text
stringlengths
145
7.65M
================================================================================================================================== SOURCE CODE FILE: irparser.h LINES: 1 SIZE: 1.11 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\ir\irparser.h ENCODING: utf-8 ```h #pragma once #include <optional> #include <string> #include <unordered_map> #include <torch/csrc/Export.h> namespace torch::jit { struct Graph; struct Value; // \brief Parse IR from \p STR constructing the corresponding IR in\ GRAPH. // if parse_tensor_constants is true will construct empty tensors // for Tensor constants with random or unitialized contents, otherwise will // throw TORCH_API void parseIR( const std::string& str, torch::jit::Graph* graph, bool parse_tensor_constants = false); /** \brief Parse IR from \p STR constructing the corresponding IR in\ GRAPH. * * \p VMAP is filled with String to Value pairs allowing to index Values in the * newly created graph by their name in the original IR string. * if parse_tensor_constants is true will construct empty tensors * for Tensor constants with random or unitialized contents, otherwise will * throw */ TORCH_API void parseIR( const std::string& str, torch::jit::Graph* graph, std::unordered_map<std::string, Value*>& vmap, bool parse_tensor_constants = false); } // namespace torch::jit ```
===================================================================================================================================== SOURCE CODE FILE: named_value.h LINES: 1 SIZE: 2.42 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\ir\named_value.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/ivalue.h> #include <torch/csrc/jit/frontend/source_range.h> #include <torch/csrc/jit/ir/constants.h> #include <torch/csrc/utils/variadic.h> namespace torch::jit { struct Value; /** * A value with optional extra name and location information. Used during * schema matching to provide extra error information and resolve kwargs. */ struct NamedValue { NamedValue(const SourceRange& loc, const std::string& name, Value* value) : loc_(loc), name_(name), value_(value) {} NamedValue(const SourceRange& loc, Value* value) : loc_(loc), value_(value) {} /* implicit */ NamedValue(Value* value) : value_(value) {} NamedValue(const std::string& name, Value* value) : name_(name), value_(value) {} /* implicit */ NamedValue(IValue value) : ivalue_(std::move(value)) {} NamedValue(const std::string& name, IValue value) : name_(name), ivalue_(std::move(value)) {} template < typename T, typename = std::enable_if_t< (!std::is_same_v<std::decay_t<T>, NamedValue> && !std::is_same_v<std::decay_t<T>, Value*> && !std::is_same_v<std::decay_t<T>, IValue>)>> // NOLINTNEXTLINE(bugprone-forwarding-reference-overload) NamedValue(T&& t) : NamedValue(IValue(std::forward<T>(t))) {} template < typename T, typename = std::enable_if_t< (!std::is_same_v<std::decay_t<T>, Value*> && !std::is_same_v<std::decay_t<T>, IValue>)>> NamedValue(const std::string& name, T&& t) : NamedValue(name, IValue(std::forward<T>(t))) {} SourceRange locOr(const SourceRange& backup_location) const { if (!loc_) return backup_location; return loc(); } // note: this will insert a constant node into the graph at the current // insert point if this NamedValue is actually a constant Value* value(Graph& g) const { if (!value_) return insertConstant( g, ivalue_); // use insertConstant to remove need to include ir.h here return value_; } const std::string& name() const { AT_ASSERT(name_); return *name_; } const SourceRange& loc() const { AT_ASSERT(loc_); return *loc_; } at::TypePtr type() const; private: std::optional<SourceRange> loc_; std::optional<std::string> name_; Value* value_{nullptr}; // only valid if value_ == nullptr; IValue ivalue_; }; } // namespace torch::jit ```
====================================================================================================================================== SOURCE CODE FILE: node_hashing.h LINES: 1 SIZE: 0.27 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\ir\node_hashing.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { struct TORCH_API HashNode { size_t operator()(const Node* k) const; }; struct TORCH_API EqualNode { bool operator()(const Node* lhs, const Node* rhs) const; }; } // namespace torch::jit ```
=============================================================================================================================== SOURCE CODE FILE: scope.h LINES: 1 SIZE: 7.19 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\ir\scope.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/jit_type.h> #include <ATen/core/symbol.h> #include <c10/util/intrusive_ptr.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/frontend/source_range.h> #include <optional> #include <unordered_map> namespace torch::jit { struct ModuleInstanceInfo; constexpr size_t kModuleInstanceInfo = 2; namespace utils { std::string get_module_info(const ModuleInstanceInfo& module_instance_info); } // namespace utils // Scope is a node of a trie that represents the tree of nested scopes. // Individual scopes are pushed and popped from Graph, which holds a // pointer to the current scope. Each Node in Graph holds a pointer // to the scope that was current when the node was created. // The trie never needs to shrink, it only grows until it is disposed // of when Graph is deallocated. Hence, pointers to scopes held by nodes // will always be valid as long as Graph is alive. struct Scope; using ScopePtr = c10::intrusive_ptr<Scope>; using c10::Symbol; struct TORCH_API Scope : public c10::intrusive_ptr_target { private: ScopePtr parent_; Symbol name_; ScopePtr intrusive_from_this(); public: Scope(); Scope(ScopePtr parent, Symbol name); ScopePtr push(Symbol name); ScopePtr parent(); bool isRoot() const; bool isBlank() const; ScopePtr getRoot(); size_t getDepth(); Symbol name() const; std::string namesFromRoot(const std::string& separator = "/") const; }; struct Function; struct InlinedCallStack; /** * ModuleInstanceInfo is a structure to include the module type and instance * name. It also provide public methods to get the pointer to module type and * instance name. * * This structure is mainly used as a private member in InlinedCallStack, such * that one can follow the callstack to find the relevant module hierarchy. */ struct ModuleInstanceInfo { private: c10::ClassTypePtr module_type_{nullptr}; std::string instance_name_; public: ModuleInstanceInfo() = default; ModuleInstanceInfo(c10::ClassTypePtr module_type, std::string instance_name); c10::ClassTypePtr class_type() { return module_type_; } c10::ClassTypePtr class_type() const { return module_type_; } std::string instance_name() const { return instance_name_; } bool operator==(const ModuleInstanceInfo& rhs) const { return (class_type() == rhs.class_type()) && (instance_name() == rhs.instance_name()); } }; /** * InlinedCallStack is an element in a list representing callstack of functions * that have been inlined. * * Each such element holds info about the current callsite (Function and * SourceRange) and a pointer to the next element in the list. The last element * in the list represents the innermost function that was inlined. * * For instance, if a node has a callstack * [foo, source_range1] -> [bar, source_range2] * it means that this node was originally from function 'bar' that was called * at 'source_range2' in function 'foo' that was called in the current function * at 'source_range1'. * * If a node did not come from any inlined function, its callstack will be * empty. * * The callstack lists only grow, we never remove elements from them, which * allows us to reuse same elements in different lists. For instance, if we * inline function 'bar' to 'foo' and then inline 'foo' to two functions 'ham' * and 'baz', the callstacks would look like: * * [baz, source_range3] -- * \ * --> [foo, source_range1] -> [bar, source_range2] * / * [ham, source_range4] -- */ using InlinedCallStackPtr = c10::intrusive_ptr<InlinedCallStack>; using InlinedCallStackEntry = std::tuple<Function*, SourceRange, std::optional<ModuleInstanceInfo>>; struct TORCH_API InlinedCallStack : public c10::intrusive_ptr_target { private: std::optional<InlinedCallStackPtr> callee_; Function* fn_; // Reason for fn_name_ even though we have fn_ // Serialized callstack is used in circustmances where InlinedCallstack // cannot be constructed during runtime, e.g. mobile runtime or // delegated backends. // Since in those cases we do not have Function* we store function name // fn_name does not give you access to the same information that Function* // does, however in mobile/delegated backend runtime we use InlindedCallStack // for exception stack and for that purpose fn_name_ suffices. const std::string fn_name_; SourceRange source_range_; InlinedCallStackPtr intrusive_from_this(); std::optional<ModuleInstanceInfo> module_instance_info_; public: // Constructor for a leaf callstack node. InlinedCallStack(Function* fn, SourceRange source_range); // Constructor for a leaf callstack node. InlinedCallStack( Function* fn, SourceRange source_range, std::optional<ModuleInstanceInfo> module_instance_info); // Constructor for a leaf callstack node. InlinedCallStack( Function* fn, SourceRange source_range, std::optional<ModuleInstanceInfo> module_instance_info, std::string& function_name); // Constructor for an inner callstack node. InlinedCallStack( InlinedCallStackPtr callee, Function* fn, SourceRange source_range); InlinedCallStack( InlinedCallStackPtr callee, Function* fn, SourceRange source_range, std::optional<ModuleInstanceInfo> module_instance_info); InlinedCallStack( InlinedCallStackPtr callee, Function* fn, SourceRange source_range, std::optional<ModuleInstanceInfo> module_instance_info, std::string& function_name); // Return next element in the callstack list. std::optional<InlinedCallStackPtr> callee() const; // Return module instance associated with the current element. std::optional<ModuleInstanceInfo> module_instance() const; // Returns the source range of the node SourceRange source_range() const; Function* function() const; const std::string& function_name() const; // Return callstack as a vector of [Function, SourceRange] pairs. std::vector<InlinedCallStackEntry> vec(); void setCallee(std::optional<InlinedCallStackPtr>); bool operator==(const InlinedCallStack& rhs) const { // No need to compare fn_, since source_range equivalence check // should suffice. return (module_instance().has_value() == rhs.module_instance().has_value()) && (module_instance().has_value() && module_instance().value() == rhs.module_instance().value()) && callee() == rhs.callee() && source_range() == rhs.source_range(); } bool operator!=(const InlinedCallStack& rhs) const { return !(*this == rhs); } }; // {source range, node name, InlinedCallStack} // We store node name because same debug infor will be used for // profiling as well, so we need to know op names as well. using DebugInfoTuple = std::tuple<SourceRange, std::string, InlinedCallStackPtr>; constexpr size_t kDebugInfoTupleSourceRangeIndex{0}; constexpr size_t kDebugInfoTupleNodeNameIndex{1}; constexpr size_t kDebugInfoTupleInlinedCSIndex{2}; } // namespace torch::jit ```
========================================================================================================================================== SOURCE CODE FILE: subgraph_matcher.h LINES: 1 SIZE: 3.12 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\ir\subgraph_matcher.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> #include <unordered_map> #include <vector> namespace torch::jit { /** * \brief A structure describing a match of a pattern in a graph. * * The structure contains an anchor node, from which the match was found, and * match-maps for nodes and values. A match-map specifies the correspondance * between nodes in the pattern graph (match-map keys) with nodes in the actual * graph (match-map values). We keep such maps for both nodes and values. */ struct Match { Node* anchor; std::unordered_map<const Node*, Node*> nodes_map; std::unordered_map<const Value*, Value*> values_map; }; /** * \brief Find all matches of a \p PATTERN in a \p GRAPH. * * The function returns a vector of match-descriptors (see description of * `struct Match`). * * Matching rules: * - Pattern graph must contain a single block. * - Matched subgraphs do not span across different blocks. * - No uses outside the match are allowed, except for Param and Return nodes. * Basically, we're matching hammocks, not arbitrary subgraphs. * - The pattern graph must return only one value (i.e. it must have a single * node leading to return). * - Nodes that are not used in computation of the return value in the pattern * graph are ignored during matching (IOW, we're essentially performing DCE on * the pattern). * - Pattern graph nodes cannot alias. TODO: the check not implemented yet. * - Aliasing nodes in the graph cannot consitute a match (i.e. through all * found matches, no nodes in the subgraph alias with each other). TODO: check * not implemented yet. * - The matcher will not mutate either the pattern graph or the matched graph. * The matched graph is taken as non-const so that Match may contain non-const * pointers. This enables clients of this API to use Match to drive mutations. * * Note [Multi-output Patterns] * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Subgraph matcher provides limited support for multi-output patterns. With a * single output pattern, a single scan through the graph is sufficient to * find all the matches: given a starting node (an "anchor"), we can * deterministically check whether a pattern matches a subgraph corresponding to * this anchor node. For a general case of multi-output patterns, we would have * N anchors, which would result in M^N comparisons (M is the size of the * graph). Clearly this is computationally prohibitive. * * To overcome this, we impose some constraints on the multi-output patterns * that we accept. We require that checking whether the pattern matches a * subgraph would still be fully determined by a single node in the graph. To * achieve this, we designate the first output in the pattern as the "main" * output and assume that we can traverse up from this node to match the * entire pattern. * * Corrolary 1: the order of outputs in the pattern matters! * Corollary 2: patterns cannot contain any nodes not participating in the main * output computation. */ std::vector<Match> TORCH_API findPatternMatches(const Graph& pattern, Graph& graph); } // namespace torch::jit ```
====================================================================================================================================== SOURCE CODE FILE: type_hashing.h LINES: 1 SIZE: 0.44 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\ir\type_hashing.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/jit_type.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { struct TORCH_API HashType { size_t operator()(const TypePtr& type) const; size_t operator()(const c10::ConstTypePtr& type) const; }; struct EqualType { bool operator()(const TypePtr& a, const TypePtr& b) const; bool operator()(const c10::ConstTypePtr& a, const c10::ConstTypePtr& b) const; }; } // namespace torch::jit ```
============================================================================================================================== SOURCE CODE FILE: jit_log.h LINES: 5 SIZE: 4.78 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\jit_log.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <memory> #include <ostream> #include <string> #include <unordered_map> // `TorchScript` offers a simple logging facility that can enabled by setting an // environment variable `PYTORCH_JIT_LOG_LEVEL`. // Logging is enabled on a per file basis. To enable logging in // `dead_code_elimination.cpp`, `PYTORCH_JIT_LOG_LEVEL` should be // set to `dead_code_elimination.cpp` or, simply, to `dead_code_elimination` // (i.e. `PYTORCH_JIT_LOG_LEVEL=dead_code_elimination`). // Multiple files can be logged by separating each file name with a colon `:` as // in the following example, // `PYTORCH_JIT_LOG_LEVEL=dead_code_elimination:guard_elimination` // There are 3 logging levels available for your use ordered by the detail level // from lowest to highest. // * `GRAPH_DUMP` should be used for printing entire graphs after optimization // passes // * `GRAPH_UPDATE` should be used for reporting graph transformations (i.e. // node deletion, constant folding, etc) // * `GRAPH_DEBUG` should be used for providing information useful for debugging // the internals of a particular optimization pass or analysis // The default logging level is `GRAPH_DUMP` meaning that only `GRAPH_DUMP` // statements will be enabled when one specifies a file(s) in // `PYTORCH_JIT_LOG_LEVEL`. // `GRAPH_UPDATE` can be enabled by prefixing a file name with an `>` as in // `>alias_analysis`. // `GRAPH_DEBUG` can be enabled by prefixing a file name with an `>>` as in // `>>alias_analysis`. // `>>>` is also valid and **currently** is equivalent to `GRAPH_DEBUG` as there // is no logging level that is higher than `GRAPH_DEBUG`. namespace torch::jit { struct Node; struct Graph; enum class JitLoggingLevels { GRAPH_DUMP = 0, GRAPH_UPDATE, GRAPH_DEBUG, }; TORCH_API std::string get_jit_logging_levels(); TORCH_API void set_jit_logging_levels(std::string level); TORCH_API void set_jit_logging_output_stream(std::ostream& out_stream); TORCH_API std::ostream& get_jit_logging_output_stream(); TORCH_API std::string getHeader(const Node* node); TORCH_API std::string log_function(const std::shared_ptr<Graph>& graph); TORCH_API ::torch::jit::JitLoggingLevels jit_log_level(); // Prefix every line in a multiline string \p IN_STR with \p PREFIX. TORCH_API std::string jit_log_prefix( const std::string& prefix, const std::string& in_str); TORCH_API std::string jit_log_prefix( ::torch::jit::JitLoggingLevels level, const char* fn, int l, const std::string& in_str); TORCH_API bool is_enabled( const char* cfname, ::torch::jit::JitLoggingLevels level); TORCH_API std::ostream& operator<<( std::ostream& out, ::torch::jit::JitLoggingLevels level); #define JIT_LOG(level, ...) \ if (is_enabled(__FILE__, level)) { \ ::torch::jit::get_jit_logging_output_stream() \ << ::torch::jit::jit_log_prefix( \ level, __FILE__, __LINE__, ::c10::str(__VA_ARGS__)); \ } // tries to reconstruct original python source #define SOURCE_DUMP(MSG, G) \ JIT_LOG( \ ::torch::jit::JitLoggingLevels::GRAPH_DUMP, \ MSG, \ "\n", \ ::torch::jit::log_function(G)); // use GRAPH_DUMP for dumping graphs after optimization passes #define GRAPH_DUMP(MSG, G) \ JIT_LOG( \ ::torch::jit::JitLoggingLevels::GRAPH_DUMP, MSG, "\n", (G)->toString()); // use GRAPH_UPDATE for reporting graph transformations (i.e. node deletion, // constant folding, CSE) #define GRAPH_UPDATE(...) \ JIT_LOG(::torch::jit::JitLoggingLevels::GRAPH_UPDATE, __VA_ARGS__); // use GRAPH_DEBUG to provide information useful for debugging a particular opt // pass #define GRAPH_DEBUG(...) \ JIT_LOG(::torch::jit::JitLoggingLevels::GRAPH_DEBUG, __VA_ARGS__); // use GRAPH_EXPORT to export a graph so that the IR can be loaded by a script #define GRAPH_EXPORT(MSG, G) \ JIT_LOG( \ ::torch::jit::JitLoggingLevels::GRAPH_DEBUG, \ MSG, \ "\n<GRAPH_EXPORT>\n", \ (G)->toString(), \ "</GRAPH_EXPORT>"); #define GRAPH_DUMP_ENABLED \ (is_enabled(__FILE__, ::torch::jit::JitLoggingLevels::GRAPH_DUMP)) #define GRAPH_UPDATE_ENABLED \ (is_enabled(__FILE__, ::torch::jit::JitLoggingLevels::GRAPH_UPDATE)) #define GRAPH_DEBUG_ENABLED \ (is_enabled(__FILE__, ::torch::jit::JitLoggingLevels::GRAPH_DEBUG)) } // namespace torch::jit ```
