wrappedRpc); private: // message type // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const rpc::MessageType messageType_; // wrapped message c10::intrusive_ptr<rpc::Message> wrappedMessage_; std::unique_ptr<RpcCommandBase> wrappedRpc_; rpc::MessageType wrappedMessageType_; std::vector<torch::Tensor> tensors_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const torch::autograd::profiler::ProfilerConfig profilerConfig_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const rpc::ProfilingId profilingKeyId_; }; } // namespace torch::distributed::autograd ```
============================================================================================================================================================================ SOURCE CODE FILE: rpc_with_profiling_resp.h LINES: 1 SIZE: 2.47 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\rpc_with_profiling_resp.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/profiler.h> #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> namespace torch::distributed::autograd { class TORCH_API RpcWithProfilingResp : public rpc::RpcCommandBase { public: // For sending RPCs over the wire RpcWithProfilingResp( rpc::MessageType messageType, c10::intrusive_ptr<rpc::Message> wrappedMessage, std::vector<torch::autograd::profiler::LegacyEvent> profiledEvents, rpc::ProfilingId profilingId); // For receiving RPCs. Used in from message when converting a message received // over the wire. RpcWithProfilingResp( rpc::MessageType messageType, std::unique_ptr<rpc::RpcCommandBase> wrappedRpc, rpc::MessageType wrappedMessageType, std::vector<torch::Tensor> tensors, std::vector<torch::autograd::profiler::LegacyEvent> profiledEvents, rpc::ProfilingId profilingId); c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<RpcWithProfilingResp> fromMessage( const rpc::Message& message); // Retrieve remote Events std::vector<torch::autograd::profiler::LegacyEvent> getProfiledEvents() const; // Retrieve the globally unique profiling ID corresponding to this command. const rpc::ProfilingId& getProfilingId() const; // Retrieve the original RPC which this ProfilingRPC wraps. RpcCommandBase& wrappedRpc(); // Destructively move the wrapped RPC. std::unique_ptr<RpcCommandBase> moveWrappedRpc() &&; // Message type of the wrapped RPC rpc::MessageType wrappedMessageType() const; // Set the wrapped RPC for this RPC. void setWrappedRpc(std::unique_ptr<RpcCommandBase> wrappedRpc); private: // message type // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const rpc::MessageType messageType_; // wrapped message c10::intrusive_ptr<rpc::Message> wrappedMessage_; std::unique_ptr<RpcCommandBase> wrappedRpc_; rpc::MessageType wrappedMessageType_; std::vector<torch::Tensor> tensors_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::vector<torch::autograd::profiler::LegacyEvent> profiledEvents_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const rpc::ProfilingId profilingId_; }; } // namespace torch::distributed::autograd ```
====================================================================================================================================================================== SOURCE CODE FILE: rref_backward_req.h LINES: 1 SIZE: 1.20 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\rref_backward_req.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> namespace torch::distributed::autograd { // Internal system RPC to invoke distributed backward pass on remote nodes when // 'rref.backward()' is invoked. class TORCH_API RRefBackwardReq : public rpc::RpcCommandBase { public: RRefBackwardReq( const rpc::RRefId& rrefId, int64_t autogradContextId, bool retainGraph = false); const rpc::RRefId& getRRefId() const; int64_t getAutogradContextId() const; bool retainGraph() const; // Serialization and deserialization methods. c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<RRefBackwardReq> fromMessage( const rpc::Message& message); private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const rpc::RRefId rrefId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const int64_t autogradContextId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const bool retainGraph_; }; } // namespace torch::distributed::autograd ```
======================================================================================================================================================================= SOURCE CODE FILE: rref_backward_resp.h LINES: 1 SIZE: 0.51 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\autograd\rpc_messages\rref_backward_resp.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> namespace torch::distributed::autograd { // Response for the RRefBackwardReq. class TORCH_API RRefBackwardResp : public rpc::RpcCommandBase { public: RRefBackwardResp() = default; c10::intrusive_ptr<rpc::Message> toMessageImpl() && override; static std::unique_ptr<RRefBackwardResp> fromMessage( const rpc::Message& message); }; } // namespace torch::distributed::autograd ```
=========================================================================================================================================================== SOURCE CODE FILE: CUDASymmetricMemory-inl.h LINES: 1 SIZE: 14.07 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\CUDASymmetricMemory-inl.h ENCODING: utf-8 ```h #pragma once #include <atomic> #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && CUDART_VERSION >= 12010 #define NVCC_SUPPORTS_MULTICAST 1 #endif #include <ATen/ATen.h> #if !defined(USE_ROCM) #include <cuda_bf16.h> #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600) #include <cuda/atomic> #endif #endif namespace c10d::symmetric_memory { template <typename T> __inline__ size_t get_alignment(T ptr_or_size) { auto val = reinterpret_cast<uintptr_t>(ptr_or_size); if (val % 16 == 0) { return 16; } else if (val % 8 == 0) { return 8; } else if (val % 4 == 0) { return 4; } else if (val % 2 == 0) { return 2; } else { return 1; } } template <> __inline__ size_t get_alignment<size_t>(size_t size) { return get_alignment(reinterpret_cast<void*>(size)); } template <bool Value, class... Args> inline constexpr bool dependent_bool_value = Value; template <class... Args> inline constexpr bool dependent_false = dependent_bool_value<false, Args...>; template <std::memory_order Sem> __device__ __forceinline__ uint32_t cas(uint32_t* addr, uint32_t compare, uint32_t val) { #if !defined(USE_ROCM) && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600) cuda::atomic_ref<uint32_t, cuda::thread_scope_system> ref(*addr); ref.compare_exchange_strong(compare, val, cuda::std::memory_order(Sem)); return compare; #else CUDA_KERNEL_ASSERT(false); return 0; #endif } __device__ __forceinline__ void trap() { #if defined(USE_ROCM) assert(0); #else __trap(); #endif } __device__ __forceinline__ size_t global_timer_ns() { #if defined(USE_ROCM) CUDA_KERNEL_ASSERT(false); return 0; #else size_t val; asm volatile("mov.u64 %0, %globaltimer;" : "=l"(val) : : "memory"); return val; #endif } constexpr size_t ns_per_ms = 1e6; template <std::memory_order Sem> __device__ __forceinline__ bool try_put_signal( uint32_t* addr, size_t timeout_ms) { size_t deadline = global_timer_ns() + timeout_ms * ns_per_ms; while (cas<Sem>(addr, 0, 1) != 0) { if (timeout_ms != 0 && global_timer_ns() > deadline) { return false; } } return true; } template <std::memory_order Sem> __device__ __forceinline__ bool try_wait_signal( uint32_t* addr, size_t timeout_ms) { size_t deadline = global_timer_ns() + timeout_ms * ns_per_ms; while (cas<Sem>(addr, 1, 0) != 1) { if (timeout_ms != 0 && global_timer_ns() > deadline) { return false; } } return true; } template <std::memory_order Sem> __device__ __forceinline__ void put_signal(uint32_t* addr) { while (cas<Sem>(addr, 0, 1) != 0) ; } template <std::memory_order Sem> __device__ __forceinline__ void wait_signal(uint32_t* addr) { while (cas<Sem>(addr, 1, 0) != 1) ; } // Synchronizes blocks with matching blockIdx across participating devices. // Note: sync_remote_block itself is not a system level barrier/fence. It is a // building block for expressing different synchronization patterns. // // Pattern 0: Ensures that all writes to symm_mem buffers from previous // kernels across all devices are visible to the current kernel: // // sync_remote_blocks<std::memory_order_relaxed>(...); // __syncthreads(); // // Pattern 1: Ensures that all writes to symm_mem buffers from the current // block are visible to all remote blocks with matching blockIdx: // // __syncthreads(); // sync_remote_blocks<std::memory_order_acq_rel>(...); // __syncthreads(); // // Pattern 2: Ensures that symm_mem buffers read by the current kernel are safe // for writing by subsequent kernels across all devices. // // __syncthreads(); // sync_remote_blocks<std::memory_order_relaxed>(...); template <std::memory_order Sem> __device__ __forceinline__ void sync_remote_blocks( uint32_t** signal_pads, size_t rank, size_t world_size); template <> __device__ __forceinline__ void sync_remote_blocks<std::memory_order_relaxed>( uint32_t** signal_pads, size_t rank, size_t world_size) { if (threadIdx.x < world_size) { auto target_rank = threadIdx.x; put_signal<std::memory_order_relaxed>( signal_pads[target_rank] + blockIdx.x * world_size + rank); wait_signal<std::memory_order_relaxed>( signal_pads[rank] + blockIdx.x * world_size + target_rank); } } template <> __device__ __forceinline__ void sync_remote_blocks<std::memory_order_acq_rel>( uint32_t** signal_pads, size_t rank, size_t world_size) { if (threadIdx.x < world_size) { auto target_rank = threadIdx.x; put_signal<std::memory_order_release>( signal_pads[target_rank] + blockIdx.x * world_size + rank); wait_signal<std::memory_order_acquire>( signal_pads[rank] + blockIdx.x * world_size + target_rank); } } template <int Size> union Vec; template <> union Vec<4> { uint16_t u16[2]; uint32_t u32, as_scalar; float f32; }; template <> union Vec<8> { uint16_t u16[4]; uint32_t u32[2]; uint64_t u64, as_scalar; float f32[2]; }; template <> union alignas(16) Vec<16> { uint16_t u16[8]; uint32_t u32[4]; uint64_t u64[2]; uint4 u128, as_scalar; float f32[4]; }; template <typename T> struct MultimemLdReduce { template <int Alignment> __device__ __inline__ Vec<Alignment> operator()(T* mc_ptr) { static_assert(dependent_false<T>); } }; template <int Alignment, typename T> __device__ __inline__ Vec<Alignment> multimem_ld_reduce_add(T* mc_ptr) { MultimemLdReduce<T> functor; return functor.template operator()<Alignment>(mc_ptr); } #if defined(USE_ROCM) || !defined(NVCC_SUPPORTS_MULTICAST) #define SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(type, asm_type, acc_prec) \ template <> \ struct MultimemLdReduce<type> { \ template <int Alignment> \ __device__ __inline__ Vec<Alignment> operator()(type* mc_ptr) { \ CUDA_KERNEL_ASSERT(false); \ } \ }; #else #define SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(type, asm_type, acc_prec) \ template <> \ struct MultimemLdReduce<type> { \ template <int Alignment> \ __device__ __inline__ Vec<Alignment> operator()(type* mc_ptr) { \ Vec<Alignment> vec; \ if constexpr (Alignment == 16) { \ asm("multimem.ld_reduce.relaxed.sys.global.add" acc_prec \ ".v4" asm_type " {%0,%1,%2,%3}, [%4];" \ : "=r"(vec.u32[0]), \ "=r"(vec.u32[1]), \ "=r"(vec.u32[2]), \ "=r"(vec.u32[3]) \ : "l"(mc_ptr) \ : "memory"); \ } else if constexpr (Alignment == 8) { \ asm("multimem.ld_reduce.relaxed.sys.global.add" acc_prec \ ".v2" asm_type " {%0,%1}, [%2];" \ : "=r"(vec.u32[0]), "=r"(vec.u32[1]) \ : "l"(mc_ptr) \ : "memory"); \ } else if constexpr (Alignment == 4) { \ asm("multimem.ld_reduce.relaxed.sys.global.add" acc_prec asm_type \ " %0, [%1];" \ : "=r"(vec.u32) \ : "l"(mc_ptr) \ : "memory"); \ } \ return vec; \ } \ }; #endif SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(at::BFloat16, ".bf16x2", ".acc::f32"); SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(float, ".f32", ""); template <int Alignment, typename T> __device__ __inline__ void multimem_st(T* mc_ptr, Vec<Alignment>& vec) { #if defined(USE_ROCM) || !defined(NVCC_SUPPORTS_MULTICAST) CUDA_KERNEL_ASSERT(false); #else if constexpr (Alignment == 16) { asm("multimem.st.relaxed.sys.global.v4.f32 [%0], {%1,%2,%3,%4};" : : "l"(mc_ptr), "r"(vec.u32[0]), "r"(vec.u32[1]), "r"(vec.u32[2]), "r"(vec.u32[3]) : "memory"); } else if constexpr (Alignment == 8) { asm("multimem.st.relaxed.sys.global.v2.f32 [%0], {%1,%2};" : : "l"(mc_ptr), "r"(vec.u32[0]), "r"(vec.u32[1]) : "memory"); } else if constexpr (Alignment == 4) { asm("multimem.st.relaxed.sys.global.f32 [%0], %1;" : : "l"(mc_ptr), "r"(vec.u32) : "memory"); } else { static_assert(dependent_false<T>); } #endif } template <int Alignment, typename T> __device__ __inline__ Vec<Alignment> ld_vec(const T* addr) { #if defined(USE_ROCM) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)) CUDA_KERNEL_ASSERT(false); #else Vec<Alignment> vec; if constexpr (Alignment == 16) { asm("ld.global.v4.u32 {%0,%1,%2,%3}, [%4];" : "=r"(vec.u32[0]), "=r"(vec.u32[1]), "=r"(vec.u32[2]), "=r"(vec.u32[3]) : "l"(addr) : "memory"); } else if constexpr (Alignment == 8) { asm("ld.global.v2.u32 {%0,%1}, [%2];" : "=r"(vec.u32[0]), "=r"(vec.u32[1]) : "l"(addr) : "memory"); } else if constexpr (Alignment == 4) { asm("ld.global.u32 %0, [%1];" : "=r"(vec.u32) : "l"(addr) : "memory"); } else { static_assert(dependent_false<T>); } return vec; #endif } template <int Alignment, typename T> __device__ __inline__ void st_vec(T* addr, const Vec<Alignment>& vec) { #if defined(USE_ROCM) || !defined(NVCC_SUPPORTS_MULTICAST) CUDA_KERNEL_ASSERT(false); #else if constexpr (Alignment == 16) { asm("st.global.v4.u32 [%0], {%1,%2,%3,%4};" : : "l"(addr), "r"(vec.u32[0]), "r"(vec.u32[1]), "r"(vec.u32[2]), "r"(vec.u32[3]) : "memory"); } else if constexpr (Alignment == 8) { asm("st.global.v2.u32 [%0], {%1,%2};" : : "l"(addr), "r"(vec.u32[0]), "r"(vec.u32[1]) : "memory"); } else if constexpr (Alignment == 4) { asm("st.global.u32 [%0], %1;" : : "l"(addr), "r"(vec.u32) : "memory"); } else { static_assert(dependent_false<T>); } #endif } #if defined(USE_ROCM) using __nv_bfloat162 = uint32_t; #endif template <typename T> __device__ __inline__ T add_bf16x2(T a, T b) { static_assert(sizeof(T) == 4); #if defined(USE_ROCM) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)) CUDA_KERNEL_ASSERT(false); return T{}; #else auto res = __hadd2( *reinterpret_cast<__nv_bfloat162*>(&a), *reinterpret_cast<__nv_bfloat162*>(&b)); return *reinterpret_cast<T*>(&res); #endif } template <int Alignment, typename T> __device__ __inline__ Vec<Alignment> add_vec( const Vec<Alignment>& a, const Vec<Alignment>& b) { Vec<Alignment> c{}; if constexpr (std::is_same_v<T, float>) { if constexpr (Alignment == 16) { c.f32[0] = a.f32[0] + b.f32[0]; c.f32[1] = a.f32[1] + b.f32[1]; c.f32[2] = a.f32[2] + b.f32[2]; c.f32[3] = a.f32[3] + b.f32[3]; } else if constexpr (Alignment == 8) { c.f32[0] = a.f32[0] + b.f32[0]; c.f32[1] = a.f32[1] + b.f32[1]; } else if constexpr (Alignment == 4) { c.f32 = a.f32 + b.f32; } else { static_assert(dependent_false<T>); } } else if constexpr (std::is_same_v<T, at::BFloat16>) { if constexpr (Alignment == 16) { c.u32[0] = add_bf16x2(a.u32[0], b.u32[0]); c.u32[1] = add_bf16x2(a.u32[1], b.u32[1]); c.u32[2] = add_bf16x2(a.u32[2], b.u32[2]); c.u32[3] = add_bf16x2(a.u32[3], b.u32[3]); } else if constexpr (Alignment == 8) { c.u32[0] = add_bf16x2(a.u32[0], b.u32[0]); c.u32[1] = add_bf16x2(a.u32[1], b.u32[1]); } else if constexpr (Alignment == 4) { c.u32 = add_bf16x2(a.u32, b.u32); } else { static_assert(dependent_false<T>); } } else { static_assert(dependent_false<T>); } return c; } // With world_size specialization: perform balanced load from all peers before // performing reduction. template <typename T, int alignment, int k_world_size> __device__ inline std::enable_if_t<(k_world_size > 0), Vec<alignment>> load_and_reduce(T** ptrs, size_t rank, size_t world_size, size_t offset) { Vec<alignment> vecs[k_world_size]; #pragma unroll k_world_size for (size_t step = 0; step < k_world_size; ++step) { size_t remote_rank = (rank + step) % k_world_size; vecs[remote_rank] = ld_vec<alignment>(ptrs[remote_rank] + offset); } auto acc = vecs[0]; #pragma unroll k_world_size - 1 for (size_t r = 1; r < world_size; ++r) { acc = add_vec<alignment, T>(acc, vecs[r]); } return acc; } // Without world_size specialization: perform ordered (unbalanced) load and // accumulate on each load. template <typename T, int alignment, int k_world_size> __device__ inline std::enable_if_t<(k_world_size <= 0), Vec<alignment>> load_and_reduce(T** ptrs, size_t rank, size_t world_size, size_t offset) { Vec<alignment> acc{}; for (size_t step = 0; step < world_size; ++step) { auto vec = ld_vec<alignment>(ptrs[step] + offset); acc = add_vec<alignment, T>(acc, vec); } return acc; } } // namespace c10d::symmetric_memory ```
============================================================================================================================================== SOURCE CODE FILE: TraceUtils.h LINES: 12 SIZE: 10.30 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\TraceUtils.h ENCODING: utf-8 ```h #pragma once #include <c10/core/ScalarType.h> #include <c10/util/ApproximateClock.h> #include <c10/util/irange.h> #include <c10/util/string_view.h> #include <torch/csrc/distributed/c10d/Store.hpp> #include <torch/csrc/distributed/c10d/Types.hpp> #include <torch/csrc/distributed/c10d/Utils.hpp> #include <torch/csrc/jit/serialization/pickler.h> #include <torch/csrc/profiler/combined_traceback.h> #include <sys/types.h> #include <cstdlib> #include <string> #include <vector> namespace c10d { // A struct to hold the latest status of the process group. struct ProcessGroupStatus { // the sequential number of the last collective enqueued into workMetaList_ // This is useful for indentifying a rank that has not join a collective // initialized to be -1 to indicate no collective has been enqueued int64_t lastEnqueuedSeq{-1}; // the sequential number of the last collective started as the kernel int64_t lastStartedSeq{-1}; // the sequential number of the last collective completed marked by // the watchdog thread // initialized to be -1 to indicate no collective has been completed int64_t lastCompletedSeq{-1}; // the name of the last collective enqueued into workMetaList_ std::string lastEnqueuedWorkName; // the name of the last collective started as the kernel std::string lastStartedWorkName; // the name of the last collective completed std::string lastCompletedWorkName; // the sizes of the last work enqueued size_t lastEnqueuedNumelIn; size_t lastEnqueuedNumelOut; // the sizes of the last work completed size_t lastCompletedNumelIn; size_t lastCompletedNumelOut; // the sizes of the last work started size_t lastStartedNumelIn; size_t lastStartedNumelOut; }; inline std::string getTraceStartKey(const std::string& pgName, int rank) { return pgName + "_" + std::to_string(rank) + "_trace_start"; } inline std::string getTraceEndKey(const std::string& pgName, int rank) { return pgName + "_" + std::to_string(rank) + "_trace_end"; } inline bool traceUpdate( c10::intrusive_ptr<Store>& store, const std::string& key, uint64_t seq, const std::string& col) { std::vector<uint8_t> value(col.size() + sizeof(seq) + 1); memcpy(value.data(), &seq, sizeof(seq)); memcpy(value.data() + sizeof(seq), col.data(), col.size()); try { store->set(key, value); return true; } catch (...) { LOG(ERROR) << "Store is down while updating #" << seq << " with key " << key; return false; } return true; } enum TraceDebugEvent { kEventStart, kEventEnd, }; // <seq, <rank, <col, start/end>>> using TraceMap = std::map<uint64_t, std::map<int, std::pair<std::string, TraceDebugEvent>>>; inline std::string ranksToString(const std::vector<int>& ranks) { std::string str; for (int rank : ranks) { if (str.empty()) { str = std::to_string(rank); } else { str += ", " + std::to_string(rank); } } return str; } inline std::string ranksFromTrace( const std::vector<std::pair<int, std::string>>& items) { std::string ranks; for (auto& p : items) { if (ranks.empty()) { ranks = std::to_string(p.first); } else { ranks += ", " + std::to_string(p.first); } } return ranks; } inline std::string analyzeMissingRanks(const std::vector<int>& missingRanks) { return c10::str( "\n\t - To our best knowledge, ranks [", ranksToString(missingRanks), "] are the lagging ranks that caused this timeout. " "They never joined any collectives"); } inline std::string analyzeLaggingRanks(const TraceMap& traceMap) { uint64_t lagSeq = traceMap.begin()->first; std::vector<int> startRanks; std::vector<int> endRanks; for (auto& p : traceMap.begin()->second) { if (p.second.second == kEventStart) { startRanks.push_back(p.first); } else { endRanks.push_back(p.first); } } std::string report = "\n\t - To our best knowledge, the lagging/dead/mismatched ranks " "that caused the desync are:"; if (!startRanks.empty()) { report += c10::str( "\n\t - [", ranksToString(startRanks), "] joined but didn't finish collective #", lagSeq, " (count from 1)"); } if (!endRanks.empty()) { report += c10::str( "\n\t [", ranksToString(endRanks), "] finished collective #", lagSeq, ", but didn't join collective #", lagSeq + 1, " (count from 1)"); } return report; } inline std::string dumpSnapshot(TraceMap& traceMap) { std::string report = "\n\t - Snapshot of ranks' latest states:"; for (auto& tracePair : traceMap) { uint64_t seq = tracePair.first; std::map<int, std::pair<std::string, TraceDebugEvent>>& subMap = tracePair.second; std::unordered_map<std::string, std::vector<int>> collectivesStart; std::unordered_map<std::string, std::vector<int>> collectivesEnd; for (auto& p : subMap) { int rank = p.first; const std::string& col = p.second.first; if (p.second.second == kEventStart) { collectivesStart[col].push_back(rank); } else { collectivesEnd[col].push_back(rank); } } if (!collectivesStart.empty()) { report += c10::str("\n\t #", seq, " started ranks:"); for (auto& mapPair : collectivesStart) { report += c10::str( "\n\t [", ranksToString(mapPair.second), "] started ", mapPair.first); } } if (!collectivesEnd.empty()) { report += c10::str("\n\t #", seq, " finished ranks:"); for (auto& mapPair : collectivesEnd) { report += c10::str( "\n\t [", ranksToString(mapPair.second), "] finished ", mapPair.first); } } } return report; } inline bool parseTraceValue( c10::intrusive_ptr<Store>& store, const std::string& key, uint64_t& seq, std::string& col) { try { std::vector<uint8_t> traceValue = store->get(key); memcpy(&seq, traceValue.data(), sizeof(seq)); std::string colName((char*)traceValue.data() + sizeof(seq)); col = colName; return true; } catch (...) { LOG(ERROR) << "Store is down while getting key " << key; return false; } return true; } inline std::string retrieveDesyncReport( c10::intrusive_ptr<Store>& store, const std::string& pgName, int myRank, int worldSize) { std::string report; uint64_t thisSeq = 0; std::string thisCol; std::vector<int> missingRanks; TraceMap traceMap; for (const auto rank : c10::irange(worldSize)) { // Build traceMapStart. uint64_t seqStart = 0; { std::string traceKeyStart = getTraceStartKey(pgName, rank); if (!store->check({traceKeyStart})) { missingRanks.push_back(rank); continue; } std::string col; if (!parseTraceValue(store, traceKeyStart, seqStart, col)) { return report; } traceMap[seqStart].emplace(rank, std::make_pair(col, kEventStart)); if (rank == myRank) { thisSeq = seqStart; thisCol = std::move(col); } } // Build traceMapEnd. { std::string traceKeyEnd = getTraceEndKey(pgName, rank); if (!store->check({traceKeyEnd})) { continue; } uint64_t seq = 0; std::string col; if (!parseTraceValue(store, traceKeyEnd, seq, col)) { return report; } if (seq == seqStart) { traceMap[seq][rank].second = kEventEnd; } } } TORCH_INTERNAL_ASSERT( !missingRanks.empty() || !traceMap.empty(), "Trace shouldn't be empty while enabled GLOO_ASYNC_TIMEOUT_DEBUG"); TORCH_INTERNAL_ASSERT( !thisCol.empty(), "Timeout rank [", myRank, "] must have collective tracking iteam in c10::Store trace"); TORCH_INTERNAL_ASSERT( traceMap[thisSeq][myRank].second == kEventStart, "Timeout rank [", myRank, "] last trace item must be kEventStart. thisSeq = ", thisSeq, ", col = ", thisCol); report += c10::str( "\n\t - [", myRank, "] Timeout at collective: ", thisCol, ", #", thisSeq); if (!missingRanks.empty()) { report += analyzeMissingRanks(missingRanks); } else { report += analyzeLaggingRanks(traceMap); report += dumpSnapshot(traceMap); } return report; } inline std::string pickle_str(const c10::IValue& v) { std::vector<char> result; { auto writer = [&](const char* data, size_t size) { result.insert(result.end(), data, data + size); }; torch::jit::Pickler pickler( writer, nullptr, nullptr, nullptr, nullptr, false); pickler.protocol(); pickler.pushIValue(v); pickler.stop(); } return std::string(result.begin(), result.end()); } inline std::string get_python_cpp_trace() { // usage: // LOG(INFO) << "stacktrace: " // << get_python_cpp_trace(); // warn: might be slow in getting cpp traces // because of slow/broken addr2line // in different system libs std::shared_ptr<torch::CapturedTraceback> tb = torch::CapturedTraceback::gather( /*python=*/true, /*script=*/true, /*cpp=*/true); torch::SymbolizedTracebacks s_tbs = torch::symbolize({tb.get()}); const auto& s_tb = s_tbs.tracebacks.at(0); std::stringstream oss; for (auto idx : c10::irange(s_tb.size())) { auto frame_id = s_tb[idx]; const auto& frame = s_tbs.all_frames.at(frame_id); oss << "#" << idx << " " << frame.funcname << " from " << frame.filename << ":" << frame.lineno << '\n'; } return oss.str(); } inline c10::Dict<c10::IValue, c10::IValue> new_dict() { return c10::Dict<c10::IValue, c10::IValue>( c10::AnyType::get(), c10::AnyType::get()); } inline c10::List<c10::IValue> new_list() { return c10::List<c10::IValue>(c10::AnyType::get()); } inline std::string ranks_str(const std::vector<uint64_t>& ranks) { std::string str; for (const auto& rank : ranks) { if (str.empty()) { str = std::to_string(rank); } else { str += ", " + std::to_string(rank); } } return c10::str("[", str, "]"); } } // namespace c10d ```
======================================================================================================================================== SOURCE CODE FILE: c10d.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\c10d.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/python_headers.h> namespace torch::distributed::c10d { PyMethodDef* python_functions(); } // namespace torch::distributed::c10d ```
========================================================================================================================================= SOURCE CODE FILE: debug.h LINES: 1 SIZE: 0.61 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\debug.h ENCODING: utf-8 ```h // Copyright (c) Meta Platforms, Inc. and its affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include <c10/macros/Macros.h> namespace c10d { enum class DebugLevel { Off = 0, Info = 1, Detail = 2 }; TORCH_API void setDebugLevel(DebugLevel level); // Sets the debug level based on the value of the `TORCH_DISTRIBUTED_DEBUG` // environment variable. TORCH_API void setDebugLevelFromEnvironment(); TORCH_API DebugLevel debug_level() noexcept; } // namespace c10d ```
