text
stringlengths
145
7.65M
============================================================================================================= SOURCE CODE FILE: mkldnn.py LINES: 1 SIZE: 7.95 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\mkldnn.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import torch class MkldnnLinear(torch.jit.ScriptModule): def __init__(self, dense_module, dtype): super().__init__() self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype)) if dense_module.bias is not None: # Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy, # we use fp32 dtype. self.register_buffer('bias', dense_module.bias.to_mkldnn()) else: # TODO: Remove this once ScriptModule supports registering None buffer self.register_buffer( 'bias', torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn()) @torch.jit.script_method def __getstate__(self): return (self.weight.to_dense(), self.bias.to_dense(), self.training) @torch.jit.script_method def __setstate__(self, state): self.weight = state[0].to_mkldnn() self.bias = state[1].to_mkldnn() self.training = state[2] @torch.jit.script_method def forward(self, x): x_mkldnn = x if x.is_mkldnn else x.to_mkldnn() y_mkldnn = torch._C._nn.mkldnn_linear(x_mkldnn, self.weight, self.bias) y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense() return y class _MkldnnConvNd(torch.jit.ScriptModule): """Common base of MkldnnConv1d and MkldnnConv2d.""" __constants__ = ['stride', 'padding', 'dilation', 'groups'] def __init__(self, dense_module): super().__init__() self.stride = dense_module.stride self.padding = dense_module.padding self.dilation = dense_module.dilation self.groups = dense_module.groups if dense_module.bias is not None: self.register_buffer('bias', dense_module.bias.to_mkldnn()) else: # Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy, # we use fp32 dtype. # TODO: Remove this once ScriptModule supports registering None buffer self.register_buffer( 'bias', torch.zeros([dense_module.weight.size(0)], dtype=torch.float).to_mkldnn()) @torch.jit.script_method def __getstate__(self): return (self.weight.to_dense(), self.bias.to_dense(), self.training) @torch.jit.script_method def forward(self, x): return torch.mkldnn_convolution( x, self.weight, self.bias, self.padding, self.stride, self.dilation, self.groups) class MkldnnConv1d(_MkldnnConvNd): def __init__(self, dense_module, dtype): super().__init__(dense_module) self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype)) @torch.jit.script_method def __setstate__(self, state): self.weight = state[0].to_mkldnn() self.bias = state[1].to_mkldnn() self.training = state[2] class MkldnnConv2d(_MkldnnConvNd): def __init__(self, dense_module, dtype): super().__init__(dense_module) self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv2d_weight( dense_module.weight.to_mkldnn(dtype), self.padding, self.stride, self.dilation, self.groups)) @torch.jit.script_method def __setstate__(self, state): self.weight = torch._C._nn.mkldnn_reorder_conv2d_weight( state[0].to_mkldnn(), self.padding, self.stride, self.dilation, self.groups) self.bias = state[1].to_mkldnn() self.training = state[2] class MkldnnConv3d(_MkldnnConvNd): def __init__(self, dense_module, dtype): super().__init__(dense_module) self.register_buffer('weight', torch._C._nn.mkldnn_reorder_conv3d_weight( dense_module.weight.to_mkldnn(dtype), self.padding, self.stride, self.dilation, self.groups)) @torch.jit.script_method def __setstate__(self, state): self.weight = torch._C._nn.mkldnn_reorder_conv3d_weight( state[0].to_mkldnn(), self.padding, self.stride, self.dilation, self.groups) self.bias = state[1].to_mkldnn() self.training = state[2] class MkldnnBatchNorm(torch.jit.ScriptModule): __constants__ = ['exponential_average_factor', 'eps'] def __init__(self, dense_module): super().__init__() assert not dense_module.training assert dense_module.track_running_stats assert dense_module.affine if dense_module.momentum is None: self.exponential_average_factor = 0.0 else: self.exponential_average_factor = dense_module.momentum self.eps = dense_module.eps self.register_buffer('weight', dense_module.weight.to_mkldnn()) self.register_buffer('bias', dense_module.bias.to_mkldnn()) self.register_buffer('running_mean', dense_module.running_mean.to_mkldnn()) self.register_buffer('running_var', dense_module.running_var.to_mkldnn()) @torch.jit.script_method def __getstate__(self): weight = self.weight.to_dense() bias = self.bias.to_dense() running_mean = self.running_mean.to_dense() running_var = self.running_var.to_dense() return (weight, bias, running_mean, running_var, self.training) @torch.jit.script_method def __setstate__(self, state): self.weight = state[0].to_mkldnn() self.bias = state[1].to_mkldnn() self.running_mean = state[2].to_mkldnn() self.running_var = state[3].to_mkldnn() self.training = state[4] @torch.jit.script_method def forward(self, x): return torch.batch_norm( x, self.weight, self.bias, self.running_mean, self.running_var, False, # training self.exponential_average_factor, self.eps, False, # cuda_enabled ) class MkldnnPrelu(torch.jit.ScriptModule): def __init__(self, dense_module, dtype): super().__init__() self.register_buffer('weight', dense_module.weight.to_mkldnn(dtype)) @torch.jit.script_method def __getstate__(self): return (self.weight.to_dense(), self.training) @torch.jit.script_method def __setstate__(self, state): self.weight = state[0].to_mkldnn() self.training = state[1] @torch.jit.script_method def forward(self, x): x_mkldnn = x if x.is_mkldnn else x.to_mkldnn() y_mkldnn = torch.prelu(x_mkldnn, self.weight) y = y_mkldnn if x.is_mkldnn else y_mkldnn.to_dense() return y def to_mkldnn(module, dtype=torch.float): assert dtype in [torch.float, torch.bfloat16, torch.half], \ "MKLDNN only support float, bfloat16, and half path now" def m_fn(m, d): if isinstance(m, torch.nn.Linear): return MkldnnLinear(m, d) elif isinstance(m, torch.nn.Conv1d): return MkldnnConv1d(m, d) elif isinstance(m, torch.nn.Conv2d): return MkldnnConv2d(m, d) elif isinstance(m, torch.nn.Conv3d): return MkldnnConv3d(m, d) elif isinstance(m, (torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)): # For batchnorm bf16 path, OneDNN requires weight and bias need fp32 dtype. # so it doesn't need dtype argument. return MkldnnBatchNorm(m) elif isinstance(m, torch.nn.PReLU): return MkldnnPrelu(m, d) else: return m def m_fn_rec(m, d): new_m = m_fn(m, d) for name, sub_m in m.named_children(): setattr(new_m, name, m_fn_rec(sub_m, d)) return new_m return m_fn_rec(module, dtype) ```
======================================================================================================================= SOURCE CODE FILE: mobile_optimizer.py LINES: 1 SIZE: 6.41 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\mobile_optimizer.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs """This module contains utility method for mobile model optimization and lint.""" import torch from enum import Enum from torch._C import _MobileOptimizerType as MobileOptimizerType from typing import Optional, AnyStr class LintCode(Enum): BUNDLED_INPUT = 1 REQUIRES_GRAD = 2 DROPOUT = 3 BATCHNORM = 4 def optimize_for_mobile( script_module: torch.jit.ScriptModule, optimization_blocklist: Optional[set[MobileOptimizerType]] = None, preserved_methods: Optional[list[AnyStr]] = None, backend: str = 'CPU') -> torch.jit.RecursiveScriptModule: """ Optimize a torch script module for mobile deployment. Args: script_module: An instance of torch script module with type of ScriptModule. optimization_blocklist: A set with type of MobileOptimizerType. When set is not passed, optimization method will run all the optimizer pass; otherwise, optimizer method will run the optimization pass that is not included inside optimization_blocklist. preserved_methods: A list of methods that needed to be preserved when freeze_module pass is invoked backend: Device type to use for running the result model ('CPU'(default), 'Vulkan' or 'Metal'). Returns: A new optimized torch script module """ if not isinstance(script_module, torch.jit.ScriptModule): raise TypeError( f'Got {type(script_module)}, but ScriptModule is expected.') if optimization_blocklist is None: optimization_blocklist = set() if preserved_methods is None: preserved_methods = [] # Convert potential byte arrays into strings (if there is any) to pass type checking # Here we use a new name as assigning it back to preserved_methods will invoke # mypy errors (i.e. List[AnyStr] = List[str]) preserved_methods_str: list[str] = [str(method) for method in preserved_methods] bundled_inputs_attributes = _get_bundled_inputs_preserved_attributes(script_module, preserved_methods_str) if all(hasattr(script_module, method) for method in bundled_inputs_attributes): preserved_methods_str = list(set(preserved_methods_str + bundled_inputs_attributes)) non_exist_methods = [method for method in preserved_methods_str if not hasattr(script_module, method)] if non_exist_methods: raise AttributeError( f"The following methods to preserve do not exist in script_module: {', '.join(non_exist_methods)}") backend = backend.lower() if backend == 'cpu': optimized_cpp_module = torch._C._jit_pass_optimize_for_mobile( script_module._c, optimization_blocklist, preserved_methods_str) elif backend == 'vulkan': optimized_cpp_module = torch._C._jit_pass_vulkan_optimize_for_mobile( script_module._c, optimization_blocklist, preserved_methods_str) elif backend == 'metal': optimized_cpp_module = torch._C._jit_pass_metal_optimize_for_mobile(script_module._c, preserved_methods_str) else: raise TypeError("Unknown backend, must be one of 'CPU', 'Vulkan' or 'Metal'") return torch.jit._recursive.wrap_cpp_module(optimized_cpp_module) def generate_mobile_module_lints(script_module: torch.jit.ScriptModule): """ Generate a list of lints for a given torch script module. Args: script_module: An instance of torch script module with type of ScriptModule. Returns: lint_map: A list of dictionary that contains modules lints """ if not isinstance(script_module, torch.jit.ScriptModule): raise TypeError( f'Got {type(script_module)}, but ScriptModule is expected.') lint_list = [] if not hasattr(script_module, "_generate_bundled_inputs_for_forward"): lint_list.append({"name": LintCode.BUNDLED_INPUT.name, "message": "No bundled input for forward, please add bundled inputs " "before saving the module using torch.utils.bundled_inputs.augment_model_with_bundled_inputs."}) for name, param in script_module.named_parameters(): if param.requires_grad: lint_list.append({"name": LintCode.REQUIRES_GRAD.name, "message": f"Param {name} requires grad, " "please set torch.no_grad() to reduce memory usage and improve computation speed during " "inference phase."}) op_names = torch.jit.export_opnames(script_module) for op_name in op_names: if "dropout" in op_name: lint_list.append({"name": LintCode.DROPOUT.name, "message": f"Operator {op_name} exists, remember to call eval() before " "saving the module.and call torch.utils.mobile_optimizer.optimize_for_mobile to drop dropout " "operator."}) if "batch_norm" in op_name: lint_list.append({"name": LintCode.BATCHNORM.name, "message": f"Operator {op_name} exists, remember to call eval() before " "saving the module and call torch.utils.mobile_optimizer.optimize_for_mobile to drop batch_norm " "operator."}) return lint_list def _get_bundled_inputs_preserved_attributes(script_module: torch.jit.ScriptModule, preserved_methods: list[str]) -> list[str]: bundled_inputs_attributes = [] # Has bundled inputs for forward if hasattr(script_module, 'get_all_bundled_inputs'): bundled_inputs_attributes.append('get_all_bundled_inputs') bundled_inputs_attributes.append('get_num_bundled_inputs') # Bundled inputs in module after the change that introduced bundled inputs for multiple functions if hasattr(script_module, 'get_bundled_inputs_functions_and_info'): bundled_inputs_attributes.append('get_bundled_inputs_functions_and_info') all_info = script_module.get_bundled_inputs_functions_and_info() for function_name in all_info: if function_name not in preserved_methods: bundled_inputs_attributes.append(function_name) bundled_inputs_attributes.append("get_all_bundled_inputs_for_" + function_name) bundled_inputs_attributes.append("_bundled_inputs_deflated_" + function_name) return bundled_inputs_attributes ```
========================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 3 SIZE: 16.79 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\model_dump\__init__.py ENCODING: utf-8 ```py #!/usr/bin/env python3 # mypy: allow-untyped-defs """ model_dump: a one-stop shop for TorchScript model inspection. The goal of this tool is to provide a simple way to extract lots of useful information from a TorchScript model and make it easy for humans to consume. It (mostly) replaces zipinfo, common uses of show_pickle, and various ad-hoc analysis notebooks. The tool extracts information from the model and serializes it as JSON. That JSON can then be rendered by an HTML+JS page, either by loading the JSON over HTTP or producing a fully self-contained page with all of the code and data burned-in. """ # Maintainer notes follow. """ The implementation strategy has tension between 3 goals: - Small file size. - Fully self-contained. - Easy, modern JS environment. Using Preact and HTM achieves 1 and 2 with a decent result for 3. However, the models I tested with result in ~1MB JSON output, so even using something heavier like full React might be tolerable if the build process can be worked out. One principle I have followed that I think is very beneficial is to keep the JSON data as close as possible to the model and do most of the rendering logic on the client. This makes for easier development (just refresh, usually), allows for more laziness and dynamism, and lets us add more views of the same data without bloating the HTML file. Currently, this code doesn't actually load the model or even depend on any part of PyTorch. I don't know if that's an important feature to maintain, but it's probably worth preserving the ability to run at least basic analysis on models that cannot be loaded. I think the easiest way to develop this code is to cd into model_dump and run "python -m http.server", then load http://localhost:8000/skeleton.html in the browser. In another terminal, run "python -m torch.utils.model_dump --style=json FILE > \ torch/utils/model_dump/model_info.json" every time you update the Python code or model. When you update JS, just refresh. Possible improvements: - Fix various TODO comments in this file and the JS. - Make the HTML much less janky, especially the auxiliary data panel. - Make the auxiliary data panel start small, expand when data is available, and have a button to clear/contract. - Clean up the JS. There's a lot of copypasta because I don't really know how to use Preact. - Make the HTML render and work nicely inside a Jupyter notebook. - Add the ability for JS to choose the URL to load the JSON based on the page URL (query or hash). That way we could publish the inlined skeleton once and have it load various JSON blobs. - Add a button to expand all expandable sections so ctrl-F works well. - Add hyperlinking from data to code, and code to code. - Add hyperlinking from debug info to Diffusion. - Make small tensor contents available. - Do something nice for quantized models (they probably don't work at all right now). """ import argparse import io import json import os import pickle import pprint import re import sys import urllib.parse import zipfile from pathlib import Path import warnings import torch.utils.show_pickle DEFAULT_EXTRA_FILE_SIZE_LIMIT = 16 * 1024 __all__ = ['get_storage_info', 'hierarchical_pickle', 'get_model_info', 'get_inline_skeleton', 'burn_in_info', 'get_info_and_burn_skeleton'] def get_storage_info(storage): assert isinstance(storage, torch.utils.show_pickle.FakeObject) assert storage.module == "pers" assert storage.name == "obj" assert storage.state is None assert isinstance(storage.args, tuple) assert len(storage.args) == 1 sa = storage.args[0] assert isinstance(sa, tuple) assert len(sa) == 5 assert sa[0] == "storage" assert isinstance(sa[1], torch.utils.show_pickle.FakeClass) assert sa[1].module == "torch" assert sa[1].name.endswith("Storage") storage_info = [sa[1].name.replace("Storage", "")] + list(sa[2:]) return storage_info def hierarchical_pickle(data): if isinstance(data, (bool, int, float, str, type(None))): return data if isinstance(data, list): return [hierarchical_pickle(d) for d in data] if isinstance(data, tuple): return { "__tuple_values__": hierarchical_pickle(list(data)), } if isinstance(data, dict): return { "__is_dict__": True, "keys": hierarchical_pickle(list(data.keys())), "values": hierarchical_pickle(list(data.values())), } if isinstance(data, torch.utils.show_pickle.FakeObject): typename = f"{data.module}.{data.name}" if ( typename.startswith(('__torch__.', 'torch.jit.LoweredWrapper.', 'torch.jit.LoweredModule.')) ): assert data.args == () return { "__module_type__": typename, "state": hierarchical_pickle(data.state), } if typename == "torch._utils._rebuild_tensor_v2": assert data.state is None storage, offset, size, stride, requires_grad, *_ = data.args storage_info = get_storage_info(storage) return {"__tensor_v2__": [storage_info, offset, size, stride, requires_grad]} if typename == "torch._utils._rebuild_qtensor": assert data.state is None storage, offset, size, stride, quantizer, requires_grad, *_ = data.args storage_info = get_storage_info(storage) assert isinstance(quantizer, tuple) assert isinstance(quantizer[0], torch.utils.show_pickle.FakeClass) assert quantizer[0].module == "torch" if quantizer[0].name == "per_tensor_affine": assert len(quantizer) == 3 assert isinstance(quantizer[1], float) assert isinstance(quantizer[2], int) quantizer_extra = list(quantizer[1:3]) else: quantizer_extra = [] quantizer_json = [quantizer[0].name] + quantizer_extra return {"__qtensor__": [storage_info, offset, size, stride, quantizer_json, requires_grad]} if typename == "torch.jit._pickle.restore_type_tag": assert data.state is None obj, typ = data.args assert isinstance(typ, str) return hierarchical_pickle(obj) if re.fullmatch(r"torch\.jit\._pickle\.build_[a-z]+list", typename): assert data.state is None ls, = data.args assert isinstance(ls, list) return hierarchical_pickle(ls) if typename == "torch.device": assert data.state is None name, = data.args assert isinstance(name, str) # Just forget that it was a device and return the name. return name if typename == "builtin.UnicodeDecodeError": assert data.state is None msg, = data.args assert isinstance(msg, str) # Hack: Pretend this is a module so we don't need custom serialization. # Hack: Wrap the message in a tuple so it looks like a nice state object. # TODO: Undo at least that second hack. We should support string states. return { "__module_type__": typename, "state": hierarchical_pickle((msg,)), } raise Exception(f"Can't prepare fake object of type for JS: {typename}") # noqa: TRY002 raise Exception(f"Can't prepare data of type for JS: {type(data)}") # noqa: TRY002 def get_model_info( path_or_file, title=None, extra_file_size_limit=DEFAULT_EXTRA_FILE_SIZE_LIMIT): """Get JSON-friendly information about a model. The result is suitable for being saved as model_info.json, or passed to burn_in_info. """ if isinstance(path_or_file, os.PathLike): default_title = os.fspath(path_or_file) file_size = path_or_file.stat().st_size # type: ignore[attr-defined] elif isinstance(path_or_file, str): default_title = path_or_file file_size = Path(path_or_file).stat().st_size else: default_title = "buffer" path_or_file.seek(0, io.SEEK_END) file_size = path_or_file.tell() path_or_file.seek(0) title = title or default_title with zipfile.ZipFile(path_or_file) as zf: path_prefix = None zip_files = [] for zi in zf.infolist(): prefix = re.sub("/.*", "", zi.filename) if path_prefix is None: path_prefix = prefix elif prefix != path_prefix: raise Exception(f"Mismatched prefixes: {path_prefix} != {prefix}") # noqa: TRY002 zip_files.append(dict( filename=zi.filename, compression=zi.compress_type, compressed_size=zi.compress_size, file_size=zi.file_size, )) assert path_prefix is not None version = zf.read(path_prefix + "/version").decode("utf-8").strip() def get_pickle(name): assert path_prefix is not None with zf.open(path_prefix + f"/{name}.pkl") as handle: raw = torch.utils.show_pickle.DumpUnpickler(handle, catch_invalid_utf8=True).load() return hierarchical_pickle(raw) model_data = get_pickle("data") constants = get_pickle("constants") # Intern strings that are likely to be re-used. # Pickle automatically detects shared structure, # so re-used strings are stored efficiently. # However, JSON has no way of representing this, # so we have to do it manually. interned_strings : dict[str, int] = {} def ist(s): if s not in interned_strings: interned_strings[s] = len(interned_strings) return interned_strings[s] code_files = {} for zi in zf.infolist(): if not zi.filename.endswith(".py"): continue with zf.open(zi) as handle: raw_code = handle.read() with zf.open(zi.filename + ".debug_pkl") as handle: raw_debug = handle.read() # Parse debug info and add begin/end markers if not present # to ensure that we cover the entire source code. debug_info_t = pickle.loads(raw_debug) text_table = None if (len(debug_info_t) == 3 and isinstance(debug_info_t[0], str) and debug_info_t[0] == 'FORMAT_WITH_STRING_TABLE'): _, text_table, content = debug_info_t def parse_new_format(line): # (0, (('', '', 0), 0, 0)) num, ((text_indexes, fname_idx, offset), start, end), tag = line text = ''.join(text_table[x] for x in text_indexes) # type: ignore[index] fname = text_table[fname_idx] # type: ignore[index] return num, ((text, fname, offset), start, end), tag debug_info_t = map(parse_new_format, content) debug_info = list(debug_info_t) if not debug_info: debug_info.append((0, (('', '', 0), 0, 0))) if debug_info[-1][0] != len(raw_code): debug_info.append((len(raw_code), (('', '', 0), 0, 0))) code_parts = [] for di, di_next in zip(debug_info, debug_info[1:]): start, source_range, *_ = di end = di_next[0] assert end > start source, s_start, s_end = source_range s_text, s_file, s_line = source # TODO: Handle this case better. TorchScript ranges are in bytes, # but JS doesn't really handle byte strings. # if bytes and chars are not equivalent for this string, # zero out the ranges so we don't highlight the wrong thing. if len(s_text) != len(s_text.encode("utf-8")): s_start = 0 s_end = 0 text = raw_code[start:end] code_parts.append([text.decode("utf-8"), ist(s_file), s_line, ist(s_text), s_start, s_end]) code_files[zi.filename] = code_parts extra_files_json_pattern = re.compile(re.escape(path_prefix) + "/extra/.*\\.json") extra_files_jsons = {} for zi in zf.infolist(): if not extra_files_json_pattern.fullmatch(zi.filename): continue if zi.file_size > extra_file_size_limit: continue with zf.open(zi) as handle: try: json_content = json.load(handle) extra_files_jsons[zi.filename] = json_content except json.JSONDecodeError: extra_files_jsons[zi.filename] = "INVALID JSON" always_render_pickles = { "bytecode.pkl", } extra_pickles = {} for zi in zf.infolist(): if not zi.filename.endswith(".pkl"): continue with zf.open(zi) as handle: # TODO: handle errors here and just ignore the file? # NOTE: For a lot of these files (like bytecode), # we could get away with just unpickling, but this should be safer. obj = torch.utils.show_pickle.DumpUnpickler(handle, catch_invalid_utf8=True).load() buf = io.StringIO() pprint.pprint(obj, buf) contents = buf.getvalue() # Checked the rendered length instead of the file size # because pickles with shared structure can explode in size during rendering. if os.path.basename(zi.filename) not in always_render_pickles and \ len(contents) > extra_file_size_limit: continue extra_pickles[zi.filename] = contents return {"model": dict( title=title, file_size=file_size, version=version, zip_files=zip_files, interned_strings=list(interned_strings), code_files=code_files, model_data=model_data, constants=constants, extra_files_jsons=extra_files_jsons, extra_pickles=extra_pickles, )} def get_inline_skeleton(): """Get a fully-inlined skeleton of the frontend. The returned HTML page has no external network dependencies for code. It can load model_info.json over HTTP, or be passed to burn_in_info. """ import importlib.resources skeleton = importlib.resources.read_text(__package__, "skeleton.html") js_code = importlib.resources.read_text(__package__, "code.js") for js_module in ["preact", "htm"]: js_lib = importlib.resources.read_binary(__package__, f"{js_module}.mjs") js_url = "data:application/javascript," + urllib.parse.quote(js_lib) js_code = js_code.replace(f"https://unpkg.com/{js_module}?module", js_url) skeleton = skeleton.replace(' src="./code.js">', ">\n" + js_code) return skeleton def burn_in_info(skeleton, info): """Burn model info into the HTML skeleton. The result will render the hard-coded model info and have no external network dependencies for code or data. """ # Note that Python's json serializer does not escape slashes in strings. # Since we're inlining this JSON directly into a script tag, a string # containing "</script>" would end the script prematurely and # mess up our page. Unconditionally escape fixes that. return skeleton.replace( "BURNED_IN_MODEL_INFO = null", "BURNED_IN_MODEL_INFO = " + json.dumps(info, sort_keys=True).replace("/", "\\/")) def get_info_and_burn_skeleton(path_or_bytesio, **kwargs): model_info = get_model_info(path_or_bytesio, **kwargs) skeleton = get_inline_skeleton() page = burn_in_info(skeleton, model_info) return page def main(argv, *, stdout=None): warnings.warn("torch.utils.model_dump is deprecated and will be removed in a future PyTorch release.") parser = argparse.ArgumentParser() parser.add_argument("--style", choices=["json", "html"]) parser.add_argument("--title") parser.add_argument("model") args = parser.parse_args(argv[1:]) info = get_model_info(args.model, title=args.title) output = stdout or sys.stdout if args.style == "json": output.write(json.dumps(info, sort_keys=True) + "\n") elif args.style == "html": skeleton = get_inline_skeleton() page = burn_in_info(skeleton, info) output.write(page) else: raise Exception("Invalid style") # noqa: TRY002 ```
========================================================================================================================== SOURCE CODE FILE: __main__.py LINES: 1 SIZE: 0.08 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\model_dump\__main__.py ENCODING: utf-8 ```py #!/usr/bin/env python3 import sys from . import main sys.exit(main(sys.argv)) ```
====================================================================================================================== SOURCE CODE FILE: code.js LINES: 1 SIZE: 19.47 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\model_dump\code.js ENCODING: utf-8 ```js import { h, Component, render } from 'https://unpkg.com/preact?module'; import htm from 'https://unpkg.com/htm?module'; const html = htm.bind(h); const BURNED_IN_MODEL_INFO = null; // https://stackoverflow.com/a/20732091 function humanFileSize(size) { if (size == 0) { return "0 B"; } var i = Math.floor( Math.log(size) / Math.log(1024) ); return (size / Math.pow(1024, i)).toFixed(2) * 1 + ' ' + ['B', 'kB', 'MB', 'GB', 'TB'][i]; } function caret(down) { return down ? "\u25BE" : "\u25B8"; } class Blamer { constructor() { this.blame_on_click = false; this.aux_content_pane = null; } setAuxContentPane(pane) { this.aux_content_pane = pane; } readyBlame() { this.blame_on_click = true; } maybeBlame(arg) { if (!this.blame_on_click) { return; } this.blame_on_click = false; if (!this.aux_content_pane) { return; } this.aux_content_pane.doBlame(arg); } } let blame = new Blamer(); class Hider extends Component { constructor() { super(); this.state = { shown: null }; } componentDidMount() { this.setState({ shown: this.props.shown === "true" }); } render({name, children}, {shown}) { let my_caret = html`<span class=caret onClick=${() => this.click()} >${caret(shown)}</span>`; return html`<div data-hider-title=${name} data-shown=${shown}> <h2>${my_caret} ${name}</h2> <div>${shown ? this.props.children : []}</div></div>`; } click() { this.setState({shown: !this.state.shown}); } } function ModelSizeSection({model: {file_size, zip_files}}) { let store_size = 0; let compr_size = 0; for (const zi of zip_files) { if (zi.compression === 0) { // TODO: Maybe check that compressed_size === file_size. store_size += zi.compressed_size; } else { compr_size += zi.compressed_size; } } let zip_overhead = file_size - store_size - compr_size; // TODO: Better formatting. Right-align this. return html` <${Hider} name="Model Size" shown=true> <pre>. Model size: ${file_size} (${humanFileSize(file_size)}) Stored files: ${store_size} (${humanFileSize(store_size)}) Compressed files: ${compr_size} (${humanFileSize(compr_size)}) Zip overhead: ${zip_overhead} (${humanFileSize(zip_overhead)}) </pre><//>`; } function StructuredDataSection({name, data, shown}) { return html` <${Hider} name=${name} shown=${shown}> <div style="font-family:monospace;"> <${StructuredData} data=${data} indent="" prefix=""/> </div><//>`; } class StructuredData extends Component { constructor() { super(); this.state = { shown: false }; this.INLINE_TYPES = new Set(["boolean", "number", "string"]) this.IGNORED_STATE_KEYS = new Set(["training", "_is_full_backward_hook"]) } click() { this.setState({shown: !this.state.shown}); } expando(data) { if (data === null || this.INLINE_TYPES.has(typeof(data))) { return false; } if (typeof(data) != "object") { throw new Error("Not an object"); } if (Array.isArray(data)) { // TODO: Maybe show simple lists and tuples on one line. return true; } if (data.__tuple_values__) { // TODO: Maybe show simple lists and tuples on one line. return true; } if (data.__is_dict__) { // TODO: Maybe show simple (empty?) dicts on one line. return true; } if (data.__module_type__) { return true; } if (data.__tensor_v2__) { return false; } if (data.__qtensor__) { return false; } throw new Error("Can't handle data type.", data); } renderHeadline(data) { if (data === null) { return "None"; } if (typeof(data) == "boolean") { const sd = String(data); return sd.charAt(0).toUpperCase() + sd.slice(1); } if (typeof(data) == "number") { return JSON.stringify(data); } if (typeof(data) == "string") { return JSON.stringify(data); } if (typeof(data) != "object") { throw new Error("Not an object"); } if (Array.isArray(data)) { return "list(["; } if (data.__tuple_values__) { return "tuple(("; } if (data.__is_dict__) { return "dict({"; } if (data.__module_type__) { return data.__module_type__ + "()"; } if (data.__tensor_v2__) { const [storage, offset, size, stride, grad] = data.__tensor_v2__; const [dtype, key, device, numel] = storage; return this.renderTensor( "tensor", dtype, key, device, numel, offset, size, stride, grad, []); } if (data.__qtensor__) { const [storage, offset, size, stride, quantizer, grad] = data.__qtensor__; const [dtype, key, device, numel] = storage; let extra_parts = []; if (quantizer[0] == "per_tensor_affine") { extra_parts.push(`scale=${quantizer[1]}`); extra_parts.push(`zero_point=${quantizer[2]}`); } else { extra_parts.push(`quantizer=${quantizer[0]}`); } return this.renderTensor( "qtensor", dtype, key, device, numel, offset, size, stride, grad, extra_parts); } throw new Error("Can't handle data type.", data); } renderTensor( prefix, dtype, storage_key, device, storage_numel, offset, size, stride, grad, extra_parts) { let parts = [ "(" + size.join(",") + ")", dtype, ]; parts.push(...extra_parts); if (device != "cpu") { parts.push(device); } if (grad) { parts.push("grad"); } // TODO: Check stride and indicate if the tensor is channels-last or non-contiguous // TODO: Check size, stride, offset, and numel and indicate if // the tensor doesn't use all data in storage. // TODO: Maybe show key? void(offset); void(stride); void(storage_key); void(storage_numel); return prefix + "(" + parts.join(", ") + ")"; } renderBody(indent, data) { if (data === null || this.INLINE_TYPES.has(typeof(data))) { throw "Should not reach here." } if (typeof(data) != "object") { throw new Error("Not an object"); } if (Array.isArray(data)) { let new_indent = indent + "\u00A0\u00A0"; let parts = []; for (let idx = 0; idx < data.length; idx++) { // Does it make sense to put explicit index numbers here? parts.push(html`<br/><${StructuredData} prefix=${idx + ": "} indent=${new_indent} data=${data[idx]} />`); } return parts; } if (data.__tuple_values__) { // Handled the same as lists. return this.renderBody(indent, data.__tuple_values__); } if (data.__is_dict__) { let new_indent = indent + "\u00A0\u00A0"; let parts = []; for (let idx = 0; idx < data.keys.length; idx++) { if (typeof(data.keys[idx]) != "string") { parts.push(html`<br/>${new_indent}Non-string key`); } else { parts.push(html`<br/><${StructuredData} prefix=${data.keys[idx] + ": "} indent=${new_indent} data=${data.values[idx]} />`); } } return parts; } if (data.__module_type__) { const mstate = data.state; if (mstate === null || typeof(mstate) != "object") { throw new Error("Bad module state"); } let new_indent = indent + "\u00A0\u00A0"; let parts = []; if (mstate.__is_dict__) { // TODO: Less copy/paste between this and normal dicts. for (let idx = 0; idx < mstate.keys.length; idx++) { if (typeof(mstate.keys[idx]) != "string") { parts.push(html`<br/>${new_indent}Non-string key`); } else if (this.IGNORED_STATE_KEYS.has(mstate.keys[idx])) { // Do nothing. } else { parts.push(html`<br/><${StructuredData} prefix=${mstate.keys[idx] + ": "} indent=${new_indent} data=${mstate.values[idx]} />`); } } } else if (mstate.__tuple_values__) { parts.push(html`<br/><${StructuredData} prefix="" indent=${new_indent} data=${mstate} />`); } else if (mstate.__module_type__) { // We normally wouldn't have the state of a module be another module, // but we use "modules" to encode special values (like Unicode decode // errors) that might be valid states. Just go with it. parts.push(html`<br/><${StructuredData} prefix="" indent=${new_indent} data=${mstate} />`); } else { throw new Error("Bad module state"); } return parts; } if (data.__tensor_v2__) { throw "Should not reach here." } if (data.__qtensor__) { throw "Should not reach here." } throw new Error("Can't handle data type.", data); } render({data, indent, prefix}, {shown}) { const exp = this.expando(data) ? html`<span class=caret onClick=${() => this.click()} >${caret(shown)} </span>` : ""; const headline = this.renderHeadline(data); const body = shown ? this.renderBody(indent, data) : ""; return html`${indent}${exp}${prefix}${headline}${body}`; } } function ZipContentsSection({model: {zip_files}}) { // TODO: Add human-readable sizes? // TODO: Add sorting options? // TODO: Add hierarchical collapsible tree? return html` <${Hider} name="Zip Contents" shown=false> <table> <thead> <tr> <th>Mode</th> <th>Size</th> <th>Compressed</th> <th>Name</th> </tr> </thead> <tbody style="font-family:monospace;"> ${zip_files.map(zf => html`<tr> <td>${{0: "store", 8: "deflate"}[zf.compression] || zf.compression}</td> <td>${zf.file_size}</td> <td>${zf.compressed_size}</td> <td>${zf.filename}</td> </tr>`)} </tbody> </table><//>`; } function CodeSection({model: {code_files}}) { return html` <${Hider} name="Code" shown=false> <div> ${Object.entries(code_files).map(([fn, code]) => html`<${OneCodeSection} filename=${fn} code=${code} />`)} </div><//>`; } class OneCodeSection extends Component { constructor() { super(); this.state = { shown: false }; } click() { const shown = !this.state.shown; this.setState({shown: shown}); } render({filename, code}, {shown}) { const header = html` <h3 style="font-family:monospace;"> <span class=caret onClick=${() => this.click()} >${caret(shown)} </span> ${filename}</h3> `; if (!shown) { return header; } return html` ${header} <pre>${code.map(c => this.renderBlock(c))}</pre> `; } renderBlock([text, ist_file, line, ist_s_text, s_start, s_end]) { return html`<span onClick=${() => blame.maybeBlame({ist_file, line, ist_s_text, s_start, s_end})} >${text}</span>`; } } function ExtraJsonSection({files}) { return html` <${Hider} name="Extra files (JSON)" shown=false> <div> <p>Use "Log Raw Model Info" for hierarchical view in browser console.</p> ${Object.entries(files).map(([fn, json]) => html`<${OneJsonSection} filename=${fn} json=${json} />`)} </div><//>`; } class OneJsonSection extends Component { constructor() { super(); this.state = { shown: false }; } click() { const shown = !this.state.shown; this.setState({shown: shown}); } render({filename, json}, {shown}) { const header = html` <h3 style="font-family:monospace;"> <span class=caret onClick=${() => this.click()} >${caret(shown)} </span> ${filename}</h3> `; if (!shown) { return header; } return html` ${header} <pre>${JSON.stringify(json, null, 2)}</pre> `; } } function ExtraPicklesSection({files}) { return html` <${Hider} name="Extra Pickles" shown=false> <div> ${Object.entries(files).map(([fn, content]) => html`<${OnePickleSection} filename=${fn} content=${content} />`)} </div><//>`; } class OnePickleSection extends Component { constructor() { super(); this.state = { shown: false }; } click() { const shown = !this.state.shown; this.setState({shown: shown}); } render({filename, content}, {shown}) { const header = html` <h3 style="font-family:monospace;"> <span class=caret onClick=${() => this.click()} >${caret(shown)} </span> ${filename}</h3> `; if (!shown) { return header; } return html` ${header} <pre>${content}</pre> `; } } function assertStorageAreEqual(key, lhs, rhs) { if (lhs.length !== rhs.length || !lhs.every((val, idx) => val === rhs[idx])) { throw new Error("Storage mismatch for key '" + key + "'"); } } function computeTensorMemory(numel, dtype) { const sizes = { "Byte": 1, "Char": 1, "Short": 2, "Int": 4, "Long": 8, "Half": 2, "Float": 4, "Double": 8, "ComplexHalf": 4, "ComplexFloat": 8, "ComplexDouble": 16, "Bool": 1, "QInt8": 1, "QUInt8": 1, "QInt32": 4, "BFloat16": 2, }; let dtsize = sizes[dtype]; if (!dtsize) { throw new Error("Unrecognized dtype: " + dtype); } return numel * dtsize; } // TODO: Maybe track by dtype as well. // TODO: Maybe distinguish between visible size and storage size. function getTensorStorages(data) { if (data === null) { return new Map(); } if (typeof(data) == "boolean") { return new Map(); } if (typeof(data) == "number") { return new Map(); } if (typeof(data) == "string") { return new Map(); } if (typeof(data) != "object") { throw new Error("Not an object"); } if (Array.isArray(data)) { let result = new Map(); for (const item of data) { const tensors = getTensorStorages(item); for (const [key, storage] of tensors.entries()) { if (!result.has(key)) { result.set(key, storage); } else { const old_storage = result.get(key); assertStorageAreEqual(key, old_storage, storage); } } } return result; } if (data.__tuple_values__) { return getTensorStorages(data.__tuple_values__); } if (data.__is_dict__) { return getTensorStorages(data.values); } if (data.__module_type__) { return getTensorStorages(data.state); } if (data.__tensor_v2__) { const [storage, offset, size, stride, grad] = data.__tensor_v2__; const [dtype, key, device, numel] = storage; return new Map([[key, storage]]); } if (data.__qtensor__) { const [storage, offset, size, stride, quantizer, grad] = data.__qtensor__; const [dtype, key, device, numel] = storage; return new Map([[key, storage]]); } throw new Error("Can't handle data type.", data); } function getTensorMemoryByDevice(pickles) { let all_tensors = []; for (const [name, pickle] of pickles) { const tensors = getTensorStorages(pickle); all_tensors.push(...tensors.values()); } let result = {}; for (const storage of all_tensors.values()) { const [dtype, key, device, numel] = storage; const size = computeTensorMemory(numel, dtype); result[device] = (result[device] || 0) + size; } return result; } // Make this a separate component so it is rendered lazily. class OpenTensorMemorySection extends Component { render({model: {model_data, constants}}) { let sizes = getTensorMemoryByDevice(new Map([ ["data", model_data], ["constants", constants], ])); return html` <table> <thead> <tr> <th>Device</th> <th>Bytes</th> <th>Human</th> </tr> </thead> <tbody style="font-family:monospace;"> ${Object.entries(sizes).map(([dev, size]) => html`<tr> <td>${dev}</td> <td>${size}</td> <td>${humanFileSize(size)}</td> </tr>`)} </tbody> </table>`; } } function TensorMemorySection({model}) { return html` <${Hider} name="Tensor Memory" shown=false> <${OpenTensorMemorySection} model=${model} /><//>`; } class AuxContentPane extends Component { constructor() { super(); this.state = { blame_info: null, }; } doBlame(arg) { this.setState({...this.state, blame_info: arg}); } render({model: {interned_strings}}, {blame_info}) { let blame_content = ""; if (blame_info) { const {ist_file, line, ist_s_text, s_start, s_end} = blame_info; let s_text = interned_strings[ist_s_text]; if (s_start != 0 || s_end != s_text.length) { let prefix = s_text.slice(0, s_start); let main = s_text.slice(s_start, s_end); let suffix = s_text.slice(s_end); s_text = html`${prefix}<strong>${main}</strong>${suffix}`; } blame_content = html` <h3>${interned_strings[ist_file]}:${line}</h3> <pre>${s_start}:${s_end}</pre> <pre>${s_text}</pre><br/> `; } return html` <button onClick=${() => blame.readyBlame()}>Blame Code</button> <br/> ${blame_content} `; } } class App extends Component { constructor() { super(); this.state = { err: false, model: null, }; } componentDidMount() { const app = this; if (BURNED_IN_MODEL_INFO !== null) { app.setState({model: BURNED_IN_MODEL_INFO}); } else { fetch("./model_info.json").then(function(response) { if (!response.ok) { throw new Error("Response not ok."); } return response.json(); }).then(function(body) { app.setState({model: body}); }).catch(function(error) { console.log("Top-level error: ", error); }); } } componentDidCatch(error) { void(error); this.setState({...this.state, err: true}); } render(_, {err}) { if (this.state.model === null) { return html`<h1>Loading...</h1>`; } const model = this.state.model.model; let error_msg = ""; if (err) { error_msg = html`<h2 style="background:red">An error occurred. Check console</h2>`; } return html` ${error_msg} <div id=main_content style="position:absolute;width:99%;height:79%;overflow:scroll"> <h1>TorchScript Model (version ${model.version}): ${model.title}</h1> <button onClick=${() => console.log(model)}>Log Raw Model Info</button> <${ModelSizeSection} model=${model}/> <${StructuredDataSection} name="Model Data" data=${model.model_data} shown=true/> <${StructuredDataSection} name="Constants" data=${model.constants} shown=false/> <${ZipContentsSection} model=${model}/> <${CodeSection} model=${model}/> <${ExtraJsonSection} files=${model.extra_files_jsons}/> <${ExtraPicklesSection} files=${model.extra_pickles}/> <${TensorMemorySection} model=${model}/> </div> <div id=aux_content style="position:absolute;width:99%;top:80%;height:20%;overflow:scroll"> <${AuxContentPane} err=${this.state.error} model=${model} ref=${(p) => blame.setAuxContentPane(p)}/> </div> `; } } render(h(App), document.body); ```
============================================================================================================================ TorchScript Model table, th, td { border: 1px solid black; border-collapse: collapse; } .caret { cursor: pointer; user-select: none; }
================================================================================================================ SOURCE CODE FILE: model_zoo.py LINES: 1 SIZE: 0.12 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\model_zoo.py ENCODING: utf-8 ```py # torchvision imports tqdm from here. from torch.hub import tqdm, load_state_dict_from_url as load_url # noqa: F401 ```
===================================================================================================================== SOURCE CODE FILE: module_tracker.py LINES: 1 SIZE: 5.41 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\module_tracker.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import logging import weakref from typing import TYPE_CHECKING import torch from torch.autograd.graph import register_multi_grad_hook from torch.nn.modules.module import ( register_module_forward_hook, register_module_forward_pre_hook, ) from torch.utils._pytree import tree_flatten if TYPE_CHECKING: from torch.utils.hooks import RemovableHandle logger = logging.getLogger(__name__) __all__ = ["ModuleTracker"] class ModuleTracker: """ ``ModuleTracker`` is a context manager that tracks the nn.Module hierarchy during execution so that other system can query which Module is currently being executed (or its backward is being executed). You can access the ``parents`` attribute on this context manager to get the set of all the Modules currently being executed via their fqn (fully qualified name, also used as the key within the state_dict). You can access the ``is_bw`` attribute to know if you are currently running in backward or not. Note that ``parents`` is never empty and always contains the "Global" key. The ``is_bw`` flag will remain ``True`` after the forward until another Module is executed. If you need it to be more accurate, please submit an issue requesting this. Adding a map from fqn to the module instance is possible but not done yet, please submit an issue requesting this if you need it. Example usage .. code-block:: python mod = torch.nn.Linear(2, 2) with ModuleTracker() as tracker: # Access anything during the forward pass def my_linear(m1, m2, bias): print(f"Current modules: {tracker.parents}") return torch.mm(m1, m2.t()) + bias torch.nn.functional.linear = my_linear mod(torch.rand(2, 2)) """ parents: set[str] """ A Set containing the fqn for each module currently running their forward """ def __init__(self) -> None: self.parents = {"Global"} self._known_modules: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary() self._seen_modules: weakref.WeakSet = weakref.WeakSet() self._has_callback = False self._hooks: list[RemovableHandle] = [] def _maybe_set_engine_callback(self): # This assumes no concurrent calls to backward if self._has_callback: return def callback(): self.parents = {"Global"} self._has_callback = False torch.autograd.Variable._execution_engine.queue_callback(callback) self._has_callback = True @property def is_bw(self): """ A boolean marking if this is currently running during the backward pass or not """ return torch._C._current_graph_task_id() != -1 def _get_mod_name(self, mod): if mod not in self._known_modules: self._known_modules[mod] = type(mod).__name__ mod_name = self._known_modules[mod] if mod not in self._seen_modules: for name, submod in mod.named_children(): self._known_modules[submod] = f"{mod_name}.{name}" self._get_mod_name(submod) self._seen_modules.add(mod) return mod_name def _get_append_fn(self, name, is_bw): def fn(*args): if is_bw: self._maybe_set_engine_callback() if name in self.parents: logger.info( "The module hierarchy tracking seems to be broken as this Module was already entered. %s during %s", name, "backward" if is_bw else "forward", ) self.parents.add(name) return fn def _get_pop_fn(self, name, is_bw): def fn(*args): if name in self.parents: self.parents.remove(name) else: logger.info( "The Module hierarchy tracking is confused as we're exiting a Module that was never entered. %s during %s", name, "backward" if is_bw else "forward", ) return fn def _fw_pre_hook(self, mod, input): name = self._get_mod_name(mod) self._get_append_fn(name, False)() args, _ = tree_flatten(input) tensors = [a for a in args if isinstance(a, torch.Tensor) and a.requires_grad] if tensors: self._hooks.append( register_multi_grad_hook(tensors, self._get_pop_fn(name, True)) ) def _fw_post_hook(self, mod, input, output): name = self._get_mod_name(mod) self._get_pop_fn(name, False)() args, _ = tree_flatten(output) tensors = [a for a in args if isinstance(a, torch.Tensor) and a.requires_grad] if tensors: self._hooks.append( register_multi_grad_hook(tensors, self._get_append_fn(name, True)) ) def __enter__(self): self._fw_pre_handle = register_module_forward_pre_hook(self._fw_pre_hook) self._fw_post_handle = register_module_forward_hook(self._fw_post_hook) return self def __exit__(self, *args): self._fw_pre_handle.remove() self._fw_post_handle.remove() for hook in self._hooks: hook.remove() self._hooks.clear() ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.02 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\serialization\__init__.py ENCODING: utf-8 ```py from . import config ```
=========================================================================================================================== SOURCE CODE FILE: config.py LINES: 1 SIZE: 0.67 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\serialization\config.py ENCODING: utf-8 ```py import sys from typing import Optional as _Optional, TYPE_CHECKING as _TYPE_CHECKING if _TYPE_CHECKING: from torch.serialization import LoadEndianness as _LoadEndianess from torch.utils._config_module import install_config_module as _install_config_module class load: mmap: bool = False endianness: _Optional["_LoadEndianess"] = None # MAP_PRIVATE = 2 mmap_flags: _Optional[int] = None if sys.platform == "win32" else 2 calculate_storage_offsets: bool = False class save: compute_crc32: bool = True use_pinned_memory_for_d2h: bool = False storage_alignment: int = 64 _install_config_module(sys.modules[__name__]) ```
================================================================================================================== SOURCE CODE FILE: show_pickle.py LINES: 9 SIZE: 5.41 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\show_pickle.py ENCODING: utf-8 ```py #!/usr/bin/env python3 # mypy: allow-untyped-defs import sys import pickle import struct import pprint import zipfile import fnmatch from typing import Any, IO __all__ = ["FakeObject", "FakeClass", "DumpUnpickler", "main"] class FakeObject: def __init__(self, module, name, args): self.module = module self.name = name self.args = args # NOTE: We don't distinguish between state never set and state set to None. self.state = None def __repr__(self): state_str = "" if self.state is None else f"(state={self.state!r})" return f"{self.module}.{self.name}{self.args!r}{state_str}" def __setstate__(self, state): self.state = state @staticmethod def pp_format(printer, obj, stream, indent, allowance, context, level): if not obj.args and obj.state is None: stream.write(repr(obj)) return if obj.state is None: stream.write(f"{obj.module}.{obj.name}") printer._format(obj.args, stream, indent + 1, allowance + 1, context, level) return if not obj.args: stream.write(f"{obj.module}.{obj.name}()(state=\n") indent += printer._indent_per_level stream.write(" " * indent) printer._format(obj.state, stream, indent, allowance + 1, context, level + 1) stream.write(")") return raise Exception("Need to implement") # noqa: TRY002 class FakeClass: def __init__(self, module, name): self.module = module self.name = name self.__new__ = self.fake_new # type: ignore[assignment] def __repr__(self): return f"{self.module}.{self.name}" def __call__(self, *args): return FakeObject(self.module, self.name, args) def fake_new(self, *args): return FakeObject(self.module, self.name, args[1:]) class DumpUnpickler(pickle._Unpickler): # type: ignore[name-defined] def __init__( self, file, *, catch_invalid_utf8=False, **kwargs): super().__init__(file, **kwargs) self.catch_invalid_utf8 = catch_invalid_utf8 def find_class(self, module, name): return FakeClass(module, name) def persistent_load(self, pid): return FakeObject("pers", "obj", (pid,)) dispatch = dict(pickle._Unpickler.dispatch) # type: ignore[attr-defined] # Custom objects in TorchScript are able to return invalid UTF-8 strings # from their pickle (__getstate__) functions. Install a custom loader # for strings that catches the decode exception and replaces it with # a sentinel object. def load_binunicode(self): strlen, = struct.unpack("<I", self.read(4)) # type: ignore[attr-defined] if strlen > sys.maxsize: raise Exception("String too long.") # noqa: TRY002 str_bytes = self.read(strlen) # type: ignore[attr-defined] obj: Any try: obj = str(str_bytes, "utf-8", "surrogatepass") except UnicodeDecodeError as exn: if not self.catch_invalid_utf8: raise obj = FakeObject("builtin", "UnicodeDecodeError", (str(exn),)) self.append(obj) # type: ignore[attr-defined] dispatch[pickle.BINUNICODE[0]] = load_binunicode # type: ignore[assignment] @classmethod def dump(cls, in_stream, out_stream): value = cls(in_stream).load() pprint.pprint(value, stream=out_stream) return value def main(argv, output_stream=None): if len(argv) != 2: # Don't spam stderr if not using stdout. if output_stream is not None: raise Exception("Pass argv of length 2.") # noqa: TRY002 sys.stderr.write("usage: show_pickle PICKLE_FILE\n") sys.stderr.write(" PICKLE_FILE can be any of:\n") sys.stderr.write(" path to a pickle file\n") sys.stderr.write(" [email protected]\n") sys.stderr.write(" file.zip@*/pattern.*\n") sys.stderr.write(" (shell glob pattern for members)\n") sys.stderr.write(" (only first match will be shown)\n") return 2 fname = argv[1] handle: IO[bytes] if "@" not in fname: with open(fname, "rb") as handle: DumpUnpickler.dump(handle, output_stream) else: zfname, mname = fname.split("@", 1) with zipfile.ZipFile(zfname) as zf: if "*" not in mname: with zf.open(mname) as handle: DumpUnpickler.dump(handle, output_stream) else: found = False for info in zf.infolist(): if fnmatch.fnmatch(info.filename, mname): with zf.open(info) as handle: DumpUnpickler.dump(handle, output_stream) found = True break if not found: raise Exception(f"Could not find member matching {mname} in {zfname}") # noqa: TRY002 if __name__ == "__main__": # This hack works on every version of Python I've tested. # I've tested on the following versions: # 3.7.4 if True: pprint.PrettyPrinter._dispatch[FakeObject.__repr__] = FakeObject.pp_format # type: ignore[attr-defined] sys.exit(main(sys.argv)) ```
=========================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.49 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\__init__.py ENCODING: utf-8 ```py import tensorboard from torch._vendor.packaging.version import Version if not hasattr(tensorboard, "__version__") or Version( tensorboard.__version__ ) < Version("1.15"): raise ImportError("TensorBoard logging requires TensorBoard version 1.15 or above") del Version del tensorboard from .writer import FileWriter, SummaryWriter from tensorboard.summary.writer.record_writer import RecordWriter __all__ = [ "FileWriter", "RecordWriter", "SummaryWriter", ] ```
============================================================================================================================== SOURCE CODE FILE: _convert_np.py LINES: 1 SIZE: 0.75 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\_convert_np.py ENCODING: utf-8 ```py """This module converts objects into numpy array.""" import numpy as np import torch def make_np(x: torch.Tensor) -> np.ndarray: """ Convert an object into numpy array. Args: x: An instance of torch tensor Returns: numpy.array: Numpy array """ if isinstance(x, np.ndarray): return x if np.isscalar(x): return np.array([x]) if isinstance(x, torch.Tensor): return _prepare_pytorch(x) raise NotImplementedError( f"Got {type(x)}, but numpy array or torch tensor are expected." ) def _prepare_pytorch(x: torch.Tensor) -> np.ndarray: if x.dtype == torch.bfloat16: x = x.to(torch.float16) x = x.detach().cpu().numpy() return x ```
============================================================================================================================= SOURCE CODE FILE: _embedding.py LINES: 4 SIZE: 3.23 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\_embedding.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import math import numpy as np from ._convert_np import make_np from ._utils import make_grid from tensorboard.compat import tf from tensorboard.plugins.projector.projector_config_pb2 import EmbeddingInfo _HAS_GFILE_JOIN = hasattr(tf.io.gfile, "join") def _gfile_join(a, b): # The join API is different between tensorboard's TF stub and TF: # https://github.com/tensorflow/tensorboard/issues/6080 # We need to try both because `tf` may point to either the stub or the real TF. if _HAS_GFILE_JOIN: return tf.io.gfile.join(a, b) else: fs = tf.io.gfile.get_filesystem(a) return fs.join(a, b) def make_tsv(metadata, save_path, metadata_header=None): if not metadata_header: metadata = [str(x) for x in metadata] else: assert len(metadata_header) == len( metadata[0] ), "len of header must be equal to the number of columns in metadata" metadata = ["\t".join(str(e) for e in l) for l in [metadata_header] + metadata] metadata_bytes = tf.compat.as_bytes("\n".join(metadata) + "\n") with tf.io.gfile.GFile(_gfile_join(save_path, "metadata.tsv"), "wb") as f: f.write(metadata_bytes) # https://github.com/tensorflow/tensorboard/issues/44 image label will be squared def make_sprite(label_img, save_path): from PIL import Image from io import BytesIO # this ensures the sprite image has correct dimension as described in # https://www.tensorflow.org/get_started/embedding_viz nrow = int(math.ceil((label_img.size(0)) ** 0.5)) arranged_img_CHW = make_grid(make_np(label_img), ncols=nrow) # augment images so that #images equals nrow*nrow arranged_augment_square_HWC = np.zeros( (arranged_img_CHW.shape[2], arranged_img_CHW.shape[2], 3) ) arranged_img_HWC = arranged_img_CHW.transpose(1, 2, 0) # chw -> hwc arranged_augment_square_HWC[: arranged_img_HWC.shape[0], :, :] = arranged_img_HWC im = Image.fromarray(np.uint8((arranged_augment_square_HWC * 255).clip(0, 255))) with BytesIO() as buf: im.save(buf, format="PNG") im_bytes = buf.getvalue() with tf.io.gfile.GFile(_gfile_join(save_path, "sprite.png"), "wb") as f: f.write(im_bytes) def get_embedding_info(metadata, label_img, subdir, global_step, tag): info = EmbeddingInfo() info.tensor_name = f"{tag}:{str(global_step).zfill(5)}" info.tensor_path = _gfile_join(subdir, "tensors.tsv") if metadata is not None: info.metadata_path = _gfile_join(subdir, "metadata.tsv") if label_img is not None: info.sprite.image_path = _gfile_join(subdir, "sprite.png") info.sprite.single_image_dim.extend([label_img.size(3), label_img.size(2)]) return info def write_pbtxt(save_path, contents): config_path = _gfile_join(save_path, "projector_config.pbtxt") with tf.io.gfile.GFile(config_path, "wb") as f: f.write(tf.compat.as_bytes(contents)) def make_mat(matlist, save_path): with tf.io.gfile.GFile(_gfile_join(save_path, "tensors.tsv"), "wb") as f: for x in matlist: x = [str(i.item()) for i in x] f.write(tf.compat.as_bytes("\t".join(x) + "\n")) ```
============================================================================================================================== SOURCE CODE FILE: _onnx_graph.py LINES: 1 SIZE: 1.90 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\_onnx_graph.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.node_def_pb2 import NodeDef from tensorboard.compat.proto.versions_pb2 import VersionDef from tensorboard.compat.proto.attr_value_pb2 import AttrValue from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto def load_onnx_graph(fname): import onnx m = onnx.load(fname) # type: ignore[attr-defined] g = m.graph return parse(g) def parse(graph): nodes = [] import itertools nodes_proto = list(itertools.chain(graph.input, graph.output)) for node in nodes_proto: print(node.name) shapeproto = TensorShapeProto( dim=[ TensorShapeProto.Dim(size=d.dim_value) for d in node.type.tensor_type.shape.dim ] ) nodes.append( NodeDef( name=node.name.encode(encoding="utf_8"), op="Variable", input=[], attr={ "dtype": AttrValue(type=node.type.tensor_type.elem_type), "shape": AttrValue(shape=shapeproto), }, ) ) for node in graph.node: _attr = [" = ".join([str(f[1]) for f in s.ListFields()]) for s in node.attribute] attr = ", ".join(_attr).encode(encoding="utf_8") print(node.output[0]) nodes.append( NodeDef( name=node.output[0].encode(encoding="utf_8"), op=node.op_type, input=node.input, attr={"parameters": AttrValue(s=attr)}, ) ) # two pass token replacement, appends opname to object id mapping = {} for node in nodes: mapping[node.name] = node.op + "_" + node.name return GraphDef(node=nodes, versions=VersionDef(producer=22)) ```
=============================================================================================================================== SOURCE CODE FILE: _proto_graph.py LINES: 1 SIZE: 1.77 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\_proto_graph.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs from typing import Optional from tensorboard.compat.proto.node_def_pb2 import NodeDef from tensorboard.compat.proto.attr_value_pb2 import AttrValue from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto def attr_value_proto(dtype, shape, s): """Create a dict of objects matching a NodeDef's attr field. Follows https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/attr_value.proto specifically designed for a NodeDef. The values have been reverse engineered from standard TensorBoard logged data. """ attr = {} if s is not None: attr["attr"] = AttrValue(s=s.encode(encoding="utf_8")) if shape is not None: shapeproto = tensor_shape_proto(shape) attr["_output_shapes"] = AttrValue(list=AttrValue.ListValue(shape=[shapeproto])) return attr def tensor_shape_proto(outputsize): """Create an object matching a tensor_shape field. Follows https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/tensor_shape.proto . """ return TensorShapeProto(dim=[TensorShapeProto.Dim(size=d) for d in outputsize]) def node_proto( name, op="UnSpecified", input=None, dtype=None, shape: Optional[tuple] = None, outputsize=None, attributes="", ): """Create an object matching a NodeDef. Follows https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/node_def.proto . """ if input is None: input = [] if not isinstance(input, list): input = [input] return NodeDef( name=name.encode(encoding="utf_8"), op=op, input=input, attr=attr_value_proto(dtype, outputsize, attributes), ) ```
================================================================================================================================= SOURCE CODE FILE: _pytorch_graph.py LINES: 4 SIZE: 13.75 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\_pytorch_graph.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs from collections import OrderedDict import contextlib from typing import Any from tensorboard.compat.proto.config_pb2 import RunMetadata from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.step_stats_pb2 import StepStats, DeviceStepStats from tensorboard.compat.proto.versions_pb2 import VersionDef import torch from ._proto_graph import node_proto methods_OP = [ "attributeNames", "hasMultipleOutputs", "hasUses", "inputs", "kind", "outputs", "outputsSize", "scopeName", ] # Some additional methods to explure for methods_IO are # # 'unique' (type int) # 'type' (type <Tensor<class 'torch._C.Type'>>) # # But the below are sufficient for now. methods_IO = ["node", "offset", "debugName"] GETATTR_KIND = "prim::GetAttr" CLASSTYPE_KIND = "ClassType" class NodeBase: def __init__( self, debugName=None, inputs=None, scope=None, tensor_size=None, op_type="UnSpecified", attributes="", ): # TODO; Specify a __slots__ for this class or potentially # used namedtuple instead self.debugName = debugName self.inputs = inputs self.tensor_size = tensor_size self.kind = op_type self.attributes = attributes self.scope = scope def __repr__(self): repr = [] repr.append(str(type(self))) repr.extend( m + ": " + str(getattr(self, m)) + str(type(getattr(self, m))) for m in dir(self) if "__" not in m ) return "\n".join(repr) + "\n\n" class NodePy(NodeBase): def __init__(self, node_cpp, valid_methods): super().__init__(node_cpp) valid_methods = valid_methods[:] self.inputs = [] for m in valid_methods: if m == "inputs" or m == "outputs": list_of_node = list(getattr(node_cpp, m)()) io_unique_names = [] io_tensor_sizes = [] for n in list_of_node: io_unique_names.append(n.debugName()) if n.isCompleteTensor(): io_tensor_sizes.append(n.type().sizes()) else: io_tensor_sizes.append(None) setattr(self, m, io_unique_names) setattr(self, m + "tensor_size", io_tensor_sizes) else: setattr(self, m, getattr(node_cpp, m)()) class NodePyIO(NodePy): def __init__(self, node_cpp, input_or_output=None): super().__init__(node_cpp, methods_IO) try: tensor_size = node_cpp.type().sizes() except RuntimeError: tensor_size = [ 1, ] # fail when constant model is used. self.tensor_size = tensor_size # Kind attribute string is purely descriptive and will be shown # in detailed information for the node in TensorBoard's graph plugin. # # NodePyOP nodes get this from their kind() method. self.kind = "Parameter" if input_or_output: self.input_or_output = input_or_output self.kind = "IO Node" class NodePyOP(NodePy): def __init__(self, node_cpp): super().__init__(node_cpp, methods_OP) # Replace single quote which causes strange behavior in TensorBoard # TODO: See if we can remove this in the future self.attributes = str( {k: _node_get(node_cpp, k) for k in node_cpp.attributeNames()} ).replace("'", " ") self.kind = node_cpp.kind() class GraphPy: """Helper class to convert torch.nn.Module to GraphDef proto and visualization with TensorBoard. GraphDef generation operates in two passes: In the first pass, all nodes are read and saved to two lists. One list is for input/output nodes (nodes_io), which only have inbound or outbound connections, but not both. Another list is for internal operator nodes (nodes_op). The first pass also saves all scope name appeared in the nodes in scope_name_appeared list for later processing. In the second pass, scope names are fully applied to all nodes. debugNameToScopedName is a mapping from a node's ID to its fully qualified scope name. e.g. Net1/Linear[0]/1. Unfortunately torch.jit doesn't have totally correct scope output, so this is nontrivial. The function populate_namespace_from_OP_to_IO and find_common_root are used to assign scope name to a node based on the connection between nodes in a heuristic kind of way. Bookkeeping is done with shallowest_scope_name and scope_name_appeared. """ def __init__(self): self.nodes_op = [] self.nodes_io = OrderedDict() self.unique_name_to_scoped_name = {} self.shallowest_scope_name = "default" self.scope_name_appeared = [] def append(self, x): if isinstance(x, NodePyIO): self.nodes_io[x.debugName] = x if isinstance(x, NodePyOP): self.nodes_op.append(x) def printall(self): print("all nodes") for node in self.nodes_op: print(node) for key in self.nodes_io: print(self.nodes_io[key]) def find_common_root(self): for fullscope in self.scope_name_appeared: if fullscope: self.shallowest_scope_name = fullscope.split("/")[0] def populate_namespace_from_OP_to_IO(self): for node in self.nodes_op: for node_output, outputSize in zip(node.outputs, node.outputstensor_size): self.scope_name_appeared.append(node.scopeName) self.nodes_io[node_output] = NodeBase( node_output, node.inputs, node.scopeName, outputSize, op_type=node.kind, attributes=node.attributes, ) self.find_common_root() for node in self.nodes_op: for input_node_id in node.inputs: self.unique_name_to_scoped_name[input_node_id] = ( node.scopeName + "/" + input_node_id ) for key, node in self.nodes_io.items(): if type(node) == NodeBase: self.unique_name_to_scoped_name[key] = node.scope + "/" + node.debugName if hasattr(node, "input_or_output"): self.unique_name_to_scoped_name[key] = ( node.input_or_output + "/" + node.debugName ) if hasattr(node, "scope") and node.scope is not None: self.unique_name_to_scoped_name[key] = node.scope + "/" + node.debugName if node.scope == "" and self.shallowest_scope_name: self.unique_name_to_scoped_name[node.debugName] = ( self.shallowest_scope_name + "/" + node.debugName ) # replace name for key, node in self.nodes_io.items(): self.nodes_io[key].inputs = [ self.unique_name_to_scoped_name[node_input_id] for node_input_id in node.inputs ] if node.debugName in self.unique_name_to_scoped_name: self.nodes_io[key].debugName = self.unique_name_to_scoped_name[ node.debugName ] def to_proto(self): """Convert graph representation of GraphPy object to TensorBoard required format.""" # TODO: compute correct memory usage and CPU time once # PyTorch supports it nodes = [ node_proto( v.debugName, input=v.inputs, outputsize=v.tensor_size, op=v.kind, attributes=v.attributes, ) for v in self.nodes_io.values() ] return nodes def parse(graph, trace, args=None, omit_useless_nodes=True): """Parse an optimized PyTorch model graph and produces a list of nodes and node stats. Useful for eventual conversion to TensorBoard protobuf format. Args: graph (PyTorch module): The model graph to be parsed. trace (PyTorch JIT TracedModule): The model trace to be parsed. args (tuple): input tensor[s] for the model. omit_useless_nodes (boolean): Whether to remove nodes from the graph. """ nodes_py = GraphPy() for node in graph.inputs(): if omit_useless_nodes: if ( len(node.uses()) == 0 ): # number of user of the node (= number of outputs/ fanout) continue if node.type().kind() != CLASSTYPE_KIND: nodes_py.append(NodePyIO(node, "input")) attr_to_scope: dict[Any, str] = {} for node in graph.nodes(): if node.kind() == GETATTR_KIND: attr_name = node.s("name") attr_key = node.output().debugName() parent = node.input().node() if ( parent.kind() == GETATTR_KIND ): # If the parent node is not the top-level "self" node parent_attr_key = parent.output().debugName() parent_scope = attr_to_scope[parent_attr_key] attr_scope = parent_scope.split("/")[-1] attr_to_scope[attr_key] = f"{parent_scope}/{attr_scope}.{attr_name}" else: attr_to_scope[attr_key] = f"__module.{attr_name}" # We don't need classtype nodes; scope will provide this information if node.output().type().kind() != CLASSTYPE_KIND: node_py = NodePyOP(node) node_py.scopeName = attr_to_scope[attr_key] # type: ignore[attr-defined] nodes_py.append(node_py) else: nodes_py.append(NodePyOP(node)) for i, node in enumerate(graph.outputs()): # Create sink nodes for output ops node_pyio = NodePyIO(node, "output") node_pyio.debugName = f"output.{i + 1}" node_pyio.inputs = [node.debugName()] nodes_py.append(node_pyio) def parse_traced_name(module): if isinstance(module, torch.jit.TracedModule): module_name = module._name else: module_name = getattr(module, "original_name", "Module") return module_name alias_to_name = {} base_name = parse_traced_name(trace) for name, module in trace.named_modules(prefix="__module"): mod_name = parse_traced_name(module) attr_name = name.split(".")[-1] alias_to_name[name] = f"{mod_name}[{attr_name}]" for node in nodes_py.nodes_op: module_aliases = node.scopeName.split("/") replacements = [ alias_to_name[alias] if alias in alias_to_name else alias.split(".")[-1] for alias in module_aliases ] node.scopeName = base_name if any(replacements): node.scopeName += "/" + "/".join(replacements) nodes_py.populate_namespace_from_OP_to_IO() return nodes_py.to_proto() def graph(model, args, verbose=False, use_strict_trace=True): """ Process a PyTorch model and produces a `GraphDef` proto that can be logged to TensorBoard. Args: model (PyTorch module): The model to be parsed. args (tuple): input tensor[s] for the model. verbose (bool): Whether to print out verbose information while processing. use_strict_trace (bool): Whether to pass keyword argument `strict` to `torch.jit.trace`. Pass False when you want the tracer to record your mutable container types (list, dict) """ with _set_model_to_eval(model): try: trace = torch.jit.trace(model, args, strict=use_strict_trace) graph = trace.graph torch._C._jit_pass_inline(graph) except RuntimeError as e: print(e) print("Error occurs, No graph saved") raise e if verbose: print(graph) list_of_nodes = parse(graph, trace, args) # We are hardcoding that this was run on CPU even though it might have actually # run on GPU. Note this is what is shown in TensorBoard and has no bearing # on actual execution. # TODO: See if we can extract GPU vs CPU information from the PyTorch model # and pass it correctly to TensorBoard. # # Definition of StepStats and DeviceStepStats can be found at # https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/graph/tf_graph_common/test/graph-test.ts # and # https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/step_stats.proto stepstats = RunMetadata( step_stats=StepStats(dev_stats=[DeviceStepStats(device="/device:CPU:0")]) ) return GraphDef(node=list_of_nodes, versions=VersionDef(producer=22)), stepstats # The producer version has been reverse engineered from standard # TensorBoard logged data. @contextlib.contextmanager def _set_model_to_eval(model): """Context manager to temporarily set the training mode of ``model`` to eval.""" if not isinstance(model, torch.jit.ScriptFunction): originally_training = model.training model.train(False) try: yield finally: model.train(originally_training) else: # Do nothing for ScriptFunction try: yield finally: pass def _node_get(node: torch._C.Node, key: str): """Get attributes of a node which is polymorphic over return type.""" sel = node.kindOf(key) return getattr(node, sel)(key) ```