==================================================================================================================================== SOURCE CODE FILE: jit_opt_limit.h LINES: 1 SIZE: 1.38 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\jit_opt_limit.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <string> #include <unordered_map> // `TorchScript` offers a simple optimization limit checker // that can be configured through environment variable `PYTORCH_JIT_OPT_LIMIT`. // The purpose is to limit how many optimization you can make per pass. // This is useful for debugging any passes. // Opt limit checker is enabled on a per file basis (hence per pass). For // example, in `constant_propagation.cpp`, `PYTORCH_JIT_OPT_LIMIT` should be set // to `constant_propagation=<opt_limit>` or, simply, to // `constant_propagation=<opt_limit>` where <opt_limit> is the number of // optimizations you want to make for the pass. (i.e. // `PYTORCH_JIT_OPT_LIMIT="constant_propagation=<opt_limit>"`). // Multiple files can be configured by separating each file name with a colon // `:` as in the following example, // `PYTORCH_JIT_OPT_LIMIT="constant_propagation=<opt_limit>:dead_code_elimination=<opt_limit>"` // You can call opt limiter by calling JIT_OPT_ALLOWED. It will return true if // we haven't reached the optimization limit yet. Otherwise, it will return // false. Typical usage: // if (!JIT_OPT_ALLOWED) { // GRAPH_DUMP(...); //supplied from jit_log // return; // } namespace torch::jit { TORCH_API bool opt_limit(const char* pass_name); #define JIT_OPT_ALLOWED opt_limit(__FILE__) } // namespace torch::jit ```
================================================================================================================================== SOURCE CODE FILE: code.h LINES: 1 SIZE: 1.09 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\code.h ENCODING: utf-8 ```h #pragma once #include <vector> #include <ATen/core/ivalue.h> #include <ATen/core/operator_name.h> #include <torch/csrc/jit/runtime/instruction.h> namespace torch::jit::mobile { using Stack = std::vector<c10::IValue>; using DebugHandle = int64_t; class Function; struct Code { std::vector<Instruction> instructions_; std::vector<DebugHandle> debug_handles_; std::vector<c10::OperatorName> op_names_; std::vector<int> operator_input_sizes_; std::vector<std::function<void(Stack&)>> operators_; std::vector<c10::IValue> constants_; std::vector<c10::TypePtr> types_; // TODO After we actually export CALL instructions we can remove this. // We may need a two-stage importing scheme, where we firstly construct all // function objects, and then append referenced function pointers. This could // be done in parseMethods(). std::vector<mobile::Function*> functions_; size_t register_size_ = 0; // Aggregated output size. // initialized means operators_ array is filled with operators bool initialized = false; }; } // namespace torch::jit::mobile ```
======================================================================================================================================== SOURCE CODE FILE: debug_info.h LINES: 1 SIZE: 2.21 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\debug_info.h ENCODING: utf-8 ```h #pragma once #include <c10/util/flat_hash_map.h> #include <caffe2/serialize/inline_container.h> #include <torch/csrc/jit/api/compilation_unit.h> #include <torch/csrc/jit/ir/scope.h> #include <torch/csrc/jit/serialization/source_range_serialization.h> namespace torch::jit { /* * MobileDebugTable: * Deserializes debug_pkl and callstack_map records from PT model's zip archive * and stores them in a map of debug handles to DebugInfoPair. Debug handles are * unique per model and runtime, be in lite interpreter or delegate, an * exception of BackendRuntimeException should raised using debug handles. * getSourceDebugString method is responsible for translating debug * handles to correspond debug information. * This debug informatin includes stack trace of model level source code and * module hierarchy where the exception occurred. */ class MobileDebugTable { public: MobileDebugTable() = default; MobileDebugTable( std::unique_ptr<caffe2::serialize::PyTorchStreamReader>& reader, const std::shared_ptr<CompilationUnit>& cu); template <typename It> MobileDebugTable(It begin, It end) : callstack_ptr_map_(begin, end) {} std::string getSourceDebugString( const int64_t debug_handle, const std::string& top_module_type_name = "ModuleTypeUnknown") const; std::string getSourceDebugString( const std::vector<int64_t>& debug_handles, const std::string& top_module_type_name = "ModuleTypeUnknown") const; std::string getModuleHierarchyInfo( const int64_t debug_handle, const std::string& top_module_type_name = "ModuleTypeUnknown") const; std::string getModuleHierarchyInfo( const std::vector<int64_t>& debug_handles, const std::string& top_module_type_name = "ModuleTypeUnknown") const; const ska::flat_hash_map<int64_t, DebugInfoTuple>& getCallStackPtrMap() const { return callstack_ptr_map_; } private: std::pair<std::string, std::string> getSourceDebugModuleHierarchyInfo( const std::vector<int64_t>& debug_handles, const std::string& top_module_type_name = "ModuleTypeUnknown") const; ska::flat_hash_map<int64_t, DebugInfoTuple> callstack_ptr_map_; }; } // namespace torch::jit ```
========================================================================================================================================= SOURCE CODE FILE: file_format.h LINES: 3 SIZE: 6.63 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\file_format.h ENCODING: utf-8 ```h #pragma once #include <array> #include <cerrno> #include <cstddef> #include <cstring> #include <fstream> #include <istream> #include <memory> #include <c10/core/CPUAllocator.h> #include <c10/core/impl/alloc_cpu.h> #include <caffe2/serialize/read_adapter_interface.h> #if defined(HAVE_MMAP) #include <fcntl.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #endif /** * @file * * Helpers for identifying file formats when reading serialized data. * * Note that these functions are declared inline because they will typically * only be called from one or two locations per binary. */ namespace torch::jit { /** * The format of a file or data stream. */ enum class FileFormat { UnknownFileFormat = 0, FlatbufferFileFormat, ZipFileFormat, }; /// The size of the buffer to pass to #getFileFormat(), in bytes. constexpr size_t kFileFormatHeaderSize = 8; constexpr size_t kMaxAlignment = 16; /** * Returns the likely file format based on the magic header bytes in @p header, * which should contain the first bytes of a file or data stream. */ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration) static inline FileFormat getFileFormat(const char* data) { // The size of magic strings to look for in the buffer. static constexpr size_t kMagicSize = 4; // Bytes 4..7 of a Flatbuffer-encoded file produced by // `flatbuffer_serializer.h`. (The first four bytes contain an offset to the // actual Flatbuffer data.) static constexpr std::array<char, kMagicSize> kFlatbufferMagicString = { 'P', 'T', 'M', 'F'}; static constexpr size_t kFlatbufferMagicOffset = 4; // The first four bytes of a ZIP file. static constexpr std::array<char, kMagicSize> kZipMagicString = { 'P', 'K', '\x03', '\x04'}; // Note that we check for Flatbuffer magic first. Since the first four bytes // of flatbuffer data contain an offset to the root struct, it's theoretically // possible to construct a file whose offset looks like the ZIP magic. On the // other hand, bytes 4-7 of ZIP files are constrained to a small set of values // that do not typically cross into the printable ASCII range, so a ZIP file // should never have a header that looks like a Flatbuffer file. if (std::memcmp( data + kFlatbufferMagicOffset, kFlatbufferMagicString.data(), kMagicSize) == 0) { // Magic header for a binary file containing a Flatbuffer-serialized mobile // Module. return FileFormat::FlatbufferFileFormat; } else if (std::memcmp(data, kZipMagicString.data(), kMagicSize) == 0) { // Magic header for a zip file, which we use to store pickled sub-files. return FileFormat::ZipFileFormat; } return FileFormat::UnknownFileFormat; } /** * Returns the likely file format based on the magic header bytes of @p data. * If the stream position changes while inspecting the data, this function will * restore the stream position to its original offset before returning. */ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration) static inline FileFormat getFileFormat(std::istream& data) { FileFormat format = FileFormat::UnknownFileFormat; std::streampos orig_pos = data.tellg(); // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init) std::array<char, kFileFormatHeaderSize> header; data.read(header.data(), header.size()); if (data.good()) { format = getFileFormat(header.data()); } data.seekg(orig_pos, data.beg); return format; } /** * Returns the likely file format based on the magic header bytes of the file * named @p filename. */ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration) static inline FileFormat getFileFormat(const std::string& filename) { std::ifstream data(filename, std::ifstream::binary); return getFileFormat(data); } // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration) static void file_not_found_error() { std::stringstream message; message << "Error while opening file: "; if (errno == ENOENT) { message << "no such file or directory" << '\n'; } else { message << "error no is: " << errno << '\n'; } TORCH_CHECK(false, message.str()); } // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration) static inline std::tuple<std::shared_ptr<char>, size_t> get_file_content( const char* filename) { #if defined(HAVE_MMAP) int fd = open(filename, O_RDONLY); if (fd < 0) { // failed to open file, chances are it's no such file or directory. file_not_found_error(); } struct stat statbuf {}; fstat(fd, &statbuf); size_t size = statbuf.st_size; void* ptr = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0); close(fd); auto deleter = [statbuf](char* ptr) { munmap(ptr, statbuf.st_size); }; std::shared_ptr<char> data(reinterpret_cast<char*>(ptr), deleter); #else FILE* f = fopen(filename, "rb"); if (f == nullptr) { file_not_found_error(); } fseek(f, 0, SEEK_END); size_t size = ftell(f); fseek(f, 0, SEEK_SET); // make sure buffer size is multiple of alignment size_t buffer_size = (size / kMaxAlignment + 1) * kMaxAlignment; std::shared_ptr<char> data( static_cast<char*>(c10::alloc_cpu(buffer_size)), c10::free_cpu); fread(data.get(), size, 1, f); fclose(f); #endif return std::make_tuple(data, size); } // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration) static inline std::tuple<std::shared_ptr<char>, size_t> get_stream_content( std::istream& in) { // get size of the stream and reset to orig std::streampos orig_pos = in.tellg(); in.seekg(orig_pos, std::ios::end); const long size = in.tellg(); in.seekg(orig_pos, in.beg); // read stream // NOLINT make sure buffer size is multiple of alignment size_t buffer_size = (size / kMaxAlignment + 1) * kMaxAlignment; std::shared_ptr<char> data( static_cast<char*>(c10::alloc_cpu(buffer_size)), c10::free_cpu); in.read(data.get(), size); // reset stream to original position in.seekg(orig_pos, in.beg); return std::make_tuple(data, size); } // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration) static inline std::tuple<std::shared_ptr<char>, size_t> get_rai_content( caffe2::serialize::ReadAdapterInterface* rai) { size_t buffer_size = (rai->size() / kMaxAlignment + 1) * kMaxAlignment; std::shared_ptr<char> data( static_cast<char*>(c10::alloc_cpu(buffer_size)), c10::free_cpu); rai->read( 0, data.get(), rai->size(), "Loading ReadAdapterInterface to bytes"); return std::make_tuple(data, buffer_size); } } // namespace torch::jit ```
=============================================================================================================================================== SOURCE CODE FILE: flatbuffer_loader.h LINES: 1 SIZE: 4.98 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\flatbuffer_loader.h ENCODING: utf-8 ```h #pragma once #include <istream> #include <memory> #include <string> #include <unordered_map> #include <vector> #include <ATen/core/ivalue.h> #include <c10/core/Device.h> #include <c10/macros/Macros.h> #include <torch/csrc/jit/mobile/module.h> #include <optional> /** * Defines the public API for loading flatbuffer-serialized mobile modules. * Note that this header must not include or depend on flatbuffer-defined * types, to avoid leaking those details to PyTorch clients. */ namespace torch::jit { /// All non-copied data pointers provided to `parse_and_initialize_*` functions /// must be aligned to this boundary. Since the Module will point directly into /// the data, this alignment is necessary to ensure that certain types/structs /// are properly aligned. constexpr size_t kFlatbufferDataAlignmentBytes = 16; /// Maps file names to file contents. using ExtraFilesMap = std::unordered_map<std::string, std::string>; // On high level, to produce a Module from a file on disk, we need to go // through the follow steps: // 1. Read: Read the file from disk -> memory // 2. Deserialize: Parse the bytes to produce some in memory manipulable // structure // 3. Module initialization: Produce mobile::Module out of the structure // produced in 2. // Under this context, the structure described in 2. is the flatbuffer-defined // type mobile::serialization::Module. However, this step/type is not visible in // the public API. // Parse a mobile::Module from raw bytes. // // This function does steps 2+3 described above. // // Does not take ownership of `data`; if you want it to take ownership, see the // shared_ptr overload of this function. // // If should_copy_tensor_memory is true, then the returned module will NOT have // refences to `data`, so `data` can be freed immediately. // // If should_copy_tensor_memory is false, then returned module will have tensors // that points inside of `data`; the caller will need to make sure that `data` // outlives the returned Module. Also, `data` must be aligned to // kFlatbufferDataAlignmentBytes. TORCH_API mobile::Module parse_and_initialize_mobile_module( void* data, size_t size, // of `data`, in bytes. std::optional<at::Device> device = std::nullopt, ExtraFilesMap* extra_files = nullptr, bool should_copy_tensor_memory = false); // Parse a mobile::Module from raw bytes. // // This function does steps 2+3 described above. // // The returned Module holds a reference to `data`, which must be aligned to // kFlatbufferDataAlignmentBytes. // // If you do not want the Module to hold a reference to `data`, see the raw // pointer overload of this function. TORCH_API mobile::Module parse_and_initialize_mobile_module( std::shared_ptr<char> data, size_t size, // of `data`, in bytes. std::optional<at::Device> device = std::nullopt, ExtraFilesMap* extra_files = nullptr); // Parse a mobile::Module from raw bytes, also returning JIT-related metadata. // // This is the same as parse_and_initialize_mobile_module() except that it also // extracts JIT source files and constants. Can be used to construct a // jit::Module. TORCH_API mobile::Module parse_and_initialize_mobile_module_for_jit( void* data, size_t size, // of `data`, in bytes. ExtraFilesMap& jit_sources, std::vector<IValue>& jit_constants, std::optional<at::Device> device = std::nullopt, ExtraFilesMap* extra_files = nullptr); // Load a mobile::Module from a filepath. // // This function does steps 1+2+3 described above. // // We need to have this as a convienience because Python API will need to wrap // this. C++ clients should use one of the versions of // parse_and_initialize_mobile_module() so they can manage the raw data more // directly. TORCH_API mobile::Module load_mobile_module_from_file( const std::string& filename, std::optional<at::Device> device = std::nullopt, ExtraFilesMap* extra_files = nullptr); TORCH_API uint64_t get_bytecode_version(std::istream& in); TORCH_API uint64_t get_bytecode_version(const std::string& filename); TORCH_API uint64_t get_bytecode_version_from_bytes(char* flatbuffer_content); TORCH_API mobile::ModuleInfo get_module_info_from_flatbuffer( char* flatbuffer_content); // The methods below are less efficient because it need to read the stream in // its entirity to a buffer TORCH_API mobile::Module load_mobile_module_from_stream_with_copy( std::istream& in, std::optional<at::Device> device = std::nullopt, ExtraFilesMap* extra_files = nullptr); TORCH_API mobile::Module parse_flatbuffer_no_object( std::shared_ptr<char> data, size_t size, std::optional<at::Device> device); TORCH_API mobile::Module parse_and_initialize_mobile_module( void* data, size_t, std::optional<at::Device>, ExtraFilesMap* extra_files, bool should_copy_tensor_memory); // no op, TODO(qihan) delete TORCH_API bool register_flatbuffer_loader(); } // namespace torch::jit ```