========================================================================================================================================= SOURCE CODE FILE: error.h LINES: 1 SIZE: 1.36 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\error.h ENCODING: utf-8 ```h // Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include <cstring> #include <system_error> #include <fmt/format.h> namespace fmt { template <> struct formatter<std::error_category> { constexpr decltype(auto) parse(format_parse_context& ctx) const { return ctx.begin(); } template <typename FormatContext> decltype(auto) format(const std::error_category& cat, FormatContext& ctx) const { if (std::strcmp(cat.name(), "generic") == 0) { return fmt::format_to(ctx.out(), "errno"); } else { return fmt::format_to(ctx.out(), "{} error", cat.name()); } } }; template <> struct formatter<std::error_code> { constexpr decltype(auto) parse(format_parse_context& ctx) const { return ctx.begin(); } template <typename FormatContext> decltype(auto) format(const std::error_code& err, FormatContext& ctx) const { return fmt::format_to( ctx.out(), "({}: {} - {})", err.category(), err.value(), err.message()); } }; } // namespace fmt namespace c10d::detail { inline std::error_code lastError() noexcept { return std::error_code{errno, std::generic_category()}; } } // namespace c10d::detail ```
============================================================================================================================================= SOURCE CODE FILE: exception.h LINES: 1 SIZE: 1.33 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\exception.h ENCODING: utf-8 ```h // Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include <c10/macros/Macros.h> #include <c10/util/Exception.h> // Utility macro similar to C10_THROW_ERROR, the major difference is that this // macro handles exception types defined in the c10d namespace, whereas // C10_THROW_ERROR requires an exception to be defined in the c10 namespace. #define C10D_THROW_ERROR(err_type, ...) \ throw ::c10d::err_type( \ {__func__, __FILE__, static_cast<uint32_t>(__LINE__)}, \ c10::str(__VA_ARGS__)) #define C10D_CHECK_WITH(error_t, cond, ...) \ if (C10_UNLIKELY_OR_CONST(!(cond))) { \ C10D_THROW_ERROR( \ error_t, TORCH_CHECK_MSG(cond, "", c10::str(__VA_ARGS__))); \ } namespace c10d { using c10::DistNetworkError; using c10::DistStoreError; class TORCH_API SocketError : public DistNetworkError { using DistNetworkError::DistNetworkError; }; class TORCH_API TimeoutError : public DistNetworkError { using DistNetworkError::DistNetworkError; }; } // namespace c10d ```
=========================================================================================================================================== SOURCE CODE FILE: logging.h LINES: 1 SIZE: 1.83 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\logging.h ENCODING: utf-8 ```h // Copyright (c) Meta Platforms, Inc. and its affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include <string> #include <c10/macros/Macros.h> #include <c10/util/Logging.h> #include <fmt/format.h> namespace c10d::detail { enum class LogLevel { Trace, Debug, Info, Warning, Error }; TORCH_API bool isLogLevelEnabled(LogLevel level) noexcept; template <typename... T> // NOLINTNEXTLINE(cppcoreguidelines-missing-std-forward) std::string formatLogMessage(fmt::string_view fmt, T&&... args) { return fmt::vformat(fmt, fmt::make_format_args(args...)); } } // namespace c10d::detail #define C10D_ERROR(...) \ if (c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Error)) \ LOG(ERROR) << "[c10d] " << c10d::detail::formatLogMessage(__VA_ARGS__) #define C10D_WARNING(...) \ if (c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Warning)) \ LOG(WARNING) << "[c10d] " << c10d::detail::formatLogMessage(__VA_ARGS__) #define C10D_INFO(...) \ if (c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Info)) \ LOG(INFO) << "[c10d] " << c10d::detail::formatLogMessage(__VA_ARGS__) #define C10D_DEBUG(...) \ if (c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Debug)) \ LOG(INFO) << "[c10d - debug] " << c10d::detail::formatLogMessage(__VA_ARGS__) #define C10D_TRACE(...) \ if (c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Trace)) \ LOG(INFO) << "[c10d - trace] " << c10d::detail::formatLogMessage(__VA_ARGS__) ```
==================================================================================================================================================== SOURCE CODE FILE: python_comm_hook.h LINES: 1 SIZE: 1.08 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\python_comm_hook.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/c10d/comm.hpp> #include <ATen/ATen.h> #include <ATen/core/ivalue.h> #include <torch/csrc/distributed/c10d/ProcessGroup.hpp> #include <torch/csrc/utils/pybind.h> namespace c10d { class TORCH_PYTHON_API PythonCommHook : public CommHookInterface { public: // Takes a state and a callable hook. The inputs are Python objects. // The state is passed to the hook in runHook method, and it can be used to // maintain and update any state information during the execution of the hook. // The hook performs user-specified processing and returns a future indicating // asychronous communication of gradients. PythonCommHook(py::object state, py::object hook) : state_(std::move(state)), hook_(std::move(hook)) {} ~PythonCommHook() override; c10::intrusive_ptr<c10::ivalue::Future> runHook(GradBucket& bucket) override; at::Tensor parseHookResult(const c10::IValue& result) override; private: // Only needed for stateful communication. py::object state_; py::object hook_; }; } // namespace c10d ```
========================================================================================================================================== SOURCE CODE FILE: socket.h LINES: 1 SIZE: 2.50 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\socket.h ENCODING: utf-8 ```h // Copyright (c) Meta Platforms, Inc. and its affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include <chrono> #include <cstdint> #include <memory> #include <string> #include <c10/macros/Macros.h> #include <c10/util/Exception.h> #include <torch/csrc/distributed/c10d/Backoff.hpp> #include <torch/csrc/distributed/c10d/exception.h> namespace c10d::detail { class SocketOptions { public: SocketOptions& prefer_ipv6(bool value) noexcept { prefer_ipv6_ = value; return *this; } bool prefer_ipv6() const noexcept { return prefer_ipv6_; } SocketOptions& connect_timeout(std::chrono::milliseconds value) noexcept { connect_timeout_ = value; return *this; } std::chrono::milliseconds connect_timeout() const noexcept { return connect_timeout_; } // Sets the backoff policy to use for socket connect ops. SocketOptions& connect_backoff(std::shared_ptr<Backoff> value) noexcept { connect_backoff_ = std::move(value); return *this; } const std::shared_ptr<Backoff>& connect_backoff() const noexcept { return connect_backoff_; } private: bool prefer_ipv6_ = true; std::chrono::milliseconds connect_timeout_{std::chrono::seconds{30}}; std::shared_ptr<Backoff> connect_backoff_{ std::make_shared<FixedBackoff>(std::chrono::milliseconds(1000))}; }; class SocketImpl; class Socket { public: // This function initializes the underlying socket library and must be called // before any other socket function. static void initialize(); static Socket listen(std::uint16_t port, const SocketOptions& opts = {}); static Socket listenFromFd(int fd, std::uint16_t expected_port); static Socket connect( const std::string& host, std::uint16_t port, const SocketOptions& opts = {}); Socket() noexcept = default; Socket(const Socket& other) = delete; Socket& operator=(const Socket& other) = delete; Socket(Socket&& other) noexcept; Socket& operator=(Socket&& other) noexcept; ~Socket(); Socket accept() const; int handle() const noexcept; std::uint16_t port() const; bool waitForInput(std::chrono::milliseconds timeout); std::string repr() const; private: explicit Socket(std::unique_ptr<SocketImpl>&& impl) noexcept; std::unique_ptr<SocketImpl> impl_; }; } // namespace c10d::detail ```
============================================================================================================================================== SOURCE CODE FILE: socket_fmt.h LINES: 1 SIZE: 0.71 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\c10d\socket_fmt.h ENCODING: utf-8 ```h // (c) Meta Platforms, Inc. and affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once /* This file should not be included from other .h files and only used in cpp files as it exposes the underlying platform specific socket headers. */ #include <string> #ifdef _WIN32 #include <mutex> #include <winsock2.h> #include <ws2tcpip.h> #else #include <netinet/in.h> #endif namespace c10d::detail { // Returns a human-readable representation of the given socket address. std::string formatSockAddr(const struct ::sockaddr* addr, socklen_t len); } // namespace c10d::detail ```
============================================================================================================================================== SOURCE CODE FILE: agent_utils.h LINES: 1 SIZE: 1.63 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\agent_utils.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/c10d/PrefixStore.hpp> #include <torch/csrc/distributed/rpc/utils.h> namespace torch::distributed::rpc { // All RPC peers should call into this function at the same time. Each peer // provides its own id and name, and this function uses the given Store to // gather global name-to-id mapping on all peers. TORCH_API std::unordered_map<std::string, worker_id_t> collectNames( ::c10d::PrefixStore store, const worker_id_t selfId, const std::string& selfName, const int worldSize); // Ranks in dynamic RPC groups will initially call into this to establish the // name-to-id mapping for the current peers in the group. The current rank will // put its own worker info in the store and discover all the ranks that came // before it. NOTE: This needs to be called with the Dynamic RPC group // membership management token held. TORCH_API std::unordered_map<std::string, worker_id_t> collectCurrentNames( ::c10d::PrefixStore store, const worker_id_t selfId, const std::string& selfName); // Remove name frmo Store, used in dynamic RPC groups. // NOTE: This needs to be called with the Dynamic RPC group // membership management token held. TORCH_API void removeCurrentName( ::c10d::PrefixStore store, const worker_id_t selfId, const std::string& selfName); // This performs a synchronization of all call counts by using store. // All RPC peers wait for others to join to exit at the same time. TORCH_API int syncCallCount( ::c10d::PrefixStore store, const int worldSize, int activeCalls = 0); } // namespace torch::distributed::rpc ```
========================================================================================================================================== SOURCE CODE FILE: message.h LINES: 1 SIZE: 7.64 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\message.h ENCODING: utf-8 ```h #pragma once #include <torch/types.h> #include <vector> namespace torch::distributed::rpc { // An enum denoting common RPC errors to allow specific error handling for them. // NOLINTNEXTLINE(performance-enum-size) enum RPCErrorType { UNKNOWN_ERROR = 0, /* Indicates that error type could not be parsed */ TIMEOUT = 1, /* Indicates that the RPC has timed out */ INTENTIONAL_FAILURE = 2 /* Deliberate failure, such as those injected by FaultyAgent for testing */ }; // The enum values are bitwise ORed with MessageType // They are bit flags starting from 0x100 and should have // value such as 0x100, 0x200, 0x400, 0x800, 0xF00, etc. // NOLINTNEXTLINE(performance-enum-size) enum MessageTypeFlags { REQUEST_TYPE = 0x100, RESPONSE_TYPE = 0x200, }; // Message types must have values between 0x00 to 0xff // NOLINTNEXTLINE(performance-enum-size) enum MessageType { // messages for dist.rpc on builtin operators SCRIPT_CALL = 0x00 | MessageTypeFlags::REQUEST_TYPE, SCRIPT_RET = 0x01 | MessageTypeFlags::RESPONSE_TYPE, // messages for dist.rpc on Python UDF PYTHON_CALL = 0x02 | MessageTypeFlags::REQUEST_TYPE, PYTHON_RET = 0x03 | MessageTypeFlags::RESPONSE_TYPE, // messages for dist.remote on builtin operators and Python UDF SCRIPT_REMOTE_CALL = 0x04 | MessageTypeFlags::REQUEST_TYPE, // A remote call on a builtin operator PYTHON_REMOTE_CALL = 0x05 | MessageTypeFlags::REQUEST_TYPE, // A remote call on a Python UDF REMOTE_RET = 0x06 | MessageTypeFlags::RESPONSE_TYPE, // Response for remote calls for // UDF, builtin, or script // RRef related internal messages SCRIPT_RREF_FETCH_CALL = 0x07 | MessageTypeFlags::REQUEST_TYPE, // A UserRRef<IValue> fetches value // from owner PYTHON_RREF_FETCH_CALL = 0x08 | MessageTypeFlags::REQUEST_TYPE, // A UserRRef<py::object> fetches // value from owner SCRIPT_RREF_FETCH_RET = 0x09 | MessageTypeFlags::RESPONSE_TYPE, // An OwnerRRef sends ivalue to user PYTHON_RREF_FETCH_RET = 0x0a | MessageTypeFlags::RESPONSE_TYPE, // An OwnerRRef sends py::object to user RREF_USER_DELETE = 0x0b | MessageTypeFlags::REQUEST_TYPE, // A UserRRef tells the owner to deref RREF_FORK_REQUEST = 0x0c | MessageTypeFlags::REQUEST_TYPE, // A child UserRRef tells the owner // about itself RREF_CHILD_ACCEPT = 0x0d | MessageTypeFlags::REQUEST_TYPE, // A child UserRRef tells parent // that owner knows it RREF_ACK = 0x0e | MessageTypeFlags::RESPONSE_TYPE, // ACK to internal RRef messages // Messages with autograd info FORWARD_AUTOGRAD_REQ = 0x0f | MessageTypeFlags::REQUEST_TYPE, FORWARD_AUTOGRAD_RESP = 0x10 | MessageTypeFlags::RESPONSE_TYPE, // Messages to propagate gradients on the backward pass. BACKWARD_AUTOGRAD_REQ = 0x11 | MessageTypeFlags::REQUEST_TYPE, BACKWARD_AUTOGRAD_RESP = 0x12 | MessageTypeFlags::RESPONSE_TYPE, // Messages to tell workers to clean up their autograd context. CLEANUP_AUTOGRAD_CONTEXT_REQ = 0x13 | MessageTypeFlags::REQUEST_TYPE, CLEANUP_AUTOGRAD_CONTEXT_RESP = 0x14 | MessageTypeFlags::RESPONSE_TYPE, // Messages that tell workers to run requests with profiling enabled. RUN_WITH_PROFILING_REQ = 0x15 | MessageTypeFlags::REQUEST_TYPE, RUN_WITH_PROFILING_RESP = 0x16 | MessageTypeFlags::RESPONSE_TYPE, // Messages to support RRef.backward(). RREF_BACKWARD_REQ = 0x17 | MessageTypeFlags::REQUEST_TYPE, RREF_BACKWARD_RESP = 0x18 | MessageTypeFlags::RESPONSE_TYPE, // Other internal message types EXCEPTION = 0x37 | MessageTypeFlags::RESPONSE_TYPE, UNKNOWN = 0x3c }; // A message to be sent/received by an RpcAgent. // // A Message object contains 4 fields: // payload (std::vector<char>): a binary chunk of data. // tensors (std::vector<torch::Tensor>): all tensors. Tensor data are not // included in the payload, and it is up to the RpcAgent implementation // to determine how to serialize them. This design is helpful for // communicating super large tensors where serializing all the data at // once leads to excessively large memory footprint. An implementation // can then serialize and send tensors chunk-by-chunk, in the streaming // fashion. // type (MessageType): type of the message. // id (int64_t): message id, this is used to match request and response. // Other implementation can ignore it if they have their own // ways to do matching. // // Layers above ``RpcAgent`` only converts ScriptCall, ScriptResp, PythonCall, // and PythonResp into a Message, and it is up to the RpcAgent // implementation to determine how to serialize a message. class TORCH_API Message final : public torch::CustomClassHolder { private: // Keep these private in order to force users to go through make_intrusive and // thus prevent creating a Message that's not held by an intrusive_ptr. Message(); Message( std::vector<char>&& payload, std::vector<torch::Tensor>&& tensors, MessageType type); Message( std::vector<char>&& payload, std::vector<torch::Tensor>&& tensors, MessageType type, int64_t id); friend c10::intrusive_ptr<Message>; public: Message(const Message& other) = delete; Message(Message&& other) = delete; Message& operator=(Message const& rhs) = delete; Message& operator=(Message&& rhs) = delete; ~Message() override = default; // Destructively retrieves the payload. std::vector<char>&& movePayload() &&; std::vector<torch::Tensor>&& moveTensors() &&; std::vector<char>& payload(); const std::vector<char>& payload() const; std::vector<torch::Tensor>& tensors(); const std::vector<torch::Tensor>& tensors() const; MessageType type() const; bool isRequest() const; bool isResponse() const; bool isShutdown() const; // id is an optional field to match request/response. If an RpcAgent // implementation is able to do the matching without using this id, it can be // dropped during message serialization. int64_t id() const; void setId(int64_t id); std::vector<c10::weak_intrusive_ptr<c10::StorageImpl>> getStorages() const; private: std::vector<char> payload_; std::vector<torch::Tensor> tensors_; MessageType type_ = MessageType::UNKNOWN; int64_t id_ = -1; }; // Create a response Message of type Exception. // The exception string representation will be used as the message's payload. // A message ID corresponding to the request that resulted in this response can // be provided for matching requests/responses. TORCH_API c10::intrusive_ptr<Message> createExceptionResponse( const std::exception& e, int64_t id); // Create a response Message of type Exception. // The passed in string representation will be used as the message's payload. // A message ID corresponding to the request that resulted in this response can // be provided for matching requests/responses. TORCH_API c10::intrusive_ptr<Message> createExceptionResponse( const std::string& exceptionStr, int64_t id); inline std::tuple< c10::intrusive_ptr<Message>, std::vector<c10::weak_intrusive_ptr<c10::StorageImpl>>> withStorages(c10::intrusive_ptr<Message> message) { auto storages = message->getStorages(); return std::make_tuple(std::move(message), std::move(storages)); } using JitFuture = c10::ivalue::Future; } // namespace torch::distributed::rpc ```
========================================================================================================================================== SOURCE CODE FILE: py_rref.h LINES: 1 SIZE: 2.97 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\py_rref.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/rref_impl.h> #include <torch/csrc/python_headers.h> #include <torch/csrc/utils/pybind.h> namespace torch::distributed::rpc { // NOLINTNEXTLINE(performance-enum-size) enum RRefProxyType { RPC_SYNC, RPC_ASYNC, REMOTE }; // Python wrapper of an RRef shared_ptr that supports Python // pickle and unpickle. class PYBIND11_EXPORT PyRRef { public: // The first ctor can only be called while holding GIL. See its implementation // for more explanations. explicit PyRRef(const py::object& value, const py::object& type_hint); explicit PyRRef(c10::intrusive_ptr<RRef> rref); PyRRef(const PyRRef&) = default; ~PyRRef(); bool isOwner() const; bool confirmedByOwner() const; WorkerInfo owner() const; std::string ownerName() const; py::object toHere( const float timeoutSeconds = torch::distributed::rpc::kUnsetRpcTimeout) const; py::object localValue() const; std::string str() const; py::tuple pickle() const; static PyRRef unpickle(const py::tuple& t); c10::IValue toIValue() const; // Future that is associated with the creation of this RRef on the remote end. // This is only used to get the future corresponding to the rref for profiling // use cases. c10::intrusive_ptr<JitFuture> getFuture() const; // Keeps track of the future responsible for profiling owner creation // acknowledgement c10::intrusive_ptr<JitFuture> getProfilingFuture() const; // Sets the future responsible for profiling owner creation acknowledgement. // This future is set from python to be a future that returns when profiling // callbacks have been run. void setProfilingFuture(c10::intrusive_ptr<JitFuture> profilingFuture); // create a proxy on this RRef, which can be used to launch RPC on the owner // of this RRef to run functions on the object referenced by this RRef. py::object createRRefProxy( const RRefProxyType& mode, float timeoutSeconds = rpc::kUnsetRpcTimeout) const; // get the type of the data object referenced by this RRef. Timeout argument // is only used in the first invocation of this function as an argument to the // RPC to the owner node of the RRef. py::object getRRefType( float timeout = rpc::kUnsetRpcTimeout, bool blocking = true); // Run the backward pass with the RRef as the root. void backward(int64_t autogradContextId, bool retainGraph); // Helper static function to run backward on a given rref. static void backward( int64_t autogradContextId, bool retainGraph, const c10::intrusive_ptr<RRef>& rref); // Specialization of backward if the rref is an OwnerRRef. static void backwardOwnerRRef( int64_t autogradContextId, bool retainGraph, IValue value); private: c10::intrusive_ptr<RRef> rref_; std::optional<c10::intrusive_ptr<JitFuture>> profilingFuture_; std::optional<py::object> type_; }; } // namespace torch::distributed::rpc ```
============================================================================================================================================== SOURCE CODE FILE: python_call.h LINES: 1 SIZE: 0.82 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\python_call.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> namespace torch::distributed::rpc { // RPC call representing calling a Python function over RPC. class TORCH_API PythonCall final : public RpcCommandBase { public: PythonCall(SerializedPyObj&& serializedPyObj, bool isAsyncExecution); c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<PythonCall> fromMessage(const Message& message); const SerializedPyObj& serializedPyObj() const; inline bool isAsyncExecution() const { return isAsyncExecution_; } private: SerializedPyObj serializedPyObj_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const bool isAsyncExecution_; }; } // namespace torch::distributed::rpc ```
=================================================================================================================================================== SOURCE CODE FILE: python_functions.h LINES: 1 SIZE: 2.27 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\python_functions.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/py_rref.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> #include <torch/csrc/jit/python/pybind_utils.h> #include <torch/csrc/utils/pybind.h> namespace torch::distributed::rpc { // Converts an internal ivalue::Future of Message into a user-facing // ivalue::Future of py::object type by creating a new ivalue::Future and call // its markCompleted as a callback in the given ivalue::Future. // If hasValue is true, the Message will be converted into a py::object and then // wrap it with an IValue. If hasValue is false, this ivalue::Future is only // used for signaling and launching callbacks. In this case, the message will be // discarded and then set the ivalue::Future using an empty IValue or the given // FutureError if there is an error. c10::intrusive_ptr<JitFuture> toPyJitFuture( const c10::intrusive_ptr<JitFuture>& messageJitFuture, bool hasValue = true); c10::intrusive_ptr<JitFuture> pyRpcBuiltin( const WorkerInfo& dst, const std::string& opName, const py::args& args, const py::kwargs& kwargs, const float rpcTimeoutSeconds); c10::intrusive_ptr<JitFuture> pyRpcPythonUdf( const WorkerInfo& dst, std::string& pickledPythonUDF, std::vector<torch::Tensor>& tensors, const float rpcTimeoutSeconds, const bool isAsyncExecution); c10::intrusive_ptr<JitFuture> pyRpcTorchscript( const std::string& dstWorkerName, const std::string& qualifiedNameStr, const py::tuple& argsTuple, const py::dict& kwargsDict, const float rpcTimeoutSeconds, const bool isAsyncExecution); PyRRef pyRemoteBuiltin( const WorkerInfo& dst, const std::string& opName, const float rpcTimeoutSeconds, const py::args& args, const py::kwargs& kwargs); PyRRef pyRemotePythonUdf( const WorkerInfo& dst, std::string& pickledPythonUDF, std::vector<torch::Tensor>& tensors, const float rpcTimeoutSeconds, const bool isAsyncExecution); PyRRef pyRemoteTorchscript( const std::string& dstWorkerName, const std::string& qualifiedNameStr, const float rpcTimeoutSeconds, const bool isAsyncExecution, const py::args& args, const py::kwargs& kwargs); } // namespace torch::distributed::rpc ```
===================================================================================================================================================== SOURCE CODE FILE: python_remote_call.h LINES: 1 SIZE: 1.34 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\python_remote_call.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> #include <torch/csrc/jit/serialization/pickler.h> namespace torch::distributed::rpc { class TORCH_API PythonRemoteCall : public RpcCommandBase { public: PythonRemoteCall( SerializedPyObj&& serializedPyObj, at::IValue retRRefId, at::IValue retForkId, const bool isAsyncExecution); inline const SerializedPyObj& serializedPyObj() const { return serializedPyObj_; } inline const at::IValue& retRRefId() const { return retRRefId_; } inline const at::IValue& retForkId() const { return retForkId_; } inline bool isAsyncExecution() const { return isAsyncExecution_; } c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<PythonRemoteCall> fromMessage(const Message& message); private: SerializedPyObj serializedPyObj_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const at::IValue retRRefId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const at::IValue retForkId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const bool isAsyncExecution_; }; } // namespace torch::distributed::rpc ```
============================================================================================================================================== SOURCE CODE FILE: python_resp.h LINES: 1 SIZE: 0.63 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\python_resp.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> namespace torch::distributed::rpc { // RPC call representing the response of a Python UDF over RPC. class TORCH_API PythonResp final : public RpcCommandBase { public: explicit PythonResp(SerializedPyObj&& serializedPyObj); c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<PythonResp> fromMessage(const Message& message); const SerializedPyObj& serializedPyObj() const; private: SerializedPyObj serializedPyObj_; }; } // namespace torch::distributed::rpc ```