========================================================================================================================= SOURCE CODE FILE: _utils.py LINES: 1 SIZE: 4.21 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\_utils.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import numpy as np import numpy.typing as npt # Functions for converting def figure_to_image(figures, close=True): """Render matplotlib figure to numpy format. Note that this requires the ``matplotlib`` package. Args: figures (matplotlib.pyplot.figure or list of figures): figure or a list of figures close (bool): Flag to automatically close the figure Returns: numpy.array: image in [CHW] order """ import matplotlib.pyplot as plt import matplotlib.backends.backend_agg as plt_backend_agg def render_to_rgb(figure): canvas = plt_backend_agg.FigureCanvasAgg(figure) canvas.draw() data: npt.NDArray = np.frombuffer(canvas.buffer_rgba(), dtype=np.uint8) w, h = figure.canvas.get_width_height() image_hwc = data.reshape([h, w, 4])[:, :, 0:3] image_chw = np.moveaxis(image_hwc, source=2, destination=0) if close: plt.close(figure) return image_chw if isinstance(figures, list): images = [render_to_rgb(figure) for figure in figures] return np.stack(images) else: image = render_to_rgb(figures) return image def _prepare_video(V): """ Convert a 5D tensor into 4D tensor. Convesrion is done from [batchsize, time(frame), channel(color), height, width] (5D tensor) to [time(frame), new_width, new_height, channel] (4D tensor). A batch of images are spreaded to a grid, which forms a frame. e.g. Video with batchsize 16 will have a 4x4 grid. """ b, t, c, h, w = V.shape if V.dtype == np.uint8: V = np.float32(V) / 255.0 def is_power2(num): return num != 0 and ((num & (num - 1)) == 0) # pad to nearest power of 2, all at once if not is_power2(V.shape[0]): len_addition = int(2 ** V.shape[0].bit_length() - V.shape[0]) V = np.concatenate((V, np.zeros(shape=(len_addition, t, c, h, w))), axis=0) n_rows = 2 ** ((b.bit_length() - 1) // 2) n_cols = V.shape[0] // n_rows V = np.reshape(V, newshape=(n_rows, n_cols, t, c, h, w)) V = np.transpose(V, axes=(2, 0, 4, 1, 5, 3)) V = np.reshape(V, newshape=(t, n_rows * h, n_cols * w, c)) return V def make_grid(I, ncols=8): # I: N1HW or N3HW assert isinstance(I, np.ndarray), "plugin error, should pass numpy array here" if I.shape[1] == 1: I = np.concatenate([I, I, I], 1) assert I.ndim == 4 and I.shape[1] == 3 nimg = I.shape[0] H = I.shape[2] W = I.shape[3] ncols = min(nimg, ncols) nrows = int(np.ceil(float(nimg) / ncols)) canvas = np.zeros((3, H * nrows, W * ncols), dtype=I.dtype) i = 0 for y in range(nrows): for x in range(ncols): if i >= nimg: break canvas[:, y * H : (y + 1) * H, x * W : (x + 1) * W] = I[i] i = i + 1 return canvas # if modality == 'IMG': # if x.dtype == np.uint8: # x = x.astype(np.float32) / 255.0 def convert_to_HWC(tensor, input_format): # tensor: numpy array assert len(set(input_format)) == len( input_format ), f"You can not use the same dimension shordhand twice. input_format: {input_format}" assert len(tensor.shape) == len( input_format ), f"size of input tensor and input format are different. \ tensor shape: {tensor.shape}, input_format: {input_format}" input_format = input_format.upper() if len(input_format) == 4: index = [input_format.find(c) for c in "NCHW"] tensor_NCHW = tensor.transpose(index) tensor_CHW = make_grid(tensor_NCHW) return tensor_CHW.transpose(1, 2, 0) if len(input_format) == 3: index = [input_format.find(c) for c in "HWC"] tensor_HWC = tensor.transpose(index) if tensor_HWC.shape[2] == 1: tensor_HWC = np.concatenate([tensor_HWC, tensor_HWC, tensor_HWC], 2) return tensor_HWC if len(input_format) == 2: index = [input_format.find(c) for c in "HW"] tensor = tensor.transpose(index) tensor = np.stack([tensor, tensor, tensor], 2) return tensor ```
========================================================================================================================== SOURCE CODE FILE: summary.py LINES: 1 SIZE: 34.61 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\summary.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import json import logging import os import struct from typing import Any, Optional import torch import numpy as np from google.protobuf import struct_pb2 from tensorboard.compat.proto.summary_pb2 import ( HistogramProto, Summary, SummaryMetadata, ) from tensorboard.compat.proto.tensor_pb2 import TensorProto from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto from tensorboard.plugins.custom_scalar import layout_pb2 from tensorboard.plugins.pr_curve.plugin_data_pb2 import PrCurvePluginData from tensorboard.plugins.text.plugin_data_pb2 import TextPluginData from ._convert_np import make_np from ._utils import _prepare_video, convert_to_HWC __all__ = [ "half_to_int", "int_to_half", "hparams", "scalar", "histogram_raw", "histogram", "make_histogram", "image", "image_boxes", "draw_boxes", "make_image", "video", "make_video", "audio", "custom_scalars", "text", "tensor_proto", "pr_curve_raw", "pr_curve", "compute_curve", "mesh", ] logger = logging.getLogger(__name__) def half_to_int(f: float) -> int: """Casts a half-precision float value into an integer. Converts a half precision floating point value, such as `torch.half` or `torch.bfloat16`, into an integer value which can be written into the half_val field of a TensorProto for storage. To undo the effects of this conversion, use int_to_half(). """ buf = struct.pack("f", f) return struct.unpack("i", buf)[0] def int_to_half(i: int) -> float: """Casts an integer value to a half-precision float. Converts an integer value obtained from half_to_int back into a floating point value. """ buf = struct.pack("i", i) return struct.unpack("f", buf)[0] def _tensor_to_half_val(t: torch.Tensor) -> list[int]: return [half_to_int(x) for x in t.flatten().tolist()] def _tensor_to_complex_val(t: torch.Tensor) -> list[float]: return torch.view_as_real(t).flatten().tolist() def _tensor_to_list(t: torch.Tensor) -> list[Any]: return t.flatten().tolist() # type maps: torch.Tensor type -> (protobuf type, protobuf val field) _TENSOR_TYPE_MAP = { torch.half: ("DT_HALF", "half_val", _tensor_to_half_val), torch.float16: ("DT_HALF", "half_val", _tensor_to_half_val), torch.bfloat16: ("DT_BFLOAT16", "half_val", _tensor_to_half_val), torch.float32: ("DT_FLOAT", "float_val", _tensor_to_list), torch.float: ("DT_FLOAT", "float_val", _tensor_to_list), torch.float64: ("DT_DOUBLE", "double_val", _tensor_to_list), torch.double: ("DT_DOUBLE", "double_val", _tensor_to_list), torch.int8: ("DT_INT8", "int_val", _tensor_to_list), torch.uint8: ("DT_UINT8", "int_val", _tensor_to_list), torch.qint8: ("DT_UINT8", "int_val", _tensor_to_list), torch.int16: ("DT_INT16", "int_val", _tensor_to_list), torch.short: ("DT_INT16", "int_val", _tensor_to_list), torch.int: ("DT_INT32", "int_val", _tensor_to_list), torch.int32: ("DT_INT32", "int_val", _tensor_to_list), torch.qint32: ("DT_INT32", "int_val", _tensor_to_list), torch.int64: ("DT_INT64", "int64_val", _tensor_to_list), torch.complex32: ("DT_COMPLEX32", "scomplex_val", _tensor_to_complex_val), torch.chalf: ("DT_COMPLEX32", "scomplex_val", _tensor_to_complex_val), torch.complex64: ("DT_COMPLEX64", "scomplex_val", _tensor_to_complex_val), torch.cfloat: ("DT_COMPLEX64", "scomplex_val", _tensor_to_complex_val), torch.bool: ("DT_BOOL", "bool_val", _tensor_to_list), torch.complex128: ("DT_COMPLEX128", "dcomplex_val", _tensor_to_complex_val), torch.cdouble: ("DT_COMPLEX128", "dcomplex_val", _tensor_to_complex_val), torch.uint8: ("DT_UINT8", "uint32_val", _tensor_to_list), torch.quint8: ("DT_UINT8", "uint32_val", _tensor_to_list), torch.quint4x2: ("DT_UINT8", "uint32_val", _tensor_to_list), } def _calc_scale_factor(tensor): converted = tensor.numpy() if not isinstance(tensor, np.ndarray) else tensor return 1 if converted.dtype == np.uint8 else 255 def _draw_single_box( image, xmin, ymin, xmax, ymax, display_str, color="black", color_text="black", thickness=2, ): from PIL import ImageDraw, ImageFont font = ImageFont.load_default() draw = ImageDraw.Draw(image) (left, right, top, bottom) = (xmin, xmax, ymin, ymax) draw.line( [(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color, ) if display_str: text_bottom = bottom # Reverse list and print from bottom to top. _left, _top, _right, _bottom = font.getbbox(display_str) text_width, text_height = _right - _left, _bottom - _top margin = np.ceil(0.05 * text_height) draw.rectangle( [ (left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom), ], fill=color, ) draw.text( (left + margin, text_bottom - text_height - margin), display_str, fill=color_text, font=font, ) return image def hparams(hparam_dict=None, metric_dict=None, hparam_domain_discrete=None): """Output three `Summary` protocol buffers needed by hparams plugin. `Experiment` keeps the metadata of an experiment, such as the name of the hyperparameters and the name of the metrics. `SessionStartInfo` keeps key-value pairs of the hyperparameters `SessionEndInfo` describes status of the experiment e.g. STATUS_SUCCESS Args: hparam_dict: A dictionary that contains names of the hyperparameters and their values. metric_dict: A dictionary that contains names of the metrics and their values. hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that contains names of the hyperparameters and all discrete values they can hold Returns: The `Summary` protobufs for Experiment, SessionStartInfo and SessionEndInfo """ import torch from tensorboard.plugins.hparams.api_pb2 import ( DataType, Experiment, HParamInfo, MetricInfo, MetricName, Status, ) from tensorboard.plugins.hparams.metadata import ( EXPERIMENT_TAG, PLUGIN_DATA_VERSION, PLUGIN_NAME, SESSION_END_INFO_TAG, SESSION_START_INFO_TAG, ) from tensorboard.plugins.hparams.plugin_data_pb2 import ( HParamsPluginData, SessionEndInfo, SessionStartInfo, ) # TODO: expose other parameters in the future. # hp = HParamInfo(name='lr',display_name='learning rate', # type=DataType.DATA_TYPE_FLOAT64, domain_interval=Interval(min_value=10, # max_value=100)) # mt = MetricInfo(name=MetricName(tag='accuracy'), display_name='accuracy', # description='', dataset_type=DatasetType.DATASET_VALIDATION) # exp = Experiment(name='123', description='456', time_created_secs=100.0, # hparam_infos=[hp], metric_infos=[mt], user='tw') if not isinstance(hparam_dict, dict): logger.warning("parameter: hparam_dict should be a dictionary, nothing logged.") raise TypeError( "parameter: hparam_dict should be a dictionary, nothing logged." ) if not isinstance(metric_dict, dict): logger.warning("parameter: metric_dict should be a dictionary, nothing logged.") raise TypeError( "parameter: metric_dict should be a dictionary, nothing logged." ) hparam_domain_discrete = hparam_domain_discrete or {} if not isinstance(hparam_domain_discrete, dict): raise TypeError( "parameter: hparam_domain_discrete should be a dictionary, nothing logged." ) for k, v in hparam_domain_discrete.items(): if ( k not in hparam_dict or not isinstance(v, list) or not all(isinstance(d, type(hparam_dict[k])) for d in v) ): raise TypeError( f"parameter: hparam_domain_discrete[{k}] should be a list of same type as hparam_dict[{k}]." ) hps = [] ssi = SessionStartInfo() for k, v in hparam_dict.items(): if v is None: continue if isinstance(v, (int, float)): ssi.hparams[k].number_value = v if k in hparam_domain_discrete: domain_discrete: Optional[struct_pb2.ListValue] = struct_pb2.ListValue( values=[ struct_pb2.Value(number_value=d) for d in hparam_domain_discrete[k] ] ) else: domain_discrete = None hps.append( HParamInfo( name=k, type=DataType.Value("DATA_TYPE_FLOAT64"), domain_discrete=domain_discrete, ) ) continue if isinstance(v, str): ssi.hparams[k].string_value = v if k in hparam_domain_discrete: domain_discrete = struct_pb2.ListValue( values=[ struct_pb2.Value(string_value=d) for d in hparam_domain_discrete[k] ] ) else: domain_discrete = None hps.append( HParamInfo( name=k, type=DataType.Value("DATA_TYPE_STRING"), domain_discrete=domain_discrete, ) ) continue if isinstance(v, bool): ssi.hparams[k].bool_value = v if k in hparam_domain_discrete: domain_discrete = struct_pb2.ListValue( values=[ struct_pb2.Value(bool_value=d) for d in hparam_domain_discrete[k] ] ) else: domain_discrete = None hps.append( HParamInfo( name=k, type=DataType.Value("DATA_TYPE_BOOL"), domain_discrete=domain_discrete, ) ) continue if isinstance(v, torch.Tensor): v = make_np(v)[0] ssi.hparams[k].number_value = v hps.append(HParamInfo(name=k, type=DataType.Value("DATA_TYPE_FLOAT64"))) continue raise ValueError( "value should be one of int, float, str, bool, or torch.Tensor" ) content = HParamsPluginData(session_start_info=ssi, version=PLUGIN_DATA_VERSION) smd = SummaryMetadata( plugin_data=SummaryMetadata.PluginData( plugin_name=PLUGIN_NAME, content=content.SerializeToString() ) ) ssi = Summary(value=[Summary.Value(tag=SESSION_START_INFO_TAG, metadata=smd)]) mts = [MetricInfo(name=MetricName(tag=k)) for k in metric_dict.keys()] exp = Experiment(hparam_infos=hps, metric_infos=mts) content = HParamsPluginData(experiment=exp, version=PLUGIN_DATA_VERSION) smd = SummaryMetadata( plugin_data=SummaryMetadata.PluginData( plugin_name=PLUGIN_NAME, content=content.SerializeToString() ) ) exp = Summary(value=[Summary.Value(tag=EXPERIMENT_TAG, metadata=smd)]) sei = SessionEndInfo(status=Status.Value("STATUS_SUCCESS")) content = HParamsPluginData(session_end_info=sei, version=PLUGIN_DATA_VERSION) smd = SummaryMetadata( plugin_data=SummaryMetadata.PluginData( plugin_name=PLUGIN_NAME, content=content.SerializeToString() ) ) sei = Summary(value=[Summary.Value(tag=SESSION_END_INFO_TAG, metadata=smd)]) return exp, ssi, sei def scalar(name, tensor, collections=None, new_style=False, double_precision=False): """Output a `Summary` protocol buffer containing a single scalar value. The generated Summary has a Tensor.proto containing the input Tensor. Args: name: A name for the generated node. Will also serve as the series name in TensorBoard. tensor: A real numeric Tensor containing a single value. collections: Optional list of graph collections keys. The new summary op is added to these collections. Defaults to `[GraphKeys.SUMMARIES]`. new_style: Whether to use new style (tensor field) or old style (simple_value field). New style could lead to faster data loading. Returns: A scalar `Tensor` of type `string`. Which contains a `Summary` protobuf. Raises: ValueError: If tensor has the wrong shape or type. """ tensor = make_np(tensor).squeeze() assert ( tensor.ndim == 0 ), f"Tensor should contain one element (0 dimensions). Was given size: {tensor.size} and {tensor.ndim} dimensions." # python float is double precision in numpy scalar = float(tensor) if new_style: tensor_proto = TensorProto(float_val=[scalar], dtype="DT_FLOAT") if double_precision: tensor_proto = TensorProto(double_val=[scalar], dtype="DT_DOUBLE") plugin_data = SummaryMetadata.PluginData(plugin_name="scalars") smd = SummaryMetadata(plugin_data=plugin_data) return Summary( value=[ Summary.Value( tag=name, tensor=tensor_proto, metadata=smd, ) ] ) else: return Summary(value=[Summary.Value(tag=name, simple_value=scalar)]) def tensor_proto(tag, tensor): """Outputs a `Summary` protocol buffer containing the full tensor. The generated Summary has a Tensor.proto containing the input Tensor. Args: tag: A name for the generated node. Will also serve as the series name in TensorBoard. tensor: Tensor to be converted to protobuf Returns: A tensor protobuf in a `Summary` protobuf. Raises: ValueError: If tensor is too big to be converted to protobuf, or tensor data type is not supported """ if tensor.numel() * tensor.itemsize >= (1 << 31): raise ValueError( "tensor is bigger than protocol buffer's hard limit of 2GB in size" ) if tensor.dtype in _TENSOR_TYPE_MAP: dtype, field_name, conversion_fn = _TENSOR_TYPE_MAP[tensor.dtype] tensor_proto = TensorProto( **{ "dtype": dtype, "tensor_shape": TensorShapeProto( dim=[TensorShapeProto.Dim(size=x) for x in tensor.shape] ), field_name: conversion_fn(tensor), }, ) else: raise ValueError(f"{tag} has unsupported tensor dtype {tensor.dtype}") plugin_data = SummaryMetadata.PluginData(plugin_name="tensor") smd = SummaryMetadata(plugin_data=plugin_data) return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor_proto)]) def histogram_raw(name, min, max, num, sum, sum_squares, bucket_limits, bucket_counts): # pylint: disable=line-too-long """Output a `Summary` protocol buffer with a histogram. The generated [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto) has one summary value containing a histogram for `values`. Args: name: A name for the generated node. Will also serve as a series name in TensorBoard. min: A float or int min value max: A float or int max value num: Int number of values sum: Float or int sum of all values sum_squares: Float or int sum of squares for all values bucket_limits: A numeric `Tensor` with upper value per bucket bucket_counts: A numeric `Tensor` with number of values per bucket Returns: A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ hist = HistogramProto( min=min, max=max, num=num, sum=sum, sum_squares=sum_squares, bucket_limit=bucket_limits, bucket=bucket_counts, ) return Summary(value=[Summary.Value(tag=name, histo=hist)]) def histogram(name, values, bins, max_bins=None): # pylint: disable=line-too-long """Output a `Summary` protocol buffer with a histogram. The generated [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto) has one summary value containing a histogram for `values`. This op reports an `InvalidArgument` error if any value is not finite. Args: name: A name for the generated node. Will also serve as a series name in TensorBoard. values: A real numeric `Tensor`. Any shape. Values to use to build the histogram. Returns: A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ values = make_np(values) hist = make_histogram(values.astype(float), bins, max_bins) return Summary(value=[Summary.Value(tag=name, histo=hist)]) def make_histogram(values, bins, max_bins=None): """Convert values into a histogram proto using logic from histogram.cc.""" if values.size == 0: raise ValueError("The input has no element.") values = values.reshape(-1) counts, limits = np.histogram(values, bins=bins) num_bins = len(counts) if max_bins is not None and num_bins > max_bins: subsampling = num_bins // max_bins subsampling_remainder = num_bins % subsampling if subsampling_remainder != 0: counts = np.pad( counts, pad_width=[[0, subsampling - subsampling_remainder]], mode="constant", constant_values=0, ) counts = counts.reshape(-1, subsampling).sum(axis=-1) new_limits = np.empty((counts.size + 1,), limits.dtype) new_limits[:-1] = limits[:-1:subsampling] new_limits[-1] = limits[-1] limits = new_limits # Find the first and the last bin defining the support of the histogram: cum_counts = np.cumsum(np.greater(counts, 0)) start, end = np.searchsorted(cum_counts, [0, cum_counts[-1] - 1], side="right") start = int(start) end = int(end) + 1 del cum_counts # TensorBoard only includes the right bin limits. To still have the leftmost limit # included, we include an empty bin left. # If start == 0, we need to add an empty one left, otherwise we can just include the bin left to the # first nonzero-count bin: counts = ( counts[start - 1 : end] if start > 0 else np.concatenate([[0], counts[:end]]) ) limits = limits[start : end + 1] if counts.size == 0 or limits.size == 0: raise ValueError("The histogram is empty, please file a bug report.") sum_sq = values.dot(values) return HistogramProto( min=values.min(), max=values.max(), num=len(values), sum=values.sum(), sum_squares=sum_sq, bucket_limit=limits.tolist(), bucket=counts.tolist(), ) def image(tag, tensor, rescale=1, dataformats="NCHW"): """Output a `Summary` protocol buffer with images. The summary has up to `max_images` summary values containing images. The images are built from `tensor` which must be 3-D with shape `[height, width, channels]` and where `channels` can be: * 1: `tensor` is interpreted as Grayscale. * 3: `tensor` is interpreted as RGB. * 4: `tensor` is interpreted as RGBA. The `name` in the outputted Summary.Value protobufs is generated based on the name, with a suffix depending on the max_outputs setting: * If `max_outputs` is 1, the summary value tag is '*name*/image'. * If `max_outputs` is greater than 1, the summary value tags are generated sequentially as '*name*/image/0', '*name*/image/1', etc. Args: tag: A name for the generated node. Will also serve as a series name in TensorBoard. tensor: A 3-D `uint8` or `float32` `Tensor` of shape `[height, width, channels]` where `channels` is 1, 3, or 4. 'tensor' can either have values in [0, 1] (float32) or [0, 255] (uint8). The image() function will scale the image values to [0, 255] by applying a scale factor of either 1 (uint8) or 255 (float32). Out-of-range values will be clipped. Returns: A scalar `Tensor` of type `string`. The serialized `Summary` protocol buffer. """ tensor = make_np(tensor) tensor = convert_to_HWC(tensor, dataformats) # Do not assume that user passes in values in [0, 255], use data type to detect scale_factor = _calc_scale_factor(tensor) tensor = tensor.astype(np.float32) tensor = (tensor * scale_factor).clip(0, 255).astype(np.uint8) image = make_image(tensor, rescale=rescale) return Summary(value=[Summary.Value(tag=tag, image=image)]) def image_boxes( tag, tensor_image, tensor_boxes, rescale=1, dataformats="CHW", labels=None ): """Output a `Summary` protocol buffer with images.""" tensor_image = make_np(tensor_image) tensor_image = convert_to_HWC(tensor_image, dataformats) tensor_boxes = make_np(tensor_boxes) tensor_image = tensor_image.astype(np.float32) * _calc_scale_factor(tensor_image) image = make_image( tensor_image.clip(0, 255).astype(np.uint8), rescale=rescale, rois=tensor_boxes, labels=labels, ) return Summary(value=[Summary.Value(tag=tag, image=image)]) def draw_boxes(disp_image, boxes, labels=None): # xyxy format num_boxes = boxes.shape[0] list_gt = range(num_boxes) for i in list_gt: disp_image = _draw_single_box( disp_image, boxes[i, 0], boxes[i, 1], boxes[i, 2], boxes[i, 3], display_str=None if labels is None else labels[i], color="Red", ) return disp_image def make_image(tensor, rescale=1, rois=None, labels=None): """Convert a numpy representation of an image to Image protobuf.""" from PIL import Image height, width, channel = tensor.shape scaled_height = int(height * rescale) scaled_width = int(width * rescale) image = Image.fromarray(tensor) if rois is not None: image = draw_boxes(image, rois, labels=labels) ANTIALIAS = Image.Resampling.LANCZOS image = image.resize((scaled_width, scaled_height), ANTIALIAS) import io output = io.BytesIO() image.save(output, format="PNG") image_string = output.getvalue() output.close() return Summary.Image( height=height, width=width, colorspace=channel, encoded_image_string=image_string, ) def video(tag, tensor, fps=4): tensor = make_np(tensor) tensor = _prepare_video(tensor) # If user passes in uint8, then we don't need to rescale by 255 scale_factor = _calc_scale_factor(tensor) tensor = tensor.astype(np.float32) tensor = (tensor * scale_factor).clip(0, 255).astype(np.uint8) video = make_video(tensor, fps) return Summary(value=[Summary.Value(tag=tag, image=video)]) def make_video(tensor, fps): try: import moviepy # noqa: F401 except ImportError: print("add_video needs package moviepy") return try: from moviepy import editor as mpy except ImportError: print( "moviepy is installed, but can't import moviepy.editor.", "Some packages could be missing [imageio, requests]", ) return import tempfile _t, h, w, c = tensor.shape # encode sequence of images into gif string clip = mpy.ImageSequenceClip(list(tensor), fps=fps) filename = tempfile.NamedTemporaryFile(suffix=".gif", delete=False).name try: # newer version of moviepy use logger instead of progress_bar argument. clip.write_gif(filename, verbose=False, logger=None) except TypeError: try: # older version of moviepy does not support progress_bar argument. clip.write_gif(filename, verbose=False, progress_bar=False) except TypeError: clip.write_gif(filename, verbose=False) with open(filename, "rb") as f: tensor_string = f.read() try: os.remove(filename) except OSError: logger.warning("The temporary file used by moviepy cannot be deleted.") return Summary.Image( height=h, width=w, colorspace=c, encoded_image_string=tensor_string ) def audio(tag, tensor, sample_rate=44100): array = make_np(tensor) array = array.squeeze() if abs(array).max() > 1: print("warning: audio amplitude out of range, auto clipped.") array = array.clip(-1, 1) assert array.ndim == 1, "input tensor should be 1 dimensional." array = (array * np.iinfo(np.int16).max).astype("<i2") import io import wave fio = io.BytesIO() with wave.open(fio, "wb") as wave_write: wave_write.setnchannels(1) wave_write.setsampwidth(2) wave_write.setframerate(sample_rate) wave_write.writeframes(array.data) audio_string = fio.getvalue() fio.close() audio = Summary.Audio( sample_rate=sample_rate, num_channels=1, length_frames=array.shape[-1], encoded_audio_string=audio_string, content_type="audio/wav", ) return Summary(value=[Summary.Value(tag=tag, audio=audio)]) def custom_scalars(layout): categories = [] for k, v in layout.items(): charts = [] for chart_name, chart_metadata in v.items(): tags = chart_metadata[1] if chart_metadata[0] == "Margin": assert len(tags) == 3 mgcc = layout_pb2.MarginChartContent( series=[ layout_pb2.MarginChartContent.Series( value=tags[0], lower=tags[1], upper=tags[2] ) ] ) chart = layout_pb2.Chart(title=chart_name, margin=mgcc) else: mlcc = layout_pb2.MultilineChartContent(tag=tags) chart = layout_pb2.Chart(title=chart_name, multiline=mlcc) charts.append(chart) categories.append(layout_pb2.Category(title=k, chart=charts)) layout = layout_pb2.Layout(category=categories) plugin_data = SummaryMetadata.PluginData(plugin_name="custom_scalars") smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_STRING", string_val=[layout.SerializeToString()], tensor_shape=TensorShapeProto(), ) return Summary( value=[ Summary.Value(tag="custom_scalars__config__", tensor=tensor, metadata=smd) ] ) def text(tag, text): plugin_data = SummaryMetadata.PluginData( plugin_name="text", content=TextPluginData(version=0).SerializeToString() ) smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_STRING", string_val=[text.encode(encoding="utf_8")], tensor_shape=TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), ) return Summary( value=[Summary.Value(tag=tag + "/text_summary", metadata=smd, tensor=tensor)] ) def pr_curve_raw( tag, tp, fp, tn, fn, precision, recall, num_thresholds=127, weights=None ): if num_thresholds > 127: # weird, value > 127 breaks protobuf num_thresholds = 127 data = np.stack((tp, fp, tn, fn, precision, recall)) pr_curve_plugin_data = PrCurvePluginData( version=0, num_thresholds=num_thresholds ).SerializeToString() plugin_data = SummaryMetadata.PluginData( plugin_name="pr_curves", content=pr_curve_plugin_data ) smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_FLOAT", float_val=data.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[ TensorShapeProto.Dim(size=data.shape[0]), TensorShapeProto.Dim(size=data.shape[1]), ] ), ) return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)]) def pr_curve(tag, labels, predictions, num_thresholds=127, weights=None): # weird, value > 127 breaks protobuf num_thresholds = min(num_thresholds, 127) data = compute_curve( labels, predictions, num_thresholds=num_thresholds, weights=weights ) pr_curve_plugin_data = PrCurvePluginData( version=0, num_thresholds=num_thresholds ).SerializeToString() plugin_data = SummaryMetadata.PluginData( plugin_name="pr_curves", content=pr_curve_plugin_data ) smd = SummaryMetadata(plugin_data=plugin_data) tensor = TensorProto( dtype="DT_FLOAT", float_val=data.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[ TensorShapeProto.Dim(size=data.shape[0]), TensorShapeProto.Dim(size=data.shape[1]), ] ), ) return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)]) # https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/summary.py def compute_curve(labels, predictions, num_thresholds=None, weights=None): _MINIMUM_COUNT = 1e-7 if weights is None: weights = 1.0 # Compute bins of true positives and false positives. bucket_indices = np.int32(np.floor(predictions * (num_thresholds - 1))) float_labels = labels.astype(np.float64) histogram_range = (0, num_thresholds - 1) tp_buckets, _ = np.histogram( bucket_indices, bins=num_thresholds, range=histogram_range, weights=float_labels * weights, ) fp_buckets, _ = np.histogram( bucket_indices, bins=num_thresholds, range=histogram_range, weights=(1.0 - float_labels) * weights, ) # Obtain the reverse cumulative sum. tp = np.cumsum(tp_buckets[::-1])[::-1] fp = np.cumsum(fp_buckets[::-1])[::-1] tn = fp[0] - fp fn = tp[0] - tp precision = tp / np.maximum(_MINIMUM_COUNT, tp + fp) recall = tp / np.maximum(_MINIMUM_COUNT, tp + fn) return np.stack((tp, fp, tn, fn, precision, recall)) def _get_tensor_summary( name, display_name, description, tensor, content_type, components, json_config ): """Create a tensor summary with summary metadata. Args: name: Uniquely identifiable name of the summary op. Could be replaced by combination of name and type to make it unique even outside of this summary. display_name: Will be used as the display name in TensorBoard. Defaults to `name`. description: A longform readable description of the summary data. Markdown is supported. tensor: Tensor to display in summary. content_type: Type of content inside the Tensor. components: Bitmask representing present parts (vertices, colors, etc.) that belong to the summary. json_config: A string, JSON-serialized dictionary of ThreeJS classes configuration. Returns: Tensor summary with metadata. """ import torch from tensorboard.plugins.mesh import metadata tensor = torch.as_tensor(tensor) tensor_metadata = metadata.create_summary_metadata( name, display_name, content_type, components, tensor.shape, description, json_config=json_config, ) tensor = TensorProto( dtype="DT_FLOAT", float_val=tensor.reshape(-1).tolist(), tensor_shape=TensorShapeProto( dim=[ TensorShapeProto.Dim(size=tensor.shape[0]), TensorShapeProto.Dim(size=tensor.shape[1]), TensorShapeProto.Dim(size=tensor.shape[2]), ] ), ) tensor_summary = Summary.Value( tag=metadata.get_instance_name(name, content_type), tensor=tensor, metadata=tensor_metadata, ) return tensor_summary def _get_json_config(config_dict): """Parse and returns JSON string from python dictionary.""" json_config = "{}" if config_dict is not None: json_config = json.dumps(config_dict, sort_keys=True) return json_config # https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/mesh/summary.py def mesh( tag, vertices, colors, faces, config_dict, display_name=None, description=None ): """Output a merged `Summary` protocol buffer with a mesh/point cloud. Args: tag: A name for this summary operation. vertices: Tensor of shape `[dim_1, ..., dim_n, 3]` representing the 3D coordinates of vertices. faces: Tensor of shape `[dim_1, ..., dim_n, 3]` containing indices of vertices within each triangle. colors: Tensor of shape `[dim_1, ..., dim_n, 3]` containing colors for each vertex. display_name: If set, will be used as the display name in TensorBoard. Defaults to `name`. description: A longform readable description of the summary data. Markdown is supported. config_dict: Dictionary with ThreeJS classes names and configuration. Returns: Merged summary for mesh/point cloud representation. """ from tensorboard.plugins.mesh import metadata from tensorboard.plugins.mesh.plugin_data_pb2 import MeshPluginData json_config = _get_json_config(config_dict) summaries = [] tensors = [ (vertices, MeshPluginData.VERTEX), (faces, MeshPluginData.FACE), (colors, MeshPluginData.COLOR), ] tensors = [tensor for tensor in tensors if tensor[0] is not None] components = metadata.get_components_bitmask( [content_type for (tensor, content_type) in tensors] ) for tensor, content_type in tensors: summaries.append( _get_tensor_summary( tag, display_name, description, tensor, content_type, components, json_config, ) ) return Summary(value=summaries) ```
========================================================================================================================= SOURCE CODE FILE: writer.py LINES: 1 SIZE: 46.75 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\tensorboard\writer.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs """Provide an API for writing protocol buffers to event files to be consumed by TensorBoard for visualization.""" import os import time from typing import Optional, TYPE_CHECKING, Union import torch if TYPE_CHECKING: from matplotlib.figure import Figure from tensorboard.compat import tf from tensorboard.compat.proto import event_pb2 from tensorboard.compat.proto.event_pb2 import Event, SessionLog from tensorboard.plugins.projector.projector_config_pb2 import ProjectorConfig from tensorboard.summary.writer.event_file_writer import EventFileWriter from ._convert_np import make_np from ._embedding import get_embedding_info, make_mat, make_sprite, make_tsv, write_pbtxt from ._onnx_graph import load_onnx_graph from ._pytorch_graph import graph from ._utils import figure_to_image from .summary import ( audio, custom_scalars, histogram, histogram_raw, hparams, image, image_boxes, mesh, pr_curve, pr_curve_raw, scalar, tensor_proto, text, video, ) __all__ = ["FileWriter", "SummaryWriter"] class FileWriter: """Writes protocol buffers to event files to be consumed by TensorBoard. The `FileWriter` class provides a mechanism to create an event file in a given directory and add summaries and events to it. The class updates the file contents asynchronously. This allows a training program to call methods to add data to the file directly from the training loop, without slowing down training. """ def __init__(self, log_dir, max_queue=10, flush_secs=120, filename_suffix=""): """Create a `FileWriter` and an event file. On construction the writer creates a new event file in `log_dir`. The other arguments to the constructor control the asynchronous writes to the event file. Args: log_dir: A string. Directory where event file will be written. max_queue: Integer. Size of the queue for pending events and summaries before one of the 'add' calls forces a flush to disk. Default is ten items. flush_secs: Number. How often, in seconds, to flush the pending events and summaries to disk. Default is every two minutes. filename_suffix: A string. Suffix added to all event filenames in the log_dir directory. More details on filename construction in tensorboard.summary.writer.event_file_writer.EventFileWriter. """ # Sometimes PosixPath is passed in and we need to coerce it to # a string in all cases # TODO: See if we can remove this in the future if we are # actually the ones passing in a PosixPath log_dir = str(log_dir) self.event_writer = EventFileWriter( log_dir, max_queue, flush_secs, filename_suffix ) def get_logdir(self): """Return the directory where event file will be written.""" return self.event_writer.get_logdir() def add_event(self, event, step=None, walltime=None): """Add an event to the event file. Args: event: An `Event` protocol buffer. step: Number. Optional global step value for training process to record with the event. walltime: float. Optional walltime to override the default (current) walltime (from time.time()) seconds after epoch """ event.wall_time = time.time() if walltime is None else walltime if step is not None: # Make sure step is converted from numpy or other formats # since protobuf might not convert depending on version event.step = int(step) self.event_writer.add_event(event) def add_summary(self, summary, global_step=None, walltime=None): """Add a `Summary` protocol buffer to the event file. This method wraps the provided summary in an `Event` protocol buffer and adds it to the event file. Args: summary: A `Summary` protocol buffer. global_step: Number. Optional global step value for training process to record with the summary. walltime: float. Optional walltime to override the default (current) walltime (from time.time()) seconds after epoch """ event = event_pb2.Event(summary=summary) self.add_event(event, global_step, walltime) def add_graph(self, graph_profile, walltime=None): """Add a `Graph` and step stats protocol buffer to the event file. Args: graph_profile: A `Graph` and step stats protocol buffer. walltime: float. Optional walltime to override the default (current) walltime (from time.time()) seconds after epoch """ graph = graph_profile[0] stepstats = graph_profile[1] event = event_pb2.Event(graph_def=graph.SerializeToString()) self.add_event(event, None, walltime) trm = event_pb2.TaggedRunMetadata( tag="step1", run_metadata=stepstats.SerializeToString() ) event = event_pb2.Event(tagged_run_metadata=trm) self.add_event(event, None, walltime) def add_onnx_graph(self, graph, walltime=None): """Add a `Graph` protocol buffer to the event file. Args: graph: A `Graph` protocol buffer. walltime: float. Optional walltime to override the default (current) _get_file_writerfrom time.time()) """ event = event_pb2.Event(graph_def=graph.SerializeToString()) self.add_event(event, None, walltime) def flush(self): """Flushes the event file to disk. Call this method to make sure that all pending events have been written to disk. """ self.event_writer.flush() def close(self): """Flushes the event file to disk and close the file. Call this method when you do not need the summary writer anymore. """ self.event_writer.close() def reopen(self): """Reopens the EventFileWriter. Can be called after `close()` to add more events in the same directory. The events will go into a new events file. Does nothing if the EventFileWriter was not closed. """ self.event_writer.reopen() class SummaryWriter: """Writes entries directly to event files in the log_dir to be consumed by TensorBoard. The `SummaryWriter` class provides a high-level API to create an event file in a given directory and add summaries and events to it. The class updates the file contents asynchronously. This allows a training program to call methods to add data to the file directly from the training loop, without slowing down training. """ def __init__( self, log_dir=None, comment="", purge_step=None, max_queue=10, flush_secs=120, filename_suffix="", ): """Create a `SummaryWriter` that will write out events and summaries to the event file. Args: log_dir (str): Save directory location. Default is runs/**CURRENT_DATETIME_HOSTNAME**, which changes after each run. Use hierarchical folder structure to compare between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2', etc. for each new experiment to compare across them. comment (str): Comment log_dir suffix appended to the default ``log_dir``. If ``log_dir`` is assigned, this argument has no effect. purge_step (int): When logging crashes at step :math:`T+X` and restarts at step :math:`T`, any events whose global_step larger or equal to :math:`T` will be purged and hidden from TensorBoard. Note that crashed and resumed experiments should have the same ``log_dir``. max_queue (int): Size of the queue for pending events and summaries before one of the 'add' calls forces a flush to disk. Default is ten items. flush_secs (int): How often, in seconds, to flush the pending events and summaries to disk. Default is every two minutes. filename_suffix (str): Suffix added to all event filenames in the log_dir directory. More details on filename construction in tensorboard.summary.writer.event_file_writer.EventFileWriter. Examples:: from torch.utils.tensorboard import SummaryWriter # create a summary writer with automatically generated folder name. writer = SummaryWriter() # folder location: runs/May04_22-14-54_s-MacBook-Pro.local/ # create a summary writer using the specified folder name. writer = SummaryWriter("my_experiment") # folder location: my_experiment # create a summary writer with comment appended. writer = SummaryWriter(comment="LR_0.1_BATCH_16") # folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/ """ torch._C._log_api_usage_once("tensorboard.create.summarywriter") if not log_dir: import socket from datetime import datetime current_time = datetime.now().strftime("%b%d_%H-%M-%S") log_dir = os.path.join( "runs", current_time + "_" + socket.gethostname() + comment ) self.log_dir = log_dir self.purge_step = purge_step self.max_queue = max_queue self.flush_secs = flush_secs self.filename_suffix = filename_suffix # Initialize the file writers, but they can be cleared out on close # and recreated later as needed. self.file_writer = self.all_writers = None self._get_file_writer() # Create default bins for histograms, see generate_testdata.py in tensorflow/tensorboard v = 1e-12 buckets = [] neg_buckets = [] while v < 1e20: buckets.append(v) neg_buckets.append(-v) v *= 1.1 self.default_bins = neg_buckets[::-1] + [0] + buckets def _get_file_writer(self): """Return the default FileWriter instance. Recreates it if closed.""" if self.all_writers is None or self.file_writer is None: self.file_writer = FileWriter( self.log_dir, self.max_queue, self.flush_secs, self.filename_suffix ) self.all_writers = {self.file_writer.get_logdir(): self.file_writer} if self.purge_step is not None: most_recent_step = self.purge_step self.file_writer.add_event( Event(step=most_recent_step, file_version="brain.Event:2") ) self.file_writer.add_event( Event( step=most_recent_step, session_log=SessionLog(status=SessionLog.START), ) ) self.purge_step = None return self.file_writer def get_logdir(self): """Return the directory where event files will be written.""" return self.log_dir def add_hparams( self, hparam_dict, metric_dict, hparam_domain_discrete=None, run_name=None, global_step=None, ): """Add a set of hyperparameters to be compared in TensorBoard. Args: hparam_dict (dict): Each key-value pair in the dictionary is the name of the hyper parameter and it's corresponding value. The type of the value can be one of `bool`, `string`, `float`, `int`, or `None`. metric_dict (dict): Each key-value pair in the dictionary is the name of the metric and it's corresponding value. Note that the key used here should be unique in the tensorboard record. Otherwise the value you added by ``add_scalar`` will be displayed in hparam plugin. In most cases, this is unwanted. hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that contains names of the hyperparameters and all discrete values they can hold run_name (str): Name of the run, to be included as part of the logdir. If unspecified, will use current timestamp. global_step (int): Global step value to record Examples:: from torch.utils.tensorboard import SummaryWriter with SummaryWriter() as w: for i in range(5): w.add_hparams({'lr': 0.1*i, 'bsize': i}, {'hparam/accuracy': 10*i, 'hparam/loss': 10*i}) Expected result: .. image:: _static/img/tensorboard/add_hparam.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_hparams") if type(hparam_dict) is not dict or type(metric_dict) is not dict: raise TypeError("hparam_dict and metric_dict should be dictionary.") exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete) if not run_name: run_name = str(time.time()) logdir = os.path.join(self._get_file_writer().get_logdir(), run_name) with SummaryWriter(log_dir=logdir) as w_hp: w_hp.file_writer.add_summary(exp, global_step) w_hp.file_writer.add_summary(ssi, global_step) w_hp.file_writer.add_summary(sei, global_step) for k, v in metric_dict.items(): w_hp.add_scalar(k, v, global_step) def add_scalar( self, tag, scalar_value, global_step=None, walltime=None, new_style=False, double_precision=False, ): """Add scalar data to summary. Args: tag (str): Data identifier scalar_value (float or string/blobname): Value to save global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) with seconds after epoch of event new_style (boolean): Whether to use new style (tensor field) or old style (simple_value field). New style could lead to faster data loading. Examples:: from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() x = range(100) for i in x: writer.add_scalar('y=2x', i * 2, i) writer.close() Expected result: .. image:: _static/img/tensorboard/add_scalar.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_scalar") summary = scalar( tag, scalar_value, new_style=new_style, double_precision=double_precision ) self._get_file_writer().add_summary(summary, global_step, walltime) def add_scalars(self, main_tag, tag_scalar_dict, global_step=None, walltime=None): """Add many scalar data to summary. Args: main_tag (str): The parent name for the tags tag_scalar_dict (dict): Key-value pair storing the tag and corresponding values global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() r = 5 for i in range(100): writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r), 'xcosx':i*np.cos(i/r), 'tanx': np.tan(i/r)}, i) writer.close() # This call adds three values to the same scalar plot with the tag # 'run_14h' in TensorBoard's scalar section. Expected result: .. image:: _static/img/tensorboard/add_scalars.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_scalars") walltime = time.time() if walltime is None else walltime fw_logdir = self._get_file_writer().get_logdir() for tag, scalar_value in tag_scalar_dict.items(): fw_tag = fw_logdir + "/" + main_tag.replace("/", "_") + "_" + tag assert self.all_writers is not None if fw_tag in self.all_writers.keys(): fw = self.all_writers[fw_tag] else: fw = FileWriter( fw_tag, self.max_queue, self.flush_secs, self.filename_suffix ) self.all_writers[fw_tag] = fw fw.add_summary(scalar(main_tag, scalar_value), global_step, walltime) def add_tensor( self, tag, tensor, global_step=None, walltime=None, ): """Add tensor data to summary. Args: tag (str): Data identifier tensor (torch.Tensor): tensor to save global_step (int): Global step value to record Examples:: from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() x = torch.tensor([1,2,3]) writer.add_scalar('x', x) writer.close() Expected result: Summary::tensor::float_val [1,2,3] ::tensor::shape [3] ::tag 'x' """ torch._C._log_api_usage_once("tensorboard.logging.add_tensor") summary = tensor_proto(tag, tensor) self._get_file_writer().add_summary(summary, global_step, walltime) def add_histogram( self, tag, values, global_step=None, bins="tensorflow", walltime=None, max_bins=None, ): """Add histogram to summary. Args: tag (str): Data identifier values (torch.Tensor, numpy.ndarray, or string/blobname): Values to build histogram global_step (int): Global step value to record bins (str): One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np writer = SummaryWriter() for i in range(10): x = np.random.random(1000) writer.add_histogram('distribution centers', x + i, i) writer.close() Expected result: .. image:: _static/img/tensorboard/add_histogram.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_histogram") if isinstance(bins, str) and bins == "tensorflow": bins = self.default_bins self._get_file_writer().add_summary( histogram(tag, values, bins, max_bins=max_bins), global_step, walltime ) def add_histogram_raw( self, tag, min, max, num, sum, sum_squares, bucket_limits, bucket_counts, global_step=None, walltime=None, ): """Add histogram with raw data. Args: tag (str): Data identifier min (float or int): Min value max (float or int): Max value num (int): Number of values sum (float or int): Sum of all values sum_squares (float or int): Sum of squares for all values bucket_limits (torch.Tensor, numpy.ndarray): Upper value per bucket. The number of elements of it should be the same as `bucket_counts`. bucket_counts (torch.Tensor, numpy.ndarray): Number of values per bucket global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/README.md Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np writer = SummaryWriter() dummy_data = [] for idx, value in enumerate(range(50)): dummy_data += [idx + 0.001] * value bins = list(range(50+2)) bins = np.array(bins) values = np.array(dummy_data).astype(float).reshape(-1) counts, limits = np.histogram(values, bins=bins) sum_sq = values.dot(values) writer.add_histogram_raw( tag='histogram_with_raw_data', min=values.min(), max=values.max(), num=len(values), sum=values.sum(), sum_squares=sum_sq, bucket_limits=limits[1:].tolist(), bucket_counts=counts.tolist(), global_step=0) writer.close() Expected result: .. image:: _static/img/tensorboard/add_histogram_raw.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_histogram_raw") if len(bucket_limits) != len(bucket_counts): raise ValueError( "len(bucket_limits) != len(bucket_counts), see the document." ) self._get_file_writer().add_summary( histogram_raw( tag, min, max, num, sum, sum_squares, bucket_limits, bucket_counts ), global_step, walltime, ) def add_image( self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW" ): """Add image data to summary. Note that this requires the ``pillow`` package. Args: tag (str): Data identifier img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event dataformats (str): Image data format specification of the form CHW, HWC, HW, WH, etc. Shape: img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to convert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job. Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long as corresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``. Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np img = np.zeros((3, 100, 100)) img[0] = np.arange(0, 10000).reshape(100, 100) / 10000 img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 img_HWC = np.zeros((100, 100, 3)) img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 writer = SummaryWriter() writer.add_image('my_image', img, 0) # If you have non-default dimension setting, set the dataformats argument. writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC') writer.close() Expected result: .. image:: _static/img/tensorboard/add_image.png :scale: 50 % """ torch._C._log_api_usage_once("tensorboard.logging.add_image") self._get_file_writer().add_summary( image(tag, img_tensor, dataformats=dataformats), global_step, walltime ) def add_images( self, tag, img_tensor, global_step=None, walltime=None, dataformats="NCHW" ): """Add batched image data to summary. Note that this requires the ``pillow`` package. Args: tag (str): Data identifier img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event dataformats (str): Image data format specification of the form NCHW, NHWC, CHW, HWC, HW, WH, etc. Shape: img_tensor: Default is :math:`(N, 3, H, W)`. If ``dataformats`` is specified, other shape will be accepted. e.g. NCHW or NHWC. Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np img_batch = np.zeros((16, 3, 100, 100)) for i in range(16): img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i writer = SummaryWriter() writer.add_images('my_image_batch', img_batch, 0) writer.close() Expected result: .. image:: _static/img/tensorboard/add_images.png :scale: 30 % """ torch._C._log_api_usage_once("tensorboard.logging.add_images") self._get_file_writer().add_summary( image(tag, img_tensor, dataformats=dataformats), global_step, walltime ) def add_image_with_boxes( self, tag, img_tensor, box_tensor, global_step=None, walltime=None, rescale=1, dataformats="CHW", labels=None, ): """Add image and draw bounding boxes on the image. Args: tag (str): Data identifier img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data box_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Box data (for detected objects) box should be represented as [x1, y1, x2, y2]. global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event rescale (float): Optional scale override dataformats (str): Image data format specification of the form NCHW, NHWC, CHW, HWC, HW, WH, etc. labels (list of string): The label to be shown for each bounding box. Shape: img_tensor: Default is :math:`(3, H, W)`. It can be specified with ``dataformats`` argument. e.g. CHW or HWC box_tensor: (torch.Tensor, numpy.ndarray, or string/blobname): NX4, where N is the number of boxes and each 4 elements in a row represents (xmin, ymin, xmax, ymax). """ torch._C._log_api_usage_once("tensorboard.logging.add_image_with_boxes") if labels is not None: if isinstance(labels, str): labels = [labels] if len(labels) != box_tensor.shape[0]: labels = None self._get_file_writer().add_summary( image_boxes( tag, img_tensor, box_tensor, rescale=rescale, dataformats=dataformats, labels=labels, ), global_step, walltime, ) def add_figure( self, tag: str, figure: Union["Figure", list["Figure"]], global_step: Optional[int] = None, close: bool = True, walltime: Optional[float] = None, ) -> None: """Render matplotlib figure into an image and add it to summary. Note that this requires the ``matplotlib`` package. Args: tag: Data identifier figure: Figure or a list of figures global_step: Global step value to record close: Flag to automatically close the figure walltime: Optional override default walltime (time.time()) seconds after epoch of event """ torch._C._log_api_usage_once("tensorboard.logging.add_figure") if isinstance(figure, list): self.add_image( tag, figure_to_image(figure, close), global_step, walltime, dataformats="NCHW", ) else: self.add_image( tag, figure_to_image(figure, close), global_step, walltime, dataformats="CHW", ) def add_video(self, tag, vid_tensor, global_step=None, fps=4, walltime=None): """Add video data to summary. Note that this requires the ``moviepy`` package. Args: tag (str): Data identifier vid_tensor (torch.Tensor): Video data global_step (int): Global step value to record fps (float or int): Frames per second walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Shape: vid_tensor: :math:`(N, T, C, H, W)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`. """ torch._C._log_api_usage_once("tensorboard.logging.add_video") self._get_file_writer().add_summary( video(tag, vid_tensor, fps), global_step, walltime ) def add_audio( self, tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None ): """Add audio data to summary. Args: tag (str): Data identifier snd_tensor (torch.Tensor): Sound data global_step (int): Global step value to record sample_rate (int): sample rate in Hz walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Shape: snd_tensor: :math:`(1, L)`. The values should lie between [-1, 1]. """ torch._C._log_api_usage_once("tensorboard.logging.add_audio") self._get_file_writer().add_summary( audio(tag, snd_tensor, sample_rate=sample_rate), global_step, walltime ) def add_text(self, tag, text_string, global_step=None, walltime=None): """Add text data to summary. Args: tag (str): Data identifier text_string (str): String to save global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: writer.add_text('lstm', 'This is an lstm', 0) writer.add_text('rnn', 'This is an rnn', 10) """ torch._C._log_api_usage_once("tensorboard.logging.add_text") self._get_file_writer().add_summary( text(tag, text_string), global_step, walltime ) def add_onnx_graph(self, prototxt): torch._C._log_api_usage_once("tensorboard.logging.add_onnx_graph") self._get_file_writer().add_onnx_graph(load_onnx_graph(prototxt)) def add_graph( self, model, input_to_model=None, verbose=False, use_strict_trace=True ): """Add graph data to summary. Args: model (torch.nn.Module): Model to draw. input_to_model (torch.Tensor or list of torch.Tensor): A variable or a tuple of variables to be fed. verbose (bool): Whether to print graph structure in console. use_strict_trace (bool): Whether to pass keyword argument `strict` to `torch.jit.trace`. Pass False when you want the tracer to record your mutable container types (list, dict) """ torch._C._log_api_usage_once("tensorboard.logging.add_graph") # A valid PyTorch model should have a 'forward' method self._get_file_writer().add_graph( graph(model, input_to_model, verbose, use_strict_trace) ) @staticmethod def _encode(rawstr): # I'd use urllib but, I'm unsure about the differences from python3 to python2, etc. retval = rawstr retval = retval.replace("%", f"%{ord('%'):02x}") retval = retval.replace("/", f"%{ord('/'):02x}") retval = retval.replace("\\", "%%%02x" % (ord("\\"))) # noqa: UP031 return retval def add_embedding( self, mat, metadata=None, label_img=None, global_step=None, tag="default", metadata_header=None, ): """Add embedding projector data to summary. Args: mat (torch.Tensor or numpy.ndarray): A matrix which each row is the feature vector of the data point metadata (list): A list of labels, each element will be converted to string label_img (torch.Tensor): Images correspond to each data point global_step (int): Global step value to record tag (str): Name for the embedding metadata_header (list): A list of headers for multi-column metadata. If given, each metadata must be a list with values corresponding to headers. Shape: mat: :math:`(N, D)`, where N is number of data and D is feature dimension label_img: :math:`(N, C, H, W)` Examples:: import keyword import torch meta = [] while len(meta)<100: meta = meta+keyword.kwlist # get some strings meta = meta[:100] for i, v in enumerate(meta): meta[i] = v+str(i) label_img = torch.rand(100, 3, 10, 32) for i in range(100): label_img[i]*=i/100.0 writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img) writer.add_embedding(torch.randn(100, 5), label_img=label_img) writer.add_embedding(torch.randn(100, 5), metadata=meta) .. note:: Categorical (i.e. non-numeric) metadata cannot have more than 50 unique values if they are to be used for coloring in the embedding projector. """ torch._C._log_api_usage_once("tensorboard.logging.add_embedding") mat = make_np(mat) if global_step is None: global_step = 0 # clear pbtxt? # Maybe we should encode the tag so slashes don't trip us up? # I don't think this will mess us up, but better safe than sorry. subdir = f"{str(global_step).zfill(5)}/{self._encode(tag)}" save_path = os.path.join(self._get_file_writer().get_logdir(), subdir) fs = tf.io.gfile if fs.exists(save_path): if fs.isdir(save_path): print( "warning: Embedding dir exists, did you set global_step for add_embedding()?" ) else: raise NotADirectoryError( f"Path: `{save_path}` exists, but is a file. Cannot proceed." ) else: fs.makedirs(save_path) if metadata is not None: assert mat.shape[0] == len( metadata ), "#labels should equal with #data points" make_tsv(metadata, save_path, metadata_header=metadata_header) if label_img is not None: assert ( mat.shape[0] == label_img.shape[0] ), "#images should equal with #data points" make_sprite(label_img, save_path) assert ( mat.ndim == 2 ), "mat should be 2D, where mat.size(0) is the number of data points" make_mat(mat, save_path) # Filesystem doesn't necessarily have append semantics, so we store an # internal buffer to append to and re-write whole file after each # embedding is added if not hasattr(self, "_projector_config"): self._projector_config = ProjectorConfig() embedding_info = get_embedding_info( metadata, label_img, subdir, global_step, tag ) self._projector_config.embeddings.extend([embedding_info]) from google.protobuf import text_format config_pbtxt = text_format.MessageToString(self._projector_config) write_pbtxt(self._get_file_writer().get_logdir(), config_pbtxt) def add_pr_curve( self, tag, labels, predictions, global_step=None, num_thresholds=127, weights=None, walltime=None, ): """Add precision recall curve. Plotting a precision-recall curve lets you understand your model's performance under different threshold settings. With this function, you provide the ground truth labeling (T/F) and prediction confidence (usually the output of your model) for each target. The TensorBoard UI will let you choose the threshold interactively. Args: tag (str): Data identifier labels (torch.Tensor, numpy.ndarray, or string/blobname): Ground truth data. Binary label for each element. predictions (torch.Tensor, numpy.ndarray, or string/blobname): The probability that an element be classified as true. Value should be in [0, 1] global_step (int): Global step value to record num_thresholds (int): Number of thresholds used to draw the curve. walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: from torch.utils.tensorboard import SummaryWriter import numpy as np labels = np.random.randint(2, size=100) # binary label predictions = np.random.rand(100) writer = SummaryWriter() writer.add_pr_curve('pr_curve', labels, predictions, 0) writer.close() """ torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve") labels, predictions = make_np(labels), make_np(predictions) self._get_file_writer().add_summary( pr_curve(tag, labels, predictions, num_thresholds, weights), global_step, walltime, ) def add_pr_curve_raw( self, tag, true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, global_step=None, num_thresholds=127, weights=None, walltime=None, ): """Add precision recall curve with raw data. Args: tag (str): Data identifier true_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): true positive counts false_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): false positive counts true_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): true negative counts false_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): false negative counts precision (torch.Tensor, numpy.ndarray, or string/blobname): precision recall (torch.Tensor, numpy.ndarray, or string/blobname): recall global_step (int): Global step value to record num_thresholds (int): Number of thresholds used to draw the curve. walltime (float): Optional override default walltime (time.time()) seconds after epoch of event see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/README.md """ torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve_raw") self._get_file_writer().add_summary( pr_curve_raw( tag, true_positive_counts, false_positive_counts, true_negative_counts, false_negative_counts, precision, recall, num_thresholds, weights, ), global_step, walltime, ) def add_custom_scalars_multilinechart( self, tags, category="default", title="untitled" ): """Shorthand for creating multilinechart. Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*. Args: tags (list): list of tags that have been used in ``add_scalar()`` Examples:: writer.add_custom_scalars_multilinechart(['twse/0050', 'twse/2330']) """ torch._C._log_api_usage_once( "tensorboard.logging.add_custom_scalars_multilinechart" ) layout = {category: {title: ["Multiline", tags]}} self._get_file_writer().add_summary(custom_scalars(layout)) def add_custom_scalars_marginchart( self, tags, category="default", title="untitled" ): """Shorthand for creating marginchart. Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*, which should have exactly 3 elements. Args: tags (list): list of tags that have been used in ``add_scalar()`` Examples:: writer.add_custom_scalars_marginchart(['twse/0050', 'twse/2330', 'twse/2006']) """ torch._C._log_api_usage_once( "tensorboard.logging.add_custom_scalars_marginchart" ) assert len(tags) == 3 layout = {category: {title: ["Margin", tags]}} self._get_file_writer().add_summary(custom_scalars(layout)) def add_custom_scalars(self, layout): """Create special chart by collecting charts tags in 'scalars'. NOTE: This function can only be called once for each SummaryWriter() object. Because it only provides metadata to tensorboard, the function can be called before or after the training loop. Args: layout (dict): {categoryName: *charts*}, where *charts* is also a dictionary {chartName: *ListOfProperties*}. The first element in *ListOfProperties* is the chart's type (one of **Multiline** or **Margin**) and the second element should be a list containing the tags you have used in add_scalar function, which will be collected into the new chart. Examples:: layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]}, 'USA':{ 'dow':['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']], 'nasdaq':['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}} writer.add_custom_scalars(layout) """ torch._C._log_api_usage_once("tensorboard.logging.add_custom_scalars") self._get_file_writer().add_summary(custom_scalars(layout)) def add_mesh( self, tag, vertices, colors=None, faces=None, config_dict=None, global_step=None, walltime=None, ): """Add meshes or 3D point clouds to TensorBoard. The visualization is based on Three.js, so it allows users to interact with the rendered object. Besides the basic definitions such as vertices, faces, users can further provide camera parameter, lighting condition, etc. Please check https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene for advanced usage. Args: tag (str): Data identifier vertices (torch.Tensor): List of the 3D coordinates of vertices. colors (torch.Tensor): Colors for each vertex faces (torch.Tensor): Indices of vertices within each triangle. (Optional) config_dict: Dictionary with ThreeJS classes names and configuration. global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Shape: vertices: :math:`(B, N, 3)`. (batch, number_of_vertices, channels) colors: :math:`(B, N, 3)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`. faces: :math:`(B, N, 3)`. The values should lie in [0, number_of_vertices] for type `uint8`. Examples:: from torch.utils.tensorboard import SummaryWriter vertices_tensor = torch.as_tensor([ [1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1], ], dtype=torch.float).unsqueeze(0) colors_tensor = torch.as_tensor([ [255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255], ], dtype=torch.int).unsqueeze(0) faces_tensor = torch.as_tensor([ [0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2], ], dtype=torch.int).unsqueeze(0) writer = SummaryWriter() writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor) writer.close() """ torch._C._log_api_usage_once("tensorboard.logging.add_mesh") self._get_file_writer().add_summary( mesh(tag, vertices, colors, faces, config_dict), global_step, walltime ) def flush(self): """Flushes the event file to disk. Call this method to make sure that all pending events have been written to disk. """ if self.all_writers is None: return for writer in self.all_writers.values(): writer.flush() def close(self): if self.all_writers is None: return # ignore double close for writer in self.all_writers.values(): writer.flush() writer.close() self.file_writer = self.all_writers = None def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() ```
=========================================================================================================================== SOURCE CODE FILE: throughput_benchmark.py LINES: 2 SIZE: 6.51 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\throughput_benchmark.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import torch._C def format_time(time_us=None, time_ms=None, time_s=None): """Define time formatting.""" assert sum([time_us is not None, time_ms is not None, time_s is not None]) == 1 US_IN_SECOND = 1e6 US_IN_MS = 1e3 if time_us is None: if time_ms is not None: time_us = time_ms * US_IN_MS elif time_s is not None: time_us = time_s * US_IN_SECOND else: raise AssertionError("Shouldn't reach here :)") if time_us >= US_IN_SECOND: return f'{time_us / US_IN_SECOND:.3f}s' if time_us >= US_IN_MS: return f'{time_us / US_IN_MS:.3f}ms' return f'{time_us:.3f}us' class ExecutionStats: def __init__(self, c_stats, benchmark_config): self._c_stats = c_stats self.benchmark_config = benchmark_config @property def latency_avg_ms(self): return self._c_stats.latency_avg_ms @property def num_iters(self): return self._c_stats.num_iters @property def iters_per_second(self): """Return total number of iterations per second across all calling threads.""" return self.num_iters / self.total_time_seconds @property def total_time_seconds(self): return self.num_iters * ( self.latency_avg_ms / 1000.0) / self.benchmark_config.num_calling_threads def __str__(self): return '\n'.join([ "Average latency per example: " + format_time(time_ms=self.latency_avg_ms), f"Total number of iterations: {self.num_iters}", f"Total number of iterations per second (across all threads): {self.iters_per_second:.2f}", "Total time: " + format_time(time_s=self.total_time_seconds) ]) class ThroughputBenchmark: """ This class is a wrapper around a c++ component throughput_benchmark::ThroughputBenchmark. This wrapper on the throughput_benchmark::ThroughputBenchmark component is responsible for executing a PyTorch module (nn.Module or ScriptModule) under an inference server like load. It can emulate multiple calling threads to a single module provided. In the future we plan to enhance this component to support inter and intra-op parallelism as well as multiple models running in a single process. Please note that even though nn.Module is supported, it might incur an overhead from the need to hold GIL every time we execute Python code or pass around inputs as Python objects. As soon as you have a ScriptModule version of your model for inference deployment it is better to switch to using it in this benchmark. Example:: >>> # xdoctest: +SKIP("undefined vars") >>> from torch.utils import ThroughputBenchmark >>> bench = ThroughputBenchmark(my_module) >>> # Pre-populate benchmark's data set with the inputs >>> for input in inputs: ... # Both args and kwargs work, same as any PyTorch Module / ScriptModule ... bench.add_input(input[0], x2=input[1]) >>> # Inputs supplied above are randomly used during the execution >>> stats = bench.benchmark( ... num_calling_threads=4, ... num_warmup_iters = 100, ... num_iters = 1000, ... ) >>> print("Avg latency (ms): {}".format(stats.latency_avg_ms)) >>> print("Number of iterations: {}".format(stats.num_iters)) """ def __init__(self, module): if isinstance(module, torch.jit.ScriptModule): self._benchmark = torch._C.ThroughputBenchmark(module._c) else: self._benchmark = torch._C.ThroughputBenchmark(module) def run_once(self, *args, **kwargs): """ Given input id (input_idx) run benchmark once and return prediction. This is useful for testing that benchmark actually runs the module you want it to run. input_idx here is an index into inputs array populated by calling add_input() method. """ return self._benchmark.run_once(*args, **kwargs) def add_input(self, *args, **kwargs): """ Store a single input to a module into the benchmark memory and keep it there. During the benchmark execution every thread is going to pick up a random input from the all the inputs ever supplied to the benchmark via this function. """ self._benchmark.add_input(*args, **kwargs) def benchmark( self, num_calling_threads=1, num_warmup_iters=10, num_iters=100, profiler_output_path=""): """ Run a benchmark on the module. Args: num_warmup_iters (int): Warmup iters are used to make sure we run a module a few times before actually measuring things. This way we avoid cold caches and any other similar problems. This is the number of warmup iterations for each of the thread in separate num_iters (int): Number of iterations the benchmark should run with. This number is separate from the warmup iterations. Also the number is shared across all the threads. Once the num_iters iterations across all the threads is reached, we will stop execution. Though total number of iterations might be slightly larger. Which is reported as stats.num_iters where stats is the result of this function profiler_output_path (str): Location to save Autograd Profiler trace. If not empty, Autograd Profiler will be enabled for the main benchmark execution (but not the warmup phase). The full trace will be saved into the file path provided by this argument This function returns BenchmarkExecutionStats object which is defined via pybind11. It currently has two fields: - num_iters - number of actual iterations the benchmark have made - avg_latency_ms - average time it took to infer on one input example in milliseconds """ config = torch._C.BenchmarkConfig() config.num_calling_threads = num_calling_threads config.num_warmup_iters = num_warmup_iters config.num_iters = num_iters config.profiler_output_path = profiler_output_path c_stats = self._benchmark.benchmark(config) return ExecutionStats(c_stats, config) ```
=================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.00 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\viz\__init__.py ENCODING: utf-8 ```py ```