=================================================================================================================================== SOURCE CODE FILE: frame.h LINES: 1 SIZE: 0.84 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\frame.h ENCODING: utf-8 ```h #pragma once #include <cstddef> #include <torch/csrc/jit/mobile/code.h> #include <optional> namespace torch::jit::mobile { class Frame { public: explicit Frame(const Code& code) : code_(code) {} const Code& getCode() const { return code_; } void step() { pc_++; } void jump(size_t n) { pc_ += n; } size_t getPC() const { return pc_; } const Instruction& getInstruction() const { return code_.instructions_.at(pc_); } std::optional<int64_t> getDebugHandle() const { return getDebugHandle(pc_); } std::optional<int64_t> getDebugHandle(size_t pc) const { if (pc >= code_.debug_handles_.size()) { return {}; } return code_.debug_handles_[pc]; } private: const Code& code_; size_t pc_{0}; }; } // namespace torch::jit::mobile ```
====================================================================================================================================== SOURCE CODE FILE: function.h LINES: 1 SIZE: 2.91 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\function.h ENCODING: utf-8 ```h #pragma once #include <vector> #include <ATen/core/function.h> #include <ATen/core/function_schema.h> #include <ATen/core/ivalue.h> #include <torch/csrc/jit/mobile/code.h> namespace torch::jit { enum OpCode : uint8_t; struct Instruction; struct OperatorString; namespace mobile { class TORCH_API Function : public torch::jit::Function { public: explicit Function(c10::QualifiedName name); Function( c10::QualifiedName name, Code code, std::optional<c10::FunctionSchema> schema); void run(Stack& stack) override; at::IValue operator()(Stack& stack); void ensure_defined() override {} size_t num_inputs() const override; const c10::QualifiedName& qualname() const override; bool call(Stack&, c10::function_ref<void(const mobile::Code&)>) override; // NOTE: the APIs below is dangerous: if you call append_instruction with // dbg_handle and then call it without; then the dbg_handle will become // misaligned. Therefore only use ONE variant at time. void append_instruction(OpCode op, int64_t X, int64_t N, int64_t dbg_handle); void append_instruction(OpCode op, int64_t X, int64_t N); void append_operator( const std::string& name, const std::string& overload_name, const std::optional<int>& num_specified_args); void append_constant(const c10::IValue& constant); void append_type(const c10::TypePtr& type); void append_function(mobile::Function& func); void set_register_size(size_t size); int64_t get_debug_handle(size_t pc) const; const Code& get_code() const; Code& get_code(); torch::jit::Function& setSchema(c10::FunctionSchema schema) override; bool hasSchema() const; const c10::FunctionSchema& getSchema() const override; // Returns the debug handle corresponding to where the execution // is halted due to exception. // If no corresponding debug handle is found then -1 is returned. const std::vector<int64_t>& getExceptionDebugHandles() const; static Function& registerFunc( const std::string& qualified_name, const std::vector<Instruction>& instructions, const std::vector<c10::IValue>& constants, const std::vector<c10::TypePtr>& types, const size_t register_size); // if not initialize, initialize by loading operators. // return true of all op loaded, return false if some op is not found // in the current runtime. Then, the ops that did not found will be filled // in unsupported_op_names bool initialize_operators(bool should_check_operators); private: c10::QualifiedName name_; Code code_; std::optional<c10::FunctionSchema> schema_; // (byte-code version 4+) }; std::optional<std::function<void(Stack&)>> makeOperatorFunction( const c10::OperatorName& opname, std::optional<int> num_specified_args); TORCH_API std::string operator_str(const c10::OperatorName& opname); } // namespace mobile } // namespace torch::jit ```
==================================================================================================================================== SOURCE CODE FILE: import.h LINES: 1 SIZE: 3.86 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\import.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/mobile/module.h> #include <torch/csrc/jit/mobile/parse_operators.h> #include <istream> #include <memory> #include <caffe2/serialize/file_adapter.h> namespace torch::jit { using caffe2::serialize::ReadAdapterInterface; using ExtraFilesMap = std::unordered_map<std::string, std::string>; constexpr const char* kArchiveNameBytecode = "bytecode"; constexpr const char* kArchiveNameConstants = "constants"; constexpr const char* kArchiveNameVersion = "version"; // The family of methods below load a serialized Mobile Module // into a mobile::Module object. TORCH_API mobile::Module _load_for_mobile( std::istream& in, std::optional<at::Device> device, ExtraFilesMap& extra_file, uint64_t module_load_options = kDefaultMobileLoadOptions); TORCH_API mobile::Module _load_for_mobile( const std::string& filename, std::optional<at::Device> device, ExtraFilesMap& extra_files); TORCH_API mobile::Module _load_for_mobile( std::unique_ptr<ReadAdapterInterface> rai, std::optional<c10::Device> device, ExtraFilesMap& extra_files, uint64_t module_load_options = kDefaultMobileLoadOptions); TORCH_API mobile::Module _load_for_mobile( const std::string& filename, std::optional<at::Device> device, ExtraFilesMap& extra_files, uint64_t module_load_options); TORCH_API mobile::Module _load_for_mobile( std::istream& in, std::optional<at::Device> device = std::nullopt); TORCH_API mobile::Module _load_for_mobile( const std::string& filename, std::optional<at::Device> device = std::nullopt); TORCH_API mobile::Module _load_for_mobile( std::unique_ptr<ReadAdapterInterface> rai, std::optional<c10::Device> device = std::nullopt); /** * Load only the contents of the "extra/" files whose names are * passed in the map (extra_files). Populate the corresponding values * with the contents of those files. Do not attempt to load the entire * model, and stop once the extra files have been extracted. * * This API is needed to be able to load GPU models on linux CPU * machines and extract only the extra files so that we can inspect * the metadata that was added to the .ptl archive when it was * generated. * */ void _load_extra_only_for_mobile( const std::string& filename, std::optional<at::Device> device, ExtraFilesMap& extra_files); // Currently used by both mobile/import.cpp and model_compatibility.cpp. // Should be removed after model_compatibility.cpp start using simplified // version type_resolver and obj_loader. at::TypePtr resolveTypeNameMobile( const c10::QualifiedName& qn, const std::shared_ptr<CompilationUnit>& compilation_unit); c10::StrongTypePtr typeResolverMobile( const c10::QualifiedName& qn, const std::shared_ptr<CompilationUnit>& compilation_unit); c10::intrusive_ptr<c10::ivalue::Object> objLoaderMobile( const at::StrongTypePtr& type, const at::IValue& input, mobile::CompilationUnit& mobile_compilation_unit); // Given a reader, which has access to a model file, // return true if there exists tensors in `bytecode` archive bool isTensorInBytecodeArchive( caffe2::serialize::PyTorchStreamReader& stream_reader); namespace mobile { /** * Given a torch::jit::mobile::Module, return a set of operator names * (with overload name) that are used by any method in this mobile * Mobile. This method runs through the bytecode for all methods * in the specified model (module), and extracts all the root * operator names. Root operators are operators that are called * directly by the model (as opposed to non-root operators, which * may be called transitively by the root operators). * */ TORCH_API std::set<std::string> _export_operator_list( torch::jit::mobile::Module& module); } // namespace mobile } // namespace torch::jit ```
========================================================================================================================================= SOURCE CODE FILE: import_data.h LINES: 1 SIZE: 1.01 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\import_data.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/TensorBase.h> #include <c10/core/Device.h> #include <torch/csrc/jit/mobile/module.h> #include <optional> #include <istream> #include <map> #include <string> namespace torch::jit { /** * Loads named parameters from the serialized data in @p in. * * Calls #TORCH_CHECK() if the data format is not recognized. */ TORCH_API std::map<std::string, at::Tensor> _load_parameters( std::istream& in, std::optional<at::Device> device = std::nullopt); /** * Loads named parameters from the serialized data in @p filename. * * Calls #TORCH_CHECK() if the data format is not recognized. */ TORCH_API std::map<std::string, at::Tensor> _load_parameters( const std::string& filename, std::optional<at::Device> device = std::nullopt); // NOTE: Please prefer using _load_parameters over using the function below. TORCH_API std::map<std::string, at::Tensor> mobile_module_to_parameter_map( const mobile::Module& module); } // namespace torch::jit ```
================================================================================================================================================== SOURCE CODE FILE: import_export_common.h LINES: 1 SIZE: 0.48 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\import_export_common.h ENCODING: utf-8 ```h #pragma once /** * @file * Declarations shared between import_data.cpp and export_data.cpp */ namespace torch::jit::mobile::internal { /** * The name of the mobile::Module attribute which contains saved parameters, as * a Dict of names to Tensors. Only used for Flatbuffer serialization. */ // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) constexpr char kSavedParametersAttributeName[] = "data"; } // namespace torch::jit::mobile::internal ```
========================================================================================================================================= SOURCE CODE FILE: interpreter.h LINES: 1 SIZE: 0.65 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\interpreter.h ENCODING: utf-8 ```h #pragma once #include <vector> #include <torch/csrc/jit/mobile/code.h> #include <torch/csrc/jit/mobile/frame.h> namespace torch::jit::mobile { struct InterpreterState { TORCH_API explicit InterpreterState(const Code& code); TORCH_API bool run(Stack& stack); private: void enterFrame(const Code&); void leaveFrame(); void saveExceptionDebugHandles(); void callFunction(torch::jit::Function& f, Stack& stack); c10::IValue& reg(size_t reg); std::vector<c10::IValue> registers_; std::vector<Frame> frames_; }; const std::vector<DebugHandle>& getInterpretersExceptionDebugHandles(); } // namespace torch::jit::mobile ```
==================================================================================================================================== SOURCE CODE FILE: method.h LINES: 1 SIZE: 0.84 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\method.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/ivalue.h> #include <torch/csrc/jit/mobile/function.h> namespace torch::jit::mobile { class Module; struct TORCH_API Method { Method(const Module* owner, Function* function); void run(Stack& stack) const; void run(Stack&& stack) const { run(stack); } c10::IValue operator()(std::vector<c10::IValue> stack) const; const std::string& name() const { return function_->name(); } int64_t get_debug_handle(size_t pc) const { return function_->get_debug_handle(pc); } Function& function() const { return *function_; } private: // Methods are uniquely owned by a single module. // This raw pointer allows referencing the module const Module* owner_; // Underlying unbound function Function* function_; }; } // namespace torch::jit::mobile ```
==================================================================================================================================== SOURCE CODE FILE: module.h LINES: 1 SIZE: 5.97 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\module.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/jit_type.h> #include <torch/csrc/jit/mobile/debug_info.h> #include <torch/csrc/jit/mobile/function.h> #include <torch/csrc/jit/mobile/method.h> #include <torch/csrc/jit/mobile/quantization.h> #include <utility> namespace torch::jit::mobile { using Stack = std::vector<c10::IValue>; // A CompilationUnit object is the one that gets executed by the lite // interpreter. // // A CompilationUnit object contains a list of Method Objects. These are methods // that appear in the original PyTorch Model. These method correspond to Python // member functions of the Model class. // // Methods in turn contain a Function, and a back-pointer to the Module that // owns this Method instance. // // A Function contains a Code Object (code_) which is defined in interpreter.h // // A Code object contains the following: // // std::vector<Instruction> instructions_; // std::vector<c10::OperatorName> op_names_; // std::vector<std::function<void(Stack&)>> operators_; // std::vector<c10::IValue> constants_; // std::vector<c10::TypePtr> types_; // size_t register_size_; // Aggregated output size. // class CompilationUnit { public: void register_function(std::unique_ptr<Function> fn); std::vector<std::unique_ptr<Function>>& methods() { return methods_; } const std::vector<std::unique_ptr<Function>>& methods() const { return methods_; } Function* find_function(const c10::QualifiedName& qn); const Function* find_function(const c10::QualifiedName& qn) const; void unsafeRemoveFunction(const int64_t index) { methods_.erase(methods_.begin() + index); } private: std::vector<std::unique_ptr<Function>> methods_; }; // A Torch Mobile Module is a representation of the model (trained in case // of inference). A Mobile Module contains // // 1. data (object_) // 2. metadata (optional) about the model (metadata_ from the metadata.pkl // file added after training) // 3. Compilation Unit (cu_) // class TORCH_API Module { public: Module( c10::intrusive_ptr<c10::ivalue::Object> object, std::shared_ptr<CompilationUnit> cu) : object_(std::move(object)), cu_(std::move(cu)) {} Module() = default; Method get_method(const std::string& method_name) const; template <typename... Types> c10::IValue run_method(const std::string& method_name, Types&&... args) { return get_method(method_name)({IValue(std::forward<Types>(args))...}); } c10::IValue forward(std::vector<c10::IValue> inputs) { return get_method("forward")(std::move(inputs)); } std::optional<Method> find_method(const std::string& basename) const; const std::string name() const { return object_->name(); } const std::vector<at::IValue>& slots() const { return object_->slots(); } const c10::intrusive_ptr<c10::ivalue::Object> _ivalue() const { return object_; } const std::vector<at::Tensor> parameters() const; const std::map<std::string, at::Tensor> named_parameters() const; std::string get_forward_method_debug_info(int64_t debug_handle) const; std::string getModuleHierarchy(const int64_t debug_handle) const; std::string getCallStack(const int64_t debug_handle) const; /// Enables "training" mode. void train(bool on = true); /// Calls train(false) to enable "eval" mode. void eval() { train(/*on=*/false); } /// True if the module is in training mode. bool is_training() const; const std::unordered_map<std::string, std::string> getMetadata() const { return metadata_; } void setMetadata( const std::unordered_map<std::string, std::string>& metadata) { metadata_ = metadata; } const std::vector<Method> get_methods() const; c10::IValue attr(const std::string& name, c10::IValue or_else) const { if (auto r = object_->type()->findAttributeSlot(name)) { return object_->getSlot(*r); } if (auto r = object_->type()->findConstantSlot(name)) { return object_->type()->getConstant(*r); } return or_else; } void setDebugTable(MobileDebugTable&& debug_table) { debug_table_ = std::move(debug_table); } const MobileDebugTable& getDebugTable() const { return debug_table_; } void setHasDebugHandles(bool has_debug_handles) { has_debug_handles_ = has_debug_handles; } bool hasDebugHandles() const { return has_debug_handles_; } const CompilationUnit& compilation_unit() const { return *cu_; } void set_delete_memory(std::shared_ptr<char> delete_mem) { mem_to_delete_ = std::move(delete_mem); } void set_min_operator_version(int64_t version) { min_operator_version_ = version; } int64_t min_operator_version() const { return min_operator_version_; } void set_bytecode_version(int64_t version) { bytecode_version_ = version; } int64_t bytecode_version() const { return bytecode_version_; } private: friend class quantization::PTQQuanizationHelper; bool compareMethodSchemas( const std::string& name_1, const std::string& name_2); void unsafeRemoveMethod(const std::string& basename); void unsafeCopyMethod( const std::string& new_method_name, const Function& to_be_copied); c10::intrusive_ptr<c10::ivalue::Object> object_; std::unordered_map<std::string, std::string> metadata_; std::shared_ptr<CompilationUnit> cu_; MobileDebugTable debug_table_; bool has_debug_handles_ = false; int64_t min_operator_version_ = 4; int64_t bytecode_version_ = 4; // Extra handle for the module to delete when itself is deleted std::shared_ptr<char> mem_to_delete_; }; struct TORCH_API ModuleInfo { uint64_t bytecode_version; uint64_t operator_version; std::unordered_map<std::string, int> opname_to_num_args; std::unordered_set<std::string> function_names; std::unordered_set<std::string> type_names; }; TORCH_API ModuleInfo get_module_info(const mobile::Module& module); } // namespace torch::jit::mobile ```