===================================================================================================================================================== SOURCE CODE FILE: python_rpc_handler.h LINES: 1 SIZE: 4.96 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\python_rpc_handler.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/types.h> #include <torch/csrc/jit/frontend/script_type_parser.h> #include <torch/csrc/utils/pybind.h> namespace torch::distributed::rpc { // Singleton class provides interface to execute python UDF remote call // and deserialize the returned results by running python function // in internal_rpc_utilities. // The singleton object is constructed at first when RPC agent is // constructed, where the python function in // torch/distributed/internal_rpc_utils.py are imported only once. class PYBIND11_EXPORT PythonRpcHandler { public: struct RRefProxyFunctions { py::object rrefProxyCtor_; py::object rpcSync_; py::object rpcAsync_; py::object remote_; }; struct RRefTypeFunctions { py::object onOwner_; py::object onUser_; }; static PythonRpcHandler& getInstance(); // Run a pickled Python UDF and return the result py::object py::object runPythonUdf(const py::object& pythonUdf); // Serialized a py::object into a string SerializedPyObj serialize(const py::object& obj); // Deserialize a string into a py::object py::object deserialize(const SerializedPyObj& serializedObj); // Check if obj is RemoteException, then throw it void handleException(const py::object& obj); // Alternative if the caller is already holding the GIL. void handleExceptionGILHeld(const py::object& obj); // Check if obj is an RemoteException instance. bool isRemoteException(const py::object& obj); // Explicitly clean up py::objects to avoid segment faults when // py::objects with CPython are cleaned up later at program exit // See similar issues reported https://github.com/pybind/pybind11/issues/1598 // and https://github.com/pybind/pybind11/issues/1493 // Our local tests also caught this segment faults if py::objects are cleaned // up at program exit. The explanation is: CPython cleans up most critical // utilities before cleaning up PythonRpcHandler singleton, so when // PythonRpcHandler singleton cleans up py::objects and call dec_ref(), it // will crash. // The solution is to clean up py::objects earlier when Rpc agent join(). // Be note that py::objects can not be cleaned up when Rpc agent is destroyed // as well, as Rpc agent is global variable and it will have same issue as // PythonRpcHandler. void cleanup(); std::shared_ptr<torch::jit::CompilationUnit> jitCompilationUnit(); // Parse the string to recover the jit_type, this is used for RRef python // pickling/unpickling type recovery. The type string inference rule is as // follows: // 1. first try to parse if this is primitive types. // i.e. TensorType, IntType, PyObjectType, etc. // 2. if not primitive type, we query the python_cu to see if it is a // class type or interface type registered in python // We use a ScriptTypeParser instance with custom PythonTypeResolver // to resolve types according to the above rules. TypePtr parseTypeFromStr(const std::string& typeStr); // Return a set of Python functions for RRef helpers. const RRefProxyFunctions& getRRefProxyFunctions() const; // Return a set of Python functions to retrieve the type of the object // referenced by a given RRef. const RRefTypeFunctions& getRRefTypeFunctions() const; PythonRpcHandler(const PythonRpcHandler&) = delete; PythonRpcHandler& operator=(const PythonRpcHandler&) = delete; PythonRpcHandler(PythonRpcHandler&&) = delete; PythonRpcHandler& operator=(PythonRpcHandler&&) = delete; private: void init(); PythonRpcHandler(); ~PythonRpcHandler() = default; // Ref to `torch.distributed.rpc.internal._run_function`. py::object pyRunFunction_; // Ref to `torch.distributed.rpc.internal.serialize`. py::object pySerialize_; // Ref to `torch.distributed.rpc.internal.deserialize`. py::object pyDeserialize_; // Ref to 'torch.distributed.rpc.internal._handle_exception' py::object pyHandleException_; // Python functions for RRef proxy RRefProxyFunctions rrefProxyFunctions_; // Ref to 'torch.distributed.rpc.api._rref_typeof_on_' RRefTypeFunctions rrefTypeFunctions_; // Shared ptr to python compilation unit in jit, it is constructed in python // side (see _python_cu = torch._C.CompilationUnit() in jit/__init__.py) // and imported in C++ (see get_python_cu() in // csrc/jit/python/pybind_utils.h). We import the compilation unit here only // once for less cost and thread safety. std::shared_ptr<torch::jit::CompilationUnit> jitCompilationUnit_; // jit type parser to parse type_str back to TypePtr for RRef type // recovery when pickling and unpickling RRef std::shared_ptr<jit::ScriptTypeParser> typeParser_; // Indicates whether or not we have properly initialized the handler. bool initialized_; // Lock to protect initialization. std::mutex init_lock_; }; } // namespace torch::distributed::rpc ```
=================================================================================================================================================== SOURCE CODE FILE: request_callback.h LINES: 1 SIZE: 1.23 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\request_callback.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> namespace torch::distributed::rpc { // Functor which is invoked to process an RPC message. This is an abstract class // with some common functionality across all request handlers. Users need to // implement this interface to perform the actual business logic. class TORCH_API RequestCallback { public: // Invoke the callback. c10::intrusive_ptr<JitFuture> operator()( Message& request, std::vector<c10::Stream> streams) const; virtual ~RequestCallback() = default; protected: // RpcAgent implementation should invoke ``RequestCallback`` to process // received requests. There is no restriction on the implementation's // threading model. This function takes an rvalue reference of the Message // object. It is expected to return the future to a response message or // message containing an exception. Different rpc agent implementations are // expected to ensure delivery of the response/exception based on their // implementation specific mechanisms. virtual c10::intrusive_ptr<JitFuture> processMessage( Message& request, std::vector<c10::Stream> streams) const = 0; }; } // namespace torch::distributed::rpc ```
======================================================================================================================================================== SOURCE CODE FILE: request_callback_impl.h LINES: 1 SIZE: 2.09 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\request_callback_impl.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/request_callback_no_python.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/jit/python/pybind.h> namespace torch::distributed::rpc { class TORCH_API RequestCallbackImpl : public RequestCallbackNoPython { public: std::unique_ptr<RpcCommandBase> deserializePythonRpcCommand( std::unique_ptr<RpcCommandBase> rpc, const MessageType& messageType) const override; c10::intrusive_ptr<JitFuture> processPythonCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const override; c10::intrusive_ptr<JitFuture> processScriptCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const override; c10::intrusive_ptr<JitFuture> processScriptRemoteCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const override; c10::intrusive_ptr<JitFuture> processPythonRemoteCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const override; c10::intrusive_ptr<JitFuture> processPythonRRefFetchCall( RpcCommandBase& rpc) const override; void handleRRefDelete(c10::intrusive_ptr<RRef>& rref) const override; c10::intrusive_ptr<JitFuture> processRpcWithErrors( RpcCommandBase& rpc, const MessageType& messageType, const std::vector<c10::Stream>& streams) const override; bool cudaAvailable() const override; c10::intrusive_ptr<JitFuture> processRRefBackward( RpcCommandBase& rpc) const override; // Helpers to run user-defined functions, operators and other computations. c10::intrusive_ptr<JitFuture> runJitFunction( const c10::QualifiedName& name, std::vector<at::IValue>& stack, const std::vector<c10::Stream>& streams, bool isAsyncExecution) const; c10::intrusive_ptr<JitFuture> runPythonFunction( const py::object& function, const std::vector<c10::Stream>& streams, bool isAsyncExecution) const; }; } // namespace torch::distributed::rpc ```
============================================================================================================================================================= SOURCE CODE FILE: request_callback_no_python.h LINES: 1 SIZE: 3.92 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\request_callback_no_python.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/request_callback.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/rref_impl.h> #include <torch/csrc/distributed/rpc/script_call.h> #include <torch/csrc/distributed/rpc/script_remote_call.h> namespace torch::distributed::rpc { // RequestCallback implementation with no Python dependencies. class TORCH_API RequestCallbackNoPython : public RequestCallback { public: c10::intrusive_ptr<JitFuture> processMessage( Message& request, std::vector<c10::Stream> streams) const override; protected: virtual std::unique_ptr<RpcCommandBase> deserializePythonRpcCommand( std::unique_ptr<RpcCommandBase> rpc, const MessageType& messageType) const; virtual c10::intrusive_ptr<JitFuture> processScriptCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const; virtual c10::intrusive_ptr<JitFuture> processPythonCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const; c10::intrusive_ptr<JitFuture> assignOwnerRRef( const RRefId& rrefId, const RRefId& forkId, const c10::intrusive_ptr<JitFuture>& valueFuture) const; virtual c10::intrusive_ptr<JitFuture> processScriptRemoteCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const; virtual c10::intrusive_ptr<JitFuture> processPythonRemoteCall( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const; c10::intrusive_ptr<JitFuture> retrieveOwnerRRef(const RRefId& rrefId) const; c10::intrusive_ptr<JitFuture> processScriptRRefFetchCall( RpcCommandBase& rpc) const; virtual c10::intrusive_ptr<JitFuture> processPythonRRefFetchCall( RpcCommandBase& rpc) const; c10::intrusive_ptr<JitFuture> processRRefUserDelete( RpcCommandBase& rpc) const; c10::intrusive_ptr<JitFuture> processRRefChildAccept( RpcCommandBase& rpc) const; c10::intrusive_ptr<JitFuture> processRRefForkRequest( RpcCommandBase& rpc) const; c10::intrusive_ptr<JitFuture> processForwardAutogradReq( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const; c10::intrusive_ptr<JitFuture> processBackwardAutogradReq( RpcCommandBase& rpc, const std::vector<c10::Stream>& streams) const; c10::intrusive_ptr<JitFuture> processCleanupAutogradContextReq( RpcCommandBase& rpc) const; c10::intrusive_ptr<JitFuture> processRunWithProfilingReq( RpcCommandBase& rpc) const; virtual void handleRRefDelete(c10::intrusive_ptr<RRef>& rref) const; c10::intrusive_ptr<JitFuture> processRpc( RpcCommandBase& rpc, const MessageType& messageType, const std::vector<c10::Stream>& streams) const; virtual c10::intrusive_ptr<JitFuture> processRpcWithErrors( RpcCommandBase& rpc, const MessageType& messageType, const std::vector<c10::Stream>& streams) const; c10::intrusive_ptr<Message> handleError( const std::exception& e, const MessageType messageType, int64_t messageId) const; virtual bool cudaAvailable() const; virtual c10::intrusive_ptr<JitFuture> processRRefBackward( RpcCommandBase& rpc) const; // Helpers to run user-defined functions, operators and other computations. c10::intrusive_ptr<JitFuture> runJitOperator( const jit::Operator& op, std::vector<at::IValue>& stack, const std::vector<c10::Stream>& streams) const; // Helpers to convert various kinds of objects into already-completed futures. c10::intrusive_ptr<JitFuture> asFuture(IValue value, TypePtr type) const; c10::intrusive_ptr<JitFuture> asFuture( c10::intrusive_ptr<Message> message) const; c10::intrusive_ptr<JitFuture> asFuture(std::exception_ptr err) const; }; } // namespace torch::distributed::rpc ```
====================================================================================================================================== SOURCE CODE FILE: rpc.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\rpc.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/python_headers.h> namespace torch::distributed::rpc { PyMethodDef* python_functions(); } // namespace torch::distributed::rpc ```
============================================================================================================================================ SOURCE CODE FILE: rpc_agent.h LINES: 1 SIZE: 13.61 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\rpc_agent.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/request_callback.h> #include <torch/csrc/distributed/rpc/types.h> #include <cctype> #include <chrono> #include <condition_variable> #include <mutex> #include <thread> namespace torch::distributed::rpc { using DeviceMap = std::unordered_map<c10::Device, c10::Device>; // Default RPC timeout constexpr float kDefaultRpcTimeoutSeconds = 60; // Unset RPC timeout. This is the value agent::send() will have if user does not // pass in a specific timeout, and indicates that we must use the default // timeout for RPCs. constexpr float kUnsetRpcTimeout = -1; constexpr auto kDefaultInitMethod = "env://"; constexpr float kSecToMsConversion = 1000; constexpr auto kRpcTimeoutErrorStr = "RPC ran for more than set timeout ({} ms) and will now be marked with an error"; using steady_clock_time_point = std::chrono::time_point<std::chrono::steady_clock>; // Input is qualified name string, output is JIT StrongTypePtr // Same as jit::TypeResolver, did not import jit::TypeResolver to here // because it could introduce cyclic dependencies. using TypeResolver = std::function<c10::StrongTypePtr(const c10::QualifiedName&)>; struct TORCH_API RpcBackendOptions { RpcBackendOptions() : RpcBackendOptions(kDefaultRpcTimeoutSeconds, kDefaultInitMethod) {} RpcBackendOptions(float rpcTimeoutSeconds, std::string initMethod) : rpcTimeoutSeconds(rpcTimeoutSeconds), initMethod(std::move(initMethod)) { TORCH_CHECK(rpcTimeoutSeconds >= 0, "RPC Timeout must be non-negative"); } float rpcTimeoutSeconds; std::string initMethod; }; // A globally unique ID to identify an RpcAgent struct TORCH_API WorkerInfo : torch::CustomClassHolder { WorkerInfo(std::string name, int64_t id); WorkerInfo(std::string name, worker_id_t id); bool operator==(const WorkerInfo& rhs) { return (id_ == rhs.id_) && (name_ == rhs.name_); } static constexpr size_t MAX_NAME_LEN = 128; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::string name_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const worker_id_t id_; }; struct TORCH_API RegisterWorkerInfoOnce { RegisterWorkerInfoOnce(); }; TORCH_API std::ostream& operator<<( std::ostream& os, const WorkerInfo& workerInfo); // Struct for options to configure the RPC Retry protocol. struct TORCH_API RpcRetryOptions { // Using a default constructor like all other Options structs in the RPC // codebase. TORCH_CHECKs for input validation are done in the // sendWithRetries function. RpcRetryOptions() = default; // Maximum number of times we will retry the RPC int maxRetries{5}; // Initial duration between consecutive RPC send attempts std::chrono::milliseconds rpcRetryDuration{std::chrono::milliseconds(1000)}; // Constant for exponential backoff used while calculating future wait // durations float retryBackoff{1.5}; }; // Struct that stores all the metadata needed to retry a given RPC. struct TORCH_API RpcRetryInfo { RpcRetryInfo( const WorkerInfo& to, c10::intrusive_ptr<Message> message, c10::intrusive_ptr<JitFuture> originalFuture, int retryCount, RpcRetryOptions options) : to_(to), message_(std::move(message)), originalFuture_(std::move(originalFuture)), retryCount_(retryCount), options_(options) {} // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const WorkerInfo& to_; c10::intrusive_ptr<Message> message_; // Future that is returned to the caller of sendWithRetries(). c10::intrusive_ptr<JitFuture> originalFuture_; // Number of send attempts completed so far. int retryCount_; RpcRetryOptions options_; }; // ``RpcAgent`` is the base class for sending and receiving RPC messages. It // provides a unified ``send`` API for both request and response messages, and // will invoke the given ``RequestCallback`` to process received requests. It // should immediately become ready to serve request and accept response after // construction. class TORCH_API RpcAgent { public: // `WorkerInfo` is the globally unique identifier for this RpcAgent instance. // It contains a ``name_`` field and an ``id_`` field. ``name_`` is the // globally unique name for this ``RpcAgent``. It is up to the ``RpcAgent`` // implementation to determine how to resolve names. ``id_`` is the globally // unique ID for this ``RpcAgent``. This should be determined by the // ``RpcAgent`` implementation. // The ``RequestCallback`` will be invoked to handle received requests. This // ``RpcAgent`` base class makes no assumption on the thread-safeness of the // ``RequestCallback``. ``RpcAgent`` implementations need to make sure that // its threading model conform to ``RequestCallback``'s requirement. // NB: RpcAgent implementations should not start serving requests until // ``start()`` is called, as there could be other contexts that have not been // initialized yet at this time. RpcAgent( WorkerInfo id, std::unique_ptr<RequestCallback> cb, std::chrono::milliseconds rpcTimeout); virtual ~RpcAgent(); // Send a message to the ``RpcAgent`` of id ``to`` and returns a // ``JitFuture`` ptr. The implementation must be asynchronous, i.e., it // cannot block until it receives the response. // // If ``message.isRequest()`` is true, the ``JitFuture`` will be // completed when the response arrives. For other message types, the Future // should be ignored by the caller. virtual c10::intrusive_ptr<JitFuture> send( const WorkerInfo& to, c10::intrusive_ptr<Message> message, const float rpcTimeoutSeconds = kUnsetRpcTimeout, const DeviceMap& deviceMap = {}) = 0; // Retries sending the message up to maxRetries times until an ACK is // received. The duration between consecutive sends is increased over // time using an exponential backoff algorithm. // // Sends ``message`` to the ``RpcAgent`` of id ``to`` and returns a // ``JitFuture`` ptr, just like send(). Caller can specify the maximum // number of retries for this RPC (default is 5), initial duration between // sends (default is 1000ms), and backoff constant (default is 1.5) by // passing in the RpcRetryOptions struct. This API might end up // executing a method twice on the remote end (it does not guarantee // exactly-once semantics). Therefore, the user must ensure their requests // are idempotent. c10::intrusive_ptr<JitFuture> sendWithRetries( const WorkerInfo& to, c10::intrusive_ptr<Message> message, RpcRetryOptions retryOptions = RpcRetryOptions()); // Return a reference to the ``WorkerInfo`` of this RpcAgent. // NB: not using ``std::optional<const std::string&>`` here because we might // need to create a separate RPC API lib and avoid forcing all ``RpcAgent`` // implementations to depend on libtorch. const WorkerInfo& getWorkerInfo() const; // Return a reference to the ``WorkerInfo`` of the given ``workerName``. virtual const WorkerInfo& getWorkerInfo( const std::string& workerName) const = 0; virtual const WorkerInfo& getWorkerInfo(worker_id_t id) const = 0; virtual std::vector<WorkerInfo> getWorkerInfos() const = 0; // Retrieve the timeout for all RPCs. inline std::chrono::milliseconds getRpcTimeout() const { return rpcTimeout_.load(); } // Set the timeout for all RPCs inline void setRpcTimeout(const std::chrono::milliseconds& rpcTimeout) { rpcTimeout_.store(rpcTimeout); } // Call sync and join all internal threads. This method should be called // before every RPC process exits. virtual void join(bool shutdown = false, float timeout = 0) = 0; // Synchronize the this process with other ``RpcAgent`` processes. Block until // all ``RpcAgent``s reach this method and send all pending messages. virtual void sync() = 0; // Sets up backend-agnostic state for accepting requests. Currently, this // entails setting rpcAgentRunning_ to true, creating the retry thread, and // calling the backend's startImpl. void start(); // Derived classes must override this function to start accepting requests. // This is used to initialize any backend-specific state. Users must call // start, not startImpl, to initialize the RPC Agent. virtual void startImpl() = 0; // Stop accepting requests and shutdown the RPC framework as soon as possible // by terminating all RPC threads. void shutdown(); // Derived classes must override this function to start accepting requests. // THis is used to clean up any backend-specific state. Users must call // shutdown, not shutdownImpl, to shutdown the RPC Agent. virtual void shutdownImpl() = 0; // Check if current RPC agent is set. static bool isCurrentRpcAgentSet(); // Retrieve the valid current RPC agent. static std::shared_ptr<RpcAgent> getCurrentRpcAgent(); // Set the current RPC agent. static void setCurrentRpcAgent(std::shared_ptr<RpcAgent> rpcAgent); // Retrieve metrics as KV map virtual std::unordered_map<std::string, std::string> getMetrics() = 0; // Retrieve debug info in addition to metrics as KV map virtual std::unordered_map<std::string, std::string> getDebugInfo(); // Flag to control whether GIL wait times // should be profiled or not. void enableGILProfiling(bool flag); // Retrieve wheher we should profile GIL wait times or not. bool isGILProfilingEnabled(); // Set type resolver that will be passed to JIT pickler to resolver type Ptr // based on type str. void setTypeResolver(std::shared_ptr<TypeResolver> typeResolver); // Get the type resolver std::shared_ptr<TypeResolver> getTypeResolver(); // Retrieves the device map for the provided destination worker. virtual DeviceMap getDeviceMap(const WorkerInfo& dst) const; // Retrieve the (non-CPU) devices that are supported by the agent. virtual const std::vector<c10::Device>& getDevices() const; protected: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) const WorkerInfo workerInfo_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) const std::unique_ptr<RequestCallback> cb_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::atomic<std::chrono::milliseconds> rpcTimeout_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::atomic<bool> profilingEnabled_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::shared_ptr<TypeResolver> typeResolver_; // Atomic boolean indicating whether this agent is running. It controls // whether several background threads should be running. It is set in // RpcAgent::start() and unset in the derived class shutdown(). // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::atomic<bool> rpcAgentRunning_; private: static std::shared_ptr<RpcAgent> currentRpcAgent_; // Add GIL wait time data point to metrics virtual void addGilWaitTime(const std::chrono::microseconds gilWaitTime) = 0; friend class PythonRpcHandler; // Map that stores metadata for RPC's that may need to be re-tried as well as // the timepoint at which we should re-try them. std::map< steady_clock_time_point, std::unordered_set<std::shared_ptr<RpcRetryInfo>>> rpcRetryMap_; // Thread that checks for retryable RPC's in the rpcRetryMap_ and sleeps until // the next unACKed RPC's timeout has expired. std::thread rpcRetryThread_; // Function that rpcRetryThread_ calls in a loop as long as RpcAgent is // running. void retryExpiredRpcs(); // This is the callback attached to futures corresponding to send retries. // This handles 3 cases: 1). send was completed, 2). send failed with an // error and we've done maxRetries failed send attempts, and 3). send // failed with an error and we have more retries to go. In case 1, we mark // the original future as complete. In case 2, we mark the future with an // error and do not retry again. In case 3, we move the RpcRetryInfo struct // to another time point in the map to schedule the RPC for a future send. void rpcRetryCallback( JitFuture& message, steady_clock_time_point newTime, std::shared_ptr<RpcRetryInfo> earliestRpc); // Function that uses the exponential backoff algorithm to compute the next // time point to retry a given RPC. inline steady_clock_time_point computeNewRpcRetryTime( RpcRetryOptions& options, int retryCount) { // The exponential backoff algorithm being used here is: // newTime = timeNow + (retryDuration * (backoffConstant ^ retryCount)). std::chrono::milliseconds timedelta = std::chrono::duration_cast<std::chrono::milliseconds>( options.rpcRetryDuration * pow(options.retryBackoff, retryCount)); return std::chrono::time_point_cast<std::chrono::milliseconds>( std::chrono::steady_clock::now() + timedelta); } // Condition Variable to signal when the rpcRetryMap_ has been populated. std::condition_variable rpcRetryMapCV_; // Mutex to protect RpcRetryMap_. std::mutex rpcRetryMutex_; }; } // namespace torch::distributed::rpc namespace std { template <> struct hash<torch::distributed::rpc::WorkerInfo> { std::size_t operator()( const torch::distributed::rpc::WorkerInfo& worker_info) const noexcept { return worker_info.id_; } }; } // namespace std ```
=================================================================================================================================================== SOURCE CODE FILE: rpc_command_base.h LINES: 1 SIZE: 0.68 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\rpc_command_base.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/types.h> namespace torch::distributed::rpc { // Base class for all RPC request and responses. class RpcCommandBase { public: // Need to override this to serialize the RPC. This should destructively // create a message for the RPC (Hence the &&). c10::intrusive_ptr<Message> toMessage() && { JitRRefPickleGuard jitPickleGuard; return std::move(*this).toMessageImpl(); } virtual c10::intrusive_ptr<Message> toMessageImpl() && = 0; virtual ~RpcCommandBase() = 0; }; inline RpcCommandBase::~RpcCommandBase() = default; } // namespace torch::distributed::rpc ```