================================================================================================================== SOURCE CODE FILE: _cycles.py LINES: 12 SIZE: 16.83 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\viz\_cycles.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import gc import sys from typing import Any, NamedTuple, Optional import types import weakref import json from tempfile import NamedTemporaryFile import torch from torch.cuda._memory_viz import _frames_fmt, _block_extra import atexit import logging logger = logging.getLogger(__name__) def observe_garbage(observer): enabled = True def disable(): # when GC runs during exit, things like `sys` will already be unloaded # so we have to disable the callback to avoid hitting errors. nonlocal enabled enabled = False atexit.register(disable) def gc_callback(phase, info): nonlocal enabled if not enabled: return if phase == "start": gc.set_debug(gc.DEBUG_SAVEALL) elif phase == "stop": orig_trace = sys.getprofile() self_return = [False] def do_collect(*args, **kwargs): nonlocal enabled if not self_return[0]: self_return[0] = True else: sys.setprofile(orig_trace) enabled = False try: # things in gc.garbage have survived a collection # so to free them we have to collect a generation greater than them # but that might _also_ free other stuff and we don't want to miss # that stuff. So we have to now force gc at the highest level here, # report all of what we found, _then_ we can free it up. if info['generation'] != 2: gc.collect() observer(gc.garbage) gc.garbage.clear() # we have to re-run GC to clean up the cycles # we saved from before. gc.set_debug(0) before = torch.cuda.memory_allocated() gc.collect() after = torch.cuda.memory_allocated() if before != after: logger.warning("CUDA Memory changed during GC, %d bytes freed.", before - after) finally: enabled = True if orig_trace is not None: return orig_trace(*args, **kwargs) sys.setprofile(do_collect) gc.callbacks.append(gc_callback) # provide a way to disarm the callback def remove(): gc.callbacks.remove(gc_callback) return remove # Function to visualize cycles adapated from refcycle: # Copyright 2013 Mark Dickinson # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def _get_cell_type(): def f(x=None): return lambda: x return type(f().__closure__[0]) CellType = _get_cell_type() def annotated_references(obj): """ Return known information about references held by the given object. Returns a mapping from referents to lists of descriptions. Note that there may be more than one edge leading to any particular referent; hence the need for a list. Descriptions are currently strings. """ references: dict[int, list[str]] = {} def add_reference(name, obj): references.setdefault(id(obj), []).append(name) def add_attrs(*attrs): for attr in attrs: if hasattr(obj, attr): add_reference(attr, getattr(obj, attr)) def add_cell_references(): try: add_attrs("cell_contents") except ValueError: # if cell_contents is empty, # accessing it raises ValueError # in this case there is no object to # annotate pass def add_function_references(): add_attrs("__defaults__", "__closure__", "__globals__", "__code__", "__name__", "__module__", "__doc__" "__qualname__", "__annotations__", "__kwdefaults__") def add_sequence_references(): for position, item in enumerate(obj): add_reference(f"[{position}]", item) def add_dict_references(): for key, value in obj.items(): add_reference("key", key) add_reference(f"[{repr(key)}]", value) def add_set_references(): for elt in obj: add_reference("element", elt) def add_bound_method_references(): add_attrs("__self__", "__func__", "im_class") def add_weakref_references(): # For subclasses of weakref, we can't reliably distinguish the # callback (if any) from other attributes. if type(obj) is weakref.ref: referents = gc.get_referents(obj) if len(referents) == 1: target = referents[0] add_reference("__callback__", target) def add_frame_references(): f_locals = obj.f_locals add_attrs("f_back", "f_code", "f_builtins", "f_globals", "f_trace", "f_locals") # Some badly-behaved code replaces the f_locals dict with # something that doesn't support the full dict interface. So we # only continue with the annotation if f_locals is a Python dict. if type(f_locals) is dict: for name, local in obj.f_locals.items(): add_reference(f"local {name}", local) def add_getset_descriptor_references(): add_attrs("__objclass__", "__name__", "__doc__") type_based_references = { tuple: add_sequence_references, list: add_sequence_references, dict: add_dict_references, set: add_set_references, frozenset: add_set_references, types.FunctionType: add_function_references, types.FrameType: add_frame_references, CellType: add_cell_references, types.MethodType: add_bound_method_references, weakref.ref: add_weakref_references, types.GetSetDescriptorType: add_getset_descriptor_references, } for type_ in type(obj).__mro__: if type_ in type_based_references: type_based_references[type_]() add_attrs("__dict__", "__class__") if isinstance(obj, type): add_attrs("__mro__") return references ############################################################################### # Object annotations. BASE_TYPES = (int, float, complex, type(None), str, bytes) FRAME_FILENAME_LIMIT = 32 def object_annotation(obj): """ Return a string to be used for Graphviz nodes. The string should be short but as informative as possible. """ def format_sequence(obj): body = ','.join(repr(x) if isinstance(x, BASE_TYPES) else type(x).__name__ for i, x in zip(range(8), obj)) if len(obj) > 8: body = f'{body}, ...{len(obj) - 8}' return body # For basic types, use the repr. if isinstance(obj, BASE_TYPES): return repr(obj) if type(obj).__name__ == 'function': return f"function\n{obj.__name__}" elif isinstance(obj, types.MethodType): try: func_name = obj.__func__.__qualname__ except AttributeError: func_name = "<anonymous>" return f"instancemethod\n{func_name}" elif isinstance(obj, list): return f"[{format_sequence(obj)}]" elif isinstance(obj, tuple): return f"({format_sequence(obj)})" elif isinstance(obj, dict): return f"dict[{len(obj)}]" elif isinstance(obj, types.ModuleType): return f"module\n{obj.__name__}" elif isinstance(obj, type): return f"type\n{obj.__name__}" elif isinstance(obj, weakref.ref): referent = obj() if referent is None: return "weakref (dead referent)" else: return f"weakref to id 0x{id(referent):x}" elif isinstance(obj, types.FrameType): filename = obj.f_code.co_filename if len(filename) > FRAME_FILENAME_LIMIT: filename = "..." + filename[-(FRAME_FILENAME_LIMIT - 3):] return f"frame\n{filename}:{obj.f_lineno}" else: return f"object\n{type(obj).__module__}.{type(obj).__name__}" class Node(NamedTuple): label: str context: Optional[str] root: bool referrents: list[tuple[str, int]] def create_graph(objects, *, context=None, filter=None): if context is None: context = cuda_allocation_context() if filter is None: filter = is_cuda_tensor objects = [obj for obj in objects if not isinstance(obj, weakref.ProxyTypes)] nodes = [Node(object_annotation(obj), context(obj), filter(obj), []) for obj in objects] node_referrers: list[list[int]] = [[] for obj in objects] id_to_node = {id(obj): i for i, obj in enumerate(objects)} for obj in objects: fidx = id_to_node[id(obj)] f = nodes[fidx] references = annotated_references(obj) for referrent in gc.get_referents(obj): rid = id(referrent) tidx = id_to_node.get(rid, None) if tidx is None: continue labels = references.get(rid, ["?"]) node_referrers[tidx].append(fidx) for label in labels: f.referrents.append((label, tidx)) to_search = [i for i, n in enumerate(nodes) if n.root] to_keep = set() while to_search: idx = to_search.pop() if idx in to_keep: continue to_keep.add(idx) referrers = node_referrers[idx] to_search.extend(referrers) id_to_filtered_id: dict[int, int] = {} filtered: list[Any] = [] for i, n in enumerate(nodes): if i in to_keep: id_to_filtered_id[i] = len(id_to_filtered_id) filtered.append(n) for n in filtered: n.referrents[:] = [(label, id_to_filtered_id[idx]) for (label, idx) in n.referrents if idx in id_to_filtered_id] return filtered def escape(n): return json.dumps(n) def is_cuda_tensor(obj): return isinstance(obj, torch.Tensor) and obj.is_cuda and not isinstance(obj, torch._subclasses.FakeTensor) def cuda_allocation_context(): snapshot = torch.cuda.memory._snapshot() addr_to_frame = {} for seg in snapshot['segments']: addr = seg['address'] for blk in seg['blocks']: if blk['state'] == 'active_allocated': frames, _real_size = _block_extra(blk) addr_to_frame[addr] = frames addr += blk['size'] def object_context(obj): if is_cuda_tensor(obj): addr = obj.untyped_storage().data_ptr() frames = addr_to_frame.get(addr) if frames is not None: return '\n'.join(_frames_fmt(frames, full_filename=True)) return None return object_context def to_dot(nodes): lines = ["digraph GraphName {", "node [shape=rect];", 'rankdir=LR;'] for i, n in enumerate(nodes): lines.append(f'{i} [label={escape(n.label)}, color={ "red" if n.root else "black"}];') for i, f in enumerate(nodes): for label, j in f.referrents: lines.append(f'{i} -> {j} [label = {escape(label)}]') lines.append("}\n") return '\n'.join(lines) _template = """ <!DOCTYPE html> <html> <head> <style> body { margin: 0; padding: 0; overflow: hidden; } #container { display: flex; flex-direction: column; height: 100vh; } #main { flex: 2; height: 60vh; overflow: clip; } #preContainer { flex: 1; height: 40vh; overflow: auto; } pre { margin: 0; padding: 10px; } </style> </head> <body> <div id="container"> <div id="main"> </div> <div id="preContainer"> <pre id="stacktrace">Mouse over tensor objects to see where they were allocated.</pre> </div> </div> <script src='https://cdnjs.cloudflare.com/ajax/libs/viz.js/1.8.0/viz-lite.js'></script> <script> let dot = $DOT let image = Viz(dot, {format: 'svg', 'totalMemory': 1024*1024*1024}); let main = document.getElementById('main') main.innerHTML = image let svg = main.firstElementChild // Panning and zooming logic let isPanning = false; let startX, startY; let viewBox = { x: 0, y: 0, width: parseFloat(svg.getAttribute('width')), height: parseFloat(svg.getAttribute('height')) }; svg.removeAttribute('width'); svg.removeAttribute('height'); function updateViewBox() { svg.setAttribute('viewBox', `${viewBox.x} ${viewBox.y} ${viewBox.width} ${viewBox.height}`); } updateViewBox() svg.setAttribute('preserveAspectRatio', 'xMidYMid meet'); svg.addEventListener('mousedown', function(e) { isPanning = true; startX = e.clientX; startY = e.clientY; }); svg.addEventListener('mousemove', function(e) { if (!isPanning) return; const dx = (e.clientX - startX) * (viewBox.width / svg.clientWidth); const dy = (e.clientY - startY) * (viewBox.height / svg.clientHeight); viewBox.x -= dx; viewBox.y -= dy; startX = e.clientX; startY = e.clientY; updateViewBox(); }); svg.addEventListener('mouseup', function() { isPanning = false; }); svg.addEventListener('mouseleave', function() { isPanning = false; }); svg.addEventListener('wheel', function(e) { e.preventDefault(); const zoomFactor = 0.1; const zoomAmount = e.deltaY > 0 ? 1 + zoomFactor : 1 - zoomFactor; // Calculate mouse position relative to the SVG const rect = svg.getBoundingClientRect(); const mouseX = e.clientX - rect.left; const mouseY = e.clientY - rect.top; const mouseXRel = mouseX / svg.clientWidth; const mouseYRel = mouseY / svg.clientHeight; // Adjust viewBox to zoom around the mouse position const newWidth = viewBox.width * zoomAmount; const newHeight = viewBox.height * zoomAmount; viewBox.x += (viewBox.width - newWidth) * mouseXRel; viewBox.y += (viewBox.height - newHeight) * mouseYRel; viewBox.width = newWidth; viewBox.height = newHeight; updateViewBox(); }); $LISTENERS </script> </body> </html> """ _listener_template = """ document.getElementById('node{id}').addEventListener('mouseover', function(event) {{ document.getElementById("stacktrace").textContent = {stack} }}) """ def to_html(nodes): listeners = [] for i, n in enumerate(nodes): if n.context is None: continue s = _listener_template.format(id=str(i + 1), stack=escape(f'{n.label}:\n{n.context}')) listeners.append(s) dot = to_dot(nodes) return _template.replace('$DOT', repr(dot)).replace('$LISTENERS', '\n'.join(listeners)) def observe_tensor_cycles(callback): torch.cuda.memory._record_memory_history(max_entries=100000) def observer(garbage): if garbage: if not any(is_cuda_tensor(obj) for obj in garbage): logger.info("No CUDA Tensors found in garbage") return callback(to_html(create_graph(garbage))) return observe_garbage(observer) def warn_tensor_cycles(): """ Install a warning that reports whenever a cycle that is holding CUDA memory is observed. The warning produces an .html file that visualizes the cycle, and links it to the stack frame that allocted the CUDA tensor. Reference cycles are freed by the cycle collector rather than being cleaned up when the objects in the cycle first become unreachable. If a cycle points to a tensor, the CUDA memory for that tensor will not be freed until garbage collection runs. Accumulation of CUDA allocations can lead to out of memory errors (OOMs), as well as non-deterministic allocation behavior which is harder to debug. """ logger.info("Watching Python reference cycles for CUDA Tensors.") def write_and_log(html): with NamedTemporaryFile('w', suffix='.html', delete=False) as f: f.write(html) logger.warning('Reference cycle includes a CUDA Tensor see visualization of cycle %s', f.name) return observe_tensor_cycles(write_and_log) ```
=========================================================================================================== SOURCE CODE FILE: weak.py LINES: 1 SIZE: 11.15 KB PATH: scripts\freecad_env\Lib\site-packages\torch\utils\weak.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs from __future__ import annotations import weakref from weakref import ref from _weakrefset import _IterationGuard # type: ignore[attr-defined] from collections.abc import MutableMapping, Mapping from torch import Tensor import collections.abc as _collections_abc WeakRef = ref __all__ = ['TensorWeakRef', 'WeakIdRef', 'WeakIdKeyDictionary', 'WeakTensorKeyDictionary'] # This file defines a variant of WeakKeyDictionary that overrides the hashing # behavior of the key to use object identity, rather than the builtin # __eq__/__hash__ functions. This is useful for Tensor weak keys, as their # __eq__ implementation return a Tensor (elementwise equality), which means # you can't use them directly with the WeakKeyDictionary in standard library. # # Our implementation strategy is to create a wrapper weak key object, which we # use as a key in a stock Python dictionary. This is similar to how weakref # implements WeakKeyDictionary, but instead of using weakref.ref as the # wrapper, we use a custom wrapper that has different __eq__ and __hash__ # behavior. Note that we subsequently store this weak key directly in an # ORDINARY dictionary, since the newly constructed WeakIdKey's only use would # be a dictionary so it would have no strong references. Ensuring that # only live WeakIdKeys are in the map is handled by putting finalizers on the # original key object. # It is simpler to implement this with composition, but if we want to # directly reuse the callback mechanism on weakref, we need the weakref # and the key to be exactly the same object. Reusing the callback mechanism # minimizes the divergence between our implementation and Lib/weakref.py # # NB: Prefer using this when working with weakrefs of Tensors; e.g., do # WeakIdRef(tensor) rather than weakref.ref(tensor); it handles a number of # easy to get wrong cases transparently for you. class WeakIdRef(weakref.ref): __slots__ = ['_id'] def __init__(self, key, callback=None): # Unlike stock weakref, which preserves hash semantics of the # original object but lazily defers hash calls until the first # time the user attempts to hash the weakref, we can eagerly # cache the id of the key as we know this is definitely the hash # method self._id = id(key) super().__init__(key, callback) # type: ignore[call-arg] def __call__(self): r = super().__call__() # Special logic for Tensor PyObject resurrection if hasattr(r, '_fix_weakref'): r._fix_weakref() # type: ignore[union-attr] return r def __hash__(self): return self._id def __eq__(self, other): # An attractive but wrong alternate implementation is to only test if # the stored _ids match. This can lead to an ABA problem if you have: # # a1 = A() # w1 = WeakIdRef(a1) # del a1 # a2 = A() # suppose it gets the same ID as a1 # w2 = WeakIdRef(a2) # print(w1 == w2) # # This should be False, as a1 and a2 are unrelated (and a1 is # dead anyway) a = self() b = other() if a is not None and b is not None: return a is b return self is other # This is the same as WeakIdRef but equality is checked using hash() rather than id. # This will be equivalent to the one above except for classes where hash is not their id. class _WeakHashRef(weakref.ref): __slots__ = ['_id'] def __init__(self, key, callback=None): # Unlike stock weakref, which preserves hash semantics of the # original object but lazily defers hash calls until the first # time the user attempts to hash the weakref, we can eagerly # cache the id of the key as we know this is definitely the hash # method self._id = hash(key) super().__init__(key, callback) # type: ignore[call-arg] def __call__(self): r = super().__call__() # Special logic for Tensor PyObject resurrection if hasattr(r, '_fix_weakref'): r._fix_weakref() # type: ignore[union-attr] return r def __hash__(self): return self._id def __eq__(self, other): # Use hash equality to determine ref equality. # ScriptObject implements __hash__ to return the wrapped IValue's id, so # this is equivalent to doing an identity comparison. a = self() b = other() if a is not None and b is not None: return hash(a) == hash(b) return self is other # This is directly adapted from cpython/Lib/weakref.py class WeakIdKeyDictionary(MutableMapping): def __init__(self, dict=None, ref_type=WeakIdRef): # CHANGED self.data = {} self.ref_type = ref_type # CHANGED def remove(k, selfref=ref(self)): self = selfref() if self is not None: if self._iterating: self._pending_removals.append(k) else: try: del self.data[k] except KeyError: pass self._remove = remove # A list of dead weakrefs (keys to be removed) self._pending_removals = [] self._iterating = set() self._dirty_len = False if dict is not None: self.update(dict) def _commit_removals(self): # NOTE: We don't need to call this method before mutating the dict, # because a dead weakref never compares equal to a live weakref, # even if they happened to refer to equal objects. # However, it means keys may already have been removed. pop = self._pending_removals.pop d = self.data while True: try: key = pop() except IndexError: return try: del d[key] except KeyError: pass def _scrub_removals(self): d = self.data self._pending_removals = [k for k in self._pending_removals if k in d] self._dirty_len = False def __delitem__(self, key): self._dirty_len = True del self.data[self.ref_type(key)] # CHANGED def __getitem__(self, key): return self.data[self.ref_type(key)] # CHANGED def __len__(self): if self._dirty_len and self._pending_removals: # self._pending_removals may still contain keys which were # explicitly removed, we have to scrub them (see issue #21173). self._scrub_removals() return len(self.data) - len(self._pending_removals) def __repr__(self): return f"<{self.__class__.__name__} at {id(self):#x}>" def __setitem__(self, key, value): self.data[self.ref_type(key, self._remove)] = value # CHANGED def copy(self): new = WeakIdKeyDictionary() with _IterationGuard(self): for key, value in self.data.items(): o = key() if o is not None: new[o] = value return new __copy__ = copy def __deepcopy__(self, memo): from copy import deepcopy new = self.__class__() with _IterationGuard(self): for key, value in self.data.items(): o = key() if o is not None: new[o] = deepcopy(value, memo) return new def get(self, key, default=None): return self.data.get(self.ref_type(key), default) # CHANGED def __contains__(self, key): try: wr = self.ref_type(key) # CHANGED except TypeError: return False return wr in self.data def items(self): with _IterationGuard(self): for wr, value in self.data.items(): key = wr() if key is not None: yield key, value def keys(self): with _IterationGuard(self): for wr in self.data: obj = wr() if obj is not None: yield obj __iter__ = keys def values(self): with _IterationGuard(self): for wr, value in self.data.items(): if wr() is not None: yield value def keyrefs(self): """Return a list of weak references to the keys. The references are not guaranteed to be 'live' at the time they are used, so the result of calling the references needs to be checked before being used. This can be used to avoid creating references that will cause the garbage collector to keep the keys around longer than needed. """ return list(self.data) def popitem(self): self._dirty_len = True while True: key, value = self.data.popitem() o = key() if o is not None: return o, value def pop(self, key, *args): self._dirty_len = True return self.data.pop(self.ref_type(key), *args) # CHANGED def setdefault(self, key, default=None): return self.data.setdefault(self.ref_type(key, self._remove), default) # CHANGED def update(self, dict=None, **kwargs): # type: ignore[override] d = self.data if dict is not None: if not hasattr(dict, "items"): dict = type({})(dict) for key, value in dict.items(): d[self.ref_type(key, self._remove)] = value # CHANGED if len(kwargs): self.update(kwargs) def __ior__(self, other): self.update(other) return self def __or__(self, other): if isinstance(other, _collections_abc.Mapping): c = self.copy() c.update(other) return c return NotImplemented def __ror__(self, other): if isinstance(other, _collections_abc.Mapping): c = self.__class__() c.update(other) c.update(self) return c return NotImplemented # Default Mapping equality will tests keys for equality, but # we want to test ids for equality def __eq__(self, other): if not isinstance(other, Mapping): return NotImplemented return {id(k): v for k, v in self.items()} == {id(k): v for k, v in other.items()} # Convenience alias WeakTensorKeyDictionary = WeakIdKeyDictionary class TensorWeakRef: """Wrapper around a weak ref of a Tensor that handles the _fix_weakref() call required when unwrapping a Tensor weakref.""" ref: WeakRef[Tensor] def __init__(self, tensor: Tensor): assert isinstance(tensor, Tensor) self.ref = weakref.ref(tensor) def __call__(self): out = self.ref() if out is None: return out assert isinstance(out, Tensor) # TODO, add _fix_weakref type binding out._fix_weakref() # type: ignore[attr-defined] return out ```
======================================================================================================== SOURCE CODE FILE: version.py LINES: 1 SIZE: 0.28 KB PATH: scripts\freecad_env\Lib\site-packages\torch\version.py ENCODING: utf-8 ```py from typing import Optional __all__ = ['__version__', 'debug', 'cuda', 'git_version', 'hip'] __version__ = '2.7.0+cu118' debug = False cuda: Optional[str] = '11.8' git_version = '134179474539648ba7dee1317959529fbd0e7f89' hip: Optional[str] = None xpu: Optional[str] = None ```
============================================================================================================= SOURCE CODE FILE: __init__.py LINES: 5 SIZE: 17.88 KB PATH: scripts\freecad_env\Lib\site-packages\torch\xpu\__init__.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs r""" This package introduces support for the XPU backend, specifically tailored for Intel GPU optimization. This package is lazily initialized, so you can always import it, and use :func:`is_available()` to determine if your system supports XPU. """ import threading import traceback from functools import lru_cache from typing import Any, Callable, Optional, Union import torch import torch._C from torch import device as _device from torch._utils import _dummy_type, _LazySeedTracker from ._utils import _get_device_index from .streams import Event, Stream _initialized = False _tls = threading.local() _initialization_lock = threading.Lock() _queued_calls: list[ tuple[Callable[[], None], list[str]] ] = [] # don't invoke these until initialization occurs _is_in_bad_fork = getattr(torch._C, "_xpu_isInBadFork", lambda: False) _device_t = Union[_device, str, int, None] _lazy_seed_tracker = _LazySeedTracker() default_generators: tuple[torch._C.Generator] = () # type: ignore[assignment] def _is_compiled() -> bool: r"""Return true if compile with XPU support.""" return torch._C._has_xpu if _is_compiled(): _XpuDeviceProperties = torch._C._XpuDeviceProperties _exchange_device = torch._C._xpu_exchangeDevice _maybe_exchange_device = torch._C._xpu_maybeExchangeDevice else: # Define dummy if PyTorch was compiled without XPU _XpuDeviceProperties = _dummy_type("_XpuDeviceProperties") # type: ignore[assignment, misc] def _exchange_device(device: int) -> int: raise NotImplementedError("PyTorch was compiled without XPU support") def _maybe_exchange_device(device: int) -> int: raise NotImplementedError("PyTorch was compiled without XPU support") @lru_cache(maxsize=1) def device_count() -> int: r"""Return the number of XPU device available.""" if not _is_compiled(): return 0 return torch._C._xpu_getDeviceCount() def is_available() -> bool: r"""Return a bool indicating if XPU is currently available.""" # This function nerver throws. return device_count() > 0 def is_bf16_supported(): r"""Return a bool indicating if the current XPU device supports dtype bfloat16.""" return True def is_initialized(): r"""Return whether PyTorch's XPU state has been initialized.""" return _initialized and not _is_in_bad_fork() def _lazy_call(callable, **kwargs): if is_initialized(): callable() else: global _lazy_seed_tracker if kwargs.get("seed_all", False): _lazy_seed_tracker.queue_seed_all(callable, traceback.format_stack()) elif kwargs.get("seed", False): _lazy_seed_tracker.queue_seed(callable, traceback.format_stack()) else: # Don't store the actual traceback to avoid memory cycle _queued_calls.append((callable, traceback.format_stack())) def init(): r"""Initialize PyTorch's XPU state. This is a Python API about lazy initialization that avoids initializing XPU until the first time it is accessed. Does nothing if the XPU state is already initialized. """ _lazy_init() def _lazy_init(): global _initialized, _queued_calls if is_initialized() or hasattr(_tls, "is_initializing"): return with _initialization_lock: # This test was was protected via GIL. Double-check whether XPU has # already been initialized. if is_initialized(): return # Stop promptly upon encountering a bad fork error. if _is_in_bad_fork(): raise RuntimeError( "Cannot re-initialize XPU in forked subprocess. To use XPU with " "multiprocessing, you must use the 'spawn' start method" ) if not _is_compiled(): raise AssertionError("Torch not compiled with XPU enabled") # This function inits XPU backend and detects bad fork processing. torch._C._xpu_init() # Some of the queued calls may reentrantly call _lazy_init(); We need to # just return without initializing in that case. _tls.is_initializing = True _queued_calls.extend(calls for calls in _lazy_seed_tracker.get_calls() if calls) try: for queued_call, orig_traceback in _queued_calls: try: queued_call() except Exception as e: msg = ( f"XPU call failed lazily at initialization with error: {str(e)}\n\n" f"XPU call was originally invoked at:\n\n{''.join(orig_traceback)}" ) raise Exception(msg) from e # noqa: TRY002 finally: delattr(_tls, "is_initializing") _initialized = True class _DeviceGuard: def __init__(self, index: int): self.idx = index self.prev_idx = -1 def __enter__(self): self.prev_idx = torch.xpu._exchange_device(self.idx) def __exit__(self, type: Any, value: Any, traceback: Any): self.idx = torch.xpu._maybe_exchange_device(self.prev_idx) return False class device: r"""Context-manager that changes the selected device. Args: device (torch.device or int or str): device index to select. It's a no-op if this argument is a negative integer or ``None``. """ def __init__(self, device: Any): self.idx = _get_device_index(device, optional=True) self.prev_idx = -1 def __enter__(self): self.prev_idx = torch.xpu._exchange_device(self.idx) def __exit__(self, type: Any, value: Any, traceback: Any): self.idx = torch.xpu._maybe_exchange_device(self.prev_idx) return False class device_of(device): r"""Context-manager that changes the current device to that of given object. You can use both tensors and storages as arguments. If a given object is not allocated on a XPU, this is a no-op. Args: obj (Tensor or Storage): object allocated on the selected device. """ def __init__(self, obj): idx = obj.get_device() if obj.is_xpu else -1 super().__init__(idx) def set_device(device: _device_t) -> None: r"""Set the current device. Args: device (torch.device or int or str): selected device. This function is a no-op if this argument is negative. """ _lazy_init() device = _get_device_index(device) if device >= 0: torch._C._xpu_setDevice(device) def get_device_name(device: Optional[_device_t] = None) -> str: r"""Get the name of a device. Args: device (torch.device or int or str, optional): device for which to return the name. This function is a no-op if this argument is a negative integer. It uses the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). Returns: str: the name of the device """ return get_device_properties(device).name @lru_cache(None) def get_device_capability(device: Optional[_device_t] = None) -> dict[str, Any]: r"""Get the xpu capability of a device. Args: device (torch.device or int or str, optional): device for which to return the device capability. This function is a no-op if this argument is a negative integer. It uses the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). Returns: Dict[str, Any]: the xpu capability dictionary of the device """ props = get_device_properties(device) # pybind service attributes are no longer needed and their presence breaks # the further logic related to the serialization of the created dictionary. # In particular it filters out `<bound method PyCapsule._pybind11_conduit_v1_ of _XpuDeviceProperties..>` # to fix Triton tests. # This field appears after updating pybind to 2.13.6. return { prop: getattr(props, prop) for prop in dir(props) if not prop.startswith(("__", "_pybind11_")) } def get_device_properties(device: Optional[_device_t] = None) -> _XpuDeviceProperties: r"""Get the properties of a device. Args: device (torch.device or int or str): device for which to return the properties of the device. Returns: _XpuDeviceProperties: the properties of the device """ _lazy_init() device = _get_device_index(device, optional=True) return _get_device_properties(device) # type: ignore[name-defined] # noqa: F821 def current_device() -> int: r"""Return the index of a currently selected device.""" _lazy_init() return torch._C._xpu_getDevice() def _get_device(device: Union[int, str, torch.device]) -> torch.device: r"""Return the torch.device type object from the passed in device. Args: device (torch.device or int or str): selected device. """ if isinstance(device, str): device = torch.device(device) elif isinstance(device, int): device = torch.device("xpu", device) return device class StreamContext: r"""Context-manager that selects a given stream. All XPU kernels queued within its context will be enqueued on a selected stream. Args: Stream (Stream): selected stream. This manager is a no-op if it's ``None``. .. note:: Streams are per-device. """ cur_stream: Optional["torch.xpu.Stream"] def __init__(self, stream: Optional["torch.xpu.Stream"]): self.stream = stream self.idx = _get_device_index(None, True) if self.idx is None: self.idx = -1 def __enter__(self): cur_stream = self.stream if cur_stream is None or self.idx == -1: return self.src_prev_stream = torch.xpu.current_stream(None) # If the stream is not on the current device, then set the current stream on the device if self.src_prev_stream.device != cur_stream.device: with device(cur_stream.device): self.dst_prev_stream = torch.xpu.current_stream(cur_stream.device) torch.xpu.set_stream(cur_stream) def __exit__(self, type: Any, value: Any, traceback: Any): cur_stream = self.stream if cur_stream is None or self.idx == -1: return # Reset the stream on the original device and destination device if self.src_prev_stream.device != cur_stream.device: torch.xpu.set_stream(self.dst_prev_stream) torch.xpu.set_stream(self.src_prev_stream) def stream(stream: Optional["torch.xpu.Stream"]) -> StreamContext: r"""Wrap around the Context-manager StreamContext that selects a given stream. Arguments: stream (Stream): selected stream. This manager is a no-op if it's ``None``. """ return StreamContext(stream) def _set_stream_by_id(stream_id, device_index, device_type): r"""set stream specified by the stream id, device index and device type Args: stream_id (int): not visible to the user, used to assigned to the specific stream. device_index (int): selected device index. device_type (int): selected device type. """ torch._C._xpu_setStream( stream_id=stream_id, device_index=device_index, device_type=device_type, ) def set_stream(stream: Stream): r"""Set the current stream.This is a wrapper API to set the stream. Usage of this function is discouraged in favor of the ``stream`` context manager. Args: stream (Stream): selected stream. This function is a no-op if this argument is ``None``. """ if stream is None: return _lazy_init() _set_stream_by_id( stream_id=stream.stream_id, device_index=stream.device_index, device_type=stream.device_type, ) def current_stream(device: Optional[_device_t] = None) -> Stream: r"""Return the currently selected :class:`Stream` for a given device. Args: device (torch.device or int, optional): selected device. Returns the currently selected :class:`Stream` for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ _lazy_init() streamdata = torch._C._xpu_getCurrentStream( _get_device_index(device, optional=True) ) return Stream( stream_id=streamdata[0], device_index=streamdata[1], device_type=streamdata[2] ) def get_stream_from_external( data_ptr: int, device: Optional[_device_t] = None ) -> Stream: r"""Return a :class:`Stream` from an external SYCL queue. This function is used to wrap SYCL queue created in other libraries in order to facilitate data exchange and multi-library interactions. .. note:: This function doesn't manage the queue life-cycle, it is the user responsibility to keep the referenced queue alive while this returned stream is being used. The different SYCL queue pointers will result in distinct :class:`Stream` objects, even if the SYCL queues they dereference are equivalent. Args: data_ptr(int): Integer representation of the `sycl::queue*` value passed externally. device(torch.device or int, optional): the device where the queue was originally created. It is the user responsibility to ensure the device is specified correctly. """ _lazy_init() streamdata = torch._C._xpu_getStreamFromExternal( data_ptr, _get_device_index(device, optional=True) ) return Stream( stream_id=streamdata[0], device_index=streamdata[1], device_type=streamdata[2] ) def synchronize(device: _device_t = None) -> None: r"""Wait for all kernels in all streams on a XPU device to complete. Args: device (torch.device or int, optional): device for which to synchronize. It uses the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ _lazy_init() device = _get_device_index(device, optional=True) return torch._C._xpu_synchronize(device) def get_arch_list() -> list[str]: r"""Return list XPU architectures this library was compiled for.""" if not _is_compiled(): return [] arch_flags = torch._C._xpu_getArchFlags() if arch_flags is None: return [] return arch_flags.split() def get_gencode_flags() -> str: r"""Return XPU AOT(ahead-of-time) build flags this library was compiled with.""" arch_list = get_arch_list() if len(arch_list) == 0: return "" return f'-device {",".join(arch for arch in arch_list)}' def _get_generator(device: torch.device) -> torch._C.Generator: r"""Return the XPU Generator object for the given device. Args: device (torch.device): selected device. """ idx = device.index if idx is None: idx = current_device() return torch.xpu.default_generators[idx] def _set_rng_state_offset( offset: int, device: Union[int, str, torch.device] = "xpu" ) -> None: r"""Set the random number generator state offset of the specified GPU. Args: offset (int): The desired offset device (torch.device or int, optional): The device to set the RNG state. Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device). """ final_device = _get_device(device) def cb(): default_generator = _get_generator(final_device) default_generator.set_offset(offset) _lazy_call(cb) def _get_rng_state_offset(device: Union[int, str, torch.device] = "xpu") -> int: r"""Return the random number generator state offset of the specified GPU. Args: device (torch.device or int, optional): The device to return the RNG state offset of. Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device). .. warning:: This function eagerly initializes XPU. """ _lazy_init() final_device = _get_device(device) default_generator = _get_generator(final_device) return default_generator.get_offset() # import here to avoid circular import from .memory import ( empty_cache, max_memory_allocated, max_memory_reserved, mem_get_info, memory_allocated, memory_reserved, memory_stats, memory_stats_as_nested_dict, reset_accumulated_memory_stats, reset_peak_memory_stats, ) from .random import ( get_rng_state, get_rng_state_all, initial_seed, manual_seed, manual_seed_all, seed, seed_all, set_rng_state, set_rng_state_all, ) __all__ = [ "Event", "Stream", "StreamContext", "current_device", "current_stream", "default_generators", "device", "device_of", "device_count", "empty_cache", "get_arch_list", "get_device_capability", "get_device_name", "get_device_properties", "get_gencode_flags", "get_rng_state", "get_rng_state_all", "get_stream_from_external", "init", "initial_seed", "is_available", "is_bf16_supported", "is_initialized", "manual_seed", "manual_seed_all", "max_memory_allocated", "max_memory_reserved", "mem_get_info", "memory_allocated", "memory_reserved", "memory_stats", "memory_stats_as_nested_dict", "reset_accumulated_memory_stats", "reset_peak_memory_stats", "seed", "seed_all", "set_device", "set_rng_state", "set_rng_state_all", "set_stream", "stream", "streams", "synchronize", ] ```
=============================================================================================================== SOURCE CODE FILE: _gpu_trace.py LINES: 1 SIZE: 2.37 KB PATH: scripts\freecad_env\Lib\site-packages\torch\xpu\_gpu_trace.py ENCODING: utf-8 ```py from typing import Callable from torch._utils import CallbackRegistry EventCreationCallbacks: "CallbackRegistry[int]" = CallbackRegistry("XPU event creation") EventDeletionCallbacks: "CallbackRegistry[int]" = CallbackRegistry("XPU event deletion") EventRecordCallbacks: "CallbackRegistry[int, int]" = CallbackRegistry( "XPU event record" ) EventWaitCallbacks: "CallbackRegistry[int, int]" = CallbackRegistry("XPU event wait") MemoryAllocationCallbacks: "CallbackRegistry[int]" = CallbackRegistry( "XPU memory allocation" ) MemoryDeallocationCallbacks: "CallbackRegistry[int]" = CallbackRegistry( "XPU memory deallocation" ) StreamCreationCallbacks: "CallbackRegistry[int]" = CallbackRegistry( "XPU stream creation" ) DeviceSynchronizationCallbacks: "CallbackRegistry[[]]" = CallbackRegistry( "XPU device synchronization" ) StreamSynchronizationCallbacks: "CallbackRegistry[int]" = CallbackRegistry( "XPU stream synchronization" ) EventSynchronizationCallbacks: "CallbackRegistry[int]" = CallbackRegistry( "XPU event synchronization" ) def register_callback_for_event_creation(cb: Callable[[int], None]) -> None: EventCreationCallbacks.add_callback(cb) def register_callback_for_event_deletion(cb: Callable[[int], None]) -> None: EventDeletionCallbacks.add_callback(cb) def register_callback_for_event_record(cb: Callable[[int, int], None]) -> None: EventRecordCallbacks.add_callback(cb) def register_callback_for_event_wait(cb: Callable[[int, int], None]) -> None: EventWaitCallbacks.add_callback(cb) def register_callback_for_memory_allocation(cb: Callable[[int], None]) -> None: MemoryAllocationCallbacks.add_callback(cb) def register_callback_for_memory_deallocation(cb: Callable[[int], None]) -> None: MemoryDeallocationCallbacks.add_callback(cb) def register_callback_for_stream_creation(cb: Callable[[int], None]) -> None: StreamCreationCallbacks.add_callback(cb) def register_callback_for_device_synchronization(cb: Callable[[], None]) -> None: DeviceSynchronizationCallbacks.add_callback(cb) def register_callback_for_stream_synchronization(cb: Callable[[int], None]) -> None: StreamSynchronizationCallbacks.add_callback(cb) def register_callback_for_event_synchronization(cb: Callable[[int], None]) -> None: EventSynchronizationCallbacks.add_callback(cb) ```
=========================================================================================================== SOURCE CODE FILE: _utils.py LINES: 1 SIZE: 1.59 KB PATH: scripts\freecad_env\Lib\site-packages\torch\xpu\_utils.py ENCODING: utf-8 ```py from typing import Any import torch # The _get_device_index has been moved to torch.utils._get_device_index from torch._utils import _get_device_index as _torch_get_device_index def _get_device_index( device: Any, optional: bool = False, allow_cpu: bool = False ) -> int: r"""Get the device index from :attr:`device`, which can be a torch.device object, a Python integer, or ``None``. If :attr:`device` is a torch.device object, returns the device index if it is a XPU device. Note that for a XPU device without a specified index, i.e., ``torch.device('xpu')``, this will return the current default XPU device if :attr:`optional` is ``True``. If :attr:`allow_cpu` is ``True``, CPU devices will be accepted and ``-1`` will be returned in this case. If :attr:`device` is a Python integer, it is returned as is. If :attr:`device` is ``None``, this will return the current default XPU device if :attr:`optional` is ``True``. """ if isinstance(device, int): return device if isinstance(device, str): device = torch.device(device) if isinstance(device, torch.device): if allow_cpu: if device.type not in ["xpu", "cpu"]: raise ValueError(f"Expected a xpu or cpu device, but got: {device}") elif device.type != "xpu": raise ValueError(f"Expected a xpu device, but got: {device}") if not torch.jit.is_scripting(): if isinstance(device, torch.xpu.device): return device.idx return _torch_get_device_index(device, optional, allow_cpu) ```
=========================================================================================================== SOURCE CODE FILE: memory.py LINES: 1 SIZE: 8.04 KB PATH: scripts\freecad_env\Lib\site-packages\torch\xpu\memory.py ENCODING: utf-8 ```py import collections from typing import Any, Union import torch from torch.types import Device from . import _get_device_index, is_initialized _device_t = Union[Device, str, int, None] def empty_cache() -> None: r"""Release all unoccupied cached memory currently held by the caching allocator so that those can be used in other XPU application. .. note:: :func:`~torch.xpu.empty_cache` doesn't increase the amount of XPU memory available for PyTorch. However, it may help reduce fragmentation of XPU memory in certain cases. """ if is_initialized(): torch._C._xpu_emptyCache() def reset_peak_memory_stats(device: _device_t = None) -> None: r"""Reset the "peak" stats tracked by the XPU memory allocator. See :func:`~torch.xpu.memory_stats` for details. Peak stats correspond to the `"peak"` key in each individual stat dict. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ device = _get_device_index(device, optional=True) return torch._C._xpu_resetPeakMemoryStats(device) def reset_accumulated_memory_stats(device: _device_t = None) -> None: r"""Reset the "accumulated" (historical) stats tracked by the XPU memory allocator. See :func:`~torch.xpu.memory_stats` for details. Accumulated stats correspond to the `"allocated"` and `"freed"` keys in each individual stat dict. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ device = _get_device_index(device, optional=True) return torch._C._xpu_resetAccumulatedMemoryStats(device) def memory_stats_as_nested_dict(device: _device_t = None) -> dict[str, Any]: r"""Return the result of :func:`~torch.xpu.memory_stats` as a nested dictionary.""" if not is_initialized(): return {} device = _get_device_index(device, optional=True) return torch._C._xpu_memoryStats(device) def memory_stats(device: _device_t = None) -> dict[str, Any]: r"""Return a dictionary of XPU memory allocator statistics for a given device. The return value of this function is a dictionary of statistics, each of which is a non-negative integer. Core statistics: - ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: amount of allocated memory. - ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: amount of reserved memory. - ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: amount of active memory. - ``"requested_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``: memory requested by client code, compare this with allocated_bytes to check if allocation rounding adds too much overhead. For these core statistics, values are broken down as follows. Pool type: - ``all``: combined statistics across all memory pools. - ``large_pool``: statistics for the large allocation pool (for size >= 1MB allocations). - ``small_pool``: statistics for the small allocation pool (for size < 1MB allocations). Metric type: - ``current``: current value of this metric. - ``peak``: maximum value of this metric. - ``allocated``: historical total increase in this metric. - ``freed``: historical total decrease in this metric. Args: device (torch.device or int or str, optional): selected device. Returns statistics for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ result = [] def _recurse_add_to_result(prefix: str, obj: Any) -> None: if isinstance(obj, dict): if len(prefix) > 0: prefix += "." for k, v in obj.items(): _recurse_add_to_result(prefix + k, v) else: result.append((prefix, obj)) stats = memory_stats_as_nested_dict(device=device) _recurse_add_to_result("", stats) result.sort() return collections.OrderedDict(result) def memory_allocated(device: _device_t = None) -> int: r"""Return the current GPU memory occupied by tensors in bytes for a given device. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). .. note:: This is likely less than the amount shown in `xpu-smi` since some unused memory can be held by the caching allocator and some context needs to be created on GPU. """ return memory_stats(device=device).get("allocated_bytes.all.current", 0) def max_memory_allocated(device: _device_t = None) -> int: r"""Return the maximum GPU memory occupied by tensors in bytes for a given device. By default, this returns the peak allocated memory since the beginning of this program. :func:`~torch.xpu.reset_peak_memory_stats` can be used to reset the starting point in tracking this metric. For example, these two functions can measure the peak allocated memory usage of each iteration in a training loop. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ return memory_stats(device=device).get("allocated_bytes.all.peak", 0) def memory_reserved(device: _device_t = None) -> int: r"""Return the current GPU memory managed by the caching allocator in bytes for a given device. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ return memory_stats(device=device).get("reserved_bytes.all.current", 0) def max_memory_reserved(device: _device_t = None) -> int: r"""Return the maximum GPU memory managed by the caching allocator in bytes for a given device. By default, this returns the peak cached memory since the beginning of this program. :func:`~torch.xpu.reset_peak_memory_stats` can be used to reset the starting point in tracking this metric. For example, these two functions can measure the peak cached memory amount of each iteration in a training loop. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). """ return memory_stats(device=device).get("reserved_bytes.all.peak", 0) def mem_get_info(device: _device_t = None) -> tuple[int, int]: r"""Return the global free and total GPU memory for a given device. Args: device (torch.device or int or str, optional): selected device. Returns statistic for the current device, given by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None`` (default). Returns: int: the memory available on the device in units of bytes. int: the total memory on the device in units of bytes """ device = _get_device_index(device, optional=True) return torch._C._xpu_getMemoryInfo(device) __all__ = [ "empty_cache", "max_memory_allocated", "max_memory_reserved", "mem_get_info", "memory_allocated", "memory_reserved", "memory_stats", "memory_stats_as_nested_dict", "reset_accumulated_memory_stats", "reset_peak_memory_stats", ] ```
=========================================================================================================== SOURCE CODE FILE: random.py LINES: 1 SIZE: 5.29 KB PATH: scripts\freecad_env\Lib\site-packages\torch\xpu\random.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs from collections.abc import Iterable from typing import Union import torch from torch import Tensor from . import _lazy_call, _lazy_init, current_device, device_count def get_rng_state(device: Union[int, str, torch.device] = "xpu") -> Tensor: r"""Return the random number generator state of the specified GPU as a ByteTensor. Args: device (torch.device or int, optional): The device to return the RNG state of. Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device). .. warning:: This function eagerly initializes XPU. """ _lazy_init() if isinstance(device, str): device = torch.device(device) elif isinstance(device, int): device = torch.device("xpu", device) idx = device.index if idx is None: idx = current_device() default_generator = torch.xpu.default_generators[idx] return default_generator.get_state() def get_rng_state_all() -> list[Tensor]: r"""Return a list of ByteTensor representing the random number states of all devices.""" results = [get_rng_state(i) for i in range(device_count())] return results def set_rng_state( new_state: Tensor, device: Union[int, str, torch.device] = "xpu" ) -> None: r"""Set the random number generator state of the specified GPU. Args: new_state (torch.ByteTensor): The desired state device (torch.device or int, optional): The device to set the RNG state. Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device). """ with torch._C._DisableFuncTorch(): new_state_copy = new_state.clone(memory_format=torch.contiguous_format) if isinstance(device, str): device = torch.device(device) elif isinstance(device, int): device = torch.device("xpu", device) def cb(): idx = device.index if idx is None: idx = current_device() default_generator = torch.xpu.default_generators[idx] default_generator.set_state(new_state_copy) _lazy_call(cb) def set_rng_state_all(new_states: Iterable[Tensor]) -> None: r"""Set the random number generator state of all devices. Args: new_states (Iterable of torch.ByteTensor): The desired state for each device. """ for i, state in enumerate(new_states): set_rng_state(state, i) def manual_seed(seed: int) -> None: r"""Set the seed for generating random numbers for the current GPU. It's safe to call this function if XPU is not available; in that case, it is silently ignored. Args: seed (int): The desired seed. .. warning:: If you are working with a multi-GPU model, this function is insufficient to get determinism. To seed all GPUs, use :func:`manual_seed_all`. """ seed = int(seed) def cb(): idx = current_device() default_generator = torch.xpu.default_generators[idx] default_generator.manual_seed(seed) _lazy_call(cb, seed=True) def manual_seed_all(seed: int) -> None: r"""Set the seed for generating random numbers on all GPUs. It's safe to call this function if XPU is not available; in that case, it is silently ignored. Args: seed (int): The desired seed. """ seed = int(seed) def cb(): for i in range(device_count()): default_generator = torch.xpu.default_generators[i] default_generator.manual_seed(seed) _lazy_call(cb, seed_all=True) def seed() -> None: r"""Set the seed for generating random numbers to a random number for the current GPU. It's safe to call this function if XPU is not available; in that case, it is silently ignored. .. warning:: If you are working with a multi-GPU model, this function will only initialize the seed on one GPU. To initialize all GPUs, use :func:`seed_all`. """ def cb(): idx = current_device() default_generator = torch.xpu.default_generators[idx] default_generator.seed() _lazy_call(cb) def seed_all() -> None: r"""Set the seed for generating random numbers to a random number on all GPUs. It's safe to call this function if XPU is not available; in that case, it is silently ignored. """ def cb(): random_seed = 0 seeded = False for i in range(device_count()): default_generator = torch.xpu.default_generators[i] if not seeded: default_generator.seed() random_seed = default_generator.initial_seed() seeded = True else: default_generator.manual_seed(random_seed) _lazy_call(cb) def initial_seed() -> int: r"""Return the current random seed of the current GPU. .. warning:: This function eagerly initializes XPU. """ _lazy_init() idx = current_device() default_generator = torch.xpu.default_generators[idx] return default_generator.initial_seed() __all__ = [ "get_rng_state", "get_rng_state_all", "set_rng_state", "set_rng_state_all", "manual_seed", "manual_seed_all", "seed", "seed_all", "initial_seed", ] ```
============================================================================================================ SOURCE CODE FILE: streams.py LINES: 1 SIZE: 5.89 KB PATH: scripts\freecad_env\Lib\site-packages\torch\xpu\streams.py ENCODING: utf-8 ```py # mypy: allow-untyped-defs import ctypes import torch from torch._utils import _dummy_type if not hasattr(torch._C, "_XpuStreamBase"): # Define dummy base classes torch._C.__dict__["_XpuStreamBase"] = _dummy_type("_XpuStreamBase") torch._C.__dict__["_XpuEventBase"] = _dummy_type("_XpuEventBase") class Stream(torch._C._XpuStreamBase): r"""Wrapper around a XPU stream. A XPU stream is a linear sequence of execution that belongs to a specific device, independent from other streams. It supports with statement as a context manager to ensure the operators within the with block are running on the corresponding stream. Args: device(torch.device or int, optional): a device on which to allocate the stream. If :attr:`device` is ``None`` (default) or a negative integer, this will use the current device. priority(int, optional): priority of the stream, which can be positive, 0, or negative. A lower number indicates a higher priority. By default, the priority is set to 0. If the value falls outside of the allowed priority range, it will automatically be mapped to the nearest valid priority (lowest for large positive numbers or highest for large negative numbers). """ def __new__(cls, device=None, priority=0, **kwargs): # setting device manager is expensive, so we avoid it unless necessary if device is None or ("stream_id" in kwargs and "device_index" in kwargs): return super().__new__(cls, priority=priority, **kwargs) else: with torch.xpu.device(device): return super().__new__(cls, priority=priority, **kwargs) def wait_event(self, event) -> None: r"""Make all future work submitted to the stream wait for an event. Args: event (torch.xpu.Event): an event to wait for. """ event.wait(self) def wait_stream(self, stream) -> None: r"""Synchronize with another stream. All future work submitted to this stream will wait until all kernels submitted to a given stream at the time of call complete. Args: stream (Stream): a stream to synchronize. """ self.wait_event(stream.record_event()) def record_event(self, event=None): r"""Record an event. Args: event (torch.xpu.Event, optional): event to record. If not given, a new one will be allocated. Returns: Recorded event. """ if event is None: event = Event() event.record(self) return event def query(self) -> bool: r"""Check if all the work submitted has been completed. Returns: A boolean indicating if all kernels in this stream are completed. """ return super().query() def synchronize(self) -> None: r"""Wait for all the kernels in this stream to complete.""" super().synchronize() @property def _as_parameter_(self): return ctypes.c_void_p(self.sycl_queue) def __eq__(self, o): if isinstance(o, Stream): return super().__eq__(o) return False def __hash__(self): return hash((self.sycl_queue, self.device)) def __repr__(self): return f"torch.xpu.Stream(device={self.device} sycl_queue={self.sycl_queue:#x})" class Event(torch._C._XpuEventBase): r"""Wrapper around a XPU event. XPU events are synchronization markers that can be used to monitor the device's progress, and to synchronize XPU streams. The underlying XPU events are lazily initialized when the event is first recorded. After creation, only streams on the same device may record the event. However, streams on any device can wait on the event. Args: enable_timing (bool, optional): indicates if the event should measure time (default: ``False``) """ def __new__(cls, enable_timing=False): return super().__new__(cls, enable_timing=enable_timing) def record(self, stream=None) -> None: r"""Record the event in a given stream. Uses ``torch.xpu.current_stream()`` if no stream is specified. The stream's device must match the event's device. """ if stream is None: stream = torch.xpu.current_stream() super().record(stream) def wait(self, stream=None) -> None: r"""Make all future work submitted to the given stream wait for this event. Use ``torch.xpu.current_stream()`` if no stream is specified. """ if stream is None: stream = torch.xpu.current_stream() super().wait(stream) def query(self) -> bool: r"""Check if all work currently captured by event has completed. Returns: A boolean indicating if all work currently captured by event has completed. """ return super().query() def elapsed_time(self, end_event): r"""Return the time elapsed. Time reported in milliseconds after the event was recorded and before the end_event was recorded. """ return super().elapsed_time(end_event) def synchronize(self) -> None: r"""Wait for the event to complete. Waits until the completion of all work currently captured in this event. This prevents the CPU thread from proceeding until the event completes. """ super().synchronize() @property def _as_parameter_(self): return ctypes.c_void_p(self.sycl_event) def __repr__(self): if self.sycl_event: return f"torch.xpu.Event(sycl_event={self.sycl_event:#x})" else: return "torch.xpu.Event(uninitialized)" ```
============================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.35 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\__init__.py ENCODING: utf-8 ```py """torchgen This module contains codegeneration utilities for PyTorch. It is used to build PyTorch from source, but may also be used for out-of-tree projects that extend PyTorch. Note well that we provide no BC guarantees for torchgen. If you're interested in using torchgen and want the PyTorch team to be aware, please reach out on GitHub. """ ```
================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.00 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\aoti\__init__.py ENCODING: utf-8 ```py ```
===================================================================================================================== SOURCE CODE FILE: fallback_ops.py LINES: 1 SIZE: 6.07 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\aoti\fallback_ops.py ENCODING: utf-8 ```py # Be extra careful when you edit this file, because it affects AOTInductor ABI compatbility. See # https://github.com/pytorch/pytorch/blob/7e86a7c0155295539996e0cf422883571126073e/torchgen/gen.py#L2424-L2436 # for details. # # The inductor_fallback_ops list is based on the fallback ops from torch/_inductor/lowering.py. # Generally speaking, it is ok to add a new op to the list, but you need to run # `python torchgen/gen.py --update-aoti-c-shim` in order to regenerate C shim header files. # But it is NOT ok to remove an existing fallback op from the list, since that will break # some existing AOTInductor-compiled models. inductor_fallback_ops = { "aten._adaptive_avg_pool2d_backward.default", "aten._adaptive_avg_pool2d.default", "aten._adaptive_avg_pool3d.default", "aten._adaptive_avg_pool3d_backward.default", "aten.adaptive_max_pool2d_backward.default", "aten.adaptive_max_pool2d.default", "aten.adaptive_max_pool3d.default", "aten.adaptive_max_pool3d_backward.default", "aten.add.Scalar", "aten.add.Tensor", "aten.addbmm.default", "aten._addmm_activation.default", "aten.addmm.out", "aten.addmv.default", "aten.angle.default", "aten.avg_pool2d_backward.default", "aten.avg_pool2d.default", "aten.avg_pool3d_backward.default", "aten.avg_pool3d.default", "aten.baddbmm.out", "aten.bernoulli_.float", "aten.bernoulli_.Tensor", "aten.bmm.out", "aten.bucketize.Tensor", "aten.cat.default", "aten._cdist_backward.default", "aten._cdist_forward.default", "aten.cholesky_inverse.default", "aten.cholesky_solve.default", "aten.convolution_backward.default", "aten._cudnn_rnn.default", "aten.convolution.default", "aten.cummax.default", "aten.cummin.default", "aten.cumprod.default", "aten.cumsum.default", "aten._dyn_quant_matmul_4bit.default", "aten._dyn_quant_pack_4bit_weight.default", "aten._efficient_attention_backward.default", "aten._efficient_attention_forward.default", "aten._efficientzerotensor.default", "aten._embedding_bag.default", "aten._embedding_bag_dense_backward.default", "aten._embedding_bag_forward_only.default", "aten._embedding_bag_per_sample_weights_backward.default", "aten.exponential.default", "aten._fft_c2c.default", "aten._fft_r2c.default", "aten._flash_attention_backward.default", "aten._flash_attention_forward.default", "aten.fractional_max_pool2d_backward.default", "aten.fractional_max_pool2d.default", "aten.fractional_max_pool3d.default", "aten.fractional_max_pool3d_backward.default", "aten._fused_moving_avg_obs_fq_helper.default", "aten._fused_moving_avg_obs_fq_helper_functional.default", "aten.gcd.default", "aten.geqrf.default", "aten.grid_sampler_2d_backward.default", "aten.histc.default", "aten.histogram.bin_ct", "aten._histogramdd_from_bin_cts.default", "aten.index_put.default", "aten.index_reduce.default", "aten.index.Tensor", "aten._int_mm.out", "aten.kthvalue.default", "aten.logcumsumexp.default", "aten.lu_unpack.default", "aten.masked_select.default", "aten.masked_scatter.default", "aten.masked_scatter_backward.default", "aten.max_pool2d_with_indices_backward.default", "aten.max_pool2d_with_indices.default", "aten.max_pool3d_with_indices.default", "aten.max_pool3d_with_indices_backward.default", "aten.max_unpool2d.default", "aten.max_unpool3d.default", "aten.median.default", "aten.mm.out", "aten.mode.default", "aten.mul.Scalar", "aten.mul.Tensor", "aten.nanmedian.default", "aten.native_dropout.default", "aten.normal_functional.default", "aten.nonzero.default", "aten.ormqr.default", "aten._pdist_backward.default", "aten._pdist_forward.default", "aten.polar.default", "aten.pow.Scalar", "aten.pow.Tensor_Scalar", "aten.pow.Tensor_Tensor", "aten.rand.default", "aten.rand.generator", "aten.randint.default", "aten.randint.generator", "aten.randint.low", "aten.randint.low_out", "aten.randn.default", "aten.randn.generator", "aten.randperm.default", "aten.repeat_interleave.Tensor", "aten.replication_pad1d_backward.default", "aten.replication_pad2d_backward.default", "aten.reshape.default", "aten.resize_.default", "aten.resize_as_.default", "aten._scaled_dot_product_efficient_attention_backward.default", "aten._scaled_dot_product_efficient_attention.default", "aten._scaled_dot_product_flash_attention_backward.default", "aten._scaled_dot_product_flash_attention.default", "aten._scaled_dot_product_cudnn_attention_backward.default", "aten._scaled_dot_product_cudnn_attention.default", "aten._scaled_dot_product_flash_attention_for_cpu_backward.default", "aten._scaled_dot_product_flash_attention_for_cpu.default", "aten._scaled_dot_product_fused_attention_overrideable_backward.default", "aten._scaled_dot_product_fused_attention_overrideable.default", "aten._scaled_mm.default", "aten._scaled_mm.out", "aten.scatter_reduce.two_out", "aten.scatter.src_out", "aten.scatter.value_out", "aten.searchsorted.Scalar", "aten.searchsorted.Tensor", "aten._segment_reduce_backward.default", "aten.segment_reduce.default", "aten.set_.source_Tensor", "aten.slice.Tensor", "aten.soft_margin_loss_backward.default", "aten.sort.default", "aten.sort.stable", "aten._thnn_fused_lstm_cell.default", "aten.topk.default", "aten._to_sparse.default", "aten.to_sparse.default", "aten.triangular_solve.default", "aten._trilinear.default", "aten.uniform.default", "aten.upsample_bicubic2d_backward.default", "aten.upsample_linear1d_backward.default", "aten.upsample_trilinear3d_backward.default", "aten.view_as_complex.default", "aten.view_as_real.default", "aten.view.dtype", "aten._weight_int8pack_mm.default", } ```
================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.00 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\__init__.py ENCODING: utf-8 ```py ```