====================================================================================================================================== SOURCE CODE FILE: observer.h LINES: 1 SIZE: 3.66 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\observer.h ENCODING: utf-8 ```h #pragma once #include <c10/util/ThreadLocalDebugInfo.h> #include <string> #include <unordered_map> #include <vector> namespace torch { class MobileDebugInfo : public c10::DebugInfoBase { public: const std::string& getModelName() { return model_name_; } void setModelName(const std::string& model_name) { model_name_ = model_name; } const std::string& getMethodName() { return method_name_; } void setMethodName(const std::string& method_name) { method_name_ = method_name; } size_t getOpIdx() { return op_idx_; } void setOpIdx(size_t op_idx) { op_idx_ = op_idx; } private: std::string model_name_; std::string method_name_; // TODO: Kimish // If we launch a thread such as for at::launch, interepter continuation // and if the caching allocator is enabled in the base thread // then, in order to propagate this information, that is caching allocator // is enabled, across thread boundaries we can use the mechanism provided // by ThreadLocalDebugInfo // Once the thread local MobileDebugInfo is accessible in the launched // thread, it can be accessed in that thread and that thread can set // its own thread local CachingAllocatorInfo. // However, we cannot expect every launched thread to extract and set // its own thread local copy of CachingAllocatorInfo. // But this can be done in lite interpreter, where in the run method // it can do info = // c10::ThreadLocalDebugInfo::get(c10::DebugInfoKind::MOBILE_RUNTIME_INFO)) // .get_caching_allocator_info(); // GetThreadLocalCachingAllocatorInfo() = info; // Other option is to have MobileDebugInfo itself be the place where thread // local copy of CachingAllocatorInfo is stored. Then // DefaultMobileCPUAllocator inspects this to decide if to use // CachingAllocator. However, current lite interpreter does not support FORK, // thus from the run method of lite interpreter we are not really gonna launch // another instance of lite interpreter in a different thread. So for now not // getting bothered about passing CachingAllocatorInfo across thread // boundaries. c10::CachingAllocatorInfo caching_allocator_info; size_t op_idx_ = 0; }; class MobileModuleObserver { public: virtual ~MobileModuleObserver() = default; virtual void onEnterRunMethod(const int32_t) {} virtual void onExitRunMethod( const std::unordered_map<std::string, std::string>&, const std::string&, const int32_t) {} virtual void onFailRunMethod( const std::unordered_map<std::string, std::string>&, const std::string&, const int32_t, const char*) {} virtual void onEnterLoadModel(const int32_t) {} virtual void onExitLoadModel( const int32_t, const std::unordered_map<std::string, std::string>&) { } // key: filename, value: file content virtual void onFailLoadModel(const int32_t, const char*) {} virtual void onFailLoadModel( const int32_t, const char*, const std::unordered_map<std::string, std::string>&) {} virtual std::vector<std::string> getDefaultExtraFiles() = 0; virtual std::unordered_map<std::string, std::string> processMetadataFromExtra( const std::unordered_map<std::string, std::string>&) = 0; }; class MobileObserverConfig { public: void setModuleObserver(std::unique_ptr<MobileModuleObserver> reporter) { module_observer_ = std::move(reporter); } MobileModuleObserver* getModuleObserver() { return module_observer_.get(); } private: std::unique_ptr<MobileModuleObserver> module_observer_; }; MobileObserverConfig& observerConfig(); } // namespace torch ```
============================================================================================================================================ SOURCE CODE FILE: parse_bytecode.h LINES: 1 SIZE: 0.74 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\parse_bytecode.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/mobile/function.h> namespace torch::jit::mobile { using c10::IValue; TORCH_API void parseInstructions( const std::string& function_name, c10::ivalue::TupleElements&& ins_list, c10::ivalue::TupleElements& debug_handles_m_tuple, mobile::Function* function); TORCH_API void parseConstants( const c10::ivalue::TupleElements& consts_list, mobile::Function* function); TORCH_API void parseTypes( const c10::ivalue::TupleElements& types_list, mobile::Function* function); TORCH_API void parseRegisterSize(size_t rsize, mobile::Function* function); TORCH_API void applyUpgrader( mobile::Function* function, uint64_t operator_version); } // namespace torch::jit::mobile ```
============================================================================================================================================= SOURCE CODE FILE: parse_operators.h LINES: 1 SIZE: 0.72 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\parse_operators.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/mobile/function.h> namespace torch::jit { using c10::IValue; enum MobileModuleLoadOptions { OPERATOR_CHECK = 1, // PARSE_ALL_EXTRA_FILE_MAPS is used to gate for ExtraFileMaps to pull all // files automatically without explicit entries mapping. Refer to PR for a // detail: https://github.com/pytorch/pytorch/pull/99747 PARSE_ALL_EXTRA_FILE_MAPS = 2, }; const uint64_t kDefaultMobileLoadOptions = MobileModuleLoadOptions::OPERATOR_CHECK; namespace mobile { TORCH_API void parseOperators( c10::ivalue::TupleElements&& ops_list, const uint64_t& module_load_options, mobile::Function* function); } // namespace mobile } // namespace torch::jit ```
================================================================================================================================================ SOURCE CODE FILE: prim_ops_registery.h LINES: 1 SIZE: 0.61 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\prim_ops_registery.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/ivalue.h> #include <functional> #include <vector> namespace torch::jit::mobile { using Stack = std::vector<c10::IValue>; void registerPrimOpsFunction( const std::string& name, const std::function<void(Stack&)>& fn); bool hasPrimOpsFn(const std::string& name); std::function<void(Stack&)>& getPrimOpsFn(const std::string& name); class prim_op_fn_register { public: prim_op_fn_register( const std::string& name, const std::function<void(Stack&)>& fn) { registerPrimOpsFunction(name, fn); } }; } // namespace torch::jit::mobile ```
=========================================================================================================================================== SOURCE CODE FILE: profiler_edge.h LINES: 1 SIZE: 4.50 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\profiler_edge.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/autograd/profiler_kineto.h> #include <torch/csrc/jit/mobile/module.h> namespace torch::jit::mobile { // If we dont have kineto available then edge profiler does not // work since it relies on Kineto #ifdef USE_KINETO class TORCH_API KinetoEdgeCPUProfiler { public: // This profiler only profiles KINETO events // No GPU_FALLBACK or NVTX /* * @param m is the instance of mobile Module which is being profiled. * Note that this implies that KinetoEdgeCPUProfiler can be used * to profile specific Module (see usage below), unliked ProfilerKineto * which can profile pytorch runtime in arbitrary scope. * @param fname is the name of the file to which chrome trace is written. * @param report_input_shapes: whether to record shapes of op's inputs. * @param with_stack: whether to record model's python stacktrace for the op. * @param with_flops: whether to report flops corresponding to the op. * @param with_modules: whether to report original python module * hierarchy to which the op belongs. * @param events * @param adjust_vulkan_timestamps: whether to adjust vulkan timestamps from * query pool to align with cpu event times * * Usage pattern for this profiler must be as follows: * * { * KinetoEdgeCPUProfiler(m, filename, args); * m.forward(...); * } * * The reason being that KinetoEdgeCPUProfiler has a dependency on Module * and thus it must not outlive it. * * Thus, when KinetoEdgeCPUProfiler is used as RAII to do profiling * within certain scope. In that scope, the captured reference to * Module will outlive KinetoEdgeCPUProfiler. This is gauranteed because * KinetoEdgeCPUProfiler must be constructed later than Module, on stack. * * An example of the anti-pattern and wrong usage is: * * std::shared_ptr<KinetoMobileCPUProfiler> profiler(m, filename, args); * m.forward(...); * * Since KinetoEdgeCPUProfiler object would then be constructed on heap * with its lifetime managed manually or via smart pointers. */ KinetoEdgeCPUProfiler( const torch::jit::mobile::Module& m, const std::string& fname, const bool report_input_shapes = false, const bool profile_memory = false, const bool with_stack = false, const bool with_flops = false, const bool with_modules = false, std::vector<std::string> events = {}, const bool adjust_vulkan_timestamps = false); const std::unique_ptr<torch::autograd::profiler::ProfilerResult>& disableProfiler(); const std::unique_ptr<torch::autograd::profiler::ProfilerResult>& getProfilerResult(); void recordBackendEvent( const int64_t start_time_us, const int64_t end_time_us, const int64_t debug_handle, const std::string& event_name, const std::string& backend_name); void recordBackendMemoryEvent( void* ptr, int64_t alloc_size, size_t total_allocated, size_t total_reserved, c10::Device device); ~KinetoEdgeCPUProfiler(); private: /* * We store a reference to Module to make such dependency explicit, since * a Module reference is already stored in a functor. */ const mobile::Module& m_; std::string trace_file_name_; std::unique_ptr<torch::autograd::profiler::ProfilerResult> profiler_result_; }; TORCH_API KinetoEdgeCPUProfiler* getCurrentEdgeProfiler(); #define RECORD_BACKEND_EVENT_TO_EDGE_PROFILER( \ start_time_us, end_time_us, debug_handle, event_name, backend_name) \ if (mobile::getCurrentEdgeProfiler()) { \ mobile::getCurrentEdgeProfiler()->recordBackendEvent( \ start_time_us, end_time_us, debug_handle, event_name, backend_name); \ } #define RECORD_BACKEND_MEMORY_EVENT_TO_EDGE_PROFILER( \ ptr, alloc_size, total_allocated, total_reserved, device) \ if (mobile::getCurrentEdgeProfiler()) { \ mobile::getCurrentEdgeProfiler()->recordBackendMemoryEvent( \ ptr, alloc_size, total_allocated, total_reserved, device); \ } #else #define RECORD_BACKEND_EVENT_TO_EDGE_PROFILER( \ start_time_us, end_time_us, debug_handle, event_name, backend_name) #define RECORD_BACKEND_MEMORY_EVENT_TO_EDGE_PROFILER( \ ptr, alloc_size, total_allocated, total_reserved, device) #endif } // namespace torch::jit::mobile ```
=============================================================================================================================================== SOURCE CODE FILE: promoted_prim_ops.h LINES: 1 SIZE: 1.08 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\promoted_prim_ops.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/mobile/prim_ops_registery.h> #include <torch/csrc/jit/mobile/register_ops_common_utils.h> namespace torch::jit { void tupleIndex(Stack& stack); void raiseException(Stack& stack); void is(Stack& stack); void unInitialized(Stack& stack); void isNot(Stack& stack); void aten_format(Stack& stack); void size(Stack& stack); void sym_size(Stack& stack); void sym_size_int(Stack& stack); void sym_stride_int(Stack& stack); void sym_numel(Stack& stack); void sym_storage_offset(Stack& stack); void sym_stride(Stack& stack); void device(Stack& stack); void device_with_index(Stack& stack); void dtype(Stack& stack); void layout(Stack& stack); void toPrimDType(Stack& stack); void dim(Stack& stack); void _not(Stack& stack); void boolTensor(Stack& stack); void toList(Stack& stack); void numToTensorScalar(Stack& stack); void isCuda(Stack& stack); void numToTensorBool(Stack& stack); void dictIndex(Stack& stack); void raiseExceptionWithMessage(Stack& stack); } // namespace torch::jit ```
========================================================================================================================================== SOURCE CODE FILE: quantization.h LINES: 1 SIZE: 1.24 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\quantization.h ENCODING: utf-8 ```h #pragma once #include <c10/macros/Export.h> #include <string> namespace torch::jit::mobile { class Module; namespace quantization { /* * Device side PTQ API. * Once the model has been prepared for quantization on server side, such model * is sent to device. On device side the model is further trained. At the end of * the training, before the model is readied for inference, we need to quantize * the model. * Usage of this API is as follows. * PTQQuanizationHelper ptq_helper; * ptq_helper.quantize_dynamic(m, "forward"); * Args: * m: Captured by reference, an instance of mobile::Module. This module will be * mutated in place to replace its <method_name> method with quantized * equivalent. method:name: Name of the method to be quantized. AOT preparation * for quantization must also have been done for this method. Returns: In place * mutated `m` whose size should be smaller due to weight quantization and whose * <method_name> method should use quantized ops */ class TORCH_API PTQQuanizationHelper { public: PTQQuanizationHelper() = default; void quantize_dynamic( torch::jit::mobile::Module& m, const std::string& method_name); }; } // namespace quantization } // namespace torch::jit::mobile ```
======================================================================================================================================================= SOURCE CODE FILE: register_ops_common_utils.h LINES: 1 SIZE: 1.70 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\register_ops_common_utils.h ENCODING: utf-8 ```h #pragma once #include <ATen/Context.h> #include <ATen/NativeFunctions.h> #include <ATen/core/ivalue.h> #include <ATen/core/stack.h> #include <torch/csrc/jit/runtime/jit_exception.h> #include <torch/csrc/jit/runtime/vararg_functions.h> namespace torch::jit { inline void noop(Stack& n) {} int64_t normalizeIndex(int64_t idx, int64_t list_size); // reference function THPVariable_to in python_variable_methods.cpp [[maybe_unused]] static at::Tensor to_dispatch( at::Tensor self, std::optional<at::Device> device, std::optional<at::ScalarType> scalarType, bool non_blocking, bool copy) { if (device && device->is_cuda()) { at::globalContext().lazyInitDevice(c10::DeviceType::CUDA); } if (!device && !scalarType && !copy) { return self; } else if (!device) { return self.to(*scalarType, non_blocking, copy); } else if (!scalarType) { return self.to(*device, non_blocking, copy); } else { return self.to(*device, *scalarType, non_blocking, copy); } } // Convert the tensor pointed to by \p data to a nested list. \p dim is the // number of dimensions in the tensor and \p cur_dim is the dimension being // processed by the current invocation. \p ty is the expected output IR type of // the operation. \p is the scalar type of \p data. \p sizes and \p strides are // the sizes and strides of the tensor operand and \p element_size is the size // in bytes of one tensor element. IValue tensorToListRecursive( char* data, int64_t cur_dim, int64_t num_tensor_dims, at::TypePtr ty, at::ScalarType scalar_ty, at::IntArrayRef sizes, at::IntArrayRef strides, size_t element_size); } // namespace torch::jit ```
========================================================================================================================================= SOURCE CODE FILE: type_parser.h LINES: 1 SIZE: 1.46 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\type_parser.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/dynamic_type.h> #include <ATen/core/jit_type.h> #include <unordered_set> namespace c10 { class TORCH_API TypeParser { public: explicit TypeParser(std::string pythonStr); explicit TypeParser(std::vector<std::string>& pythonStrs); TypePtr parse(); std::vector<TypePtr> parseList(); static const std::unordered_set<std::string>& getNonSimpleType(); static const std::unordered_set<std::string>& getCustomType(); std::unordered_set<std::string> getContainedTypes(); private: TypePtr parseNamedTuple(const std::string& qualified_name); TypePtr parseCustomType(); TypePtr parseTorchbindClassType(); TypePtr parseNonSimple(const std::string& token); void expect(const char* s); void expectChar(char c); template <typename T> TypePtr parseSingleElementType(); void lex(); std::string next(); std::string_view nextView(); void advance(); [[nodiscard]] std::string_view cur() const; std::string pythonStr_; size_t start_; std::string_view next_token_; // Used for parsing string list std::vector<std::string> pythonStrs_; std::unordered_map<std::string, c10::TypePtr> str_type_ptr_map_; // Store all contained types when parsing a string std::unordered_set<std::string> contained_types_; }; TORCH_API TypePtr parseType(const std::string& pythonStr); TORCH_API std::vector<TypePtr> parseType(std::vector<std::string>& pythonStr); } // namespace c10 ```