=============================================================================================================================================== SOURCE CODE FILE: rref_context.h LINES: 1 SIZE: 15.73 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\rref_context.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> #include <torch/csrc/distributed/rpc/rref_impl.h> #include <torch/csrc/distributed/rpc/types.h> #include <torch/csrc/distributed/rpc/utils.h> #include <atomic> #include <optional> namespace torch::distributed::rpc { namespace callback { // It's the callback for RemoteCall. void TORCH_API confirmPendingUser(const JitFuture& jitFuture, const ForkId& expectedForkId); // It's the callback for finishing creating owner rref, it returned deletedRRef, // so that the deletedRRef can be handled under GIL in python_functions.cpp if // deletedRRef contains python object. c10::intrusive_ptr<RRef> TORCH_API finishCreatingOwnerRRef(const JitFuture& jitFuture, const RRefId& rrefId); } // namespace callback // Manages RRef lifetime and keeps track of RRef forks. class TORCH_API RRefContext { public: static RRefContext& getInstance(); // NB: This method must be called before destructing RRefContext singleton. // Similar to delForkOfOwner, this method returns a vector of OwnerRRefs that // hold py::object. The call-site is also responsible for resetting those // shared_ptr objects with a GIL. See comments at delForkOfOwner() for more // details. static std::vector<c10::intrusive_ptr<RRef>> destroyInstance( bool ignoreRRefLeak = true); static void handleException(const JitFuture& jitFuture); // handle exception without throw ::c10::Error again static void handleExceptionSilent(const JitFuture& jitFuture); RRefContext(const RRefContext&) = delete; RRefContext(RRefContext&& other) = delete; void operator=(const RRefContext&) = delete; RRefContext& operator=(RRefContext&& other) = delete; ~RRefContext(); // get the worker id of the current worker inline worker_id_t getWorkerId() const { return agent_->getWorkerInfo().id_; } // get the worker name of the current worker inline const std::string& getWorkerName() const { return agent_->getWorkerInfo().name_; } // generate a globally unique ID inline GloballyUniqueId genGloballyUniqueId() { return GloballyUniqueId(getWorkerId(), nextLocalId_++); } inline const std::shared_ptr<RpcAgent>& agent() const { return agent_; } // create a ``UserRRef`` owned by the worker ``ownerId`` c10::intrusive_ptr<UserRRef> createUserRRef( worker_id_t ownerId, const TypePtr& type); // Convert an RRefForkData into an RRef. This RRef could be user or owner. // This RRef could have already existed before, or could be created in this // method, we pass type here to validate or help the rref creation. c10::intrusive_ptr<RRef> getOrCreateRRef( const RRefForkData& rfd, const TypePtr& type); // Get the ``OwnerRRef`` of id ``rrefId``. If it does not exist, create a new // one. This function is called in two places: // 1. when processing ``rpc.remote()``, i.e., ``SCRIPT_REMOTE_CALL`` // ``PYTHON_REMOTE_CALL``. // 2. when unpickling ``OwnerRRef``. // What's common in these two cases are, 1) the RRefId is already generated // 2) the TypePtr is presented. So it can always create the ``OwnerRRef`` if // it is not yet available. c10::intrusive_ptr<OwnerRRef> getOrCreateOwnerRRef( const RRefId& rrefId, const TypePtr& type); // Create an empty owner rref of type. // This method is called to first time generate an ``OwnerRRef``, e.g., // 1) ``rpc.RRef(obj)`` // 2) create the ``OwnerRRef`` on `rpc.remote()` caller side. // What's common in these two cases are, 1) the RRefId hasn't been generated // 2) the TypePtr is presented. c10::intrusive_ptr<OwnerRRef> createOwnerRRef(const TypePtr& type); // Returns a Future of the OwnerRRef, which will be marked completed when // ``OwnerRRef`` is created. This method is used when the TypePtr is not // available, e.g., when processing to_here(). The forceCreated flag can be // used to ensure that the rref is created on the owner, otherwise throw in // cases where the user of this API expects this to return a completed future. // Note that the return value is a intrusive_ptr to a c10::ivalue::Future that // holds the RRef. c10::intrusive_ptr<JitFuture> getOwnerRRef( const RRefId& rrefId, bool forceCreated = false); // Adding the RRefId of an OwnerRRef into the forks_ map. This is useful when // making a remote call to self, which as for now, still goes through serde // and invokes request callback. In this case, the OwnerRRef has already been // created on the send side, and we need to pass it to the receive side, // instead of creating a new OwnerRRef. This is done by adding the OwnerRRef // into owners_. However, that alone is not enough, as it could be deleted // when all UserRRef die, which would then remove the OwnerRRef from owners_ // and this could happen before the self remote call finishes. To prevent // that, this API adds the RRefId as a ForkId, which will then delete the // ForkId when the self remote is done. void addSelfAsFork(c10::intrusive_ptr<OwnerRRef>& rref); // Register a fork of the ``OwnerRRef``, and inserts a intrusive_ptr of the // ``OwnerRRef`` in a map to keep it alive. void addForkOfOwner(const RRefId& rrefId, const ForkId& forkId); // Performs the same function as addForkOfOwner but ignores duplicate // requests. This idempotent function is used with RREF_FORK_REQUEST calls, // whereas all other message types use the non-idempotent variant. void addForkOfOwnerIfNotPresent(const RRefId& rrefId, const ForkId& forkId); // Delete a fork of the ``OwnerRRef``. NB: this could trigger deletion on the // IValue or py::object. For the later, this method will acquire GIL. // NB: If this fork deletion triggered deleting OwnerRRef, this method will // return a shared_ptr to the OwnerRRef, which is likely to be the last // shared_ptr instance for it. Therefore, deleting this shared_ptr<OwnerRRef> // will also trigger deleting the object it points to. If OwnerRRef holds a // py::object, deleting it require GIL. The call site should guarded it with // a GIL and reset the shared_ptr. The GIL-guarded deletion is intentionally // left out of this function to avoid creating dependency on pybind. c10::intrusive_ptr<RRef> delForkOfOwner( const RRefId& rrefId, const ForkId& forkId); // Invoked when pickling an RRef to setup child/fork properly RRefForkData prepareChildFork(const c10::intrusive_ptr<RRef>& rref); // Invoked when unpickling an RRef to send RREF_FORK_REQUEST to owner and // send RREF_CHILD_ACCEPT to the parent. // NB: forkId is necessary here as the rref could be an OwnerRRef void notifyOwnerAndParentOfFork( const ForkId& forkId, worker_id_t parent, const c10::intrusive_ptr<RRef>& rref); // When a UserRRef is forked to another worker (user or owner), it is added // into pendingChildren_ to be held alive until it receives RREF_CHILD_ACCEPT // from the child. // NB: This is necessary for both user and owner child. As we do not have FIFO // communication between workers, we need this strategy to make sure that all // previously submitted rpc/remote calls are acked before sending out the // RREF_USER_DELETE message. Otherwise, the OwnerRRef could be deleted too // soon. void addPendingChild( const ForkId& forkId, const c10::intrusive_ptr<RRef>& rref); void delPendingChild(const ForkId& forkId); // When a UserRRef is created, it is added into pendingUsers_ to be held alive // until it receives RREF_USER_ACCEPT from the owner. void addPendingUser( const ForkId& forkId, const c10::intrusive_ptr<RRef>& rref); void delPendingUser(const ForkId& forkId); void addConfirmedUser( const ForkId& forkId, const c10::intrusive_ptr<RRef>& rref); // Retrieve a pending user given the fork ID. Throws if the user has already // been confirmed (i.e. is no longer in the pendingUsers_ map). c10::intrusive_ptr<RRef> getPendingUser(const ForkId& forkId); // Start recording new pending UserRRefs. All pending UserRRefs introduced // after this point will be put into the thread_local userTable_, which will // then be consumed and cleared in waitForThreadLocalPendingRRefs(). void recordThreadLocalPendingRRefs(); // End recording new pending UserRRefs, and clear the thread_local userTable_. // Returns a Future which will be marked as completed when all pending // UserRRefs in the current userTable_ are confirmed by their owners. The bool // value in the Future is unused. // This method is useful to make sure RRefs in user function arguments are // confirmed before launching user code. // NB: Callers of this method does not need to keep the returned Future alive, // because this Future is already captured in callbacks of the // PendingUserState. If there is no pending UserRRefs, this method returns a // completed future. c10::intrusive_ptr<JitFuture> waitForThreadLocalPendingRRefs(); // Only call this function when there are errors during a recording session, // and it is likely that waitForThreadLocalPendingRRefs() cannot be invoked // properly. // TODO: make this a context guard void clearRecordedPendingRRefsOnError(); void delUser( const worker_id_t owner, const RRefId& rrefId, const ForkId& forkId); void delAllUsersAndUnforkedOwners(std::chrono::milliseconds timeoutMillis); std::unordered_map<std::string, std::string> getDebugInfo(); private: struct PendingUserState { PendingUserState(c10::intrusive_ptr<RRef> rref) : rref_(std::move(rref)), confirmationFuture_(c10::make_intrusive<JitFuture>(BoolType::get())) { } inline void confirm() { c10::static_intrusive_pointer_cast<UserRRef>(rref_)->confirm(); confirmationFuture_->markCompleted(); } c10::intrusive_ptr<RRef> rref_; // Use Future.wait() and Future.markCompleted() to block and unblock user // functions. The bool value wrapped by the future_ is not used. c10::intrusive_ptr<JitFuture> confirmationFuture_; }; RRefContext(std::shared_ptr<RpcAgent>); c10::intrusive_ptr<UserRRef> createUserRRef( worker_id_t ownerId, const RRefId& rrefId, const ForkId& forkId, const TypePtr& type); void finishForkRequest(const ForkId& forkId, worker_id_t parent); // If there is any leak on any RRef, this method will throw an error. void checkRRefLeaks(bool ignoreRRefLeak); static std::atomic<local_id_t> nextLocalId_; const std::shared_ptr<RpcAgent> agent_; mutable std::mutex mutex_; // Keep OwnerRRefs alive until there is no living UserRRefs. std::unordered_map<RRefId, c10::intrusive_ptr<RRef>, RRefId::Hash> owners_; // A map to track OwnerRRefs that are requested but not yet created. This can // happen if the to_here() message is processed on the owner before the // corresponding creator rpc.remote() message. If this happens, instead of // to_here() RPC thread to block waiting for the OwnerRRef creation, the // RRefContext returns a Future, so that the RPC request processing logic can // attach subsequent code as a callback to that Future. // NB: the OwnerRRefs in this map must be cleared when the corresponding // OwnerRRef is created. Note that the values in this map are intrusive_ptrs // to c10::ivalue::Future that will be marked completed with the owner RRef. std::unordered_map<RRefId, c10::intrusive_ptr<JitFuture>, RRefId::Hash> pendingOwners_; // Tracks known living UserRRefs of an OwnerRRef std::unordered_map< RRefId, std::unordered_set<ForkId, ForkId::Hash>, RRefId::Hash> forks_; // This cond var is used by deleteAllUsers(), a event notification is sent if // number of pending UserRRef or UserRRef children is reduced, or // number of owned OwnerRRef is reduced. std::condition_variable deleteAllUsersCV_; // The follow 3 maps keep UserRRefs alive by holding a intrusive_ptr to the // RRef instances. A UserRRef must be added into this map if any of the // following two conditions is true: // // (1) A UserRRef has not been accepted by owner yet. // // It can be used or shared, but cannot be deleted, and hence kept alive // in this map. A message of type RREF_USER_ACCEPT will move the // corresponding RRef from pendingUsers_ map to confirmedUsers_ map. std::unordered_map<ForkId, std::shared_ptr<PendingUserState>, ForkId::Hash> pendingUsers_; // UserRRefs are added into this map when it is confirmed by the owner. // When destroying RRefContext this map helps to find local UserRRefs // and send delete messages if they are still not deleted by Python // garbage collection. std::unordered_map<ForkId, c10::weak_intrusive_ptr<RRef>, ForkId::Hash> confirmedUsers_; // (2) A UserRRef has forked a child UserRRef which has not been accepted by // the owner yet. // // In this case, this UserRRef cannot send out RREF_USER_DELETE message, // as it could potentially trigger the OwnerRRef been deleted before the // owner learns about the forked child. std::unordered_map<ForkId, c10::intrusive_ptr<RRef>, ForkId::Hash> pendingChildren_; // The RRef context performs its operations through async RPC requests, in // order to not block the user code. Therefore the RRef context's state may be // lagging a bit behind what it is intended to be, while it waits for these // requests to complete. To allow syncing when needed, we store the count of // these pending requests, so that users can wait for it to reach zero. std::atomic<int64_t> numPendingFutures_{0}; std::mutex destroyedMutex_; bool destroyed_{false}; // Thread local states to keep UserRRefs deserialized from user function // arguments. static thread_local std::vector<std::shared_ptr<PendingUserState>> userTable_; // A flag indicating whether subsequently created UserRRefs should be added to // the thread_local userTable_. The flag is set to true before serializing // RPC arguments and then set to false before running the corresponding // user code. See addPendingUser and delPendingUser for more details. // NB: The reason for having this flag is because addPendingUser are called in // two cases, and we only want to track the 2nd case. // (1) RRef as the return value: when calling rpc.remote, the UserRRef on the // caller side is added to the context using addPendingUser. // (2) RRef as an argument: When running an RPC using RRefs as arguments, the // RRef is forwarded to the callee as new UserRRefs (if the callee is not // the owner). In this case, we block running the user function until all // UserRRefs are confirmed by the owner. // This contract gurantees that no UserRRefs can be used remotely without // confirmation. Note that, however, the UserRRef created by rpc.remote can // still be passed to local functions as arguments and used there. This is by // design, because this feature is especially useful when, say a master node // creates multiple UserRRefs in a loop and then shares them with other nodes. // Blocking every iteration in the loop until RRefs are confirmed will slow // this down. This nuance on UserRRef can be interpreted as we only make // exceptions for UserRRef creators. And using the UserRRef on its creator // without confirmation is OK, because the creator would either call to_here // or forward the UserRRef, and both would then require confirmations from the // owner. static thread_local bool recording_; }; } // namespace torch::distributed::rpc ```
============================================================================================================================================ SOURCE CODE FILE: rref_impl.h LINES: 1 SIZE: 16.48 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\rref_impl.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/jit_type.h> #include <ATen/core/rref_interface.h> #include <c10/core/Event.h> #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_agent.h> #include <torch/csrc/distributed/rpc/types.h> #include <optional> #include <atomic> namespace torch::distributed::rpc { class RRef; class RRefContext; class UserRRef; constexpr int OWNER_IDX = 0; // index of ownerId in the tuple constexpr int RREFID_ON_IDX = 1; // index of RRefId.createdOn_ in the tuple constexpr int RREFID_ID_IDX = 2; // index of RRefId.localId_ in the tuple constexpr int FORKID_ON_IDX = 3; // index of ForkId.createdOn_ in the tuple constexpr int FORKID_ID_IDX = 4; // index of ForkId.localId_ in the tuple constexpr int PARENT_IDX = 5; // index of parent in the tuple constexpr int TYPE_IDX = 6; // index of parent in the tuple // NB: if more fields are added, make sure this field is also bumped constexpr int RFD_TUPLE_SIZE = 7; // number of RRefForkData fields in py::tuple // Represents fork of an RRef to be sent over the wire. struct TORCH_API RRefForkData { // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const worker_id_t ownerId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const RRefId rrefId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const ForkId forkId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const worker_id_t parent_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::string typeStr_; RRefForkData( worker_id_t ownerId, const RRefId& rrefId, const ForkId& forkId, worker_id_t parent, std::string typeStr); }; // Note [RRef Protocol] // ~~~~~~~~~~~~~~~~~~~~~~~~~~ // // [Background] // // RRef stands for Remote REFerence. Each RRef is owned by a single worker // (i.e., owner) and can be used by multiple users. The owner stores the real // data referenced by its RRefs. RRef needs to support fast and scalable RPC. // Hence, in the design, we avoid using a single global master to keep RRef // states, instead owners will keep track of the global reference counts // for its RRefs. Every RRef can be uniquely identified by a global RRefId, // which is assigned at the time it is first created either on a user or on the // owner. // // On the owner worker, there is only one OwnerRRef instance, which contains the // real data, while on user workers, there can be as many UserRRefs as // necessary, and UserRRef does not hold the data. All usage on the OwnerRRef // should retrieve the unique OwnerRRef instance using the globally unique // RRefId. //A UserRRef will be created when it is used as an argument or return // value in dist.rpc or dist.remote call, but RRef forking and reference // counting (RC) are completely transparent to applications. Every UserRRef will // also have its globally unique ForkId. // // [Assumptions] // // 1. Transient Network Failures // // TODO: current RRef implementation does not tolerate failures // // The RRef design handles transient network failures by retrying // messages. Node crashes or permanent network partition is beyond the scope. // When those incidents occur, the application may take down all workers, revert // to the previous checkpoint, and resume training. // // 2. Non-idempotent UDFs // // We assume UDFs are not idempotent and therefore cannot be retried. However, // internal RRef control messages are idempotent and retried upon message // failure. // // TODO: RRef internal messages are not yet idempotent // // 3. Out of Order Message Delivery // // We do not assume message delivery order between any pair of nodes, because // both sender and receiver are using multiple threads. There is no guarantee on // which message will be processed first. // // [RRef Lifetime] // // The goal of the protocol is to delete an OwnerRRef at an appropriate time. // The right time to delete an OwnerRRef is when there are no living UserRRefs // and Python GC also agrees to delete the OwnerRRef instance on the owner. The // tricky part is to determine if there are any living UserRRefs. // // A user can get a UserRRef in three situations: // // (1). Receiving a UserRRef from the owner. // (2). Receiving a UserRRef from another user. // (3). Creating a new UserRRef owned by another worker. // // (1) is the simplest case where the owner initiates the fork, and hence it can // easily increment local RC. The only requirement is that any UserRRef must // notify the owner before destruction. Hence, we need the first guarantee: // // G1. The owner will be notified when any UserRRef is deleted. // // As messages might come delayed or out-of-order, we need more one guarantee to // make sure the delete message is not sent out too soon. Let us first introduce // a new concept. If A sends an RPC to B that involves an RRef, we call the RRef // on A the parent RRef and the RRef on B the child RRef. // // G2. Parent RRef cannot be deleted until the child RRef is confirmed by the // owner. // // Under (1), where the caller is UserRRef and callee is OwnerRRef, it simply // means that the user will not send out the delete message until all previous // messages are ACKed. Note that ACKed does not mean the owner finishes // executing the function, instead, it only means the owner has retrieved its // local OwnerRRef and about to pass it to the function, which is sufficient to // keep the OwnerRRef alive even if the delete message from the user arrives at // the owner before the function finishes execution. // // With (2) and (3), it is possible that the owner only partially knows the RRef // fork graph or not even knowing it at all. For example, the RRef could be // constructed on a user, and before the owner receives the RPC call, the // creator user might have already shared the RRef with other users, and those // users could further share the RRef. One invariant is that the fork graph of // any RRef is always a tree rooted at the owner, because forking an RRef always // creates a new RRef instance, and hence every RRef has a single parent. One // nasty detail is that when an RRef is created on a user, technically the owner // is not its parent but we still consider it that way and it does not break the // argument below. // // The owner's view on any node (fork) in the tree has three stages: // // 1) unknown -> 2) known -> 3) deleted. // // The owner's view on the entire tree keeps changing. The owner deletes its // OwnerRRef instance when it thinks there are no living UserRRefs, i.e., when // OwnerRRef is deleted, all UserRRefs could be either indeed deleted or // unknown. The dangerous case is when some forks are unknown and others are // deleted. // // G2 trivially guarantees that no parent UserRRef Y can be deleted before the // owner knows all of Y's children UserRRefs. // // However, it is possible that the child UserRRef Z may be deleted before the // owner knows its parent Y. More specifically, this can happen when all of Z's // messages are processed by the owner before all messages from Y, including the // delete message. Nevertheless, this does not cause any problem. Because, at // least one of Y's ancestor will be alive, and it will prevent the owner from // deleting the OwnerRRef. Consider the following example: (NB: this scenario // will no longer relevant when we block UDF until all RRefs are confirmed by // the owner) // // OwnerRRef -> A -> Y -> Z // // OwnerRRef forks to A, then A forks to Y, and Y forks to Z. Z can be deleted // without OwnerRRef knowing Y. However, the OwnerRRef will at least know A, as // the owner directly forks the RRef to A. A won't die before the owner knows Y. // // Things get a little trickier if the RRef is created on a user: // // OwnerRRef // ^ // | // A -> Y -> Z // // If Z calls to_here on the UserRRef, the owner at least knows A when Z is // deleted, because otherwise to_here wouldn't finish. If Z does not call // to_here, it is possible that the owner receives all messages from Z before // any message from A and Y. In this case, as the real data of the OwnerRRef has // not been created yet, there is nothing to be deleted either. It is the same // as Z does not exist at all Hence, it's still OK. // // See #26759 for more details and discussions. // // TODO: make RRef an IValue, and edit createStackForSchema accordingly // TODO: make RRef system messages idempotent and retry on failures. // // ``RRef`` is the base type for both ``UserRRef`` and ``OwnerRRef``. // Each ``RRef`` has a globally unique ``RRefId``. class TORCH_API RRef : public RRefInterface { public: // RRef is made NOT copyable NOT movable to prevent messing up reference // counting. explicit RRef(const RRef& other) = delete; explicit RRef(RRef&& other) = delete; RRef& operator=(RRef&& other) = delete; ~RRef() override = default; // returns the worker id of the owner inline worker_id_t owner() const override { return ownerId_; } // returns the worker name of the owner inline std::string ownerName() const override { return RpcAgent::getCurrentRpcAgent()->getWorkerInfo(ownerId_).name_; } // returns the worker info of the owner inline WorkerInfo ownerWorkerInfo() const { return RpcAgent::getCurrentRpcAgent()->getWorkerInfo(ownerId_); } // Returns the globally unique RRefId of this RRef inline const RRefId& rrefId() const { return rrefId_; } inline bool isPyObj() const { return type_ == PyObjectType::get(); } inline const TypePtr type() const override { return type_; } // Save the future corresponding to the creation of this RRef on a remote // node. Note that this is only set when processing requests invoked with // rpc.remote. This is only used to get the future corresponding to the rref // for profiling use cases. inline void registerOwnerCreationFuture(c10::intrusive_ptr<JitFuture> fut) { ownerCreationFuture_ = std::move(fut); } // Get the future corresponding to the creation of this rref. inline c10::intrusive_ptr<JitFuture> getOwnerCreationFuture() const { return ownerCreationFuture_; } // Check if creation of this RRef on owner node has timed out. inline bool getTimedOut() const { return timedOut_.load(); } // Dispatches an error to the correct handler based on its RPCErrorType. void handleError(RPCErrorType errorType, const JitFuture& JitFuture); // Send delete UserRRef request to Owner, // if the request hasn't been sent yet. // There are 2 cases to call it, // 1, Python GC decides end of UserRRef lifetime, calling destructor. // 2, RPC module graceful shutdown calls it on all UserRRefs tracked // in the RRefContext. virtual void tryDel() {} protected: // Indicates that the creation of this RRef on owner node has timed out. inline void setTimedOut() { timedOut_ = true; } friend class RRefContext; RRef(worker_id_t ownerId, const RRefId& rrefId, TypePtr type); virtual RRefForkData fork() const; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) const worker_id_t ownerId_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) const RRefId rrefId_; // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) std::atomic<bool> timedOut_{false}; // type field to denote the type of the element that the RRef is holding // it could be any TypePtr that JIT support, including PyObjectType // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) const TypePtr type_; // Future corresponding to request to create RRef on remote node. // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) c10::intrusive_ptr<JitFuture> ownerCreationFuture_; }; // ``UserRRef`` represents a user of an RRef. Besides the ``RRefId``, each user // also has a globally unique ``ForkId`` to identify this user. ``UserRRef`` // never owns the real value, the only way to get the value of the ``RRef`` is // to call ``to_here()`` and get a copy.. class TORCH_API UserRRef final : public RRef { public: UserRRef(const UserRRef& other) = delete; UserRRef(UserRRef&& other) = delete; UserRRef& operator=(const UserRRef& other) = delete; UserRRef& operator=(UserRRef&& other) = delete; UserRRef( worker_id_t ownerId, const RRefId& rrefId, const ForkId& forkId, TypePtr type); inline bool isOwner() const override { return false; } inline bool confirmedByOwner() const override { return confirmedByOwner_; } // Returns the globally unique ForkId of this RRef const ForkId& forkId() const; // Get of copy of the value from the ``OwnerRRef``. If the value is not ready // yet, this call will block. IValue toHere( const float timeoutSeconds = torch::distributed::rpc::kUnsetRpcTimeout) const; void tryDel() override; // Will be called when refcount reaches 0. // Upon destruction, this ``UserRRef`` will tell the owner to deref. void release_resources() override; // Will be called when both refcount and weakcount reach 0. See // https://github.com/pytorch/pytorch/blob/9116f02bebf3a5260feef5732d36c54ecb3b4033/c10/util/intrusive_ptr.h#L204 // This is called on destructing the wrapping intrusive_ptr_target instance // and it's data members. ~UserRRef() override; private: friend class RRefContext; RRefForkData fork() const override; inline void confirm() { confirmedByOwner_ = true; } const ForkId forkId_; // Indicates if this user has sent delete message to it's owner. // Note, thread safety is needed because delete message could be sent by // either the destructor called by Python garbage collection or RRefContext // proactive cleanup on RPC graceful shutdown. std::mutex deletedOnOwnerMutex_; bool deletedOnOwner_{false}; // Indicating whether this UserRRef has been confirmed by its owner. std::atomic<bool> confirmedByOwner_; }; // Keep the template only on the derived class because ``RRefContext`` needs to // erase the type on ``RRef`` and keep them in one map. class TORCH_API OwnerRRef final : public RRef { public: OwnerRRef(const OwnerRRef& other) = delete; OwnerRRef(OwnerRRef&& other) = delete; OwnerRRef& operator=(const OwnerRRef& other) = delete; OwnerRRef& operator=(OwnerRRef&& other) = delete; OwnerRRef( worker_id_t ownerId, const RRefId& rrefId, TypePtr type, std::vector<c10::Device> devices); OwnerRRef( worker_id_t ownerId, const RRefId& rrefId, TypePtr type, std::optional<IValue> value, std::vector<c10::Device> devices); inline bool isOwner() const override { return true; } // OwnerRRef is always confirmed, while UserRRef is only confirmed when the // owner knows about it. inline bool confirmedByOwner() const override { return true; } // Get a constant reference of the real value. This method will block if the // value is not ready. This method does not need GIL as it does not create // any new py::object. It will throw if there is an error. const IValue& getValue() const; // Set the value of this ``OwnerRRef``. This method does not need GIL as it // does not create any new py::object. void setValue(IValue&& value); // Sets the value of this ``OwnerRRef`` to contain an exception. void setError(std::exception_ptr eptr); // Has a value or error been set? bool hasValue() const; // Gets a future that is satisfied when the value or error is set. c10::intrusive_ptr<JitFuture> getFuture(); private: friend class RRefContext; c10::intrusive_ptr<JitFuture> future_; }; TORCH_API std::ostream& operator<<(std::ostream& os, const RRef& rref); // Helper function that casts from c10::RRefInterface to OwnerRRef inline TORCH_API c10::intrusive_ptr<OwnerRRef> fromRRefInterface( const c10::intrusive_ptr<c10::RRefInterface>& rrefInterface) { return c10::static_intrusive_pointer_cast<OwnerRRef>(rrefInterface); } // Helper function that casts from OwnerRRef to c10::RRefInterface inline TORCH_API c10::intrusive_ptr<c10::RRefInterface> fromOwnerRRef( const c10::intrusive_ptr<RRef>& ownerRRef) { return c10::static_intrusive_pointer_cast<c10::RRefInterface>(ownerRRef); } } // namespace torch::distributed::rpc ```