================================================================================================================ SOURCE CODE FILE: autograd.py LINES: 1 SIZE: 38.90 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\autograd.py ENCODING: utf-8 ```py from __future__ import annotations import re from dataclasses import dataclass from typing import cast, TYPE_CHECKING from torchgen import local from torchgen.api import cpp from torchgen.api.types import BaseCType, Binding, NamedCType, tensorListT from torchgen.model import ( BaseTy, BaseType, FunctionSchema, ListType, NativeFunction, NativeFunctionsViewGroup, SchemaKind, Type, ) from torchgen.utils import IDENT_REGEX if TYPE_CHECKING: from collections.abc import Sequence # Represents a saved attribute involved in backward calculation. # Note that it can be a derived property of an input argument, e.g.: # we could save `other.scalar_type()` instead of the entire `other` tensor. @dataclass(frozen=True) class SavedAttribute: # The NamedCType holds the updated name and cpp type of the attribute # for the name, Suffix is appended if it's derived property, e.g.: `other_scalar_type` nctype: NamedCType # The expression to read the derived property at save time, e.g.: # `other.scalar_type()`. expr: str # Represents a backward formula that calculates derivatives for one # or more tensors. @dataclass(frozen=True) class Derivative: # The formula string (legit C++ expression). # Note that expressions against input arguments have been replaced with the # corresponding saved attributes. # E.g.: # raw formula: `mul_tensor_backward(grad, self, other.scalar_type())` # here: `mul_tensor_backward(grad, self, other_scalar_type)` formula: str # The formula string before input argument replacement original_formula: str # Names of the arguments for which this formula calculates derivatives. var_names: tuple[str, ...] # Saved inputs that are referenced by the formula. saved_inputs: tuple[SavedAttribute, ...] # Saved outputs that are referenced by the formula. saved_outputs: tuple[SavedAttribute, ...] # Gradients that are referenced by name in the formula. named_gradients: set[str] # Represents a forward formula that calculates forward derivatives # for one tensor. @dataclass(frozen=True) class ForwardDerivative: # The formula string (legit C++ expression). # Note that special keywords such as "linear" or "element_wise" have been # replaced by the automatically generated formula. formula: str # Name of the output arguments for which this formula calculates forward # derivatives var_names: tuple[str, ...] # Type of the output arguments for which this formula calculates forward # derivatives var_types: tuple[Type, ...] # Inputs for which the forward derivatives are required for this formula required_inputs_fw_grad: tuple[str, ...] | None # Inputs for which the primal is required for this formula required_inputs_primal: tuple[str, ...] | None # Flag to specify if this formula requires the original value of self # This is only used by inplace operations required_original_self_value: bool # If this formula is specified in derivatives.yaml or if we are re-using the # out of place formula for inplace is_reusing_outplace_formula: bool # Represents differentiability info for a NativeFunction. @dataclass(frozen=True) class DifferentiabilityInfo: # The base name read from derivatives.yaml. name: str # The matching native function. # # There can be multiple NativeFunction having the same base name: # - different overloads with different types of input arguments; # - in-place/out/functional variants of the same function; # # We first use the schema string (under the 'name' key) in derivatives.yaml # to find the NativeFunction having the same schema string. # Then we find the in-place/out/functional variants of the matching function. # Among these variants, we choose the one having the same name as the # derivatives.yaml entry. If there is no exact match, then we choose the # in-place variant. # TODO: maybe the logic to search for all variants is no longer necessary? func: NativeFunction # The name of the generated autograd function. # It's set only if we will calculate a derivative, i.e. # 'args_with_derivatives' is not empty. op: str | None # The derivatives formulae for this function. # Note that the length of this sequence is the number of differentiable inputs derivatives: Sequence[Derivative] # The forward derivatives formulae for this function. # Note that the length of this sequence is the number of differentiable outputs forward_derivatives: Sequence[ForwardDerivative] # The union of 'saved_inputs' of all 'derivatives'. all_saved_inputs: Sequence[SavedAttribute] # The union of 'saved_outputs' of all 'derivatives'. all_saved_outputs: Sequence[SavedAttribute] # All named gradients that are available for use, in the same # order as in the grads vector. available_named_gradients: Sequence[str] # The named gradients that are used in any of the derivatives. # Invariant: all(name in available_named_gradients for name in used_named_gradients) used_named_gradients: set[str] # The function's input arguments for which it calculates derivatives. # It's the union of 'var_names' of all 'derivatives', sorted by the # argument order in the function schema. args_with_derivatives: Sequence[Binding] # Names of arguments whose derivative formula is 'non_differentiable'. non_differentiable_arg_names: Sequence[str] # Raw data read from derivatives.yaml. output_differentiability: list[bool] | None # output_differentiability in derivatives.yaml can be a list of # conditions that express if the output is differentiable. In this case, # the number of conditions must match the number of outputs # (NB: we only support one condition right now). # output_differentiability gets populated with True for each condition, # while output_differentiability_conditions gets populated with the conditions output_differentiability_conditions: list[str] | None @property def has_derivatives(self) -> bool: return len(self.args_with_derivatives) > 0 # Generates a new DifferentiabilityInfo using the exact same set of derivative information, # but with a new operator name. # This is used when generating "copy" variants of view ops, # which are able to use the exact same derivative formula as the original view op # See Note [Codegen'd {view}_copy Operators] def create_view_copy_from_view_derivative( self, g: NativeFunctionsViewGroup ) -> DifferentiabilityInfo | None: if g.view_copy is None: return None f = g.view_copy name_split_by_period = self.name.split(".", maxsplit=2) # Append a "_copy" to the base name of the operator (but keep the overload name the same) view_copy_name = f"{name_split_by_period[0]}_copy." + ".".join( name_split_by_period[1:] ) view_copy_op_name = None if self.op is None else f"{self.op}_copy" return DifferentiabilityInfo( # Use the "_copy" version of name/func/op name=view_copy_name, func=f, op=view_copy_op_name, # But keep all derivative info the same derivatives=self.derivatives, forward_derivatives=self.forward_derivatives, all_saved_inputs=self.all_saved_inputs, all_saved_outputs=self.all_saved_outputs, available_named_gradients=self.available_named_gradients, used_named_gradients=self.used_named_gradients, args_with_derivatives=self.args_with_derivatives, non_differentiable_arg_names=self.non_differentiable_arg_names, output_differentiability=self.output_differentiability, output_differentiability_conditions=self.output_differentiability_conditions, ) def uses_ident(info: DifferentiabilityInfo | None, ident: str) -> bool: if info is None: return False for derivative in info.derivatives: formula = derivative.formula if re.search(IDENT_REGEX.format(ident), formula): return True return False def uses_retain_variables(info: DifferentiabilityInfo | None) -> bool: return uses_ident(info, "retain_variables") def uses_single_grad(info: DifferentiabilityInfo | None) -> bool: return uses_ident(info, "grad") # Represents a differentiable `Argument`. # How is it different from the `Argument` type? # - It's processed Arguments which are differentiable and only used in the # context of the autograd codegen; # - It can represent SelfArgument or regular Argument but not TensorOptionsArgument; @dataclass(frozen=True) class DifferentiableInput: name: str type: Type # TODO: only to keep it byte-for-byte compatible with the old codegen, should remove. cpp_type: str # Represents a differentiable `Return`. # How it it different from the `Return` type? # - The name in `Return` is optional. Here it is always populated using the same # `cpp.return_names()` method. # TODO: some cpp naming logic (e.g. resolving name conflict) might be irrelevant? # - It's processed Returns which are differentiable, in compliance with the # `output_differentiability` field defined in derivatives.yaml (if specified), # and are only used in the context of the autograd codegen; @dataclass(frozen=True) class DifferentiableOutput: name: str type: Type # TODO: only to keep it byte-for-byte compatible with the old codegen, should remove. cpp_type: str @dataclass(frozen=True) class NativeFunctionWithDifferentiabilityInfo: func: NativeFunction info: dict[str, DifferentiabilityInfo] | None fw_derivatives: dict[str, Sequence[ForwardDerivative]] | None # TODO: Update comment below since it is out of date. def dispatch_strategy(fn: NativeFunctionWithDifferentiabilityInfo) -> str: """How are we going to call the underlying implementation of a declaration? There are two strategies: - use_derived: we want to call the implementation on CPUDoubleType (or a similar, derived Type instance). Because these derived instances deal in Tensors, not Variables (it's a completely different object, so it doesn't dispatch back to VariableType), code on this dispatch path needs to wrap/unwrap tensors. If the derived implementation takes and returns tensors, the implementation is usually differentiable (although we also use the derived dispatch path for non-differentiable functions that we still want to dispatch on the derived Type instance; e.g., size()) - use_type: we want to call the implementation on Type, because it is implemented concretely, and the functions it invokes will get dispatched back to VariableType (which will ensure that they are differentiable.) """ # fn is derived as long as any of its per-key differentiability infos # has_derivatives. dispatch_strategy() is used to guard generation of fns in VariableType # and ADInplaceOrViewType. We want to generate these functions as long as a # derivative is defined for ANY dispatch key. if fn.func.is_abstract or ( fn.info is not None and any(info.has_derivatives for info in fn.info.values()) ): # If the function is abstract (not implemented on at::Type), we must # call the implementation on the derived type with unpacked tensors. # If the function has a derivative specified and is concrete, we could # call either implementation. We prefer the calling the derived # type's implementation with unpacked tensors because it is more # performant in some cases: any internal calls to other ATen functions # won't have the history tracked. # If the function has a type dispatched argument (i.e. is a factory), # we prefer calling the derived type's implementation both because it is # more performant and to ensure factory functions return tensors with _version # of 0 (probably not strictly necessary, but nice to have to keeps versions simple # to understand. return "use_derived" else: # If the function is concrete (we don't have to override it) and we # didn't declare it in derivatives.yaml, we'll assume that it is # actually implemented out of differentiable functions. (This # assumption might not hold, but then you'll see gradcheck fail.) return "use_type" def is_foreach_func(f: NativeFunction) -> bool: return f.func.name.name.base.startswith("_foreach_") # note(crcrpar): Most foreach functions can reference an out-place `torch` function whose schema kind # is functional for their backward derivatives (and forward derivatives in the future), i.e., # they would find such one in `functional_info_by_signature`. There however are some exceptions: _foreach_with_inplace_ref = {"_foreach_zero_"} _foreach_with_tensor_overload = { "_foreach_add.Tensor", "_foreach_mul.Tensor", "_foreach_div.Tensor", } # The following do not support the alpha kwarg, which the nonforeach versions support. _skip_argument_len_check = { "_foreach_add.Scalar", "_foreach_add_.Scalar", "_foreach_add.ScalarList", "_foreach_add_.ScalarList", "_foreach_sub.Scalar", "_foreach_sub_.Scalar", "_foreach_sub.ScalarList", "_foreach_sub_.ScalarList", } # Checks if `function_schema` is a native, non-foreach function which `f`, a foreach function # reference to generate derivatives. def is_reference_for_foreach( f: NativeFunction, function_schema: FunctionSchema, ) -> bool: return ( f.func.name.name.base.split("_foreach_")[-1] == function_schema.name.name.base and ( not function_schema.name.name.inplace or str(f.func.name) in _foreach_with_inplace_ref ) and ( str(f.func.name) in _skip_argument_len_check or len(f.func.arguments.flat_non_out) == len(function_schema.arguments.flat_non_out) ) and all( ref_arg.type in (arg.type, getattr(arg.type, "elem", None)) for arg, ref_arg in zip( f.func.arguments.flat_non_out, function_schema.arguments.flat_non_out, ) ) ) # TODO(crcrpar): Avoid hard coding "Default" ideally. def gen_foreach_derivativeinfo( foreach_function: NativeFunction, functional_info_by_signature: dict[ FunctionSchema, dict[str, DifferentiabilityInfo] ], non_functional_info_by_signature: dict[ FunctionSchema, dict[str, DifferentiabilityInfo] ], dispatch_key: str = "Default", ) -> tuple[DifferentiabilityInfo | None, bool]: """Generate DifferentiabilityInfo for out-place foreach function, return the existing one for in-place. The second return value indicates whether the info is generated in this function. """ ref_diff_info: DifferentiabilityInfo | None = None for function_schema, diff_info in functional_info_by_signature.items(): if not is_reference_for_foreach(foreach_function, function_schema): continue ref_diff_info = diff_info[dispatch_key] if ref_diff_info is not None: break # note(crcrpar): It seems like `zero`'s info isn't available in functional_info_by_signature # while the info of `zero_` is in non_functional_info_by_signature if ( ref_diff_info is None and foreach_function.func.kind() == SchemaKind.inplace and str(foreach_function.func.name) in _foreach_with_inplace_ref ): for function_schema, diff_info in non_functional_info_by_signature.items(): if not is_reference_for_foreach(foreach_function, function_schema): continue ref_diff_info = diff_info[dispatch_key] if ref_diff_info is not None: break if ref_diff_info is None: return None, False # non out-place uses the existing Derivative. if foreach_function.func.kind() == SchemaKind.inplace: return ref_diff_info, False map_refarg2foreacharg, map_name2arg = {}, {} for i, (arg, ref_arg) in enumerate( zip( foreach_function.func.arguments.flat_non_out, function_schema.arguments.flat_non_out, ) ): map_refarg2foreacharg[ref_arg.name] = arg.name map_name2arg[arg.name] = arg all_saved_inputs, all_saved_outputs, all_var_names = [], [], [] modified_derivative_formulas = [] for i, derivative in enumerate(ref_diff_info.derivatives): modified_formula = derivative.formula.replace("grad", "grads[i]").replace( "result", "result[i]" ) saved_inputs, saved_outputs = [], [] # note(crcrpar): This context seems necessary to call `cpp.argument_type` with local.parametrize( use_const_ref_for_mutable_tensors=foreach_function.use_const_ref_for_mutable_tensors, use_ilistref_for_tensor_lists=foreach_function.part_of_structured_group, ): for ref_input in derivative.saved_inputs: ref_input_jit_name = ref_input.expr.split(".")[0] mapped_name = map_refarg2foreacharg[ref_input_jit_name] if isinstance(map_name2arg[mapped_name].type, ListType): mapped_expr = mapped_name + "[i]" else: mapped_expr = mapped_name new_expr = ref_input.expr.replace(ref_input_jit_name, mapped_expr) modified_formula = modified_formula.replace( cast(str, ref_input.nctype.name), new_expr ) nctype = cpp.argument_type(map_name2arg[mapped_name], binds=mapped_name) canonical_nctype = NamedCType( nctype.name, nctype.type.remove_const_ref() ) saved_inputs.append( SavedAttribute(nctype=canonical_nctype, expr=mapped_name) ) for ref_output in derivative.saved_outputs: if ref_output.nctype.name == "result": saved_outputs.append( SavedAttribute( nctype=NamedCType( name="result", type=BaseCType(tensorListT) ), expr="result", ) ) else: raise RuntimeError("") var_names = [map_refarg2foreacharg[var] for var in derivative.var_names] all_var_names.extend(var_names) all_saved_inputs.extend(saved_inputs) all_saved_outputs.extend(saved_outputs) modified_derivative = Derivative( formula=modified_formula, original_formula=derivative.formula, var_names=tuple(var_names), saved_inputs=tuple(saved_inputs), saved_outputs=tuple(saved_outputs), named_gradients=set(), ) modified_derivative_formulas.append(modified_derivative) with local.parametrize( use_const_ref_for_mutable_tensors=foreach_function.use_const_ref_for_mutable_tensors, use_ilistref_for_tensor_lists=foreach_function.part_of_structured_group, ): args_with_derivatives = [ Binding( name=arg.name, nctype=cpp.argument_type(arg, binds=arg.name), argument=arg, default=None, ) for arg in foreach_function.func.arguments.flat_non_out if arg.name in all_var_names ] forward_derivatives: list[ForwardDerivative] = [] fw_derivative: ForwardDerivative for fw_derivative in ref_diff_info.forward_derivatives: var_names: list[str] = list(fw_derivative.var_names) # type: ignore[no-redef] var_types: list[Type] = list(fw_derivative.var_types) required_inputs_fw_grad: list[str] = [] required_inputs_primal: list[str] = [] if fw_derivative.required_inputs_fw_grad is not None: required_inputs_fw_grad = list(fw_derivative.required_inputs_fw_grad) if fw_derivative.required_inputs_primal: required_inputs_primal = list(fw_derivative.required_inputs_primal) modified_formula = fw_derivative.formula # Foreach's result is TensorList if "result" in modified_formula: modified_formula = fw_derivative.formula.replace("result", "result[i]") for foreach_arg, ref_arg in zip( foreach_function.func.arguments.flat_non_out, ref_diff_info.func.func.arguments.flat_non_out, ): # Modify reference forward formula if ( isinstance(foreach_arg.type, ListType) and not foreach_arg.type.is_tensor_like() ): # Assuming ScalarList modified_formula = modified_formula.replace( ref_arg.name, foreach_arg.name + "[i]" ) elif foreach_arg.type.is_tensor_like(): # Assuming TensorList / Tensor # assert isinstance(foreach_arg.type, ListType), f"{foreach_function.func.name}, {foreach_arg.type}" assert isinstance(foreach_arg.type, ListType) or ( foreach_arg.type == BaseType(BaseTy.Tensor) and str(foreach_function.func.name) in _foreach_with_tensor_overload ), f"{foreach_function.func.name}, {foreach_arg.type}" for suffix in ("_p", "_t"): curr_expr = ref_arg.name + suffix if curr_expr in modified_formula: new_expr = foreach_arg.name + suffix modified_formula = modified_formula.replace(curr_expr, new_expr) else: # Assuming Scalar if foreach_arg.name != ref_arg.name: modified_formula = modified_formula.replace( ref_arg.name, foreach_arg.name ) # note(crcrpar): there should exist a cooler way... for i, name in enumerate(var_names): if name == ref_arg.name: var_names[i] = foreach_arg.name var_types[i] = foreach_arg.type for i, name in enumerate(required_inputs_fw_grad): if name == ref_arg.name: required_inputs_fw_grad[i] = foreach_arg.name for i, name in enumerate(required_inputs_primal): if name == ref_arg.name: required_inputs_primal[i] = foreach_arg.name forward_derivatives.append( ForwardDerivative( formula=modified_formula, var_names=tuple(var_names), var_types=tuple(var_types), required_inputs_fw_grad=tuple(required_inputs_fw_grad), required_inputs_primal=tuple(required_inputs_primal), required_original_self_value=fw_derivative.required_original_self_value, is_reusing_outplace_formula=fw_derivative.is_reusing_outplace_formula, ) ) return ( DifferentiabilityInfo( name=foreach_function.func.name.name.base, func=foreach_function, op=f"Foreach{ref_diff_info.op}{foreach_function.func.name.overload_name}", derivatives=modified_derivative_formulas, forward_derivatives=forward_derivatives, all_saved_inputs=tuple(set(all_saved_inputs)), all_saved_outputs=tuple(set(all_saved_outputs)), available_named_gradients=(), used_named_gradients=set(), args_with_derivatives=args_with_derivatives, non_differentiable_arg_names=[], output_differentiability=None, output_differentiability_conditions=None, ), True, ) def match_differentiability_info( native_functions: list[NativeFunction], differentiability_infos: dict[FunctionSchema, dict[str, DifferentiabilityInfo]], ) -> list[NativeFunctionWithDifferentiabilityInfo]: """Sets the "derivative" key on declarations to matching autograd function In-place functions will use the out-of-place derivative definition if there is no in-place specific derivative. """ functional_info_by_signature = { schema.signature(strip_default=True): info_dict for schema, info_dict in differentiability_infos.items() if schema.kind() == SchemaKind.functional } non_functional_info_by_signature = { schema.signature(strip_default=True): info_dict for schema, info_dict in differentiability_infos.items() if schema.kind() != SchemaKind.functional } def find_info( f: NativeFunction, ) -> tuple[dict[str, DifferentiabilityInfo] | None, bool]: # Don't bother matching info to generated out= variants if "generated" in f.tags and f.func.kind() == SchemaKind.out: return None, False # (1) Check for an exact match if f.func in differentiability_infos: return differentiability_infos[f.func], True # (2) If no exact match, check if the out-of-place variant # of this operator has a match. # i.e mul() for mul_() or mul_out() # note(crcrpar): Check foreach or not because in-place foreach functions use backward defined for the existing # native functions instead of the out-place counterparts. f_sig = f.func.signature(strip_default=True) if f_sig in functional_info_by_signature and not is_foreach_func(f): return functional_info_by_signature[f_sig], False # (3) Some operators have a derivative explicitly defined for the mutable # variant, but get a code-generated out-of-place variant which does *not* # come with a derivative formula. # For the generated out-of-place variant, use the mutable variant's formula # if it exists. if "generated" in f.tags and f_sig in non_functional_info_by_signature: info_dict = non_functional_info_by_signature[f_sig] # See https://github.com/pytorch/pytorch/pull/76320/files#r874816389 assert not any( any("self" in str(inpt.nctype.name) for inpt in info.all_saved_inputs) for info in info_dict.values() ), f"""\ Attempted to convert a derivative formula for a mutable operator to be used by automatically by its functional variant ("{str(f.func)}"). this is not currently supported (we'd need to fix up the formula in the codegen).""" return info_dict, False # (4) Generate derivative information of foreach functions if none is defined in `derivatives.yaml` if is_foreach_func(f): assert f.func not in differentiability_infos diff_info, is_generated = gen_foreach_derivativeinfo( f, functional_info_by_signature, non_functional_info_by_signature, ) if diff_info is None: return None, False # TODO(crcrpar): Avoid hard coding "Default" ideally. diff_info_dict = {"Default": diff_info} if is_generated: differentiability_infos[f.func] = diff_info_dict functional_info_by_signature[f.func] = diff_info_dict return diff_info_dict, is_generated return None, False result: list[NativeFunctionWithDifferentiabilityInfo] = [] for f in native_functions: info_dict, is_exact_match = find_info(f) # Currently, the '.strides()' to 'strides_or_error' replacement does not support # 'self' derivatives of an inplace function, so we must check for this case. if f.func.kind() == SchemaKind.inplace and (info_dict is not None): for info in info_dict.values(): for derivative in info.derivatives: if "self" in derivative.var_names: for saved_input in derivative.saved_inputs: assert "strides_or_error" not in saved_input.expr, ( "Calling '.strides()' in the 'self' derivative formula of an " f"in-place function is not supported: {f.func}" ) if not info_dict: result.append( NativeFunctionWithDifferentiabilityInfo( func=f, info=None, fw_derivatives=None ) ) continue fw_derivative_dict: dict[str, Sequence[ForwardDerivative]] = {} for key, info in info_dict.items(): if not info.forward_derivatives: fw_derivative_dict[key] = [] continue forward_derivatives = info.forward_derivatives # For functions that have a single def for out-of-place and inplace (like abs()) if f.func.kind() == SchemaKind.inplace: # For inplace functions there is a little bit of work to do: # 1) Validate the formula and make sure the input that is modified in not used: # - If there is a formula for the inplace variant of the function (is_exact_match == True) then # we make sure that the original value of the input that is being modified inplace (self_p) is # not used in the formula. Note that the formula can use "original_self_p" here and that would # trigger a clone of the original input. # - If we are re-using the out of place formula (is_exact_match == False) then we replace every # occurrence of self_p and self_t by original_self_p and original_self_t. These will be # populated by cloned version of the original input (either the clone done by the backward AD # logic if self is also used in a backward formula or a special clone that we add). # 2) At this point, there cannot be a self_p in the formula. # 3) Change "result" into "self_p" as by design, in the inplace function codegen, the result is # simply called self (as it is modified inplace). # 4) Update the required primals data in case it used to contain "result" but should now contain # "self" # 5) If it is not an exact match, the user formula is not modifying the existing forward grad # inplace as it should. So add some code that makes sure that we do so if the forward grad # already exists. assert ( len(info.forward_derivatives) == 1 ) # Only single output inplace should exist fw_info = info.forward_derivatives[0] formula = fw_info.formula def replace_self_with_original_self(formula: str, postfix: str) -> str: def repl(m: re.Match[str]) -> str: return f"{m.group(1)}original_self{postfix}{m.group(2)}" return re.sub(IDENT_REGEX.format(f"self{postfix}"), repl, formula) if re.search(IDENT_REGEX.format("self_p"), formula): if is_exact_match: # For manually defined formulas, don't allow the original value to be used raise RuntimeError( f'The formula for "{f.func.name}" is using the original value of self ' "that is being modified inplace. This would lead to wrong forward gradients. " 'Please use "result" in the formula only.' ) else: # When the original formula is out of place, we save a clone of the primal # value to be able to access this value if needed # replace "self_p"/"self_t" from the formula by "original_self_p"/"original_self_t" formula = replace_self_with_original_self(formula, "_p") formula = replace_self_with_original_self(formula, "_t") # replace "result" from the formula by "self_p" def repl(m: re.Match[str]) -> str: return f"{m.group(1)}self_p{m.group(2)}" formula = re.sub(IDENT_REGEX.format("result"), repl, formula) required_primals = fw_info.required_inputs_primal if re.search(IDENT_REGEX.format("self_p"), formula): required_primals = ( required_primals + ("self",) if required_primals else ("self",) ) if not is_exact_match: # NOTE [In-place forward AD formula Optimization] # # This optimization transforms the formula to directly do inplace, i.e. # instead of self_t.copy_(self_t.op()) we do self_t.op_() when the following are met: # # 1) the formula satisfies the pattern: "self_t.op(*args)" # 2) "op" in (1) needs to be the same as the op the derivative is for # # (2) may seem too strict, but currently the only ops that satisfy (1) also satisfy (2) # If there is a need, we can relax (2) to allow any op that has an in-place variant is_single_method_on_self_t = False directly_do_inplace = False op_name: str | None = None between_parens: str | None = None match = re.fullmatch(r"self_t.([\w]*)\((.*)\)", formula) if match: op_name, between_parens = match.group(1), match.group(2) # We want to... # Match: self_t.op1(other_p.op2(arg)) # Avoid: self_t.op1(args) + self_t.op2(args) # Avoid: self_t.op1(other_p.op2(arg)) + self_t.op2(args) def check_parens_nest_level_gt_zero(s: str) -> bool: level = 1 for ch in s: if ch == ")": level -= 1 if level == 0: return False if ch == "(": level += 1 return True is_single_method_on_self_t = check_parens_nest_level_gt_zero( between_parens ) directly_do_inplace = ( is_single_method_on_self_t and op_name == info.name ) if directly_do_inplace: assert op_name is not None assert between_parens is not None formula = f"self_t_raw.defined() ? self_t_raw.{op_name}_({between_parens}) : {formula}" else: # Make sure that the forward grad is modified inplace when the original formula # is out of place formula = f"self_t_raw.defined() ? self_t_raw.copy_({formula}) : {formula}" required_original_self_value = bool( re.search(IDENT_REGEX.format("original_self_p"), formula) ) or bool(re.search(IDENT_REGEX.format("original_self_t"), formula)) forward_derivatives = [ ForwardDerivative( formula=formula, var_names=("self",), var_types=fw_info.var_types, required_inputs_fw_grad=fw_info.required_inputs_fw_grad, required_inputs_primal=required_primals, required_original_self_value=required_original_self_value, is_reusing_outplace_formula=not is_exact_match, ), ] fw_derivative_dict[key] = forward_derivatives result.append( NativeFunctionWithDifferentiabilityInfo( func=f, info=info_dict, fw_derivatives=fw_derivative_dict ) ) return result def is_differentiable( name: str, type: Type, info: DifferentiabilityInfo | None ) -> bool: return type.is_tensor_like() and ( info is None or name not in info.non_differentiable_arg_names ) def gen_differentiable_outputs( fn: NativeFunctionWithDifferentiabilityInfo, key: str = "Default" ) -> list[DifferentiableOutput]: f = fn.func info = fn.info[key] if fn.info else None outputs: list[DifferentiableOutput] = [ DifferentiableOutput( name=name, type=ret.type, cpp_type=cpp.return_type(ret, symint=True).cpp_type(), ) for name, ret in zip(cpp.return_names(f), f.func.returns) ] output_differentiability = info.output_differentiability if info else None if output_differentiability is not None: if len(output_differentiability) != len(outputs): raise RuntimeError( f"The length of output_differentiability ({len(output_differentiability)}), " f"does not match the number of outputs ({len(outputs)})." ) differentiable_outputs: list[DifferentiableOutput] = [] if False in output_differentiability and f.func.kind() == SchemaKind.inplace: raise RuntimeError( "output_differentiability=False for inplace operation (version_counter won't get updated)" ) for differentiable, output in zip(output_differentiability, outputs): if differentiable: differentiable_outputs.append(output) return differentiable_outputs candidate_differentiable_outputs = list( filter(lambda r: is_differentiable(r.name, r.type, info), outputs) ) if uses_single_grad(info): return candidate_differentiable_outputs[:1] else: return candidate_differentiable_outputs ```
=========================================================================================================== SOURCE CODE FILE: cpp.py LINES: 1 SIZE: 16.35 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\cpp.py ENCODING: utf-8 ```py from __future__ import annotations from typing import TYPE_CHECKING from torchgen import local from torchgen.api.types import ( ArgName, ArrayCType, ArrayRefCType, BaseCType, BaseTypeToCppMapping, Binding, boolT, ConstRefCType, CType, dimnameListT, intArrayRefT, iTensorListRefT, ListCType, longT, MutRefCType, NamedCType, OptionalCType, optionalIntArrayRefT, optionalSymIntArrayRefT, scalarT, SpecialArgName, symIntArrayRefT, SymIntT, tensorListT, tensorOptionsT, tensorT, TupleCType, VectorCType, voidT, ) from torchgen.model import ( Argument, Arguments, BaseTy, BaseType, FunctionSchema, ListType, NativeFunction, OptionalType, Return, SelfArgument, TensorOptionsArguments, Type, ) from torchgen.utils import assert_never if TYPE_CHECKING: from collections.abc import Sequence # This file describes the translation of JIT schema to the public C++ # API, which is what people use when they call functions like at::add. # # Prominent characteristics of the C++ API: # # - dtype, layout, device and pin_memory are collected into # a single C++ type TensorOptions (the native functions API # also has this, but tensor options is really most relevant # for the C++ API; it makes calling kwarg factory functions # pleasant) # # - defaulting lives here (in fact, the dispatcher is completely # oblivious of defaults!) # # BTW: policy on name collisions: we try not to have types with # collisions, but functions are fair game to collide def name( func: FunctionSchema, *, faithful_name_for_out_overloads: bool = False, symint_overload: bool = False, ) -> str: name = str(func.name.name) if symint_overload: name += "_symint" if func.is_out_fn(): if faithful_name_for_out_overloads: name += "_outf" else: name += "_out" return name # Translation of "value types" in JIT schema to C++ API type. Value # types look the same no matter if they are argument types or return # types. Returns None if the type in question is not a value type. def valuetype_type( t: Type, *, binds: ArgName, mutable: bool = True, symint: bool = False, ) -> NamedCType | None: if isinstance(t, BaseType): if t.name in (BaseTy.Tensor, BaseTy.Scalar): return None elif str(t) == "SymInt": if symint: return NamedCType(binds, BaseCType(SymIntT)) else: return NamedCType(binds, BaseCType(longT)) # All other BaseType currently map directly to BaseCppTypes. return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name])) elif isinstance(t, OptionalType): elem = valuetype_type(t.elem, binds=binds, mutable=mutable, symint=symint) if elem is None: return None return NamedCType(binds, OptionalCType(elem.type)) elif isinstance(t, ListType): if str(t.elem) == "bool": assert t.size is not None return NamedCType(binds, ArrayCType(BaseCType(boolT), t.size)) else: return None else: raise AssertionError(f"unrecognized type {repr(t)}") # Translation of types occurring in JIT arguments to a C++ argument type. # If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type. # For example, we'll return std::vector<int> instead of IntArrayRef. # See Note [translation from C++ reference to value types] def argumenttype_type( t: Type, *, mutable: bool, binds: ArgName, remove_non_owning_ref_types: bool = False, symint: bool = False, ) -> NamedCType: # If it's a value type, do the value type translation r = valuetype_type( t, binds=binds, mutable=mutable, symint=symint, ) if r is not None: return r if isinstance(t, BaseType): if t.name == BaseTy.Tensor: if mutable and not local.use_const_ref_for_mutable_tensors(): return NamedCType(binds, MutRefCType(BaseCType(tensorT))) else: return NamedCType(binds, ConstRefCType(BaseCType(tensorT))) elif t.name == BaseTy.Scalar: return NamedCType(binds, ConstRefCType(BaseCType(scalarT))) else: raise AssertionError(f"base type should have been value type {t}") elif isinstance(t, OptionalType): if str(t.elem) == "Tensor": if mutable and not local.use_const_ref_for_mutable_tensors(): return NamedCType( binds, MutRefCType(BaseCType(tensorT)) ) # TODO: fix this discrepancy else: return NamedCType( binds, ConstRefCType(OptionalCType(BaseCType(tensorT))) ) elif str(t.elem) == "Scalar": return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT)))) elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int": return NamedCType(binds, BaseCType(optionalIntArrayRefT)) elif isinstance(t.elem, ListType) and str(t.elem.elem) == "SymInt": if symint: return NamedCType(binds, BaseCType(optionalSymIntArrayRefT)) else: return NamedCType(binds, BaseCType(optionalIntArrayRefT)) elem = argumenttype_type(t.elem, mutable=mutable, binds=binds, symint=symint) return NamedCType(binds, OptionalCType(elem.type)) elif isinstance(t, ListType): # TODO: remove these special cases, ArrayRef fallthrough works fine if str(t.elem) == "int": if remove_non_owning_ref_types: return NamedCType(binds, VectorCType(BaseCType(longT))) else: return NamedCType(binds, BaseCType(intArrayRefT)) if str(t.elem) == "SymInt": if remove_non_owning_ref_types: if symint: return NamedCType(binds, VectorCType(BaseCType(SymIntT))) else: return NamedCType(binds, VectorCType(BaseCType(longT))) else: if symint: return NamedCType(binds, BaseCType(symIntArrayRefT)) else: return NamedCType(binds, BaseCType(intArrayRefT)) if str(t.elem) == "Tensor": if local.use_ilistref_for_tensor_lists(): return NamedCType(binds, ConstRefCType(BaseCType(iTensorListRefT))) else: return NamedCType(binds, BaseCType(tensorListT)) elif str(t.elem) == "Scalar": return NamedCType(binds, ArrayRefCType(BaseCType(scalarT))) elif str(t.elem) == "Dimname": return NamedCType(binds, BaseCType(dimnameListT)) elif str(t.elem) == "Tensor?": return NamedCType( binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))) ) elem = argumenttype_type(t.elem, mutable=mutable, binds=binds, symint=symint) return NamedCType(binds, ArrayRefCType(elem.type)) else: raise AssertionError(f"unrecognized type {repr(t)}") # Translate a JIT argument into its C++ type def argument_type(a: Argument, *, binds: ArgName, symint: bool = False) -> NamedCType: return argumenttype_type(a.type, mutable=a.is_write, symint=symint, binds=binds) # Translation of a (non-multi) return type from JIT to C++ # N.B: returntype_type returns a CType, not a NamedCType. # This is mostly because of the mismatch between return types and return names. # e.g. a function with a return type of 'void' has 0 return names, # and a function with a return type of 'std::tuple' has >1 return name. def returntype_type(t: Type, *, mutable: bool, symint: bool = False) -> CType: # placeholder is ignored # NB: symint is ALWAYS respected for return types. So symint argument # here is IGNORED r = valuetype_type(t, binds="__placeholder__", mutable=mutable, symint=True) if r is not None: return r.type if isinstance(t, BaseType): if t.name == BaseTy.Tensor: if mutable: if local.use_const_ref_for_mutable_tensors(): return ConstRefCType(BaseCType(tensorT)) else: return MutRefCType(BaseCType(tensorT)) else: # Note [Tensor Copy Returns] # Currently, we use "Argument.is_write" to determine # whether or not Tensor return types should be copies or references. # If that ever changes, take a look at other locations of this note! return BaseCType(tensorT) elif t.name == BaseTy.Scalar: return BaseCType(scalarT) elif isinstance(t, ListType): assert not mutable, ( "Native functions should never return a mutable tensor list. They should return void." ) elem = returntype_type(t.elem, mutable=False) assert t.size is None, f"fixed size list returns not supported: {t}" return VectorCType(elem) elif isinstance(t, OptionalType): elem = returntype_type(t.elem, mutable=mutable) if str(t.elem) == "Tensor": return OptionalCType(elem) raise AssertionError(f"unrecognized return type {t}") # Translation of a single return to its C++ type def return_type(r: Return, *, symint: bool = False) -> CType: return returntype_type(r.type, mutable=r.is_write, symint=symint) # Translation of a full (possibly multi) return from JIT to its C++ type def returns_type(rs: Sequence[Return], *, symint: bool = False) -> CType: if len(rs) == 0: return BaseCType(voidT) elif len(rs) == 1: return return_type(rs[0], symint=symint) else: return TupleCType([return_type(r, symint=symint) for r in rs]) def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]: returns: list[str] = [] for i, r in enumerate(f.func.returns): # If we have an inplace function, the return argument is # implicitly named self. # TODO: Consider incorporating this into the data model if f.func.name.name.inplace: assert i == 0, "illegal inplace function with multiple returns" name = "self" # If we are out function, the name is the name of the # corresponding output function (r.name will get recorded # in field_name later.) elif f.func.is_out_fn(): name = f.func.arguments.out[i].name # If the return argument is explicitly named... elif r.name: name_conflict = any( r.name == a.name for a in f.func.schema_order_arguments() ) if name_conflict and not f.func.is_out_fn(): name = f"{r.name}_return" else: name = r.name # If there is no explicit name and no fallback name was passed in, we just name the output result, # unless it's a multi-return, in which case it's result0, # result1, etc (zero-indexed) else: name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}" returns.append(name) return returns JIT_TO_CPP_DEFAULT = { "False": "false", "True": "true", "None": "::std::nullopt", # UGH this one is type directed "Mean": "at::Reduction::Mean", "[]": "{}", "contiguous_format": "c10::MemoryFormat::Contiguous", "long": "at::kLong", } # Convert a JIT default into C++ expression representing the default def default_expr(d: str, t: Type, *, symint: bool) -> str: if d == "None" and str(t) == "Tensor?": return "{}" if isinstance(t, BaseType) and t.name is BaseTy.str: # Schema allows single quotes but C++ needs double if len(d) >= 2 and d[0] == "'" and d[-1] == "'": s = "" i = 1 while i + 1 < len(d): if d[i] != "\\": if d[i] == '"': s += '\\"' else: s += d[i] i += 1 else: if d[i + 1] == "'": s += "'" else: s += d[i : i + 2] i += 2 return f'"{s}"' if isinstance(t, OptionalType): if d == "None": return "::std::nullopt" return default_expr(d, t.elem, symint=symint) if isinstance(t, ListType): if d.startswith("[") and d.endswith("]"): return "{" + d[1:-1] + "}" elif symint and d.isdigit() and str(t.elem) == "SymInt": return f"c10::SymInt({d})" elif t.size is None: # NOTE: Sized lists can have scalar defaults raise ValueError(f"Expected a list default '[...]' but found: '{d}'") return JIT_TO_CPP_DEFAULT.get(d, d) # Convert an argument into its C++ API form def argument( a: Argument | TensorOptionsArguments | SelfArgument, *, cpp_no_default_args: set[str], method: bool, faithful: bool, symint: bool = False, has_tensor_options: bool, ) -> list[Binding]: def sub_argument( a: Argument | TensorOptionsArguments | SelfArgument, ) -> list[Binding]: return argument( a, cpp_no_default_args=cpp_no_default_args, method=method, faithful=faithful, symint=symint, has_tensor_options=has_tensor_options, ) if isinstance(a, Argument): binds: ArgName if a.name == "memory_format" and has_tensor_options: binds = SpecialArgName.possibly_redundant_memory_format else: binds = a.name default: str | None = None if a.name not in cpp_no_default_args and a.default is not None: default = default_expr(a.default, a.type, symint=symint) return [ Binding( nctype=argument_type(a, binds=binds, symint=symint), name=a.name, default=default, argument=a, ) ] elif isinstance(a, TensorOptionsArguments): if faithful: return ( sub_argument(a.dtype) + sub_argument(a.layout) + sub_argument(a.device) + sub_argument(a.pin_memory) ) else: default = None # Enforced by NativeFunction.__post_init__ assert "options" not in cpp_no_default_args if all(x.default == "None" for x in a.all()): default = "{}" elif a.dtype.default == "long": default = "at::kLong" # TODO: this is wrong return [ Binding( nctype=NamedCType("options", BaseCType(tensorOptionsT)), name="options", default=default, argument=a, ) ] elif isinstance(a, SelfArgument): if method: # Caller is responsible for installing implicit this in context! return [] else: return sub_argument(a.argument) else: assert_never(a) def arguments( arguments: Arguments, *, faithful: bool, symint: bool = False, method: bool, cpp_no_default_args: set[str], ) -> list[Binding]: args: list[Argument | TensorOptionsArguments | SelfArgument] = [] if faithful: args.extend(arguments.non_out) args.extend(arguments.out) else: args.extend(arguments.out) args.extend(arguments.non_out) return [ r.no_default() if faithful else r for a in args for r in argument( a, faithful=faithful, symint=symint, method=method, has_tensor_options=arguments.tensor_options is not None, cpp_no_default_args=cpp_no_default_args, ) ] ```
================================================================================================================== SOURCE CODE FILE: dispatcher.py LINES: 1 SIZE: 3.49 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\dispatcher.py ENCODING: utf-8 ```py from __future__ import annotations import itertools from typing import TYPE_CHECKING from torchgen.api import cpp from torchgen.api.types import ArgName, Binding, CType, NamedCType from torchgen.model import ( Argument, FunctionSchema, Return, SelfArgument, TensorOptionsArguments, Type, ) from torchgen.utils import assert_never, concatMap if TYPE_CHECKING: from collections.abc import Sequence # This file describes the translation of JIT schema to the dispatcher # API, the *unboxed* calling convention by which invocations through # the dispatcher are made. Historically, the dispatcher API matched # the C++ API, but with the establishment of the boxed API, we've # made changes to the dispatcher API to so that the unboxed API # better aligns with the boxed API. The dispatcher API hooks heavily # into our template based boxing/unboxing machinery, so changes # to this convention will usually need template updates too. # # Prominent characteristics of the dispatcher API: # # - dtype, layout, device and pin_memory are represented as separate # arguments. # def name(func: FunctionSchema) -> str: return cpp.name(func) def argumenttype_type( t: Type, *, mutable: bool, binds: ArgName, remove_non_owning_ref_types: bool = False, symint: bool = True, ) -> NamedCType: # This is a faux amis. If it makes sense in the future to add # more special cases here, or invert things so cpp.argument_type # calls this, or just completely inline the function, please do # it. return cpp.argumenttype_type( t, mutable=mutable, binds=binds, symint=symint, remove_non_owning_ref_types=remove_non_owning_ref_types, ) def argument_type( a: Argument, *, binds: ArgName, remove_non_owning_ref_types: bool = False, symint: bool = True, ) -> NamedCType: return argumenttype_type( a.type, mutable=a.is_write, binds=binds, remove_non_owning_ref_types=remove_non_owning_ref_types, symint=symint, ) def returns_type(rs: Sequence[Return], *, symint: bool = True) -> CType: # At present, there is no difference. But there could be! return cpp.returns_type(rs, symint=symint) def jit_arguments(func: FunctionSchema) -> list[Argument]: def to_argument( a: Argument | TensorOptionsArguments | SelfArgument, ) -> list[Argument]: if isinstance(a, Argument): return [a] elif isinstance(a, SelfArgument): return [a.argument] elif isinstance(a, TensorOptionsArguments): return [a.dtype, a.layout, a.device, a.pin_memory] else: assert_never(a) return list( concatMap( to_argument, itertools.chain( func.arguments.positional, func.arguments.kwarg_only, func.arguments.out ), ) ) def argument( a: Argument, *, remove_non_owning_ref_types: bool = False, symint: bool = True ) -> Binding: return Binding( nctype=argument_type( a, binds=a.name, remove_non_owning_ref_types=remove_non_owning_ref_types, symint=symint, ), name=a.name, argument=a, ) def arguments(func: FunctionSchema, *, symint: bool = True) -> list[Binding]: return [argument(a, symint=symint) for a in jit_arguments(func)] ```
========================================================================================================================= SOURCE CODE FILE: functionalization.py LINES: 1 SIZE: 7.58 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\functionalization.py ENCODING: utf-8 ```py from __future__ import annotations from torchgen.api import dispatcher from torchgen.api.types import ( BaseCppType, BaseCType, Binding, boolT, ConstRefCType, CType, longT, NamedCType, tensorT, ) from torchgen.model import ( Argument, BaseTy, BaseType, FunctionSchema, NativeFunction, NativeFunctionsViewGroup, ) # This file describes the translation of JIT schema to API's used # when creating view lambdas that are used by the functionalization pass. # There are two types of lambdas: forward lambdas and reverse lambdas. # These API's mostly follow the dispatcher API, with a few quirks: # - The lambda capture has to convert reference types to value types # - While the forward lambda just directly calls into the at::_ops API # (following the dispatcher convention), the logic here for the reverse lambda # is responsible for generating both the call-site, and the declarations # (which are implemented manually in the at::functionalization::impl namespace). # The lambdas generated for each view op in the functionalization pass are of the form # [capture_arguments](outer_arguments) -> returns_type { # return name(inner_arguments); # } # Define some specific lambda input arguments. base_binding = Binding( name="base", nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))), argument=Argument( name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None ), default=None, ) mutated_view_binding = Binding( name="mutated_view", nctype=NamedCType(name="mutated_view", type=ConstRefCType(BaseCType(tensorT))), argument=Argument( name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None ), default=None, ) mutated_view_idx_binding = Binding( name="mutated_view_idx", nctype=NamedCType(name="mutated_view_idx", type=BaseCType(longT)), argument=Argument( name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None ), default=None, ) reapply_views_binding = Binding( name="reapply_views", nctype=NamedCType(name="reapply_views", type=BaseCType(boolT)), argument=Argument( name="reapply_views", type=BaseType(BaseTy.bool), default=None, annotation=None ), default=None, ) InverseReturnModeT = BaseCppType("at::functionalization", "InverseReturnMode") inverse_return_mode_binding = Binding( name="inverse_return_mode", nctype=NamedCType(name="inverse_return_mode", type=BaseCType(InverseReturnModeT)), argument=Argument( name="inverse_return_mode", # NB: not actually a bool but it doesn't matter because this isn't used type=BaseType(BaseTy.bool), default=None, annotation=None, ), default=None, ) # The lambda capture itself doesn't have a name. # The name returned here corresponds to the name of the inner function called by the lambda. def name( g: NativeFunctionsViewGroup, *, is_reverse: bool, include_namespace: bool, reapply_views: bool | None = None, ) -> str: if reapply_views is None: # reapply_views is only important for the fwd lambda, # since we always plumb the runtime "reapply_views" argument into the reverse function. assert is_reverse if is_reverse: return reverse_name(g.view, include_namespace) # in the forward case, we just directly call into the at::_ops API (so we always need the namespace) assert include_namespace assert g.view_copy is not None api_name = ( g.view.func.name.unambiguous_name() if reapply_views else g.view_copy.func.name.unambiguous_name() ) return f"at::_ops::{api_name}::call" def reverse_name(f: NativeFunction, include_namespace: bool) -> str: # for the reverse: we plumb the "reapply_views" flag into that function and support # both copy and non-copy variants. (We could avoid doing that, but that would require # writing out twice as many view inverse functions). api_name = f.func.name.unambiguous_name() # in the reverse case, we codegen both the call-sites (which need the full namespace) and the declarations (which don't) if include_namespace: return f"at::functionalization::FunctionalInverses::{api_name}_inverse" else: return f"{api_name}_inverse" def capture_arguments(func: FunctionSchema, *, is_reverse: bool) -> list[Binding]: # capture arguments include all arguments except `self`. # Importantly, they don't include any C++ reference types (or else we'll get a dangling reference in the capture), # So any reference types (IntArrayRef) need to be converted to value types (vector<int64_t>) args = func.arguments.flat_all assert args[0].type == BaseType(BaseTy.Tensor) non_self_args = args[1:] non_self_value_bindings = [ dispatcher.argument(a, remove_non_owning_ref_types=True) for a in non_self_args ] all_bindings = [ inverse_return_mode_binding if is_reverse else reapply_views_binding ] all_bindings.extend(non_self_value_bindings) return all_bindings def returns_type(func: FunctionSchema) -> CType: # Assertion: all view ops return tensor-like outputs assert len(func.returns) >= 1 for ret in func.returns: assert ret.type.is_tensor_like() # However, the return type of the lambda is always an individual tensor. # For multi-tensor outputs, each tensor needs to be tracked individually. return BaseCType(tensorT) def outer_arguments(*, is_reverse: bool) -> list[Binding]: if is_reverse: return [base_binding, mutated_view_binding, mutated_view_idx_binding] else: return [base_binding, mutated_view_idx_binding] def inner_call_index(func: FunctionSchema) -> Binding | None: # For view ops that return multiple tensors (like `split`), we generate a separate lambda for each output. # When we replay a view op that returns multiple tensors, we need to index into the output appropriately if len(func.returns) > 1 or ( len(func.returns) == 1 and func.returns[0].type.is_list_like() ): return mutated_view_idx_binding return None def inner_arguments(func: FunctionSchema, is_reverse: bool) -> list[Binding]: args = func.arguments.flat_all assert args[0].type == BaseType(BaseTy.Tensor) non_self_args = args[1:] # The forward lambda calls the at::_ops API, while the reverse lambda calls the view inverse API. # Both of these follow the dispatcher API. non_self_bindings = [dispatcher.argument(a) for a in non_self_args] if not is_reverse: # the forward lambda swaps out the original tensor argument with the lambd arg "base" return [base_binding] + non_self_bindings else: # the reverse lambda does the same, but with an additional "mutated_view" arg # additionally, we have a calling convention: for view ops that return multiple tensor outputs # their corresponding view_inverse function takes in an additional index argument. index_binding = inner_call_index(func) if index_binding is not None: return [ base_binding, mutated_view_binding, inverse_return_mode_binding, index_binding, ] + non_self_bindings else: return [ base_binding, mutated_view_binding, inverse_return_mode_binding, ] + non_self_bindings ```
============================================================================================================ SOURCE CODE FILE: lazy.py LINES: 1 SIZE: 17.11 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\lazy.py ENCODING: utf-8 ```py from __future__ import annotations from typing import Any from torchgen.api.types import ( BaseCppType, BaseCType, boolT, CType, deviceT, doubleT, generatorT, layoutT, ListCType, longT, memoryFormatT, NamedCType, OptionalCType, scalarT, scalarTypeT, stringT, SymIntT, VectorCType, ) from torchgen.model import ( Argument, BaseTy, BaseType, FunctionSchema, ListType, OperatorName, OptionalType, Return, TensorOptionsArguments, Type, ) _valueT: BaseCppType | None = None # A ValueT is an IR type which represents the computation of a Tensor. In other # words, a PyTorch user will do operations on lazy tensors, and each output lazy # tensor internally tracks a ValueT representing the IR node that would have # actually produced the value of this tensor for real. # # This is configurable because different lazy tensor backends (LTC vs XLA) will # have different IR representations. (Though, arguably, after unification they # shouldn't!) def getValueT() -> BaseCppType: global _valueT if not _valueT: raise NotImplementedError( "The value type needs to be set with setValueT() in run_gen_lazy_tensor()" ) return _valueT def setValueT(val: BaseCppType) -> None: global _valueT _valueT = val # this is a bad hack. I need to refactor the data model to represent each arg in the schema as an object, # making it easier to represent special properties of an arg. tensorListValueT = BaseCppType("torch::lazy", "Value") def process_ir_type( typ: Type, properties: LazyIrProperties, *, symint: bool ) -> BaseCType | VectorCType | OptionalCType | ListCType: """ This function takes a type from NativeFunctions and converts it for use with lazy tensor codegen. Type conversion for lazy currently consists of (1) changing at::Tensors into lazy::Values (2) wrapping everything in a BaseCType (3) making cpp-reference types into cpp-value types (e.g. vector instead of IntArrayRef) (1) converts at::Tensors to lazy::Values (which wrap lazy::Nodes, with which Lazy IR represents tensors.) There is special handling for Optional[Tensor] or list[Tensor], etc- hence 'tensor-like' This is incomplete- there are assertions in places that it's expected to need to add more types as the codegen is used with more operators. """ if isinstance(typ, BaseType): if typ.name == BaseTy.Tensor: return BaseCType(getValueT()) elif typ.name == BaseTy.Scalar: if properties.TreatScalarsAsConstants: return BaseCType(scalarT) # at::scalar has special handling, # and is wrapped in an lazy::Value just like at::tensor return BaseCType(getValueT()) elif typ.name == BaseTy.ScalarType: return BaseCType(scalarTypeT) elif typ.name == BaseTy.int: return BaseCType(longT) elif typ.name == BaseTy.SymInt: if symint: return BaseCType(getValueT()) else: return BaseCType(longT) elif typ.name == BaseTy.bool: return BaseCType(boolT) elif typ.name == BaseTy.float: return BaseCType(doubleT) elif typ.name == BaseTy.str: return BaseCType(stringT) elif typ.name == BaseTy.Device: return BaseCType(deviceT) elif typ.name == BaseTy.Generator: return BaseCType(generatorT) elif typ.name == BaseTy.Layout: return BaseCType(layoutT) elif typ.name == BaseTy.MemoryFormat: return BaseCType(memoryFormatT) else: raise AssertionError(f"TODO add support for type {repr(typ)}") elif isinstance(typ, OptionalType): return OptionalCType(process_ir_type(typ.elem, properties, symint=symint)) elif isinstance(typ, ListType): if str(typ.elem) == "Tensor?": # TODO(whc) is this actually correct? or should it use a Vector like above return ListCType(OptionalCType(BaseCType(getValueT()))) elif str(typ.elem) == "Tensor": # this is a TensorList which comes in from GetTensorList as a Value return BaseCType(tensorListValueT) elif typ.elem == BaseType(BaseTy.SymInt): # TODO: return a value type. The problem here is analogous to # the problem with tensorListValueT: if you have SymInt[] you # cannot conveniently save the list of Value directly, as nodes # expect to save values as a vector for ALL arguments. So you # need a separate IR node that represents all of the size nodes # assembled into a list. I'm not an LTC dev so I don't want to # figure it out right now. Y'all figure it out... return VectorCType(BaseCType(longT)) else: return VectorCType(process_ir_type(typ.elem, properties, symint=symint)) else: raise AssertionError(f"unrecognized type {repr(typ)}") # TODO: Determining this based off of CType is bad; this should be computed # from Type directly; then the same logic as process_ir_type can be used # # Invariant: passed typ should be an *owning* CType (e.g., we will report # that ArrayRef<Value> is NOT a value type) def isValueType(typ: CType, properties: LazyIrProperties | None = None) -> bool: """ Given a type, determine if it is a Value-like type. This is equivalent to being Tensor-like, but assumes the type has already been transformed. """ if isinstance(typ, BaseCType): # I am regretting my naming conventions, but now we are wrapping at::scalar in # lazy value, while preserving other 'scalar' types as scalars in the IR treat_scalars_as_constants = properties and properties.TreatScalarsAsConstants return ( typ.type == getValueT() or (typ.type == scalarT and not treat_scalars_as_constants) or typ.type == SymIntT ) elif typ == VectorCType(BaseCType(SymIntT)): # TODO: report True for this return False elif isinstance(typ, (OptionalCType, ListCType, VectorCType)): return isValueType(typ.elem, properties) return False def isSymIntType(typ: Type) -> bool: return isinstance(typ, BaseType) and typ.name == BaseTy.SymInt def isWrappedScalarType(typ: Type) -> bool: """ Given a type, determine if it is a c10::scalar which we will wrap in a lazy Value. Since we literally change the type from scalarT to valueT, information is lost. This function helps build a list of wrapped scalars to save that information """ if isinstance(typ, BaseType): # I am regretting my naming conventions, but now we are wrapping at::scalar in # lazy value, while preserving other 'scalar' types as scalars in the IR return typ.name == BaseTy.Scalar elif isinstance(typ, (OptionalType, ListType)): return isWrappedScalarType(typ.elem) return False # TODO: dedupe with Type.is_generator_like def isGeneratorType(typ: Type) -> bool: if isinstance(typ, BaseType): return typ.name == BaseTy.Generator elif isinstance(typ, (OptionalType)): return isGeneratorType(typ.elem) return False # This class caches a few derived properties computed from an Argument # and LazyIrProperties class LazyArgument: name: str orig_type: Type lazy_type_: CType | None is_wrapped_scalar: bool is_generator: bool # TODO: this is lies, it is false for symint list is_symint_or_list: bool # Whether or not we are treating this as symint or not symint: bool # true if this argument is or contains a lazy IR value is_lazy_value: bool def __init__( self, arg: Argument, properties: LazyIrProperties, *, symint: bool ) -> None: self.name = arg.name self.orig_type = arg.type self.symint = symint self.is_optional = isinstance(arg.type, OptionalType) self.is_generator = isGeneratorType(arg.type) self.lazy_type_ = process_ir_type(arg.type, properties, symint=symint) self.is_wrapped_scalar = isWrappedScalarType(arg.type) self.is_symint_or_list = symint and ( isSymIntType(arg.type) or (isinstance(arg.type, OptionalType) and isSymIntType(arg.type.elem)) # TODO: lists of symints are not currently treated as value types # or (isinstance(arg.type, ListType) and isSymIntType(arg.type.elem)) ) self.is_lazy_value = isValueType(self.lazy_type, properties) @property def lazy_type(self) -> CType: assert self.lazy_type_ is not None, ( f"Attempted to access lazy_type for invalid argument {self.name}" ) return self.lazy_type_ class LazyIrProperties: """Collection of properties for an IR node The property groups are listed below. Each group is mutually exclusive, meaning that only one property from each group can be True at any one time. The properties can be accessed as if they were normal attributes. The mutual exclusivity is automatically handled. """ Properties: tuple[tuple[str, ...], ...] = ( ( "ShapePrecompute", # Assume shape has been precomputed "ShapeCompute", # Need to compute the shape on construction "ShapeCache", # Utilize the shape cache to defer computation ), ( "Lower", # Codegen full lower function "LowerDeclOnly", # Codegen only lower function declaration ), ( "CanBeReused", # Codegen full reuse function "CanBeReusedDeclOnly", # Codegen only reuse function declaration ), ( "CreateFn", # Codegen full create function "CreateFnDeclOnly", # Codegen only create function declaration ), ( "TreatScalarsAsConstants", # Treat Scalars as constants instead of handling like values ), ) def __init__(self, *default_properties: str) -> None: properties: dict[tuple[str, ...], str | None] = dict.fromkeys( LazyIrProperties.Properties ) self.__dict__["properties"] = properties for p in default_properties: setattr(self, p, True) def __getattr__(self, key: str) -> Any: properties = self.__dict__["properties"] for values in LazyIrProperties.Properties: if key in values: return properties[values] == key return self.__getattribute__(key) def __setattr__(self, key: str, value: Any) -> Any: properties = self.__dict__["properties"] for values in LazyIrProperties.Properties: if key in values: properties[values] = key if value else None return value raise KeyError(f"Invalid property: {key}") # Inspired by a FunctionSchema object, a LazyIrSchema holds the schema of a Lazy IR node. # Unlike a FunctionSchema, it has no round-trippable string form (relating to the YAML), # but carries type information from a native FunctionSchema modified for use with IR nodes, # and preserving original argument names. # # TODO: This is not idiomatic with how other torchgen APIs transform on schema. class LazyIrSchema: # The name of the operator this function schema describes. name: OperatorName positional_args: tuple[LazyArgument, ...] keyword_args: tuple[LazyArgument, ...] # TODO: Need to handle collisions with argument names at some point returns: tuple[Return, ...] # if this schema has a Generator arg, list its orig ctype/name but don't # build a LazyArgument since lazy IR doesn't support it generator_arg: NamedCType | None = None # original function schema func: FunctionSchema # Whether or not we are code-genning for SymInt or not symint: bool properties: LazyIrProperties = LazyIrProperties( # default properties "ShapePrecompute", "Lower", "CanBeReused", ) opkind: str | None = None def __init__( self, func: FunctionSchema, properties: LazyIrProperties | None = None, *, symint: bool, ) -> None: if properties: self.properties = properties self.func = func self.symint = symint positional_args: list[LazyArgument] = [] for arg_field in ["pre_self_positional", "self_arg", "post_self_positional"]: if arg_field == "self_arg" and func.arguments.self_arg is not None: arg = func.arguments.self_arg.argument positional_args.append( LazyArgument(arg, self.properties, symint=symint) ) elif getattr(func.arguments, arg_field) is not None: positional_args.extend( LazyArgument(arg, self.properties, symint=symint) for arg in getattr(func.arguments, arg_field) ) self.positional_args = tuple(positional_args) keyword_args: list[LazyArgument] = [] for arg_field in [ "pre_tensor_options_kwarg_only", "tensor_options", "post_tensor_options_kwarg_only", "out", ]: curr_args = getattr(func.arguments, arg_field) if curr_args is not None: if isinstance(curr_args, TensorOptionsArguments): curr_args = curr_args.all() for arg in curr_args: if isGeneratorType(arg.type): assert self.generator_arg is None, ( "We expect there is only one generator arg" ) self.generator_arg = NamedCType( arg.name, arg.type, # type:ignore[arg-type] ) keyword_args.extend( LazyArgument(arg, self.properties, symint=symint) for arg in curr_args ) self.keyword_args = tuple(keyword_args) self.name = func.name self.returns = func.returns @property def node_name(self) -> str: """ Return camel-case version of op in node. Note: This function also appends any `overload_name` in the operation. For example, if the op is `bitwise_and.Tensor`, the returned name will be `BitwiseAndTensor`. """ op_name = f"{self.name.name}_{self.name.overload_name}".lower() return "".join(word.capitalize() or "" for word in op_name.split("_")) @property def aten_name(self) -> str: return str(self.name.name) @property def base_name(self) -> str: return f"{self.name.name.base}" def filtered_args( self, positional: bool = True, keyword: bool = True, values: bool = True, scalars: bool = True, generator: bool = True, ) -> list[LazyArgument]: # This function maintains the sorted order of arguments but provides different filtered views. # Some parts of the code care about kwargs vs args (TS lowerings), # other parts care about whether they need to wrap the arg in a lazy value or leave it alone. # Generators are special cased, as they are needed for fallback/shape-inference but not supported # in TS lowerings and therefore also omitted from lazy IR. args: list[LazyArgument] = [] if positional: args.extend(self.positional_args) if keyword: args.extend(self.keyword_args) if values and scalars and generator: return args elif values and scalars: return [a for a in args if not a.is_generator] elif values: return [a for a in args if a.is_lazy_value] elif scalars: return [ a for a in args if not a.is_lazy_value and (generator or not a.is_generator) ] return [] @property def positional_values(self) -> list[LazyArgument]: return self.filtered_args( positional=True, keyword=False, values=True, scalars=False ) @property def positional_scalars(self) -> list[LazyArgument]: return self.filtered_args( positional=True, keyword=False, values=False, scalars=True ) @property def keyword_values(self) -> list[LazyArgument]: return self.filtered_args( positional=False, keyword=True, values=True, scalars=False ) @property def keyword_scalars(self) -> list[LazyArgument]: return self.filtered_args( positional=False, keyword=True, values=False, scalars=True ) ```
============================================================================================================ SOURCE CODE FILE: meta.py LINES: 1 SIZE: 0.48 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\meta.py ENCODING: utf-8 ```py from torchgen.model import NativeFunctionsGroup # Follows dispatcher calling convention, but: # - Mutable arguments not allowed. Meta functions are always # written in functional form. Look at FunctionSchema.signature() # - No tensor returns; instead we return a TensorMeta describing # the tensor in question def name(g: NativeFunctionsGroup) -> str: # use the overload name from the functional version return str(g.functional.func.name).replace(".", "_") ```
============================================================================================================== SOURCE CODE FILE: native.py LINES: 1 SIZE: 5.24 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\native.py ENCODING: utf-8 ```py from __future__ import annotations from typing import TYPE_CHECKING from torchgen import local from torchgen.api import cpp from torchgen.api.types import ( ArgName, BaseCType, Binding, boolT, ConstRefCType, CType, deviceT, layoutT, ListCType, MutRefCType, NamedCType, OptionalCType, scalarT, scalarTypeT, tensorT, ) from torchgen.model import ( Argument, FunctionSchema, Return, SelfArgument, TensorOptionsArguments, Type, ) from torchgen.utils import assert_never if TYPE_CHECKING: from collections.abc import Sequence # This file describes the translation of JIT schema to the native functions API. # This looks a lot like the C++ API (which makes historical sense, because the # idea was you wrote native functions to implement functions in the C++ API), # but over time we have evolved the C++ API without actually changing our # native:: kernels. The intention is to make native API and dispatcher API # line up as closely as possible, since this results in the least overhead # (no translation is needed from dispatcher API to native API). # # NB: this is symint aware, you will get the non-SymInt variant for some # dispatch entries and SymInt for others. def name(func: FunctionSchema) -> str: name = str(func.name.name) # TODO: delete this! if func.is_out_fn(): name += "_out" if func.name.overload_name: name += f"_{func.name.overload_name}" return name def argumenttype_type( t: Type, *, mutable: bool, binds: ArgName, symint: bool ) -> NamedCType: if str(t) == "Tensor?": tensor_type: OptionalCType = OptionalCType(BaseCType(tensorT)) if mutable and not local.use_const_ref_for_mutable_tensors(): return NamedCType(binds, MutRefCType(tensor_type)) else: return NamedCType(binds, ConstRefCType(tensor_type)) elif str(t) == "Tensor?[]": return NamedCType( binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))) ) elif str(t) == "Scalar": return NamedCType(binds, ConstRefCType(BaseCType(scalarT))) elif str(t) == "Scalar?": return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT)))) return cpp.argumenttype_type(t, mutable=mutable, binds=binds, symint=symint) def returns_type(rs: Sequence[Return], *, symint: bool) -> CType: return cpp.returns_type(rs, symint=symint) def argument_type(a: Argument, *, binds: ArgName, symint: bool) -> NamedCType: return argumenttype_type(a.type, mutable=a.is_write, binds=binds, symint=symint) def argument( a: Argument | SelfArgument | TensorOptionsArguments, *, is_out: bool, symint: bool, ) -> list[Binding]: # Ideally, we NEVER default native functions. However, there are a number # of functions that call native:: directly and rely on the defaulting # existing. So for BC, we generate defaults for non-out variants (but not # for out variants, where it is impossible to generate an appropriate # default) should_default = not is_out if isinstance(a, Argument): default: str | None = None if should_default and a.default is not None: default = cpp.default_expr(a.default, a.type, symint=symint) return [ Binding( nctype=argument_type(a, binds=a.name, symint=symint), name=a.name, default=default, argument=a, ) ] elif isinstance(a, SelfArgument): # Erase SelfArgument from the distinction return argument(a.argument, is_out=is_out, symint=symint) elif isinstance(a, TensorOptionsArguments): default = None if should_default: default = "{}" # TODO: Not sure why the arguments assigned here are for # TensorOptionsArguments and not the constituent pieces. It seems # to matter return [ Binding( nctype=NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))), name="dtype", default=default, argument=a, ), Binding( nctype=NamedCType("layout", OptionalCType(BaseCType(layoutT))), name="layout", default=default, argument=a, ), Binding( nctype=NamedCType("device", OptionalCType(BaseCType(deviceT))), name="device", default=default, argument=a, ), Binding( nctype=NamedCType("pin_memory", OptionalCType(BaseCType(boolT))), name="pin_memory", default=default, argument=a, ), ] else: assert_never(a) def arguments(func: FunctionSchema, *, symint: bool) -> list[Binding]: args: list[Argument | TensorOptionsArguments | SelfArgument] = [] args.extend(func.arguments.non_out) args.extend(func.arguments.out) return [ r for arg in args for r in argument(arg, symint=symint, is_out=func.is_out_fn()) ] ```