============================================================================================================================================= SOURCE CODE FILE: upgrader_mobile.h LINES: 1 SIZE: 0.92 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\mobile\upgrader_mobile.h ENCODING: utf-8 ```h #pragma once #include <ATen/core/ivalue_inl.h> #include <torch/csrc/jit/mobile/code.h> #include <torch/csrc/jit/mobile/function.h> #include <torch/csrc/jit/serialization/import_export_functions.h> #include <string> #include <unordered_map> #include <vector> namespace torch::jit { struct Instruction; struct Upgrader { int min_version; int max_version; std::string upgrader_name; int index; }; // From operator_versions.yaml TORCH_API const std::unordered_map<std::string, std::vector<Upgrader>> getOperatorVersionMapForMobile(); struct OperatorString { const std::string name; const std::string overload_name; const std::optional<int> num_specified_args; }; struct ByteCodeFunctionWithOperator { mobile::Function& function; std::vector<OperatorString> operators; }; TORCH_API const std::vector<ByteCodeFunctionWithOperator>& getUpgraderBytecodeList(); } // namespace torch::jit ```
============================================================================================================================================== SOURCE CODE FILE: add_if_then_else.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\add_if_then_else.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API bool AddIfThenElseOp(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
============================================================================================================================================ SOURCE CODE FILE: annotate_warns.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\annotate_warns.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void AnnotateWarns(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
====================================================================================================================================== SOURCE CODE FILE: autocast.h LINES: 1 SIZE: 0.25 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\autocast.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void Autocast(const std::shared_ptr<Graph>& graph); TORCH_API bool setAutocastMode(bool value); TORCH_API bool autocastEnabled(); } // namespace torch::jit ```
=========================================================================================================================================== SOURCE CODE FILE: bailout_graph.h LINES: 1 SIZE: 1.10 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\bailout_graph.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/core/ivalue.h> #include <ATen/core/jit_type.h> #include <ATen/core/stack.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> #include <list> #include <vector> namespace torch::jit { // Replaces prim::Guard nodes with prim::BailOut nodes and // computes sets of inputs needed to resume execution at // bailout points TORCH_API void InsertBailOuts(std::shared_ptr<Graph> graph); // Builds a bailout graph into `target` (which is an empty graph) // for a given bailout point `bailout_index` // from the original graph `orig` (the original unoptimized graph) // BailOut graphs allow Interpreter to resume // execution of the (un/de)optimized graph (i.e. // a graph that doesn't rely on any assumptions derived from // on profiling information) from a given BailOut point // should any of the assumptions fail for an actual input. TORCH_API std::shared_ptr<Graph> BuildBailOutGraphFrom( int64_t bailout_index, const std::shared_ptr<Graph>& orig, const std::shared_ptr<Graph>& target); } // namespace torch::jit ```
====================================================================================================================================== SOURCE CODE FILE: batch_mm.h LINES: 1 SIZE: 0.14 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\batch_mm.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void BatchMM(std::shared_ptr<Graph>& graph); } ```
========================================================================================================================================== SOURCE CODE FILE: canonicalize.h LINES: 1 SIZE: 0.48 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\canonicalize.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API std::shared_ptr<Graph> Canonicalize( const std::shared_ptr<Graph>& graph, bool keep_unique_names = true); TORCH_API void CanonicalizeOutputs(std::shared_ptr<Graph>& graph); TORCH_API std::optional<const Use> firstOrLastUse(Value* v, bool find_first); TORCH_API bool isBeforeOrAfter( const Use& a, const Use& b, bool checking_before); } // namespace torch::jit ```
========================================================================================================================================================== SOURCE CODE FILE: canonicalize_graph_fuser_ops.h LINES: 1 SIZE: 0.15 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\canonicalize_graph_fuser_ops.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void CanonicalizeOps(const std::shared_ptr<Graph>& graph); } ```
================================================================================================================================================= SOURCE CODE FILE: check_strict_fusion.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\check_strict_fusion.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void CheckStrictFusion(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
============================================================================================================================================= SOURCE CODE FILE: clear_profiling.h LINES: 1 SIZE: 0.47 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\clear_profiling.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/core/ivalue.h> #include <ATen/core/jit_type.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void unprofileGraphInputs(const std::shared_ptr<Graph>& graph); TORCH_API void unprofileBlock(Block* start_block); // Unprofiles all the node outputs in a block. TORCH_API void ClearProfilingInformation(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
================================================================================================================================================= SOURCE CODE FILE: clear_undefinedness.h LINES: 1 SIZE: 0.85 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\clear_undefinedness.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/core/ivalue.h> #include <ATen/core/jit_type.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Undefinedness makes argument matching fail for regular tensor operations // if 1+ arguments are undefined or possibly undefined tensors. // Technically, undefined tensors are **not** tensors as the regular tensor // operations do not know how to handle them. // However, in practice, there are guards and conversion operators that // **always** gate regular operations if undefined tensors may be present // Eventually, we would love to move to the world where we use optionals // in lieu of undefined tensors. // When this happens, this pass will be removed TORCH_API void ClearUndefinedness(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
============================================================================================================================================================== SOURCE CODE FILE: common_subexpression_elimination.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\common_subexpression_elimination.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API bool EliminateCommonSubexpression( const std::shared_ptr<Graph>& graph); } ```
======================================================================================================================================== SOURCE CODE FILE: concat_opt.h LINES: 1 SIZE: 0.53 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\concat_opt.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Eliminates common inputs among `aten::cat` ops. TORCH_API bool EliminateConcatCommonInputs(const std::shared_ptr<Graph>& graph); // Expands `aten::cat` ops into `aten::copy` ops and eliminates redudancies // in the buffers used for concatenation if possible. TORCH_API void ExpandConcatAndEliminateRedundancy( const std::shared_ptr<Graph>& graph); TORCH_API bool CombineConcats(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
============================================================================================================================================== SOURCE CODE FILE: constant_pooling.h LINES: 1 SIZE: 0.15 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\constant_pooling.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void ConstantPooling(const std::shared_ptr<Graph>& graph); } ```
================================================================================================================================================== SOURCE CODE FILE: constant_propagation.h LINES: 1 SIZE: 1.29 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\constant_propagation.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Runs constant propagation on all objects unless ignore_custom_classes is // specified as true, in which case user defined classes are skipped. This is // useful to prevent early fusion of packing operations, which end up lowering // away information about their constructors (e.g. packed::linear_clamp_prepack // and prepacked::conv2d_clamp_prepack) // Returns True if the pass made a change to the graph TORCH_API bool ConstantPropagation( std::shared_ptr<Graph>& graph, bool ignore_custom_classes = false); // runs constant propagation only on ops that have non-aliasing inputs & outputs // Returns True if the pass made a change to the graph TORCH_API bool ConstantPropagationImmutableTypes(std::shared_ptr<Graph>& graph); // Runs the node if its inputs are constants. Callers of this function must // make their own determination if constant prop is appropriate - for example // non-deterministic ops or ops with side effects. If ignore_custom_classes is // specified, nodes that output user defined classes are not run. TORCH_API std::optional<Stack> runNodeIfInputsAreConstant( const Node* node, bool ignore_custom_classes = false, AliasDb* db = nullptr); } // namespace torch::jit ```
======================================================================================================================================================= SOURCE CODE FILE: create_autodiff_subgraphs.h LINES: 1 SIZE: 0.52 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\create_autodiff_subgraphs.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> #include <cstddef> namespace torch::jit { // insert GraphExecutor nodes that group together // subgraphs that are differentiable by the jit's autodiff passes // threshold - minimum number of nodes that will appear in a block // returns all differentiable blocks that have been found TORCH_API std::vector<Node*> CreateAutodiffSubgraphs( const std::shared_ptr<Graph>& graph, size_t threshold = 2); } // namespace torch::jit ```
====================================================================================================================================================== SOURCE CODE FILE: create_functional_graphs.h LINES: 1 SIZE: 0.29 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\create_functional_graphs.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void CreateFunctionalGraphs(const std::shared_ptr<Graph>& graph); TORCH_API void InlineFunctionalGraphs(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
=================================================================================================================================================== SOURCE CODE FILE: dead_code_elimination.h LINES: 1 SIZE: 1.56 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\dead_code_elimination.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // If given a top-level graph, DCE will construct do alias analysis that allows // for "smarter" dead code elimination (we will eliminate mutable ops if we can // prove the mutated values are not used). Otherwise, we will not allow DCE to // eliminate mutable ops. // // So, prefer to use the graph version if you can. enum class DCESideEffectPolicy : uint8_t { // default behavior: dead code elimination will check if a node has side // effects // and not delete it if it does. DONT_DELETE_NODES_WITH_SIDE_EFFECTS, // with this flag, dead code elimination will not check if a node has side // effects and treat nodes with side effects like any other node, // i.e. delete them if their outputs aren't used anywhere. ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS }; TORCH_API void EliminateDeadCode( const std::shared_ptr<Graph>& graph, DCESideEffectPolicy sideEffectPolicy = DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS); TORCH_API void EliminateDeadCode( Block* block, bool recurse = true, DCESideEffectPolicy sideEffectPolicy = DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS); // Invoke the user-provided callback on all live values before deleting anything TORCH_API void EliminateDeadCode( Block* block, std::function<void(const std::unordered_set<const Value*>&)> cb, DCESideEffectPolicy sideEffectPolicy = DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS); } // namespace torch::jit ```
=========================================================================================================================================== SOURCE CODE FILE: decompose_ops.h LINES: 1 SIZE: 0.14 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\decompose_ops.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void DecomposeOps(std::shared_ptr<Graph>& graph); } ```
================================================================================================================================================== SOURCE CODE FILE: device_type_analysis.h LINES: 1 SIZE: 0.25 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\device_type_analysis.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { struct Graph; // Propagates Device type info throughout the given graph. TORCH_API bool DeviceTypePropagation(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
============================================================================================================================================ SOURCE CODE FILE: dtype_analysis.h LINES: 1 SIZE: 0.39 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\dtype_analysis.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> #include <memory> namespace torch::jit { struct Graph; // Propagate tensor properties (e.g., dtype, device, is_contiguous, layout) // propagation on all tensor objects. Currently, we only support dtype // propagation TORCH_API bool DtypePropagation(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
============================================================================================================================================== SOURCE CODE FILE: eliminate_no_ops.h LINES: 1 SIZE: 0.50 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\eliminate_no_ops.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Remove ops that do nothing on the forward pass (like aten::detach). // This pass is invoked as a part of freeze_module. // This function also takes a set of custom ops to eliminate. All ops in this // set must take their output as their first input, i.e. x = f(x, ...) TORCH_API bool EliminateNoOps( std::shared_ptr<Graph>& graph, std::unordered_set<c10::Symbol> custom_ops = {}); } // namespace torch::jit ```
================================================================================================================================================ SOURCE CODE FILE: erase_number_types.h LINES: 1 SIZE: 0.79 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\erase_number_types.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Erase NumberType information. This is necessary for and only used in // exporting to ONNX. This pass ensures that no remaining Values have // NumberType types, replacing them with tensors. // The following things are done to erase NumberType info: // - NumberType outputs are changed to DynamicType. // - prim::Constant nodes which are numbers get changed into 0-dim tensors of // the corresponding type // - prim::TensorToNum, aten::Float, aten::Int and prim::NumToTensor nodes // are erased. // // The pass assumes that DCE will be called sometime after. TORCH_API void EraseNumberTypes(const std::shared_ptr<Graph>& graph); TORCH_API void EraseNumberTypesOnBlock(Block* block); } // namespace torch::jit ```