============================================================================================================================================= SOURCE CODE FILE: rref_proto.h LINES: 1 SIZE: 5.44 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\rref_proto.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> #include <torch/csrc/jit/runtime/operator.h> #include <torch/csrc/jit/serialization/pickler.h> #include <vector> namespace torch::distributed::rpc { // Temporary solution of RRef operations. // TODO: Remove all these messages and use rpc + registered functions instead. class TORCH_API RRefMessageBase : public RpcCommandBase { public: RRefMessageBase(const RRefId& rrefId, MessageType type) : rrefId_(rrefId), type_(type) {} const RRefId& rrefId(); protected: // NOLINTNEXTLINE(cppcoreguidelines*) const RRefId rrefId_; // NOLINTNEXTLINE(cppcoreguidelines*) const MessageType type_; }; class TORCH_API ForkMessageBase : public RRefMessageBase { public: ForkMessageBase(const RRefId& rrefId, const ForkId& forkId, MessageType type) : RRefMessageBase(rrefId, type), forkId_(forkId) {} const ForkId& forkId(); c10::intrusive_ptr<Message> toMessageImpl() && override; static std::pair<RRefId, ForkId> fromMessage( const Message& message, MessageType type); protected: // NOLINTNEXTLINE(cppcoreguidelines*) const ForkId forkId_; }; // UserRRef uses this message to fetch the remote RRef value from the owner. class TORCH_API ScriptRRefFetchCall final : public RRefMessageBase { public: ScriptRRefFetchCall(worker_id_t fromWorkerId, const RRefId& rrefId) : RRefMessageBase(rrefId, MessageType::SCRIPT_RREF_FETCH_CALL), fromWorkerId_(fromWorkerId) {} inline worker_id_t fromWorkerId() const { return fromWorkerId_; } c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<ScriptRRefFetchCall> fromMessage( const Message& message); private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const worker_id_t fromWorkerId_; }; class TORCH_API PythonRRefFetchCall final : public RRefMessageBase { public: PythonRRefFetchCall(worker_id_t fromWorkerId, const RRefId& rrefId) : RRefMessageBase(rrefId, MessageType::PYTHON_RREF_FETCH_CALL), fromWorkerId_(fromWorkerId) {} c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<PythonRRefFetchCall> fromMessage( const Message& message); private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const worker_id_t fromWorkerId_; }; // OwnerRRef uses this message to send the RRef value to a remote UserRRef class TORCH_API RRefFetchRet : public RpcCommandBase { public: RRefFetchRet(std::vector<at::IValue> values, MessageType type) : values_(std::move(values)), type_(type) {} const std::vector<at::IValue>& values(); c10::intrusive_ptr<Message> toMessageImpl() && override; private: std::vector<at::IValue> values_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const MessageType type_; }; class TORCH_API ScriptRRefFetchRet final : public RRefFetchRet { public: explicit ScriptRRefFetchRet(std::vector<at::IValue> values) : RRefFetchRet(std::move(values), MessageType::SCRIPT_RREF_FETCH_RET) {} static std::unique_ptr<ScriptRRefFetchRet> fromMessage( const Message& message); }; class TORCH_API PythonRRefFetchRet final : public RRefFetchRet { public: explicit PythonRRefFetchRet(std::vector<at::IValue> values) : RRefFetchRet(std::move(values), MessageType::PYTHON_RREF_FETCH_RET) {} static std::unique_ptr<PythonRRefFetchRet> fromMessage( const Message& message); }; // UserRRef (regardless it's the creator or not) uses this message to notify // OwnerRRef on delete. class TORCH_API RRefUserDelete final : public ForkMessageBase { public: RRefUserDelete(const RRefId& rrefId, const ForkId& forkId) : ForkMessageBase(rrefId, forkId, MessageType::RREF_USER_DELETE) {} static std::unique_ptr<RRefUserDelete> fromMessage(const Message& message); }; class TORCH_API RemoteRet final : public ForkMessageBase { public: RemoteRet(const RRefId& rrefId, const ForkId& forkId) : ForkMessageBase(rrefId, forkId, MessageType::REMOTE_RET) {} static std::unique_ptr<RemoteRet> fromMessage(const Message& message); }; // A child RRef uses this message to notify its parent that the child has been // confirmed by the owner. class TORCH_API RRefChildAccept final : public RpcCommandBase { public: explicit RRefChildAccept(const ForkId& forkId) : forkId_(forkId) {} const ForkId& forkId() const; c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<RRefChildAccept> fromMessage(const Message& message); private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const ForkId forkId_; }; // A child RRef uses this message to send a fork request to the owner. class TORCH_API RRefForkRequest final : public ForkMessageBase { public: RRefForkRequest(const RRefId& rrefId, const ForkId& forkId) : ForkMessageBase(rrefId, forkId, MessageType::RREF_FORK_REQUEST) {} static std::unique_ptr<RRefForkRequest> fromMessage(const Message& message); }; class TORCH_API RRefAck final : public RpcCommandBase { public: RRefAck() = default; c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<RRefAck> fromMessage(const Message& message); }; } // namespace torch::distributed::rpc ```
============================================================================================================================================== SOURCE CODE FILE: script_call.h LINES: 1 SIZE: 2.54 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\script_call.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/jit/runtime/operator.h> #include <torch/csrc/jit/serialization/pickler.h> #include <optional> #include <vector> namespace torch::distributed::rpc { using torch::jit::Operator; // A ScriptCall instance represents an invocation of a builtin operator for a // TorchScript function. If it is a builtin operator, it // contains a shared ptr to the `Operator` and a list of arguments. // If it is a TorchScript function, it contains a non empty qualifiedName string // to the TorchScript function schema name and a list of arguments. class TORCH_API ScriptCall : public RpcCommandBase { public: // Constructor for builtin operator call. ScriptCall(std::shared_ptr<Operator> op, std::vector<at::IValue>&& stack); // Constructor for TorchScript function call. ScriptCall( const c10::QualifiedName& qualifiedName, std::vector<at::IValue>&& stack, const bool isAsyncExecution = false); bool hasOp() const; std::shared_ptr<Operator> op() const; bool hasQualifiedName() const; const c10::QualifiedName& qualifiedName() const; // return the argument stack of this builtin operator const std::vector<at::IValue>& stack() const; std::vector<at::IValue>& stackRef(); inline bool isAsyncExecution() const { return isAsyncExecution_; } c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<ScriptCall> fromMessage(const Message& message); ~ScriptCall() override = default; protected: virtual void toIValues(std::vector<at::IValue>& ivalues) const; static std::unique_ptr<ScriptCall> fromIValues( std::vector<at::IValue>& ivalues); private: // Given an operator symbol and a string schema, return the matched operator. static std::shared_ptr<Operator> matchOperator(const std::string& str_schema); static const std::string BUILTIN_OP_NAMESPACE_; static const std::string ATEN_PREFIX_; // This field has value if this ScriptCall represents invocation of a builtin // operator. std::optional<std::shared_ptr<Operator>> op_; // This field has non empty string if this ScriptCall represents invocation of // an annotated torchscript function defined by users. std::optional<const c10::QualifiedName> qualifiedName_; std::vector<at::IValue> stack_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const bool isAsyncExecution_; }; } // namespace torch::distributed::rpc ```
===================================================================================================================================================== SOURCE CODE FILE: script_remote_call.h LINES: 1 SIZE: 1.76 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\script_remote_call.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/script_call.h> #include <torch/csrc/distributed/rpc/types.h> #include <torch/csrc/jit/runtime/operator.h> #include <torch/csrc/jit/serialization/pickler.h> #include <vector> namespace torch::distributed::rpc { using torch::jit::Operator; // A ScriptRemoteCall instance represents an invocation of `dist.remote` on a // builtin operator. Currently, it does not support using RRef as arguments yet. // Besides the operator and a vector of arguments, ScriptRemoteCall also // contains the RRefId and the ForkId of the return value RRef. class TORCH_API ScriptRemoteCall final : public ScriptCall { public: // Constructor for builtin operator call. ScriptRemoteCall( std::shared_ptr<Operator> op, std::vector<at::IValue>&& stack, const RRefId& retRRefId, const ForkId& retForkId); // Constructor for TorchScript function call. ScriptRemoteCall( const c10::QualifiedName& qualifiedName, std::vector<at::IValue>&& stack, const RRefId& retRRefId, const ForkId& retForkId, const bool isAsyncExecution); inline const RRefId& retRRefId() const { return retRRefId_; } inline const ForkId& retForkId() const { return retForkId_; } static std::unique_ptr<ScriptRemoteCall> fromIValues( std::vector<at::IValue>& ivalues); c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<ScriptRemoteCall> fromMessage(const Message& message); private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const RRefId retRRefId_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const ForkId retForkId_; }; } // namespace torch::distributed::rpc ```
============================================================================================================================================== SOURCE CODE FILE: script_resp.h LINES: 1 SIZE: 0.71 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\script_resp.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/message.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/jit/serialization/pickler.h> namespace torch::distributed::rpc { // Return value of a builtin operator or a TorchScript function. class TORCH_API ScriptResp final : public RpcCommandBase { public: explicit ScriptResp(at::IValue&& values); const at::IValue& value(); c10::intrusive_ptr<Message> toMessageImpl() && override; static std::unique_ptr<ScriptResp> fromMessage(const Message& message); private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const at::IValue value_; }; } // namespace torch::distributed::rpc ```
=================================================================================================================================================== SOURCE CODE FILE: tensorpipe_agent.h LINES: 1 SIZE: 17.72 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\tensorpipe_agent.h ENCODING: utf-8 ```h #pragma once #ifdef USE_TENSORPIPE #include <atomic> #include <thread> #include <c10/core/thread_pool.h> #include <torch/csrc/distributed/c10d/PrefixStore.hpp> #include <torch/csrc/distributed/c10d/Store.hpp> #include <torch/csrc/distributed/rpc/rpc_agent.h> #include <utility> // Forward-declare the TensorPipe classes we need, to avoid including its // headers in PyTorch's ones and thus have it become a public dependency. namespace tensorpipe { class Context; class Error; class Listener; class Message; class Pipe; namespace transport { class Context; } // namespace transport namespace channel { class Context; } // namespace channel } // namespace tensorpipe namespace torch::distributed::rpc { // These priorities instruct TensorPipe on which transport/channel to pick // during handshake. Higher priorities will take precedence over lower ones. // The transport with lowest priority will be the one used to bootstrap pipes. constexpr int64_t kShmTransportPriority = 200; constexpr int64_t kIbvTransportPriority = 100; // The UV transport just uses TCP and should work everywhere, thus keep it last. constexpr int64_t kUvTransportPriority = 0; constexpr int64_t kCmaChannelPriority = 1200; constexpr int64_t kMultiplexedUvChannelPriority = 1100; // The basic channel reuses a transport as a channel, and is thus our fallback. constexpr int64_t kBasicChannelPriority = 1000; // CPU channel have higher priority than CUDA channels, since the latter might // handle CPU-to-CPU transfers, but will always be less efficient than their // CPU-only counterparts. constexpr int64_t kCudaIpcChannelPriority = 300; constexpr int64_t kCudaGdrChannelPriority = 200; constexpr int64_t kCudaXthChannelPriority = 400; constexpr int64_t kCudaBasicChannelPriority = 0; using steady_clock_time_point = std::chrono::time_point<std::chrono::steady_clock>; struct TORCH_API TransportRegistration { std::shared_ptr<tensorpipe::transport::Context> transport; int64_t priority; std::string address; }; TORCH_DECLARE_REGISTRY(TensorPipeTransportRegistry, TransportRegistration); struct TORCH_API ChannelRegistration { std::shared_ptr<tensorpipe::channel::Context> channel; int64_t priority; }; TORCH_DECLARE_REGISTRY(TensorPipeChannelRegistry, ChannelRegistration); constexpr auto kDefaultNumWorkerThreads = 16; struct TORCH_API TensorPipeRpcBackendOptions : public RpcBackendOptions { TensorPipeRpcBackendOptions( int numWorkerThreads, std::optional<std::vector<std::string>> transports, std::optional<std::vector<std::string>> channels, float rpc_timeout, std::string init_method, std::unordered_map<std::string, DeviceMap> device_maps = {}, std::vector<c10::Device> devices = {}) : RpcBackendOptions(rpc_timeout, std::move(init_method)), numWorkerThreads(numWorkerThreads), transports(std::move(transports)), channels(std::move(channels)), deviceMaps(std::move(device_maps)), devices(std::move(devices)) { TORCH_CHECK( numWorkerThreads > 0, "num_worker_threads must be positive, got ", numWorkerThreads); if (this->transports.has_value()) { for (const std::string& transportName : this->transports.value()) { TORCH_CHECK( TensorPipeTransportRegistry()->Has(transportName), "Unknown transport: ", transportName); } } if (this->channels.has_value()) { for (const std::string& channelName : this->channels.value()) { TORCH_CHECK( TensorPipeChannelRegistry()->Has(channelName), "Unknown channel: ", channelName); } } } void setDeviceMap(const std::string& workerName, const DeviceMap& deviceMap) { auto iter = deviceMaps.find(workerName); if (iter == deviceMaps.end()) { deviceMaps[workerName] = deviceMap; } else { for (auto& entry : deviceMap) { // c10::Device has no default constructor, hence map[device] dosn't work // In C++-17 we can use insert_or_assign. auto entryIter = iter->second.find(entry.first); if (entryIter == iter->second.end()) { iter->second.emplace(entry.first, entry.second); } else { entryIter->second = entry.second; } } } } int numWorkerThreads; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::optional<std::vector<std::string>> transports; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::optional<std::vector<std::string>> channels; std::unordered_map<std::string, DeviceMap> deviceMaps; std::vector<c10::Device> devices; }; // Struct to track the network source metrics struct TORCH_API NetworkSourceInfo { worker_id_t srcRank; std::vector<uint8_t> srcMachineAddr; }; // Struct to track aggregated network metrics struct TORCH_API AggregatedNetworkData { uint64_t numCalls{0}; uint64_t totalSentBytes{0}; uint64_t totalRecvBytes{0}; uint64_t totalErrors{0}; }; // TensorPipeAgent leverages TensorPipe (https://github.com/pytorch/tensorpipe) // to transparently move tensors and payloads through the fastest available // transport or channel. It acts like a hybrid RPC transport, providing shared // memory (linux) and TCP (linux & mac) support. CUDA support is in progress. class TORCH_API TensorPipeAgent : public RpcAgent { public: TensorPipeAgent( const c10::intrusive_ptr<::c10d::Store>& store, std::string selfName, worker_id_t selfId, std::optional<int> worldSize, TensorPipeRpcBackendOptions opts, std::unordered_map<std::string, DeviceMap> reverseDeviceMaps, std::vector<c10::Device> devices, std::unique_ptr<RequestCallback> cb); TensorPipeAgent(const TensorPipeAgent&) = delete; TensorPipeAgent& operator=(const TensorPipeAgent&) = delete; c10::intrusive_ptr<JitFuture> send( const WorkerInfo& to, c10::intrusive_ptr<Message> message, const float rpcTimeoutSeconds = kUnsetRpcTimeout, const DeviceMap& deviceMap = {}) override; // join() and sync() would be deprecated - // https://github.com/pytorch/pytorch/issues/27647 void join(bool shutdown = false, float timeout = 0) override; void sync() override {} void startImpl() override; void shutdownImpl() override; ~TensorPipeAgent() override; const WorkerInfo& getWorkerInfo(const std::string& workerName) const override; const WorkerInfo& getWorkerInfo(worker_id_t workerId) const override; std::vector<WorkerInfo> getWorkerInfos() const override; void updateGroupMembership( const WorkerInfo& workerInfo, const std::vector<c10::Device>& devices, const std::unordered_map<std::string, DeviceMap>& reverseDeviceMaps, bool isJoin); std::unordered_map<std::string, std::string> getMetrics() override; void addGilWaitTime(const std::chrono::microseconds gilWaitTime) override; TensorPipeRpcBackendOptions getBackendOptions() const; const c10::intrusive_ptr<::c10d::Store> getStore() const; DeviceMap getDeviceMap(const WorkerInfo& dest) const override; const std::vector<c10::Device>& getDevices() const override; using NetworkDataDict = std::unordered_map<std::string, AggregatedNetworkData>; // Returns metrics tracked by the NetworkDataDict NetworkDataDict getNetworkData(); // Returns NetworkSourceInfo struct NetworkSourceInfo getNetworkSourceInfo(); static const std::string& guessAddress(); // For testing purposes. size_t timeoutMapSize(); size_t numPendingResponses(); size_t messageIdToTimeoutMapSize(); // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const bool isStaticGroup_; protected: // TensorPipe write function that could be used to write response // messages by server, and write request messages by client. This // is a protected method since it is overwritten by FaultyTensorPipeAgent virtual void pipeWrite( const std::shared_ptr<tensorpipe::Pipe>&, const c10::intrusive_ptr<Message>& message, std::vector<c10::Device>&& devices, std::vector<c10::Stream> streams, std::function<void(const tensorpipe::Error&)>) noexcept; private: // Removes the given messageId with the given expirationTime from the // timeoutMap_. void removeFromTimeoutMap(uint64_t messageId); // Populates workerIdToInfo_ and workerNameToInfo_ using addressStore_ void prepareNames(bool isStaticGroup); // Check the static group attribute with the value set in store void checkAndSetStaticGroup(const c10::intrusive_ptr<::c10d::Store>& store); const std::string& findWorkerURL(const WorkerInfo& worker) const; // Only use for Dynamic RPC groups, method to have worker leave group void leaveGroup(); // TensorPipe read function that could be used to read response messages // by client, and read request messages by server. void pipeRead( const std::shared_ptr<tensorpipe::Pipe>&, std::function<void( const tensorpipe::Error&, c10::intrusive_ptr<Message>, std::vector<c10::Stream>)>) noexcept; // Callback of listener accept() void onListenerAccepted( const tensorpipe::Error& error, std::shared_ptr<tensorpipe::Pipe>& pipe); // Respond to a call from a peer void respond(std::shared_ptr<tensorpipe::Pipe>& pipe); void sendCompletedResponseMessage( std::shared_ptr<tensorpipe::Pipe>& pipe, JitFuture& futureResponseMessage, uint64_t messageId, std::vector<c10::Stream> stream); // Collects metrics from successful RPC calls void trackNetworkData( uint64_t requestSize, uint64_t responseSize, const std::string& destWorkerName); // Collects metrics from failed RPC calls void trackNetworkError( uint64_t requestSize, const std::string& destWorkerName); inline std::vector<c10::Device> getDevicesForRemote( const std::string& remoteName, const Message& message) const; // When a request+response completes, we need to mark the future message as // complete. However, if its timeout has already expired, it already has an // error set. There is no atomic "test-and-set" way to mark a future complete // only if it isn't yet. It does exist for errors (setErrorIfNeeded) but, even // then, it ends up printing a log message, which may worry the user. To solve // both issues we use a separate atomic flag to know the status of the future. struct AtomicJitFuture { explicit AtomicJitFuture(const std::vector<c10::Device>& devices) { jitFuture = c10::make_intrusive<at::ivalue::Future>( at::AnyClassType::get(), devices); } std::atomic_flag isComplete = ATOMIC_FLAG_INIT; c10::intrusive_ptr<JitFuture> jitFuture; }; // Maintains state per client pipe to track pending response messages and // error states. pendingResponseMessage_ should be protected by a mutex since // it can be raced with user send() call. // TODO: To achieve better performance we can have a pipe pool per // client that can be configured using RpcBackendOptions. struct ClientPipe { explicit ClientPipe(std::shared_ptr<tensorpipe::Pipe> pipe) : pipe_(std::move(pipe)) {} std::shared_ptr<tensorpipe::Pipe> pipe_; mutable std::mutex mutex_; bool inError_{false}; // Map from Message Request ID's to corresponding futures. std::unordered_map<uint64_t, std::shared_ptr<AtomicJitFuture>> pendingResponseMessage_; }; const c10::intrusive_ptr<::c10d::Store> store_; const TensorPipeRpcBackendOptions opts_; // For dynamic RPC, the reverse device maps are updated whenever a new rank // joins or leaves the group std::unordered_map<std::string, DeviceMap> reverseDeviceMaps_; // Local devices used by this agent. If application didn't specify this // field, it will be initialized using corresponding local devices in // opts_.deviceMaps and reverseDeviceMaps_; std::vector<c10::Device> devices_; ThreadPool threadPool_; std::shared_ptr<tensorpipe::Context> context_; std::shared_ptr<tensorpipe::Listener> listener_; mutable std::mutex connectedPipesMutex_; std::unordered_map<worker_id_t, ClientPipe> connectedPipes_; // Maps keyed on name and id for easy WorkerInfo lookup. std::unordered_map<worker_id_t, WorkerInfo> workerIdToInfo_; std::unordered_map<std::string, WorkerInfo> workerNameToInfo_; std::unordered_map<std::string, std::string> workerNameToURL_; ::c10d::PrefixStore rankToNameStore_; ::c10d::PrefixStore nameToAddressStore_; // Store keys that will used to count joined processes and active calls during // the shutdown process ::c10d::PrefixStore shutdownStore_; int worldSize_ = 0; std::atomic<uint64_t> nextMessageID_{0}; // Metadata used for tracking of whether certain RPCs have timed out or not. struct TimeoutMessageMetadata { TimeoutMessageMetadata( uint64_t messageId_, std::shared_ptr<AtomicJitFuture> responseFuture_, std::chrono::milliseconds timeout_) : messageId(messageId_), responseFuture(std::move(responseFuture_)), timeout(timeout_) {} uint64_t messageId; std::shared_ptr<AtomicJitFuture> responseFuture; std::chrono::milliseconds timeout; }; // Map to store the expiration times for each message. std::map<steady_clock_time_point, std::vector<TimeoutMessageMetadata>> timeoutMap_; // Map to store the messageId to expiry time. std::unordered_map<uint64_t, steady_clock_time_point> messageIdToTimeout_; // Thread that will poll the timeoutMap_ for timed out messages and mark them // with an error accordingly std::thread timeoutThread_; // Function run by the timeoutThread_ to check for timed out RPCs void pollTimeoutRpcs(); // Mutex to guard the timeoutMap_ std::mutex timeoutMapMutex_; // Condition Variable to signal population of the timeoutMap_ std::condition_variable timeoutThreadCV_; // Returns the expiration time for an RPC by adding the current time to the // passed in timeout. inline steady_clock_time_point computeRpcMessageExpiryTime( std::chrono::milliseconds timeout) const { return std::chrono::time_point_cast<std::chrono::milliseconds>( std::chrono::steady_clock::now() + timeout); } // Handle error on an outgoing pipe void handleClientError( ClientPipe& clientPipe, const tensorpipe::Error& error); // This is a generic struct for capturing Time-Series Metrics. It keeps a // running sum and count of data points (observations), and can return an // average of the data points seen so far. This is currently only used for // tracking the GIL Wait Time in RPC Agents, but can be used for other metrics // as well. struct TimeSeriesMetricsTracker { // Running sum of the data points seen so far uint64_t currentSum_; // Running count of the data points seen so far uint64_t currentCount_; explicit TimeSeriesMetricsTracker( uint64_t currentSum = 0, uint64_t currentCount = 0); // Adds a data point (which is basically one observation for the metric // being tracked) to the running sum and count. void addData(uint64_t dataPoint); // Returns the average of all the data points seen so far. float computeAverage() const; }; // Map of Time-Series metrics tracked by the RPC Agent std::unordered_map<std::string, TimeSeriesMetricsTracker> timeSeriesMetrics_; // Mutex to guard timeSeriesMetrics_ std::mutex metricsMutex_; // Custom lock guard used to check if the RPC group is dynamic and lock the // mutex if so struct GroupMembershipLockGuard { GroupMembershipLockGuard(std::mutex& mutex, bool isStaticGroup) : ref_(mutex), isStaticGroup_(isStaticGroup) { if (isStaticGroup_) { ref_.lock(); } } ~GroupMembershipLockGuard() { if (isStaticGroup_) { ref_.unlock(); } } GroupMembershipLockGuard(const GroupMembershipLockGuard&) = delete; private: std::mutex& ref_; bool isStaticGroup_; }; // Mutex to guard access to group membership data // e.g. updates to (workerIdToInfo_, workerNameToInfo_, workerNameToURL_) mutable std::mutex groupMembershipMutex_; // Map to Track Network Data NetworkDataDict networkData_; // Mutex to guard networkData_ std::mutex networkDataMutex_; // A mutex and a cv to guard access to the call counts and watch for changes. std::mutex callCountMutex_; std::condition_variable callCountCV_; // Running total of un-processed, un-errored RPC calls sent int32_t clientActiveCalls_{0}; // Running total of un-processed RPC requests received int32_t serverActiveCalls_{0}; // Running total of RPC requests that will be completed asynchronously int32_t serverActiveAsyncCalls_{0}; // Whether a global graceful shutdown has begun, in which case we'll silence // error messages due to remote workers closing their pipes. std::atomic<bool> shuttingDown_{false}; // Helpers to modify the counts while correctly dealing with the mutex and cv. void increaseCallCount(int32_t& count); void decreaseCallCount(int32_t& count); // Helpers to set the state of the requests. void markFutureAsComplete( std::shared_ptr<AtomicJitFuture> atomicFuture, c10::intrusive_ptr<Message> message, std::vector<c10::Stream> streams); void markFutureWithError( std::shared_ptr<AtomicJitFuture> atomicFuture, std::string errorMsg); }; } // namespace torch::distributed::rpc #endif // USE_TENSORPIPE ```