============================================================================================================== SOURCE CODE FILE: python.py LINES: 8 SIZE: 58.68 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\python.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING from torchgen.api import cpp from torchgen.api.types import Binding, CppSignature, CppSignatureGroup from torchgen.gen import pythonify_default from torchgen.model import ( Argument, BaseTy, BaseType, FunctionSchema, ListType, NativeFunction, OptionalType, Return, Type, Variant, ) if TYPE_CHECKING: from collections.abc import Sequence # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # Data Models # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # [Notes] python binding codegen # # The Python binding codegen produces code that takes the input list of # PyObjects, finds the matching ATen C++ function using PythonArgParser, # converts the PyObjects into C++ types and calls the ATen C++ function: # # +--------+ parsing +------------------------+ binding +-----------------------+ # | PyObjs | ---------> | PythonArgParser Output | ---------> | Cpp Function Dispatch | # +--------+ +------------------------+ +-----------------------+ # # The following examples demonstrate the data models the Python binding # codegen needs to deal with and the tasks it needs to accomplish. It # helps understand the purpose of the new data types we introduced below. # # - Function Schema (source of truth) # # aten::empty.names(int[] size, *, Dimname[]? names, # ScalarType? dtype=None, Layout? layout=None, # Device? device=None, bool? pin_memory=None, # MemoryFormat? memory_format=None) -> Tensor # # - Python Signature # # It's used to generate input schema string for PythonArgParser. # Note: TensorOptions fields are reordered and the additional # 'requires_grad' field is added: # # empty(IntArrayRef size, *, DimnameList? names, # MemoryFormat? memory_format=None, ScalarType dtype=None, # Layout layout=torch.strided, Device device=None, # bool pin_memory=False, bool requires_grad=False) # # - C++ Signature # # It's used to generate C++ lambda formals & dispatch call. # Note: the scattered TensorOptions fields are packed into 'options'. # # auto dispatch_empty = # [](IntArrayRef size, std::optional<DimnameList> names, # const TensorOptions & options, # std::optional<MemoryFormat> memory_format) -> Tensor { # pybind11::gil_scoped_release no_gil; # return torch::empty(size, names, options, memory_format); # }; # # - Binding between Python Arguments and C++ Arguments # # Given a set of Python Arguments in scope, we need produce the # binding expressions that translate the Python API into C++ API: # # Python Args Cpp Args Binding Exprs # ----------------------------------------------------------------- # 0: size size '_r.intlist(0)' # 1: names names 'names' [special init] # 2: memory_format -------+ # 3: dtype -----+-|--> options 'options' [special packing] # 4: layout / | # 5: device / +--> memory_format '_r.memoryformatOptional(2)' # 6: pin_memory / # 7: requires_grad -+ # # So the full dispatch expression would look like: # # dispatch_empty(_r.intlist(0), names, options, # _r.memoryformatOptional(2)) # # Where does 'names' come from? It involves special local init: # # auto __names = _r.toDimnameListOptional(1); # std::optional<DimnameList> names = # __names ? std::make_optional(DimnameList(__names.value())) # : std::nullopt; # # Where does 'options' come from? It involves special local init # for TensorOptions. Note that Python side has the additional # 'requires_grad' field: # # const auto options = TensorOptions() # .dtype(_r.scalartype(3)) # .device(_r.device(5)) # .layout(_r.layoutOptional(4)) # .requires_grad(_r.toBool(7)) # .pinned_memory(_r.toBool(6)); # # In some other cases one Python Argument can map to multiple C++ # Arguments. For example: # # aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False) # -> (Tensor values, Tensor indices) # # Python Args Cpp Args Binding Exprs # --------------------------------------------------------------------- # +----> max 'out[0]' # /-----> max_values 'out[1] # 0: input / self '_r.tensor(0)' # 1: dim / dim '_r.dimname(1)' # 2: keepdim / keepdim '_r.toBool(2)' # 3: out -----+ [local init] out '_r.tensorlist_n<2>(3)' # # As demonstrated above, the binding can involve reordering, # packing, unpacking and special local inits. # # # Let's look at a concrete example: # # static PythonArgParser parser({ # "abs(Tensor input, *, Tensor out=None)", # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ^ # +--- Python Schema, represented by PythonSignature and PythonArgument # # }, /*traceable=*/true); # # ParsedArgs<2> parsed_args; # auto _r = parser.parse(nullptr, args, kwargs, parsed_args); # # ... # # if (_r.isNone(1)) { # ~~~~~~~~~~~~ <--- Scattered PythonArgParser output (arg name = 'out') # represented by PythonArgParserOutputExpr # # // aten::abs(Tensor self) -> Tensor # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ^ # +--- NativeFunction schema, base version # # auto dispatch_abs = [](const Tensor & self) -> Tensor { # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ^ # +--- dispatch_lambda_args / dispatch_lambda_return_str # generated from NativeFunction / CppSignature # (deprecated PythonSignature is special) # arguments are represented by DispatchLambdaArgument # # pybind11::gil_scoped_release no_gil; # return self.abs(); # ~~~~~~~~~~~ <--- cpp_dispatch_target / cpp_dispatch_exprs # generated from NativeFunction / CppSignature # }; # return wrap(dispatch_abs(_r.tensor(0))); # ~~~~~~~~~~~~~ # ^ # +--- dispatch_lambda_exprs # binding PythonArgParserOutputExpr (python args) # and DispatchLambdaArgument (c++ args) # # } else { # // aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ^ # +--- NativeFunction schema, out-variant # # auto dispatch_abs_out = [](Tensor out, const Tensor & self) -> Tensor { # pybind11::gil_scoped_release no_gil; # return at::abs_out(out, self); # }; # return wrap(dispatch_abs_out(_r.tensor(1), _r.tensor(0))); # } # # # [Notes] python interface codegen # The python dataclasses below are used used to generate both python binding code # and pyi type hint signatures. # In theory these two should look very similar, but there are number of differences # in how pyi signatures vs. python_arg_parser signatures are generated. # These differences have been encapsulated in signature_str() vs. signature_str_pyi() # to display the full signatures, and argument_str() vs argument_str_pyi() to display arguments. # For examples, only pyi signatures include return types. @dataclass(frozen=True) class PythonReturns: returns: tuple[Return, ...] @dataclass(frozen=True) class PythonArgument: name: str type: Type default: str | None # Used to generate the default init expr for some PythonArgParser outputs, e.g.: # # _r.layoutWithDefault(3, layout_from_backend(self.options().backend()))) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ^ # +--- default_init str default_init: str | None # Compute argument formal for python argument parsing. # Needs to be consistent with torch/csrc/utils/python_arg_parser.h. def argument_str(self, *, method: bool = False, symint: bool = True) -> str: type_str = ( argument_type_str(self.type, symint=symint) .replace("const ", "") .replace(" &", "") ) name = self.name # s/self/input/ outside method bindings # [old codegen] TODO: remove this? doesn't rename in codegen, it's just # for the parse string if name == "self" and type_str in ["Tensor", "Number"] and not method: name = "input" # add default if self.default is not None: default = { "nullptr": "None", "::std::nullopt": "None", "std::nullopt": "None", "{}": "None", }.get(self.default, self.default) return f"{type_str} {name}={default}" else: return f"{type_str} {name}" def argument_str_pyi( self, *, method: bool = False, deprecated: bool = False ) -> str: type_str = argument_type_str_pyi(self.type) name = self.name # s/self/input/ outside method bindings # [old codegen] TODO: remove this? doesn't rename in codegen, it's just # for the parse string if name == "self" and type_str == "Tensor" and not method and not deprecated: name = "input" if name == "from": # from is a Python keyword... name += "_" # pyi merges the _out and functional variants into the same signature, with an optional out arg if name == "out" and type_str == "Tensor" and not deprecated: type_str = "Optional[" + type_str + "]" # pyi deprecated signatures don't get defaults for their out arg treat_as_no_default = ( deprecated and isinstance(self, PythonOutArgument) and self.default == "None" ) # add default if self.default is not None and not treat_as_no_default: if ( isinstance(self.type, ListType) and self.type.elem == BaseType(BaseTy.int) and self.default.startswith("{") and self.default.endswith("}") ): default = ( "(" + ", ".join(map(str.strip, self.default[1:-1].split(","))) + ")" ) else: default = { "nullptr": "None", "::std::nullopt": "None", "std::nullopt": "None", "{}": "None", "c10::MemoryFormat::Contiguous": "contiguous_format", "QScheme::PER_TENSOR_AFFINE": "per_tensor_affine", }.get(self.default, self.default) return f"{name}: {type_str} = {default}" else: return f"{name}: {type_str}" @dataclass(frozen=True) class PythonOutArgument(PythonArgument): # In Python signature multiple output fields are packed into one 'out' argument. # When binding to C++, it's first binded to a local 'out' variable: # 'auto out = _r.tensorlist_n<2>(2);', # then binded to scattered C++ output arguments as 'out[0]', 'out[1]', and etc. # TODO: maybe don't need keep scattered out fields for python signature? outputs: tuple[PythonArgument, ...] @staticmethod def from_outputs(outputs: tuple[PythonArgument, ...]) -> PythonOutArgument | None: if not outputs: return None size = len(outputs) if size == 1: return PythonOutArgument( name=outputs[0].name, type=outputs[0].type, default="None", default_init=None, outputs=outputs, ) elif size > 1: if any(not a.type.is_tensor_like() for a in outputs): raise RuntimeError(f"Unsupported output type: {outputs}") return PythonOutArgument( name="out", # TODO: shouldn't this be OptionalType[ListType[...]], since it defaults to None? type=ListType(BaseType(BaseTy.Tensor), size), default="None", default_init=None, outputs=outputs, ) raise AssertionError(r"Unexpected PythonOutArgument size") @dataclass(frozen=True) class PythonSignature: # Base operator name, without inplace/outplace suffix. name: str # Positional arguments. # TODO: create a dedicated SelfArgument type for 'self'? input_args: tuple[PythonArgument, ...] # Keyword arguments excluding the 'out' argument and scattered kwargs belonging # to TensorOptions (dtype, layout, device, pin_memory, requires_grad, etc). input_kwargs: tuple[PythonArgument, ...] output_args: PythonOutArgument | None # Return types, which are only used by pyi returns: PythonReturns # These are scattered kwargs arguments belonging to TensorOptions. # When binding to C++, they are packed into a TensorOptions object 'options'. # It's possible that the C++ signature doesn't take TensorOptions object (e.g. # for out variant), in which case they will be used as scattered fields without # being packed into 'options'. # TODO: maybe create a PythonTensorOptionsArgument? tensor_options_args: tuple[PythonArgument, ...] # method or function signature? method: bool @property def deprecated(self) -> bool: return False def arguments( self, *, skip_outputs: bool = False, skip_tensor_options: bool = False ) -> tuple[PythonArgument | PythonOutArgument, ...]: result: list[PythonArgument | PythonOutArgument] = [] result.extend(self.input_args) result.extend(self.input_kwargs) if self.output_args is not None and not skip_outputs: result.append(self.output_args) if not skip_tensor_options: result.extend(self.tensor_options_args) return tuple(result) def arguments_count(self) -> int: return len(self.arguments()) def output_idx(self) -> int: return len(self.input_args) + len(self.input_kwargs) # [old codegen] Compute the Python function signature for argument parsing, # as specified in torch/csrc/utils/python_arg_parser.h. WARNING: # this is NOT the same type signature as specified by PEP 484 # as understood by mypy; our format was independently developed # and has some quirks to make it more suitable specifically # for error parsing. # # For a translation to mypy-valid type signatures, see # signature_str_pyi(). def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str: args = self.arguments(skip_outputs=skip_outputs) schema_formals: list[str] = [ a.argument_str(method=self.method, symint=symint) for a in args ] positional_argc = len(self.input_args) if len(schema_formals) > positional_argc: schema_formals.insert(positional_argc, "*") return f"{self.name}({', '.join(schema_formals)})" def signature_str_pyi(self, *, skip_outputs: bool = False) -> str: args = self.arguments(skip_outputs=skip_outputs) schema_formals: list[str] = [ a.argument_str_pyi(method=self.method) for a in args ] positional_argc = len(self.input_args) if len(schema_formals) > positional_argc: schema_formals.insert(positional_argc, "*") # only pyi signatures include returns returns_str = returns_str_pyi(self) # pyi also includes self (with no typing/defaults) for methods if self.method: schema_formals.insert(0, "self") return f"def {self.name}({', '.join(schema_formals)}) -> {returns_str}: ..." def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> str | None: # only pyi uses vararg signatures args = self.arguments(skip_outputs=skip_outputs) schema_formals: list[str] = [ a.argument_str_pyi(method=self.method) for a in args ] # vararg only applies to pyi signatures. vararg variants are not generated for all signatures num_args = self.arguments_count() num_positionalargs = len(self.input_args) have_vararg_version = False if num_args > 0: vararg_type = args[0].type if ( isinstance(vararg_type, ListType) and str(vararg_type.elem) in ["int", "SymInt"] and num_positionalargs == 1 ): have_vararg_version = True if not have_vararg_version: return None # Below are the major changes in vararg vs. regular pyi signatures # vararg signatures also omit the asterix assert isinstance(vararg_type, ListType) schema_formals[0] = ( "*" + args[0].name + ": " + argument_type_str_pyi(vararg_type.elem) ) returns_str = returns_str_pyi(self) # pyi also includes self (with no typing/defaults) for methods if self.method: schema_formals.insert(0, "self") return f"def {self.name}({', '.join(schema_formals)}) -> {returns_str}: ..." # The deprecated python signature involves some special logic, so create a # dedicated data model to store these extra properties. @dataclass(frozen=True) class PythonSignatureDeprecated(PythonSignature): # Schema for the deprecated function deprecated_schema: FunctionSchema # The deprecated signature might miss some arguments that the corresponding # C++ signature expects. We need store the constant default values to pass in. # For example: # [deprecate signature]: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2) # [func schema]: aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor # [func call]: self.addmm(mat1, mat2, beta, 1) # We store ['self', 'mat1', 'mat2', 'beta', '1'] in this case. deprecated_args_exprs: tuple[str, ...] @property def deprecated(self) -> bool: return True def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str: return ( PythonSignature.signature_str( self, skip_outputs=skip_outputs, symint=symint ) + "|deprecated" ) def signature_str_pyi(self, *, skip_outputs: bool = False) -> str: args = self.arguments(skip_outputs=skip_outputs) schema_formals: list[str] = [ a.argument_str_pyi(method=self.method, deprecated=True) for a in args ] positional_argc = len(self.input_args) if len(schema_formals) > positional_argc: schema_formals.insert(positional_argc, "*") returns_str = returns_str_pyi(self) return f"def {self.name}({', '.join(schema_formals)}) -> {returns_str}: ..." def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> str | None: # the codegen doesn't include vararg variants for deprecated signatures return None # This struct is used to hold the PythonSignature and its corresponding # NativeFunction BEFORE grouping base and out-variant functions. # Why not store NativeFunction in PythonSignature or construct PythonSignature # from NativeFunction? Because they are not 1-1 mapped. # One native function could have both deprecated and non-deprecated python # signatures - NativeFunction doesn't contain information to construct the # deprecated python signature. # One python signature is used to handle both the base and the out-variant # function - see 'PythonSignatureGroup'. @dataclass(frozen=True) class PythonSignatureNativeFunctionPair: signature: PythonSignature function: NativeFunction # We merge pairs of functions with signatures that are equivalent mod # output arguments, and use a single entry in the python_arg_parser sig # list for both (output arguments become optional). @dataclass(frozen=True) class PythonSignatureGroup: # The signature used for Python argument parsing. The outplace signature # is preferred if exists, because it can be used to parse inputs for both # the out-place variant and the base version (with output omitted). signature: PythonSignature # The regular ATen declaration (e.g. conv2d) base: NativeFunction # The out variant (e.g. conv2d_out) outplace: NativeFunction | None @classmethod def from_pairs( cls, functional: PythonSignatureNativeFunctionPair, out: PythonSignatureNativeFunctionPair | None, ) -> PythonSignatureGroup: if out is None: return PythonSignatureGroup( signature=functional.signature, base=functional.function, outplace=None, ) # prefer the signature with optional out=... arguments because it's the # superset that can be used to parse input for both base and outplace. signature_kwargs = out.signature.__dict__.copy() # Out overloads in C++ don't have TensorOptions arguments, # so take these from the functional variant signature_kwargs["tensor_options_args"] = ( functional.signature.tensor_options_args ) return PythonSignatureGroup( signature=type(out.signature)(**signature_kwargs), base=functional.function, outplace=out.function, ) # C++ function dispatch is wrapped in a lambda function. The lambda function # has almost the same signature as the C++ function, only with some small # variants - see details below. # This data model is used to represent arguments of the lambda function # signature. @dataclass(frozen=True) class DispatchLambdaArgument: name: str type_str: str is_out_arg: bool # To pass PyObjects arguments to C++ function (via the lambda wrapper), # we need first convert PyObjects into simple C++ objects. This work # is done by PythonArgParser. # This data model is used to represent the output of PythonArgParser. # It has 1-1 mapping with PythonArgument in PythonSignature. @dataclass(frozen=True) class PythonArgParserOutputExpr: # argument name name: str # RHS expression to reference PythonArgParser output. expr: str # In some special cases we need create different expr, e.g.: # '_r.isNone(1)' instead of '_r.tensor(1)'. index: int # The python argument it maps to. argument: PythonArgument @property def is_none_expr(self) -> str: return f"_r.isNone({self.index})" # To pass PythonArgParser output to the lambda wrapper, we need bind # PythonArgParserOutputExpr to DispatchLambdaArgument. # They are not always 1-1 mapped, e.g. scattered TensorOptions fields # need be packed into a TensorOptions object, which is the argument # that the lambda function wrapper takes. @dataclass(frozen=True) class DispatchLambdaArgumentExprs: # The exprs that provide the binding for lambda arguments, e.g.: # # 'self' -> '_r.tensor(0)' # 'min' -> 'out[0]' / 'min_indices' -> 'out[1]' # 'options' -> 'options' # # It has 1-1 mapping with DispatchLambdaArgument. exprs: Sequence[str] # Special local inits, which might introduce new variables that # the 'exprs' above reference, e.g.: # # 'auto out = _r.tensorlist_n<2>(2);' # inits: Sequence[str] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # Helper Functions # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def _cpp_signature(f: NativeFunction, *, method: bool = False) -> CppSignature: return CppSignatureGroup.from_native_function(f, method=method).signature def has_tensor_options(f: NativeFunction) -> bool: return f.func.arguments.tensor_options is not None # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # Python Signature # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # 'simple_type' was introduced by the old codegen, which is slightly # different from the python schema type, e.g.: doesn't have '?' suffix # for optional Tensor/TensorList; doesn't have '[size]' suffix for list type. def argument_type_str( t: Type, *, simple_type: bool = False, symint: bool = True ) -> str: if isinstance(t, BaseType): if t.name == BaseTy.int: return "int64_t" elif t.name == BaseTy.float: return "double" elif t.name == BaseTy.str: return "c10::string_view" elif t.name in [ BaseTy.Tensor, BaseTy.bool, BaseTy.QScheme, BaseTy.Scalar, BaseTy.ScalarType, BaseTy.Generator, BaseTy.Storage, BaseTy.Layout, BaseTy.Device, BaseTy.DeviceIndex, BaseTy.MemoryFormat, BaseTy.Dimname, BaseTy.Stream, BaseTy.SymInt, ]: # These python schema type names line up with their function schema names return t.name.name elif isinstance(t, OptionalType): elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint) return f"{elem}?" elif isinstance(t, ListType): size = t.size if not simple_type else None if str(t.elem) == "bool": assert t.size is not None return f"::std::array<bool,{t.size}>" elif str(t.elem) == "int": return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef" elif str(t.elem) == "SymInt": if symint: return ( f"SymIntArrayRef[{size}]" if size is not None else "SymIntArrayRef" ) else: return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef" elif str(t.elem) == "Tensor": return f"TensorList[{size}]" if size is not None else "TensorList" elif str(t.elem) == "Scalar": return f"ScalarList[{size}]" if size is not None else "ScalarList" elif str(t.elem) == "Tensor?": if simple_type: return "c10::List<::std::optional<Tensor>>" else: return "const c10::List<::std::optional<Tensor>> &" elif str(t.elem) == "Dimname": return f"DimnameList[{size}]" if size is not None else "DimnameList" elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint) return f"ArrayRef<{elem}>" raise RuntimeError(f"unrecognized type {repr(t)}") def argument_type_size(t: Type) -> int | None: l = t.is_list_like() if l is not None and str(l.elem) != "bool": return l.size else: return None def argument(a: Argument) -> PythonArgument: return PythonArgument( name=a.name, type=a.type, # TODO: directly translate a.default to python default default=( str(pythonify_default(cpp.default_expr(a.default, a.type, symint=False))) if a.default is not None else None ), default_init=None, ) # Generates a PythonSignature that can be used for either .pyi or PythonArgParser codegen def signature( f: NativeFunction, *, method: bool = False, pyi: bool = False ) -> PythonSignature: return signature_from_schema( f.func, category_override=f.category_override, method=method, pyi=pyi ) def signature_from_schema( func: FunctionSchema, *, category_override: str | None, method: bool = False, pyi: bool = False, ) -> PythonSignature: args: list[Argument] = [] args.extend(func.arguments.pre_self_positional) # Skip SelfArgument if this is method. if not method and func.arguments.self_arg is not None: args.append(func.arguments.self_arg.argument) args.extend(func.arguments.post_self_positional) args.extend(func.arguments.pre_tensor_options_kwarg_only) # Skip TensorOptionsArguments. Python side TensorOptions # arguments are created based on different rules - see below. args.extend(func.arguments.post_tensor_options_kwarg_only) args.extend(func.arguments.out) input_arg_set = {a.name for a in func.arguments.flat_positional} kwarg_only_set = {a.name for a in func.arguments.flat_kwarg_only} out_arg_set = {a.name for a in func.arguments.out} input_args = tuple(map(argument, filter(lambda a: a.name in input_arg_set, args))) input_kwargs = tuple( map(argument, filter(lambda a: a.name in kwarg_only_set, args)) ) outputs = tuple(map(argument, filter(lambda a: a.name in out_arg_set, args))) # Reintroduce the scattered fields of TensorOptions for Python. # Compared to the cpp counterpart, the python arguments have new property # (default_init) and a new argument 'requires_grad', which require some # special handlings. # [old codegen] TODO: because these aren't guaranteed to be 100% faithful # to the original versions in the yaml, this recreation is a potential # source of drift between eager and JIT. Pull this logic out to a shared place. has_tensor_input_arg = any( a.type.is_tensor_like() for a in func.arguments.flat_non_out ) if any(a.name == "requires_grad" for a in func.schema_order_arguments()): raise ValueError( "argument named requires_grad is reserved, should not explicitly add it in the schema" ) # [old codegen] this probably won't work if one of the returns is not a tensor, # but it will produce a compile-time error that is obvious. has_tensor_return = any(r.type.is_tensor_like() for r in func.returns) name: str = cpp.name(func) is_factory_function = category_override == "factory" or ( has_tensor_return and not has_tensor_input_arg ) is_like_or_new_function = ( category_override in ("new", "like") or name.startswith("new_") or name.endswith("_like") ) is_dummy_function = category_override == "dummy" tensor_options_args: list[PythonArgument] = [] if (is_factory_function or is_like_or_new_function) and not is_dummy_function: def topt_default_init(name: str) -> str | None: topt_args = func.arguments.tensor_options if topt_args is None: return None a = getattr(topt_args, name) if a.default is None or a.default == "None": return None return cpp.default_expr(a.default, a.type, symint=False) tensor_options_args.append( PythonArgument( name="dtype", type=OptionalType(BaseType(BaseTy.ScalarType)), default="None", default_init=( None if is_like_or_new_function else topt_default_init("dtype") ), ) ) tensor_options_args.append( PythonArgument( name="layout", type=OptionalType(BaseType(BaseTy.Layout)), default="None", default_init=( None if is_like_or_new_function else topt_default_init("layout") ), ) ) tensor_options_args.append( PythonArgument( name="device", type=OptionalType(BaseType(BaseTy.Device)), default="None", default_init=( None if is_like_or_new_function else ( topt_default_init("device") or "torch::tensors::get_default_device()" ) ), ) ) tensor_options_args.append( PythonArgument( name="pin_memory", type=OptionalType(BaseType(BaseTy.bool)), default="False", default_init=None, ) ) tensor_options_args.append( PythonArgument( name="requires_grad", type=OptionalType(BaseType(BaseTy.bool)), default="False", default_init=None, ) ) returns = PythonReturns(returns=func.returns) return PythonSignature( name=str(func.name.name), input_args=input_args, input_kwargs=input_kwargs, output_args=PythonOutArgument.from_outputs(outputs), tensor_options_args=tuple(tensor_options_args), returns=returns, method=method, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # Python Interface # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def structseq_fieldnames(returns: tuple[Return, ...]) -> list[str]: if len(returns) <= 1 or all(r.name is None for r in returns): return [] else: if any(r.name is None for r in returns): # When building on Windows, `PyStructSequence_UnnamedField` could not be # resolved by the linker for some reason, which cause error in building: # # python_nn_functions.cpp.obj : error LNK2001: unresolved external symbol # PyStructSequence_UnnamedField # # Thus, at this point in time, we do not support unnamed # fields in structseq; you must either name all fields, # or none of them. raise ValueError("Unnamed field is not supported by codegen") return [str(r.name) for r in returns] def argument_type_str_pyi(t: Type) -> str: add_optional = False if isinstance(t, OptionalType): t = t.elem add_optional = True if isinstance(t, BaseType): if t.name in [BaseTy.int, BaseTy.DeviceIndex]: ret = "_int" if t.name == BaseTy.SymInt: ret = "Union[_int, SymInt]" elif t.name == BaseTy.float: ret = "_float" elif t.name == BaseTy.str: ret = "str" elif t.name == BaseTy.Scalar: ret = "Union[Number, _complex]" elif t.name == BaseTy.ScalarType: ret = "_dtype" elif t.name == BaseTy.bool: ret = "_bool" elif t.name == BaseTy.QScheme: ret = "_qscheme" elif t.name == BaseTy.Layout: ret = "_layout" elif t.name == BaseTy.Device: ret = "Optional[DeviceLikeType]" elif t.name == BaseTy.MemoryFormat: ret = "memory_format" elif t.name == BaseTy.Dimname: ret = "Union[str, ellipsis, None]" elif t.name == BaseTy.Storage: ret = "Union[Storage, UntypedStorage]" elif t.name in [BaseTy.Tensor, BaseTy.Generator, BaseTy.Stream]: # These python schema type names line up with their function schema names ret = t.name.name elif isinstance(t, ListType): if str(t.elem) == "int": ret = "Union[_int, _size]" if t.size is not None else "_size" elif t.is_tensor_like(): # TODO: this doesn't seem right... # Tensor?[] currently translates to Optional[Union[tuple[Tensor, ...], list[Tensor]]] # It should probably translate to Union[tuple[Optional[Tensor], ...], list[Optional[Tensor]]] add_optional = True ret = ( "Union[Tensor, tuple[Tensor, ...], list[Tensor]]" if t.size is not None else "Union[tuple[Tensor, ...], list[Tensor]]" ) elif str(t.elem) == "float": ret = "Sequence[_float]" elif str(t.elem) == "SymInt" and t.size is not None: elem = argument_type_str_pyi(t.elem) ret = f"Union[{elem}, Sequence[{elem}]]" else: elem = argument_type_str_pyi(t.elem) ret = f"Sequence[{elem}]" else: raise RuntimeError(f"unrecognized type {repr(t)}") if add_optional: ret = "Optional[" + ret + "]" return ret def return_type_str_pyi(t: Type) -> str: # Where arguments are open to accepting Union, return types should return # concrete types if isinstance(t, OptionalType): inner = return_type_str_pyi(t.elem) return f"Optional[{inner}]" if isinstance(t, BaseType): if t.name == BaseTy.Device: return "_device" elif t.name == BaseTy.Dimname: return "Optional[str]" else: return argument_type_str_pyi(t) if isinstance(t, ListType): inner = return_type_str_pyi(t.elem) return f"tuple[{inner}, ...]" return argument_type_str_pyi(t) def returns_structseq_pyi(signature: PythonSignature) -> tuple[str, str] | None: python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns] structseq_name = signature.name field_names = structseq_fieldnames(signature.returns.returns) if field_names: # These types are structseq objects which act like named NamedTuples, but # the constructor acts like the constructor of tuple. Using typing.NamedTuple # does not allow us to override __init__. seq_type = f"tuple[{', '.join(python_returns)}]" structseq_def_lines = [ f"class {structseq_name}({seq_type}):", ] for name, typ in zip(field_names, python_returns): structseq_def_lines.extend( [ " @property", f" def {name}(self) -> {typ}: ...", ] ) structseq_def_lines.extend( [ f" def __new__(cls, sequence: {seq_type}): ...", f" n_fields: _int = {len(field_names)}", f" n_sequeunce_fields: _int = {len(field_names)}", " n_unnamed_fields: _int = 0", " def __init_subclass__(cls) -> NoReturn: ... # prohibit subclassing", "", # add an extra newline ] ) structseq_def = "\n".join(structseq_def_lines) # Example: # structseq_def = ( # "class max(tuple[Tensor, Tensor]):\n" # " @property\n" # " def values(self) -> Tensor: ...\n" # " @property\n" # " def indices(self) -> Tensor: ...\n" # " def __new__(cls, sequence: tuple[Tensor, Tensor]): ...\n" # " n_fields: _int = 2", # " n_sequeunce_fields: _int = 2", # " n_unnamed_fields: _int = 0", # " def __init_subclass__(cls) -> NoReturn: ... # prohibit subclassing", # ) return structseq_name, structseq_def return None def returns_str_pyi(signature: PythonSignature) -> str: field_names = structseq_fieldnames(signature.returns.returns) if field_names: return f"torch.return_types.{signature.name}" python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns] if len(python_returns) > 1: return "tuple[" + ", ".join(python_returns) + "]" if len(python_returns) == 1: return python_returns[0] return "None" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # C++ Function Dispatch # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # This section provides APIs to generate the code that does C++ function # dispatch. The C++ function call is wrapped by a lambda function. # For example: # # // aten::selu_(Tensor(a!) self) -> Tensor(a!) # auto dispatch_selu_ = [](Tensor self) -> Tensor { # pybind11::gil_scoped_release no_gil; # return at::selu_(self); # }; # # The lambda function's signature follows the C++ signature in common # cases, e.g.: # # // aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor # [](const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor # # For out variant the 'out' argument's type is changed from 'Tensor &' # to 'Tensor'. It's because when calling the lambda it passes in the # PythonArgParser output '_r.tensor(3)', which is stack allocated object # and needs to pass by value. Also see comments in 'dispatch_lambda_return_str()'. # # // aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) # [](Tensor out, const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor # # For multi-output case it can keep using reference type because the # PythonArgParser output has been unpacked to local variables, e.g.: # # // aten::max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *, # // Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) # [](Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim) -> std::tuple<Tensor,Tensor> # # For deprecated python signature, it should follow deprecated python arg order. # TODO: This is to keep same byte-for-byte result as the old codegen - maybe unnecessary? def dispatch_lambda_args( ps: PythonSignature, f: NativeFunction, symint: bool = True ) -> tuple[DispatchLambdaArgument, ...]: if isinstance(ps, PythonSignatureDeprecated): schema = ps.deprecated_schema else: schema = f.func # Start with cpp arguments - dispatch lambda signature always include 'self' cpp_args = cpp.arguments( arguments=schema.arguments, faithful=False, symint=symint, method=False, cpp_no_default_args=f.cpp_no_default_args, ) out_args: set[str] = {a.name for a in schema.arguments.out} # Convert from cpp argument to lambda argument def dispatch_lambda_arg(cpp_arg: Binding) -> DispatchLambdaArgument: type_str = cpp_arg.type is_out_arg = cpp_arg.name in out_args if ps.method and cpp_arg.name == "self": # For method's 'self', we can use 'const Tensor &' and simply ignore mutability! type_str = "const at::Tensor &" else: # For other cases we need prevent dangling refs to temps (unless it's # unpacked scattered output) # The reason is explained in the comments above and in 'dispatch_lambda_return_str()'. # TODO: avoid this special handling? ensure_temp_safe = len(out_args) <= 1 or not is_out_arg if ensure_temp_safe: type_str = { "at::Tensor &": "at::Tensor", }.get(type_str, type_str) return DispatchLambdaArgument( name=cpp_arg.name, type_str=type_str, is_out_arg=is_out_arg, ) return tuple(map(dispatch_lambda_arg, cpp_args)) # [old codegen] XXX: if you got here because of an assertion failure, it doesn't mean # it's enough to just extend the list here. Before you do this, make sure # to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h. SUPPORTED_RETURN_TYPES = { "at::Tensor", "::std::tuple<at::Tensor,at::Tensor>", "::std::tuple<at::Tensor,at::Tensor,at::Tensor>", "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor>", "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>", "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>", "::std::tuple<at::Tensor,at::Tensor,at::Tensor,int64_t>", "::std::tuple<at::Tensor,at::Tensor,double,int64_t>", "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,int64_t>", "::std::tuple<at::Tensor,at::Tensor,double,at::Tensor,int64_t>", "::std::tuple<double,int64_t>", "::std::tuple<at::Tensor,::std::vector<at::Tensor>>", "::std::vector<at::Tensor>", # Needed for flash attention forw/backward "::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor>", "at::Scalar", "bool", "int64_t", "void*", "void", "at::QScheme", "double", "at::IntArrayRef", "at::ScalarType", "at::Stream", } def dispatch_lambda_return_str(f: NativeFunction) -> str: # [old codegen] Remove type annotation (e.g. 'Tensor' rather than 'Tensor &') # because the dispatch lambdas take mutable arguments *by value*, not # by reference. If you then return a reference to such an argument, you # will now have a pointer to a dangling stack entry. Not good. # # You want: # # auto dispatch_selu_ = [](Tensor self) -> Tensor { ...; return at::selu_(self); }; # ^^^^^^ # # *not* # # auto dispatch_selu_ = [](Tensor self) -> Tensor& { ...; return at::selu_(self); }; # ^^^^^^^ # # (NB: We can't make dispatch_selu_ take Tensor&, because the enclosing # codegen looks like dispatch_selu_(_r.tensor(0)), and you can't take a # mutable reference to temporary. Maybe we could assign it to a # variable itself.) returns_without_annotation = tuple( Return(r.name, r.type, None) for r in f.func.returns ) return_str = cpp.returns_type(returns_without_annotation, symint=True).cpp_type() if return_str not in SUPPORTED_RETURN_TYPES: raise RuntimeError(f"{f.func.name} returns unsupported type {return_str}") return return_str def cpp_dispatch_target(f: NativeFunction) -> str: symint = f.func.has_symint() name = cpp.name(f.func, symint_overload=symint) if Variant.method in f.variants: return f"self.{name}" if Variant.function in f.variants: if has_tensor_options(f) or f.func.name.name.base.endswith("_like"): namespace = "torch" else: namespace = "at" return f"{namespace}::{name}" raise RuntimeError(f"could not dispatch, neither function nor method: {f.func}") def cpp_dispatch_exprs( f: NativeFunction, *, python_signature: PythonSignature | None = None, ) -> tuple[str, ...]: cpp_args: Sequence[Binding] = _cpp_signature(f, method=False).arguments() exprs: tuple[str, ...] = () if not isinstance(python_signature, PythonSignatureDeprecated): # By default the exprs are consistent with the C++ signature. exprs = tuple(a.name for a in cpp_args) else: # For deprecated python signature we may need fill in some constants. exprs = tuple( filter( lambda n: n != "out" or f.func.is_out_fn(), python_signature.deprecated_args_exprs, ) ) if Variant.method in f.variants: exprs = tuple(filter("self".__ne__, exprs)) return exprs # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # Python / C++ Args Binding # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # We explicitly enumerate the PythonArgParser unpacking methods for all # supported types. This might be more verbose than necessary, partially # because of the irregularity of unpacking method naming, partially # because we want to mimic the old codegen behavior - to reject # unexpected and/or unsupported cases which the old codegen rejects. # For certain cases it is intentionally more restrictive than necessary, # e.g.: it doesn't accepts doublelist with definite size. def arg_parser_unpack_method( t: Type, default: str | None, default_init: str | None, *, symint: bool = True ) -> str: has_default_init = default_init is not None if has_default_init and str(t) not in ( "ScalarType?", "ScalarType", "Device", "Device?", "Layout", "Layout?", "bool", "bool?", ): raise RuntimeError(f"type '{t}' does not supported unpacking with default") if isinstance(t, BaseType): if t.name in [ BaseTy.Tensor, BaseTy.Stream, BaseTy.Storage, BaseTy.Scalar, BaseTy.Dimname, ]: # These unpack methods line up with their schema names return t.name.name.lower() elif t.name == BaseTy.ScalarType: return "scalartypeWithDefault" if has_default_init else "scalartype" elif t.name == BaseTy.Device: return "deviceWithDefault" if has_default_init else "device" elif t.name == BaseTy.DeviceIndex: return "toInt64" elif t.name == BaseTy.int: return "toInt64" elif t.name == BaseTy.SymInt: return "toSymInt" if symint else "toInt64" elif t.name == BaseTy.bool: return "toBoolWithDefault" if has_default_init else "toBool" elif t.name == BaseTy.float: return "toDouble" elif t.name == BaseTy.str: return "stringView" elif t.name == BaseTy.Layout: return "layoutWithDefault" if has_default_init else "layout" elif t.name == BaseTy.MemoryFormat: return "memoryformat" elif isinstance(t, OptionalType): if str(t.elem) == "Tensor": return "optionalTensor" elif str(t.elem) == "Generator": return "generator" elif str(t.elem) == "Dimname[]": return "toDimnameListOptional" elif not has_default_init and default in ( None, "None", "::std::nullopt", "std::nullopt", ): # If default is None: append 'Optional' to elem's unpacking method return ( arg_parser_unpack_method(t.elem, None, None, symint=symint) + "Optional" ) else: # Otherwise, load as underlying type with default return arg_parser_unpack_method( t.elem, default, default_init, symint=symint ) elif isinstance(t, ListType): if str(t.elem) == "Tensor": # accept and use definite size return f"tensorlist_n<{t.size}>" if t.size is not None else "tensorlist" elif str(t.elem) == "Tensor?": return "list_of_optional_tensors" elif str(t.elem) == "Dimname": # accept definite size return "dimnamelist" elif str(t.elem) == "int": # accept definite size return "intlist" elif str(t.elem) == "float": return "doublelist" elif str(t.elem) == "SymInt": # accept definite size return "symintlist" if symint else "intlist" elif str(t.elem) == "Scalar": return "scalarlist" raise RuntimeError(f"type '{t}' is not supported by PythonArgParser") # Return RHS expression for python argument using PythonArgParser output. # e.g. for arg name 'foo', arg type 'bool', arg_index = 2, returns '_r.toBool(2)' def arg_parser_output_expr( arg_index: int, a: PythonArgument, *, symint: bool = True ) -> PythonArgParserOutputExpr: has_default = a.default_init is not None unpack_method = arg_parser_unpack_method( t=a.type, default=a.default, default_init=a.default_init, symint=symint ) default = f", {a.default_init}" if has_default else "" expr = f"_r.{unpack_method}({arg_index}{default})" return PythonArgParserOutputExpr( name=a.name, expr=expr, index=arg_index, argument=a, ) # Returns a map with key = arg_name and value = PythonArgParserOutputExpr. def arg_parser_output_exprs( ps: PythonSignature, f: NativeFunction, *, symint: bool = True ) -> dict[str, PythonArgParserOutputExpr]: return { e.name: e for i, a in enumerate(ps.arguments()) for e in (arg_parser_output_expr(i, a, symint=symint),) } # argument name to type for scattered tensor options fields TENSOR_OPTIONS_FIELDS = { "dtype": "ScalarType?", "device": "Device?", "layout": "Layout?", "pin_memory": "bool?", "requires_grad": "bool?", } # bind arg parser outputs (python args) with dispatch lambda arguments (c++ args). def dispatch_lambda_exprs( ps: PythonSignature, f: NativeFunction, *, symint: bool = True ) -> DispatchLambdaArgumentExprs: # This method is to bind 'arg_parser_outputs' and 'lambda_args' by producing # 'inits' and 'lambda_args_exprs' for each lambda argument using arg parser # outputs. arg_parser_outputs = arg_parser_output_exprs(ps, f, symint=symint) lambda_args = dispatch_lambda_args(ps, f, symint=symint) inits: list[str] = [] lambda_args_exprs: dict[str, str] = {} has_toptions = has_tensor_options(f) # 1. special inits/unpacking to provide binding exprs for lambda arguments. for a in ps.arguments(skip_tensor_options=True): name = a.name arg_parser_expr = arg_parser_outputs[a.name].expr if has_toptions and name == "self": # TODO: why this needs to be special case? inits.extend( [ f"auto self = {arg_parser_expr};", ] ) lambda_args_exprs[name] = name elif ( isinstance(a, PythonOutArgument) and len(a.outputs) > 1 and f.func.is_out_fn() ): inits.extend( [ f"auto out = {arg_parser_expr};", ] ) for i, out_arg in enumerate(a.outputs): lambda_args_exprs[out_arg.name] = f"out[{i}]" elif str(a.type) == "Dimname[]?": # [old codegen] # TODO: make this part of something more general, or get rid of it. # optional<ArrayRef<T>> are special. The PythonArgParser returns an # optional<vector<T>>, which cannot be implicitly converted to # optional<ArrayRef<T>>. One needs to unwrap the optional and rewrap. inits.extend( [ f"auto __{name} = {arg_parser_expr};", f"::std::optional<DimnameList> {name} = __{name} ? ::std::make_optional(DimnameList(__{name}.value())) : ::std::nullopt;", # noqa: B950 ] ) lambda_args_exprs[name] = name else: # default case - directly using PythonArgParser output expr lambda_args_exprs[name] = arg_parser_expr # method's self is passed directly to python binding, rather than parsed if ps.method: lambda_args_exprs["self"] = "self" # 2. special packing/checking for TensorOptions. tensor_options_args_names = [a.name for a in ps.tensor_options_args] if has_toptions: if f.func.is_out_fn(): raise RuntimeError(f"{f.func}: tensor options with output arg") for a in ps.tensor_options_args: if a.name not in TENSOR_OPTIONS_FIELDS: raise RuntimeError( f"{f.func}: unrecognized tensor options field '{a.name}' in python binding arguments" ) if str(a.type) != TENSOR_OPTIONS_FIELDS.get(a.name): raise RuntimeError( f"{f.func}: unrecognized type '{str(a.type)}' for tensor options field '{a.name}'" ) if not all(a in tensor_options_args_names for a in TENSOR_OPTIONS_FIELDS): raise RuntimeError( f"{f.func}: incomplete tensor options args: {tensor_options_args_names}" ) inits.append( f"""\ const auto options = TensorOptions() .dtype({arg_parser_outputs["dtype"].expr}) .device({arg_parser_outputs["device"].expr}) .layout({arg_parser_outputs["layout"].expr}) .requires_grad({arg_parser_outputs["requires_grad"].expr}) .pinned_memory({arg_parser_outputs["pin_memory"].expr}); torch::utils::maybe_initialize_device(options); """ ) lambda_args_exprs["options"] = "options" # 3. special case - access scattered TensorOptions fields without packing # TODO: maybe move to the generator side as it's not related to binding. if not has_toptions and tensor_options_args_names: if "dtype" in tensor_options_args_names: # we're an output-arg variant, check these args against output tensor if not f.func.is_out_fn(): raise RuntimeError( f"{f.func}: dtype in tensor_options_args without output arg, {ps} {ps.arguments}" ) if not all(a in tensor_options_args_names for a in ("layout", "device")): raise RuntimeError( f"{f.func}: incomplete tensor options for output check" ) inits.append( f"""\ check_out_type_matches({arg_parser_outputs["out"].expr}, {arg_parser_outputs["dtype"].expr}, {arg_parser_outputs["dtype"].is_none_expr}, {arg_parser_outputs["layout"].expr}, {arg_parser_outputs["device"].expr}, {arg_parser_outputs["device"].is_none_expr}); """ ) # we'll set requires_grad on outgoing tensor if "requires_grad" not in tensor_options_args_names: raise RuntimeError( f'{f.func}: expected "requires_grad" in tensor_options_args absent, but found [{tensor_options_args_names}]' ) return DispatchLambdaArgumentExprs( exprs=tuple(lambda_args_exprs[a.name] for a in lambda_args), inits=inits, ) ```
================================================================================================================== SOURCE CODE FILE: structured.py LINES: 1 SIZE: 6.12 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\structured.py ENCODING: utf-8 ```py from __future__ import annotations from torchgen.api import cpp from torchgen.api.types import ( ArgName, ArrayRefCType, BaseCType, Binding, ConstRefCType, dimnameListT, intArrayRefT, iOptTensorListRefT, iTensorListRefT, NamedCType, OptionalCType, optionalIntArrayRefT, optionalScalarRefT, optionalTensorRefT, scalarT, tensorT, ) from torchgen.model import ( Argument, BaseTy, BaseType, ListType, NativeFunctionsGroup, OptionalType, SelfArgument, TensorOptionsArguments, Type, ) from torchgen.utils import assert_never # This file describes the translation of JIT schema to the structured functions API. # This is similar to native API, but a number of historical problems with native # API have been fixed. # Translation of types occurring in JIT arguments to a C++ argument type. # NB: For now, mutable doesn't do anything; but it could if we make # some more nominal types def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType: # If it's a value type, do the value type translation # NB: structured kernels ALWAYS have symint off, since they involve actual # kernels that require real ints. The one exception is the # CompositeExplicitAutograd and the meta function (which could # hypothetically be SymInt), but for simplicity we plan for these to just # be handled in Python r = cpp.valuetype_type(t, symint=False, binds=binds, mutable=mutable) if r is not None: return r if isinstance(t, BaseType): if t.name == BaseTy.Tensor: return NamedCType(binds, ConstRefCType(BaseCType(tensorT))) elif t.name == BaseTy.Scalar: return NamedCType(binds, ConstRefCType(BaseCType(scalarT))) else: raise AssertionError(f"base type should have been value type {t}") elif isinstance(t, OptionalType): if t.elem == BaseType(BaseTy.Tensor): return NamedCType(binds, BaseCType(optionalTensorRefT)) elif t.elem == BaseType(BaseTy.Scalar): return NamedCType(binds, BaseCType(optionalScalarRefT)) elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int": return NamedCType(binds, BaseCType(optionalIntArrayRefT)) elem = argumenttype_type(t.elem, mutable=mutable, binds=binds) return NamedCType(binds, OptionalCType(elem.type)) elif isinstance(t, ListType): if t.elem == BaseType(BaseTy.Tensor): return NamedCType(binds, ConstRefCType(BaseCType(iTensorListRefT))) elif t.elem == OptionalType(BaseType(BaseTy.Tensor)): return NamedCType(binds, BaseCType(iOptTensorListRefT)) # TODO: delete these special cases; see torchgen.api.cpp--these # must be changed in tandem, but there are problems; see # https://github.com/pytorch/pytorch/pull/51485 elif str(t.elem) == "int": return NamedCType(binds, BaseCType(intArrayRefT)) elif str(t.elem) == "Dimname": return NamedCType(binds, BaseCType(dimnameListT)) elem = argumenttype_type(t.elem, mutable=mutable, binds=binds) return NamedCType(binds, ArrayRefCType(elem.type)) else: raise AssertionError(f"unrecognized type {repr(t)}") def argument_type(a: Argument, *, binds: ArgName) -> NamedCType: return argumenttype_type(a.type, mutable=a.is_write, binds=binds) # returns_type intentionally omitted, because structured kernels never "return"; # instead, they always indirectly report their outputs (in the case of a meta # function, by calling set_output; in the case of an impl function, by writing # directly into the provided out argument). # Structured kernels are never defaulted def argument(a: Argument | SelfArgument | TensorOptionsArguments) -> list[Binding]: if isinstance(a, Argument): return [ Binding( nctype=argument_type(a, binds=a.name), name=a.name, default=None, argument=a, ) ] elif isinstance(a, SelfArgument): return argument(a.argument) elif isinstance(a, TensorOptionsArguments): raise AssertionError("structured kernels don't support TensorOptions yet") else: assert_never(a) def impl_arguments(g: NativeFunctionsGroup) -> list[Binding]: args: list[Argument | TensorOptionsArguments | SelfArgument] = [] if g.out.precomputed: # A list of parameters for the impl function with # certain parameters replaced with precomputed counterparts # as specified in native_functions.yaml. non_out_args_replaced: list[ Argument | TensorOptionsArguments | SelfArgument ] = [] for a in g.out.func.arguments.non_out: if isinstance(a, Argument) and a.name in g.out.precomputed.replace: # If a is in precompute.replace, append the parameters # that should replace it onto non_out_args_replaced. non_out_args_replaced.extend(g.out.precomputed.replace[a.name]) else: # If not, push a as it is. non_out_args_replaced.append(a) args.extend(non_out_args_replaced) # g.out.precomputed.add is the list of parameters that are added # without replacement after the non out args and just before the out args args.extend(g.out.precomputed.add) else: args.extend(g.out.func.arguments.non_out) args.extend(g.out.func.arguments.out) return [r for arg in args for r in argument(arg)] def meta_arguments(g: NativeFunctionsGroup) -> list[Binding]: args: list[Argument | TensorOptionsArguments | SelfArgument] = [] args.extend(g.functional.func.arguments.non_out) return [r for arg in args for r in argument(arg)] def out_arguments(g: NativeFunctionsGroup) -> list[Binding]: args: list[Argument | TensorOptionsArguments | SelfArgument] = [] args.extend(g.out.func.arguments.out) return [r for arg in args for r in argument(arg)] ```
================================================================================================================= SOURCE CODE FILE: translate.py LINES: 2 SIZE: 19.27 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\translate.py ENCODING: utf-8 ```py from __future__ import annotations from typing import NoReturn, TYPE_CHECKING from torchgen.api.types import ( ArrayRefCType, BaseCType, Binding, boolT, ConstRefCType, deviceT, Expr, intArrayRefT, iOptTensorListRefT, layoutT, ListCType, longT, memoryFormatT, MutRefCType, NamedCType, opmath_t, OptionalCType, optionalIntArrayRefT, optionalScalarRefT, optionalSymIntArrayRefT, optionalTensorRefT, scalar_t, scalarT, scalarTypeT, SpecialArgName, symIntArrayRefT, SymIntT, tensorOptionsT, tensorT, VectorCType, ) if TYPE_CHECKING: from collections.abc import Sequence # This file implements a small program synthesis engine that implements # conversions between one API to another. # # The key data type in this file in NamedCType, short for Named C++ semantic type. A NamedCType # represents a C++ type, plus semantic information about what it represents. # For example, consider the argument "bool pin_memory"; its normal C++ type is # "bool", but its C++ semantic type also keeps track that this represents a # "pin_memory"; you can't just use a random other boolean in a context where you # need a "pin_memory"! # # The translator takes a list of needed NamedCTypes, and then figures out how # to construct expressions with these NamedCTypes from the given bindings. Many # of these expressions are trivial (I need a Tensor other; there's a Tensor # other scope); others are more nontrivial and may require packing/unpacking. # Some examples of non-trivial action: # # - Need the "dtype" binding? Well, maybe "dtype" isn't available # in the context, instead, "options" is, and you need to extract # it from there. (Gather) # # - Need the "context" binding? Well, maybe "context" isn't available # in the context, and you need to construct it from "dtype", "device", # etc. (Scatter) # # - Need the "memory_format" binding? Well, actually, it's available # from both "memory_format" and "options", so you had better make sure # they are consistent. (Join) options_ctype = NamedCType("options", ConstRefCType(BaseCType(tensorOptionsT))) out_tensor_ctype = NamedCType("out", ConstRefCType(BaseCType(tensorT))) longVec_ctype = VectorCType(BaseCType(longT)) longSymVec_ctype = VectorCType(BaseCType(SymIntT)) optionalLongVec_ctype = OptionalCType(VectorCType(BaseCType(longT))) optionalScalar_ctype = OptionalCType(BaseCType(scalarT)) optionalTensor_ctype = OptionalCType(BaseCType(tensorT)) class UnsatError(RuntimeError): pass # Given a set of in-scope bindings and a set of target bindings, synthesize # a list of expressions that uses only the in-scope bindings (bindings) that # have all of the types of goals. You may want to use this function if # you're generating code for a function like: # # void f({args}) { # g({exprs}); // g is a different API # } # # and you need to generate "exprs". # # Typically, a list of Bindings is convenient to get (you usually call something # like arguments() to get them); but technically you only need less information: # for 'bindings' an (un-ordered) list of Exprs is sufficient; similarly, for # 'goals', an (ordered) list of NamedCType goals is sufficient. If you are doing # something more complicated, e.g., tracking the set of bindings in a context, # you may find using these smaller types more convenient. def translate( bindings: Sequence[Expr | Binding], goals: Sequence[NamedCType | Binding], *, method: bool = False, allow_expensive_conversions: bool = False, ) -> list[Expr]: binding_exprs: list[Expr] = [] for b in bindings: if isinstance(b, Binding): binding_exprs.append( Expr( expr=b.name, type=b.nctype, ) ) else: binding_exprs.append(b) goal_ctypes: list[NamedCType] = [] for g in goals: if isinstance(g, Binding): goal_ctypes.append(g.nctype) else: goal_ctypes.append(g) # Add all the bindings to the context ctx: dict[NamedCType, str] = {} for b in binding_exprs: ctx[b.type] = b.expr # While we're at it, do some simple forward inference, looking through # constructors. # # NB: When should you do forward inference versus backward inference? # The general idea: # # - Backward inference WHEN the goal gets smaller # - Forward inference WHEN the hypothesis gets smaller # # This helps ensure termination: backward inference starts with a goal # and tries to make it simpler and simpler until it's trivial; if the # goal can grow in size, we blow up to a really huge goal size. # Similarly, with forward inference we take hypotheses and decompose # them into simpler hypotheses; if hypotheses could expand in size, # we also have potential nontermination. (In the code below, forward # inference is only ever carried out at a single step, but you could # imagine repeated application of forward inference being profitable.) # # A good starting point in the literature for exploring more about proof # search are these lecture notes # https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf # # TODO: My kingdom for a pattern matcher # https://www.python.org/dev/peps/pep-0634/ # # TODO: This could get us in recomputation trouble if b.expr is nontrivial. # Fix this by implementing some sort of sharing so that if multiple # goals share the same expression, we only compute it once. This seems # to matter in practice as compiler is often unwilling to CSE nontrivial # expressions like scalar.to<scalar_t>() t = b.type if ( isinstance(t, ConstRefCType) and isinstance(t.elem, OptionalCType) and isinstance(t.elem.elem, BaseCType) and str(t.elem.elem.type) == "at::Tensor" ): ctx[NamedCType(t.elem.elem.name, ConstRefCType(BaseCType(tensorT)))] = ( f"({b.expr}.has_value() ? *{b.expr} : at::Tensor())" ) if t.type == ConstRefCType(OptionalCType(BaseCType(tensorT))): ctx[NamedCType(t.name, BaseCType(optionalTensorRefT))] = ( f"(({b.expr}.has_value() && (*{b.expr}).defined()) ? at::OptionalTensorRef(*{b.expr}) : at::OptionalTensorRef())" ) if t.type == ConstRefCType(BaseCType(scalarT)): ctx[NamedCType(t.name, BaseCType(opmath_t))] = f"({b.expr}).to<opmath_t>()" if t.type == ConstRefCType(OptionalCType(BaseCType(scalarT))): ctx[NamedCType(t.name, BaseCType(optionalScalarRefT))] = ( f"({b.expr}.has_value() ? at::OptionalScalarRef(&({b.expr}.value())) : at::OptionalScalarRef())" ) if t.type == BaseCType(scalar_t): ctx[NamedCType(t.name, BaseCType(opmath_t))] = ( f"static_cast<opmath_t>({b.expr})" ) # [Note: IOptTensorListRef] if t.type == ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))): ctx[NamedCType(t.name, BaseCType(iOptTensorListRefT))] = ( f"at::IOptTensorListRef({b.expr})" ) # Add implicit bindings if the generated code is inside a Tensor method if method: ctx[NamedCType("self", MutRefCType(BaseCType(tensorT)))] = ( "const_cast<Tensor&>(*this)" ) ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = ( "const_cast<Tensor&>(*this)" ) # This is better! Byte-for-byte compat # ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = "*this" def unsat(goal: NamedCType) -> NoReturn: ctx_desc = "\n".join( f" {t.cpp_type()} {t.name}; // {e}" for t, e in ctx.items() ) raise UnsatError( f""" Failed to synthesize the expression "{goal.cpp_type()} {goal.name}". When I failed, the following bindings were available in the context: {ctx_desc} This probably means there is a missing rule in the rules of torchgen.api.translate. Check this module for more information. """ ) # A shitty backtracking search implementation. It's shitty because it # does backtracking via stack (bad idea!) and for the most part tries to # avoid backtracking. In particular, if # direct=True, we won't try to do any fancy synthesis, just trivial # conversions (e.g., "T a" is OK for "const T& a"). So all of the # existing rules in this function simply try to solve immediately, # and bail if things don't work out. def solve(goal: NamedCType, *, direct: bool) -> str: def direct_solve(goal: NamedCType) -> str: return solve(goal, direct=True) if goal in ctx: # Trivial return ctx[goal] # const & is satisfied with mutable & if isinstance(goal.type, ConstRefCType): try: # WARNING: not strictly decreasing; be careful not # to add a direct conversion that goes satisfies # mutable& with const& return solve( NamedCType(goal.name, MutRefCType(goal.type.elem)), direct=direct ) except UnsatError: pass # mutable & is satisfied with value if isinstance(goal.type, MutRefCType): try: return solve(NamedCType(goal.name, goal.type.elem), direct=direct) except UnsatError: pass # TODO: These are referentially equal, shouldn't have to do this; # ensuring we don't use type synonym IntArrayRef in codegen would # help if goal.type == ArrayRefCType(BaseCType(longT)): return solve(NamedCType(goal.name, BaseCType(intArrayRefT)), direct=direct) if direct: unsat(goal) # For now, all of these rules are mutually exclusive. if goal == NamedCType("memory_format", OptionalCType(BaseCType(memoryFormatT))): memory_format = direct_solve( NamedCType( SpecialArgName.possibly_redundant_memory_format, OptionalCType(BaseCType(memoryFormatT)), ) ) # No need to join "memory_format" and "options" if the target API takes "options" directly. # Otherwise it will cause the redundant memory_format error. if options_ctype in goal_ctypes: return memory_format try: options = direct_solve(options_ctype) return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})" except UnsatError: return memory_format elif goal == NamedCType("options", BaseCType(tensorOptionsT)): dtype = direct_solve( NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))) ) pin_memory = direct_solve( NamedCType("pin_memory", OptionalCType(BaseCType(boolT))) ) device = direct_solve( NamedCType("device", OptionalCType(BaseCType(deviceT))) ) layout = direct_solve( NamedCType("layout", OptionalCType(BaseCType(layoutT))) ) return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})" elif goal == NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))): try: options = direct_solve(options_ctype) return f"c10::optTypeMetaToScalarType({options}.dtype_opt())" except UnsatError: out_tensor = direct_solve(out_tensor_ctype) return f"{out_tensor}.scalar_type()" elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))): try: options = direct_solve(options_ctype) return f"{options}.layout_opt()" except UnsatError: out_tensor = direct_solve(out_tensor_ctype) return f"{out_tensor}.layout()" elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))): try: options = direct_solve(options_ctype) return f"{options}.device_opt()" except UnsatError: out_tensor = direct_solve(out_tensor_ctype) return f"{out_tensor}.device()" elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))): try: options = direct_solve(options_ctype) return f"{options}.pinned_memory_opt()" except UnsatError: # If we're calling a factory op from its out= variant, # We don't actually care about the value of pin_memory. out_tensor = direct_solve(out_tensor_ctype) return "::std::nullopt" # We can always do translations from value types to reference types, like vector<int> -> IntArrayRef elif goal.type == BaseCType(intArrayRefT): try: return direct_solve(NamedCType(goal.name, longVec_ctype)) except UnsatError: # We can also go SymIntArrayRef -> IntArrayRef symIntArrayRef_type = direct_solve( NamedCType(goal.name, BaseCType(symIntArrayRefT)) ) return f"C10_AS_INTARRAYREF_SLOW({symIntArrayRef_type})" elif goal.type == BaseCType(symIntArrayRefT): try: r = direct_solve(NamedCType(goal.name, BaseCType(intArrayRefT))) return f"c10::fromIntArrayRefSlow({r})" except UnsatError: return direct_solve(NamedCType(goal.name, longSymVec_ctype)) elif goal.type == BaseCType(SymIntT): return direct_solve(NamedCType(goal.name, BaseCType(longT))) elif goal.type == OptionalCType(BaseCType(SymIntT)): argname = direct_solve( NamedCType(goal.name, OptionalCType(BaseCType(longT))) ) return f"{argname}.has_value() ? ::std::make_optional(c10::SymInt(*{argname})) : ::std::nullopt" elif goal.type == BaseCType(longT): symInt_type = direct_solve(NamedCType(goal.name, BaseCType(SymIntT))) return f"{symInt_type}.guard_int(__FILE__, __LINE__)" elif goal.type == OptionalCType(BaseCType(longT)): argname = direct_solve( NamedCType(goal.name, OptionalCType(BaseCType(SymIntT))) ) return f"{argname}.has_value() ? ::std::make_optional({argname}->guard_int(__FILE__, __LINE__)) : ::std::nullopt" elif goal.type == BaseCType(optionalIntArrayRefT): try: return direct_solve(NamedCType(goal.name, optionalLongVec_ctype)) except UnsatError: argname = direct_solve( NamedCType(goal.name, BaseCType(optionalSymIntArrayRefT)) ) return f"{argname}.has_value() ? ::std::make_optional(C10_AS_INTARRAYREF_SLOW(*{argname})) : ::std::nullopt" elif goal.type == BaseCType(optionalSymIntArrayRefT): # TODO: You might also want to solve this from longSymVec_ctype or # an optional version of it argname = direct_solve( NamedCType(goal.name, BaseCType(optionalIntArrayRefT)) ) return f"{argname}.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*{argname})) : ::std::nullopt" elif goal.type == BaseCType(optionalScalarRefT): return direct_solve(NamedCType(goal.name, optionalScalar_ctype)) elif goal.type == BaseCType(optionalTensorRefT): return direct_solve(NamedCType(goal.name, optionalTensor_ctype)) # Note [translation from C++ reference to value types] # The below cases are all for when we have an argument with a reference type, # and a corresponding goal with a value type. # These are needed when we populate the inputs to a lambda capture and we need # to guarantee the lifetime of each captured argument. # We guard it with an explicit kwarg because converting to a value type is expensive # (O(n)) to convert from IntArrayRef to vector<int>), # so the caller of translate() should be explicit that they need it. if allow_expensive_conversions: if goal.type == VectorCType(BaseCType(longT)): intArrayRef_ctype = NamedCType(goal.name, BaseCType(intArrayRefT)) argname = direct_solve(intArrayRef_ctype) return f"{argname}.vec()" if goal.type == VectorCType(BaseCType(SymIntT)): symIntArrayRef_ctype = NamedCType(goal.name, BaseCType(symIntArrayRefT)) argname = direct_solve(symIntArrayRef_ctype) return f"{argname}.vec()" elif goal.type == OptionalCType(VectorCType(BaseCType(longT))): optionalIntArrayRef_ctype = NamedCType( goal.name, BaseCType(optionalIntArrayRefT) ) argname = direct_solve(optionalIntArrayRef_ctype) return f"{argname}.has_value() ? ::std::make_optional({argname}->vec()) : ::std::nullopt" elif goal.type == OptionalCType(BaseCType(scalarT)): optionalScalarRef_ctype = NamedCType( goal.name, BaseCType(optionalScalarRefT) ) argname = direct_solve(optionalScalarRef_ctype) return f"{argname}.has_value() ? ::std::make_optional({argname}) : ::std::nullopt" elif goal.type == OptionalCType(BaseCType(scalarT)): optionalTensorRef_ctype = NamedCType( goal.name, BaseCType(optionalTensorRefT) ) argname = direct_solve(optionalTensorRef_ctype) return f"{argname}.has_value() ? ::std::make_optional({argname}) : ::std::nullopt" # Technically, we also need to handle cases of C++ containers holding reference types. # But there currently aren't any ops that require lambda capture codegen # With arguments like ::std::vector<IntArrayRef>. # If that changes, we'll have to add the translation here. # We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor. # We could probably generalize this to non-tensor types too. if goal.type == MutRefCType(BaseCType(tensorT)): const_ref_tensor_ctype = NamedCType( goal.name, ConstRefCType(BaseCType(tensorT)) ) argname = direct_solve(const_ref_tensor_ctype) return f"const_cast<Tensor&>({argname})" unsat(goal) return [Expr(solve(g, direct=False), g) for g in goal_ctypes] ```
====================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.15 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\types\__init__.py ENCODING: utf-8 ```py from torchgen.api.types.types import * from torchgen.api.types.types_base import * from torchgen.api.types.signatures import * # usort: skip ```
======================================================================================================================== SOURCE CODE FILE: signatures.py LINES: 1 SIZE: 15.77 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\types\signatures.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING from torchgen.api.types.types_base import Binding, CType, Expr if TYPE_CHECKING: from collections.abc import Iterator, Sequence from torchgen.model import ( BackendIndex, FunctionSchema, NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup, ) @dataclass(frozen=True) class CppSignature: """ A CppSignature represents a single overload in the C++ API. For any given function schema, there may be multiple CppSignatures corresponding to it, based on how we desugar to C++. See also CppSignatureGroup. """ # The schema this signature is derived from func: FunctionSchema # Is this a C++ signature for a method, i.e. Tensor::my_op(...)? method: bool # Is this a faithful C++ signature (i.e. following the JIT schema) or a convenience API # (i.e. with a potential TensorOptions argument and out arguments in the front) faithful: bool # Is this a symint C++ signature. For BC reasons, functions that take # SymInts still present as int64_t in C++, and the SymInt variant is # offered at a different overload name # # NB: If a function RETURNS a SymInt, this is ALWAYS false symint: bool # The set of C++ arguments which should not have defaults applied to them cpp_no_default_args: set[str] # Is this a fallback C++ binding? Fallback bindings are enabled by # manual_cpp_binding: True and are alternate, non-public API that # lets manual C++ binding implementors access the binding that would # have been automatically generated fallback_binding: bool = False # Return the unpacked argument structure of this signature, # discarding information about which arguments are semantically # related to each other. def arguments(self) -> Sequence[Binding]: return cpp.arguments( self.func.arguments, faithful=self.faithful, symint=self.symint, method=self.method, cpp_no_default_args=self.cpp_no_default_args, ) def name(self, *, suppress_symint_suffix: bool = False) -> str: n = cpp.name( self.func, faithful_name_for_out_overloads=self.faithful, symint_overload=False if suppress_symint_suffix else self.symint, ) if self.fallback_binding: n = f"__dispatch_{n}" return n # Render the C++ declaration for this signature def decl( self, *, name: str | None = None, prefix: str = "", is_redispatching_fn: bool = False, suppress_symint_suffix: bool = False, ) -> str: returns_type = cpp.returns_type( self.func.returns, symint=self.symint ).cpp_type() cpp_args = [a.decl() for a in self.arguments()] if is_redispatching_fn: cpp_args = ["c10::DispatchKeySet dispatchKeySet"] + cpp_args cpp_args_str = ", ".join(cpp_args) if name is None: name = prefix + self.name(suppress_symint_suffix=suppress_symint_suffix) return f"{returns_type} {name}({cpp_args_str})" # Render the C++ definition for this signature, not including # the body (with curly braces) def defn( self, *, name: str | None = None, prefix: str = "", is_redispatching_fn: bool = False, ) -> str: returns_type = cpp.returns_type( self.func.returns, symint=self.symint ).cpp_type() cpp_args = [a.defn() for a in self.arguments()] if is_redispatching_fn: cpp_args = ["c10::DispatchKeySet dispatchKeySet"] + cpp_args cpp_args_str = ", ".join(cpp_args) if name is None: name = prefix + self.name() return f"{returns_type} {name}({cpp_args_str})" def ptr_type(self) -> str: args_types_str = ", ".join(a.type for a in self.arguments()) return f"{cpp.returns_type(self.func.returns, symint=self.symint).cpp_type()} (*)({args_types_str})" # Return the C++ function type, e.g., something like int(bool) def type(self) -> str: args_types_str = ", ".join(a.type for a in self.arguments()) return f"{cpp.returns_type(self.func.returns, symint=self.symint).cpp_type()} ({args_types_str})" # Represents group of all CppSignatures associated with a # FunctionSchema. Right now, that's the regular, user-visible # signature, as well as a "faithful" signature which doesn't # have grouping. @dataclass(frozen=True) class CppSignatureGroup: func: FunctionSchema signature: CppSignature faithful_signature: CppSignature | None symint_signature: CppSignature | None symint_faithful_signature: CppSignature | None def most_faithful_signature(self) -> CppSignature: if self.faithful_signature: return self.faithful_signature else: return self.signature def signatures(self, *, symint: bool = True) -> Iterator[CppSignature]: yield self.signature if self.faithful_signature: yield self.faithful_signature if symint: if self.symint_signature: yield self.symint_signature if self.symint_faithful_signature: yield self.symint_faithful_signature @staticmethod def from_native_function( f: NativeFunction, *, method: bool, fallback_binding: bool = False ) -> CppSignatureGroup: func = f.func def make_sig(*, faithful: bool, symint: bool) -> CppSignature: return CppSignature( func=func, faithful=faithful, symint=symint, method=method, fallback_binding=fallback_binding, cpp_no_default_args=f.cpp_no_default_args, ) def make_sigs(*, symint: bool) -> tuple[CppSignature, CppSignature | None]: faithful_signature: CppSignature | None = None if func.arguments.tensor_options is not None or len(func.arguments.out) > 0: faithful_signature = make_sig(faithful=True, symint=symint) signature = make_sig(faithful=False, symint=symint) return signature, faithful_signature signature, faithful_signature = make_sigs(symint=False) symint_signature: CppSignature | None = None symint_faithful_signature: CppSignature | None = None if func.has_symint(): symint_signature, symint_faithful_signature = make_sigs(symint=True) return CppSignatureGroup( func=func, signature=signature, faithful_signature=faithful_signature, symint_signature=symint_signature, symint_faithful_signature=symint_faithful_signature, ) @dataclass(frozen=True) class DispatcherSignature: # The schema this signature is derived from func: FunctionSchema # Allows you to prepend an arbitrary prefix to the signature name. # This is useful for parts of the codegen that generate wrappers around kernels, # and need to avoid naming collisions. prefix: str = "" symint: bool = True def arguments(self) -> list[Binding]: return dispatcher.arguments(self.func, symint=self.symint) def name(self) -> str: return self.prefix + dispatcher.name(self.func) def decl(self, name: str | None = None) -> str: args_str = ", ".join(a.decl() for a in self.arguments()) if name is None: name = self.name() return f"{self.returns_type().cpp_type()} {name}({args_str})" def defn( self, name: str | None = None, *, is_redispatching_fn: bool = False ) -> str: args = [a.defn() for a in self.arguments()] if is_redispatching_fn: args = ["c10::DispatchKeySet dispatchKeySet"] + args args_str = ", ".join(args) if name is None: name = self.name() return f"{self.returns_type().cpp_type()} {name}({args_str})" def exprs(self) -> list[Expr]: return [Expr(a.name, a.nctype) for a in self.arguments()] def returns_type(self) -> CType: return dispatcher.returns_type(self.func.returns, symint=self.symint) def ptr_type(self) -> str: dispatcher_args_types_str = ", ".join(a.type for a in self.arguments()) return f"{self.returns_type().cpp_type()} (*)({dispatcher_args_types_str})" # Return the C++ function type, e.g., something like int(bool) def type(self) -> str: dispatcher_args_types_str = ", ".join(a.type for a in self.arguments()) return f"{self.returns_type().cpp_type()} ({dispatcher_args_types_str})" @staticmethod def from_schema( func: FunctionSchema, *, prefix: str = "", symint: bool = True ) -> DispatcherSignature: return DispatcherSignature(func, prefix, symint) @dataclass(frozen=True) class NativeSignature: # The schema this signature is derived from func: FunctionSchema symint: bool prefix: str = "" def name(self) -> str: return self.prefix + native.name(self.func) def decl(self, name: str | None = None) -> str: args_str = ", ".join(a.decl() for a in self.arguments()) if name is None: name = self.name() return f"{native.returns_type(self.func.returns, symint=self.symint).cpp_type()} {name}({args_str})" def defn(self, name: str | None = None) -> str: args_str = ", ".join(a.defn() for a in self.arguments()) if name is None: name = self.name() return f"{native.returns_type(self.func.returns, symint=self.symint).cpp_type()} {name}({args_str})" def ptr_type(self) -> str: # don't include defaults in type signature! args_str = ", ".join(a.defn() for a in self.arguments()) return f"{native.returns_type(self.func.returns, symint=self.symint).cpp_type()} (*)({args_str})" def arguments(self) -> list[Binding]: return native.arguments(self.func, symint=self.symint) def returns_type(self) -> CType: return native.returns_type(self.func.returns, symint=self.symint) def dispatcher_exprs(self) -> list[Expr]: return translate.translate( self.arguments(), dispatcher.arguments(self.func), method=False ) @dataclass(frozen=True) class ViewInverseSignature: g: NativeFunctionsViewGroup def name(self) -> str: return functionalization.reverse_name(self.g.view, include_namespace=False) def decl(self) -> str: return_type = functionalization.returns_type(self.g.view.func) decls = [ a.decl() for a in functionalization.inner_arguments( self.g.view.func, is_reverse=True ) ] return f"static {return_type.cpp_type()} {self.name()}({', '.join(decls)});" @dataclass(frozen=True) class FunctionalizationLambda: g: NativeFunctionsViewGroup # are we generating the forward lambda or the reverse lambda? is_reverse: bool def captures(self) -> list[Expr]: # The lambda lives inside of a kernel following the dispatcher API, so its outer context is the dispatcher arguments # We also need to read the "reapply views" TLS at the time that the functionalization kernel was executed, # and plumb it into the lambda. outer_ctx = dispatcher.arguments(self.g.view.func) + [ functionalization.reapply_views_binding, functionalization.inverse_return_mode_binding, ] capture_bindings = functionalization.capture_arguments( self.g.view.func, is_reverse=self.is_reverse ) # allow_expensive_conversions is set because we want to convert # some reference types (IntArrayRef) to value types (vector<int64_t>). capture_exprs = translate.translate( outer_ctx, capture_bindings, method=False, allow_expensive_conversions=True ) return capture_exprs def decl(self) -> str: return_type = functionalization.returns_type(self.g.view.func) capture_str = ", ".join( f"{val.type.name} = {val.expr}" for val in self.captures() ) decls = [ a.decl() for a in functionalization.outer_arguments(is_reverse=self.is_reverse) ] return f"[{capture_str}]({', '.join(decls)}) -> {return_type.cpp_type()}" def inner_call(self, *, reapply_views: bool | None = None) -> str: inner_call_name = functionalization.name( self.g, is_reverse=self.is_reverse, include_namespace=True, reapply_views=reapply_views, ) arg_ctx = functionalization.outer_arguments(is_reverse=self.is_reverse) capture_ctx = functionalization.capture_arguments( self.g.view.func, is_reverse=self.is_reverse ) full_ctx = arg_ctx + capture_ctx assert self.g.view_copy is not None call_bindings = functionalization.inner_arguments( self.g.view_copy.func, is_reverse=self.is_reverse ) maybe_index = functionalization.inner_call_index(self.g.view_copy.func) call_exprs = [ e.expr for e in translate.translate(full_ctx, call_bindings, method=False) ] if not self.is_reverse and maybe_index is not None: return f"{inner_call_name}({', '.join(call_exprs)})[{maybe_index.name}];" else: return f"{inner_call_name}({', '.join(call_exprs)});" @staticmethod def from_func( g: NativeFunctionsViewGroup, *, is_reverse: bool ) -> FunctionalizationLambda: return FunctionalizationLambda(g, is_reverse) @dataclass(frozen=True) class StructuredImplSignature: g: NativeFunctionsGroup name: str def defn(self, name: str | None = None) -> str: args_str = ", ".join(a.defn() for a in self.arguments()) return f"TORCH_IMPL_FUNC({self.name})({args_str})" def arguments(self) -> list[Binding]: return structured.impl_arguments(self.g) # Helper functions def kernel_signature( f: NativeFunction, backend_index: BackendIndex, *, prefix: str = "" ) -> NativeSignature | DispatcherSignature: # Note [External Backends Follow Dispatcher API] # Kernel signatures for in-tree backends follow the "native" API, # while kernels for out-of-tree backends follow the dispatcher API. # See the comments in `native.py` for details, but historically there have been # some small differences in schema convention between them and the Dispatcher API. # Any differences that require translating between the two will results in a runtime cost, # so we'd like to keep the differences as small as possible. # With external backends, we'd like to enforce that they write their kernels with schemas # that match the Dispatcher API directly, if they can. meta = backend_index.get_kernel(f) symint = meta is not None and meta.supports_symint() if symint: assert f.func.has_symint(), ( f"attempted to define symint kernel for {backend_index.dispatch_key} without SymInt in schema" ) if backend_index.external: return DispatcherSignature.from_schema(f.func, prefix=prefix, symint=symint) else: return NativeSignature(f.func, prefix=prefix, symint=symint) # Functions only, no types from torchgen.api import ( cpp, dispatcher, functionalization, native, structured, translate, ) ```