====================================================================================================================================================== SOURCE CODE FILE: fixup_trace_scope_blocks.h LINES: 1 SIZE: 1.65 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\fixup_trace_scope_blocks.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Directly after tracing, we have an ill-formed graph with blocks inserted. // Example: // // graph(%self : ClassType<Module>, // %input.1 : Float(3, 4)): // %1 : ClassType<Module> = prim::GetAttr[name="relu1"](%self) // %2 : ClassType<Module> = prim::GetAttr[name="relu2"](%self) // %3 : ClassType<Module> = prim::GetAttr[name="rrr"](%2) // = prim::TracedModuleForward[scope="__module.relu1"]() // block0(): // %input : Float(3, 4) = aten::relu(%input.1), // -> () // = prim::TracedModuleForward[scope="__module.relu2"](), // block0(): // = prim::TracedModuleForward[scope="__module.relu2.rrr"](), // block0(): // %6 : Float(3, 4) = aten::relu(%input), // -> () // -> () // return (%6) // // In this pass, we: // 1) Lift Value defs to as high of a scope as needed to ensure that // they dominate all their uses. For example, `input` in the above // graph needs to be lifted to the top-level block so that its use // in the second `relu` operator is dominated. // 2) Lambda lift the blocks. This ensures that all values used within // each scope have their defs captured. // 3) Convert the scope blocks into methods on their respective Modules, // and convert TracedModuleForward nodes to CallMethod nodes into those // methods. // // Then, we'll have a well-formed graph with proper method calls. TORCH_API void FixupTraceScopeBlocks( std::shared_ptr<Graph>& graph, Module* self); } // namespace torch::jit ```
========================================================================================================================================== SOURCE CODE FILE: fold_conv_bn.h LINES: 1 SIZE: 0.98 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\fold_conv_bn.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> namespace torch::jit { /** \brief Fold Conv2d-BatchNorm2d into Conv2d in all methods of this * module and all its submodules, forward is included by default. * * The weight and bias of the Conv2d are correspondingly updated. Should only be * used on modules in eval mode. */ TORCH_API Module FoldConvBatchNorm(const Module& module); struct TORCH_API ConvBNParameters { at::Tensor conv_w; at::Tensor conv_b; at::Tensor bn_rm; at::Tensor bn_rv; double bn_eps = 0.0; at::Tensor bn_w; at::Tensor bn_b; }; /** * Given the current weight and bias tensors of a Conv module and parameters * of the BatchNorm module we're folding with, compute the updated values * for the weight and bias. * * The function is basically copied from torch/nn/utils/fusion.py */ TORCH_API std::tuple<at::Tensor, at::Tensor> computeUpdatedConvWeightAndBias( const ConvBNParameters& p); } // namespace torch::jit ```
============================================================================================================================================ SOURCE CODE FILE: fold_linear_bn.h LINES: 1 SIZE: 0.68 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\fold_linear_bn.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> namespace torch::jit { struct TORCH_API LinearBNParameters { at::Tensor linear_w; at::Tensor linear_b; at::Tensor bn_rm; at::Tensor bn_rv; double bn_eps = 0.0; at::Tensor bn_w; at::Tensor bn_b; }; /** * Given the current weight and bias tensors of a Linear module and parameters * of the BatchNorm module we're folding with, compute the updated values * for the weight and bias. * * The function is basically copied from torch/nn/utils/fusion.py */ TORCH_API std::tuple<at::Tensor, at::Tensor> computeUpdatedLinearWeightAndBias( const LinearBNParameters& p); } // namespace torch::jit ```
=========================================================================================================================================== SOURCE CODE FILE: freeze_module.h LINES: 1 SIZE: 1.22 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\freeze_module.h ENCODING: utf-8 ```h /** \brief This file defines freezing Torchscript module API. * * This API has python-binding and can be invoked directly or as a part of * general optimization pipeline. */ #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> /** \brief Freeze Module, i.e., Assume all attributes are constants. * * Freezing module is a functionality that allows the JIT to internalize * immutable attributes. Combined with inlining, the module is aggressively * optimized and significant overhead is optimized away. The freezeModule API * produces a cloned frozen module. */ namespace torch::jit { TORCH_API Module freeze_module( const Module& module, std::vector<std::string> preservedAttrs = std::vector<std::string>(), bool freezeInterfaces = true, bool preserveParameters = false); // Clone-free version of freeze_module. This modifies the module inplace. // Use this version to avoid extra memory usage incurred by cloning the module. TORCH_API void freeze_module_inplace( Module* module, std::vector<std::string> preservedAttrs = std::vector<std::string>(), bool freezeInterfaces = true, bool preserveParameters = false); } // namespace torch::jit ```
================================================================================================================================================== SOURCE CODE FILE: frozen_concat_linear.h LINES: 1 SIZE: 0.26 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\frozen_concat_linear.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Concats multiple linear ops with the same Tensor input // into a single linear op. TORCH_API bool FrozenConcatLinear(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
========================================================================================================================================================= SOURCE CODE FILE: frozen_conv_add_relu_fusion.h LINES: 1 SIZE: 0.31 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\frozen_conv_add_relu_fusion.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API extern std::function<void(std::shared_ptr<Graph>&)>& getFuseFrozenConvAddReluImpl(); TORCH_API void FuseFrozenConvAddRelu(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
================================================================================================================================================= SOURCE CODE FILE: frozen_conv_folding.h LINES: 1 SIZE: 0.85 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\frozen_conv_folding.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Fuses Convolution -> Batchnorm into a single Convolution by // folding batchnorm weights into conv weights. // This pass only works on Frozen Graphs; otherwise it is a No-Op. TORCH_API bool FoldFrozenConvBatchnorm(std::shared_ptr<Graph>& graph); // Fuses Convolution -> Add/Sub into a single Convolution by // folding add constant tensor into conv weights. // This pass only works on Frozen Graphs; otherwise it is a No-Op. TORCH_API bool FoldFrozenConvAddOrSub(std::shared_ptr<Graph>& graph); // Fuses Convolution -> Mul/Div into a single Convolution by // folding add constant tensor into conv weights. // This pass only works on Frozen Graphs; otherwise it is a No-Op. TORCH_API bool FoldFrozenConvMulOrDiv(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
======================================================================================================================================================== SOURCE CODE FILE: frozen_graph_optimizations.h LINES: 1 SIZE: 0.45 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\frozen_graph_optimizations.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> /** \brief Runs a set of Optimizations that Optimize Frozen Graphs * * Currently this set of optimizations is: * - FoldFrozenConvBatchnorm * - FoldFrozenConvAddOrSub * - FoldFrozenConvMulOrDiv * - FoldFrozenLinearBatchnorm */ namespace torch::jit { TORCH_API void OptimizeFrozenGraph( std::shared_ptr<Graph>& graph, bool optimize_numerics = true); } // namespace torch::jit ```
=================================================================================================================================================== SOURCE CODE FILE: frozen_linear_folding.h LINES: 1 SIZE: 0.35 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\frozen_linear_folding.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Fuses Linear -> BatchNormNd into a single Linear by // folding batchnorm weights into linear weights. // This pass only works on Frozen Graphs; otherwise it is a No-Op. TORCH_API bool FoldFrozenLinearBatchnorm(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
===================================================================================================================================================== SOURCE CODE FILE: frozen_linear_transpose.h LINES: 1 SIZE: 0.27 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\frozen_linear_transpose.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Transposes the weight matrix for frozen linear modules. // and converts it into a matmul TORCH_API bool FrozenLinearTranspose(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
================================================================================================================================================== SOURCE CODE FILE: frozen_ops_to_mkldnn.h LINES: 1 SIZE: 0.39 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\frozen_ops_to_mkldnn.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Converts operators & their parameters to mkldnn if it is profitable // Currently encompassing Conv2d and Conv3d, and Linear // Op must be in float32 and mkldnn must be built // This pass only works on frozen graph TORCH_API void ConvertFrozenOpsToMKLDNN(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
========================================================================================================================================= SOURCE CODE FILE: fuse_linear.h LINES: 1 SIZE: 0.75 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\fuse_linear.h ENCODING: utf-8 ```h /** \brief Fusing linear patterns as single at::linear for easier pattern * matching in later passes */ #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { /** \brief Match the at::linear pattern and fuse it into a single at::linear * This pass fuse the addmm or matmul + add generated by JIT back to linear * This pass can be deleted once the JIT can emit the aten::linear in the future */ TORCH_API void FuseLinear(std::shared_ptr<Graph>& graph); /** Swap functional linear CallFunctions to aten::linear */ TORCH_API void SwapFunctionalLinear(std::shared_ptr<Graph>& graph); /** Swap all functional linear CallFunctions in module */ TORCH_API void SwapFunctionalLinear(Module& module); } // namespace torch::jit ```
======================================================================================================================================= SOURCE CODE FILE: fuse_relu.h LINES: 1 SIZE: 0.25 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\fuse_relu.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void FuseAddRelu(script::Module& module); TORCH_API void FuseAddRelu(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
========================================================================================================================================= SOURCE CODE FILE: graph_fuser.h LINES: 1 SIZE: 1.23 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\graph_fuser.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API bool canFuseOnCPULegacy(); TORCH_API void overrideCanFuseOnCPULegacy(bool value); // NB: Be sure to run DCE before fusion, because dead instructions // can prevent fusion opportunities from being exploited. // On Windows will noop, NYI TORCH_API void FuseGraph( std::shared_ptr<Graph>& graph, bool strict_fuser_check = false); // \brief Custom fusion pass using a node-level callback to // determine the inclusion of nodes in a subgraph. // // This helper omits aliased inputs and fusion across control flow // boundaries. // // \arg graph The graph to be modified in-place // \arg is_fusable A callback run on each fusable node in the graph. // \arg kind The label given to the resultant fused subgraph // \arg arg_limit The maximum number of args the resultant fused subgraph // should have. Note: This will likely develop into a general // post condition on the fused subgraph. TORCH_API void CustomFuseGraph( std::shared_ptr<Graph>& graph, const std::function<bool(Node*)>& is_fusable, Symbol kind, size_t arg_limit = std::numeric_limits<size_t>::max()); } // namespace torch::jit ```
================================================================================================================================================== SOURCE CODE FILE: graph_rewrite_helper.h LINES: 1 SIZE: 1.74 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\graph_rewrite_helper.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> #include <torch/csrc/jit/ir/irparser.h> #include <torch/csrc/jit/ir/subgraph_matcher.h> #include <torch/csrc/jit/passes/subgraph_rewrite.h> namespace torch::jit::graph_rewrite_helper { std::string getFuncName(Value* func_value); Value* getValue( const std::string& name, const std::unordered_map<const Value*, Value*>& match_vmap, const std::unordered_map<std::string, Value*>& vmap); std::optional<IValue> getIValue( const std::string& name, const std::unordered_map<const Value*, Value*>& match_vmap, const std::unordered_map<std::string, Value*>& vmap); TORCH_API void replaceConvolutionWithAtenConv(std::shared_ptr<Graph>& graph); bool isClampFusable( const Match& match, const std::unordered_map<std::string, Value*>& vmap); // This struct contains a compiled IR patterns slated for use in the // findPatternMatches function. The struct encapsulates the common // information from parseIR that is used in conjunction with the // pattern matching facility. A const instance of this struct can // also be stored away to cache the compiled IR pattern and reduce // runtime cost struct PatternInfo { std::string pattern_string; std::unique_ptr<Graph> pattern_graph; std::unordered_map<std::string, Value*> vmap; std::vector<MatchFilter> filters; static PatternInfo parse_from_str( std::string pattern_string, const std::vector<MatchFilter>& filters = {}) { PatternInfo rv{ std::move(pattern_string), std::make_unique<Graph>(), decltype(vmap){}, filters}; parseIR(rv.pattern_string, rv.pattern_graph.get(), rv.vmap); return rv; } }; } // namespace torch::jit::graph_rewrite_helper ```
=============================================================================================================================================== SOURCE CODE FILE: guard_elimination.h LINES: 1 SIZE: 0.36 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\guard_elimination.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/core/ivalue.h> #include <ATen/core/jit_type.h> #include <ATen/core/stack.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> #include <list> #include <vector> namespace torch::jit { TORCH_API void EliminateRedundantGuards(std::shared_ptr<Graph> graph); } // namespace torch::jit ```
====================================================================================================================================================== SOURCE CODE FILE: hoist_conv_packed_params.h LINES: 1 SIZE: 0.19 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\hoist_conv_packed_params.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { void HoistConvPackedParams(script::Module& m); } // namespace torch::jit ```
======================================================================================================================================================= SOURCE CODE FILE: inline_autodiff_subgraphs.h LINES: 1 SIZE: 0.26 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\inline_autodiff_subgraphs.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API bool canRunWithAutograd(Node* node); TORCH_API void InlineAutodiffSubgraphs( std::shared_ptr<Graph>& graph, size_t threshold = 5); } // namespace torch::jit ```
============================================================================================================================================== SOURCE CODE FILE: inline_fork_wait.h LINES: 1 SIZE: 0.52 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\inline_fork_wait.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Inline Fork and Wait calls. This is used, for example, in ONNX export, where // we do not support the explicit parallelism structures and would rather // just have a flat graph. This inlines the forked section in the fork() // callsite and replaces uses of the result of wait() calls with the values // produced from the (now-inlined) forked section. TORCH_API void InlineForkWait(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
==================================================================================================================================================== SOURCE CODE FILE: inline_forked_closures.h LINES: 1 SIZE: 0.21 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\inline_forked_closures.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void inlineForkedClosures(std::shared_ptr<Graph>& to_clean); } // namespace torch::jit ```
===================================================================================================================================== SOURCE CODE FILE: inliner.h LINES: 1 SIZE: 0.24 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\inliner.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Inline function and method calls. TORCH_API void Inline(Graph& graph); TORCH_API GraphFunction* tryToGraphFunction(Node* n); } // namespace torch::jit ```
=========================================================================================================================================== SOURCE CODE FILE: inplace_check.h LINES: 1 SIZE: 0.14 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\inplace_check.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void CheckInplace(std::shared_ptr<Graph>& graph); } ```