=================================================================================================================================================== SOURCE CODE FILE: tensorpipe_utils.h LINES: 1 SIZE: 4.73 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\tensorpipe_utils.h ENCODING: utf-8 ```h #pragma once #ifdef USE_TENSORPIPE #include <torch/csrc/distributed/rpc/utils.h> namespace tensorpipe { class Message; class Allocation; class Descriptor; } // namespace tensorpipe namespace torch::distributed::rpc { TORCH_API const c10::Stream& getStreamForDevice( const std::vector<c10::Stream>& streams, const c10::Device& device); // Inspired by c10/core/impl/DeviceGuardImplInterface.h. class TensorpipeDeviceTypeConverter { public: // Ideally we'd want this to also return a tensorpipe::Message::Tensor object // but we cannot forward-declare that class (because it's nested), and we // cannot include the TensorPipe headers because it's a private dependency. // Thus we bend over backwards and entrust this method with appending that // object to the `tensors` field of the tensorpipe::Message object we pass. virtual std::optional<std::vector<char>> prepareTensorForSending( const c10::Storage& storage, const std::vector<c10::Stream>& streams, tensorpipe::Message& message) const = 0; // Same as above: this method cannot return a tensorpipe::Allocation::Tensor, // thus it appends it to the `tensors` field of the tensorpipe::Allocation. virtual at::DataPtr allocateTensorForReceiving( c10::DeviceIndex deviceIndex, size_t length, const std::vector<c10::Stream>& streams, tensorpipe::Allocation& allocation) const = 0; virtual ~TensorpipeDeviceTypeConverter() = default; }; extern TORCH_API std::array< std::atomic<const TensorpipeDeviceTypeConverter*>, static_cast<size_t>(DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)> device_type_converter_registry; class TORCH_API TensorpipeDeviceTypeConverterRegistrar { public: TensorpipeDeviceTypeConverterRegistrar( DeviceType, const TensorpipeDeviceTypeConverter*); }; #define C10_REGISTER_TENSORPIPE_DEVICE_TYPE_CONVERTER( \ DevType, TensorpipeDeviceTypeConverter) \ static ::torch::distributed::rpc::TensorpipeDeviceTypeConverterRegistrar \ C10_ANONYMOUS_VARIABLE(g_##DeviceType)( \ ::c10::DeviceType::DevType, new TensorpipeDeviceTypeConverter()); inline const TensorpipeDeviceTypeConverter* getDeviceTypeConverter( DeviceType type) { return device_type_converter_registry[static_cast<size_t>(type)].load(); } // A struct that holds pointers that keep alive all the memory that will be // accessed by TensorPipe during a write operation. struct TensorpipeWriteBuffers { // Allocate on heap so pointers stay valid as we move the holder. std::unique_ptr<MessageType> type; std::unique_ptr<int64_t> id; std::vector<char> payload; std::vector<char> pickle; // This contains the original tensors and the clones of the sparse tensors. std::vector<torch::Tensor> tensors; // This contains the copies of the data of the tensors that didn't own their // memory, e.g., the ones created from torch::from_blob() with no deleter. std::vector<std::vector<char>> copiedTensors; }; // A struct that holds pointers that keep alive all the memory that will be // accessed by TensorPipe during a read operation. struct TensorpipeReadBuffers { // Allocate on heap so pointers stay valid as we move the holder. std::unique_ptr<MessageType> type; std::unique_ptr<int64_t> id; std::vector<char> payload; std::vector<char> pickle; std::vector<c10::DataPtr> tensors; }; // Convert an RPC message into a TensorPipe message, plus a holder to all the // data that must be kept alive while the write is performed asynchronously. TORCH_API std::tuple<tensorpipe::Message, TensorpipeWriteBuffers> tensorpipeSerialize( const c10::intrusive_ptr<Message>& rpcMessage, std::vector<c10::Device> devices, const std::vector<c10::Stream>& streams); // Allocate the buffers that will hold the incoming data. They will be managed // by the returned holder, which must be kept alive until the asynchronous read // has finished. Pointers to these buffers will be stored in the returned // tensorpipe::Allocation struct. TORCH_API std::pair<tensorpipe::Allocation, TensorpipeReadBuffers> tensorpipeAllocate( const tensorpipe::Descriptor& tpDescriptor, const std::vector<c10::Stream>& streams); // Convert a TensorPipe message back into an RPC message. This requires the data // to be available and can thus only be performed once the asynchronous read has // completed. The holder can be destroyed once this function returns. TORCH_API c10::intrusive_ptr<Message> tensorpipeDeserialize( const tensorpipe::Descriptor& tpDescriptor, TensorpipeReadBuffers&& holder); } // namespace torch::distributed::rpc #endif // USE_TENSORPIPE ```
======================================================================================================================================================== SOURCE CODE FILE: torchscript_functions.h LINES: 1 SIZE: 1.65 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\torchscript_functions.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/ivalue.h> #include <torch/csrc/autograd/profiler.h> #include <torch/csrc/distributed/autograd/utils.h> #include <torch/csrc/distributed/rpc/rref_context.h> #include <torch/csrc/distributed/rpc/script_remote_call.h> namespace torch::distributed::rpc { // This function sends an rpc call to run torchscript function, currently the // torchscript function could only be a user defined python function with // "@torch.jit.script" annotation. The torchscript function could not be // a class constructor, class method, instance method or a script module. // dst: destination worker name // qualifiedName: torchscript function qualified name string like // "moduleName::torchscriptFunctionName", e.g, // "dist_autograd_test::my_py_add" // stack: a bag of IValue args passed to torchscriptFunctionName // It returns c10::intrusive_ptr<ivalue::Future> c10::intrusive_ptr<c10::ivalue::Future> TORCH_API rpcTorchscript( const std::string& dstWorkerName, const c10::QualifiedName& qualifiedName, const c10::FunctionSchema& functionSchema, std::vector<c10::IValue> stack, const float rpcTimeoutSeconds = torch::distributed::rpc::kUnsetRpcTimeout, const bool isAsyncExecution = false); c10::intrusive_ptr<RRef> TORCH_API remoteTorchscript( const std::string& dstWorkerName, const c10::QualifiedName& qualifiedName, const c10::FunctionSchema& functionSchema, std::vector<c10::IValue>& stack, const float rpcTimeoutSeconds = torch::distributed::rpc::kUnsetRpcTimeout, const bool isAsyncExecution = false); } // namespace torch::distributed::rpc ```
======================================================================================================================================== SOURCE CODE FILE: types.h LINES: 1 SIZE: 2.22 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\types.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/ivalue.h> namespace torch::distributed::rpc { using worker_id_t = int16_t; using local_id_t = int64_t; bool getAllowJitRRefPickle(); TORCH_API void enableJitRRefPickle(); TORCH_API void disableJitRRefPickle(); struct TORCH_API JitRRefPickleGuard { JitRRefPickleGuard(); JitRRefPickleGuard(JitRRefPickleGuard&& other) = delete; JitRRefPickleGuard(const JitRRefPickleGuard&) = delete; JitRRefPickleGuard& operator=(const JitRRefPickleGuard&) = delete; JitRRefPickleGuard& operator=(JitRRefPickleGuard&&) = delete; ~JitRRefPickleGuard(); }; struct TORCH_API GloballyUniqueId final { GloballyUniqueId(worker_id_t createdOn, local_id_t localId); GloballyUniqueId(const GloballyUniqueId& other) = default; GloballyUniqueId& operator=(const GloballyUniqueId& other) = delete; GloballyUniqueId(GloballyUniqueId&& other) = default; GloballyUniqueId& operator=(GloballyUniqueId&& other) = delete; ~GloballyUniqueId() = default; bool operator==(const GloballyUniqueId& other) const; bool operator!=(const GloballyUniqueId& other) const; at::IValue toIValue() const; static GloballyUniqueId fromIValue(const at::IValue&); struct Hash { size_t operator()(const GloballyUniqueId& key) const { return (uint64_t(key.createdOn_) << kLocalIdBits) | key.localId_; } }; static constexpr int kLocalIdBits = 48; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const worker_id_t createdOn_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const local_id_t localId_; }; TORCH_API std::ostream& operator<<( std::ostream& os, const GloballyUniqueId& globalId); using RRefId = GloballyUniqueId; using ForkId = GloballyUniqueId; using ProfilingId = GloballyUniqueId; struct TORCH_API SerializedPyObj final { SerializedPyObj(std::string&& payload, std::vector<at::Tensor>&& tensors) : payload_(std::move(payload)), tensors_(std::move(tensors)) {} std::vector<at::IValue> toIValues() &&; static SerializedPyObj fromIValues(std::vector<at::IValue> value); std::string payload_; std::vector<at::Tensor> tensors_; }; } // namespace torch::distributed::rpc ```
======================================================================================================================================================== SOURCE CODE FILE: unpickled_python_call.h LINES: 1 SIZE: 1.39 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\unpickled_python_call.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> #include <torch/csrc/utils/pybind.h> namespace torch::distributed::rpc { // This class converts the content in a PythonCall into py::object. This is a // helper class to make sure that all arguments deserialization is done before // entering RequestCallbackImpl::processRpc(...), so that the deserialization // related logic can be carried out in one spot instead of scattered in multiple // places for different message types. // NB: The reason for not consolidating class into PythonCall is because // PythonCall is a libtorch type which should not depend on Python types. class TORCH_API UnpickledPythonCall : public RpcCommandBase { public: UnpickledPythonCall( const SerializedPyObj& serializedPyObj, bool isAsyncExecution); ~UnpickledPythonCall() override; // toMessage() method is not implemented, as objects of this class should // never be directly converted into a Message object. c10::intrusive_ptr<Message> toMessageImpl() && override; const py::object& pythonUdf() const; inline bool isAsyncExecution() const { return isAsyncExecution_; } private: py::object pythonUdf_; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const bool isAsyncExecution_; }; } // namespace torch::distributed::rpc ```
=============================================================================================================================================================== SOURCE CODE FILE: unpickled_python_remote_call.h LINES: 1 SIZE: 1.21 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\unpickled_python_remote_call.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/distributed/rpc/types.h> #include <torch/csrc/distributed/rpc/unpickled_python_call.h> #include <torch/csrc/utils/pybind.h> namespace torch::distributed::rpc { // This class converts the content in a PythonRemoteCall into py::object. This // is a helper class to make sure that all arguments deserialization is done // before entering RequestCallbackImpl::processRpc(...), so that the // deserialization related logic can be carried out in one spot instead of // scattered in multiple places for different message types. // NB: The reason for not consolidating class into PythonRemoteCall is because // PythonRemoteCall is a libtorch type which should not depend on Python types. class TORCH_API UnpickledPythonRemoteCall final : public UnpickledPythonCall { public: explicit UnpickledPythonRemoteCall( const SerializedPyObj& serializedPyObj, const at::IValue& retRRefId, const at::IValue& retForkId, const bool isAsyncExecution); const RRefId& rrefId() const; const ForkId& forkId() const; private: RRefId rrefId_; ForkId forkId_; }; } // namespace torch::distributed::rpc ```
======================================================================================================================================== SOURCE CODE FILE: utils.h LINES: 1 SIZE: 3.79 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\distributed\rpc\utils.h ENCODING: utf-8 ```h #pragma once #include <c10/core/Device.h> #include <c10/core/Event.h> #include <c10/core/Stream.h> #include <torch/csrc/autograd/profiler.h> #include <torch/csrc/distributed/rpc/rpc_command_base.h> #include <torch/csrc/jit/serialization/pickle.h> #include <torch/csrc/utils/byte_order.h> namespace torch::distributed::rpc { // Parse error message and return RPCErrorType based on the message. TORCH_API RPCErrorType getRPCErrorType(const JitFuture& jitFuture); // Create an error string given the error description and error type TORCH_API std::string makeRPCError( const std::string& rpcErrorStr, RPCErrorType errorType); // Given an RPC message received as a request over the wire, deserialize it into // the appropriate 'RpcCommandBase' type. TORCH_API std::unique_ptr<RpcCommandBase> deserializeRequest( const Message& request); // Given an RPC message received as a response over the wire, deserialize it // into the appropriate 'RpcCommandBase' type, if the response is // FORWARD_AUTOGRAD_RESP type, unwrap it, attach recvBackward() functions // to received tensors and set the wrappedMsgType to its wrapped message type. TORCH_API std::unique_ptr<RpcCommandBase> deserializeResponse( const Message& response, MessageType& wrappedMsgType); // Given an RPC message received as a response over the wire, deserialize it // into the valid IValue if the message is for a script rpc result, // otherwise deserialize it into dummy none ivalue that will never be used. // In this deserialization, we also attach recv rpc backward functions if // needed. IValue deserializeResptoIValueInternal( RpcCommandBase& rpc, MessageType messageType); TORCH_API IValue deserializeRespToIValue(const Message& message); // Note: format is subject to change and intended for RPCs. // For saving persistently to disk, use torch::save(). TORCH_API std::string wireSerialize( const std::vector<char>& payload, const std::vector<at::Tensor>& tensors); TORCH_API std::pair<std::vector<char>, std::vector<at::Tensor>> wireDeserialize( const void* data, size_t data_size); // We use vector<char> as the type of blobs because it's what rpc::Message uses // for its payload, even though it has the disadvantage that it cannot be // allocated with uninitialized memory: it is always zeroed out. // Some Tensors are effectively views of larger Tensors, where only a small // subset of the Storage data is referenced. This normally is good and avoids // copies when kept locally, but if we naively push the whole Storage over the // wire, we'll end up with excess network traffic. This change clones tensors if // we'd save at least half the data, and over a minimum hurdle. TORCH_API c10::List<at::Tensor> cloneSparseTensors( const std::vector<at::Tensor>& tensors); // Combines an original payload and wrapped payload into the original payload. // Used to generate the overall payload for the wrapped RPC. TORCH_API void writeWrappedPayload( std::vector<char>& originalPayload, std::vector<char>& additionalPayload); // Reads the additional, wrapped payload from a wrapped RPC off of the input // payload. After this, payload will contain the payload of the original, // un-wrapped RPC. TORCH_API std::vector<at::IValue> readWrappedPayload( std::vector<char>& payload, const rpc::Message& message); // Takes a list of events from autograd profiler and populates them into // profiledEvents to be carried over RPC. TORCH_API void populateRemoteProfiledEvents( std::vector<torch::autograd::profiler::LegacyEvent>& profiledEvents, const torch::autograd::profiler::ProfilerConfig& profilerConfig, const std::vector<std::vector<torch::autograd::profiler::LegacyEvent>>& eventLists); } // namespace torch::distributed::rpc ```
===================================================================================================================================== SOURCE CODE FILE: cache_entry.h LINES: 1 SIZE: 2.84 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\cache_entry.h ENCODING: utf-8 ```h #pragma once #include <Python.h> #ifdef __cplusplus #include <torch/csrc/dynamo/utils.h> #include <torch/csrc/utils/pybind.h> #include <list> extern "C" { #endif /* Our cache resides on the extra scratch space of the code object. The structure of the cache is as follows: -> ExtraState -> CacheEntry (list) -> guard_manager (a wrapper that contains the actual guard manager at its attr named root) -> code -> FrameState CacheEntry is a linked list node containing the guard_manager for guards and the optimized code. The FrameState is a PyDict that enables sharing between different frames. This is used to detect dynamism in automatic dynamic shapes. These two are encapsulated into a ExtraState. */ typedef struct CacheEntry CacheEntry; typedef struct ExtraState ExtraState; #ifdef __cplusplus C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED( "-Wdeprecated-copy-with-user-provided-dtor") C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wdeprecated-copy-dtor") // NOLINTNEXTLINE(cppcoreguidelines-special-member-functions) typedef struct VISIBILITY_HIDDEN CacheEntry { // check the guards: lambda: <locals of user function>: bool py::object guard_manager; // modified user bytecode (protected by guard_manager's guards) py::object code; // CompileId corresponding to this compilation py::object compile_id; // root guard manager if exists void* root_mgr{nullptr}; // diff guard root guard manager if exists void* diff_guard_root_mgr{nullptr}; // backend used to create this cache entry PyObject* backend{nullptr}; // Reference to owning ExtraState ExtraState* _owner{nullptr}; // Reference to this CacheEntry's location in owner's linked list std::list<CacheEntry>::iterator _owner_loc; // Reference to string representation of the CompileContext std::string trace_annotation; CacheEntry(const py::handle& guarded_code, PyObject* backend); CacheEntry(const CacheEntry&) = default; CacheEntry(CacheEntry&&) = default; CacheEntry& operator=(const CacheEntry&) = default; CacheEntry& operator=(CacheEntry&&) = default; ~CacheEntry(); // Warning: returns a reference whose lifetime is controlled by C++ py::object next(); void invalidate(py::object deleted_guard_manager); // Called from the python side to update the diff guard root manager void update_diff_guard_root_manager(); } CacheEntry; C10_DIAGNOSTIC_POP() C10_DIAGNOSTIC_POP() #endif // Returns borrowed reference PyCodeObject* CacheEntry_get_code(CacheEntry* e); // Returns borrowed string representation of CompileContext const char* CacheEntry_get_trace_annotation(CacheEntry* e); // Returns a borrowed reference to CacheEntry as a PyObject // Warning: lifetime is controlled by C++ PyObject* CacheEntry_to_obj(CacheEntry* e); #ifdef __cplusplus } // extern "C" #endif ```
=========================================================================================================================================== SOURCE CODE FILE: compiled_autograd.h LINES: 1 SIZE: 49.55 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\compiled_autograd.h ENCODING: utf-8 ```h #pragma once #include <ATen/TensorGeometry.h> #include <ATen/core/ivalue.h> #include <c10/core/impl/TorchDispatchModeTLS.h> #include <c10/util/flat_hash_map.h> #include <torch/csrc/autograd/function.h> #include <torch/csrc/autograd/input_metadata.h> #include <torch/csrc/autograd/saved_variable.h> #include <torch/csrc/autograd/variable_info.h> #include <torch/csrc/utils/python_stub.h> #include <torch/csrc/utils/torch_dispatch_mode.h> #include <typeindex> #include <vector> // see [Note: Compiled Autograd] namespace torch::dynamo::autograd { using namespace torch::autograd; // This is a layer of indirection for calling methods on the Python // AutogradCompilerInstance (referred to as the "py_compiler") from // libtorch_cpu (where Python is not available). // A PyCompilerInterfaceImpl in libtorch_python subclasses it and // overrides the methods to do the actual calls back to Python. struct TORCH_API PyCompilerInterface { PyCompilerInterface() = default; PyCompilerInterface(const PyCompilerInterface&) = delete; PyCompilerInterface& operator=(const PyCompilerInterface&) = delete; PyCompilerInterface(PyCompilerInterface&&) = delete; PyCompilerInterface& operator=(PyCompilerInterface&&) = delete; virtual ~PyCompilerInterface() = default; // Invokes py_compiler.bind_function virtual std::string bind_function( PyObject* py_compiler, const std::string& fn_name, // NOLINTNEXTLINE(performance-unnecessary-value-param) functional_apply_t fn, // NOLINTNEXTLINE(performance-unnecessary-value-param) std::vector<at::TypePtr> packed_args_schema, bool is_custom_function = false, bool is_traceable = true) { TORCH_INTERNAL_ASSERT(false, "Needs to be overridden"); } // Invokes py_compiler.method_name(fn_name, inputs, packed_args, // output_metadata) virtual variable_list call_function( PyObject* py_compiler, const char* method_name, const std::string& fn_name, const variable_list& inputs, const ivalue_list& packed_args, const c10::IValue& output_metadata) { TORCH_INTERNAL_ASSERT(false, "Needs to be overridden"); } virtual variable_list call_copy_slices_prologue( PyObject* py_compiler, const variable_list& inputs, const at::TensorGeometry& base, const at::TensorGeometry& view) { TORCH_INTERNAL_ASSERT(false, "Needs to be overridden"); } virtual variable_list call_copy_slices_epilogue( PyObject* py_compiler, const std::vector<bool>& needs_input_grad, const at::Tensor& result, const variable_list& res, const at::Tensor& grad_slice) { TORCH_INTERNAL_ASSERT(false, "Needs to be overridden"); } virtual at::Tensor call_unpack( PyObject* py_compiler, std::optional<size_t> hook_id, size_t hook_input_id) { TORCH_INTERNAL_ASSERT(false, "Needs to be overridden"); } }; TORCH_API const std::unique_ptr<PyCompilerInterface>& getPyCompilerInterface(); struct TORCH_API PyCompilerGuard { explicit PyCompilerGuard(std::unique_ptr<PyCompilerInterface>&& impl); PyCompilerGuard(const PyCompilerGuard&) = delete; PyCompilerGuard& operator=(const PyCompilerGuard&) = delete; PyCompilerGuard(PyCompilerGuard&&) = delete; PyCompilerGuard& operator=(PyCompilerGuard&&) = delete; ~PyCompilerGuard(); }; // including torch/csrc/autograd/engine.h breaks BC by somehow introducing // symbol resolution issues. Instead requiring downstream users to include // engine.h to access collect_input_metadata, we provide it here (with a // different name to avoid ambigous symbols...) TORCH_API std::vector<std::optional<InputMetadata>> get_input_metadata( const edge_list& edges); struct SizeInput { // Note: int value is still needed when dynamic to pass as an arg enum DynType : uint8_t { STATIC = 0, DYNAMIC = 1 }; SizeInput(DynType dt, int64_t v) : dyn_type(dt), value(v) {} DynType dyn_type; int64_t value; }; struct CacheKeyBuffer { CacheKeyBuffer(const uint8_t* key, uint16_t len) : data(new uint8_t[len]) { std::memcpy(data.get(), key, len); } const uint8_t* get() const { return data.get(); } private: // NOLINTNEXTLINE(*c-array*) std::unique_ptr<uint8_t[]> data; }; struct CacheKey { // Key to find the next node in the shadow graph. We use C++ RTTI for the // type of the node (ntype), then a key generated with a visitor pattern. CacheKey(const std::type_index& ntype, const uint8_t* key, uint16_t len) : node_type(ntype), key_size(len), key(key) {} bool operator<(const CacheKey& other) const { if (node_type != other.node_type) { return node_type < other.node_type; } if (key_size != other.key_size) { return key_size < other.key_size; } return std::memcmp(key, other.key, key_size) < 0; } bool operator==(const CacheKey& other) const { return