=================================================================================================================== SOURCE CODE FILE: types.py LINES: 1 SIZE: 6.17 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\types\types.py ENCODING: utf-8 ```py """ Where should I add a new type? `types_base.py` vs `types.py` This file defines data model classes for torchgen typing system, as well as some base types such as int32_t. `types.py` defines ATen Tensor type and some c10 types, along with signatures that use these types. The difference between these two files, is `types_base.py` should be implementation-agnostic, meaning it shouldn't contain any type definition that is tight to a specific C++ library (e.g., ATen), so that it can be easily reused if we want to generate code for another C++ library. Add new types to `types.py` if these types are ATen/c10 related. Add new types to `types_base.py` if they are basic and not attached to ATen/c10. """ from __future__ import annotations from dataclasses import dataclass from torchgen.api.types.types_base import ( BaseCppType, BaseCType, boolT, byteT, charT, CType, doubleT, floatT, int32T, longT, shortT, ) from torchgen.model import BaseTy, ScalarType TENSOR_LIST_LIKE_CTYPES = [ "at::TensorList", "const c10::List<::std::optional<at::Tensor>> &", "const at::ITensorListRef &", ] halfT = BaseCppType("at", "Half") complexHalfT = BaseCppType( "c10", "complex<c10::Half>" ) # stuffing template param here is an abuse complexFloatT = BaseCppType("c10", "complex<float>") complexDoubleT = BaseCppType("c10", "complex<double>") bfloat16T = BaseCppType("at", "BFloat16") float8_e5m2T = BaseCppType("at", "Float8_e5m2") float8_e5m2fnuzT = BaseCppType("at", "Float8_e5m2fnuz") float8_e4m3fnT = BaseCppType("at", "Float8_e4m3fn") float8_e4m3fnuzT = BaseCppType("at", "Float8_e4m3fnuz") float8_e8m0fnuT = BaseCppType("at", "Float8_e8m0fnu") stringT = BaseCppType("c10", "string_view") generatorT = BaseCppType("at", "Generator") scalarTypeT = BaseCppType("at", "ScalarType") tensorT = BaseCppType("at", "Tensor") optionalTensorRefT = BaseCppType("at", "OptionalTensorRef") tensorListT = BaseCppType("at", "TensorList") iTensorListRefT = BaseCppType("at", "ITensorListRef") iOptTensorListRefT = BaseCppType("at", "IOptTensorListRef") dimnameT = BaseCppType("at", "Dimname") dimnameListT = BaseCppType("at", "DimnameList") dimVectorT = BaseCppType("at", "DimVector") layoutT = BaseCppType("at", "Layout") deviceT = BaseCppType("at", "Device") deviceIndexT = BaseCppType("at", "DeviceIndex") scalarT = BaseCppType("at", "Scalar") optionalScalarRefT = BaseCppType("at", "OptionalScalarRef") memoryFormatT = BaseCppType("at", "MemoryFormat") qschemeT = BaseCppType("at", "QScheme") storageT = BaseCppType("at", "Storage") streamT = BaseCppType("at", "Stream") intArrayRefT = BaseCppType("at", "IntArrayRef") optionalIntArrayRefT = BaseCppType("at", "OptionalIntArrayRef") optionalSymIntArrayRefT = BaseCppType("at", "OptionalSymIntArrayRef") tensorOptionsT = BaseCppType("at", "TensorOptions") typeAndSizeT = BaseCppType("torch::autograd::generated", "TypeAndSize") tensorGeometryT = BaseCppType("at", "TensorGeometry") SymIntT = BaseCppType("c10", "SymInt") symIntArrayRefT = BaseCppType("c10", "SymIntArrayRef") # Types representing template parameters. Technically, we probably shouldn't # represent them this way in codegen, but it was pretty convenient. scalar_t = BaseCppType("", "scalar_t") opmath_t = BaseCppType("", "opmath_t") ScalarTypeToCppMapping: dict[ScalarType, BaseCppType] = { ScalarType.Byte: byteT, ScalarType.Char: charT, ScalarType.Short: shortT, ScalarType.Int: int32T, ScalarType.Long: longT, ScalarType.Half: halfT, ScalarType.Float: floatT, ScalarType.Double: doubleT, ScalarType.ComplexHalf: complexHalfT, ScalarType.ComplexFloat: complexFloatT, ScalarType.ComplexDouble: complexDoubleT, ScalarType.Bool: boolT, ScalarType.Float8_e5m2: float8_e5m2T, ScalarType.Float8_e5m2fnuz: float8_e5m2fnuzT, ScalarType.Float8_e4m3fn: float8_e4m3fnT, ScalarType.Float8_e4m3fnuz: float8_e4m3fnuzT, ScalarType.Float8_e8m0fnu: float8_e8m0fnuT, } BaseTypeToCppMapping: dict[BaseTy, BaseCppType] = { BaseTy.int: longT, BaseTy.float: doubleT, BaseTy.bool: boolT, BaseTy.str: stringT, BaseTy.Generator: generatorT, BaseTy.ScalarType: scalarTypeT, BaseTy.Tensor: tensorT, BaseTy.Dimname: dimnameT, BaseTy.DimVector: dimVectorT, BaseTy.Layout: layoutT, BaseTy.Device: deviceT, BaseTy.DeviceIndex: deviceIndexT, BaseTy.Scalar: scalarT, BaseTy.MemoryFormat: memoryFormatT, BaseTy.QScheme: qschemeT, BaseTy.Storage: storageT, BaseTy.Stream: streamT, BaseTy.SymInt: SymIntT, } # CTypes encode C++ type structure as needed for translation. @dataclass(frozen=True) class OptionalCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"::std::optional<{self.elem.cpp_type()}>" def remove_const_ref(self) -> CType: return OptionalCType(self.elem.remove_const_ref()) @dataclass(frozen=True) class ListCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"c10::List<{self.elem.cpp_type()}>" def remove_const_ref(self) -> CType: return ListCType(self.elem.remove_const_ref()) @dataclass(frozen=True) class ArrayRefCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"at::ArrayRef<{self.elem.cpp_type()}>" def remove_const_ref(self) -> CType: return ArrayRefCType(self.elem.remove_const_ref()) @dataclass(frozen=True) class VectorizedCType(CType): # This template is explicitly specialized, so the only valid # elems are those we have specializations for (e.g., float, double, ...) # scalar_t is also a common argument here (when we are codegen in # a templated context) elem: BaseCType def cpp_type(self, *, strip_ref: bool = False) -> str: return f"at::vec::Vectorized<{self.elem.cpp_type()}>" def remove_const_ref(self) -> CType: return self ```
======================================================================================================================== SOURCE CODE FILE: types_base.py LINES: 1 SIZE: 7.25 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\types\types_base.py ENCODING: utf-8 ```py """ Where should I add a new type? `types_base.py` vs `types.py` This file defines data model classes for torchgen typing system, as well as some base types such as int32_t. `types.py` defines ATen Tensor type and some c10 types, along with signatures that use these types. The difference between these two files, is `types_base.py` should be implementation-agnostic, meaning it shouldn't contain any type definition that is tight to a specific C++ library (e.g., ATen), so that it can be easily reused if we want to generate code for another C++ library. Add new types to `types.py` if these types are ATen/c10 related. Add new types to `types_base.py` if they are basic and not attached to ATen/c10. """ from __future__ import annotations from abc import ABC, abstractmethod from dataclasses import dataclass from enum import auto, Enum from typing import TYPE_CHECKING, Union if TYPE_CHECKING: from torchgen.model import Argument, SelfArgument, TensorOptionsArguments # An ArgName is just the str name of the argument in schema; # but in some special circumstances, we may add a little extra # context. The Enum SpecialArgName covers all of these cases; # grep for their construction sites to see when they can occur. class SpecialArgName(Enum): possibly_redundant_memory_format = auto() ArgName = Union[str, SpecialArgName] # This class shouldn't be created directly; instead, use/create one of the singletons below. @dataclass(frozen=True) class BaseCppType: ns: str | None name: str def __str__(self) -> str: if self.ns is None or self.ns == "": return self.name return f"{self.ns}::{self.name}" # The set of all non-templated, valid, fully-qualified names of C++ types that are used in the codegen. # Templated types get their own dataclass, mainly to make namespace parsing easier. byteT = BaseCppType("", "uint8_t") charT = BaseCppType("", "int8_t") shortT = BaseCppType("", "int16_t") # It would be more symmetric for this to be called intT, but it easy to mix # this up with JIT int (which is int64_t in C++), so we intentionally don't # define intT to make it obvious when you've stuffed it up int32T = BaseCppType("", "int32_t") longT = BaseCppType("", "int64_t") doubleT = BaseCppType("", "double") floatT = BaseCppType("", "float") boolT = BaseCppType("", "bool") voidT = BaseCppType("", "void") class CType(ABC): @abstractmethod def cpp_type(self, *, strip_ref: bool = False) -> str: raise NotImplementedError @abstractmethod def remove_const_ref(self) -> CType: return self @dataclass(frozen=True) class BaseCType(CType): type: BaseCppType def cpp_type(self, *, strip_ref: bool = False) -> str: return str(self.type) def remove_const_ref(self) -> CType: return self @dataclass(frozen=True) class ConstRefCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: if strip_ref: return self.elem.cpp_type(strip_ref=strip_ref) return f"const {self.elem.cpp_type()} &" def remove_const_ref(self) -> CType: return self.elem.remove_const_ref() @dataclass(frozen=True) class VectorCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"::std::vector<{self.elem.cpp_type()}>" def remove_const_ref(self) -> CType: return VectorCType(self.elem.remove_const_ref()) @dataclass(frozen=True) class ArrayCType(CType): elem: CType size: int def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"::std::array<{self.elem.cpp_type()},{self.size}>" def remove_const_ref(self) -> CType: return ArrayCType(self.elem.remove_const_ref(), self.size) @dataclass(frozen=True) class TupleCType(CType): elems: list[CType] def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"::std::tuple<{','.join([e.cpp_type() for e in self.elems])}>" def remove_const_ref(self) -> CType: return TupleCType([e.remove_const_ref() for e in self.elems]) @dataclass(frozen=True) class MutRefCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: if strip_ref: return self.elem.cpp_type(strip_ref=strip_ref) return f"{self.elem.cpp_type()} &" def remove_const_ref(self) -> CType: return self.elem.remove_const_ref() # A NamedCType is short for Named C++ semantic type. A NamedCType represents a C++ type, plus # semantic information about what it represents. For example, consider the # argument "bool pin_memory"; its normal C++ type is "bool", but its C++ # semantic type also keeps track that this represents a "pin_memory"; you can't # just use a random other boolean in a context where you need a "pin_memory"! # @dataclass(frozen=True) class NamedCType: name: ArgName type: CType def cpp_type(self, *, strip_ref: bool = False) -> str: return self.type.cpp_type(strip_ref=strip_ref) def remove_const_ref(self) -> NamedCType: return NamedCType(self.name, self.type.remove_const_ref()) def with_name(self, name: str) -> NamedCType: return NamedCType(name, self.type) # A binding represents any C++ binding site for a formal parameter. # We don't distinguish between binding sites for different APIs; # instead, all of the important distinctions are encoded in CType, # which you can use to figure out if a given Binding is appropriate # for use in another context. (See torchgen.api.translate) @dataclass(frozen=True) class Binding: name: str nctype: NamedCType argument: Argument | TensorOptionsArguments | SelfArgument # TODO: maybe don't represent default here default: str | None = None def rename(self, name: str) -> Binding: return Binding( name=name, nctype=self.nctype, argument=self.argument, default=self.default, ) @property def type(self) -> str: return self.nctype.cpp_type() def no_default(self) -> Binding: return Binding( name=self.name, nctype=self.nctype, default=None, argument=self.argument, ) def decl(self, *, func_ptr_cast: bool = False) -> str: mb_default = "" if self.default is not None: mb_default = f"={self.default}" # casting only needs to know the type if func_ptr_cast: return f"{self.type}" else: return f"{self.type} {self.name}{mb_default}" def defn(self) -> str: return f"{self.type} {self.name}" def with_name(self, name: str) -> Binding: return Binding( name=name, nctype=self.nctype, argument=self.argument, default=self.default ) # An Expr is a C++ expression. It has a C++ string representing its syntax, # as well as a CType saying what it provides. @dataclass(frozen=True) class Expr: expr: str type: NamedCType ```
============================================================================================================= SOURCE CODE FILE: ufunc.py LINES: 1 SIZE: 6.74 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\ufunc.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass import torchgen.api.types as api_types from torchgen.api import cpp, structured from torchgen.api.types import ( ArgName, BaseCppType, BaseCType, Binding, ConstRefCType, CType, NamedCType, scalarT, ) from torchgen.model import ( Argument, BaseTy, BaseType, DispatchKey, FunctionSchema, NativeFunctionsGroup, Type, ) def schema_kernel_name(func: FunctionSchema, dispatch_key: DispatchKey) -> str: assert func.is_out_fn(), "ufunc.kernel_name should only be invoked on out schemas" return f"ufunc_{func.name.name}_{dispatch_key}" def kernel_name(g: NativeFunctionsGroup, dispatch_key: DispatchKey) -> str: return schema_kernel_name(g.out.func, dispatch_key) # Tensors are omitted (as they are stored in TensorIterator), everything else is # passed along (technically, we can pass tensors along too, it just wastes # argument registers) # # NB: used for CPU only def dispatchstub_type(t: Type, *, binds: ArgName) -> NamedCType | None: # Dispatch stubs are always plain ints r = cpp.valuetype_type(t, binds=binds, symint=False) if r is not None: return r if t == BaseType(BaseTy.Scalar): return NamedCType(binds, ConstRefCType(BaseCType(scalarT))) elif t == BaseType(BaseTy.Tensor): return None else: raise AssertionError(f"unrecognized type {repr(t)}") def opmath_type(scalar_t: BaseCppType) -> BaseCppType: if scalar_t == api_types.scalar_t: return api_types.opmath_t raise NotImplementedError # NB: Tensors in constructor are stored in opmath_t, not scalar_t # because Tensor in constructor = its a scalar tensor partially applied = # it can be higher precision and we want to compute in that higher precision # # NB: CUDA only def ufunctor_ctor_type(t: Type, *, binds: ArgName, scalar_t: BaseCppType) -> NamedCType: r = cpp.valuetype_type(t, binds=binds, symint=False) if r is not None: return r if t == BaseType(BaseTy.Scalar): return NamedCType(binds, BaseCType(opmath_type(scalar_t))) elif t == BaseType(BaseTy.Tensor): return NamedCType(binds, BaseCType(opmath_type(scalar_t))) else: raise AssertionError(f"unrecognized type {repr(t)}") # Only Tensors ever get passed directly to operator() # # NB: CUDA only # (Actually, this works for CPU too) def ufunctor_apply_type( t: Type, *, binds: ArgName, scalar_t: BaseCppType ) -> NamedCType: if t == BaseType(BaseTy.Tensor): return NamedCType(binds, BaseCType(scalar_t)) else: raise AssertionError(f"unrecognized type {repr(t)}") # The actual ufunc template function the user writes. Everything here # is done in the computation type. compute_t is opmath_t in CUDA and scalar_t # in CPU def ufunc_type(t: Type, *, binds: ArgName, compute_t: CType) -> NamedCType: r = cpp.valuetype_type(t, binds=binds, symint=False) if r is not None: return r if t == BaseType(BaseTy.Scalar): return NamedCType(binds, compute_t) elif t == BaseType(BaseTy.Tensor): return NamedCType(binds, compute_t) else: raise AssertionError(f"unrecognized type {repr(t)}") def ufunctor_ctor_argument(a: Argument, scalar_t: BaseCppType) -> Binding: return Binding( nctype=ufunctor_ctor_type(a.type, binds=a.name, scalar_t=scalar_t), name=a.name, default=None, argument=a, ) def ufunctor_apply_argument(a: Argument, scalar_t: BaseCppType) -> Binding: return Binding( nctype=ufunctor_apply_type(a.type, binds=a.name, scalar_t=scalar_t), name=a.name, default=None, argument=a, ) def ufunc_argument(a: Argument, compute_t: CType) -> Binding: return Binding( nctype=ufunc_type(a.type, binds=a.name, compute_t=compute_t), name=a.name, default=None, argument=a, ) @dataclass(frozen=True) class UfunctorBindings: ctor: list[Binding] apply: list[Binding] # ufunctors are a CUDA-only concept representing functors that take some of # their arguments on a host-side constructor, and the rest in the device-side # apply. E.g., # # template <typename scalar_t> # struct CUDAFunctorOnSelf_add { # using opmath_t = at::opmath_type<scalar_t>; # opmath_t other_; # opmath_t alpha_; # CUDAFunctorOnSelf_add(opmath_t other, opmath_t alpha) : other_(other), alpha_(alpha) {} # __device__ scalar_t operator()(scalar_t self) { # return ufunc::add(static_cast<opmath_t>(self), other_, alpha_); # } # }; # # The ctor refers to the constructor CUDAFunctorOnSelf_add, while apply refers # to the operator() definition def ufunctor_arguments( g: NativeFunctionsGroup, *, scalar_tensor_idx: int | None, scalar_t: BaseCppType ) -> UfunctorBindings: ctor = [] apply = [] for a in g.functional.func.arguments.flat_non_out: if a.type.is_tensor_like(): if scalar_tensor_idx == 0: # put it in the ctor anyway ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t)) scalar_tensor_idx = None else: if scalar_tensor_idx is not None: scalar_tensor_idx -= 1 apply.append(ufunctor_apply_argument(a, scalar_t=scalar_t)) else: ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t)) assert scalar_tensor_idx is None return UfunctorBindings(ctor=ctor, apply=apply) # ufuncs are the inner loop template functions that you wrote in ufunc/add.h # which do the actual computation in question. E.g., # # template <typename T> # C10_HOST_DEVICE T add(T self, T other, T alpha) __ubsan_ignore_undefined__ { # return self + alpha * other; # } # # In this file, we refer to T as compute_t which is bound by caller def ufunc_arguments(g: NativeFunctionsGroup, *, compute_t: CType) -> list[Binding]: return [ ufunc_argument(a, compute_t=compute_t) for a in g.functional.func.arguments.flat_non_out ] # Stubs are the DispatchStub trampolines that CPU kernels use to get to their # vectorized versions. E.g., # # using structured_binary_fn_alpha = void(*)(TensorIteratorBase&, const Scalar& alpha); # DECLARE_DISPATCH(structured_binary_fn_alpha, add_stub); def stub_arguments(g: NativeFunctionsGroup) -> list[Binding]: # stubs drop all tensor arguments (they are implicit in the TensorIterator # argument and keep everything else) return [ r for a in g.out.func.arguments.flat_non_out if not a.type.is_tensor_like() for r in structured.argument(a) ] ```
================================================================================================================ SOURCE CODE FILE: unboxing.py LINES: 6 SIZE: 9.40 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\api\unboxing.py ENCODING: utf-8 ```py from __future__ import annotations from torchgen.api import cpp from torchgen.api.types import Binding, CppSignatureGroup, CType from torchgen.model import ( Argument, BaseTy, BaseType, ListType, NativeFunction, OptionalType, Type, ) # This file generates the code for unboxing wrappers, i.e., the glue logic to unbox a boxed operator and convert the # ivalues from stack to correct arguments to the unboxed kernel, based on corresponding JIT schema. This codegen is # an alternative way to generate unboxing wrappers similar to the existing C++ metaprogramming approach but gets the # job done statically. These generated unboxing wrappers will be useful under the scenario where we need to register # a fixed set of operators known at compile time and thus can save some time in runtime initialization phase. # # Here's an example on how the codegen works: # # - Function Schema (source of truth) # # aten::empty.names(int[] size, *, Dimname[]? names, # ScalarType? dtype=None, Layout? layout=None, # Device? device=None, bool? pin_memory=None, # MemoryFormat? memory_format=None) -> Tensor # - Argument Conversion # Generates C++ code to convert an ivalue (from stack) to its underlying C++ type. # - int[] size # ```cpp # const c10::List<c10::IValue> size_list_in = (std::move(peek(stack, 0, 7))).toList(); # # std::vector<int64_t> size_vec; # for (c10::IValue size_elem: size_list_in) { # int64_t size_base = size_elem.to<int64_t>(); # size_vec.push_back(size_base); # } # at::ArrayRef<int64_t> size_list_out(size_vec); # ~~~~~~~~~~~~~ <-- The converted argument from ivalues in the stack. # Will be passed to unboxed kernel. # ``` # - Dimname[]? names # ```cpp # ::std::optional<c10::IValue> names_opt = (std::move(peek(stack, 1, 7))).toOptional<c10::IValue>(); # ::std::optional<at::ArrayRef<at::Dimname>> names_opt_out; # if (names_opt.has_value()) { # ~~~~~~~~~~~ <-- Unwrapping optional shell # const c10::IValue names_opt_in = names_opt.value(); # const c10::List<c10::IValue> names_list_in = names_opt_in.toList(); # # std::vector<at::Dimname> names_vec; # for (c10::IValue names_elem: names_list_in) { # ~~~~~~~~~~~~~~~~~~~~~~~~~ <-- Unrolling list, then convert elements one by one. # at::Dimname names_base = names_elem.to<at::Dimname>(); # names_vec.push_back(names_base); # } # at::ArrayRef<at::Dimname> names_list_out(names_vec); # # names_opt_out = ::std::optional<at::ArrayRef<at::Dimname>>(names_list_out); # } else { # names_opt_out = ::std::optional<at::ArrayRef<at::Dimname>>(); # } # ``` # - ScalarType? dtype (similarly for the rest of the arguments) # ```cpp # ::std::optional<c10::IValue> dtype_opt = (std::move(peek(stack, 2, 7))).toOptional<c10::IValue>(); # ::std::optional<at::ScalarType> dtype_opt_out; # if (dtype_opt.has_value()) { # const c10::IValue dtype_opt_in = dtype_opt.value(); # at::ScalarType dtype_base = dtype_opt_in.to<at::ScalarType>(); # ~~~~~~~~~~~~~~~~~~~~ <-- For base types, convert ivalue to it # directly using ".to<T>()" API. # dtype_opt_out = ::std::optional<at::ScalarType>(dtype_base); # } else { # dtype_opt_out = ::std::optional<at::ScalarType>(); # } # ``` # # - Unboxed Kernel Call # ```cpp # auto result_ = torch::empty( # size_list_out, # names_opt_out, # options, # memory_format_opt_out # ); # ``` # # - Push Result Back to Stack # ```cpp # drop(stack, 7); # pack(stack, std::move(result_)); # ``` connector = "\n\t" # Return unboxing function name for a NativeFunction def name(f: NativeFunction) -> str: return f.func.name.unambiguous_name() # Convert all the arguments in a NativeFunction to C++ code def convert_arguments(f: NativeFunction) -> tuple[list[Binding], list[str]]: # we need the 'self' argument so method needs to be False args = ( CppSignatureGroup.from_native_function(f, method=False) .most_faithful_signature() .arguments() ) code_list = [ f"c10::IValue {args[i].name} = std::move(peek(stack, {i}, {len(args)}));" for i in range(len(args)) ] + [""] binding_list = [] for arg in args: # expecting only Argument if not isinstance(arg.argument, Argument): raise Exception( # noqa: TRY002 f"Unexpected argument type, expecting `Argument` but got {arg}" ) argument: Argument = arg.argument unboxed_name, _, code, decl = argumenttype_ivalue_convert( argument.type, argument.name, mutable=argument.is_write, ) code_list.extend(decl) code_list.extend(code) binding_list.append(arg.with_name(unboxed_name)) return binding_list, code_list # Takes in the type, name and mutability corresponding to an argument, and generates a tuple of: # (1) the C++ code necessary to unbox the argument # (2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType def argumenttype_ivalue_convert( t: Type, arg_name: str, *, mutable: bool = False ) -> tuple[str, CType, list[str], list[str]]: # Unboxing is for mobile, which doesn't care about SymInts ctype = cpp.argumenttype_type( t=t, mutable=mutable, binds=arg_name, symint=False ).type if isinstance(t, BaseType): out_name = f"{arg_name}_base" code, decl = _gen_code_base_type( arg_name=arg_name, out_name=out_name, ctype=ctype ) elif isinstance(t, OptionalType): out_name = f"{arg_name}_opt_out" code, decl = _gen_code_optional_type( arg_name=arg_name, out_name=out_name, t=t, ctype=ctype, ) elif isinstance(t, ListType): out_name = f"{arg_name}_list_out" code, decl = _gen_code_list_type( arg_name=arg_name, out_name=out_name, t=t, ctype=ctype, ) else: raise Exception(f"Cannot handle type {t}. arg_name: {arg_name}") # noqa: TRY002 return out_name, ctype, code, decl def _gen_code_base_type( arg_name: str, out_name: str, ctype: CType ) -> tuple[list[str], list[str]]: return [ f"{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();" ], [] def _gen_code_optional_type( arg_name: str, out_name: str, t: OptionalType, ctype: CType ) -> tuple[list[str], list[str]]: in_name = f"{arg_name}_opt_in" res_name, _, res_code, decl = argumenttype_ivalue_convert(t.elem, in_name) return ( f""" auto {arg_name}_opt = {arg_name}.toOptional<c10::IValue>(); {ctype.cpp_type(strip_ref=True)} {out_name}; if ({arg_name}_opt.has_value()) {{ const c10::IValue {in_name} = {arg_name}_opt.value(); {connector.join(res_code)} {out_name} = {ctype.cpp_type(strip_ref=True)}({res_name}); }} else {{ {out_name} = {ctype.cpp_type(strip_ref=True)}(); }} """.split("\n"), decl, ) def _gen_code_list_type( arg_name: str, out_name: str, t: ListType, ctype: CType ) -> tuple[list[str], list[str]]: in_name = f"{arg_name}_list_in" elem_name = f"{arg_name}_elem" code = [f"const c10::List<c10::IValue> {in_name} = {arg_name}.toList();"] res_name, res_ctype, res_code, decl = argumenttype_ivalue_convert(t.elem, elem_name) # handle list type with size, e.g., bool[4] if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool and t.size: code.extend( f""" {ctype.cpp_type(strip_ref=True)} {out_name} = as_array<{res_ctype.cpp_type(strip_ref=True)}, {t.size}>({in_name}); """.split("\n") ) # we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<::std::optional<at::Tensor>> elif isinstance(t.elem, OptionalType): code.extend( f""" {ctype.cpp_type(strip_ref=True)} {out_name}; for (c10::IValue {elem_name}: {in_name}) {{ {connector.join(res_code)} {out_name}.push_back({res_name}); }} """.split("\n") ) else: # use ArrayRef as default. vec_name = arg_name + "_vec" # need to bring vector instantiation out of scope so that ArrayRef has valid data decl.append(f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};") code.extend( f""" for (c10::IValue {elem_name}: {in_name}) {{ {connector.join(res_code)} {vec_name}.push_back({res_name}); }} {ctype.cpp_type(strip_ref=True)} {out_name}({vec_name}); """.split("\n") ) return code, decl ```
================================================================================================================= SOURCE CODE FILE: code_template.py LINES: 3 SIZE: 3.02 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\code_template.py ENCODING: utf-8 ```py from __future__ import annotations import re from typing import TYPE_CHECKING if TYPE_CHECKING: from collections.abc import Mapping, Sequence # match $identifier or ${identifier} and replace with value in env # If this identifier is at the beginning of whitespace on a line # and its value is a list then it is treated as # block substitution by indenting to that depth and putting each element # of the list on its own line # if the identifier is on a line starting with non-whitespace and a list # then it is comma separated ${,foo} will insert a comma before the list # if this list is not empty and ${foo,} will insert one after. class CodeTemplate: substitution_str = r"(^[^\n\S]*)?\$([^\d\W]\w*|\{,?[^\d\W]\w*\,?})" substitution = re.compile(substitution_str, re.MULTILINE) pattern: str filename: str @staticmethod def from_file(filename: str) -> CodeTemplate: with open(filename) as f: return CodeTemplate(f.read(), filename) def __init__(self, pattern: str, filename: str = "") -> None: self.pattern = pattern self.filename = filename def substitute( self, env: Mapping[str, object] | None = None, **kwargs: object ) -> str: if env is None: env = {} def lookup(v: str) -> object: assert env is not None return kwargs[v] if v in kwargs else env[v] def indent_lines(indent: str, v: Sequence[object]) -> str: return "".join( [indent + l + "\n" for e in v for l in str(e).splitlines()] ).rstrip() def replace(match: re.Match[str]) -> str: indent = match.group(1) key = match.group(2) comma_before = "" comma_after = "" if key[0] == "{": key = key[1:-1] if key[0] == ",": comma_before = ", " key = key[1:] if key[-1] == ",": comma_after = ", " key = key[:-1] v = lookup(key) if indent is not None: if not isinstance(v, list): v = [v] return indent_lines(indent, v) elif isinstance(v, list): middle = ", ".join([str(x) for x in v]) if len(v) == 0: return middle return comma_before + middle + comma_after else: return str(v) return self.substitution.sub(replace, self.pattern) if __name__ == "__main__": c = CodeTemplate( """\ int foo($args) { $bar $bar $a+$b } int commatest(int a${,stuff}) int notest(int a${,empty,}) """ ) print( c.substitute( args=["hi", 8], bar=["what", 7], a=3, b=4, stuff=["things...", "others"], empty=[], ) ) ```
=========================================================================================================== SOURCE CODE FILE: context.py LINES: 2 SIZE: 4.09 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\context.py ENCODING: utf-8 ```py from __future__ import annotations import contextlib import functools from typing import Any, Callable, Optional, TYPE_CHECKING, TypeVar, Union import torchgen.local as local from torchgen.model import ( BackendIndex, DispatchKey, NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup, ) from torchgen.utils import context, S, T if TYPE_CHECKING: from collections.abc import Iterator # Helper functions for defining generators on things in the model F = TypeVar( "F", NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup, Union[NativeFunction, NativeFunctionsGroup], Union[NativeFunction, NativeFunctionsViewGroup], ) F2 = TypeVar( "F2", NativeFunction, NativeFunctionsGroup, Optional[NativeFunction], bool, str, ) F3 = TypeVar("F3", tuple[NativeFunction, Any], list[NativeFunction]) @contextlib.contextmanager def native_function_manager( g: NativeFunctionsGroup | NativeFunctionsViewGroup | NativeFunction, ) -> Iterator[None]: if isinstance(g, NativeFunctionsGroup): # By default, we associate all errors with structured native functions # with the out variant. In some cases, it might be better to have # a more specific place to hang things; if so, use # native_function_manager again on the inside f = g.out elif isinstance(g, NativeFunctionsViewGroup): # We associate errors with the view operator f = g.view else: f = g with context(lambda: f"in native_functions.yaml line {f.loc}:\n {f.func}"): with local.parametrize( use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors, use_ilistref_for_tensor_lists=f.part_of_structured_group, ): yield # Given a function that operates on NativeFunction, wrap it into a new function # that sets some appropriate context managers for that native function. # YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound # (you will get an error if we try to access the local variables without having # set them). def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]: @functools.wraps(func) def wrapper(f: F) -> T: with native_function_manager(f): return func(f) return wrapper def with_native_function_and(func: Callable[[F, F2], T]) -> Callable[[F, F2], T]: @functools.wraps(func) def wrapper(f: F, f2: F2) -> T: # The first native_function is assumed to be the one with the appropriate context. with native_function_manager(f): return func(f, f2) return wrapper def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]: @functools.wraps(func) def wrapper(slf: S, f: F) -> T: with native_function_manager(f): return func(slf, f) return wrapper def method_with_nested_native_function( func: Callable[[S, F3], T], ) -> Callable[[S, F3], T]: @functools.wraps(func) def wrapper(slf: S, f: F3) -> T: with native_function_manager(f[0]): return func(slf, f) return wrapper # Convenience decorator for functions that explicitly take in a BackendIndex, # instead of indirectly taking one in as a closure def with_native_function_and_index( func: Callable[[F, BackendIndex], T], ) -> Callable[[F, BackendIndex], T]: @functools.wraps(func) def wrapper(f: F, backend_index: BackendIndex) -> T: with native_function_manager(f): return func(f, backend_index) return wrapper # Convenience decorator for functions that explicitly take in a Dict of BackendIndices def with_native_function_and_indices( func: Callable[[F, dict[DispatchKey, BackendIndex]], T], ) -> Callable[[F, dict[DispatchKey, BackendIndex]], T]: @functools.wraps(func) def wrapper(f: F, backend_indices: dict[DispatchKey, BackendIndex]) -> T: with native_function_manager(f): return func(f, backend_indices) return wrapper ```
================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.80 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\dest\__init__.py ENCODING: utf-8 ```py from torchgen.dest.lazy_ir import ( generate_non_native_lazy_ir_nodes as generate_non_native_lazy_ir_nodes, GenLazyIR as GenLazyIR, GenLazyNativeFuncDefinition as GenLazyNativeFuncDefinition, GenLazyShapeInferenceDefinition as GenLazyShapeInferenceDefinition, ) from torchgen.dest.native_functions import ( compute_native_function_declaration as compute_native_function_declaration, ) from torchgen.dest.register_dispatch_key import ( gen_registration_headers as gen_registration_headers, gen_registration_helpers as gen_registration_helpers, RegisterDispatchKey as RegisterDispatchKey, ) from torchgen.dest.ufunc import ( compute_ufunc_cpu as compute_ufunc_cpu, compute_ufunc_cpu_kernel as compute_ufunc_cpu_kernel, compute_ufunc_cuda as compute_ufunc_cuda, ) ```
================================================================================================================ SOURCE CODE FILE: lazy_ir.py LINES: 13 SIZE: 29.00 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\dest\lazy_ir.py ENCODING: utf-8 ```py from __future__ import annotations import itertools from abc import ABC from dataclasses import dataclass from typing import Any import torchgen.api.dispatcher as dispatcher from torchgen.api.lazy import ( getValueT, isValueType, LazyArgument, LazyIrProperties, LazyIrSchema, tensorListValueT, ) from torchgen.api.translate import translate from torchgen.api.types import ( BaseCType, Binding, deviceT, DispatcherSignature, kernel_signature, NativeSignature, OptionalCType, VectorCType, ) from torchgen.context import method_with_native_function from torchgen.dest.lazy_ts_lowering import ts_lowering_body from torchgen.model import ( Argument, BackendIndex, BackendMetadata, BaseTy, BaseType, FunctionSchema, ListType, NativeFunction, NativeFunctionsGroup, ) def node_ctor_arg_rvalue_string(arg: LazyArgument) -> str: """ Given a LazyArgument, generate a c++ string for materializing an rvalue of that arg for passing into a lazy Node constructor. """ # TODO: Matching on CType seems wrong; should be matching on Type if isValueType(arg.lazy_type): if isinstance(arg.lazy_type, BaseCType): if arg.is_wrapped_scalar: return f"node_{arg.name}" elif arg.lazy_type.type is tensorListValueT: return f"lazy_{arg.name}_tensorlist" elif arg.is_symint_or_list: return f"GetSymIntValue({arg.name})" return f"lazy_{arg.name}->GetIrValue()" elif isinstance(arg.lazy_type, OptionalCType): if arg.is_symint_or_list: # TODO: I don't understand when you should put lazy_ in the name # or not return f"{arg.name} ? std::make_optional(GetSymIntValue(*{arg.name})) : ::std::nullopt" elif arg.is_wrapped_scalar: return f"node_{arg.name}" return ( f"lazy_{arg.name} ? " f"std::make_optional(lazy_{arg.name}->GetIrValue()) : " "::std::nullopt" ) else: raise AssertionError( f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})" ) else: # NB: this is here because right now we aren't treating SymInt[] as a # value type; when we do this needs to move above # NB: we cannot test arg.lazy_type as we've already specified it is an # int64_t and so we cannot distinguish between SymInt and int64_t if isinstance(arg.orig_type, ListType) and arg.orig_type.elem == BaseType( BaseTy.SymInt ): if arg.symint: return f"GetSymIntArrayRefValue({arg.name})" else: return f"std::vector<int64_t>({arg.name}.begin(), {arg.name}.end())" elif isinstance(arg.lazy_type, VectorCType) and isinstance( arg.lazy_type.elem, BaseCType ): return f"std::vector<{arg.lazy_type.elem.type}>({arg.name}.begin(), {arg.name}.end())" elif ( isinstance(arg.lazy_type, OptionalCType) and isinstance(arg.lazy_type.elem, VectorCType) and isinstance(arg.lazy_type.elem.elem, BaseCType) ): return f"torch::lazy::ToOptionalVector<{arg.lazy_type.elem.elem.type}>({arg.name})" else: return f"{arg.name}" def node_ctor_inputs(schema: LazyIrSchema) -> str: """ Produce a formatted string with the arguments as passed into the constructor of a node class. """ node_ctor_values = [ node_ctor_arg_rvalue_string(arg) for arg in schema.filtered_args() ] return ", ".join(node_ctor_values) def gen_fallback_code( schema: LazyIrSchema, sig: DispatcherSignature | NativeSignature, overload_name: str, ) -> str: """ Generate code that falls back to eager conditioned on a predicate """ dispatcher_sig = DispatcherSignature.from_schema(schema.func) exprs = translate(sig.arguments(), dispatcher_sig.arguments()) fallback_args = ",\n ".join([a.expr for a in exprs]) if len(overload_name): aten_op_str = f"ATEN_OP2({schema.aten_name}, {overload_name})" else: aten_op_str = f"ATEN_OP({schema.aten_name})" return f""" if (force_eager_fallback({aten_symbol(schema)})) {{ return at::native::call_fallback_fn_symint<&ltc_eager_fallback, {aten_op_str}>::call( {fallback_args} ); }} """ def aten_symbol(schema: LazyIrSchema) -> str: missing_interned_strings = { "sigmoid_backward", } if schema.aten_name in missing_interned_strings: return f'c10::Symbol::fromQualString("aten::{schema.aten_name}")' if not schema.aten_name.startswith("at::"): return f"at::aten::{schema.aten_name}" else: return schema.aten_name # converts all tensor-like arguments to meta tensors. Returns: # (1) a string containing all of the logic that does the conversions. # (2) a context, to be used by translate(), with all of the relevant bindings. def convert_to_meta_tensors(sig: DispatcherSignature) -> tuple[str, list[Binding]]: context: list[Binding] = [] unwrapped_tensor_args: list[str] = [] for arg in sig.arguments(): if isinstance(arg.argument, Argument) and arg.argument.type.is_tensor_like(): unwrapped_name = f"{arg.name}_meta" unwrapped_tensor_args.append( f"auto {unwrapped_name} = to_meta({arg.name});" ) context.append(arg.with_name(unwrapped_name)) else: context.append(arg) unwrap_tensor_args_str = "\n ".join(unwrapped_tensor_args) return unwrap_tensor_args_str, context @dataclass(frozen=True) class GenLazyIR(ABC): backend_index: BackendIndex backend_name: str node_base: str use_lazy_shape: bool @method_with_native_function def __call__(self, f: NativeFunctionsGroup | NativeFunction) -> list[str]: func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func metadata = self.backend_index.get_kernel( f.functional if isinstance(f, NativeFunctionsGroup) else f ) schema = LazyIrSchema( func, symint=metadata is not None and metadata.supports_symint() ) return self.gen(schema) # there is no lowering functionality generated unless this IR base class is subclassed and # implemented as a backend-specific node def lowering_function(self, schema: LazyIrSchema) -> str: return "" def create_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str: return "" def can_be_reused_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str: return f"""bool CanBeReused({node_ctor_args}) const {{ return false; }}""" def node_base_ctor_call(self, schema: LazyIrSchema) -> str: value_args = schema.filtered_args(values=True, scalars=False) # backends can customize the way the node base class constructor is called, # as long as all of its arguments can be generated from information available from the schema base_ctor_value_args_list = [] for arg in value_args: if isinstance(arg.lazy_type, (BaseCType, VectorCType)): base_ctor_value_args_list.append(f"{arg.name}") elif isinstance(arg.lazy_type, OptionalCType): base_ctor_value_args_list.append(f"{arg.name}.value_or(kNullValue)") else: raise AssertionError( f"Unsupported type ({arg.lazy_type}) - add support if necessary" ) base_ctor_value_args = ", ".join(base_ctor_value_args_list) scalar_args = schema.filtered_args(values=False, scalars=True) # Shape construction. # Conditionally build shape depending on specified shape property if schema.properties.ShapePrecompute: shape_ctor_arg = "std::move(shapes)," elif schema.properties.ShapeCompute: shape_args = [a.name for a in value_args] shape_args.extend(a.name for a in scalar_args) shape_ctor_arg = f"compute_shape_{schema.name}({', '.join(shape_args)})," elif schema.properties.ShapeCache: shape_args = [f"operand({i})" for i in range(len(value_args))] shape_args.extend(a.name for a in scalar_args) shape_ctor_arg = f"[&](){{ return compute_shape_{schema.name}({', '.join(shape_args)})[0]; }}," else: shape_ctor_arg = "" scalar_hashes = ", ".join(f"{a.name}" for a in scalar_args) return f"""{self.node_base}( {schema.node_name}::ClassOpKind(), OpList{{{base_ctor_value_args}}}, {shape_ctor_arg} /* num_outputs */ {len(schema.returns)}, torch::lazy::MHash({scalar_hashes}))""" def gen(self, schema: LazyIrSchema) -> list[str]: opkind = schema.opkind or aten_symbol(schema) # for now, we just want one IR class decl and soon after also the method defs # and we use the functional version not out/inplace. all_args = schema.filtered_args() scalar_args = schema.filtered_args(values=False, scalars=True) ctor_args = [f"const {i.lazy_type.cpp_type()}& {i.name}" for i in all_args] reuse_ctor_args = ", ".join(ctor_args) if self.use_lazy_shape and schema.properties.ShapePrecompute: ctor_args.append("std::vector<torch::lazy::Shape>&& shapes") node_ctor_args = ", ".join(ctor_args) scalar_initializers = ",\n ".join( [ # This code is just special casing the mapping from string_view -> strings f"{a.name}({a.name}.has_value() ? ::std::make_optional(std::string(*{a.name})) : ::std::nullopt)" if a.lazy_type.cpp_type() == "::std::optional<c10::string_view>" else f"{a.name}({a.name})" for a in scalar_args ] ) if len(scalar_initializers): scalar_initializers = f",\n {scalar_initializers}" scalar_decls = "\n ".join( [ f"std::string {a.name};" if a.lazy_type.cpp_type() == "c10::string_view" else f"::std::optional<std::string> {a.name};" if a.lazy_type.cpp_type() == "::std::optional<c10::string_view>" else f"{a.lazy_type.cpp_type()} {a.name};" for a in scalar_args ] ) optional_values = [ arg.name for arg in schema.filtered_args(values=True, scalars=False) if isinstance(arg.lazy_type, OptionalCType) ] has_optional_decls = "\n ".join( [f"bool has_{value}: 1;" for value in optional_values] ) has_optional_defs = "\n ".join( [f"has_{value} = !!{value};" for value in optional_values] ) members_to_string = [] for arg in scalar_args: if isinstance(arg.lazy_type, OptionalCType): value = f"{arg.name}.value()" if arg.is_generator: value = '"torch.Generator()"' members_to_string.append( f"""if ({arg.name}.has_value()) {{ ss << ", {arg.name}=" << {value}; }} else {{ ss << ", {arg.name}=null"; }}""" ) else: members_to_string.append(f'ss << ", {arg.name}=" << {arg.name};') members_to_string_str = "\n ".join(members_to_string) return [ f"""\ class {schema.node_name} : public {self.node_base} {{ public: static torch::lazy::OpKind ClassOpKind() {{ return torch::lazy::OpKind({opkind}); }} {schema.node_name}({node_ctor_args}) : {self.node_base_ctor_call(schema)}{scalar_initializers} {{ {has_optional_defs} }} std::string ToString() const override {{ std::stringstream ss; ss << {self.node_base}::ToString(); {members_to_string_str} return ss.str(); }} {self.create_function(schema, reuse_ctor_args)} {self.can_be_reused_function(schema, reuse_ctor_args)} {self.lowering_function(schema)} {scalar_decls} {has_optional_decls} }}; """, ] @dataclass(frozen=True) class GenTSLazyIR(GenLazyIR): def lowering_function(self, schema: LazyIrSchema) -> str: signature = """ torch::lazy::TSOpVector Lower( std::shared_ptr<torch::jit::GraphFunction> function, torch::lazy::TSLoweringContext* loctx) const override""" if schema.properties.LowerDeclOnly: return f"{signature};" elif schema.properties.Lower: return f"""{signature} {{ {ts_lowering_body(schema)} }} """ else: return "" def create_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str: signature = f"static NodePtr Create({node_ctor_args})" if schema.properties.CreateFnDeclOnly: return f"{signature};" elif not schema.properties.CreateFn: return "" return f"""{signature} {{ return ReuseOrMakeNode<{schema.node_name}>(data); }}""" def can_be_reused_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str: signature = f"bool CanBeReused({node_ctor_args}) const" if schema.properties.CanBeReusedDeclOnly: return f"{signature};" elif not schema.properties.CanBeReused: return "" value_comparison = [] for arg in itertools.chain(schema.positional_values, schema.keyword_values): if isinstance(arg.lazy_type, OptionalCType): value_comparison.append( f"nullable_operand(i++) == {arg.name}.value_or(kNullValue)" ) else: value_comparison.append(f"operand(i++) == {arg.name}") for arg in itertools.chain(schema.positional_scalars, schema.keyword_scalars): if isinstance(arg.lazy_type, OptionalCType): value_comparison.append( f"((!this->{arg.name}&&!{arg.name}) || (this->{arg.name}&&{arg.name} && *(this->{arg.name}) == *{arg.name}))" ) else: value_comparison.append(f"this->{arg.name} == {arg.name}") value_comparison_str = " &&\n ".join(value_comparison) return f"""{signature} {{ size_t i = 0; return ({value_comparison_str}); }}""" @dataclass(frozen=True) class GenLazyNativeFuncDefinition: class_method_name: str backend_index: BackendIndex tensor_class: str gen_forced_fallback_code: bool backend_namespace: str get_tensorlist: str get_tensor_or_wrap_number: str try_get_tensor: str metrics_counter: str create_tensor: str create_from_first_tensor: bool create_aten_from_ltc_tensor: str tuple_aten_from_ltc_tensors: str lazy_tensor_ptr: str get_device_fn: str def lazy_tensor_decls(self, func: NativeFunction, schema: LazyIrSchema) -> str: value_args = schema.filtered_args(values=True, scalars=False) # Generates lazy_{name} variables for LazyTensors wrapping input tensors lazy_tensor_decls: list[str] = [] for arg in value_args: if arg.is_wrapped_scalar: if isinstance(arg.lazy_type, OptionalCType): lazy_tensor_decls.append( f"""auto node_{arg.name} = {arg.name} ? std::make_optional(torch::lazy::LazyGraphExecutor::Get()-> GetIrValueForScalarFromCodegen(*{arg.name}, *common_device)): ::std::nullopt;""" ) else: lazy_tensor_decls.append( f"""auto node_{arg.name} = torch::lazy::LazyGraphExecutor::Get()-> GetIrValueForScalarFromCodegen({arg.name}, *common_device);""" ) elif arg.is_symint_or_list: continue # values are extracted in isValueType elif isinstance(arg.lazy_type, BaseCType): if arg.lazy_type.type is tensorListValueT: lazy_tensor_decls.append( f"auto lazy_{arg.name}_tensorlist = " f"{self.backend_namespace}::{self.get_tensorlist}({arg.name});" ) else: lazy_tensor_decls.append( f"{self.lazy_tensor_ptr} lazy_{arg.name} = " f"{self.backend_namespace}::{self.get_tensor_or_wrap_number}({arg.name}, *common_device);" ) elif isinstance(arg.lazy_type, OptionalCType): assert arg.lazy_type.elem == BaseCType(getValueT()), arg.lazy_type.elem # TODO(alanwaketan): Maybe we want to apply GetLtcTensorOrCreateForWrappedNumber here, but hold it # until we encounter a real world example. lazy_tensor_decls.append( f"{self.lazy_tensor_ptr} lazy_{arg.name} = " f"{self.backend_namespace}::{self.try_get_tensor}({arg.name}.value_or(at::Tensor()));" ) else: raise AssertionError( f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})" ) return ("\n ").join(lazy_tensor_decls) def force_eager_fallback( self, func: NativeFunction, schema: LazyIrSchema, metadata: BackendMetadata, sig: DispatcherSignature | NativeSignature, ) -> str: if self.gen_forced_fallback_code: return gen_fallback_code( schema, sig, overload_name=func.func.name.overload_name ) return "" def metrics(self, func: NativeFunction, schema: LazyIrSchema) -> str: return f"{self.metrics_counter};" def get_device(self, func: NativeFunction, schema: LazyIrSchema) -> str: value_args = schema.filtered_args(values=True, scalars=False) scalar_args = schema.filtered_args(values=False, scalars=True) value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar] optional_device = OptionalCType(BaseCType(deviceT)) optional_devices = [ a.name for a in scalar_args if a.lazy_type == optional_device ] assert len(value_types_names) > 0 or len(optional_devices) > 0, ( "Expected at least one Value or Device type" ) get_device_str = ( f"{self.get_device_fn}({', '.join(value_types_names + optional_devices)})" ) return f"""auto common_device = {get_device_str}; TORCH_INTERNAL_ASSERT(common_device); """ def shape_inference(self, func: NativeFunction, schema: LazyIrSchema) -> str: metadata = self.backend_index.get_kernel(func) assert metadata is not None all_args = schema.filtered_args() returns_length = len(schema.returns) # call the meta kernel if it exists, to compute output shape/dtype for our IR # Note [Generated LTC Shape Functions] # LTC uses meta tensors from core to do shape inference when possible, and otherwise # we generate a shape function declaration that needs to be manually implemented. # How do we detect which ops are eligible to use meta tensors? # In general we should be able to use meta tensors not just on structured operators, # but also on composite operators that are implemented in terms of structured kernels. # We don't currently have a way of knowing at codegen time which ops are implemented that way. # This is the case for all view and view_copy operators however, so we're going to # use them specifically for all of the view_copy ops (instead of manually writing shape rules for all of them). is_view_copy_op = "view_copy" in func.tags is_structured = func.structured or func.structured_delegate is not None if is_structured or is_view_copy_op: meta_out = """ std::vector<torch::lazy::Shape> shapes{torch::lazy::Shape(out_meta.scalar_type(), out_meta.sizes().vec())};""" if returns_length > 1: def this_shape(i: int) -> str: return f"torch::lazy::Shape(std::get<{i}>(out_meta).scalar_type(), std::get<{i}>(out_meta).sizes().vec())" shapes_str = ",".join([this_shape(i) for i in range(returns_length)]) meta_out = "std::vector<torch::lazy::Shape> shapes{" + shapes_str + "};" # Convert tensor args to the meta device and call it. # (We can't pass in the input tensors directly, because they are "functional wrappers". # If any of the meta kernels call a tensor op and redispatch, we don't want to hit the functionalize kernels.) # Even at::meta:: functions might redispatch, e.g. if they call into view ops. dispatcher_sig = DispatcherSignature.from_schema(func.func) meta_conversion_str, meta_call_ctx = convert_to_meta_tensors(dispatcher_sig) meta_call_args = [ e.expr for e in translate( meta_call_ctx, dispatcher_sig.arguments(), method=False ) ] if is_view_copy_op: # view_copy ops always have a CompositeExplicitAutogradNonFunctional kernel assert func.has_composite_explicit_autograd_non_functional_kernel dispatch_ns = "compositeexplicitautogradnonfunctional" else: dispatch_ns = "meta" aten_name = schema.aten_name # TODO: this is trolling if func.func.has_symint() and metadata.supports_symint(): aten_name += "_symint" shape_str = f"""\ {meta_conversion_str} auto out_meta = at::{dispatch_ns}::{aten_name}({", ".join(meta_call_args)}); {meta_out}""" else: shape_sig = ComputeShapeSignature( metadata.kernel, func, symint=metadata.supports_symint() ) shape_str = f""" auto shapes = {shape_sig.shape_call};""" shape_str += f""" TORCH_INTERNAL_ASSERT(shapes.size() == {returns_length});""" # Calculating which dimensions are symbolic func_schema_str = "aten::" + str(func.func) shape_str += f""" if(torch::lazy::symbolicShapeEnabled()){{ std::vector<torch::jit::IValue> inputs = {{ {", ".join(str(a.name) for a in all_args)} }}; const char* schema_str = "{func_schema_str}"; applySymbolicShapesOnLT(schema_str, inputs, shapes); }} """ return shape_str def build_ir_node(self, func: NativeFunction, schema: LazyIrSchema) -> str: node_ctor_input_str = node_ctor_inputs(schema) return f"""torch::lazy::NodePtr node = torch::lazy::ReuseNode<{schema.node_name}>({node_ctor_input_str}); if (!node) {{ {self.shape_inference(func, schema)} node = torch::lazy::MakeNode<{schema.node_name}>({node_ctor_input_str}, std::move(shapes)); CacheNode(node); }} """ def create_lazy_tensor(self, first_tensor_name: str | None = None) -> str: # xla uses an instance method for tensor creation, for the time being if self.create_from_first_tensor: # TODO(whc) remove this if XLA switches to using static method for creation assert first_tensor_name is not None, ( "Requires first tensor to create lazy tensor" ) return f"{first_tensor_name}.{self.create_tensor}" return f"{self.backend_namespace}::{self.create_tensor}" def return_aten_tensor(self, func: NativeFunction, schema: LazyIrSchema) -> str: returns_length = len(schema.returns) value_args = schema.filtered_args(values=True, scalars=False) value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar] first_tensor_name = value_types_names[0] if len(value_types_names) > 0 else None bridge_str = f"""auto result = {self.create_aten_from_ltc_tensor}( {self.create_lazy_tensor(first_tensor_name)}(std::move(node), *common_device));""" if returns_length > 1: assert len(value_types_names) > 0, ( "Code below assumes there is at least one tensor arg" ) bridge_str = f"""std::vector<{self.lazy_tensor_ptr}> lazy_tensors; for (int i = 0; i < {returns_length}; i++) {{ lazy_tensors.push_back({self.create_lazy_tensor(first_tensor_name)}({getValueT()}(node, i), *common_device)); }} auto result = {self.tuple_aten_from_ltc_tensors}<{returns_length}>(lazy_tensors);""" if schema.name.name.inplace or func.func.is_out_fn(): assert returns_length == 1, ( "We assumed there was no such case where an op is an in-place variant " f"and has tuple outputs, but got tuple of len {returns_length}." ) bridge_str = f"""lazy_{first_tensor_name}->SetInPlaceIrValue(node); auto& result = {first_tensor_name};""" bridge_str += """ return result;""" return bridge_str @method_with_native_function def __call__(self, func: NativeFunction) -> list[str]: sig = kernel_signature(func, self.backend_index) metadata = self.backend_index.get_kernel(func) assert metadata is not None schema = LazyIrSchema(func.func, symint=metadata.supports_symint()) return [ f"""\ {sig.decl(name=f"{self.class_method_name}::{metadata.kernel}")} {{ {self.force_eager_fallback(func, schema, metadata, sig)} {self.metrics(func, schema)} {self.get_device(func, schema)} {self.lazy_tensor_decls(func, schema)} {self.build_ir_node(func, schema)} {self.return_aten_tensor(func, schema)} }}\n """ ] class ComputeShapeSignature: """ Here we use the base name as the suffix of the signature to avoid generating for in-place variants. """ def __init__(self, kernel_name: str, f: NativeFunction, *, symint: bool) -> None: self.__schema = LazyIrSchema(f.func, symint=symint) self.__dispatch_args = ", ".join( [a.decl() for a in dispatcher.arguments(f.func, symint=symint)] ) self.__call_args = ", ".join( [f"{arg.name}" for arg in self.__schema.filtered_args(generator=True)] ) self.__kernel_name = kernel_name def __decl_suffix(self) -> str: return f"{self.__kernel_name}({self.__dispatch_args})" def __call_suffix(self) -> str: return f"{self.__kernel_name}({self.__call_args})" @property def shape_decl(self) -> str: return f"TORCH_API std::vector<torch::lazy::Shape> compute_shape_{self.__decl_suffix()}" @property def shape_call(self) -> str: return f"torch::lazy::compute_shape_{self.__call_suffix()}" @dataclass(frozen=True) class GenLazyShapeInferenceDefinition: backend_index: BackendIndex tensor_class: str @method_with_native_function def __call__(self, f: NativeFunction) -> list[str]: metadata = self.backend_index.get_kernel(f) assert metadata is not None # See Note [Generated LTC Shape Functions] is_view_copy_op = "view_copy" in f.tags is_structured = f.structured or f.structured_delegate is not None if is_structured or is_view_copy_op: return [] else: shape_sig = ComputeShapeSignature( metadata.kernel, f, symint=metadata.supports_symint() ) return ["\n".join([f"{shape_sig.shape_decl};"])] def generate_non_native_lazy_ir_nodes( non_native: list[dict[str, Any]], gen_lazy_ir: GenLazyIR ) -> list[str]: """Generate the non-native lazy IR node classes""" nodes = [] for op in non_native: # Set default properties for Non-Native IRs properties = LazyIrProperties("ShapeCache", "CanBeReused", "LowerDeclOnly") for p in op.get("properties", []): setattr(properties, p, True) # non-native is assumed to want symint bindings if you wrote symint schema = LazyIrSchema(FunctionSchema.parse(op["func"]), properties, symint=True) schema.opkind = op.get("opkind") nodes.append(gen_lazy_ir.gen(schema)[0]) return nodes ```
========================================================================================================================= SOURCE CODE FILE: lazy_ts_lowering.py LINES: 3 SIZE: 1.83 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\dest\lazy_ts_lowering.py ENCODING: utf-8 ```py from torchgen.api.lazy import LazyArgument, LazyIrSchema from torchgen.api.types import OptionalCType def ts_lowering_body(schema: LazyIrSchema) -> str: # for now, we just want one IR class decl and soon after also the method defs # and we use the functional version not out/inplace. emplace_arguments = [] def get_value(arg: LazyArgument) -> str: if isinstance(arg.lazy_type, OptionalCType): return f"has_{arg.name} ? loctx->GetOutputOp(operand(i++)) : nullptr" return "loctx->GetOutputOp(operand(i++))" for arg in schema.positional_args: if arg.is_lazy_value: emplace_arguments.append(get_value(arg)) continue emplace_arguments.append(f'"{arg.name}", {arg.name}') emplace_arguments_str = "\n ".join( [f"arguments.emplace_back({a});" for a in emplace_arguments] ) emplace_kwarg_values = [ f'"{arg.name}", {get_value(arg)}' for arg in schema.keyword_values ] emplace_kwarg_scalars = [ f'"{arg.name}", {arg.name}' for arg in schema.keyword_scalars ] emplace_kwarguments = "\n ".join( [ f"kwarguments.emplace_back({a});" for a in emplace_kwarg_values + emplace_kwarg_scalars ] ) return f"""\ std::vector<torch::jit::NamedValue> arguments; std::vector<torch::jit::NamedValue> kwarguments; arguments.reserve({len(emplace_arguments)}); kwarguments.reserve({len(emplace_kwarg_values + emplace_kwarg_scalars)}); size_t i = 0; {emplace_arguments_str} {emplace_kwarguments} torch::lazy::TSOpVector {schema.aten_name}_out = torch::lazy::LowerTSBuiltin(function, op().op, arguments, kwarguments); TORCH_CHECK_EQ({schema.aten_name}_out.size(), {len(schema.returns)}); return {schema.aten_name}_out; """ ```
========================================================================================================================= SOURCE CODE FILE: native_functions.py LINES: 1 SIZE: 3.18 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\dest\native_functions.py ENCODING: utf-8 ```py from __future__ import annotations import torchgen.api.meta as meta import torchgen.api.structured as structured from torchgen.api.types import kernel_signature from torchgen.context import with_native_function_and_index from torchgen.model import BackendIndex, NativeFunction, NativeFunctionsGroup from torchgen.utils import mapMaybe def torch_api_key_word_prefix(bankend_index: BackendIndex) -> str: if bankend_index.external: return "" # Although Intel GPU ATen library is out-of-tree, it still utilizes torchgen to produce structrued # kernels. Regarding these produced structured kernels, they should be visible for the Intel GPU ATen # library. Therefore, we need to add "TORCH_XPU_API" prefix to these structured kernels, # rather than "TORCH_API". Because the semantic of "TORCH_API" is "hidden" for out-of-tree backends. # For other in-tree backends like cpu and cuda, they still use "TORCH_API" prefix with "visible" semantic. device_torch_api_key_word_mapping = { "XPU": "TORCH_XPU_API", } return ( device_torch_api_key_word_mapping.get( bankend_index.dispatch_key.name, "TORCH_API" ) + " " ) @with_native_function_and_index def gen_unstructured(f: NativeFunction, backend_index: BackendIndex) -> str | None: sig = kernel_signature(f, backend_index) metadata = backend_index.get_kernel(f) if metadata is None: return None if "legacy::" in metadata.kernel: return None else: prefix = "static" if backend_index.external else "TORCH_API" return f"{prefix} {sig.decl(name=metadata.kernel)};" @with_native_function_and_index def gen_structured(g: NativeFunctionsGroup, backend_index: BackendIndex) -> list[str]: meta_name = meta.name(g) out_args = structured.impl_arguments(g) metadata = backend_index.get_kernel(g) if metadata is None: return [] prefix = torch_api_key_word_prefix(backend_index) return [ f"""\ struct {prefix}structured_{metadata.kernel} : public at::meta::structured_{meta_name} {{ void impl({", ".join(a.decl() for a in out_args)}); }}; """ ] # Generates NativeFunctions.h, a list of forward declarations of all # actual kernel definitions we keep in aten/src/ATen/native/ @with_native_function_and_index def compute_native_function_declaration( g: NativeFunctionsGroup | NativeFunction, backend_index: BackendIndex ) -> list[str]: metadata = backend_index.get_kernel(g) if isinstance(g, NativeFunctionsGroup): if metadata is not None and metadata.structured: if backend_index.external: # Structured hasn't been tested with external backends yet. raise AssertionError( "Structured external backend functions are not implemented yet." ) else: return gen_structured(g, backend_index) else: return list( mapMaybe(lambda f: gen_unstructured(f, backend_index), g.functions()) ) else: x = gen_unstructured(g, backend_index) return [] if x is None else [x] ```