=========================================================================================================================================== SOURCE CODE FILE: insert_guards.h LINES: 1 SIZE: 0.42 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\insert_guards.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/core/ivalue.h> #include <ATen/core/jit_type.h> #include <ATen/core/stack.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> #include <list> #include <vector> namespace torch::jit { TORCH_API void InsertGuards(std::shared_ptr<Graph> graph); TORCH_API void RemoveProfilingNodes(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
====================================================================================================================================================== SOURCE CODE FILE: integer_value_refinement.h LINES: 1 SIZE: 0.21 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\integer_value_refinement.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // return true if graph is modified TORCH_API bool RefineIntegerValues(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
=========================================================================================================================================== SOURCE CODE FILE: lift_closures.h LINES: 1 SIZE: 0.20 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\lift_closures.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void liftClosures(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
====================================================================================================================================== SOURCE CODE FILE: liveness.h LINES: 1 SIZE: 0.63 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\liveness.h ENCODING: utf-8 ```h #pragma once #include <ATen/ATen.h> #include <ATen/core/ivalue.h> #include <ATen/core/jit_type.h> #include <ATen/core/stack.h> #include <c10/util/sparse_bitset.h> #include <torch/csrc/Export.h> #include <torch/csrc/jit/ir/ir.h> #include <list> #include <unordered_map> #include <vector> namespace torch::jit { using SparseBitVector = ::c10::SparseBitVector<256>; // BuildLivenessSets computes "bailout" liveness which is equivalent to // "{LIVE_IN} or {GEN}" or "{LIVE_OUT} - {KILL}" TORCH_API std::unordered_map<Node*, std::vector<Value*>> BuildLivenessSets( std::shared_ptr<Graph> graph); } // namespace torch::jit ```
============================================================================================================================================ SOURCE CODE FILE: loop_unrolling.h LINES: 1 SIZE: 0.99 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\loop_unrolling.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // return true if graph is modified TORCH_API bool UnrollLoops(std::shared_ptr<Graph>& graph); // Only unrolls constant loops. Will unroll them regardless of loop block size TORCH_API bool UnrollConstantLoops(std::shared_ptr<Graph>& graph); TORCH_API Node* PeelLoop(Node* n, size_t times); // return true if graph is modified TORCH_API bool PeelProfilingLoops(const std::shared_ptr<Graph>& graph); struct TORCH_API LoopsPeeler { LoopsPeeler(std::function<bool(Node* n)> callback, size_t num_iterations = 1) : callback_(std::move(callback)), num_iterations_(num_iterations) {} bool run(const std::shared_ptr<Graph>& graph); private: void collectLoop(Node* n); void collectLoops(Block* block); void peelLoops(); std::function<bool(Node* n)> callback_ = nullptr; Node* in_loop_ = nullptr; std::list<Node*> loops_to_peel_; size_t num_iterations_ = 1; }; } // namespace torch::jit ```
=========================================================================================================================================== SOURCE CODE FILE: lower_grad_of.h LINES: 1 SIZE: 0.33 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\lower_grad_of.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // This pass removes 'grad_of' nodes, replacing them with conditionals of // the form: // if any_defined(inputs): // outputs = <original_computation> // else: // outputs = undefineds TORCH_API void LowerGradOf(Graph& g); } // namespace torch::jit ```
========================================================================================================================================= SOURCE CODE FILE: lower_graph.h LINES: 1 SIZE: 0.73 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\lower_graph.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { using ModulePtr = c10::intrusive_ptr<c10::ivalue::Object>; // Given a graph with of a method which first argument is %self, lower it to a // graph where all attributes accesses are replaced with explicit inputs of the // graph (rather than results of prim::GetAttr executed on %self). // // Returns a tuple (graph, parameters) where the last module.parameters.size() // inputs to the graph are the trainable parameters used in this method. The // remaining inputs are the true inputs to the function. TORCH_API std::pair<std::shared_ptr<Graph>, std::vector<IValue>> LowerGraph( Graph& graph, const ModulePtr& self); } // namespace torch::jit ```
========================================================================================================================================== SOURCE CODE FILE: lower_tuples.h LINES: 1 SIZE: 0.64 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\lower_tuples.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // removes tuples where TupleConstruct and TupleUnpack are matched // but leaves tuples in place across if statements, loops, and as inputs/outputs TORCH_API void LowerSimpleTuples(const std::shared_ptr<Graph>& graph); // removes _all_ tuples and raises an error if some cannot be removed // this is used by ONNX to ensure there are not tuples before conversion, // but will not work on graphs whose inputs contain tuples. TORCH_API void LowerAllTuples(const std::shared_ptr<Graph>& graph); TORCH_API void LowerSimpleTuples(Block* block); } // namespace torch::jit ```
=========================================================================================================================================== SOURCE CODE FILE: metal_rewrite.h LINES: 1 SIZE: 0.58 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\metal_rewrite.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> #include <string> #include <vector> namespace torch::jit { TORCH_API void metalInsertPrePackedOps(std::shared_ptr<Graph>& graph); TORCH_API void metalInsertPrePackedOps(script::Module& module); TORCH_API void metalFusePrePackedConvWithClamp(script::Module& module); TORCH_API void metalFoldPrePackingOps(script::Module& module); TORCH_API script::Module metalOptimizeForMobile( const script::Module& module, const std::vector<std::string>& preserved_methods); } // namespace torch::jit ```
============================================================================================================================================ SOURCE CODE FILE: mkldnn_rewrite.h LINES: 1 SIZE: 0.62 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\mkldnn_rewrite.h ENCODING: utf-8 ```h #pragma once #include <ATen/Config.h> #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> #include <torch/csrc/jit/passes/subgraph_rewrite.h> #if AT_MKLDNN_ENABLED() #include <ideep/tensor.hpp> #endif // AT_MKLDNN_ENABLED() namespace torch::jit { #if AT_MKLDNN_ENABLED() namespace mkldnn { const static std::map<std::string, std::vector<torch::jit::MatchFilter>> fusion_rewrite_map = { {"none", {}}, {"relu", {}}, }; } // namespace mkldnn #endif // AT_MKLDNN_ENABLED() void FuseConvWithEltwise(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
=================================================================================================================================================== SOURCE CODE FILE: mobile_optimizer_type.h LINES: 1 SIZE: 0.24 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\mobile_optimizer_type.h ENCODING: utf-8 ```h #pragma once #include <cstdint> enum class MobileOptimizerType : int8_t { CONV_BN_FUSION, INSERT_FOLD_PREPACK_OPS, REMOVE_DROPOUT, FUSE_ADD_RELU, HOIST_CONV_PACKED_PARAMS, CONV_1D_TO_2D, VULKAN_AUTOMATIC_GPU_TRANSFER, }; ```
=========================================================================================================================================== SOURCE CODE FILE: normalize_ops.h LINES: 1 SIZE: 0.51 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\normalize_ops.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // This pass converts aten ops to a normalized form. It is // run immediately after IR generation in both the tracer and compiler, // so downstream consumers of the IR do not need handle ops in their // pre-normalized form. // Currently only handles normalization of op aliases. TORCH_API void NormalizeOps(const std::shared_ptr<Graph>& graph); const std::unordered_map<Symbol, Symbol>& getOperatorAliasMap(); } // namespace torch::jit ```
================================================================================================================================================ SOURCE CODE FILE: onednn_graph_fuser.h LINES: 1 SIZE: 1.43 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\onednn_graph_fuser.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> #include <torch/csrc/jit/passes/pass_manager.h> #include <ATen/Config.h> namespace torch::jit { namespace fuser::onednn { static std::atomic<bool> onednn_enabled{true}; static std::atomic<bool>& getLlgaEnabled() { return onednn_enabled; } TORCH_API void fuseGraph(std::shared_ptr<Graph>& g); } // namespace fuser::onednn struct C10_EXPORT RegisterLlgaFuseGraph : public PassManager<RegisterLlgaFuseGraph> { static bool setEnabled(bool enabled) { TORCH_CHECK( AT_MKLDNN_ENABLED(), "Running oneDNN Graph fuser is only supported with MKLDNN builds."); bool oldState = fuser::onednn::getLlgaEnabled(); fuser::onednn::getLlgaEnabled() = enabled; if (enabled) { registerPass(fuser::onednn::fuseGraph); } else { clearPass(); } return oldState; } static bool isEnabled() { return fuser::onednn::getLlgaEnabled(); } // override PassManager::registerPass to register pre-pass static bool registerPass(GraphPass p) { if (!isRegistered()) { passID(registerPrePass(std::move(p)), true); isRegistered(true); return false; } return true; } // override PassManager::clearPass to clear pre-pass static void clearPass() { if (isRegistered()) { clearPrePass(passID()); isRegistered(true); } } }; } // namespace torch::jit ```
================================================================================================================================== SOURCE CODE FILE: onnx.h LINES: 1 SIZE: 0.84 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\onnx.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> #include <torch/csrc/onnx/onnx.h> #include <torch/csrc/utils/pybind.h> namespace torch::jit { TORCH_API std::shared_ptr<Graph> ToONNX( std::shared_ptr<Graph>& state, ::torch::onnx::OperatorExportTypes operator_export_type); TORCH_API py::dict BlockToONNX( Block* old_block, Block* new_block, ::torch::onnx::OperatorExportTypes operator_export_type, py::dict& env, py::set& values_in_env, bool is_sub_block = false); TORCH_API void NodeToONNX( Node* old_node, Block* new_block, ::torch::onnx::OperatorExportTypes operator_export_type, py::dict& env, py::set& values_in_env); TORCH_API void RemovePrintOps(std::shared_ptr<Graph>& graph); TORCH_API void PreprocessCaffe2Ops(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
========================================================================================================================================== SOURCE CODE FILE: pass_manager.h LINES: 1 SIZE: 4.57 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\pass_manager.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> /* `getCustomPrePasses()` returns a vector of passes that will be executed * after differentiation but before any fusion. This is the de-facto location * for compiler backends to insert passes. * * `getCustomPostPasses()` returns a vector of passes that will be * executed after differentiation and after fusion (if any). This is the * location for fusion cleanup passes if they are needed. * * Static registration of a pass can be done by creating a global * `Register{Pre,Post}Pass r(Pass)` variable in a compilation unit. * * pass_manager.h uses a Meyer's singleton to store a vector of `Pass`es, which * modify the IR graph in place. */ namespace torch::jit { // A pass modifies a Graph in place. using GraphPass = std::function<void(std::shared_ptr<Graph>&)>; // Since Passes are std::functions, we associate a UUID to each pass, this way // if we want to deregister a pass, we have something to reference it by. using GraphPassNameType = unsigned int; // Graph pass entries have a name associated with them using GraphPassEntry = std::pair<GraphPass, GraphPassNameType>; // Return currently registered passes. Passes are stored in a static vector TORCH_API std::vector<std::pair<GraphPass, GraphPassNameType>>& getCustomPostPasses(); TORCH_API std::vector<std::pair<GraphPass, GraphPassNameType>>& getCustomPrePasses(); TORCH_API GraphPassNameType registerPostPass(GraphPass p); TORCH_API GraphPassNameType registerPrePass(GraphPass p); // Look up pass by name passed in, remove it from registered passes TORCH_API void clearPostPass(GraphPassNameType p); TORCH_API void clearPrePass(GraphPassNameType p); // Remove all passes TORCH_API void clearAllPostPasses(); TORCH_API void clearAllPrePasses(); // LEGACY CALL struct TORCH_API RegisterPostPass { RegisterPostPass(GraphPass p); }; using RegisterPass = RegisterPostPass; /* * PassManager is a wrapper on the register/clear PostPass functions above. It * will register the pass provided in "registerPass" and will hold on to its * associated name that way clearPass can be later called and will delete the * pass used to register when called. * * PassManager is templated because we want static variables based on a * particular GraphPass. When deriving from PassManager, you should send as the * template parameter your derived class as you would for the curiously * recurring template pattern. This template parameter isn't actually used and * is simply done to prevent static members from being shared across derived * types. */ template <typename DerivedType> struct C10_EXPORT PassManager { private: // We want this class to be abstract because it's virtual void abstract() = 0; protected: /* * isRegistered() will return if a pass has been registered * isRegistered(true) will change the value of the internal static bool * * There's an internal static bool to this function to keep track of the * state, this is so when functions are derived from this class, they don't * have to worry about initializing the static members. */ static bool isRegistered(bool flip_bit = false) { static bool val = false; if (flip_bit) val = !val; return val; } /* * name() will return the name of the registered pass * name(pass_name, true) will set the name of the pass * Similarly to isRegistered we use an internal static variable to hold the * name. */ static GraphPassNameType passID( GraphPassNameType PassID = 0, bool set = false) { static GraphPassNameType pass_id = 0; if (set) pass_id = PassID; return pass_id; } public: // registerPass(pass) will register the pass provided and set the // name/isRegistered functions appropriately, it returns a bool value // indicating whether the given pass is already registered previously. static bool registerPass(GraphPass p) { if (!isRegistered()) { // If we don't already have a registered pass, register pass // hold on to its name, change isRegistered to true passID(registerPostPass(std::move(p)), true); isRegistered(true); return false; } return true; } // Calls ClearPostPass(passID()) static void clearPass() { // If the pass is registered, clear it and change isRegistered to false. if (isRegistered()) { clearPostPass(passID()); isRegistered(true); } } // clang-tidy requires virtual destructor; virtual ~PassManager() = default; }; } // namespace torch::jit ```
====================================================================================================================================== SOURCE CODE FILE: peephole.h LINES: 1 SIZE: 0.49 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\peephole.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // return true if graph is modified TORCH_API bool PeepholeOptimize( const std::shared_ptr<Graph>& graph, bool disable_shape_peepholes = false); // return true if graph is modified TORCH_API bool PeepholeOptimize( Block* block, bool disable_shape_peepholes = false); // return true if graph is modified TORCH_API bool FuseAddMM(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
====================================================================================================================================================== SOURCE CODE FILE: peephole_alias_sensitive.h LINES: 1 SIZE: 0.42 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\peephole_alias_sensitive.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Peephole Optimizes alias sensitive peepholes // Currently this is invoked as part of PeepholeOptimize // return true if graph is modified // Optimizes on TensorType if shape_peepholes is true TORCH_API bool PeepholeOptimizeAliasSensitive( const std::shared_ptr<Graph>& graph, bool shape_peepholes); } // namespace torch::jit ```