node_type == other.node_type && key_size == other.key_size && std::memcmp(key, other.key, key_size) == 0; } size_t hash() const { // don't bother hashing the key data, common case 1 cache entry per node return std::hash<std::type_index>()(node_type) ^ key_size; } std::type_index node_type; uint16_t key_size; const uint8_t* key; }; struct NodeCall { NodeCall(uint32_t id_, std::shared_ptr<Node> node_) : id(id_), node(std::move(node_)) {} void mark_output(int input_nr, int output_idx) { graph_output.emplace_back(input_nr, output_idx); } uint32_t id; std::shared_ptr<Node> node; std::vector<std::pair<int, int>> tensor_pre_hooks; std::vector<int> pre_hooks; std::vector<int> post_hooks; std::vector<int> post_acc_grad_hooks; std::vector<std::pair<int, int>> graph_output; bool needed = true; }; struct NodeCalls : public std::unordered_map<Node*, NodeCall> { NodeCall& lookup(const std::shared_ptr<Node>& function) { auto it = find(function.get()); if (it == end()) { it = emplace(function.get(), NodeCall(_next_id++, function)).first; nodes.emplace_back(function.get()); } return it->second; } const NodeCall& lookup(uint32_t id) const { TORCH_INTERNAL_ASSERT(id < nodes.size()); auto it = find(nodes[id]); TORCH_INTERNAL_ASSERT(it != end()); return it->second; } void clear() { _next_id = 0; std::unordered_map<Node*, NodeCall>::clear(); nodes.clear(); } private: uint32_t _next_id = 0; std::vector<Node*> nodes; }; struct TensorArg { // Represents a de-duplicated tensor that will be passed into the graph TensorArg(uint32_t i = 0) : id(i) {} uint32_t index() const { TORCH_INTERNAL_ASSERT(defined()); return id - 1; } bool defined() const { return id != 0; } uint32_t id; at::Tensor proxy_tensor; }; struct TensorArgs { // Manages a collection of TensorArgs and mappings from Tensors/SavedVariables // to them. This also allows us to unpack SavedVariable exactly once and // store the unpacked Tensor. TensorArgs(const std::optional<size_t>& active_node_call_idx) : active_node_call_idx(active_node_call_idx) {} TensorArg& lookup(const at::Tensor& tensor, bool create = false) { if (!tensor.defined()) { return _undefined; } auto impl = tensor.unsafeGetTensorImpl(); auto it = _args.find(impl); if (it == _args.end()) { TORCH_INTERNAL_ASSERT(create && inputs.size() == _next_id - 1); it = _args.emplace(impl, TensorArg(_next_id++)).first; inputs.emplace_back(tensor); if (active_node_call_idx.has_value()) { input_origins.emplace_back(active_node_call_idx.value()); } } return it->second; } TensorArg& lookup(const SavedVariable& sv) { if (auto it = _saved_variables.find(&sv); it != _saved_variables.end()) { // unpacked before graph return *it->second; } // unpacked in graph auto it2 = _saved_variables_proxies.find(&sv); TORCH_INTERNAL_ASSERT(it2 != _saved_variables_proxies.end()); return *it2->second; } TensorArg& add(const at::Tensor& tensor) { return lookup(tensor, true); } TensorArg& add(const SavedVariable& sv, const std::shared_ptr<Node>& node) { // no unpack hooks in this codepath at::Tensor tensor = sv.unpack(node); TensorArg& arg = add(tensor); _saved_variables.emplace(&sv, &arg); return arg; } // the concrete tensors that will get passed into the graph as inputs std::vector<at::Tensor> inputs; // NodeCall id of each input, only when verbose logging is enabled std::vector<uint32_t> input_origins; private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::optional<size_t>& active_node_call_idx; std::unordered_map<const c10::TensorImpl*, TensorArg> _args; // Every TensorArg from this is actually owned by _args (or _undefined) and // that's why we have an un-owned pointer here. std::unordered_map<const SavedVariable*, TensorArg*> _saved_variables; std::unordered_map<const SavedVariable*, TensorArg*> _saved_variables_proxies; TensorArg _undefined; uint32_t _next_id = 1; // id=0 used by _undefined }; struct LiftedIValueArg { LiftedIValueArg() = delete; LiftedIValueArg(const at::IValue* ptr) : actual_ptr(ptr), proxy(at::IValue::uninitialized()) {} const at::IValue* actual_ptr; // lifetime handled by autograd node at::IValue proxy; }; struct LiftedIValueArgs { LiftedIValueArgs(const std::optional<size_t>& active_node_call_idx) : active_node_call_idx(active_node_call_idx) {} at::IValue& next_proxy(const at::IValue* actual_ptr) { TORCH_INTERNAL_ASSERT(next < args.size()); auto& iv_arg = args.at(next++); TORCH_INTERNAL_ASSERT(iv_arg.actual_ptr == actual_ptr); return iv_arg.proxy; } void add(const at::IValue* iv) { args.emplace_back(iv); if (active_node_call_idx.has_value()) { args_origins.emplace_back(active_node_call_idx.value()); } } std::vector<LiftedIValueArg> args; size_t next = 0; // NodeCall id of each arg, only when verbose logging is enabled std::vector<uint32_t> args_origins; private: // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const std::optional<size_t>& active_node_call_idx; }; struct AutogradCompilerCall { AutogradCompilerCall(SizeInput::DynType default_dyn_type) : active_node_call_idx(std::nullopt), tensor_args(active_node_call_idx), lifted_ivalue_args(active_node_call_idx), default_dyn_type(default_dyn_type) {} void add_size_input(const c10::SymInt& s) { all_size_inputs.emplace_back( default_dyn_type, s.guard_int(__FILE__, __LINE__)); if (active_node_call_idx.has_value()) { size_input_origins.emplace_back(active_node_call_idx.value()); } } size_t emplace_hook(c10::SafePyObject&& fn) { hooks.emplace_back(std::move(fn)); return hooks.size() - 1; } size_t emplace_packed_input(c10::SafePyObject&& input) { packed_inputs.emplace_back(std::move(input)); return packed_inputs.size() - 1; } void set_active_node_call_idx(size_t node_call_idx) { active_node_call_idx = node_call_idx; } std::optional<size_t> active_node_call_idx; TensorArgs tensor_args; std::vector<SizeInput> all_size_inputs; LiftedIValueArgs lifted_ivalue_args; std::vector<int64_t> dyn_size_inputs; std::vector<c10::SafePyObject> hooks; std::vector<c10::SafePyObject> packed_inputs; NodeCalls node_calls; SizeInput::DynType default_dyn_type; // NodeCall id of each size, only when verbose logging is enabled std::vector<uint32_t> size_input_origins; std::unordered_map<const SavedVariable*, std::pair<size_t, size_t>> sv_to_hooks; // pynode -> backward and backward state idx std::unordered_map<const Node*, std::pair<size_t, std::optional<size_t>>> pynode_objs; }; class CompiledNodeArgs { // CompiledNodeArgs builds a representation of the constant values found // across all the nodes in the compiled graph, via 'collect' overloads. The // collected constants are specialized on by concatenation into a cache key. // Tensor, symint arguments (which are lifted to become graph inputs rather // than specialized on) are forwarded to the compiler and not included in the // key. public: void collect(const TensorArg& t) { collect_size(t.id); if (t.defined()) { const at::Tensor& tensor = _compiler.tensor_args.inputs[t.index()]; // including these in the cache key means dynamo-level tensor guards can // be skipped collect(tensor.device()); collect(tensor.dtype()); collect(tensor.requires_grad()); } } void collect(const at::Tensor& t) { collect(_compiler.tensor_args.add(t)); } void collect(const SavedVariable& sv, bool is_output) { if (auto hook_data = sv.retrieve_unpack_hook_data(); hook_data.has_value()) { // hooks, unpack in graph auto& [hook, packed_input] = hook_data.value(); size_t hook_id = _compiler.emplace_hook(std::move(hook)); // rely on dynamo to dedup packed tensors from unpacked tensors size_t input_id = _compiler.emplace_packed_input(std::move(packed_input)); _compiler.sv_to_hooks.emplace(&sv, std::make_pair(hook_id, input_id)); } else { // no hooks, unpack now collect( _compiler.tensor_args.add(sv, is_output ? _node_call.node : nullptr)); } } void collect(const c10::SymInt& t) { _compiler.add_size_input(t); } void collect(const std::vector<SavedVariable>& t, bool is_output) { collect_size(t.size()); for (const SavedVariable& i : t) { collect(i, is_output); } } template <typename T> void collect(const std::vector<T>& t) { collect_size(t.size()); for (const T& i : t) { collect(i); } } void collect(const c10::ArrayRef<SavedVariable>& t, bool is_output) { collect_size(t.size()); for (const SavedVariable& i : t) { collect(i, is_output); } } template <typename T> void collect(const c10::ArrayRef<T>& t) { collect_size(t.size()); for (const T& i : t) { collect(i); } } template <typename T> void collect(const c10::OptionalArray<T>& t) { collect(t.list); } template <typename T> void collect(const std::optional<T>& t) { if (cond(t.has_value())) { // NOLINTNEXTLINE(bugprone-unchecked-optional-access) collect(*t); } } template <typename A, typename B> void collect(const std::pair<A, B>& t) { collect(t.first); collect(t.second); } template <typename V> void collect(const ska::flat_hash_map<std::string, V>& m) { collect_size(m.size()); std::vector<std::string> keys; keys.reserve(m.size()); std::transform( m.begin(), m.end(), std::back_inserter(keys), [](const auto& entry) { return entry.first; }); std::sort(keys.begin(), keys.end()); for (const auto& k : keys) { collect(k); collect(m.at(k)); } } void collect(const at::IValue& iv, bool nested = false) { // used by AutogradContext::saved_data from CppNode if (iv.isList()) { c10::List<at::IValue> list = iv.toList(); collect_size(list.size()); for (auto&& value : list) { collect(value, true); } } else if (iv.isGenericDict()) { c10::Dict<at::IValue, at::IValue> ordered_dict = iv.toGenericDict(); collect_size(ordered_dict.size()); // NOLINTNEXTLINE(modernize-loop-convert) for (auto it = ordered_dict.begin(); it != ordered_dict.end(); it++) { collect(it->key()); collect(it->value(), true); } } else if (iv.isTensor()) { collect(iv.toTensor()); } else if ( !nested && (iv.isInt() || iv.isSymInt() || iv.isDouble() || iv.isSymFloat())) { // can't lift ivalues nested in collections _compiler.lifted_ivalue_args.add(&iv); } else { try { collect(static_cast<uint64_t>(at::IValue::hash(iv))); } catch (const std::runtime_error& e) { std::string msg = "Compiled autograd can not trace unhashable IValues, error: " + std::string(e.what()); TORCH_CHECK_NOT_IMPLEMENTED(false, msg); } } } void collect(const c10::Scalar& t) { auto type = t.type(); specialize_on_bytes(type); if (type == c10::ScalarType::Double) { collect(t.toDouble()); } else if (type == c10::ScalarType::Long) { collect(t.toLong()); } else if (type == c10::ScalarType::Bool) { collect(t.toBool()); } else if (type == c10::ScalarType::ComplexDouble) { auto c = t.toComplexDouble(); collect(c.real()); collect(c.imag()); } else { TORCH_INTERNAL_ASSERT(false); } } void collect(const c10::TensorOptions& t) { collect(t.device()); collect(t.dtype()); collect(t.layout()); collect(t.requires_grad()); collect(t.pinned_memory()); collect(t.memory_format_opt()); } void collect(const at::TensorGeometry& t) { collect(t.sym_sizes()); collect(t.sym_strides()); collect(t.sym_storage_offset()); } void collect(const torch::autograd::TypeAndSize& t) { collect(t.sym_sizes); collect(t.options); } void collect(const c10::Device& t) { collect(t.type()); collect(t.index()); } void collect(const std::string& t) { collect_size(t.size()); for (char c : t) { collect(c); } } void collect(const caffe2::TypeMeta& t) { specialize_on_bytes(t.id()); } void collect(const std::shared_ptr<Node>& t) { // Note: this is only capturing the ID of the node not everything // contained inside it. This is used for tracking connections between // nodes and the actual details of the node itself must be handled by // a separate call to `node->compiled_args()`. if (cond((bool)t)) { collect(_compiler.node_calls.lookup(t)); } } void collect(const NodeCall& t) { collect_size(t.id); collect(t.graph_output); collect_hooks_from(t.node.get()); } void collect(const Edge& t) { if (cond(t.is_valid())) { collect_size(_compiler.node_calls.lookup(t.function).id); collect_size(t.input_nr); collect(t.function->input_metadata(t.input_nr)); // for validate_outputs } } void collect(const InputMetadata& t) { TORCH_CHECK(!t.is_nested_tensor(), "NestedTensor not implemented"); collect(t.options()); collect(t.is_tensor_subclass()); collect(t.shape_as_dim_vector()); } void collect(const VariableInfo& t) { collect(t.layout); collect(t.device); collect(t.scalar_type); collect(t.size); collect(t.requires_grad); collect(t.is_empty); } bool cond(bool cond) { collect(cond); return cond; } #define COLLECT_AS_BYTES(T) \ void collect(T t) { \ specialize_on_bytes(t); \ } COLLECT_AS_BYTES(c10::ScalarType) COLLECT_AS_BYTES(c10::DeviceType) COLLECT_AS_BYTES(c10::Layout) COLLECT_AS_BYTES(c10::MemoryFormat) COLLECT_AS_BYTES(int8_t) COLLECT_AS_BYTES(int16_t) COLLECT_AS_BYTES(int32_t) COLLECT_AS_BYTES(int64_t) COLLECT_AS_BYTES(uint8_t) COLLECT_AS_BYTES(uint16_t) COLLECT_AS_BYTES(uint32_t) COLLECT_AS_BYTES(uint64_t) COLLECT_AS_BYTES(bool) COLLECT_AS_BYTES(float) COLLECT_AS_BYTES(double) #undef COLLECT_AS_BYTES void collect_hooks_from(Node* fn) { TORCH_CHECK( fn->retains_grad_hooks().empty(), "retains_grad_hooks not implemented for compiled autograd"); for (auto& i : fn->tensor_pre_hooks()) { i->compiled_args(*this); } for (auto& i : fn->pre_hooks()) { i->compiled_args(*this); } for (auto& i : fn->post_hooks()) { i->compiled_args(*this); } collect_size(_node_call.tensor_pre_hooks.size()); collect_size(_node_call.pre_hooks.size()); collect_size(_node_call.post_hooks.size()); for (const auto& h : _node_call.tensor_pre_hooks) { collect_size(static_cast<size_t>(h.second)); } } CacheKey key() const { Node* node = _node_call.node.get(); return CacheKey( typeid(*node), _specialization_key, _specialization_key_size); } void collect_pynode_objs( const Node* pynode, c10::SafePyObject&& bwd, std::optional<c10::SafePyObject>&& bwd_state) { size_t bwd_idx = _compiler.emplace_hook(std::move(bwd)); std::optional<size_t> bwd_state_idx; if (auto state = std::move(bwd_state); state.has_value()) { bwd_state_idx = _compiler.emplace_hook(std::move(state.value())); } _compiler.pynode_objs.emplace( pynode, std::make_pair(bwd_idx, bwd_state_idx)); } void add_tensor_pre_hook(c10::SafePyObject&& obj, int index) { auto fn_id = _compiler.emplace_hook(std::move(obj)); collect_size(fn_id); _node_call.tensor_pre_hooks.emplace_back(fn_id, index); } void add_pre_hook(c10::SafePyObject&& obj) { auto fn_id = _compiler.emplace_hook(std::move(obj)); collect_size(fn_id); _node_call.pre_hooks.emplace_back(fn_id); } void add_post_hook(c10::SafePyObject&& obj) { auto fn_id = _compiler.emplace_hook(std::move(obj)); collect_size(fn_id); _node_call.post_hooks.emplace_back(fn_id); } void add_post_acc_grad_hook(c10::SafePyObject&& obj) { auto fn_id = _compiler.emplace_hook(std::move(obj)); collect_size(fn_id); _node_call.post_acc_grad_hooks.emplace_back(fn_id); } // Need to template the size_t to silence internal 32-bit build errors due to // a mix of -Werror, -Wtautological-type-limit-compare and // -Wunknown-pragmas template <typename T> std::enable_if_t<std::is_unsigned_v<T>, void> collect_size(T s) { // we expect sizes to be small, so try to cram them into a single byte constexpr uint8_t encode_as_u64 = std::numeric_limits<uint8_t>::max(); constexpr uint8_t encode_as_u32 = encode_as_u64 - 1; constexpr uint8_t encode_as_u16 = encode_as_u64 - 2; if (C10_UNLIKELY(s >= encode_as_u16)) { // first write a byte indicating the path we followed, then the data if (s <= std::numeric_limits<uint16_t>::max()) { // 3 bytes specialize_on_bytes(encode_as_u16); specialize_on_bytes(static_cast<uint16_t>(s)); } else if (s <= std::numeric_limits<uint32_t>::max()) { // 5 bytes specialize_on_bytes(encode_as_u32); specialize_on_bytes(static_cast<uint32_t>(s)); } else { // 9 bytes specialize_on_bytes(encode_as_u64); specialize_on_bytes(s); } } else { // happy case, 1 byte specialize_on_bytes(static_cast<uint8_t>(s)); } } SizeInput::DynType set_default_dyn_type(SizeInput::DynType default_dyn_type) { return std::exchange(_compiler.default_dyn_type, default_dyn_type); } CompiledNodeArgs(AutogradCompilerCall& compiler, NodeCall& node_call) : _compiler(compiler), _node_call(node_call), _specialization_key( // NOLINTNEXTLINE(cppcoreguidelines-no-malloc) (uint8_t*)std::malloc(_specialization_key_storage)) {} CompiledNodeArgs(const CompiledNodeArgs&) = delete; CompiledNodeArgs(CompiledNodeArgs&&) = delete; CompiledNodeArgs& operator=(const CompiledNodeArgs&) = delete; CompiledNodeArgs& operator=(CompiledNodeArgs&&) = delete; ~CompiledNodeArgs() { // NOLINTNEXTLINE(cppcoreguidelines-no-malloc) std::free(_specialization_key); } private: template <typename T> void specialize_on_bytes(const T& t) { while (C10_UNLIKELY( _specialization_key_size + sizeof(T) > _specialization_key_storage)) { _specialization_key_storage *= 2; // NOLINTNEXTLINE(cppcoreguidelines-no-malloc) _specialization_key = (uint8_t*)std::realloc( _specialization_key, _specialization_key_storage); } std::memcpy(_specialization_key + _specialization_key_size, &t, sizeof(T)); _specialization_key_size += sizeof(T); } AutogradCompilerCall& _compiler; NodeCall& _node_call; size_t _specialization_key_size{0}; size_t _specialization_key_storage{1024}; uint8_t* _specialization_key; }; struct TraceState { TraceState(std::vector<std::optional<c10::SymInt>>&& ss, size_t num_outputs) : sym_sizes(std::move(ss)), outputs(num_outputs) {} void debug_asserts() { TORCH_INTERNAL_ASSERT(sym_sizes_index == sym_sizes.size()); } std::optional<c10::SymInt> next_sym_size() { TORCH_INTERNAL_ASSERT(sym_sizes_index < sym_sizes.size()); return sym_sizes[sym_sizes_index++]; } size_t sym_sizes_index{0}; std::vector<std::optional<c10::SymInt>> sym_sizes; variable_list outputs; }; class SwapSavedVariables { // SwapSavedVariables is used during the tracing/compilation phase after a // cache-miss. It swaps any 'lifted' inputs (tensors, symints) to proxy nodes, // allows tracing to happen, then swaps them back afterwards. public: std::pair<size_t, std::optional<size_t>> retrieve_pynode_objs( Node* pynode) const { auto it = compiler.pynode_objs.find(pynode); TORCH_INTERNAL_ASSERT(it != compiler.pynode_objs.end()); return it->second; } void before(at::Tensor& t) { TensorArg& arg = compiler.tensor_args.lookup(t); stashed_tensors.save(&t, std::move(t)); if (arg.defined()) { TORCH_INTERNAL_ASSERT(arg.proxy_tensor.defined()); t = arg.proxy_tensor; } } void after(at::Tensor& t) { stashed_tensors.restore(&t); } void before(SavedVariable& t) { if (auto it = compiler.sv_to_hooks.find(&t); it != compiler.sv_to_hooks.end()) { const auto& pyinterface = torch::dynamo::autograd::getPyCompilerInterface(); auto proxy_tensor = pyinterface->call_unpack( get_py_compiler(), it->second.first, it->second.second); stashed_variables.save(&t, std::move(t)); bool prior = at::SavedTensorDefaultHooks::set_tracing(true); t = SavedVariable(proxy_tensor, false); at::SavedTensorDefaultHooks::set_tracing(prior); } else { // no hooks, was already unpacked TensorArg& arg = compiler.tensor_args.lookup(t); stashed_variables.save(&t, std::move(t)); if (arg.defined()) { bool prior = at::SavedTensorDefaultHooks::set_tracing(true); TORCH_INTERNAL_ASSERT(arg.proxy_tensor.defined()); t = SavedVariable(arg.proxy_tensor, false); at::SavedTensorDefaultHooks::set_tracing(prior); } } } void after(SavedVariable& t) { stashed_variables.restore(&t); } void before(c10::SymInt& t) { stashed_symints.save(&t, c10::SymInt(t)); auto opt_value = state.next_sym_size(); if (opt_value.has_value()) { t = *opt_value; // dynamic shape } } void after(c10::SymInt& t) { stashed_symints.restore(&t); } void before(at::IValue& iv) { if (iv.isTensor()) { before(iv.toTensor()); } else { stashed_ivalues.save(&iv, at::IValue(iv)); if (iv.isInt() || iv.isSymInt() || iv.isDouble() || iv.isSymFloat()) { iv = compiler.lifted_ivalue_args.next_proxy(&iv); } } } void after(at::IValue& t) { if (t.isTensor()) { after(t.toTensor()); } else { stashed_ivalues.restore(&t); } } void before(Edge& t) { if (t.is_valid()) { // need for symints used by validate_outputs before(t.function->mutable_input_metadata(t.input_nr)); } } void after(Edge& t) { if (t.is_valid()) { after(t.function->mutable_input_metadata(t.input_nr)); } } void before(InputMetadata& t) { before(t.mutable_shape_as_dim_vector()); } void after(InputMetadata& t) { after(t.mutable_shape_as_dim_vector()); } void before(at::TensorGeometry& t) { before(t.mutable_sizes()); before(t.mutable_strides()); before(t.mutable_storage_offset()); t.recompute(); } void after(at::TensorGeometry& t) { after(t.mutable_sizes()); after(t.mutable_strides()); after(t.mutable_storage_offset()); t.recompute(); } void before(torch::autograd::TypeAndSize& t) { before(t.sym_sizes); before(t.options); } void after(torch::autograd::TypeAndSize& t) { after(t.sym_sizes); after(t.options); } void before(VariableInfo& t) { before(t.size); } void after(VariableInfo& t) { after(t.size); } template <typename T> void before(std::vector<T>& t) { for (T& i : t) { before(i); } } template <typename T> void after(std::vector<T>& t) { for (T& i : t) { after(i); } } template <typename T, unsigned N> void before(c10::SmallVector<T, N>& t) { for (T& i : t) { before(i); } } template <typename T, unsigned N> void after(c10::SmallVector<T, N>& t) { for (T& i : t) { after(i); } } template <typename T> void before(c10::OptionalArray<T>& t) { before(t.list); } template <typename T> void after(c10::OptionalArray<T>& t) { after(t.list); } template <typename T> void before(std::optional<T>& t) { if (t.has_value()) { before(*t); } } template <typename T> void after(std::optional<T>& t) { if (t.has_value()) { after(*t); } } template <typename V> void before(ska::flat_hash_map<std::string, V>& m) { std::vector<std::string> keys; keys.reserve(m.size()); std::transform( m.begin(), m.end(), std::back_inserter(keys), [](const auto& entry) { return entry.first; }); std::sort(keys.begin(), keys.end()); for (auto& k : keys) { before(m.at(k)); } } template <typename V> void after(ska::flat_hash_map<std::string, V>& m) { for (auto& [_, v] : m) { after(v); } } #define NO_OP_VISIT(T) \ void before(const T&) {} \ void after(const T&) {} NO_OP_VISIT(caffe2::TypeMeta) NO_OP_VISIT(c10::Device) NO_OP_VISIT(c10::DeviceType) NO_OP_VISIT(c10::Layout) NO_OP_VISIT(c10::MemoryFormat) NO_OP_VISIT(c10::ScalarType) NO_OP_VISIT(c10::Scalar) NO_OP_VISIT(c10::TensorOptions) NO_OP_VISIT(std::string) NO_OP_VISIT(int64_t) NO_OP_VISIT(bool) NO_OP_VISIT(double) #undef NO_OP_VISIT SwapSavedVariables( AutogradCompilerCall& c, TraceState& s, PyObject* p, const NodeCall& n) : compiler(c), state(s), py_compiler(p), curr_node_call(n) {} PyObject* get_py_compiler() const { return py_compiler; } const NodeCall& get_curr_node_call() { return curr_node_call; } void debug_asserts() { stashed_variables.debug_assert(); stashed_tensors.debug_assert(); stashed_symints.debug_assert(); } private: template <typename T> struct Stashed { Stashed(T&& v) : prior_value(std::move(v)) {} T prior_value; // Note: we need count here to support duplicate calls to before() // which happen when we have multiple autograd::Edge objects pointing // to the same autograd::Node int count = 1; }; template <typename T> struct StashedVars : public std::unordered_map<const T*, Stashed<T>> { void save(const T* key, T&& value) { auto [it, inserted] = this->try_emplace(key, std::move(value)); if (!inserted) { // keep the value from the prior save() it->second.count++; } } void restore(T* var) { auto it = this->find(var); TORCH_INTERNAL_ASSERT(it != this->end(), "missing before())"); if (--it->second.count == 0) { // restore the value on the last restore() *var = std::move(it->second.prior_value); this->erase(it); } } void debug_assert() { TORCH_INTERNAL_ASSERT(this->empty(), "missing call to after()"); } }; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) AutogradCompilerCall& compiler; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) TraceState& state; // This is a borrowed reference, we do not increment ownership, or lower it, // it's lifecycle is entirely longer than this objects. PyObject* py_compiler; // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members) const NodeCall& curr_node_call; // These mappings are used to save the prior values when we overwrite things // in before(). In after(), we use these to cleanup after ourselves. StashedVars<SavedVariable> stashed_variables; StashedVars<at::Tensor> stashed_tensors; StashedVars<c10::SymInt> stashed_symints; StashedVars<at::IValue> stashed_ivalues; }; // NOTE: [Compiled Autograd and backward functions] // Built-in autograd nodes have functional apply variants // (e.g. MulBackward0_apply_functional). Compiled Autograd's initial graph // capture wants to take a variant of this function and proxy it into the graph. // Every autograd node defines an apply_with_saved function, that when invoked, // proxys a call to a function into the Compiled Autograd graph. // // Some requirements that we have are: // - The proxy'ed function must have inputs that are FX-graphable types. // - Windows has a DLL symbol limit of 65536. // - Node::apply_with_saved is in libtorch_cpu which does not have direct access // to Python // // There were multiple ways to skin the cat, but what we end up doing is: // - for e.g. MulBackward0_apply_functional, we create a new C++ function // MulBackward0_apply_functional_ivalue that accepts vector<IValue>. // - We define how to pack and unpack arbitrary C++ types into IValues. // - apply_with_saved passes MulBackward0_apply_functional_ivalue and // the IValue arguments to Python via an indirection. // In Python, these get proxy'ed into a graph. // Helper struct for packing/unpacking an arbitrary C++ type into a single // IValue. There are various full and partial specializations for IValuePacker // to handle packing specific types (like TensorOptions) into an IValue. template <typename T> struct IValuePacker { // Defines how to pack T into an IValue. static at::IValue pack(const T& t) { return t; } // Defines how to unpack an IValue into T. static T unpack(const at::IValue& t) { return t.to<T>(); } // Returns the TypePtr for the IValue (this is like the "type" of the IValue). // We use this when passing the packed IValue from Python to C++. // In Python, the IValue is just a PyObject* with the native type. // For example, it may be a Python int, a Python List[int], etc. // When passing this PyObject* into C++, we need to know how to parse it // into a C++ type that then gets put into an IValue. // That's what the TypePtr is for: it contains the information to do the // parsing. See torch::jit::toIValue for more information. static at::TypePtr packed_type() { #ifdef _WIN32 // NB: the if-constexpr usage triggers compilation errors on Windows // with certain compiler settings // (see https://github.com/pytorch/pytorch/pull/144707 for examples). // It's not clear what the problem is, so we're going to ignore it for now. TORCH_INTERNAL_ASSERT(false, "torch.compile not supported on Windows"); #else if constexpr (::std::is_same_v<T, at::Tensor>) { return at::TensorType::get(); } else if