============================================================================================================================== SOURCE CODE FILE: register_dispatch_key.py LINES: 15 SIZE: 41.16 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\dest\register_dispatch_key.py ENCODING: utf-8 ```py from __future__ import annotations import itertools import textwrap from dataclasses import dataclass from typing import Literal, TYPE_CHECKING import torchgen.api.cpp as cpp import torchgen.api.meta as meta import torchgen.api.structured as structured from torchgen.api.translate import translate from torchgen.api.types import ( BaseCType, Binding, ConstRefCType, CppSignature, CppSignatureGroup, DispatcherSignature, Expr, kernel_signature, MutRefCType, NamedCType, NativeSignature, tensorT, ) from torchgen.context import method_with_native_function, native_function_manager from torchgen.model import ( Argument, BackendIndex, DeviceCheckType, DispatchKey, gets_generated_out_inplace_wrapper, is_cuda_dispatch_key, NativeFunction, NativeFunctionsGroup, SchemaKind, TensorOptionsArguments, ) from torchgen.utils import assert_never, mapMaybe, Target if TYPE_CHECKING: from torchgen.selective_build.selector import SelectiveBuilder def gen_registration_headers( backend_index: BackendIndex, per_operator_headers: bool, rocm: bool, ) -> list[str]: if per_operator_headers: headers = ["#include <ATen/ops/as_strided_native.h>"] else: headers = ["#include <ATen/NativeFunctions.h>"] if backend_index.dispatch_key in (DispatchKey.CPU, DispatchKey.Meta): headers.append("#include <ATen/EmptyTensor.h>") elif backend_index.dispatch_key == DispatchKey.CUDA: if rocm: headers.append("#include <ATen/hip/EmptyTensor.h>") else: headers.append("#include <ATen/cuda/EmptyTensor.h>") elif backend_index.dispatch_key == DispatchKey.MPS: headers.append("#include <ATen/mps/EmptyTensor.h>") elif backend_index.dispatch_key == DispatchKey.XPU: # XPU specific, this header resides in third_party/torch-xpu-ops headers.append("#include <ATen/xpu/EmptyTensor.h>") elif per_operator_headers: headers += [ "#include <ATen/ops/empty.h>", "#include <ATen/ops/empty_strided.h>", "#include <ATen/ops/_copy_from_and_resize.h>", "#include <ATen/ops/_copy_from.h>", ] else: headers.append("#include <ATen/Functions.h>") headers.append("#include <c10/macros/Macros.h>") return headers def gen_empty_impl_names( backend_index: BackendIndex, ) -> tuple[str | None, str | None]: empty_impl = None empty_strided_impl = None if backend_index.dispatch_key in ( DispatchKey.Meta, DispatchKey.CPU, DispatchKey.CUDA, DispatchKey.MPS, DispatchKey.XPU, ): dispatch = str(backend_index.dispatch_key).lower() empty_impl = f"at::detail::empty_{dispatch}" empty_strided_impl = f"at::detail::empty_strided_{dispatch}" elif backend_index.dispatch_key in ( DispatchKey.CompositeExplicitAutogradNonFunctional, DispatchKey.QuantizedCPU, DispatchKey.QuantizedCUDA, DispatchKey.XPU, ): empty_impl = "at::empty" empty_strided_impl = "at::empty_strided" return empty_impl, empty_strided_impl def gen_create_out_helper(backend_index: BackendIndex) -> list[str]: if backend_index.dispatch_key == DispatchKey.Meta: empty_options = "options.device(at::kMeta)" else: empty_options = "options" empty_impl, empty_strided_impl = gen_empty_impl_names(backend_index) if empty_impl is None: return [] return [ f""" Tensor create_out(IntArrayRef sizes, IntArrayRef strides, const TensorOptions &options) {{ if (strides.empty()) {{ return {empty_impl}(sizes, {empty_options}); }} else {{ return {empty_strided_impl}(sizes, strides, {empty_options}); }} }} """ ] def gen_maybe_create_proxy_helper(backend_index: BackendIndex) -> list[str]: _, empty_strided_impl = gen_empty_impl_names(backend_index) return ( [] if empty_strided_impl is None else [ f""" std::optional<Tensor> maybe_create_proxy(const Tensor &out, IntArrayRef sizes, IntArrayRef strides, const TensorOptions &options) {{ if (out.strides() != strides) {{ return {empty_strided_impl}(sizes, strides, options); }} return std::nullopt; }} """ ] ) def gen_resize_out_helper(backend_index: BackendIndex) -> list[str]: if backend_index.dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional: # The function isn't used by this key (since only functional ops have a kernel for this key), # so we need to not include it to avoid a defined-but-not-used error. return [] return [ """ void resize_out(const Tensor &out, IntArrayRef sizes, IntArrayRef strides, const TensorOptions &options) { TORCH_CHECK(options.dtype() == out.dtype(), "Expected out tensor to have dtype ", options.dtype(), ", but got ", out.dtype(), " instead"); TORCH_CHECK(options.device() == out.device(), "Expected out tensor to have device ", options.device(), ", but got ", out.device(), " instead"); const bool resized = at::native::resize_output(out, sizes); // Only restride if a resize occurred; otherwise we ignore the (advisory) // strides from the meta function and directly use the output tensor's // preexisting strides if (resized) { if (!strides.empty()) { TORCH_INTERNAL_ASSERT(!options.memory_format_opt().has_value()); // TODO: avoid the redispatch here out.as_strided_(sizes, strides); } else if (options.memory_format_opt().has_value()) { out.unsafeGetTensorImpl()->empty_tensor_restride(*options.memory_format_opt()); } } } """ ] def gen_check_inplace_helper(backend_index: BackendIndex) -> list[str]: return [ """ void check_inplace(const Tensor &self, IntArrayRef sizes, const TensorOptions &options) { // These checks are needed on those operators that: // 1) don't use 'TensorIterator' (e.g. 'addmm' and 'baddbmm') // 2) have particular typing rules (e.g. 'cumsum' and 'cumprod') // For other operators (e.g. 'add'), 'TensorIterator' already checks // these things separately. TORCH_CHECK(options.dtype() == self.dtype(), "Bad in-place call: ", "input tensor dtype ", self.dtype(), " and output tensor dtype ", options.dtype(), " should match"); TORCH_CHECK(options.device() == self.device(), "Bad in-place call: ", "input tensor device ", self.device(), " and output tensor device ", options.device(), " should match"); TORCH_CHECK(sizes == self.sizes(), "Bad in-place call: ", "input tensor size ", self.sizes(), " and output tensor size ", sizes, " should match"); } """ ] def gen_registration_helpers(backend_index: BackendIndex) -> list[str]: return [ 'C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-function")', *gen_create_out_helper(backend_index), *gen_resize_out_helper(backend_index), *gen_check_inplace_helper(backend_index), *gen_maybe_create_proxy_helper(backend_index), "C10_DIAGNOSTIC_POP()", ] # Generates Register{dispatch}.cpp (e.g., RegisterCPU.cpp). # # - The primary function of this file is to register all of the # implementations for the given dispatch key to the dispatcher, # so they are available for use in PyTorch. If dispatch is # None, we generate schema (def) registrations and catchall # registrations. # - The secondary function of this file is to generate a wrapper # around functions. In CPUType these wrappers do nothing # (and should be removed), but in other cases they handle # DeviceGuard. A small extra benefit of wrappers is they # are not overloaded, so they can be used in the registration # API without having to disambiguate which overload you want # (as would be the case if you directly registered native:: # functions). # - The tertiary function of this file is to generate *static* # cpp API bindings which can be used to bypass dispatcher # directly to kernels, but with user-friendly cpp-style API @dataclass(frozen=True) class RegisterDispatchKey: backend_index: BackendIndex target: Literal[ Target.ANONYMOUS_DEFINITION, Target.NAMESPACED_DEFINITION, Target.NAMESPACED_DECLARATION, Target.REGISTRATION, ] # Selector object to determine which operators to generate # registration code for. selector: SelectiveBuilder # Whether or not we are actually code-genning for ROCm rocm: bool # Whether or not to generate symint registrations or not. External users # of codegen who don't care about symints can set this to false to get # non-SymInt codegen symint: bool # The class that all unstructured native functions live under. This is used to improve # compiler error messages when a kernel writer adds a native function with the wrong signature. # This is only used in unstructured kernels, since structured kernels already live in a class. # Finally, this field is currently Optional because it is only used by external backends. # It would be nice if we can add the same logic to in-tree kernels too, but that requires updating # all of the existing kernel signatures scattered across aten/src/ATen/native. class_method_name: str | None # Only set to true in lightweight dispatch. If lightweight dispatch is enabled we are registering # operators into JIT op registry, thus we need to avoid generating code to register into the dispatcher. skip_dispatcher_op_registration: bool @staticmethod def gen_device_check( type: DeviceCheckType, args: list[Argument], method_name: str ) -> str: if type == DeviceCheckType.NoCheck: return " // No device check\n" device_check = "std::optional<Device> common_device = std::nullopt;\n" device_check += "(void)common_device; // Suppress unused variable warning\n" for arg in args: # Only tensor like arguments are eligible if arg.type.is_tensor_like(): device_check += f""" c10::impl::check_and_update_common_device(common_device, {arg.name}, "{method_name}", "{arg.name}");""" return device_check @method_with_native_function def __call__(self, f: NativeFunctionsGroup | NativeFunction) -> list[str]: if isinstance(f, NativeFunctionsGroup): g: NativeFunctionsGroup = f # Note: We call gen_structured() if the operator is marked structured, regardless of the backend. # gen_structured() has special logic to handle auto-generated kernels. if g.structured: return self.gen_structured(g) else: return list( mapMaybe(lambda f: self.gen_unstructured(f, g), g.functions()) ) elif isinstance(f, NativeFunction): r = self.gen_unstructured(f) return [] if r is None else [r] else: assert_never(f) def wrapper_kernel_sig( self, f: NativeFunction ) -> NativeSignature | DispatcherSignature: # The prefix is just to ensure uniqueness. The Dispatcher API doesn't guarantee unique kernel names. return DispatcherSignature.from_schema( f.func, prefix=f"wrapper_{self.backend_index.dispatch_key}_{f.func.name.overload_name}_", symint=self.symint, ) def gen_out_inplace_wrapper( self, f: NativeFunction, g: NativeFunctionsGroup | None ) -> str | None: if g is None: return None k = f.func.kind() if k is SchemaKind.inplace: copy_op = "at::_copy_from" elif k is SchemaKind.out: copy_op = "at::_copy_from_and_resize" else: raise AssertionError("gen_out_inplace_wrapper called on a functional op") sig = self.wrapper_kernel_sig(f) name = sig.name() func_res = f"{name}_tmp" return_names = cpp.return_names(f) if len(return_names) > 1: updates = "\n ".join( f"{copy_op}(std::get<{i}>({func_res}), {ret_name});" for i, ret_name in enumerate(return_names) ) returns = f"{sig.returns_type().cpp_type()}({', '.join(return_names)})" elif len(return_names) == 1: ret_name = return_names[0] updates = f"{copy_op}({func_res}, {ret_name});" returns = ret_name else: assert len(f.func.arguments.out) == 1 returns = "" out_arg = f.func.arguments.out[0] if out_arg.type.is_list_like(): updates = f"""\ for (int64_t i = 0; i < {func_res}.size(); ++i) {{ {copy_op}({func_res}[i], {out_arg.name}[i]); }}""" else: updates = f"{copy_op}({func_res}, {out_arg.name});" functional_sig = self.wrapper_kernel_sig(g.functional) wrapper_name = sig.name() return f"""\ {sig.defn(name=wrapper_name)} {{ auto {func_res} = {functional_sig.name()}({", ".join(e.expr for e in translate(sig.arguments(), functional_sig.arguments()))}); {updates} return {returns}; }} """ def gen_structured(self, g: NativeFunctionsGroup) -> list[str]: metadata = self.backend_index.get_kernel(g) if self.backend_index.dispatch_key == DispatchKey.Meta: assert not self.backend_index.has_kernel(g.out), ( "Do not explicitly specify Meta dispatch key on structured " "functions, they will be automatically generated for you" ) elif ( self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional ): assert not self.backend_index.has_kernel(g.out), ( "Do not explicitly specify CompositeExplicitAutograd dispatch key on structured " "functions, they will be automatically generated for you" ) elif metadata is None or not metadata.structured: return list(mapMaybe(lambda f: self.gen_unstructured(f, g), g.functions())) structured_gen = StructuredRegisterDispatchKey( self.backend_index, self.target, self.selector, self.rocm, self.symint, self.class_method_name, self.skip_dispatcher_op_registration, g, ) return list(mapMaybe(structured_gen.gen_one, g.functions())) def gen_unstructured( self, f: NativeFunction, g: NativeFunctionsGroup | None = None ) -> str | None: with native_function_manager(f): inplace_meta = False gets_out_inplace_wrapper = False if not self.backend_index.has_kernel(f): if ( self.backend_index.dispatch_key == DispatchKey.Meta and f.func.kind() is SchemaKind.inplace and # Defer to composites for meta implementation not f.has_composite_kernel and # Inplace list operations are not supported len(f.func.returns) == 1 ): inplace_meta = True elif ( not self.backend_index.use_out_as_primary and g is not None and gets_generated_out_inplace_wrapper(f, g, self.backend_index) ): # We want to generate inplace/out wrappers, that don't have a kernel for the backend. gets_out_inplace_wrapper = True else: return None if f.manual_kernel_registration: return None if ( self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(f) ): return None sig = self.wrapper_kernel_sig(f) name = sig.name() returns_type = sig.returns_type().cpp_type() args = sig.arguments() args_str = ", ".join(a.defn() for a in args) # See Note [Direct dispatch bindings] cpp_sig_group = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=False ) # TODO: dedupe this with the structured codegen if self.target is Target.NAMESPACED_DECLARATION: result = "" for cpp_sig in cpp_sig_group.signatures(symint=self.symint): result += f"TORCH_API {cpp_sig.decl()};\n" return result elif self.target is Target.NAMESPACED_DEFINITION: def generate_defn(cpp_sig: CppSignature) -> str: return f""" {cpp_sig.defn()} {{ return {sig.name()}({", ".join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))}); }} """ result = "" for cpp_sig in cpp_sig_group.signatures(symint=self.symint): result += generate_defn(cpp_sig) return result elif self.target is Target.ANONYMOUS_DEFINITION: # short circuit for inplace_meta if inplace_meta: assert f.func.arguments.self_arg is not None self_arg_name = f.func.arguments.self_arg.argument.name # TODO: handle in place on tensor list return f""" {returns_type} {name}({args_str}) {{ TORCH_CHECK_NOT_IMPLEMENTED({self_arg_name}.is_meta(), "Cannot inplace into non-meta tensor with meta tensor argument"); return {self_arg_name}; }} """ # short circuit for generated inplace/out wrappers if gets_out_inplace_wrapper: return self.gen_out_inplace_wrapper(f, g) metadata = self.backend_index.get_kernel(f) if metadata is None: return None if self.class_method_name is None: impl_name = f"{metadata.cpp_namespace}::{metadata.kernel}" else: impl_name = f"{metadata.cpp_namespace}::{self.class_method_name}::{metadata.kernel}" kernel_sig = kernel_signature(f, self.backend_index) args_exprs_str = ", ".join( e.expr for e in translate( sig.arguments(), kernel_sig.arguments(), method=False ) ) device_check = " // No device check\n" # Backends that require device guards presumably also require device checks. if self.backend_index.device_guard: device_check_args = itertools.chain( f.func.arguments.out, f.func.arguments.flat_positional ) device_check = RegisterDispatchKey.gen_device_check( f.device_check, list(device_check_args), name ) device_guard = "// DeviceGuard omitted" # default if f.device_guard and self.backend_index.device_guard: has_tensor_options = any( isinstance(a, TensorOptionsArguments) for a in f.func.arguments.non_out ) if has_tensor_options: # kernel is creating a tensor device_guard = """ const DeviceGuard device_guard(device_or_default(device));""" # CUDA requires special handling if is_cuda_dispatch_key(self.backend_index.dispatch_key): device_guard = f"globalContext().lazyInitDevice(c10::DeviceType::CUDA);\n{device_guard}" else: # kernel is operating on existing tensors # There is precedence for which argument we use to do # device guard. This describes the precedence order. self_arg = ( [f.func.arguments.self_arg.argument] if f.func.arguments.self_arg is not None else [] ) candidate_args = itertools.chain( self_arg, f.func.arguments.out, f.func.arguments.flat_positional, ) # Only tensor like arguments are eligible device_of = next( ( f"{a.name}" for a in candidate_args if a.type.is_tensor_like() ), None, ) if device_of is not None: device_guard = f"const OptionalDeviceGuard device_guard(device_of({device_of}));" return f"""\ namespace {{ {returns_type} {name}({args_str}) {{ {device_check} {device_guard} return {impl_name}({args_exprs_str}); }} }} // anonymous namespace """ elif self.target is Target.REGISTRATION: if f.manual_kernel_registration or self.skip_dispatcher_op_registration: return None else: payload = f"TORCH_FN({name})" return f'm.impl("{f.func.name}",\n{payload});\n' else: assert_never(self.target) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # STRUCTURED # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # @dataclass(frozen=True) class StructuredRegisterDispatchKey(RegisterDispatchKey): g: NativeFunctionsGroup def gen_class_set_output_functions( self, k: SchemaKind, parent_class: str, generate_super: bool ) -> str: if generate_super: set_output_super = f"{parent_class}::set_output_raw_strided(output_idx, sizes, strides, options, names);" else: set_output_super = "" def gen_set_output_function(name: str, maybe_create_proxy: bool) -> str: return f""" void set_output_{name}( int64_t output_idx, IntArrayRef sizes, IntArrayRef strides, TensorOptions options, DimnameList names ) override {{ {textwrap.indent(self.gen_class_set_output_body(k, maybe_create_proxy), " ")} if (!names.empty()) {{ namedinference::propagate_names(outputs_[output_idx], names); }} // super must happen after, so that downstream can use maybe_get_output // to retrieve the output {textwrap.indent(set_output_super, " ")} }} """ return f""" {gen_set_output_function("strided", maybe_create_proxy=True)} {gen_set_output_function("raw_strided", maybe_create_proxy=False)} """ def gen_class_set_output_body(self, k: SchemaKind, maybe_create_proxy: bool) -> str: if self.backend_index.dispatch_key in [ DispatchKey.CUDA, DispatchKey.MPS, DispatchKey.XPU, DispatchKey.CompositeExplicitAutogradNonFunctional, ]: maybe_set_guard = """ auto current_device = guard_.current_device(); if (C10_UNLIKELY(current_device.has_value())) { TORCH_INTERNAL_ASSERT(*current_device == options.device(), "structured kernels don't support multi-device outputs"); } else { guard_.reset_device(options.device()); } """ maybe_set_guard_line = maybe_set_guard + "\n" else: maybe_set_guard_line = maybe_set_guard = "" if maybe_create_proxy: create_proxy = """ auto maybe_proxy = maybe_create_proxy(out, sizes, strides, options); if (C10_UNLIKELY(maybe_proxy.has_value())) { proxy_outputs_[output_idx] = std::move(maybe_proxy).value(); } """ else: create_proxy = "" if k is SchemaKind.functional: assert self.backend_index.dispatch_key in ( DispatchKey.Meta, DispatchKey.CPU, DispatchKey.CUDA, DispatchKey.MPS, DispatchKey.XPU, DispatchKey.CompositeExplicitAutogradNonFunctional, ) return f"""{maybe_set_guard_line} outputs_[output_idx] = create_out(sizes, strides, options);""" elif k is SchemaKind.inplace: return f"""{maybe_set_guard_line} const auto& out = outputs_[output_idx].get(); check_inplace(out, sizes, options); {create_proxy}""" elif k is SchemaKind.out: return f"""{maybe_set_guard_line} const auto& out = outputs_[output_idx].get(); resize_out(out, sizes, strides, options); {create_proxy}""" elif k is SchemaKind.mutable or k is SchemaKind.scratch: raise AssertionError( f"{k} structured operators are currently not supported" ) else: assert_never(k) # returns the definition of a ctor, as well as how to construct # this class to a variable named op def gen_class_ctor(self, k: SchemaKind, class_name: str, returns: int) -> str: if k is SchemaKind.functional: return "" elif k is SchemaKind.inplace: # TODO: Make sure out argument is guaranteed to be self return f"{class_name}(Tensor& self) : outputs_{{std::ref(self)}} {{}}" elif k is SchemaKind.out: out_args = ", ".join(f"Tensor& out{i}" for i in range(returns)) out_refs = ", ".join(f"std::ref(out{i})" for i in range(returns)) return f"{class_name}({out_args}) : outputs_{{ {out_refs} }} {{}}" elif k is SchemaKind.mutable or k is SchemaKind.scratch: raise AssertionError( f"{k} structured operators are currently not supported" ) else: assert_never(k) def gen_class( self, f: NativeFunction, k: SchemaKind, *, class_name: str, parent_class: str, generate_super: bool, ) -> str: if k is SchemaKind.functional: output_type = "Tensor" output_value = "outputs_[output_idx]" proxy_field = "" elif k is SchemaKind.inplace: output_type = "std::reference_wrapper<Tensor>" output_value = "proxy_outputs_[output_idx].has_value() ? *proxy_outputs_[output_idx] : outputs_[output_idx].get()" proxy_field = f"std::array<::std::optional<Tensor>, {len(f.func.returns)}> proxy_outputs_;" elif k is SchemaKind.out: output_type = "std::reference_wrapper<Tensor>" output_value = "proxy_outputs_[output_idx].has_value() ? *proxy_outputs_[output_idx] : outputs_[output_idx].get()" proxy_field = f"std::array<::std::optional<Tensor>, {len(f.func.returns)}> proxy_outputs_;" else: raise RuntimeError(f"Unsupported SchemaKind {k}") if self.backend_index.dispatch_key == DispatchKey.CUDA: if self.rocm: guard_field = "c10::hip::OptionalHIPGuardMasqueradingAsCUDA guard_;" else: guard_field = "c10::cuda::OptionalCUDAGuard guard_;" elif ( self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional ): guard_field = "c10::OptionalDeviceGuard guard_;" elif self.backend_index.dispatch_key == DispatchKey.MPS: # TODO: Move to OptionalMPSGuard. guard_field = "c10::OptionalDeviceGuard guard_;" elif self.backend_index.dispatch_key == DispatchKey.XPU: guard_field = "c10::OptionalDeviceGuard guard_;" else: guard_field = "" indent = " " * 4 class_ctor_str = self.gen_class_ctor(k, class_name, len(f.func.returns)) lines = ( f"struct {class_name} final : public {parent_class} {{", f"{textwrap.indent(class_ctor_str, indent)}", f"{textwrap.indent(self.gen_class_set_output_functions(k, parent_class, generate_super), indent)}", " const Tensor& maybe_get_output(int64_t output_idx) override {", f" return {output_value};\n", # type: ignore[possibly-undefined] # TODO: audit " }", # type: ignore[possibly-undefined] # TODO: audit f" std::array<{output_type}, {len(f.func.returns)}> outputs_;", f"{textwrap.indent(proxy_field, indent)}", # type: ignore[possibly-undefined] # TODO: audit f"{textwrap.indent(guard_field, indent)}", "};", ) return "\n".join(line for line in lines if line) @method_with_native_function def gen_one(self, f: NativeFunction) -> str | None: assert not f.manual_kernel_registration if ( self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(f) ): return None # TODO: Now, there is something interesting going on here. In the code below, # we generate CompositeExplicitAutogradNonFunctional implementations of functional and inplace # based on the out implementation. But in fact, out is definable by # functional too (just not very efficiently), and this is honestly the # MORE likely situation for a backend implementor. How do we pick? # Well, taking a page from Haskell type classes and default methods, # we could conceivably register a circular definition (out in terms # of functional, and functional in terms of out) and just require # someone to implement one or the other. We'd have to do a little bit # of work to not register one of these "weak" definitions unless there # is a strong definition somewhere in the DAG! So it's not implemented yet. if ( self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional and f.func.kind() is SchemaKind.out ): # Never generate a default implementation for out, that's what you # have to define as a backend implementor return None # Note [Direct dispatch bindings] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Signature of the non-dispatched function we'll expose in a header # (e.g., at::cpu::add). We don't generate methods (TODO: do this # when CPUTensor class is a thing); nor do we generate fallback # bindings for manual_cpp_binding functions. cpp_sig_group = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=False ) # Signature of the wrapper function we'll register to the dispatcher kern = self.backend_index.get_kernel(f) sig = NativeSignature( f.func, prefix=f"wrapper_{self.backend_index.dispatch_key}_", symint=kern is not None and kern.supports_symint(), ) if self.target is Target.NAMESPACED_DECLARATION: result = "" for cpp_sig in cpp_sig_group.signatures(symint=self.symint): result += f"TORCH_API {cpp_sig.decl()};\n" return result elif self.target is Target.NAMESPACED_DEFINITION: def generate_defn(cpp_sig: CppSignature) -> str: return f""" {cpp_sig.defn()} {{ return {sig.name()}({", ".join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))}); }} """ result = "" for cpp_sig in cpp_sig_group.signatures(symint=self.symint): result += generate_defn(cpp_sig) return result elif self.target is Target.ANONYMOUS_DEFINITION: k = f.func.kind() # Construct the body of the wrapper function with signature sig sig_body = [] # We'll use context to keep track of any variables we've brought # into scope while generating code context: list[Binding | Expr] = list(sig.arguments()) # Initialize the class corresponding to this structured # operator; feeding it the output argument(s) if it is known if self.backend_index.dispatch_key is DispatchKey.Meta: class_name = f"structured_{meta.name(self.g)}_meta_{k.name}" parent_class = f"at::meta::structured_{meta.name(self.g)}" elif ( self.backend_index.dispatch_key is DispatchKey.CompositeExplicitAutogradNonFunctional ): # TODO: dedup this branch class_name = f"structured_{meta.name(self.g)}_default_backend_{k.name}" parent_class = f"at::meta::structured_{meta.name(self.g)}" else: metadata = self.backend_index.get_kernel(self.g) assert metadata is not None class_name = f"structured_{metadata.kernel}_{k.name}" parent_class = f"{metadata.cpp_namespace}::structured_{metadata.kernel}" if self.backend_index.device_guard: device_check_args = itertools.chain( f.func.arguments.out, f.func.arguments.flat_positional ) sig_body.append( RegisterDispatchKey.gen_device_check( f.device_check, list(device_check_args), sig.name() ) ) if k is SchemaKind.functional: sig_body.append(f"{class_name} op;") elif k is SchemaKind.inplace: sig_body.append(f"{class_name} op(self);") elif k is SchemaKind.out: out_args_str = ", ".join(a.name for a in f.func.arguments.out) sig_body.append(f"{class_name} op({out_args_str});") # Translate the input native arguments into structured # arguments for the meta call meta_exprs = ", ".join( e.expr for e in translate( context, structured.meta_arguments(self.g), method=False ) ) if self.g.out.precomputed: # If this function group has precomputed elements, the meta function # returns a struct containing them which must be saved so that it # can be unpacked when generating code to call the impl. sig_body.append(f"auto precompute = op.meta({meta_exprs});") # Put all of the contents of the precompute struct into the context # so that translate will be able to return the correct args for the # call to the impl. precomputed_values = [ *self.g.out.precomputed.replace.values(), self.g.out.precomputed.add, ] for precomputed_elems in precomputed_values: context.extend( Expr( expr=f"precompute.{arg.name}", type=structured.argument_type(arg, binds=arg.name), ) for arg in precomputed_elems ) # Add a use of the precompute struct so FB internal compilers don't # complain that there is an unused variable. sig_body.append("(void)precompute;") else: sig_body.append(f"op.meta({meta_exprs});") # After running meta, op.outputs_ is guaranteed to be valid; # add it to the context out_args = structured.out_arguments(self.g) for i, out_arg in enumerate(out_args): assert ConstRefCType(BaseCType(tensorT)) == out_arg.nctype.type if k is SchemaKind.out: expr = f"op.maybe_get_output({i})" else: expr = f"op.outputs_[{i}]" context.append( Expr( expr=expr, # TODO: Stop hardcoding that the output type is a Tensor. Note # that for the codegen here this is fine because outputs_ is # hardcoded to be tensor already type=NamedCType( out_arg.nctype.name, MutRefCType(BaseCType(tensorT)) ), ) ) # With the expanded context, do the impl call (if not a meta # function) if ( self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional ): # TODO: https://github.com/pytorch/pytorch/issues/53023 out_sig_group = CppSignatureGroup.from_native_function( self.g.out, method=False, fallback_binding=f.manual_cpp_binding ) out_sig = out_sig_group.most_faithful_signature() api_name = out_sig.name() out_exprs = ", ".join( e.expr for e in translate(context, out_sig.arguments(), method=False) ) # TODO: I think this means structured won't work with method # only functions (but maybe you're saved by faithful? iunno.) # NB: Originally I wrote this as an at::redispatch call, but # I got in trouble because that meant I needed a DispatchKeySet # in the wrapper function, which meant I needed a DispatchKeySet # in the DispatchKeyFunctions declarations, but the defined API # there does NOT permit a dispatch key set. I think you can # probably unwind this by calling some function to do the TLS # fetch and get the DispatchKeySet when you don't have it, but # I didn't do it for this version sig_body.append(f"at::{api_name}({out_exprs});") elif self.backend_index.dispatch_key != DispatchKey.Meta: impl_exprs = ", ".join( e.expr for e in translate( context, structured.impl_arguments(self.g), method=False ) ) sig_body.append(f"op.impl({impl_exprs});") # Go over each output, and check if there is a proxy created for it. # If so, copy it over to the original output. if k is SchemaKind.out or k is SchemaKind.inplace: for i in range(len(f.func.returns)): sig_body.append( f"if (op.proxy_outputs_[{i}].has_value()) op.outputs_[{i}].get().copy_(*op.proxy_outputs_[{i}]);" ) # Destructively return the final tensors # TODO: Do this in translate instead if k is SchemaKind.functional: if len(f.func.returns) == 1: ret_expr = "std::move(op.outputs_[0])" # small optimization else: moved = ", ".join( f"std::move(op.outputs_[{i}])" for i in range(len(f.func.returns)) ) ret_expr = f"std::make_tuple({moved})" elif k is SchemaKind.inplace: ret_expr = "self" elif k is SchemaKind.out: if len(f.func.returns) == 1: ret_expr = f.func.arguments.out[0].name else: refs = ", ".join(a.name for a in f.func.arguments.out) ret_expr = f"std::forward_as_tuple({refs})" sig_body.append(f"return {ret_expr};") # type: ignore[possibly-undefined] # TODO: audit sig_body_str = "\n".join(sig_body) # For an overview of what this template code looks like, see # https://github.com/pytorch/rfcs/pull/9 return f"""\ { self.gen_class( f, k, class_name=class_name, parent_class=parent_class, generate_super=self.g.out.structured_inherits is not None, ) } {sig.defn()} {{ {sig_body_str} }} """ elif self.target is Target.REGISTRATION: return f'm.impl("{f.func.name}", TORCH_FN({sig.name()}));' else: assert_never(self.target) # Silence mypy's "Missing return statement" error return None ```
============================================================================================================== SOURCE CODE FILE: ufunc.py LINES: 7 SIZE: 17.96 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\dest\ufunc.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING import torchgen.api.ufunc as ufunc from torchgen.api.translate import translate from torchgen.api.types import ( BaseCType, Binding, CType, Expr, NamedCType, opmath_t, scalar_t, StructuredImplSignature, VectorizedCType, ) from torchgen.context import with_native_function from torchgen.model import ( Argument, BaseTy, BaseType, DispatchKey, NativeFunctionsGroup, ScalarType, UfuncKey, ) from torchgen.utils import OrderedSet if TYPE_CHECKING: from collections.abc import Sequence from torchgen.api.ufunc import UfunctorBindings # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # CUDA STUFF # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # NB: not bothering to generate dispatch stub forward declaration in header, # we can just paste it whereever necessary # TODO: use BackendIndex # dispatch_key: DispatchKey # only CPU/CUDA right now # Represents functors for implementing CUDA ufuncs. # Functors are templated by scalar_t because when USERS instantiate functors # they are templated. A functor looks something like this: # # template <typename scalar_t> # struct CUDAFunctorOnSelf_add { # using opmath_t = at::opmath_type<scalar_t>; # opmath_t other_; # opmath_t alpha_; # CUDAFunctorOnSelf_add(opmath_t other, opmath_t alpha) # : other_(other), alpha_(alpha) {} # __device__ scalar_t operator()(scalar_t self) { # return ufunc::add(static_cast<opmath_t>(self), other_, alpha_); # } # }; # @dataclass(frozen=True) class UfunctorSignature: g: NativeFunctionsGroup scalar_tensor_idx: int | None name: str def arguments(self) -> UfunctorBindings: return ufunc.ufunctor_arguments( self.g, scalar_tensor_idx=self.scalar_tensor_idx, scalar_t=scalar_t ) def fields(self) -> list[Binding]: # fields are renamed to have a trailing underscore, as is conventional return [b.rename(f"{b.name}_") for b in self.arguments().ctor] def returns_type(self) -> CType: # TODO: don't hardcode; return type will be inferred based on tags on # the native function return BaseCType(scalar_t) def decl_fields(self) -> str: return "\n".join(f"{f.type} {f.name};" for f in self.fields()) def inline_defn_ctor(self) -> str: args_str = ", ".join(a.decl() for a in self.arguments().ctor) # NB: hypothetically could do this with translate but the # transition here is very regular init_str = ", ".join(f"{a.name}_({a.name})" for a in self.arguments().ctor) return f"{self.name}({args_str}) : {init_str} {{}}" def decl_apply(self) -> str: args_str = ", ".join(a.decl() for a in self.arguments().apply) return f"{self.returns_type().cpp_type()} operator()({args_str}) const" @dataclass(frozen=True) class UfuncSignature: g: NativeFunctionsGroup name: str compute_t: CType def arguments(self) -> list[Binding]: return ufunc.ufunc_arguments(self.g, compute_t=self.compute_t) def call(self, ctx: Sequence[Binding | Expr]) -> str: return f"{self.name}({', '.join(a.expr for a in translate(ctx, self.arguments()))})" # steps: # 1. take the functional signature # 2. use api.ufunc to convert it to template signature. this establishes # the type of the template function # 3. use api.ufunc (II) to generate a split struct / operator() signature. # this establish context in which we call the template signature # # StructuredImplSignature context # ~> functor constructor sig # # Functor constructor context # ~> functor fields sig # # Functor apply context (functor fields + functor apply sig) # ~> template sig # def eligible_for_binary_scalar_specialization(g: NativeFunctionsGroup) -> bool: num_tensors = sum( 1 for a in g.functional.func.arguments.flat_non_out if a.type.is_tensor_like() ) return num_tensors == 2 def compute_ufunc_cuda_functors( g: NativeFunctionsGroup, ) -> tuple[dict[ScalarType, dict[UfuncKey, UfunctorSignature]], str]: # First, build the functors. ufunctor_sigs: dict[ScalarType, dict[UfuncKey, UfunctorSignature]] = {} ufunctors: list[str] = [] loops = g.out.ufunc_inner_loop scalar_tensor_idx_lookup = { UfuncKey.CUDAFunctorOnSelf: 1, UfuncKey.CUDAFunctorOnOther: 0, UfuncKey.CUDAFunctor: None, } if eligible_for_binary_scalar_specialization(g): keys = [ UfuncKey.CUDAFunctorOnSelf, UfuncKey.CUDAFunctorOnOther, UfuncKey.CUDAFunctor, ] else: keys = [UfuncKey.CUDAFunctor] for k in [UfuncKey.CUDAFunctorOnSelf, UfuncKey.CUDAFunctorOnOther]: assert k not in loops, f"cannot use {k} on non-binary function" for k in keys: # If the key was directly defined, skip functor codegen; we assume the # user already done it for us if k in loops: ufunctor_sig = UfunctorSignature( g, scalar_tensor_idx=scalar_tensor_idx_lookup[k], name=loops[k].name ) for dtype in loops[k].supported_dtypes: ufunctor_sigs.setdefault(dtype, {})[k] = ufunctor_sig continue # Note [ScalarOnly and Generic must match names for CUDA] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Otherwise, look in ANY of the generic entries. For simplicity of # codegen, both ScalarOnly and Generic are defined, the ufunc name # must match (if they didn't match, we'd have to generate distinct # functors per dtype, which is awful, so we're not going to do it unless # someone really forces us to) ufunc_name = None supported_dtypes: OrderedSet[ScalarType] = OrderedSet() for lk in [UfuncKey.ScalarOnly, UfuncKey.Generic]: if lk not in loops: continue if ufunc_name is None: ufunc_name = loops[lk].name else: # See Note [ScalarOnly and Generic must match names for CUDA] assert ufunc_name == loops[lk].name, ( "ScalarOnly and Generic must have same ufunc name" ) supported_dtypes |= loops[lk].supported_dtypes assert ufunc_name is not None name = f"{k}_{ufunc_name}" ufunctor_sig = UfunctorSignature( g, scalar_tensor_idx=scalar_tensor_idx_lookup[k], name=name ) for dtype in supported_dtypes: ufunctor_sigs.setdefault(dtype, {})[k] = ufunctor_sig ufunc_sig = UfuncSignature( g, name=f"ufunc::{ufunc_name}", compute_t=BaseCType(opmath_t) ) apply_ctx = ufunctor_sig.fields() + ufunctor_sig.arguments().apply ufunctors.append( f""" template <typename scalar_t> struct {ufunctor_sig.name} {{ using opmath_t = at::opmath_type<scalar_t>; {ufunctor_sig.decl_fields()} {ufunctor_sig.inline_defn_ctor()} __device__ {ufunctor_sig.decl_apply()} {{ return {ufunc_sig.call(apply_ctx)}; }} }}; """ ) return ufunctor_sigs, "\n".join(ufunctors) @dataclass(frozen=True) class BinaryScalarSpecializationConfig: scalar_idx: int ctor_tensor: str ufunc_key: UfuncKey BinaryScalarSpecializationConfigs = [ BinaryScalarSpecializationConfig( scalar_idx=0, ctor_tensor="self", ufunc_key=UfuncKey.CUDAFunctorOnOther, ), BinaryScalarSpecializationConfig( scalar_idx=1, ctor_tensor="other", ufunc_key=UfuncKey.CUDAFunctorOnSelf, ), ] def compute_ufunc_cuda_dtype_body( g: NativeFunctionsGroup, dtype: ScalarType, inner_loops: dict[UfuncKey, UfunctorSignature], parent_ctx: Sequence[Binding], ) -> str: body = "using opmath_t = at::opmath_type<scalar_t>;" body += "if (false) {}\n" # for ease of codegen for config in BinaryScalarSpecializationConfigs: if config.ufunc_key not in inner_loops: continue ufunctor_sig = inner_loops[config.ufunc_key] scalar_idx = config.scalar_idx + 1 # Make a copy and at the same time widen the type (not permissible # without copy; we don't want to mutate the input argument anyway) ctx: list[Expr | Binding] = list(parent_ctx) ctx.append( Expr( expr=f"iter.scalar_value<opmath_t>({scalar_idx})", type=NamedCType(config.ctor_tensor, BaseCType(opmath_t)), ) ) ufunctor_ctor_exprs_str = ", ".join( a.expr for a in translate(ctx, ufunctor_sig.arguments().ctor) ) # NB: ufunctor must be allocated before iter.remove_operand is called, # as it relies on iter body += f"""\ else if (iter.is_cpu_scalar({scalar_idx})) {{ {ufunctor_sig.name}<scalar_t> ufunctor({ufunctor_ctor_exprs_str}); iter.remove_operand({scalar_idx}); gpu_kernel(iter, ufunctor); }}""" ufunctor_sig = inner_loops[UfuncKey.CUDAFunctor] ufunctor_ctor_exprs_str = ", ".join( a.expr for a in translate(parent_ctx, ufunctor_sig.arguments().ctor) ) body += f""" else {{ gpu_kernel(iter, {ufunctor_sig.name}<scalar_t>({ufunctor_ctor_exprs_str})); }} """ return body @with_native_function def compute_ufunc_cuda(g: NativeFunctionsGroup) -> str: # First, build the functors, indexing them by dtype ufunctor_sigs, ufunctors = compute_ufunc_cuda_functors(g) # Next, build the conditionals sig = StructuredImplSignature(g, ufunc.kernel_name(g, DispatchKey.CUDA)) dtype_cases = [] for dtype, inner_ufunc_sigs in ufunctor_sigs.items(): dtype_cases.append( f""" AT_DISPATCH_CASE(at::ScalarType::{dtype}, [&]() {{ {compute_ufunc_cuda_dtype_body(g, dtype, inner_ufunc_sigs, sig.arguments())} }} ) """ ) dtype_cases_str = "\n".join(dtype_cases) stub_sig = StubSignature(g) return f""" {ufunctors} {stub_sig.type_defn()}; {stub_sig.dispatch_decl()} {stub_sig.kernel_defn()} {{ AT_DISPATCH_SWITCH(iter.common_dtype(), "{sig.name}", {dtype_cases_str} ); }} REGISTER_DISPATCH({stub_sig.name}, &{stub_sig.kernel_name}) {sig.defn()} {{ {stub_sig.direct_call(sig.arguments())}; }} """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # CPU STUFF # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # @dataclass(frozen=True) class StubSignature: g: NativeFunctionsGroup @property def name(self) -> str: return f"{str(self.g.functional.func.name.name)}_stub" @property def kernel_name(self) -> str: return f"{str(self.g.functional.func.name.name)}_kernel" @property def type_name(self) -> str: return f"{str(self.g.functional.func.name.name)}_fn" def arguments(self) -> list[Binding]: return ufunc.stub_arguments(self.g) def type(self) -> str: cpp_args = self.arguments() return f"void(*)(TensorIteratorBase&, {', '.join(a.type for a in cpp_args)})" def dispatch_decl(self) -> str: return f"DECLARE_DISPATCH({self.type_name}, {self.name})" def dispatch_defn(self) -> str: return f"DEFINE_DISPATCH({self.name})" def kernel_defn(self) -> str: return f"void {self.kernel_name}(TensorIteratorBase& iter, {', '.join(a.defn() for a in self.arguments())})" def type_defn(self) -> str: return f"using {self.type_name} = {self.type()}" # must be called from context where this is TensorIteratorBase* def call(self, ctx: Sequence[Binding]) -> str: return f"{self.name}(device_type(), *this, {', '.join(a.expr for a in translate(ctx, self.arguments()))})" # used in CUDA to skip the unnecessary dynamic dispatch def direct_call(self, ctx: Sequence[Binding]) -> str: return f"{self.kernel_name}(*this, {', '.join(a.expr for a in translate(ctx, self.arguments()))})" @with_native_function def compute_ufunc_cpu(g: NativeFunctionsGroup) -> str: stub_sig = StubSignature(g) sig = StructuredImplSignature(g, ufunc.kernel_name(g, DispatchKey.CPU)) return f""" {stub_sig.type_defn()}; {stub_sig.dispatch_decl()} {stub_sig.dispatch_defn()}; {sig.defn()} {{ {stub_sig.call(sig.arguments())}; }} """ def compute_ufunc_cpu_dtype_body( g: NativeFunctionsGroup, dtype: ScalarType, inner_loops: dict[UfuncKey, UfuncSignature], parent_ctx: Sequence[Binding], ) -> str: assert UfuncKey.CPUScalar in inner_loops, f"{dtype}, {inner_loops.keys()}" assert inner_loops.keys() <= {UfuncKey.CPUScalar, UfuncKey.CPUVector} scalar_loop = inner_loops[UfuncKey.CPUScalar] vec_loop = None if UfuncKey.CPUVector in inner_loops: vec_loop = inner_loops[UfuncKey.CPUVector] # NB: We DON'T use translate here, because translate is # incapable of CSE'ing the scalar accesses in case it is also # used by Vectorized; also, the unpacking here is very simple # and only affects Scalar; everything else is implicitly captured # by the lambda # Setup scalar in scope body = [] ctx = [] for b in parent_ctx: if isinstance(b.argument, Argument) and b.argument.type != BaseType( BaseTy.Scalar ): continue body.append(f"auto _s_{b.name} = {b.name}.to<scalar_t>();") ctx.append(Expr(f"_s_{b.name}", NamedCType(b.nctype.name, BaseCType(scalar_t)))) if vec_loop is not None: for b in parent_ctx: if isinstance(b.argument, Argument) and b.argument.type != BaseType( BaseTy.Scalar ): continue body.append( f"auto _v_{b.name} = at::vec::Vectorized<scalar_t>(_s_{b.name});" ) ctx.append( Expr( f"_v_{b.name}", NamedCType(b.nctype.name, VectorizedCType(BaseCType(scalar_t))), ) ) # Setup lambda signature # NB: simplified version of ufunctor_arguments scalar_bindings = [] vec_bindings = [] for a in g.functional.func.arguments.flat_non_out: if not a.type.is_tensor_like(): continue assert a.type == BaseType(BaseTy.Tensor) scalar_bindings.append( Binding( name=a.name, nctype=NamedCType(a.name, BaseCType(scalar_t)), argument=a, ) ) if vec_loop is not None: vec_bindings.append( Binding( name=a.name, nctype=NamedCType(a.name, VectorizedCType(BaseCType(scalar_t))), argument=a, ) ) def with_ctx(b: Sequence[Binding]) -> list[Expr | Binding]: r: list[Expr | Binding] = [] r.extend(ctx) r.extend(b) return r body_str = "\n".join(body) if vec_loop is not None: return f""" {body_str} cpu_kernel_vec(iter, [=]({", ".join(b.decl() for b in scalar_bindings)}) {{ return {scalar_loop.call(with_ctx(scalar_bindings))}; }}, [=]({", ".join(b.decl() for b in vec_bindings)}) {{ return {vec_loop.call(with_ctx(vec_bindings))}; }} ); """ else: return f""" {body_str} cpu_kernel(iter, [=]({", ".join(b.decl() for b in scalar_bindings)}) {{ return {scalar_loop.call(with_ctx(scalar_bindings))}; }} ); """ @with_native_function def compute_ufunc_cpu_kernel(g: NativeFunctionsGroup) -> str: stub_sig = StubSignature(g) # Reindex the ufunc by dtypes; processing generic/scalaronly as well loops = g.out.ufunc_inner_loop ufunc_sigs: dict[ScalarType, dict[UfuncKey, UfuncSignature]] = {} for k in [UfuncKey.CPUScalar, UfuncKey.CPUVector]: lks = [] # ORDER MATTERS: this specifies overriding precedence if k in loops: # should happen rarely lks.append(k) if UfuncKey.ScalarOnly in loops and k is UfuncKey.CPUScalar: lks.append(UfuncKey.ScalarOnly) if UfuncKey.Generic in loops: lks.append(UfuncKey.Generic) # TODO: don't hardcode ufunc:: namespace here, should be centralized smh for lk in lks: for dtype in loops[lk].supported_dtypes: compute_t: CType if k is UfuncKey.CPUScalar: compute_t = BaseCType(scalar_t) elif k is UfuncKey.CPUVector: compute_t = VectorizedCType(BaseCType(scalar_t)) else: raise AssertionError inner_ufunc_sigs = ufunc_sigs.setdefault(dtype, {}) if k not in inner_ufunc_sigs: inner_ufunc_sigs[k] = UfuncSignature( g, name=f"ufunc::{loops[lk].name}", compute_t=compute_t ) # Build the conditionals dtype_cases = [] for dtype, inner_ufunc_sigs in ufunc_sigs.items(): dtype_cases.append( f""" AT_DISPATCH_CASE(at::ScalarType::{dtype}, [&]() {{ {compute_ufunc_cpu_dtype_body(g, dtype, inner_ufunc_sigs, stub_sig.arguments())} }} ) """ ) dtype_cases_str = "\n".join(dtype_cases) return f""" namespace {{ {stub_sig.kernel_defn()} {{ AT_DISPATCH_SWITCH(iter.common_dtype(), "{stub_sig.name}", {dtype_cases_str} ); }} }} // anonymous namespace {stub_sig.type_defn()}; {stub_sig.dispatch_decl()} REGISTER_DISPATCH({stub_sig.name}, &{stub_sig.kernel_name}) """ ```
======================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.00 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\__init__.py ENCODING: utf-8 ```py ```
=========================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.00 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\api\__init__.py ENCODING: utf-8 ```py ```
============================================================================================================================= SOURCE CODE FILE: custom_ops.py LINES: 3 SIZE: 5.53 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\api\custom_ops.py ENCODING: utf-8 ```py from __future__ import annotations from collections import defaultdict from dataclasses import dataclass from typing import TYPE_CHECKING from torchgen import dest # disable import sorting to avoid circular dependency. from torchgen.api.types import DispatcherSignature # usort: skip from torchgen.context import method_with_native_function from torchgen.model import BaseTy, BaseType, DispatchKey, NativeFunction, Variant from torchgen.utils import concatMap, Target if TYPE_CHECKING: from collections.abc import Sequence from torchgen.executorch.model import ETKernelIndex from torchgen.selective_build.selector import SelectiveBuilder # Generates RegisterKernelStub.cpp, which provides placeholder kernels for custom operators. This will be used at # model authoring side. @dataclass(frozen=True) class ComputeNativeFunctionStub: @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: if Variant.function not in f.variants: return None sig = DispatcherSignature.from_schema( f.func, prefix=f"wrapper_CPU_{f.func.name.overload_name}_", symint=False ) assert sig is not None if len(f.func.returns) == 0: ret_name = "" elif len(f.func.returns) == 1: if f.func.arguments.out: ret_name = f.func.arguments.out[0].name else: ret_name = next( ( a.name for a in f.func.arguments.flat_non_out if a.type == f.func.returns[0].type ), "", ) if not ret_name: # if return type is tensor if f.func.returns[0].type == BaseType(BaseTy.Tensor): # Returns an empty tensor ret_name = "at::Tensor()" else: raise Exception( # noqa: TRY002 f"Can't handle this return type {f.func}" ) # noqa: TRY002 elif len(f.func.arguments.out) == len(f.func.returns): # Returns a tuple of out arguments tensor_type = "at::Tensor &" comma = ", " ret_name = f"""::std::tuple<{comma.join([tensor_type] * len(f.func.returns))}>( {comma.join([r.name for r in f.func.arguments.out])} )""" else: assert all(a.type == BaseType(BaseTy.Tensor) for a in f.func.returns), ( f"Only support tensor returns but got {f.func.returns}" ) # Returns a tuple of empty tensors tensor_type = "at::Tensor" comma = ", " ret_name = f"""::std::tuple<{comma.join([tensor_type] * len(f.func.returns))}>( {comma.join(["at::Tensor()" for _ in f.func.returns])} )""" ret_str = f"return {ret_name};" if len(f.func.returns) > 0 else "" return f""" {sig.defn()} {{ {ret_str} }} """ def gen_custom_ops_registration( *, native_functions: Sequence[NativeFunction], selector: SelectiveBuilder, kernel_index: ETKernelIndex, rocm: bool, ) -> tuple[str, str]: """ Generate custom ops registration code for dest.RegisterDispatchKey. :param native_functions: a sequence of `NativeFunction` :param selector: for selective build. :param kernel_index: kernels for all the ops. :param rocm: bool for dest.RegisterDispatchKey. :return: generated C++ code to register custom operators into PyTorch """ # convert kernel index to BackendIndex. This is because we can't handle ETKernelIndex yet. # TODO larryliu: evaluate if this code is still needed. If yes let it handle ETKernelIndex. dispatch_key = DispatchKey.CPU backend_index = kernel_index._to_backend_index() static_init_dispatch_registrations = "" ns_grouped_native_functions: dict[str, list[NativeFunction]] = defaultdict(list) for native_function in native_functions: ns_grouped_native_functions[native_function.namespace].append(native_function) for namespace, functions in ns_grouped_native_functions.items(): if len(functions) == 0: continue dispatch_registrations_body = "\n".join( list( concatMap( dest.RegisterDispatchKey( backend_index, Target.REGISTRATION, selector, rocm=rocm, symint=False, class_method_name=None, skip_dispatcher_op_registration=False, ), functions, ) ) ) static_init_dispatch_registrations += f""" TORCH_LIBRARY_IMPL({namespace}, {dispatch_key}, m) {{ {dispatch_registrations_body} }}""" anonymous_definition = "\n".join( list( concatMap( dest.RegisterDispatchKey( backend_index, Target.ANONYMOUS_DEFINITION, selector, rocm=rocm, symint=False, class_method_name=None, skip_dispatcher_op_registration=False, ), native_functions, ) ) ) return anonymous_definition, static_init_dispatch_registrations ```
========================================================================================================================= SOURCE CODE FILE: et_cpp.py LINES: 1 SIZE: 12.76 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\api\et_cpp.py ENCODING: utf-8 ```py from __future__ import annotations from typing import TYPE_CHECKING from torchgen import local from torchgen.api.types import ( ArgName, BaseCType, Binding, ConstRefCType, CType, MutRefCType, NamedCType, SpecialArgName, TupleCType, VectorCType, voidT, ) from torchgen.executorch.api.types import ( ArrayRefCType, BaseTypeToCppMapping, OptionalCType, scalarT, tensorListT, tensorT, ) from torchgen.model import ( Argument, Arguments, BaseTy, BaseType, ListType, NativeFunction, OptionalType, Return, SelfArgument, TensorOptionsArguments, Type, ) from torchgen.utils import assert_never if TYPE_CHECKING: from collections.abc import Sequence """ This file describes the translation of JIT schema to the public C++ API, which is what people use when they call functions like at::add. It also serves as a native function API, which is the signature of kernels, since in Executorch CppSignature is the same as NativeSignature. Difference between this file and torchgen.api.cpp.py: - Executorch doesn't support TensorOptions, however in this file we still keep the logic here to be compatible with torchgen.api.cpp, so that we can do stuff like ATen mode (running ATen kernels in Executorch). - Executorch doesn't support Dimname. - Executorch runtime doesn't support SymInt, will treat it as int. """ # Translation of "value types" in JIT schema to C++ API type. Value # types look the same no matter if they are argument types or return # types. Returns None if the type in question is not a value type. def valuetype_type( t: Type, *, binds: ArgName, ) -> NamedCType | None: if isinstance(t, BaseType): if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar: return None # For SymInt we simply treat it as int. elif str(t) == "SymInt": return NamedCType(binds, BaseCType(BaseTypeToCppMapping[BaseTy.int])) # All other BaseType currently map directly to BaseCppTypes. return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name])) elif isinstance(t, OptionalType): elem = valuetype_type(t.elem, binds=binds) if elem is None: return None return NamedCType(binds, OptionalCType(elem.type)) elif isinstance(t, ListType): if str(t.elem) == "bool": assert t.size is not None return NamedCType( binds, ArrayRefCType(BaseCType(BaseTypeToCppMapping[BaseTy.bool])) ) else: return None else: raise AssertionError(f"unrecognized type {repr(t)}") # Translation of types occurring in JIT arguments to a C++ argument type. # If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type. # For example, we'll return std::vector<int> instead of IntArrayRef. # See Note [translation from C++ reference to value types] def argumenttype_type( t: Type, *, mutable: bool, binds: ArgName, remove_non_owning_ref_types: bool = False, ) -> NamedCType: # If it's a value type, do the value type translation r = valuetype_type( t, binds=binds, ) if r is not None: return r if isinstance(t, BaseType): if t.name == BaseTy.Tensor: if mutable and not local.use_const_ref_for_mutable_tensors(): return NamedCType(binds, MutRefCType(BaseCType(tensorT))) else: return NamedCType(binds, ConstRefCType(BaseCType(tensorT))) elif t.name == BaseTy.Scalar: return NamedCType(binds, ConstRefCType(BaseCType(scalarT))) else: raise AssertionError(f"base type should have been value type {t}") elif isinstance(t, OptionalType): if str(t.elem) == "Tensor": if mutable and not local.use_const_ref_for_mutable_tensors(): return NamedCType( binds, MutRefCType(BaseCType(tensorT)) ) # TODO: fix this discrepancy else: return NamedCType( binds, ConstRefCType(OptionalCType(BaseCType(tensorT))) ) elif str(t.elem) == "Scalar": return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT)))) elem = argumenttype_type(t.elem, mutable=mutable, binds=binds) return NamedCType(binds, OptionalCType(elem.type)) elif isinstance(t, ListType): # TODO: keeping these special cases for Tensor[] and Tensor?[] so that we can hookup with ATen kernels. if str(t.elem) == "Tensor": return NamedCType(binds, BaseCType(tensorListT)) elif str(t.elem) == "Dimname": raise NotImplementedError("Executorch doesn't support Dimname") elif str(t.elem) == "Tensor?": return NamedCType(binds, ArrayRefCType(OptionalCType(BaseCType(tensorT)))) elem = argumenttype_type(t.elem, mutable=mutable, binds=binds) return NamedCType(binds, ArrayRefCType(elem.type)) else: raise AssertionError(f"unrecognized type {repr(t)}") # Translate a JIT argument into its C++ type def argument_type(a: Argument, *, binds: ArgName) -> NamedCType: return argumenttype_type(a.type, mutable=a.is_write, binds=binds) # Translation of a (non-multi) return type from JIT to C++ # N.B: returntype_type returns a CType, not a NamedCType. # This is mostly because of the mismatch between return types and return names. # e.g. a function with a return type of 'void' has 0 return names, # and a function with a return type of 'std::tuple' has >1 return name. def returntype_type(t: Type, *, mutable: bool) -> CType: # placeholder is ignored r = valuetype_type(t, binds="__placeholder__") if r is not None: return r.type if isinstance(t, BaseType): if t.name == BaseTy.Tensor: if mutable: if local.use_const_ref_for_mutable_tensors(): return ConstRefCType(BaseCType(tensorT)) else: return MutRefCType(BaseCType(tensorT)) else: # Note [Tensor Copy Returns] # Currently, we use "Argument.is_write" to determine # whether or not Tensor return types should be copies or references. # If that ever changes, take a look at other locations of this note! return BaseCType(tensorT) elif t.name == BaseTy.Scalar: return BaseCType(scalarT) elif isinstance(t, ListType): assert not mutable, ( "Native functions should never return a mutable tensor list. They should return void." ) elem = returntype_type(t.elem, mutable=False) assert t.size is None, f"fixed size list returns not supported: {t}" return VectorCType(elem) raise AssertionError(f"unrecognized return type {t}") # Translation of a single return to its C++ type def return_type(r: Return) -> CType: return returntype_type(r.type, mutable=r.is_write) # Translation of a full (possibly multi) return from JIT to its C++ type def returns_type(rs: Sequence[Return]) -> CType: if len(rs) == 0: return BaseCType(voidT) elif len(rs) == 1: return return_type(rs[0]) else: return TupleCType([return_type(r) for r in rs]) def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]: returns: list[str] = [] for i, r in enumerate(f.func.returns): # If we have an inplace function, the return argument is # implicitly named self. # TODO: Consider incorporating this into the data model if f.func.name.name.inplace: assert i == 0, "illegal inplace function with multiple returns" name = "self" # If we are out function, the name is the name of the # corresponding output function (r.name will get recorded # in field_name later.) elif f.func.is_out_fn(): name = f.func.arguments.out[i].name # If the return argument is explicitly named... elif r.name: name_conflict = any( r.name == a.name for a in f.func.schema_order_arguments() ) if name_conflict and not f.func.is_out_fn(): name = f"{r.name}_return" else: name = r.name # If there is no explicit name and no fallback name was passed in, we just name the output result, # unless it's a multi-return, in which case it's result0, # result1, etc (zero-indexed) else: name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}" returns.append(name) return returns JIT_TO_CPP_DEFAULT = { "False": "false", "True": "true", "None": "torch::execustd::nullopt", # UGH this one is type directed "[]": "{}", "contiguous_format": "torch::executorch::MemoryFormat::Contiguous", "long": "torch::executorch::kLong", } # Convert a JIT default into C++ expression representing the default def default_expr(d: str, t: Type) -> str: if d == "None" and str(t) == "Tensor?": return "{}" if isinstance(t, BaseType) and t.name is BaseTy.str: # Schema allows single quotes but C++ needs double if len(d) >= 2 and d[0] == "'" and d[-1] == "'": s = "" i = 1 while i + 1 < len(d): if d[i] != "\\": if d[i] == '"': s += '\\"' else: s += d[i] i += 1 else: if d[i + 1] == "'": s += "'" else: s += d[i : i + 2] i += 2 return f'"{s}"' if isinstance(t, OptionalType): if d == "None": return "torch::executor::nullopt" return default_expr(d, t.elem) if isinstance(t, ListType): if d.startswith("[") and d.endswith("]"): return "{" + d[1:-1] + "}" elif t.size is None: # NOTE: Sized lists can have scalar defaults raise ValueError(f"Expected a list default '[...]' but found: '{d}'") return JIT_TO_CPP_DEFAULT.get(d, d) # Convert an argument into its C++ API form def argument( a: Argument | TensorOptionsArguments | SelfArgument, *, cpp_no_default_args: set[str], method: bool, faithful: bool, has_tensor_options: bool, ) -> list[Binding]: def sub_argument( a: Argument | TensorOptionsArguments | SelfArgument, ) -> list[Binding]: return argument( a, cpp_no_default_args=cpp_no_default_args, method=method, faithful=faithful, has_tensor_options=has_tensor_options, ) if isinstance(a, Argument): binds: ArgName if a.name == "memory_format" and has_tensor_options: binds = SpecialArgName.possibly_redundant_memory_format else: binds = a.name default: str | None = None if a.name not in cpp_no_default_args and a.default is not None: default = default_expr(a.default, a.type) return [ Binding( nctype=argument_type(a, binds=binds), name=a.name, default=default, argument=a, ) ] elif isinstance(a, TensorOptionsArguments): raise NotImplementedError("Need to implement type resolution for TensorOptions") elif isinstance(a, SelfArgument): if method: # Caller is responsible for installing implicit this in context! return [] else: return sub_argument(a.argument) else: assert_never(a) def arguments( arguments: Arguments, *, faithful: bool, method: bool, cpp_no_default_args: set[str], ) -> list[Binding]: args: list[Argument | TensorOptionsArguments | SelfArgument] = [] if faithful: args.extend(arguments.non_out) args.extend(arguments.out) else: args.extend(arguments.out) args.extend(arguments.non_out) return [ r.no_default() if faithful else r for a in args for r in argument( a, faithful=faithful, method=method, has_tensor_options=arguments.tensor_options is not None, cpp_no_default_args=cpp_no_default_args, ) ] ```
================================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.12 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\api\types\__init__.py ENCODING: utf-8 ```py from torchgen.executorch.api.types.types import * from torchgen.executorch.api.types.signatures import * # usort: skip ```
=================================================================================================================================== SOURCE CODE FILE: signatures.py LINES: 1 SIZE: 2.58 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\api\types\signatures.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING import torchgen.api.cpp as aten_cpp from torchgen.executorch.api.types.types import contextArg if TYPE_CHECKING: from torchgen.api.types import Binding, CType from torchgen.model import FunctionSchema, NativeFunction @dataclass(frozen=True) class ExecutorchCppSignature: """ This signature is merely a CppSignature with Executorch types (optionally contains KernelRuntimeContext as well). The inline definition of CppSignature is generated in Functions.h and it's used by unboxing functions. """ # The schema this signature is derived from func: FunctionSchema # The set of C++ arguments which should not have defaults applied to them cpp_no_default_args: set[str] # Allows you to prepend an arbitrary prefix to the signature name. # This is useful for parts of the codegen that generate wrappers around kernels, # and need to avoid naming collisions. prefix: str = "" def arguments(self, *, include_context: bool = True) -> list[Binding]: return ([contextArg] if include_context else []) + et_cpp.arguments( self.func.arguments, faithful=True, # always faithful, out argument at the end method=False, # method not supported cpp_no_default_args=self.cpp_no_default_args, ) def name(self) -> str: return self.prefix + aten_cpp.name( self.func, faithful_name_for_out_overloads=True, ) def decl(self, name: str | None = None, *, include_context: bool = True) -> str: args_str = ", ".join( a.decl() for a in self.arguments(include_context=include_context) ) if name is None: name = self.name() return f"{self.returns_type().cpp_type()} {name}({args_str})" def defn(self, name: str | None = None) -> str: args = [a.defn() for a in self.arguments()] args_str = ", ".join(args) if name is None: name = self.name() return f"{self.returns_type().cpp_type()} {name}({args_str})" def returns_type(self) -> CType: return et_cpp.returns_type(self.func.returns) @staticmethod def from_native_function( f: NativeFunction, *, prefix: str = "" ) -> ExecutorchCppSignature: return ExecutorchCppSignature( func=f.func, prefix=prefix, cpp_no_default_args=f.cpp_no_default_args ) from torchgen.executorch.api import et_cpp ```
============================================================================================================================== SOURCE CODE FILE: types.py LINES: 1 SIZE: 2.16 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\api\types\types.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass from torchgen.api.types import ( BaseCppType, BaseCType, Binding, boolT, CType, doubleT, Expr, longT, MutRefCType, NamedCType, ) from torchgen.model import BaseTy halfT = BaseCppType("torch::executor", "Half") bfloat16T = BaseCppType("torch::executor", "BFloat16") stringT = BaseCppType("torch::executor", "string_view") scalarTypeT = BaseCppType("torch::executor", "ScalarType") tensorT = BaseCppType("torch::executor", "Tensor") tensorListT = BaseCppType("torch::executor", "TensorList") scalarT = BaseCppType("torch::executor", "Scalar") memoryFormatT = BaseCppType("torch::executor", "MemoryFormat") intArrayRefT = BaseCppType("torch::executor", "IntArrayRef") optionalT = BaseCppType("torch::executor", "optional") contextT = BaseCppType("torch::executor", "KernelRuntimeContext") contextExpr = Expr( expr="context", type=NamedCType(name="context", type=MutRefCType(BaseCType(contextT))), ) contextArg = Binding( name="context", nctype=contextExpr.type, argument=None, # type: ignore[arg-type] default=None, ) BaseTypeToCppMapping: dict[BaseTy, BaseCppType] = { BaseTy.int: longT, BaseTy.float: doubleT, BaseTy.bool: boolT, BaseTy.str: stringT, BaseTy.ScalarType: scalarTypeT, BaseTy.Tensor: tensorT, BaseTy.Scalar: scalarT, BaseTy.MemoryFormat: memoryFormatT, } @dataclass(frozen=True) class OptionalCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"torch::executor::optional<{self.elem.cpp_type()}>" def remove_const_ref(self) -> CType: return OptionalCType(self.elem.remove_const_ref()) @dataclass(frozen=True) class ArrayRefCType(CType): elem: CType def cpp_type(self, *, strip_ref: bool = False) -> str: # Do not pass `strip_ref` recursively. return f"torch::executor::ArrayRef<{self.elem.cpp_type()}>" def remove_const_ref(self) -> CType: return ArrayRefCType(self.elem.remove_const_ref()) ```
=========================================================================================================================== SOURCE CODE FILE: unboxing.py LINES: 9 SIZE: 7.67 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\api\unboxing.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass from typing import Callable, TYPE_CHECKING from torchgen.model import ( Argument, BaseTy, BaseType, ListType, NativeFunction, OptionalType, Type, ) if TYPE_CHECKING: from collections.abc import Sequence from torchgen.api.types import Binding, CType, NamedCType connector = "\n\t" # Return unboxing function name for a NativeFunction def name(f: NativeFunction) -> str: return f.func.name.unambiguous_name() @dataclass(frozen=True) class Unboxing: """ Takes a sequence of Bindings and unbox EValues to these Bindings. Return generated code that performs correct unboxing. A sample generated code: // aten::mul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) void mul_out(EValue** stack) { EValue& self = *stack[0]; EValue& other = *stack[1]; EValue& out = *stack[2]; const torch::executor::Tensor & self_base = self.to<torch::executor::Tensor>(); const torch::executor::Tensor & other_base = other.to<torch::executor::Tensor>(); torch::executor::Tensor & out_base = out.to<torch::executor::Tensor>(); EXECUTORCH_SCOPE_PROF("native_call_mul.out"); torch::executor::mul_outf(self_base, other_base, out_base); } """ # this is a callable that converts a JIT argument, into its C++ type. # Translates (type, mutability, binds) to NamedCType. E.g., torchgen.api.cpp.argumenttype_type. argument_type_gen: Callable[ ..., NamedCType, ] # Convert all the arguments in a NativeFunction to C++ code def convert_arguments( self, args: Sequence[Binding] ) -> tuple[list[Binding], list[str]]: code_list = [f"EValue& {args[i].name} = *stack[{i}];" for i in range(len(args))] binding_list = [] for arg in args: # expecting only Argument if not isinstance(arg.argument, Argument): raise Exception( # noqa: TRY002 f"Unexpected argument type, expecting `Argument` but got {arg}" ) argument: Argument = arg.argument unboxed_name, _, code, decl = self.argumenttype_evalue_convert( argument.type, argument.name, mutable=argument.is_write ) code_list.extend(decl) code_list.extend(code) binding_list.append(arg.with_name(unboxed_name)) return binding_list, code_list def argumenttype_evalue_convert( self, t: Type, arg_name: str, *, mutable: bool = False ) -> tuple[str, CType, list[str], list[str]]: """ Takes in the type, name and mutability corresponding to an argument, and generates a tuple of: (1) the C++ code necessary to unbox the argument (2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType :param t: a `Type` of an argument :param arg_name: argument name :param mutable: boolean for whether this argument type is mutable :return: unboxed result """ ctype = self.argument_type_gen(t, mutable=mutable, binds=arg_name).type if isinstance(t, BaseType): out_name = f"{arg_name}_base" code, decl = self._gen_code_base_type( arg_name=arg_name, out_name=out_name, ctype=ctype ) elif isinstance(t, OptionalType): out_name = f"{arg_name}_opt_out" code, decl = self._gen_code_optional_type( arg_name=arg_name, out_name=out_name, t=t, ctype=ctype ) elif isinstance(t, ListType): out_name = f"{arg_name}_list_out" code, decl = self._gen_code_list_type( arg_name=arg_name, out_name=out_name, t=t, ctype=ctype ) else: raise Exception( # noqa: TRY002 f"Cannot handle type {t}. arg_name: {arg_name}" ) # noqa: TRY002 return out_name, ctype, code, decl def _gen_code_base_type( self, arg_name: str, out_name: str, ctype: CType ) -> tuple[list[str], list[str]]: return [ f"{ctype.cpp_type()} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();" ], [] def _gen_code_optional_type( self, arg_name: str, out_name: str, t: OptionalType, ctype: CType ) -> tuple[list[str], list[str]]: in_name = f"{arg_name}_opt_in" res_name, base_type, res_code, decl = self.argumenttype_evalue_convert( t.elem, in_name ) return ( f""" auto {out_name} = {arg_name}.toOptional<{base_type.cpp_type(strip_ref=True)}>(); """.split("\n"), decl, ) def _gen_code_list_type( self, arg_name: str, out_name: str, t: ListType, ctype: CType ) -> tuple[list[str], list[str]]: in_name = f"{arg_name}_list_in" elem_name = f"{arg_name}_elem" code = [] res_name, res_ctype, res_code, decl = self.argumenttype_evalue_convert( t.elem, elem_name ) if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.Tensor: code.extend( f""" auto {out_name} = {arg_name}.toTensorList(); """.split("\n") ) elif isinstance(t.elem, BaseType) and ( t.elem.name == BaseTy.int or t.elem.name == BaseTy.SymInt ): code.extend( f""" auto {out_name} = {arg_name}.toIntList(); """.split("\n") ) elif isinstance(t.elem, BaseType) and t.elem.name == BaseTy.float: code.extend( f""" auto {out_name} = {arg_name}.toDoubleList(); """.split("\n") ) elif isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool: # handle list type with size, e.g., bool[4] code.extend( f""" #ifdef USE_ATEN_LIB std::array<bool, {t.size}> {out_name}; auto {in_name} = {arg_name}.toBoolList(); size_t _i = 0; for (auto {elem_name}: {in_name}) {{ {out_name}[_i++] = {elem_name}; }} #else auto {out_name} = {arg_name}.toBoolList(); #endif """.split("\n") ) # pytorch codegen: # we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<::std::optional<at::Tensor>> elif ( isinstance(t.elem, OptionalType) and isinstance(t.elem.elem, BaseType) and t.elem.elem.name == BaseTy.Tensor ): code.extend( f""" #ifdef USE_ATEN_LIB auto {in_name} = {arg_name}.toListOptionalTensor(); c10::List<::std::optional<at::Tensor>> {out_name}; for (auto {elem_name}: {in_name}) {{ {out_name}.push_back({elem_name}); }} #else auto {out_name} = {arg_name}.toListOptionalTensor(); #endif """.split("\n") ) else: # use ArrayRef as default. vec_name = arg_name + "_vec" # need to bring vector instantiation out of scope so that ArrayRef has valid data decl.append( f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};" ) code.extend( f""" for (EValue {elem_name}: {in_name}) {{ {connector.join(res_code)} {vec_name}.push_back({res_name}); }} {ctype.cpp_type(strip_ref=True)} {out_name}({vec_name}); """.split("\n") ) return code, decl ```
==================================================================================================================== SOURCE CODE FILE: model.py LINES: 1 SIZE: 7.70 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\model.py ENCODING: utf-8 ```py # Represents all kernels used by an Executorch model. # It maintains a dict[OperatorName, dict[ETKernelKey, BackendMetadata]] structure. from __future__ import annotations import itertools from collections import defaultdict, namedtuple from dataclasses import dataclass from enum import IntEnum from torchgen.model import ( BackendIndex, BackendMetadata, DispatchKey, NativeFunction, NativeFunctionsGroup, OperatorName, ) from torchgen.utils import assert_never KERNEL_KEY_VERSION = 1 # TODO: Duplicated Subset from codegen.tool.gen_oplist, remove declaration in codegen class ScalarType(IntEnum): Byte = 0 Char = 1 Short = 2 Int = 3 Long = 4 Float = 6 Double = 7 Bool = 11 ETParsedYaml = namedtuple("ETParsedYaml", ["native_functions", "kernel_index"]) @dataclass(frozen=True) class ETKernelKeyOpArgMeta: arg_name: str dtype: str # The order of the dimensions if entry is a Tensor dim_order: tuple[int, ...] def to_native_string(self) -> str: dtype_str = ScalarType[self.dtype].value dim_str = str(self.dim_order)[1:-1].replace(" ", "") return f"{dtype_str};{dim_str}" @dataclass(frozen=True) class ETKernelKey: # Field undefined is default = True arg_meta: tuple[ETKernelKeyOpArgMeta, ...] = () # Indicator for this kernel being used as a catch all default: bool = False version: int = KERNEL_KEY_VERSION @staticmethod def gen_from_yaml( args: dict[str, tuple[str, str]], type_alias_map: dict[str, list[str]], # TODO: Support unwrapped str val dim_order_alias_map: dict[str, list[int]], ) -> list[ETKernelKey]: """Generate ETKernelKeys from arg kernel specs Multiple ETKernelKeys are returned due to dtype permutations from utilizing type_alias_map (actualizing each potential type permutation as a KernelKey) Args: args: Mapping from argument name to kernel specs Kernel specs are a tuple of (dtype, dim_order). Currently tuple entries must be aliased via the alias map arguments type_alias_map: Mapping from type alias to potential type enums i.e { T0 : [Double, Int] } means T0 can be either Double or Int Used for lookup by args dim_order_alias_map: Mapping from alias to a list of dimension orders Used for lookup by args """ # Cast to dim order to int dim_order_alias_map = { k: [int(alias) for alias in v] for k, v in dim_order_alias_map.items() } kernel_keys = [] # Get all used Dtype Alias dtype_alias_used = set() for type_alias, dim_order in args.values(): # Enforce usage of alias initially # TODO: Support inlined arguments assert type_alias in type_alias_map, "Undefined type alias: " + str( type_alias ) assert dim_order in dim_order_alias_map, ( f"Undefined dim_order alias: {dim_order}" ) dtype_alias_used.add(type_alias) # Generate all permutations of dtype alias values alias_dtypes = [ [(alias, dtype) for dtype in type_alias_map[alias]] for alias in dtype_alias_used ] alias_permutations = [ dict(permutation) for permutation in list(itertools.product(*alias_dtypes)) ] # Using each alias value permutation, generate kernel keys op_arg_cache = {} for permutation in alias_permutations: arg_list = [] for arg_name, arg_spec in args.items(): dtype = permutation[arg_spec[0]] dim_order = dim_order_alias_map[arg_spec[1]] # type: ignore[assignment] if ( cache_key := (arg_name, dtype, tuple(dim_order)) ) not in op_arg_cache: op_arg_cache[cache_key] = ETKernelKeyOpArgMeta(*cache_key) # type: ignore[arg-type] arg_list.append(op_arg_cache[cache_key]) kernel_keys.append(ETKernelKey(tuple(arg_list))) return kernel_keys def to_native_string(self) -> str: if self.default: return "default" return ( "v" + str(KERNEL_KEY_VERSION) + "/" + "|".join([arg.to_native_string() for arg in self.arg_meta]) ) @dataclass(frozen=True) class ETKernelIndex: index: dict[OperatorName, dict[ETKernelKey, BackendMetadata]] def has_kernels(self, g: NativeFunction | NativeFunctionsGroup) -> bool: m = self.get_kernels(g) return m is not None def get_kernels( self, g: NativeFunction | NativeFunctionsGroup ) -> dict[ETKernelKey, BackendMetadata]: if isinstance(g, NativeFunction): f = g elif isinstance(g, NativeFunctionsGroup): f = g.functional else: assert_never(g) if f.func.name not in self.index: return {} return self.index[f.func.name] @staticmethod def grow_from_backend_indices( kernel_index: dict[OperatorName, dict[ETKernelKey, BackendMetadata]], backend_indices: dict[DispatchKey, dict[OperatorName, BackendMetadata]], ) -> None: for dk in backend_indices: index = backend_indices[dk] for op, backend_metadata in index.items(): if op in kernel_index: kernel_index[op][ETKernelKey(default=True)] = backend_metadata else: kernel_index[op] = {ETKernelKey(default=True): backend_metadata} @staticmethod def from_backend_indices( backend_indices: dict[DispatchKey, dict[OperatorName, BackendMetadata]], ) -> ETKernelIndex: kernel_index: dict[OperatorName, dict[ETKernelKey, BackendMetadata]] = ( defaultdict(dict) ) ETKernelIndex.grow_from_backend_indices(kernel_index, backend_indices) return ETKernelIndex(kernel_index) def grow( self, backend_indices: dict[DispatchKey, dict[OperatorName, BackendMetadata]] ) -> ETKernelIndex: ETKernelIndex.grow_from_backend_indices(self.index, backend_indices) return self def _to_backend_index(self) -> BackendIndex: """ WARNING: this will be deprecated once all the codegen places know how to handle ETKernelIndex. """ index: dict[OperatorName, BackendMetadata] = {} for op in self.index: kernel_dict = self.index[op] assert len(kernel_dict.values()) == 1, ( f"Can't convert ETKernelIndex to BackendIndex because {op} has more than one kernels. Got {kernel_dict}" ) index[op] = kernel_dict.get( ETKernelKey(default=True), BackendMetadata(kernel="", structured=False, cpp_namespace=""), ) return BackendIndex( dispatch_key=DispatchKey.CPU, use_out_as_primary=False, device_guard=False, external=False, index=index, ) # Note duplicate ETKernelKey from index_b will clobber the metadata from index_a @staticmethod def merge_indices(index_a: ETKernelIndex, index_b: ETKernelIndex) -> ETKernelIndex: combined = defaultdict(dict, index_a.index.copy()) for op, entry in index_b.index.items(): for key, metadata in entry.items(): combined[op][key] = metadata return ETKernelIndex(combined) ```
==================================================================================================================== SOURCE CODE FILE: parse.py LINES: 1 SIZE: 5.44 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\executorch\parse.py ENCODING: utf-8 ```py from __future__ import annotations from collections import defaultdict, namedtuple from typing import Any import yaml from torchgen.executorch.model import ETKernelIndex, ETKernelKey from torchgen.gen import LineLoader, parse_native_yaml from torchgen.model import ( BackendMetadata, DispatchKey, FunctionSchema, NativeFunction, OperatorName, ) from torchgen.utils import NamespaceHelper # Parse native_functions.yaml into a sequence of NativeFunctions and ET Backend Indices. ETParsedYaml = namedtuple("ETParsedYaml", ["native_functions", "et_kernel_indices"]) # Fields in native_functions.yaml used to determine which kernels should be used ET_FIELDS = ["kernels", "type_alias", "dim_order_alias"] def parse_from_yaml(ei: dict[str, object]) -> dict[ETKernelKey, BackendMetadata]: """Given a loaded yaml representing kernel assignment information, extract the mapping from `kernel keys` to `BackendMetadata` (the latter representing the kernel instance) Args: ei: Dict keys {kernels, type_alias, dim_order_alias} See ETKernelKey for description of arguments """ e = ei.copy() if (kernels := e.pop("kernels", None)) is None: return {} type_alias: dict[str, list[str]] = e.pop("type_alias", {}) # type: ignore[assignment] dim_order_alias: dict[str, list[str]] = e.pop("dim_order_alias", {}) # type: ignore[assignment] dim_order_alias.pop("__line__", None) kernel_mapping: dict[ETKernelKey, BackendMetadata] = {} for entry in kernels: # type: ignore[attr-defined] arg_meta = entry.get("arg_meta") if arg_meta is not None: arg_meta.pop("__line__") kernel_name = entry.get("kernel_name") namespace_helper = NamespaceHelper.from_namespaced_entity( kernel_name, max_level=3 ) kernel_namespace = namespace_helper.get_cpp_namespace(default="at") backend_metadata = BackendMetadata( kernel=namespace_helper.entity_name, structured=False, cpp_namespace=(kernel_namespace + "::native"), ) kernel_keys = ( [ETKernelKey((), default=True)] if arg_meta is None else ETKernelKey.gen_from_yaml(arg_meta, type_alias, dim_order_alias) # type: ignore[arg-type] ) for kernel_key in kernel_keys: assert kernel_key not in kernel_mapping, ( "Duplicate kernel key: " + str(kernel_key) + " " + str(e) ) kernel_mapping[kernel_key] = backend_metadata return kernel_mapping def parse_et_yaml_struct(es: object) -> ETKernelIndex: """Given a loaded yaml representing a list of operators, for each op extract the mapping of `kernel keys` to `BackendMetadata` (the latter representing the kernel instance that should be used by the kernel key). """ indices: dict[OperatorName, dict[ETKernelKey, BackendMetadata]] = {} for ei in es: # type: ignore[attr-defined] e = ei.copy() funcs = e.pop("func") assert isinstance(funcs, str), f"not a str: {funcs}" namespace_helper = NamespaceHelper.from_namespaced_entity( namespaced_entity=funcs, max_level=1 ) opname = FunctionSchema.parse(namespace_helper.entity_name).name assert opname not in indices, f"Duplicate func found in yaml: {opname} already" if len(index := parse_from_yaml(e)) != 0: indices[opname] = index return ETKernelIndex(indices) def extract_kernel_fields(es: object) -> dict[OperatorName, dict[str, Any]]: """Given a loaded yaml representing a list of operators, extract the kernel key related fields indexed by the operator name. """ fields: dict[OperatorName, dict[str, Any]] = defaultdict(dict) for ei in es: # type: ignore[attr-defined] funcs = ei.get("func") assert isinstance(funcs, str), f"not a str: {funcs}" namespace_helper = NamespaceHelper.from_namespaced_entity( namespaced_entity=funcs, max_level=1 ) opname = FunctionSchema.parse(namespace_helper.entity_name).name for field in ET_FIELDS: if (value := ei.get(field)) is not None: fields[opname][field] = value return fields def parse_et_yaml( path: str, tags_yaml_path: str, ignore_keys: set[DispatchKey] | None = None, skip_native_fns_gen: bool = False, ) -> tuple[list[NativeFunction], dict[OperatorName, dict[str, Any]]]: """Parse native_functions.yaml into NativeFunctions and an Operator Indexed Dict of fields to persist from native_functions.yaml to functions.yaml """ with open(path) as f: es = yaml.load(f, Loader=LineLoader) et_kernel = extract_kernel_fields(es) # Remove ET specific fields from entries for BC compatibility strip_et_fields(es) native_yaml = parse_native_yaml( path, tags_yaml_path, ignore_keys, skip_native_fns_gen=skip_native_fns_gen, loaded_yaml=es, ) return native_yaml.native_functions, et_kernel def strip_et_fields(es: object) -> None: """Given a loaded yaml representing a list of operators, remove ET specific fields from every entries for BC compatibility """ for entry in es: # type: ignore[attr-defined] for field in ET_FIELDS: entry.pop(field, None) ```