================================================================================================================================================== SOURCE CODE FILE: peephole_dict_idioms.h LINES: 1 SIZE: 0.99 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\peephole_dict_idioms.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Peephole Optimizes Dict Ops such as len() and __getitem__ // 1. getitem optimizations // Given a function like this: // def foo(): // d = {0 : 1} // x = d[0] // return x // This pass produces (after dead code elimination): // def foo(a, b): // return 1 // // This optimization can only happen if the dict is not modified // and the dict has constant, non overlapping keys. // // 2. len optimizations // Given a function like this: // def foo(): // d = {0 : 1} // return len(d) // This pass produces (after dead code elimination): // def foo(): // return 1 // // This has the same requirements as the getitem optimizations. // // Currently this is invoked as part of PeepholeOptimize // return true if graph is modified. TORCH_API bool PeepholeOptimizeDictIdioms(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
================================================================================================================================================== SOURCE CODE FILE: peephole_list_idioms.h LINES: 1 SIZE: 2.00 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\peephole_list_idioms.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // Peephole Optimizes List ops such as len(li) and li[1]. // 1. Construct/Unpack optimizations // Given a function like this: // def foo(a, b): // li = [a, b] // x, y = li // return x, y // This pass produces (after dead code elimination): // def foo(a, b): // return a, b // // This is only applied to lists that are not modified. // // 2. getitem optimizations // Given a function like this: // def foo(a, b): // li = [a, b] // x = li[0] // return x // This pass produces (after dead code elimination): // def foo(a, b): // return a // // This optimization can only happen if the list is not modified. // // 3. len optimizations // Given a function like this: // def foo(): // li = [1, 2] // return len(li) // This pass produces (after dead code elimination): // def foo(): // return 2 // // This has the same requirements as the getitem optimizations. // // 4. ListConstruct + ListConstruct // Given a function like this: // def foo(): // return [1, 2] + [3, 4] // This pass produces (after dead code elimination): // def foo(): // return [1, 2, 3, 4] // // This is only applied to lists that are not modified. // // 5. Slice // Given a function like this: // def foo(): // return [1, 2, 3, 4, 5][0:2] // This pass produces (after deadcode elimination): // def foo(): // return [1, 2] // // Currently this is invoked as part of PeepholeOptimize // return true if graph is modified. // If `refine_list_len` is true will attempt to refine the len of lists through // len comparisons and assertions. This does not generally optimize pytorch // programs so it is not called by default in PeepholeOptimize. TORCH_API bool PeepholeOptimizeListIdioms( const std::shared_ptr<Graph>& graph, bool refine_list_len = false); } // namespace torch::jit ```
================================================================================================================================================= SOURCE CODE FILE: peephole_non_tensor.h LINES: 1 SIZE: 0.32 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\peephole_non_tensor.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { // return true if graph is modified // Optimizing General Graph Patterns that // are not covered in peephole.cpp and peephole_list_idioms TORCH_API bool PeepholeOptimizeNonTensor(const std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
============================================================================================================================================= SOURCE CODE FILE: prepack_folding.h LINES: 1 SIZE: 0.34 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\prepack_folding.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { using PrePackingOpsFilterFn = std::function<bool(Node*)>; void PrePackingOpsFolder( script::Module& m, const PrePackingOpsFilterFn& is_foldable_op, const std::string& attr_prefix); } // namespace torch::jit ```
============================================================================================================================================================ SOURCE CODE FILE: dedup_module_uses.h LINES: 1 SIZE: 0.81 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\quantization\dedup_module_uses.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> namespace torch::jit { /** Recursively deduplicate multiple uses of the same module by * creating an instance clone for each use of the module, which means * the type will be the same as before and all the attributes will be * copied, then we'll change the use of the original module to the use * of cloned module in the Graph. * * This is done to ensure that modules can survive destructive passes * without changing model behavior. For example, here: * * x = self.conv1(x) * x = self.relu(x) * x = self.conv2(x) * x = self.relu(x) * * self.relu needs to be deduplicated for potential future destructive passes * to work properly. */ TORCH_API void DedupModuleUses(Module& module); } // namespace torch::jit ```
=================================================================================================================================================== SOURCE CODE FILE: finalize.h LINES: 1 SIZE: 2.30 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\quantization\finalize.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> #include <torch/csrc/jit/passes/quantization/quantization_type.h> namespace torch::jit { /** \brief Backend specific pass to fuse dequantize - op - quantize calls * as quantized_op calls. * * Right now this is a fusion for fbgemm backend and only works for quantized * conv op, we'll extend to more ops and more backends in the future. * * Currently supported fusion: * q(conv2d(dq(a), dq(w), dq(b))) --> to_nchw(fbgemm_conv2d(prepack(to_nhwc(a)), * prepack(to_nhwc(w)), * prepack(to_nhwc(b)))) * * q(linear(dq(a), dq(w), dq(b))) --> to_nchw(fbgemm_linear(prepack(to_nhwc(a)), * prepack(to_nhwc(w)), * prepack(to_nhwc(b)))) * * \param graph the graph we want to apply fusion */ TORCH_API void QuantFusion( std::shared_ptr<Graph>& graph, QuantType quant_type = QuantType::STATIC); /** \brief Insert prepack and unpack function in graph * We want add pack/unpack functions for quantized weight because later we want * to fold the packed weight as an attribute of the module, in order to reduce * the cost of packing the weight on the fly in quantized models. * * Each quantized op has it's corresponding prepack/unpack function, * right now, we only need to do prepack/unpack for quantized::linear * and quantized::conv2d. */ TORCH_API void InsertPrepackUnpack(std::shared_ptr<Graph>& graph); /** \brief Insert pack and unpack function in all graphs * of module * * Go through graphs of all the methods of all child modules * and call InsertPrepackUnpack on the graph. */ TORCH_API void InsertPrepackUnpack(Module& module); TORCH_API script::Module Finalize( script::Module& module, QuantType quant_type = QuantType::STATIC, const std::vector<std::string>& preserved_attrs = std::vector<std::string>()); TORCH_API void FoldQuantizedPrepackingOps(Module& module); TORCH_API Module FinalizeOnDevicePTQ( Module& module, QuantType quant_type, const std::string& method_name); } // namespace torch::jit ```
======================================================================================================================================================== SOURCE CODE FILE: fusion_passes.h LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\quantization\fusion_passes.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/ir/ir.h> namespace torch::jit { TORCH_API void FuseQuantizedAddRelu(std::shared_ptr<Graph>& graph); } // namespace torch::jit ```
================================================================================================================================================= SOURCE CODE FILE: helper.h LINES: 1 SIZE: 7.49 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\quantization\helper.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/ir/ir.h> #include <torch/csrc/jit/ir/subgraph_matcher.h> #include <torch/csrc/jit/passes/graph_rewrite_helper.h> #include <torch/csrc/jit/passes/quantization/quantization_type.h> #include <functional> #include <regex> namespace torch::jit { using graph_rewrite_helper::getFuncName; // Vector of a module and the name of its method using ModuleMethodVector = std::vector<std::pair<Module, std::string>>; // Map of quantization parameter name and value // for example _scale, _zero_point, // _scalar_type and _axis(for per channel quantization) using QParamVector = std::vector<std::pair<std::string, IValue>>; // =========== helper functions for Value ========= // Check if a value is weight, since we need to use weight observer // for weight TORCH_API bool isWeight(Value* v); // Check if a value is bias for conv and linear, which we do not // quantize TORCH_API bool isBiasOfConvOrLinear(Value* v); TORCH_API bool isEmbeddingBagNonInput(Value* v); // Get the use as scalar input of clamp ops for the input value std::optional<Use> getClampScalarInputUse(Value* v); // For a given value `v`, get the list of values that we need to check // if they are observed/quantized or not, if so, we can say the // `v` is also observed/quantized, since we can derive // the quantization parameters for `v` given the list of values TORCH_API std::vector<Value*> getPassThroughInputs(Value* v); // Clones the method by the name of orig_method_name into new_method_name method TORCH_API void cloneMethod( Module& module, const std::string& orig_method_name, const std::string& new_method_name); // Check if a value in the graph is a Scalar value TORCH_API bool isScalar(Value* v); // Check if value is the input of the graph TORCH_API bool hitGraphInput(Value* value); // Converts a mangled name, such as // __torch__.torch.ao.nn.quantized.modules.conv.___torch_mangle_7.Conv2d // into an unmangled name, such as // __torch__.torch.ao.nn.quantized.modules.conv.Conv2d TORCH_API std::string removeTorchMangle(const std::string& orig_name); // Return the module name that corresponds to the value. TORCH_API std::optional<std::string> getModuleName(Value* value); // =========== helper functions for Node ========= TORCH_API bool isSingleInputGeneralShapeAtenFunction(Node* n); TORCH_API bool isSingleInputGeneralValueAtenFunction(Node* n); TORCH_API bool isSingleInputGeneralCallFunction(Node* n); TORCH_API bool isSingleInputGeneralAtenFunction(Node* n); TORCH_API bool isClamp(Node* n); // Check if the node will produce the same result regardless of whether // the input tensor is quantized or not, example: aten::size TORCH_API bool isTensorInfoNode(Node* n); // Check if this the propagate op that has single input, e.g. aten::cat TORCH_API bool isPropagateQuantSingleInputOp(Node* n); // Check if this is the propagate op that has two inputs, e.g. aten::add TORCH_API bool isPropagateQuantBinaryOp(Node* n); // Check if this is the node that we'll quantize or not quantize depending on // whether the input of the node is quantized, example: aten::cat TORCH_API bool isPropagateQuantOp(Node* n); // Check if the node is a binary op like aten::add and aten::mul and // if the input 1 is a scalar, these ops will be quantized to // quantized::{op}_scalar TORCH_API bool isBinaryOpWithScalarInput(Node* n); TORCH_API std::optional<std::tuple<c10::QScheme, QParamVector>> getFixedQParams( Node* n); // We don't want to analyze the graph for some `builtin` CallFunctions // like `linear` because we want to preserve the op boundary TORCH_API bool userDefinedCallFunction(Node* n); // Check if the node has scalar input TORCH_API bool hasScalarInput(Node* n); // Check if a node is quantizable TORCH_API bool nodeQuantizable( Node* n, QuantType quant_type = QuantType::STATIC); // Nodes which only require quantization of weight value, eg. embedding_bag bool isWeightOnlyStaticQuantOp(Node* n); // Check if a use of the value is quantizable, this depends on // both the use node and the offset TORCH_API bool useQuantizable(const Use& use, QuantType quant_type); // Given a CallFunction node, extract the graph of the called function TORCH_API std::shared_ptr<Graph> getCallFunctionGraph(Node* n); // Check if `use` is a CallFunction of name `func_name` and if value // `v` is the nth argument (if provided) of the function bool matchCallFuncToUse( const Use& use, const std::string& func_name, std::optional<int> nth_arg); // Check if `use` is a AtenFunction of name `func_name` and if value // `v` is the nth argument (if provided) of the function bool matchAtenFuncToUse( const Use& use, const std::string& func_name, std::optional<int> nth_arg); // =========== helper functions for Block ========= // checks if a block will always raise an Exception TORCH_API bool alwaysRaisesException(Block* block); // =========== helper functions for Module ========== // TODO: remove TORCH_API std::vector<std::string> getModuleAccessPath( Value* instance, Value* self); // TODO: remove TORCH_API Module findChildModule(const Module& module, const std::vector<std::string>& path); // Given an CallMethod node, get the module instance corresponding // to the instance Value // TODO: refactor all current uses of this function to the Opt one TORCH_API Module getInvokedModule(Module& module, Node* n, Value* self); // Given an CallMethod node, get the module instance corresponding // to the instance Value if the instance is a module, otherwise return // std::nullopt std::optional<Module> getInvokedModuleOpt( const Module& module, Node* n, Value* self); // ==================== filter functions for matches ============== // filter to check Value `vname` is a constant of int value `value` bool is_int_constant( const Match& match, const std::unordered_map<std::string, Value*>& vmap, const std::string& vname, int value); // filter to check if the %alpha argument of aten::add is constant 1 bool aten_add_alpha_is_one( const Match& match, const std::unordered_map<std::string, Value*>& vmap); // filter to check if the functional in CallFunction is relu bool is_functional_relu( const Match& match, const std::unordered_map<std::string, Value*>& vmap); // filter to check if the module is torch.nn.ReLU bool is_relu_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); bool is_linear_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); // TODO: add a macro to declare the filters bool is_conv1d_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); bool is_conv2d_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); bool is_conv3d_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); bool is_conv_transpose1d_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); bool is_conv_transpose2d_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); bool is_batchnorm2d_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); bool is_batchnorm3d_module( const Match& match, const std::unordered_map<std::string, Value*>& vmap); } // namespace torch::jit ```
=========================================================================================================================================================== SOURCE CODE FILE: insert_observers.h LINES: 1 SIZE: 2.34 KB PATH: scripts\freecad_env\Lib\site-packages\torch\include\torch\csrc\jit\passes\quantization\insert_observers.h ENCODING: utf-8 ```h #pragma once #include <torch/csrc/jit/api/module.h> #include <torch/csrc/jit/passes/quantization/quantization_type.h> namespace std { template <> struct hash<torch::jit::Module> { inline size_t operator()(const torch::jit::Module& arg) const { return std::hash<c10::intrusive_ptr<c10::ivalue::Object>>()(arg._ivalue()); } }; } // namespace std namespace torch::jit { using QConfig = std::tuple<Module, Module>; using QConfigDict = std::unordered_map<std::string, std::optional<QConfig>>; /** \brief Insert observer module and observer function call for * the Tensors that needs to be observed. * * For each Tensor that needs to be observed in the method, insert observer * module to the input module and add forward calls of observer to the specified * method. * * \param module the input module * \param method_name the method we want to insert observers for * \param qconfig_dict the qconfig dictionary that specifies how * each module is going to be quantized * \param inplace whether we want to do inplace modification to the input module * or clone the module * \param is_dynamic whether the dynamic quantization script is being used. */ TORCH_API Module InsertObservers( Module& module, const std::string& method_name, const QConfigDict& qconfig_dict, bool inplace, QuantType quant_type = QuantType::STATIC); /** \brief Insert observer module and observer method for * the Tensors that needs to be observed. * * For each Tensor that needs to be observed in the method, insert observer * module to the input module and observe_<method-name> methods to the module. * This method is clone of mehtod_name with forward calls of observer added. * * \param module the input module * \param method_name the method we want to insert observers for * \param qconfig_dict the qconfig dictionary that specifies how * each module is going to be quantized * \param inplace whether we want to do inplace modification to the input module * or clone the module * \param is_dynamic whether the dynamic quantization script is being used. */ TORCH_API Module InsertObserversForOnDevicePTQ( Module& module, const std::string& method_name, const QConfigDict& qconfig_dict, bool inplace, QuantType quant_type = QuantType::STATIC); } // namespace torch::jit ```