constexpr (::std::is_same_v<T, int64_t>) { return at::IntType::get(); } else if constexpr (::std::is_same_v<T, c10::SymInt>) { return at::SymIntType::get(); } else if constexpr (::std::is_same_v<T, bool>) { return at::BoolType::get(); } else if constexpr (::std::is_same_v<T, double>) { return at::FloatType::get(); } else if constexpr (::std::is_same_v<T, c10::SymFloat>) { return at::SymFloatType::get(); } else if constexpr (::std::is_same_v<T, c10::SymBool>) { return at::SymBoolType::get(); } else if constexpr (::std::is_same_v<T, c10::Layout>) { return at::LayoutType::get(); } else if constexpr (::std::is_same_v<T, ::std::string>) { return at::StringType::get(); } else if constexpr (::std::is_same_v<T, at::Device>) { return at::DeviceObjType::get(); } else if constexpr (::std::is_same_v<T, at::Scalar>) { return at::NumberType::get(); } else if constexpr (::std::is_same_v<T, at::MemoryFormat>) { return at::MemoryFormatType::get(); } else if constexpr (::std::is_same_v<T, at::ScalarType>) { return at::ScalarTypeType::get(); } else { // If you got here, you have probably added a member of a new type // to a built-in C++ autograd node. // Unfortunately, we don't know how to handle this type yet. // To get this new type to work with Compiled Autograd, please // either change it to be an IValue-constructible type, or // define how to pack and unpack an object of this time into an IValue // by creating a specialization of IValuePacker for this type. // See NOTE: [Compiled Autograd and backward functions] for context. TORCH_INTERNAL_ASSERT(false, "IValuePacker not implemented for type"); return at::NoneType::get(); } #endif } }; template <> struct IValuePacker<size_t> { static at::IValue pack(const size_t& t) { // We generally use size_t as the size of a list of Tensors or number of // dimensions. The number of dimensions generally do not exceed 64 // (TensorIterator has that limitation), and lists of Tensors generally do // not exceed the int64_t max (you'd probably run out of RAM or run into // significant Tensor overhead). If you run into this limitation the fix is // to figure out how to pack size_t into int64_t. Note that size_t has some // weird behavior on Mac OS. uint64_t maximum_value = std::numeric_limits<int64_t>::max(); TORCH_INTERNAL_ASSERT( static_cast<uint64_t>(t) <= maximum_value, "size_t too large to pack into IValue"); return static_cast<int64_t>(t); // pack as int64_t } static size_t unpack(const at::IValue& t) { return static_cast<size_t>(t.toInt()); } static at::TypePtr packed_type() { return IValuePacker<int64_t>::packed_type(); } }; template <> struct IValuePacker<std::vector<at::SymInt>> { static at::IValue pack(const std::vector<at::SymInt>& t) { return t; } static std::vector<at::SymInt> unpack(const at::IValue& t) { // We need this because there's no t.to<std::vector<at::SymInt>>() override? return t.toSymIntVector(); } static at::TypePtr packed_type() { return at::ListType::create(at::SymIntType::get()); } }; template <> struct IValuePacker<VariableInfo> { static at::IValue pack(const VariableInfo& t) { auto tuple = std::make_tuple( t.layout, t.device, t.scalar_type, t.size, t.requires_grad, t.is_empty); return tuple; } static VariableInfo unpack(const at::IValue& t) { auto tuple = t.toTuple(); const auto& tuple_elements = tuple->elements(); const auto elements = tuple_elements.asArrayRef(); TORCH_INTERNAL_ASSERT(elements.size() == 6); VariableInfo v; v.layout = elements[0].toLayout(); v.device = elements[1].toDevice(); v.scalar_type = elements[2].toScalarType(); v.size = elements[3].toSymIntVector(); v.requires_grad = elements[4].toBool(); v.is_empty = elements[5].toBool(); return v; } static at::TypePtr packed_type() { return at::TupleType::create({ at::LayoutType::get(), at::DeviceObjType::get(), at::ScalarTypeType::get(), at::ListType::create(at::SymIntType::get()), at::BoolType::get(), at::BoolType::get(), }); } }; template <> struct IValuePacker<caffe2::TypeMeta> { static at::IValue pack(const caffe2::TypeMeta& t) { return at::typeMetaToScalarType(t); // pack as at::ScalarType } static caffe2::TypeMeta unpack(const at::IValue& t) { return caffe2::TypeMeta::fromScalarType(t.to<at::ScalarType>()); } static at::TypePtr packed_type() { return IValuePacker<at::ScalarType>::packed_type(); } }; inline std::optional<at::ScalarType> optTypeMetaToScalarType( const std::optional<caffe2::TypeMeta>& t) { if (t.has_value()) { return at::typeMetaToScalarType(t.value()); } else { return std::nullopt; } } using packed_tensoroptions_t = std::tuple< std::optional<bool>, std::optional<at::MemoryFormat>, std::optional<at::Device>, std::optional<at::ScalarType>, std::optional<at::Layout>, std::optional<bool>>; inline packed_tensoroptions_t pack_TensorOptions(const at::TensorOptions& t) { auto tuple = std::make_tuple( t.requires_grad_opt(), t.memory_format_opt(), t.device_opt(), optTypeMetaToScalarType(t.dtype_opt()), t.layout_opt(), t.pinned_memory_opt()); return tuple; } inline at::TensorOptions unpack_TensorOptions( const packed_tensoroptions_t& tuple) { at::TensorOptions result; auto maybe_requires_grad = std::get<0>(tuple); if (maybe_requires_grad.has_value()) { result = result.requires_grad(maybe_requires_grad.value()); } auto maybe_memory_format = std::get<1>(tuple); if (maybe_memory_format.has_value()) { result = result.memory_format(maybe_memory_format.value()); } auto maybe_device = std::get<2>(tuple); if (maybe_device.has_value()) { result = result.device(maybe_device.value()); } auto maybe_dtype = std::get<3>(tuple); if (maybe_dtype.has_value()) { result = result.dtype(caffe2::TypeMeta::fromScalarType(maybe_dtype.value())); } auto maybe_layout = std::get<4>(tuple); if (maybe_layout.has_value()) { result = result.layout(maybe_layout.value()); } auto maybe_pinned_memory = std::get<5>(tuple); if (maybe_pinned_memory.has_value()) { result = result.pinned_memory(maybe_pinned_memory.value()); } return result; } template <> struct IValuePacker<at::TensorOptions> { static at::IValue pack(const at::TensorOptions& t) { return pack_TensorOptions(t); } static at::TensorOptions unpack(const at::IValue& t) { auto tuple = t.to<packed_tensoroptions_t>(); return unpack_TensorOptions(tuple); } static at::TypePtr packed_type() { return at::TupleType::create( {at::OptionalType::create(at::BoolType::get()), at::OptionalType::create(at::MemoryFormatType::get()), at::OptionalType::create(at::DeviceObjType::get()), at::OptionalType::create(at::ScalarTypeType::get()), at::OptionalType::create(at::LayoutType::get()), at::OptionalType::create(at::BoolType::get())}); } }; template <> struct IValuePacker<TypeAndSize> { static at::IValue pack(const TypeAndSize& t) { auto tuple = std::make_tuple(t.sym_sizes, pack_TensorOptions(t.options)); return tuple; } static TypeAndSize unpack(const at::IValue& t) { auto tuple = t.to<std::tuple<std::vector<at::SymInt>, packed_tensoroptions_t>>(); TypeAndSize result; result.sym_sizes = std::get<0>(tuple); result.options = unpack_TensorOptions(std::get<1>(tuple)); return result; } static at::TypePtr packed_type() { return at::TupleType::create( {IValuePacker<std::vector<at::SymInt>>::packed_type(), IValuePacker<at::TensorOptions>::packed_type()}); } }; template <typename T> struct IValuePacker<std::optional<T>> { static at::IValue pack(const std::optional<T>& t) { if (t.has_value()) { return IValuePacker<T>::pack(t.value()); } else { return std::nullopt; } } static std::optional<T> unpack(const at::IValue& t) { if (t.isNone()) { return std::nullopt; } else { return IValuePacker<T>::unpack(t); } } static at::TypePtr packed_type() { return at::OptionalType::create(IValuePacker<T>::packed_type()); } }; template <typename T> struct IValuePacker<std::vector<T>> { static at::IValue pack(const std::vector<T>& t) { if constexpr (::std::is_constructible_v<at::IValue, T>) { return t; } if (t.empty()) { auto lst = c10::impl::GenericList(at::AnyType::get()); return lst; } auto type_ptr = IValuePacker<T>::pack(t[0]).type(); auto lst = c10::impl::GenericList(type_ptr); for (const auto& elt : t) { lst.emplace_back(IValuePacker<T>::pack(elt)); } return lst; } static std::vector<T> unpack(const at::IValue& t) { if constexpr (::std::is_constructible_v<at::IValue, T>) { return t.to<::std::vector<T>>(); } std::vector<T> result; auto lst = t.toList(); for (const at::IValue& elt : lst) { result.emplace_back(IValuePacker<T>::unpack(elt)); } return result; } static at::TypePtr packed_type() { return at::ListType::create(IValuePacker<T>::packed_type()); } }; template <typename T> struct IValuePacker<c10::List<T>> { static at::IValue pack(const c10::List<T>& t) { return IValuePacker<std::vector<T>>::pack(t.vec()); } static c10::List<T> unpack(const at::IValue& t) { return c10::List<T>(IValuePacker<std::vector<T>>::unpack(t)); } static at::TypePtr packed_type() { return IValuePacker<std::vector<T>>::packed_type(); } }; template <size_t N> struct IValuePacker<std::array<bool, N>> { static at::IValue pack(const std::array<bool, N>& t) { std::vector<bool> result(t.begin(), t.end()); return IValuePacker<std::vector<bool>>::pack(result); } static std::array<bool, N> unpack(const at::IValue& t) { std::array<bool, N> result; auto packed = IValuePacker<std::vector<bool>>::unpack(t); for (size_t i = 0; i < packed.size(); i++) { result[i] = packed[i]; } return result; } static at::TypePtr packed_type() { return IValuePacker<std::vector<bool>>::packed_type(); } }; template <> struct IValuePacker<at::TensorGeometry> { static at::IValue pack(const at::TensorGeometry& t) { auto tuple = std::make_tuple( t.sym_sizes().vec(), t.sym_strides().vec(), t.sym_storage_offset()); return tuple; } static at::TensorGeometry unpack(const at::IValue& t) { auto tuple = t.to<std::tuple< std::vector<at::SymInt>, std::vector<at::SymInt>, at::SymInt>>(); return at::TensorGeometry( std::get<0>(tuple), std::get<1>(tuple), std::get<2>(tuple)); } static at::TypePtr packed_type() { return at::TupleType::create( {IValuePacker<std::vector<at::SymInt>>::packed_type(), IValuePacker<std::vector<at::SymInt>>::packed_type(), at::SymIntType::get()}); } }; template <> struct IValuePacker<InputMetadata> { static at::IValue pack(const InputMetadata& t) { TORCH_INTERNAL_ASSERT(!t.is_nested_tensor()); auto tuple = std::make_tuple( pack_TensorOptions(t.options()), t.shape_as_dim_vector().vec(), t.is_tensor_subclass()); return tuple; } static InputMetadata unpack(const at::IValue& t) { auto tuple = t.to< std::tuple<packed_tensoroptions_t, std::vector<at::SymInt>, bool>>(); return InputMetadata( unpack_TensorOptions(std::get<0>(tuple)), SymIntSmallVec(std::get<1>(tuple)), std::get<2>(tuple), false); } static at::TypePtr packed_type() { return at::TupleType::create( {IValuePacker<at::TensorOptions>::packed_type(), IValuePacker<std::vector<at::SymInt>>::packed_type(), at::BoolType::get()}); } }; template <typename T> struct IValuePacker<at::OptionalArray<T>> { static at::IValue pack(const at::OptionalArray<T>& t) { return IValuePacker<std::optional<std::vector<T>>>::pack(t.list); } static at::OptionalArray<T> unpack(const at::IValue& t) { auto result = IValuePacker<std::optional<std::vector<T>>>::unpack(t); if (result.has_value()) { return {result.value()}; } else { return {}; } } static at::TypePtr packed_type() { return IValuePacker<std::optional<std::vector<T>>>::packed_type(); } }; // This is a helper struct for packing and unpacking multiple arguments into // an ivalue_list. It leverages IValuePacker<T>. struct PackedArgs { PackedArgs() = default; explicit PackedArgs(std::vector<at::IValue> stack_) : stack(std::move(stack_)) {} const std::vector<at::IValue>& vec() const { return stack; } template <typename T> void pack(const T& t) { stack.emplace_back(IValuePacker<T>::pack(t)); } template <typename T> T unpack() { return IValuePacker<T>::unpack(std::move(stack[idx++])); } void pack_saved_data(const ska::flat_hash_map<std::string, at::IValue>& dct) { std::vector<std::string> keys; std::vector<at::IValue> values; for (const auto& [key, value] : dct) { keys.emplace_back(key); values.emplace_back(value); } pack(keys); for (const auto& value : values) { pack(value); } } ska::flat_hash_map<std::string, at::IValue> unpack_saved_data() { ska::flat_hash_map<std::string, at::IValue> dct; auto keys = unpack<std::vector<std::string>>(); for (const auto& key : keys) { dct.insert({key, std::move(stack[idx++])}); } return dct; } private: std::vector<at::IValue> stack; int64_t idx = 0; }; } // namespace torch::dynamo::autograd template <> struct std::hash<torch::dynamo::autograd::CacheKey> { size_t operator()(const torch::dynamo::autograd::CacheKey& k) const { return k.hash(); } }; ```
================================================================================================================================== SOURCE CODE FILE: cpp_shim.h LINES: 1 SIZE: 0.36 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\cpp_shim.h ENCODING: utf-8 ```h #pragma once #ifdef __cplusplus extern "C" { #endif struct _PytorchRecordFunctionState; typedef struct _PytorchRecordFunctionState _PytorchRecordFunctionState; _PytorchRecordFunctionState* _pytorch_record_function_enter(const char* name); void _pytorch_record_function_exit(_PytorchRecordFunctionState* state); #ifdef __cplusplus } // extern "C" #endif ```
====================================================================================================================================== SOURCE CODE FILE: cpython_defs.h LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\cpython_defs.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/python_compat.h> // Functions that need to be copied from the CPython source // should go in cpython_defs.c. Copying is required when, e.g., // we need to call internal CPython functions that are not exposed. #if IS_PYTHON_3_11_PLUS typedef struct _PyInterpreterFrame _PyInterpreterFrame; PyFunctionObject* _PyFunction_CopyWithNewCode( PyFunctionObject* o, PyCodeObject* code); void THP_PyFrame_Clear(_PyInterpreterFrame* frame); _PyInterpreterFrame* THP_PyThreadState_BumpFramePointerSlow( PyThreadState* tstate, size_t size); void THP_PyThreadState_PopFrame( PyThreadState* tstate, _PyInterpreterFrame* frame); #endif // pointers to _PyOpcode_Caches for C++ #ifdef __cplusplus extern "C" const uint8_t* THP_PyOpcode_Caches; extern "C" const int THP_PyOpcode_Caches_size; #else extern const uint8_t* THP_PyOpcode_Caches; extern const int THP_PyOpcode_Caches_size; #endif ```
========================================================================================================================================== SOURCE CODE FILE: cpython_includes.h LINES: 1 SIZE: 1.04 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\cpython_includes.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/python_compat.h> // Problem in CPython includes when mixing core and non-core build // The fix was not backported to 3.12 so this is needed here // https://github.com/python/cpython/issues/105268 #if IS_PYTHON_3_12_PLUS #undef _PyGC_FINALIZED #endif // see https://bugs.python.org/issue35886 #if PY_VERSION_HEX >= 0x03080000 #define Py_BUILD_CORE #ifndef __cplusplus // C-only headers #include <internal/pycore_pystate.h> #endif // __cplusplus #if IS_PYTHON_3_11_PLUS #include <internal/pycore_frame.h> #endif #undef Py_BUILD_CORE #endif // PY_VERSION_HEX >= 0x03080000 #ifdef __cplusplus extern "C" { #endif #if IS_PYTHON_3_13_PLUS #define F_CODE(x) ((PyCodeObject*)(x)->f_executable) #define PREV_INSTR(x) (x)->instr_ptr #else #define F_CODE(x) ((PyCodeObject*)(x)->f_code) #define PREV_INSTR(x) (x)->prev_instr #endif #if IS_PYTHON_3_12_PLUS #define FUNC(x) ((x)->f_funcobj) #else #define FUNC(x) ((x)->f_func) #endif #ifdef __cplusplus } // extern "C" #endif ```
====================================================================================================================================== SOURCE CODE FILE: debug_macros.h LINES: 5 SIZE: 3.54 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\debug_macros.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/utils/python_compat.h> #ifdef __cplusplus #include <cstdio> #else #include <stdio.h> #endif #ifdef __cplusplus extern "C" { #endif #ifdef _WIN32 #define unlikely(x) (x) #else #define unlikely(x) __builtin_expect((x), 0) #endif #define NULL_CHECK(val) \ if (unlikely((val) == NULL)) { \ fprintf(stderr, "NULL ERROR: %s:%d\n", __FILE__, __LINE__); \ PyErr_Print(); \ abort(); \ } else { \ } // CHECK might be previously declared #undef CHECK #define CHECK(cond) \ if (unlikely(!(cond))) { \ fprintf(stderr, "DEBUG CHECK FAILED: %s:%d\n", __FILE__, __LINE__); \ abort(); \ } else { \ } // Uncomment next line to print debug message // #define TORCHDYNAMO_DEBUG 1 #ifdef TORCHDYNAMO_DEBUG #define DEBUG_CHECK(cond) CHECK(cond) #define DEBUG_NULL_CHECK(val) NULL_CHECK(val) #define DEBUG_TRACE(msg, ...) \ fprintf(stderr, "TRACE[%s:%d] " msg "\n", __func__, __LINE__, __VA_ARGS__) #define DEBUG_TRACE0(msg) \ fprintf(stderr, "TRACE[%s:%d] " msg "\n", __func__, __LINE__) #else #define DEBUG_CHECK(cond) #define DEBUG_NULL_CHECK(val) #define DEBUG_TRACE(msg, ...) #define DEBUG_TRACE0(msg) #endif inline _PyFrameEvalFunction _debug_set_eval_frame( PyThreadState* tstate, _PyFrameEvalFunction eval_frame) { _PyFrameEvalFunction prev = _PyInterpreterState_GetEvalFrameFunc(tstate->interp); _PyInterpreterState_SetEvalFrameFunc(tstate->interp, eval_frame); return prev; } // Inspect PyObject*'s from C/C++ at the Python level, in pdb. // e.g. // // PyObject* obj1 = PyList_New(...); // PyObject* obj2 = PyObject_CallFunction(...); // INSPECT(obj1, obj2); // (pdb) p args[0] // # list // (pdb) p args[1] // # some object // (pdb) p args[1].some_attr // # etc. // // Implementation: set eval frame callback to default, call // torch._dynamo.utils._breakpoint_for_c_dynamo, reset eval frame callback. #define INSPECT(...) \ { \ PyThreadState* cur_tstate = PyThreadState_Get(); \ _PyFrameEvalFunction prev_eval_frame = \ _debug_set_eval_frame(cur_tstate, &_PyEval_EvalFrameDefault); \ PyObject* torch__dynamo_utils_module = \ PyImport_ImportModule("torch._dynamo.utils"); \ NULL_CHECK(torch__dynamo_utils_module); \ PyObject* breakpoint_for_c_dynamo_fn = PyObject_GetAttrString( \ torch__dynamo_utils_module, "_breakpoint_for_c_dynamo"); \ NULL_CHECK(breakpoint_for_c_dynamo_fn); \ PyObject_CallFunctionObjArgs( \ breakpoint_for_c_dynamo_fn, __VA_ARGS__, NULL); \ _debug_set_eval_frame(cur_tstate, prev_eval_frame); \ Py_DECREF(breakpoint_for_c_dynamo_fn); \ Py_DECREF(torch__dynamo_utils_module); \ } #ifdef __cplusplus } // extern "C" #endif ```
==================================================================================================================================== SOURCE CODE FILE: eval_frame.h LINES: 1 SIZE: 1.51 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\eval_frame.h ENCODING: utf-8 ```h #pragma once #include <stdbool.h> #include <torch/csrc/dynamo/extra_state.h> #include <torch/csrc/utils/python_compat.h> #ifdef __cplusplus extern "C" { PyObject* torch_c_dynamo_eval_frame_init(void); #endif // All the eval APIs change in 3.11 so we need to decide which one to use on the // fly https://docs.python.org/3/c-api/init.html#c._PyFrameEvalFunction #if IS_PYTHON_3_11_PLUS #define THP_EVAL_API_FRAME_OBJECT _PyInterpreterFrame #else #define THP_EVAL_API_FRAME_OBJECT PyFrameObject #endif // IS_PYTHON_3_11_PLUS // We need to be able to return the _PyInterpreterFrame to python so create // a python binding for it typedef struct THPPyInterpreterFrame { PyObject_HEAD THP_EVAL_API_FRAME_OBJECT* frame; // Borrowed reference PyObject* locals; } THPPyInterpreterFrame; THPPyInterpreterFrame* THPPyInterpreterFrame_New( THP_EVAL_API_FRAME_OBJECT* frame); extern bool is_skip_guard_eval_unsafe; void clear_old_frame_if_python_312_plus( PyThreadState* tstate, THP_EVAL_API_FRAME_OBJECT* frame); void eval_frame_callback_set(PyObject* obj); const char* get_frame_name(THP_EVAL_API_FRAME_OBJECT* frame); PyObject* dynamo_eval_frame_default( PyThreadState* tstate, THP_EVAL_API_FRAME_OBJECT* frame, int throw_flag); PyObject* dynamo_eval_custom_code( PyThreadState* tstate, THP_EVAL_API_FRAME_OBJECT* frame, PyCodeObject* code, const char* trace_annotation, int throw_flag); #ifdef __cplusplus } // extern "C" #endif ```
======================================================================================================================================== SOURCE CODE FILE: eval_frame_cpp.h LINES: 1 SIZE: 0.48 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\eval_frame_cpp.h ENCODING: utf-8 ```h #pragma once #include <Python.h> #include <torch/csrc/dynamo/eval_frame.h> #include <torch/csrc/dynamo/extra_state.h> #include <torch/csrc/dynamo/framelocals_mapping.h> #ifdef __cplusplus extern "C" { #endif PyObject* dynamo__custom_eval_frame( PyThreadState* tstate, THP_EVAL_API_FRAME_OBJECT* frame, int throw_flag, PyObject* callback); PyObject* set_code_exec_strategy(PyObject* dummy, PyObject* obj); #ifdef __cplusplus } // extern "C" #endif ```
===================================================================================================================================== SOURCE CODE FILE: extra_state.h LINES: 1 SIZE: 5.90 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\dynamo\extra_state.h ENCODING: utf-8 ```h #pragma once #include <Python.h> #include <torch/csrc/dynamo/framelocals_mapping.h> #ifdef __cplusplus #include <torch/csrc/dynamo/utils.h> #include <torch/csrc/utils/pybind.h> #include <list> namespace py = pybind11; extern "C" { #else #include <stdbool.h> #endif enum FrameAction { DEFAULT, // look through the cache, compile if not found SKIP, // eager RUN_ONLY, // look through the cache, run eager if not found }; typedef struct FrameExecStrategy { enum FrameAction cur_action; // action to take for current frame enum FrameAction recursive_action; // action to take for recursive frames } FrameExecStrategy; // Points to the extra scratch space on the code object extern Py_ssize_t extra_index; // function to call when cache lookup errors extern PyObject* guard_error_hook; typedef PyObject FrameState; typedef struct CacheEntry CacheEntry; // ExtraState encasulates CacheEntry and FrameState. ExtraState is the highest // level of abstraction of what is stored on the extra code object. Previously, // we saved different parts on different extra indexes. We prefer this way // because of cleaner abstraction and faster SetExtra access. #ifdef __cplusplus typedef struct VISIBILITY_HIDDEN ExtraState { // A pointer to the orig_code object to prevent race conditions in invalidate // function. PyCodeObject* orig_code; // List of cache entries for compiled code objects std::list<CacheEntry> cache_entry_list; // Frame state to detect dynamic shape dims py::dict frame_state; // Actions to apply to all frames with this code object FrameExecStrategy strategy{DEFAULT, DEFAULT}; ExtraState(PyCodeObject* orig_code_arg); CacheEntry* get_first_entry(); void move_to_front(CacheEntry* cache_entry); void move_to_back(CacheEntry* cache_entry); void invalidate(CacheEntry* cache_entry, py::object deleted_guard_manager); } ExtraState; #else typedef struct ExtraState ExtraState; #endif // Helper to extra the cache_entry from the extra state. // Ownership contract // args // - extra_state: Borrowed // return // - CacheEntry: Borrowed. CacheEntry* extract_cache_entry(ExtraState* extra_state); // Returns either the previously stored frame state or an empty dict. // Ownership contract // args // - extra_state: Borrowed // return // - extra_state->frame_state: Borrowed. FrameState* extract_frame_state(ExtraState* extra_state); // Returns the FrameExecStrategy stored in extra_state. // Ownership contract // args // - extra_state: Borrowed FrameExecStrategy extra_state_get_exec_strategy(ExtraState* extra_state); // Set the FrameExecStrategy to be done to all frames with code object // corresponding to this extra_state. Ownership contract // - extra_state: Borrowed void extra_state_set_exec_strategy( ExtraState* extra_state, FrameExecStrategy strategy); // Ownership contract // args // - code: Borrowed // return // - extra_state: Borrowed. ExtraState* get_extra_state(PyCodeObject* code); // This is passed as freefunc to _PyEval_RequestCodeExtraIndex. This acts as a // deleter for the object on extra scratch space. This function is called // internally in _PyCode_SetExtra and also during the code deallocation. // Destroys the extra state by deleting cache_entry, frame state and finally // freeing the constructed extra state. // Developer note - You should not call this function directly. This is called // directly inside set_extra_state. If you are in a situation trying to call // this function, consider if set_extra_state should be called. void destroy_extra_state(void* obj); // Clears the existing object sitting on the extra scratch spance and sets it // up with the new state. Note that _PyCode_SetExtra calls the // destroy_extra_state deleter internally, and therefore we don't call it // explicity here. // Ownership contract // args // - extra_state: Stolen // return // - there is no return, but the extra_state is stolen, so it becomes // set_extra_state responsibility to clean it up. It will be deleted during // the reset_code, when the set_extra_state is called with NULL. // Invariant - Dont set the extra state for the extra state that is already on // the code object. Otherwise, we will first free up the old extra state // (which is also the new extra state) and write something invalid on the // scratch space. void set_extra_state(PyCodeObject* code, ExtraState* extra_state); // Creates a new extra state and put it on the extra scrach space of the code // object. // Ownership contract // args // - code: Borrowed // return: // - extra_state: New reference. // These references are then further passed to set_extra_state which becomes // the final owner of these references. ExtraState* init_and_set_extra_state(PyCodeObject* code); // Lookup the cache held by extra_state. // Ownership contract // args // - extra_state: Borrowed // return: // - Py_None or PyCodeObject: Borrowed reference. // - Py_None or PyObject: Trace id of the compiled code. void lookup( ExtraState* extra_state, FrameLocalsMapping* f_locals, PyObject* backend, PyObject** maybe_cached_code, const char** trace_annotation, bool is_skip_guard_eval_unsafe); // Create a new cache entry at extra_state holding on to guarded_code. // Ownership contract // args // - extra_state: Borrowed // - guarded_code: Borrowed // return: // - cache_entry: Borrowed reference CacheEntry* create_cache_entry( ExtraState* extra_state, PyObject* guraded_code, PyObject* callback); // Extracts the backend fn from the callback. PyObject* get_backend(PyObject* callback); #ifdef __cplusplus } // extern "C" // Returns the list of CacheEntry corresponding to code_obj. // Warning: returns references whose lifetimes are controlled by C++ py::list _debug_get_cache_entry_list(const py::handle& code_obj); #endif ```