======================================================================================================= SOURCE CODE FILE: gen.py LINES: 26 SIZE: 116.98 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen.py ENCODING: utf-8 ```py from __future__ import annotations import argparse import functools import json import keyword import os from collections import defaultdict, namedtuple, OrderedDict from dataclasses import dataclass, field from pathlib import Path from typing import Any, Callable, Literal, TYPE_CHECKING, TypeVar import yaml import torchgen.api.dispatcher as dispatcher import torchgen.api.meta as meta import torchgen.api.native as native import torchgen.api.structured as structured import torchgen.dest as dest from torchgen.aoti.fallback_ops import inductor_fallback_ops from torchgen.api import cpp from torchgen.api.translate import translate from torchgen.api.types import ( Binding, CppSignature, CppSignatureGroup, DispatcherSignature, NamedCType, NativeSignature, SpecialArgName, ) from torchgen.context import ( method_with_native_function, native_function_manager, with_native_function, with_native_function_and_indices, ) from torchgen.gen_aoti_c_shim import ( gen_aoti_c_shim, gen_static_dispatch_backend_call_signature, get_fallback_op_name, get_header_for_aoti, ) from torchgen.gen_functionalization_type import ( gen_functionalization_definition, gen_functionalization_registration, gen_functionalization_view_inverse_declaration, GenCompositeViewCopyKernel, ) from torchgen.gen_vmap_plumbing import gen_all_vmap_plumbing from torchgen.model import ( Argument, BackendIndex, BackendMetadata, BaseOperatorName, DEFAULT_KERNEL_NAMESPACE, dispatch_device_map, DispatchKey, FRAGMENT_NAMESPACES, FunctionSchema, is_cuda_dispatch_key, is_generic_dispatch_key, is_ufunc_dispatch_key, is_xpu_dispatch_key, Location, NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup, OperatorName, OptionalType, SchemaKind, SelfArgument, STRUCTURED_DISPATCH_KEYS, TensorOptionsArguments, Type, Variant, ViewSchemaKind, ) from torchgen.native_function_generation import ( add_generated_native_functions, gen_composite_functional_kernel, gen_composite_out_kernel, pre_group_native_functions, ) from torchgen.selective_build.selector import SelectiveBuilder from torchgen.utils import ( assert_never, concatMap, context, FileManager, make_file_manager, mapMaybe, NamespaceHelper, Target, ) from torchgen.yaml_utils import YamlDumper, YamlLoader if TYPE_CHECKING: from collections.abc import Sequence T = TypeVar("T") # Welcome to the ATen code generator v2! The ATen code generator is # responsible for parsing native_functions.yaml and then generating # various generated files (e.g., TypeDefault.cpp) based on the operators # defined in this file. This means that the code generator knows how to # parse function schema, and then translate this into various C++ types # and boilerplate code. # # Some things to know about this file when you modify it: # # - This file has STRICT mypy typechecking. Typecheck it with # `mypy --config mypy-strict.ini` in the root source directory # # - Most of the heavy lifting lives in external modules: # - 'model' has the data model for native_functions.yaml. The classes # in those file represent what you see when you look at # a native_functions.yaml # - 'api' has conversions for how to translate JIT schema into # the various C++ APIs that the codegen interacts with. There # are in fact THREE different C++ APIs: the public C++ API, # the dispatcher API, and the legacy dispatcher API. See each # of these respective files for more information # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # HELPER FUNCTIONS # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # A custom loader for YAML to let us also keep track of line numbers # of each entry in the YAML file class LineLoader(YamlLoader): def construct_mapping(self, node, deep=False): # type: ignore[no-untyped-def] mapping = super().construct_mapping(node, deep=deep) # type: ignore[no-untyped-call] # Add 1 so line numbering starts at 1 mapping["__line__"] = node.start_mark.line + 1 return mapping # Parse native_functions.yaml into a sequence of NativeFunctions and Backend Indices. ParsedYaml = namedtuple("ParsedYaml", ["native_functions", "backend_indices"]) _GLOBAL_PARSE_NATIVE_YAML_CACHE: dict[str, ParsedYaml] = {} _GLOBAL_PARSE_TAGS_YAML_CACHE: dict[str, set[str]] = {} def file_manager_from_dispatch_key( dispatch_key: DispatchKey, device_fms: dict[str, FileManager], default_fm: FileManager, ) -> FileManager: fm = device_fms.get( next( ( device for check, device in dispatch_device_map.items() if check(dispatch_key) ), "", ), default_fm, ) return fm def parse_native_yaml_struct( es: object, valid_tags: set[str], ignore_keys: set[DispatchKey] | None = None, path: str = "<stdin>", skip_native_fns_gen: bool = False, ) -> ParsedYaml: assert isinstance(es, list) rs: list[NativeFunction] = [] bs: dict[DispatchKey, dict[OperatorName, BackendMetadata]] = defaultdict(dict) for e in es: assert isinstance(e, dict), f"expected to be dict: {e}" assert isinstance(e.get("__line__"), int), e loc = Location(path, e["__line__"]) funcs = e.get("func") assert funcs is not None, f"missed 'func' in {e}" with context(lambda: f"in {loc}:\n {funcs}"): func, m = NativeFunction.from_yaml(e, loc, valid_tags, ignore_keys) rs.append(func) BackendIndex.grow_index(bs, m) error_check_native_functions(rs) # Default dict is to prevent the codegen from barfing when we have a dispatch key that has no kernels yet. indices: dict[DispatchKey, BackendIndex] = defaultdict( lambda: BackendIndex( dispatch_key=DispatchKey.Undefined, use_out_as_primary=True, external=False, device_guard=False, # I'm actually not sure about this; undefined could be hit on # empty TensorList, hypothetically that could have sizes in it index={}, ) ) if not skip_native_fns_gen: add_generated_native_functions(rs, bs) for k, v in bs.items(): # All structured in-tree operators are implemented in terms of their out operator. indices[k] = BackendIndex( dispatch_key=k, use_out_as_primary=True, external=False, # Only cuda-like devices in tree require device guards device_guard=is_cuda_dispatch_key(k) or is_xpu_dispatch_key(k), index=v, ) return ParsedYaml(rs, indices) def parse_tags_yaml_struct(es: object, path: str = "<stdin>") -> set[str]: assert isinstance(es, list) rs: set[str] = set() for e in es: assert isinstance(e.get("__line__"), int), e loc = Location(path, e["__line__"]) tags = e.get("tag") with context(lambda: f"in {loc}:\n {tags}"): e_i = e.copy() name = e_i.pop("tag") desc = e_i.pop("desc", "") # ensure that each tag has a non-empty description assert desc != "" rs.add(name) return rs @functools.cache def parse_tags_yaml(path: str) -> set[str]: global _GLOBAL_PARSE_TAGS_YAML_CACHE if path not in _GLOBAL_PARSE_TAGS_YAML_CACHE: with open(path) as f: es = yaml.load(f, Loader=LineLoader) _GLOBAL_PARSE_TAGS_YAML_CACHE[path] = parse_tags_yaml_struct(es, path=path) return _GLOBAL_PARSE_TAGS_YAML_CACHE[path] def parse_native_yaml( path: str, tags_yaml_path: str, ignore_keys: set[DispatchKey] | None = None, *, skip_native_fns_gen: bool = False, loaded_yaml: object | None = None, ) -> ParsedYaml: global _GLOBAL_PARSE_NATIVE_YAML_CACHE if path not in _GLOBAL_PARSE_NATIVE_YAML_CACHE: valid_tags = parse_tags_yaml(tags_yaml_path) # if a loaded yaml is provided, use that instead of reading from path if loaded_yaml is None: with open(path) as f: es = yaml.load(f, Loader=LineLoader) else: es = loaded_yaml _GLOBAL_PARSE_NATIVE_YAML_CACHE[path] = parse_native_yaml_struct( es, valid_tags, ignore_keys, path=path, skip_native_fns_gen=skip_native_fns_gen, ) return _GLOBAL_PARSE_NATIVE_YAML_CACHE[path] # Some assertions are already performed during parsing, but those are only within a single NativeFunction. # Assertions here are meant to be performed across NativeFunctions. def error_check_native_functions(funcs: Sequence[NativeFunction]) -> None: func_map: dict[OperatorName, NativeFunction] = {} base_func_map: dict[BaseOperatorName, list[NativeFunction]] = defaultdict(list) for f in funcs: func_map[f.func.name] = f base_func_map[f.func.name.name].append(f) for f in funcs: if f.structured_delegate is not None: delegate_func = func_map.get(f.structured_delegate) assert delegate_func is not None, ( f"{f.func.name} is marked as a structured_delegate pointing to " f"{f.structured_delegate}, but {f.structured_delegate} is missing." ) assert delegate_func.structured, ( f"{f.func.name} is marked as a structured_delegate pointing to " f"{f.structured_delegate}, but {f.structured_delegate} is not marked as structured. " f"Consider adding 'structured=True' to the delegated operator" ) # Check for reserved Python keywords PYTHON_RESERVED_KEYWORDS = set(keyword.kwlist) # List of pre-existing operators that are known to have reserved keywords # Exclusion list is used to suppress the assertion for these operators EXCLUSION_LIST = { ("_has_compatible_shallow_copy_type", "from"), ("random_.from", "from"), ("uniform_", "from"), } for arg in f.func.arguments.flat_all: if arg.name in PYTHON_RESERVED_KEYWORDS: if (str(f.func.name), arg.name) not in EXCLUSION_LIST: raise AssertionError( f"Argument name '{arg.name}' in function '{f.func.name}' is a reserved Python keyword." ) # See Note [resize_ in Functionalization] # resize_() is technically an inplace view op (and therefore needs the tag), # but it would be overkill to add a true "view" variant of resize. # Instead, resize_() gets special treatment in functionalization, # and we have a resize() op that is non-aliasing + functional. if ( "inplace_view" in f.tags and str(f.func.name) != "resize_" and str(f.func.name) != "resize_as_" and str(f.func.name.name) != "set_" ): base_name = f.func.name.name assert base_name.inplace, ( f"{f.func.name} is marked with tag: inplace_view, but it doesn't follow the naming " "convention for inplace ops - the codegen expects the base name to have a trailing underscore. " ) out_of_place_base_name = BaseOperatorName( base_name.base, False, base_name.dunder_method ) assert len(base_func_map[out_of_place_base_name]) > 0, ( f"{f.func.name} is marked with tag: inplace_view. The codegen expects there to be a corresponding " f"out-of-place view op with the name '{base_name}' and matching schema, but it didn't find one. " ) def cpp_string(s: str) -> str: """Convert a python string into a c++ string literal""" s = s.replace("\\", "\\\\") s = s.replace('"', '\\"') s = s.replace("\a", "\\a") s = s.replace("\b", "\\b") s = s.replace("\f", "\\f") s = s.replace("\n", "\\n") s = s.replace("\v", "\\v") s = s.replace("\t", "\\t") return f'"{s}"' # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # C++ CODE GENERATION # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Most functions in this section are curried: they consist of a function # that takes some parameters (e.g., what is to be generated) which itself # returns a function that actually maps NativeFunction to the code # to be generated. This pattern makes it convenient to use map, concatMap # and similar functional combinators. def static_dispatch_keys(backends: list[BackendIndex]) -> list[DispatchKey]: if len(backends) == 0: return [] else: return [backend.dispatch_key for backend in backends] + [ DispatchKey.CompositeImplicitAutograd, DispatchKey.CompositeImplicitAutogradNestedTensor, DispatchKey.CompositeExplicitAutograd, DispatchKey.CompositeExplicitAutogradNonFunctional, ] def get_static_dispatch_backend( f: NativeFunction, backend_index: BackendIndex ) -> DispatchKey | None: if f.structured_delegate is not None or backend_index.has_kernel(f): # TODO: for ops with structured_delegate it should check the dispatch table of # the out variant instead. For now, these structured ops all have CPU/CUDA kernels # so we always dispatch to the `backend`, but this could be wrong when we # migrate math/default_backend ops to use structured delegate. return backend_index.dispatch_key elif f.has_composite_explicit_autograd_kernel: return DispatchKey.CompositeExplicitAutograd elif f.has_composite_explicit_autograd_non_functional_kernel: return DispatchKey.CompositeExplicitAutogradNonFunctional elif f.has_composite_implicit_autograd_kernel: return DispatchKey.CompositeImplicitAutograd elif f.has_composite_implicit_autograd_nested_tensor_kernel: return DispatchKey.CompositeImplicitAutogradNestedTensor return None def static_dispatch_ops_header( f: NativeFunction, backend_index: list[BackendIndex] ) -> str | None: if backend_index is None or f.manual_kernel_registration: return None output = [] for index in backend_index: dispatch_key = get_static_dispatch_backend(f, index) if dispatch_key is not None: output.append( f"#include <ATen/ops/{f.root_name}_{dispatch_key.lower()}_dispatch.h>" ) return "\n".join(output) def static_dispatch_extra_headers(backends: list[BackendIndex]) -> list[str]: return [ f"#include <ATen/{dispatch_key}Functions.h>" for dispatch_key in static_dispatch_keys(backends) ] # Translates arguments of `sig` to CppSignature bindings. # Note that we have a special case for `memory_format` argument and this case is not covered by # tools.codegen.api.translate() yet as its application is limited to static dispatch. def translate_args( sig: CppSignature | DispatcherSignature, cpp_sig: CppSignature, ) -> str: # Adds SpecialArgName.possibly_redundant_memory_format NamedCType for memory_format bindings def add_spl_memory_format_binding(input_bindings: list[Binding]) -> list[Binding]: output_bindings: list[Binding] = [] for binding in input_bindings: if binding.name == "memory_format": spl_mem_format_binding = Binding( nctype=NamedCType( SpecialArgName.possibly_redundant_memory_format, binding.nctype.type, ), name=binding.name, default=binding.default, argument=binding.argument, ) output_bindings.append(spl_mem_format_binding) else: output_bindings.append(binding) return output_bindings src_bindings = list(sig.arguments()) goal_bindings = list(cpp_sig.arguments()) # When last argument of CPP signature has SpecialArgName.possibly_redundant_memory_format NCType, # get memory_format bindings of dispatcher signature to have the same NCType as well for arg in goal_bindings: if arg.nctype.name == SpecialArgName.possibly_redundant_memory_format: src_bindings = add_spl_memory_format_binding(src_bindings) break exprs = translate(src_bindings, goal_bindings) return ", ".join(a.expr for a in exprs) def generate_static_dispatch_backend_call( sig: CppSignature | DispatcherSignature, f: NativeFunction, backend_index: BackendIndex, ) -> str: cpp_sig = gen_static_dispatch_backend_call_signature(sig, f) name = cpp_sig.name() exprs = translate_args(sig, cpp_sig) backend_metadata = backend_index.get_kernel(f) kernel_ns = ( backend_metadata.cpp_namespace if backend_metadata and backend_metadata.cpp_namespace else DEFAULT_KERNEL_NAMESPACE ) ns = kernel_ns.replace("::native", "") return f"return {ns}::{backend_index.dispatch_key.lower()}::{name}({exprs});" def generate_static_dispatch_fallback_call( sig: CppSignature | DispatcherSignature, f: NativeFunction, backend_indices: list[BackendIndex], ) -> str: cpp_sigs = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=False ) if sig.symint and f.func.has_symint(): cpp_sig = cpp_sigs.symint_signature else: cpp_sig = cpp_sigs.signature assert cpp_sig is not None name = cpp_sig.name() exprs = translate_args(sig, cpp_sig) ns = DEFAULT_KERNEL_NAMESPACE.replace("::native", "") if f.has_composite_explicit_autograd_kernel: return f"return {ns}::{DispatchKey.CompositeExplicitAutograd.lower()}::{name}({exprs});" elif f.has_composite_explicit_autograd_non_functional_kernel: return f"return {ns}::{DispatchKey.CompositeExplicitAutogradNonFunctional.lower()}::{name}({exprs});" elif f.has_composite_implicit_autograd_kernel: return f"return {ns}::{DispatchKey.CompositeImplicitAutograd.lower()}::{name}({exprs});" elif f.has_composite_implicit_autograd_nested_tensor_kernel: return f"return {ns}::{DispatchKey.CompositeImplicitAutogradNestedTensor.lower()}::{name}({exprs});" else: return f"""TORCH_CHECK(false, "Static dispatch does not support {name} for\ {", ".join([str(index.dispatch_key) for index in backend_indices])} ");""" def static_dispatch( sig: CppSignature | DispatcherSignature, f: NativeFunction, backend_indices: list[BackendIndex], ) -> str: """ For a given `NativeFunction`, find out the corresponding backend and dispatch to it. If more than one backends exsit, fallback to static dispatch by determining dispatch key from inputs. Arguments: sig: A CppSignature or DispatcherSignature for this native function we want to use. f: NativeFunction to generate static dispatch. backend_indices: All available backends. Return: C++ code to call backend-specific functions, e.g., "return at::cpu::add(self, other, scale);" """ if len(backend_indices) == 0 or f.manual_kernel_registration: return "" keys = [ b for b in backend_indices if b.has_kernel(f) or ( f.structured_delegate is not None and b.dispatch_key in STRUCTURED_DISPATCH_KEYS ) ] if len(keys) == 1: return generate_static_dispatch_backend_call(sig, f, keys[0]) elif len(keys) == 0: return generate_static_dispatch_fallback_call(sig, f, backend_indices) native_tensor_args = [ a.name for a in sig.arguments() if isinstance(a.argument, SelfArgument) or isinstance(a.argument, Argument) and a.argument.type.is_tensor_like() ] tensor_args = ", ".join(native_tensor_args) tensor_opts = f.func.arguments.tensor_options stmts = [] subexprs: list[str] = [] if tensor_opts is not None: subexprs.append( "DispatchKeySet(c10::computeDispatchKey(dtype, layout, device))" ) if tensor_args != "": subexprs.append(f"c10::detail::multi_dispatch_key_set({tensor_args})") stmts.append(f"""DispatchKeySet _dk_set = {" | ".join(subexprs)};""") stmts.append("DispatchKey _dk = c10::highestPriorityBackendTypeId(_dk_set);") dispatch_code = [] for index in keys: dispatch_code.append(f"""case DispatchKey::{index.dispatch_key}:""") dispatch_code.append( f"""\t{generate_static_dispatch_backend_call(sig, f, index)};""" ) fallback = generate_static_dispatch_fallback_call(sig, f, backend_indices) connector = "\n\t\t" return f""" {connector.join(stmts)} switch (_dk) {{ {connector.join(dispatch_code)} default: {fallback} }} """ # Generates RegisterSchema.cpp. Depending on the selector, either # all schemas are registered, or only some are (in the case of # selective build) @dataclass(frozen=True) class RegisterSchema: selector: SelectiveBuilder known_tags: dict[str, int] = field(default_factory=dict) @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: if not self.selector.is_native_function_selected(f): return None tags = "{" + ", ".join(f"at::Tag::{tag}" for tag in sorted(f.tags)) + "}" if tags == "{}": return f"m.def({cpp_string(str(f.func))}, {{}});\n" maybe_tags = "" if tags not in self.known_tags: idx = len(self.known_tags) self.known_tags[tags] = idx maybe_tags = f"const std::vector<at::Tag> tags_{idx} = {tags};\n" return f"{maybe_tags}m.def({cpp_string(str(f.func))}, tags_{self.known_tags[tags]});\n" # Generates Operators.h and Operators.cpp. # These provide macros that, given an operator and overload name, allow users # to access an "un-overloaded" function version of the operator. This # is useful for extension writers who want to (1) want to decltype the operator # and (2) don't want to worry about method-only operators. @dataclass(frozen=True) class ComputeOperators: target: Literal[Target.DECLARATION, Target.DEFINITION] static_dispatch_backend_indices: list[BackendIndex] @method_with_native_function def __call__(self, f: NativeFunction) -> str: sig = DispatcherSignature.from_schema(f.func) name = f.func.name.unambiguous_name() if self.target is Target.DECLARATION: # Note [The ATen Operators API] # The ATen Operators API lives in the at::_ops namespace, and contains compile-time # metadata about each operator + entry points into the Dispatcher. # The C++ function, method, and redispatch API's are all implemented as wrappers # into various bits of the structs defined here. # # Important characteristics about the Operators API: # (1) It follows the Dispatcher API. # This is kind of necessary to avoid overhead. # For example: if it followed the C++ API, then all of the faithful C++ factory functions # would need to wrap their arguments into TensorOptions only to unwrap them again. # (2) Overload names are disambiguated. # This is helpful for pytorch extenders who would like to decltype() an aten operator, # that has overloads, e.g. decltype(at::_ops::mul_Tensor::call) # (3) No argument defaulting is allowed. # This is more of an implementation detail to avoid #include cycles, # since TensorBody.h (which defines the Tensor class) needs to include this file. # (4) manual_cpp_bindings and faithful names are not included in the API. # This applies to stuff like __dispatch__is_complex(), and add_outf(). # These aren't "real aten ops", they're just additional functions provided by the C++ API. # They're implemented as wrappers in Functions.h that call into the actual operators # defined here, i.e. at::_ops::is_complex::call() and at::_ops::add_out::call(). # This means that ATEN_OP(is_complex) will not fastpath, and will go through the dispatcher. return f""" struct TORCH_API {name} {{ using schema = {sig.type()}; using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] static constexpr const char* name = "aten::{f.func.name.name}"; static constexpr const char* overload_name = "{f.func.name.overload_name}"; static constexpr const char* schema_str = {cpp_string(str(f.func))}; static {sig.defn(name="call", is_redispatching_fn=False)}; static {sig.defn(name="redispatch", is_redispatching_fn=True)}; }};""" elif self.target is Target.DEFINITION: defns = f""" // aten::{f.func} static C10_NOINLINE c10::TypedOperatorHandle<{name}::schema> create_{name}_typed_handle() {{ return c10::Dispatcher::singleton() .findSchemaOrThrow({name}::name, {name}::overload_name) .typed<{name}::schema>(); }} """ for is_redispatching_fn in [False, True]: if is_redispatching_fn: dispatcher_exprs_str = ", ".join( ["dispatchKeySet"] + [a.name for a in sig.arguments()] ) method_base = "redispatch" else: dispatcher_exprs_str = ", ".join([a.name for a in sig.arguments()]) method_base = "call" dispatcher_call = method_base method_name = f"{name}::{method_base}" fn_body = f""" static auto op = create_{name}_typed_handle(); return op.{dispatcher_call}({dispatcher_exprs_str});""" if ( not is_redispatching_fn and len(self.static_dispatch_backend_indices) > 0 ): # call() should go through static dispatch fn_body = static_dispatch( sig, f, backend_indices=self.static_dispatch_backend_indices ) defns += f""" // aten::{f.func} {sig.defn(name=method_name, is_redispatching_fn=is_redispatching_fn)} {{ {fn_body} }} """ return defns else: assert_never(self.target) # Generates Functions.h, which provides the functional public C++ API, # and the scaffolding to call into the dispatcher from these functions. @dataclass(frozen=True) class ComputeFunction: @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: sig_group = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=f.manual_cpp_binding ) has_symint = f.func.has_symint() result = "" for sig in sig_group.signatures(): # See Note [The ATen Operators API] target_sig = DispatcherSignature.from_schema(f.func) exprs = translate(sig.arguments(), target_sig.arguments()) exprs_str = ", ".join([e.expr for e in exprs]) if sig.symint: intlike_t = "c10::SymInt" else: intlike_t = "int64_t" if Variant.function in f.variants: result += f""" // aten::{f.func} inline {sig.decl()} {{ return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str}); }}""" # The template function can be used from template situations # where you want to switch between the symint or not version # depending on a template argument # # NB: we ALWAYS generate this even for methods. But we put it in # this header so it can take advantage of per-op headers if has_symint: result += f""" namespace symint {{ template <typename T, typename = std::enable_if_t<std::is_same_v<T, {intlike_t}>>> {sig.decl(suppress_symint_suffix=True)} {{ return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str}); }} }} """ return result # Generates TensorBody.h. This file provides the object-oriented (method-based) # public C++ API, and the scaffolding to call into the dispatcher from these functions. @dataclass(frozen=True) class ComputeTensorMethod: target: Literal[Target.DECLARATION, Target.DEFINITION] static_dispatch_backend_indices: list[BackendIndex] @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: if Variant.method not in f.variants: return None assert not f.func.is_out_fn() assert f.func.arguments.self_arg is not None sig_group = CppSignatureGroup.from_native_function( f, method=True, fallback_binding=f.manual_cpp_binding ) if self.target is Target.DECLARATION: result = "" for sig in sig_group.signatures(): result += f"{sig.decl()} const;\n" return result if self.target is not Target.DEFINITION: assert_never(self.target) result = "" for sig in sig_group.signatures(): target_sig = DispatcherSignature.from_schema(f.func) exprs = translate(sig.arguments(), target_sig.arguments(), method=True) exprs_str = ", ".join([e.expr for e in exprs]) result += f""" // aten::{f.func} inline {sig.defn(prefix="Tensor::")} const {{ return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str}); }} """ return result # Generates RedispatchFunctions.h. # This is similar to the C++ API defined in Functions.h, but provides access # to the dispatcher's redispatch API. @dataclass(frozen=True) class ComputeRedispatchFunction: @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: # We unconditionally generate function variants of the redispatch API. # This is mainly because we can namespace functions separately, but not methods, sig_group = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=f.manual_cpp_binding ) result = "" for sig in sig_group.signatures(): target_sig = DispatcherSignature.from_schema(f.func) exprs = translate(sig.arguments(), target_sig.arguments()) exprs_str = ", ".join(["dispatchKeySet"] + [a.expr for a in exprs]) result += f""" // aten::{f.func} inline {sig.decl(is_redispatching_fn=True)} {{ return at::_ops::{f.func.name.unambiguous_name()}::redispatch({exprs_str}); }} """ return result # Generates ATenOpList.cpp, a runtime accessible list of all aten # operators. # TODO: This was historically used to help some JIT interop code # figure out whether or not to treat aten namespace'd operators # one way or another, we should reevaluate if this is actually needed. @with_native_function def compute_aten_op(f: NativeFunction) -> str: return f'{{"aten::{f.func.name.name}", "{f.func.name.overload_name}"}},' # Generates MetaFunctions.h def compute_meta_function_declaration(g: NativeFunctionsGroup) -> str | None: if not g.structured: return None with native_function_manager(g.out): name = meta.name(g) args = structured.meta_arguments(g) args_str = ", ".join(a.decl() for a in args) parent_class = g.out.structured_inherits if parent_class is None: parent_class = "at::impl::MetaBase" meta_return = "void" precomputed = g.out.precomputed if g.structured else None if precomputed: # Generate the template declaration with one bool parameter for each # precomputed element. Each parameter is true if the corresponding (in # terms of position) precomputed element has been set. precomputed_values = [*precomputed.replace.values(), precomputed.add] precomputed_elements = [ elem for replace_list in precomputed_values for elem in replace_list ] precomputed_template_parameters = [ elem.name.upper() for elem in precomputed_elements ] precomputed_template_params_str = ", ".join( f"bool {param} = false" for param in precomputed_template_parameters ) precompute_template_decl = f"template <{precomputed_template_params_str}>" # Generate a string containing declarations of all precomputed elements. precomputed_elements_with_cpp_types = [ structured.argument_type(elem, binds=elem.name) for elem in precomputed_elements ] precomputed_elements_decl = ";\n".join( f"{elem.cpp_type(strip_ref=True)} {elem.name}" for elem in precomputed_elements_with_cpp_types ) # Generate "setter" methods for each precomputed element. Each method will return # a new instance of precompute_out with the template parameter that corresponds to # the member set by the method to true (to indicate that it has been set). setter_methods = [] for i, elem in enumerate(precomputed_elements): # Generate the signature. The return type will be the same # as the type of `this` but with the template parameter # corresponding to the element set by this method set to true. # The assert generated below will ensure that this template # parameter is false on the type of `this`. return_ty_templates = ", ".join( precomputed_template_parameters[:i] + ["true"] + precomputed_template_parameters[i + 1 :] ) return_ty = f"precompute_out<{return_ty_templates}>" elem_cpp_ty = precomputed_elements_with_cpp_types[i].cpp_type( strip_ref=True ) signature = f"{return_ty} set_{elem.name}({elem_cpp_ty} value)" # Generate an assert which checks that the # template parameter corresponding to the precomputed # element that is set by this method is false on the # class corresponding to the object that `this` points to. # This ensures that each element can be set only once. assert_msg = f'"{elem.name} already set"' assert_stmt = f"static_assert({precomputed_template_parameters[i]} == false, {assert_msg});" # Generate the new object construction block. All state # except the element that this method sets is copied from the # object that `this` points to. The value for the element that # the method sets is taken from a method parameter. construction_stmts = [] construction_stmts.append(f"{return_ty} ret;") for j, elem in enumerate(precomputed_elements): if i == j: construction_stmts.append(f"ret.{elem.name} = value;") else: construction_stmts.append( f"ret.{elem.name} = this->{elem.name};" ) construction_stmts.append("return ret;") construction_block = "\n".join(construction_stmts) setter_methods.append( f""" {signature} {{ {assert_stmt} {construction_block} }} """ ) setter_methods_decl = "\n".join(setter_methods) # Meta should return an instance of the struct containing the precomputed elements. meta_return_template_params = ", ".join( ["true"] * len(precomputed_template_parameters) ) # This typedef (actually a using statement) is needed so that TORCH_META_FUNC can reuse the return # type (which has a variable number of template parameters). meta_return_typedef = f"using meta_return_ty = precompute_out <{meta_return_template_params}>;" meta_return = "meta_return_ty" precomputed_decl = f""" {precompute_template_decl} struct TORCH_API precompute_out {{ {setter_methods_decl} {precomputed_elements_decl}; }};""" else: meta_return_typedef = "" precomputed_decl = "" return f"""\ struct TORCH_API structured_{name} : public {parent_class} {{ {precomputed_decl} {meta_return_typedef} {meta_return} meta({args_str}); }}; """ def needs_backend_select(f: NativeFunction, selector: SelectiveBuilder) -> bool: name = str(f.func.name.name) if name.endswith("_like") or name.startswith("new_"): return False if f.func.arguments.tensor_options is None: return False return selector.is_native_function_selected(f) # Generates RegisterBackendSelect.cpp, a series of kernels which provide # specialized computation of dispatch key for operator signatures which cannot # be easily done automatically using templating. @dataclass(frozen=True) class ComputeBackendSelect: target: Literal[Target.DEFINITION, Target.REGISTRATION] # Selector object to determine which operators to generate # registration code for. selector: SelectiveBuilder @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: if not needs_backend_select(f, self.selector): return None name = native.name(f.func) # BackendSelect can go to Meta, so it must preserve symints native_sig = NativeSignature(f.func, symint=True) native_tensor_args = [ a for a in native_sig.arguments() if isinstance(a.argument, Argument) and a.argument.type.is_tensor_like() ] dispatcher_sig = DispatcherSignature.from_schema(f.func) sig: NativeSignature | DispatcherSignature sig = dispatcher_sig dispatcher_exprs = dispatcher_sig.exprs() dispatch_key = "c10::computeDispatchKey(dtype, layout, device)" if self.target is Target.DEFINITION: # I don't think there's actually a good reason to generate # these two cases differently # The first case could probably be improved though- it calls computeDispatchKeySet(), # which looks at TLS dispatch keys- there should not be any by the time we reach backend select. if native_tensor_args: assert f.func.arguments.has_tensor_arg() tensor_args = ", ".join(a.name for a in native_tensor_args) compute_dk = f"""\ DispatchKeySet _dk_set = c10::DispatchKeySet({dispatch_key}) | c10::detail::multi_dispatch_key_set({tensor_args}); DispatchKeySet _dk_mask = c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, DispatchKey::BackendSelect); DispatchKeySet _dk = c10::impl::computeDispatchKeySet(_dk_set, _dk_mask);""" else: assert not f.func.arguments.has_tensor_arg() compute_dk = ( f"DispatchKeySet _dk = c10::DispatchKeySet({dispatch_key});" ) return f"""\ // aten::{f.func} C10_ALWAYS_INLINE {sig.defn(name)} {{ {compute_dk} return at::_ops::{f.func.name.unambiguous_name()}::redispatch( _dk, {", ".join(a.expr for a in dispatcher_exprs)}); }} """ elif self.target is Target.REGISTRATION: return f"""m.impl("aten::{f.func.name}", TORCH_FN({name}));""" else: assert_never(self.target) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # YAML CODE GENERATION # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def format_yaml(data: object) -> str: # Ignore alias in Dumper YamlDumper.ignore_aliases = lambda self, data: True # type: ignore[assignment] # Support serializing OrderedDict def dict_representer(dumper: Any, data: Any) -> Any: return dumper.represent_dict(data.items()) YamlDumper.add_representer(OrderedDict, dict_representer) # type: ignore[no-untyped-call] # Some yaml parsers (e.g. Haskell's) don't understand line breaks. # width=1e9 turns off optional line breaks and improves # the portability of the outputted yaml. return yaml.dump(data, default_flow_style=False, Dumper=YamlDumper, width=1e9) # type: ignore[no-any-return, call-overload] # For some reason, some defaults we write to YAML are written as native # YAML objects, rather than doing them uniformly as strings. This # function detects those cases and converts them into native Python # objects. def pythonify_default(s: str) -> object: if s == "true": return True elif s == "false": return False try: return int(s) except ValueError: try: return float(s) except ValueError: return s # What is a dynamic type? Over time, the semantic meaning of # dynamic type has degraded to meaninglessness (in the old days, # it captured dtype-ness of types, but that has gone away with # the removal of TH). These days, it's mostly the same thing as # the C++ API argument type, except that Tensor and Tensor? # arguments simply present as Tensor. # # TODO: Get rid of dynamic_type, after getting tools/autograd # to use the new codegen framework def dynamic_type(t: Type) -> str: if isinstance(t, OptionalType): return dynamic_type(t.elem) # Note we don't use t.is_tensor_like() here because it would # also include Tensor[] if str(t) == "Tensor": return "at::Tensor" # This is a legacy concept, so never report SymInt return cpp.argumenttype_type( t, mutable=False, binds="__placeholder__", symint=False ).cpp_type() def compute_method_of_yaml(variants: set[Variant]) -> list[str]: # This is written out explicitly to ensure that Tensor and # namespace are put into the list in the right order method_of = ["Type"] if Variant.method in variants: method_of.append("Tensor") if Variant.function in variants: method_of.append("namespace") return method_of def compute_returns_yaml( f: NativeFunction, ) -> tuple[list[dict[str, str]], dict[str, str]]: # Note [name and field_name] # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # To understand name_to_field_name, we must first talk about this # schema: # # lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR) # # There is something very odd about this schema: it is an out # variant of the function (that is to say, it will convert into # at::lstsq_out() in the C++ API), but the names of the output # return arguments don't match the keyword argument names of # the inputs. It TURNS OUT that in this situation, the historical # Declarations.yaml we want to output is this (abbreviated to # only show relevant fields): # # arguments: # ... # - field_name: solution # name: X # - field_name: QR # name: qr # ... # # returns: # - field_name: solution # name: X # - field_name: QR # name: qr # # The name of the return fields is stored in 'field_name', and the # name of the arguments is stored in 'name'. So when we process # arguments, we need a way to get at the corresponding return. At # the moment, this is most conveniently done by constructing a # mapping from name (the argument concept) to field_name (the # return concept) while processing return arguments, since we don't # directly maintain this correspondence in the modeling of function # schema itself. # # See also https://github.com/pytorch/pytorch/issues/43114 name_to_field_name: dict[str, str] = {} # Compute the returns field of the YAML entry names = cpp.return_names(f) returns = [] for i, (r, name) in enumerate(zip(f.func.returns, names)): ret = { "dynamic_type": dynamic_type(r.type), "name": name, # legacy, report ints "type": cpp.return_type(r, symint=False).cpp_type(), } if r.name: # See Note [name and field_name] ret["field_name"] = r.name if f.func.is_out_fn(): name_to_field_name[f.func.arguments.out[i].name] = r.name returns.append(ret) return returns, name_to_field_name # arguments in yaml roughly corresponds to the public C++ API def compute_cpp_argument_yaml( cpp_a: Binding, *, schema_order: bool, kwarg_only_set: set[str], out_arg_set: set[str], name_to_field_name: dict[str, str], ) -> object: if isinstance(cpp_a.argument, TensorOptionsArguments): arg: dict[str, object] = { "annotation": None, "dynamic_type": "at::TensorOptions", "is_nullable": False, "name": cpp_a.name, "type": cpp_a.type, "kwarg_only": True, } if cpp_a.default is not None: arg["default"] = cpp_a.default return arg elif isinstance(cpp_a.argument, SelfArgument): raise AssertionError elif isinstance(cpp_a.argument, Argument): return compute_argument_yaml( cpp_a.argument, schema_order=schema_order, kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name, ) def compute_argument_yaml( a: Argument, *, schema_order: bool, kwarg_only_set: set[str], out_arg_set: set[str], name_to_field_name: dict[str, str], ) -> object: arg: dict[str, object] = { "annotation": str(a.annotation) if a.annotation else None, "dynamic_type": dynamic_type(a.type), "is_nullable": a.type.is_nullable(), "name": a.name, # legacy, report ints "type": cpp.argument_type(a, binds="__placeholder__", symint=False).cpp_type(), } if a.default is not None: arg["default"] = pythonify_default( cpp.default_expr(a.default, a.type, symint=False) ) if a.name in kwarg_only_set: arg["kwarg_only"] = True if a.name in out_arg_set: arg["output"] = True arg["allocate"] = True # See Note [name and field_name] if a.name in name_to_field_name: arg["field_name"] = name_to_field_name[a.name] # Historically, booleans don't get their size recorded, because it # is already built into the cpp type (e.g., std::array<bool, 4>) l = a.type.is_list_like() if l is not None and l.size is not None and str(l.elem) != "bool": arg["size"] = l.size return arg @with_native_function def compute_declaration_yaml(f: NativeFunction) -> object: returns, name_to_field_name = compute_returns_yaml(f) # These sets are used to conveniently test if an argument is a # kwarg-only or out argument kwarg_only_set = {a.name for a in f.func.arguments.flat_kwarg_only} out_arg_set = {a.name for a in f.func.arguments.out} sig_group = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=False ) cpp_args = sig_group.signature.arguments() arguments = [ compute_cpp_argument_yaml( cpp_a, schema_order=False, kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name, ) for cpp_a in cpp_args ] schema_order_jit_arguments = list(f.func.schema_order_arguments()) schema_order_arguments = [ compute_argument_yaml( a, schema_order=True, kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name, ) for a in schema_order_jit_arguments ] cpp_schema_order_types = [ # NB: method here doesn't matter r.type for a in schema_order_jit_arguments for r in cpp.argument( a, method=False, cpp_no_default_args=set(), faithful=False, symint=False, has_tensor_options=False, ) ] # legacy, report ints cpp_returns = cpp.returns_type(f.func.returns, symint=False).cpp_type() schema_order_cpp_signature = f"{cpp_returns} ({', '.join(cpp_schema_order_types)})" is_factory_method = ( any(isinstance(a.argument, TensorOptionsArguments) for a in cpp_args) and Variant.method not in f.variants ) return OrderedDict( [ ("name", cpp.name(f.func)), ("operator_name", str(f.func.name.name)), ("overload_name", str(f.func.name.overload_name)), ("manual_kernel_registration", f.manual_kernel_registration), ( "category_override", f.category_override if f.category_override is not None else "", ), ("schema_string", f"aten::{f.func}"), ("arguments", arguments), ("schema_order_cpp_signature", schema_order_cpp_signature), ("schema_order_arguments", schema_order_arguments), ("method_of", compute_method_of_yaml(f.variants)), ("mode", "native"), ("python_module", "" if f.python_module is None else f.python_module), ("returns", returns), ("inplace", f.func.name.name.inplace), ("is_factory_method", is_factory_method), ("abstract", f.is_abstract), ("device_guard", f.device_guard), ("with_gil", False), ("deprecated", False), ("has_math_kernel", f.has_composite_implicit_autograd_kernel), ] ) # See Note [Auto generated composite kernels] def has_autogenerated_composite_kernel(f: NativeFunction) -> bool: return (f.structured or f.structured_delegate is not None) and ( f.func.kind() == SchemaKind.functional or f.func.kind() == SchemaKind.inplace ) @with_native_function_and_indices def compute_registration_declarations( f: NativeFunction, backend_indices: dict[DispatchKey, BackendIndex] ) -> str: name = dispatcher.name(f.func) returns_type = dispatcher.returns_type(f.func.returns).cpp_type() args = dispatcher.arguments(f.func) args_str = ", ".join(a.no_default().decl() for a in args) comment_data: dict[str, str] = { "schema": f"aten::{f.func}", # TODO: What exactly is the semantics of the 'dispatch' field? "dispatch": str( {k for k, v in backend_indices.items() if v.has_kernel(f)} != {DispatchKey.CompositeImplicitAutograd} and {k for k, v in backend_indices.items() if v.has_kernel(f)} != { DispatchKey.CompositeImplicitAutograd, DispatchKey.CompositeImplicitAutogradNestedTensor, } ), "default": str(f.has_composite_kernel or has_autogenerated_composite_kernel(f)), } return f"""{returns_type} {name}({args_str}); // {json.dumps(comment_data)} """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # RUN IT ALL # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def get_custom_build_selector( provided_op_registration_allowlist: list[str] | None, op_selection_yaml_path: str | None, ) -> SelectiveBuilder: assert not ( provided_op_registration_allowlist is not None and op_selection_yaml_path is not None ), ( "Both provided_op_registration_allowlist and " + "op_selection_yaml_path can NOT be provided at the " + "same time." ) op_registration_allowlist: set[str] | None = None if provided_op_registration_allowlist is not None: op_registration_allowlist = set(provided_op_registration_allowlist) if op_registration_allowlist is not None: selector = SelectiveBuilder.from_legacy_op_registration_allow_list( op_registration_allowlist, True, False, ) elif op_selection_yaml_path is not None: selector = SelectiveBuilder.from_yaml_path(op_selection_yaml_path) else: selector = SelectiveBuilder.get_nop_selector() return selector def get_grouped_by_view_native_functions( native_functions: Sequence[NativeFunction], ) -> Sequence[NativeFunction | NativeFunctionsViewGroup]: def maybe_create_view_group( d: dict[ViewSchemaKind | SchemaKind, NativeFunction], ) -> list[NativeFunction | NativeFunctionsViewGroup]: funcs: list[NativeFunction | NativeFunctionsViewGroup] = [] if ViewSchemaKind.aliasing in d: view = d.pop(ViewSchemaKind.aliasing) view_inplace = d.pop(ViewSchemaKind.aliasing_inplace, None) view_copy = d.pop(SchemaKind.functional, None) funcs.append( NativeFunctionsViewGroup( view=view, view_copy=view_copy, view_inplace=view_inplace, ) ) # Take the remaining functions that weren't part of the view group # and emit them separately funcs.extend(d.values()) return funcs grouped_by_views: dict[ FunctionSchema, dict[SchemaKind | ViewSchemaKind, NativeFunction] ] = defaultdict(dict) for f in native_functions: schema = f.func.view_signature() view_kind: ViewSchemaKind = f.view_schema_kind # We need to group up ops relevant to the same "view", consisting of: # view op (ViewSchemaKind.aliasing) # view_inplace op (ViewSchemaKind.aliasing_inplace) # view_copy op (SchemaKind.functional) if view_kind == ViewSchemaKind.non_aliasing: kind = f.func.kind() assert kind not in grouped_by_views[schema] grouped_by_views[schema][kind] = f else: assert view_kind not in grouped_by_views[schema], ( f"{view_kind} already in {grouped_by_views[schema].keys()}" ) grouped_by_views[schema][view_kind] = f return list(concatMap(maybe_create_view_group, grouped_by_views.values())) def get_grouped_native_functions( native_functions: Sequence[NativeFunction], ) -> Sequence[NativeFunction | NativeFunctionsGroup]: def flatten_pre_group( d: dict[SchemaKind, NativeFunction], ) -> Sequence[NativeFunction | NativeFunctionsGroup]: r = NativeFunctionsGroup.from_dict(d) if r is None: # Invariant: any NativeFunctions that are code-generated # should have been grouped into NativeFunctionsGroup objects assert not any("generated" in f.tags for f in d.values()) return list(d.values()) else: return [r] # TODO: how come ValuesView isn't a Sequence lol pre_grouped_native_functions = pre_group_native_functions(native_functions) return list( concatMap(flatten_pre_group, list(pre_grouped_native_functions.values())) ) def get_ns_grouped_kernels( *, grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_indices: dict[DispatchKey, BackendIndex], native_function_decl_gen: Callable[ [NativeFunctionsGroup | NativeFunction, BackendIndex], list[str] ] = dest.compute_native_function_declaration, ) -> dict[str, list[str]]: ns_grouped_kernels: dict[str, list[str]] = defaultdict(list) for f in grouped_native_functions: native_function_namespaces = set() dispatch_keys = set() for dispatch_key, backend_idx in backend_indices.items(): backend_metadata = backend_idx.get_kernel(f) if backend_metadata: namespace = backend_metadata.cpp_namespace dispatch_keys.add(dispatch_key) native_function_namespaces.add(namespace) else: namespace = DEFAULT_KERNEL_NAMESPACE assert len(native_function_namespaces) <= 1, ( f"Codegen only supports one namespace per operator, got {native_function_namespaces} from {dispatch_keys}" ) ns_grouped_kernels[namespace].extend( native_function_decl_gen(f, backend_idx) ) return ns_grouped_kernels def get_native_function_declarations_from_ns_grouped_kernels( *, ns_grouped_kernels: dict[str, list[str]], ) -> list[str]: declarations: list[str] = [] newline = "\n" for namespace, kernels in ns_grouped_kernels.items(): ns_helper = NamespaceHelper( namespace_str=namespace, entity_name="", max_level=4, ) # Convert to a set first to remove duplicate kernel names. Backends are # allowed to repeat kernel names; only generate the declaration once! ordered_kernels = list(OrderedDict.fromkeys(kernels)) declarations.extend( f""" {ns_helper.prologue} {newline.join(ordered_kernels)} {ns_helper.epilogue} """.split(newline) ) return declarations # Return native function declarations grouped by their namespaces. def get_native_function_declarations( *, grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_indices: dict[DispatchKey, BackendIndex], native_function_decl_gen: Callable[ [NativeFunctionsGroup | NativeFunction, BackendIndex], list[str] ] = dest.compute_native_function_declaration, ) -> list[str]: """ Generate kernel declarations, in `NativeFunction(s).h`. :param grouped_native_functions: a sequence of `NativeFunction` or `NativeFunctionGroup`. :param backend_indices: kernel collections grouped by dispatch key. :param native_function_decl_gen: callable to generate kernel declaration for each `NativeFunction`. :return: a list of string, from the string with all declarations, grouped by namespaces, split by newline. """ ns_grouped_kernels = get_ns_grouped_kernels( grouped_native_functions=grouped_native_functions, backend_indices=backend_indices, native_function_decl_gen=native_function_decl_gen, ) return get_native_function_declarations_from_ns_grouped_kernels( ns_grouped_kernels=ns_grouped_kernels ) def get_kernel_namespace( *, f: NativeFunction | NativeFunctionsGroup, backend_idx: BackendIndex ) -> str: backend_metadata = backend_idx.get_kernel(f) assert not backend_metadata or "::native" in backend_metadata.cpp_namespace, ( f"The kernel for function {f.func.name if isinstance(f, NativeFunction) else f.functional.func.name} " f"with dispatch key {backend_idx.dispatch_key}" f" has a namespace {backend_metadata.cpp_namespace} and it's not ending with '::native'." ) return ( backend_metadata.cpp_namespace if backend_metadata else DEFAULT_KERNEL_NAMESPACE ) # Return native function definitions grouped by dispatch key and custom namespace. # Used in RegisterDispatchKey.cpp and etc. def get_native_function_definitions( *, fm: FileManager, grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], dispatch_key: DispatchKey, backend_idx: BackendIndex, selector: SelectiveBuilder, rocm: bool, symint: bool, skip_dispatcher_op_registration: bool, gen_dispatch_helpers: bool, ) -> list[str]: definitions: list[str] = [] ns_definitions: dict[str, list[str]] = defaultdict(list) anonymous_definitions: dict[str, list[str]] = defaultdict(list) registrations: dict[str, dict[str, list[str]]] = defaultdict(dict) newline = "\n" ns_gen = dest.RegisterDispatchKey( backend_idx, Target.NAMESPACED_DEFINITION, selector, rocm=rocm, symint=symint, class_method_name=None, skip_dispatcher_op_registration=skip_dispatcher_op_registration, ) anonymous_gen = dest.RegisterDispatchKey( backend_idx, Target.ANONYMOUS_DEFINITION, selector, rocm=rocm, symint=symint, class_method_name=None, skip_dispatcher_op_registration=skip_dispatcher_op_registration, ) reg_gen = dest.RegisterDispatchKey( backend_idx, Target.REGISTRATION, selector, rocm=rocm, symint=symint, class_method_name=None, skip_dispatcher_op_registration=skip_dispatcher_op_registration, ) for f in grouped_native_functions: kernel_namespace = get_kernel_namespace(f=f, backend_idx=backend_idx).replace( "::native", "" ) ns_definitions[kernel_namespace].extend( ns_gen(f), ) anonymous_definitions[kernel_namespace].extend( anonymous_gen(f), ) namespace = ( f.namespace if isinstance(f, NativeFunction) else f.functional.namespace ) if namespace not in registrations[kernel_namespace]: registrations[kernel_namespace] = defaultdict(list) registrations[kernel_namespace][namespace].extend( reg_gen(f), ) for kernel_namespace in ns_definitions: if len(ns_definitions[kernel_namespace]) == 0: continue ns_helper = NamespaceHelper(namespace_str=kernel_namespace) registration_body = "" for namespace in registrations[kernel_namespace]: if not registrations[kernel_namespace][namespace]: continue registration_body += f""" TORCH_LIBRARY_IMPL({namespace}, {dispatch_key}, m) {{ {newline.join(registrations[kernel_namespace][namespace])} }}""" definitions.extend( fm.substitute_with_template( "RegisterDispatchDefinitions.ini", lambda: { "ns_prologue": ns_helper.prologue, "ns_epilogue": ns_helper.epilogue, "dispatch_anonymous_definitions": anonymous_definitions[ kernel_namespace ], "static_init_dispatch_registrations": "" if skip_dispatcher_op_registration else registration_body, "deferred_dispatch_registrations": "", "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": ns_definitions[kernel_namespace], }, ).split(newline) ) return definitions # Return native function declarations grouped by dispatch key and custom namespace. # Used in CPUFunctions_inl.h and etc. def get_namespaced_declaration( *, grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], dispatch_key: DispatchKey, backend_idx: BackendIndex, selector: SelectiveBuilder, rocm: bool, symint: bool, ) -> list[str]: declarations: list[str] = [] ns_grouped_kernels: dict[str, list[str]] = defaultdict(list) newline = "\n" func = dest.RegisterDispatchKey( backend_idx, Target.NAMESPACED_DECLARATION, selector, rocm=rocm, class_method_name=None, skip_dispatcher_op_registration=False, symint=symint, ) for f in grouped_native_functions: namespace = get_kernel_namespace(f=f, backend_idx=backend_idx).replace( "native", dispatch_key.lower() ) ns_grouped_kernels[namespace].extend( func(f), ) for namespace, kernels in ns_grouped_kernels.items(): if len(kernels) == 0: continue ns_helper = NamespaceHelper( namespace_str=namespace, entity_name="", max_level=3 ) ordered_kernels = list(OrderedDict.fromkeys(kernels)) declarations.extend( f""" {ns_helper.prologue} {newline.join(ordered_kernels)} {ns_helper.epilogue} """.split(newline) ) return declarations # Return native function schema registration code for aten and other namespaces. def get_native_function_schema_registrations( *, native_functions: Sequence[NativeFunction], schema_selector: SelectiveBuilder, ) -> tuple[list[str], str]: ns_native_functions: dict[str, list[NativeFunction]] = defaultdict(list) for native_function in native_functions: ns_native_functions[native_function.namespace].append(native_function) schema_registrations = "" aten_schema_registrations = [] custom_namespace = None for namespace, funcs in ns_native_functions.items(): schema_registrations_body = list( mapMaybe(RegisterSchema(schema_selector), funcs) ) # NB: we have to separate aten namespace registration from other namespaces, # because in the template we hardcoded an operator for ATen already. if namespace == "aten": aten_schema_registrations = schema_registrations_body else: custom_namespace = namespace tab = "\t" # if the namespace is predefined, we should use define a library fragment # instead of a new library torch_library_macro = ( "TORCH_LIBRARY_FRAGMENT" if namespace in FRAGMENT_NAMESPACES else "TORCH_LIBRARY" ) schema_registrations += f""" {torch_library_macro}({custom_namespace}, m) {{ {tab.join(schema_registrations_body)} }};""" return (aten_schema_registrations, schema_registrations) def gen_aggregated_headers( *, native_functions: Sequence[NativeFunction], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], structured_native_functions: Sequence[NativeFunctionsGroup], static_dispatch_idx: list[BackendIndex], selector: SelectiveBuilder, backend_indices: dict[DispatchKey, BackendIndex], cpu_fm: FileManager, device_fms: dict[str, FileManager], functions_keys: set[DispatchKey], dispatch_keys: Sequence[DispatchKey], rocm: bool, ) -> None: # Buck doesn't support dynamic output files, so we aggregate all operator # headers into a single file cpu_fm.write( "NativeMetaFunctions.h", lambda: { "NativeMetaFunctions_includes": [], "NativeMetaFunctions_declarations": list( mapMaybe(compute_meta_function_declaration, structured_native_functions) ), }, ) method_native_functions = [ fn for fn in native_functions if Variant.method in fn.variants ] non_method_native_functions = [ fn for fn in native_functions if fn not in method_native_functions ] cpu_fm.write( "MethodOperators.h", lambda: { "MethodOperators_includes": [], "MethodOperators_declarations": list( mapMaybe( ComputeOperators( Target.DECLARATION, static_dispatch_backend_indices=static_dispatch_idx, ), method_native_functions, ) ), }, ) cpu_fm.write( "Operators.h", lambda: { "Operators_includes": ["#include <ATen/MethodOperators.h>"], "Operators_declarations": list( mapMaybe( ComputeOperators( Target.DECLARATION, static_dispatch_backend_indices=static_dispatch_idx, ), non_method_native_functions, ) ), }, ) cpu_fm.write( "Functions.h", lambda: { "static_dispatch_extra_headers": static_dispatch_extra_headers( static_dispatch_idx ), "Functions_includes": ["#include <ATen/Operators.h>"], "Functions_declarations": list( mapMaybe( ComputeFunction(), native_functions, ) ), }, ) declarations = get_native_function_declarations( grouped_native_functions=grouped_native_functions, backend_indices=backend_indices, ) cpu_fm.write( "NativeFunctions.h", lambda: { "NativeFunctions_includes": ["#include <ATen/NativeMetaFunctions.h>"], "NativeFunctions_declarations": declarations, }, ) for dispatch_key in dispatch_keys: fm = file_manager_from_dispatch_key(dispatch_key, device_fms, cpu_fm) if dispatch_key in functions_keys: inl_headers = f"#include <ATen/{dispatch_key}Functions_inl.h>" fm.write_with_template( f"{dispatch_key}Functions.h", "DispatchKeyFunctions.h", lambda: { "dispatch_key": str(dispatch_key), "inline_headers": inl_headers, }, ) fm.write_with_template( f"{dispatch_key}Functions_inl.h", "DispatchKeyFunctions_inl.h", lambda: { "DispatchKeyFunctions_inl_includes": [], "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_declarations": get_namespaced_declaration( grouped_native_functions=grouped_native_functions, dispatch_key=dispatch_key, backend_idx=backend_indices[dispatch_key], selector=selector, rocm=rocm, symint=True, ), }, ) del fm def gen_per_operator_headers( *, native_functions: Sequence[NativeFunction], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], static_dispatch_idx: list[BackendIndex], selector: SelectiveBuilder, backend_indices: dict[DispatchKey, BackendIndex], cpu_fm: FileManager, device_fms: dict[str, FileManager], ops_fm: FileManager, functions_keys: set[DispatchKey], dispatch_keys: Sequence[DispatchKey], rocm: bool, ) -> None: # For CMake builds, split operator declarations into separate headers in # the ATen/ops folder to split up header dependencies functions_by_root_name: dict[str, list[NativeFunction]] = defaultdict(list) for fn in native_functions: functions_by_root_name[fn.root_name].append(fn) grouped_functions_by_root_name: dict[ str, list[NativeFunction | NativeFunctionsGroup] ] = defaultdict(list) for group in grouped_native_functions: name = group.root_name grouped_functions_by_root_name[name].append(group) for name, functions in functions_by_root_name.items(): ops_fm.write_with_template( f"{name}_ops.h", "Operator.h", lambda: { "declarations": list( mapMaybe( ComputeOperators( Target.DECLARATION, static_dispatch_backend_indices=static_dispatch_idx, ), functions, ) ), }, ) ops_fm.write_with_template( f"{name}.h", "Function.h", lambda: { "static_dispatch_ops_headers": list( mapMaybe( lambda fn: static_dispatch_ops_header( fn, backend_index=static_dispatch_idx ), functions, ) ), "operator_includes": f"#include <ATen/ops/{name}_ops.h>", "function_definitions": list( mapMaybe( ComputeFunction(), functions, ) ), }, ) grouped_functions = grouped_functions_by_root_name.get(name, []) structured_functions = [ fn for fn in grouped_functions if isinstance(fn, NativeFunctionsGroup) and fn.structured ] is_structured = len(structured_functions) > 0 if is_structured: ops_fm.write_with_template( f"{name}_meta.h", "NativeMetaFunction.h", lambda: { "meta_function_declarations": list( mapMaybe( compute_meta_function_declaration, structured_functions ) ), }, ) declarations = get_native_function_declarations( grouped_native_functions=grouped_functions, backend_indices=backend_indices, native_function_decl_gen=dest.compute_native_function_declaration, ) ops_fm.write_with_template( f"{name}_native.h", "NativeFunction.h", lambda: { "extra_includes": ( f"#include <ATen/ops/{name}_meta.h>" if is_structured else [] ), "native_function_declarations": declarations, }, ) for category, suffix in [ ("Functions", ""), ("Operators", "_ops"), ("NativeMetaFunctions", "_meta"), ("NativeFunctions", "_native"), ]: cpu_fm.write( f"{category}.h", lambda: { f"{category}_includes": [ f"#include <ATen/ops/{name}{suffix}.h>" for name in sorted(functions_by_root_name.keys()) ], f"{category}_declarations": [], }, ) for dispatch_key in dispatch_keys: if dispatch_key not in functions_keys: continue dispatch_namespace = dispatch_key.lower() dispatch_names = [] for name, functions in functions_by_root_name.items(): grouped_functions = grouped_functions_by_root_name.get(name, []) declarations = list( concatMap( dest.RegisterDispatchKey( backend_indices[dispatch_key], Target.NAMESPACED_DECLARATION, selector, rocm=rocm, symint=True, class_method_name=None, skip_dispatcher_op_registration=False, ), grouped_functions, ) ) if len(declarations) == 0: continue dispatch_names.append(name) ops_fm.write_with_template( f"{name}_{dispatch_namespace}_dispatch.h", "DispatchKeyFunction.h", lambda: { "dispatch_namespace": dispatch_namespace, "dispatch_namespaced_declarations": declarations, }, ) fm = file_manager_from_dispatch_key(dispatch_key, device_fms, cpu_fm) inl_headers = f"#include <ATen/{dispatch_key}Functions_inl.h>" fm.write_with_template( f"{dispatch_key}Functions.h", "DispatchKeyFunctions.h", lambda: { "dispatch_key": str(dispatch_key), "inline_headers": inl_headers, }, ) fm.write_with_template( f"{dispatch_key}Functions_inl.h", "DispatchKeyFunctions_inl.h", lambda: { "dispatch_namespace": dispatch_namespace, "DispatchKeyFunctions_inl_includes": [ f"#include <ATen/ops/{name}_{dispatch_namespace}_dispatch.h>" for name in sorted(dispatch_names) ], "dispatch_namespaced_declarations": [], }, ) del fm cpu_fm.write( "MethodOperators.h", lambda: { "MethodOperators_includes": sorted( f"#include <ATen/ops/{name}_ops.h>" for name, functions in functions_by_root_name.items() if any(Variant.method in fn.variants for fn in functions) ), "MethodOperators_declarations": [], }, ) def gen_headers( *, native_functions: Sequence[NativeFunction], valid_tags: set[str], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], structured_native_functions: Sequence[NativeFunctionsGroup], static_dispatch_idx: list[BackendIndex], selector: SelectiveBuilder, backend_indices: dict[DispatchKey, BackendIndex], core_fm: FileManager, cpu_fm: FileManager, device_fms: dict[str, FileManager], ops_fm: FileManager, dispatch_keys: Sequence[DispatchKey], functions_keys: set[DispatchKey], rocm: bool, per_operator_headers: bool, ) -> None: if per_operator_headers: gen_per_operator_headers( native_functions=native_functions, grouped_native_functions=grouped_native_functions, static_dispatch_idx=static_dispatch_idx, selector=selector, backend_indices=backend_indices, cpu_fm=cpu_fm, device_fms=device_fms, ops_fm=ops_fm, dispatch_keys=dispatch_keys, functions_keys=functions_keys, rocm=rocm, ) else: gen_aggregated_headers( native_functions=native_functions, grouped_native_functions=grouped_native_functions, structured_native_functions=structured_native_functions, static_dispatch_idx=static_dispatch_idx, selector=selector, backend_indices=backend_indices, cpu_fm=cpu_fm, device_fms=device_fms, dispatch_keys=dispatch_keys, functions_keys=functions_keys, rocm=rocm, ) core_fm.write( "TensorBody.h", lambda: { "tensor_method_declarations": list( mapMaybe( ComputeTensorMethod( target=Target.DECLARATION, static_dispatch_backend_indices=static_dispatch_idx, ), native_functions, ) ), "tensor_method_definitions": list( mapMaybe( ComputeTensorMethod( target=Target.DEFINITION, static_dispatch_backend_indices=static_dispatch_idx, ), native_functions, ) ), }, ) cpu_fm.write( "RedispatchFunctions.h", lambda: { "function_redispatch_definitions": list( mapMaybe(ComputeRedispatchFunction(), native_functions) ), }, ) cpu_fm.write( "RegistrationDeclarations.h", lambda: { "registration_declarations": [ compute_registration_declarations(f, backend_indices) for f in native_functions ], }, ) cpu_fm.write( "VmapGeneratedPlumbing.h", lambda: gen_all_vmap_plumbing(native_functions) ) def gen_aten_interned_strings() -> dict[str, str]: attrs: set[str] = set() # All function argument names names = set() # All ATen function names for func in native_functions: names.add(str(func.func.name.name)) # Some operators don't have a functional variant but we still create a # symbol without the underscore names.add(func.func.name.name.base) attrs.update(arg.name for arg in func.func.schema_order_arguments()) # These are keywords in C++, so aren't valid symbol names # https://en.cppreference.com/w/cpp/language/operator_alternative names -= { "and", "and_eq", "bitand", "bitor", "compl", "not", "not_eq", "or", "or_eq", "xor", "xor_eq", } return { "aten_symbols": " \\\n".join( [f"_(aten, {name})" for name in sorted(names)] ), "attr_symbols": " \\\n".join( [f"_(attr, {name})" for name in sorted(attrs)] ), } core_fm.write("aten_interned_strings.h", gen_aten_interned_strings) def gen_tags_enum() -> dict[str, str]: return {"enum_of_valid_tags": (",\n".join(sorted(valid_tags)))} core_fm.write("enum_tag.h", gen_tags_enum) def gen_source_files( *, native_functions: Sequence[NativeFunction], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], structured_native_functions: Sequence[NativeFunctionsGroup], view_groups: Sequence[NativeFunctionsViewGroup], selector: SelectiveBuilder, static_dispatch_idx: list[BackendIndex], backend_indices: dict[DispatchKey, BackendIndex], aoti_fm: FileManager, core_fm: FileManager, cpu_vec_fm: FileManager, cpu_fm: FileManager, device_fms: dict[str, FileManager], dispatch_keys: Sequence[DispatchKey], functions_keys: set[DispatchKey], rocm: bool, force_schema_registration: bool, per_operator_headers: bool, skip_dispatcher_op_registration: bool, update_aoti_c_shim: bool, aoti_backends: set[DispatchKey], extend_aoti_c_shim: bool, ) -> None: extra_cuda_headers = """\ #include <c10/cuda/CUDAGuard.h> #include <ATen/cuda/ATenCUDAGeneral.h> #include <ATen/cuda/CUDADevice.h> #include <ATen/cuda/CUDAContext.h>""" if rocm: extra_cuda_headers = """\ #include <ATen/hip/impl/HIPGuardImplMasqueradingAsCUDA.h> #include <ATen/hip/ATenHIPGeneral.h> #include <ATen/hip/HIPDevice.h> #include <ATen/hip/HIPContext.h>""" for dispatch_key in dispatch_keys: fm = file_manager_from_dispatch_key(dispatch_key, device_fms, cpu_fm) if per_operator_headers: def operator_headers() -> list[str]: headers = [] for g in grouped_native_functions: is_registered = False if backend_index.has_kernel(g): is_registered = True # The above has_kernel test on a group will only test for # the existence of out dispatch, because that's how # structured kernels work. But sometimes functions can be # grouped but not be structured, and then you need to check # each individual piece, as they may have manual dispatch # entries. elif isinstance(g, NativeFunctionsGroup) and any( backend_index.has_kernel(fn) for fn in g.functions() ): is_registered = True # TODO: this condition is a bit questionable # (It has to do with the fact that structured kernels get generated kernels # to the Meta + CompositeExplicitAutogradNonFunctional keys). elif g.structured and dispatch_key in ( DispatchKey.Meta, DispatchKey.CompositeExplicitAutogradNonFunctional, ): is_registered = True if not is_registered: continue headers.append(f"#include <ATen/ops/{g.root_name}_native.h>") if ( dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional ): headers.append(f"#include <ATen/ops/{g.root_name}.h>") if dispatch_key in functions_keys: headers.append( f"#include <ATen/ops/{g.root_name}_{dispatch_namespace}_dispatch.h>" ) return sorted(set(headers)) else: def operator_headers() -> list[str]: headers = ["#include <ATen/NativeFunctions.h>"] if dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional: headers.append("#include <ATen/Functions.h>") if dispatch_key in functions_keys: headers.append(f"#include <ATen/{dispatch_key!s}Functions.h>") return headers backend_index = backend_indices[dispatch_key] ns_grouped_native_functions = defaultdict(list) for grouped_native_function in grouped_native_functions: namespace = ( grouped_native_function.namespace if isinstance(grouped_native_function, NativeFunction) else grouped_native_function.functional.namespace ) ns_grouped_native_functions[namespace].append(grouped_native_function) dispatch_namespace = str(dispatch_key).lower() # CompositeImplicitAutogradNestdTensor does not currently user the helpers generated # compilation will fail when `-Werror=unused-function` flag is set gen_dispatch_helpers: bool = ( dispatch_key != DispatchKey.CompositeImplicitAutogradNestedTensor ) register_dispatch_key_base_env = { "extra_cuda_headers": extra_cuda_headers if is_cuda_dispatch_key(dispatch_key) else "", "external_backend_headers": "", "dispatch_headers": dest.gen_registration_headers( backend_index, per_operator_headers, rocm ), # ops_headers *could* be sharded, but doesn't seem necessary? "ops_headers": operator_headers(), "dispatch_helpers": ( dest.gen_registration_helpers(backend_index) if gen_dispatch_helpers else [] ), } def register_dispatch_key_env_callable( gnf: NativeFunction | NativeFunctionsGroup, ) -> dict[str, list[str]]: return { "dispatch_definitions": get_native_function_definitions( fm=fm, # noqa: F821 grouped_native_functions=[gnf], dispatch_key=dispatch_key, backend_idx=backend_index, selector=selector, rocm=rocm, symint=True, skip_dispatcher_op_registration=skip_dispatcher_op_registration, gen_dispatch_helpers=gen_dispatch_helpers, ) } fm.write_sharded_with_template( f"Register{dispatch_key}.cpp", "RegisterDispatchKey.cpp", grouped_native_functions, key_fn=lambda x: x.root_name, env_callable=register_dispatch_key_env_callable, num_shards=4 if dispatch_key == DispatchKey.CPU else 1, base_env=register_dispatch_key_base_env, sharded_keys={"dispatch_definitions"}, ) for g in structured_native_functions: if not g.out.ufunc_inner_loop or not is_ufunc_dispatch_key(dispatch_key): continue name = g.functional.func.name.name if dispatch_key is DispatchKey.CPU: assert fm is cpu_fm fm.write_with_template( f"UfuncCPU_{name}.cpp", "UfuncCPU.cpp", lambda: { "meta_declaration": compute_meta_function_declaration(g), "native_declaration": dest.compute_native_function_declaration( g, backend_indices[dispatch_key] ), "native_definitions": dest.compute_ufunc_cpu(g), }, ) cpu_vec_fm.write_with_template( f"UfuncCPUKernel_{name}.cpp", "UfuncCPUKernel.cpp", lambda: { "name": name, "native_definitions": dest.compute_ufunc_cpu_kernel(g), }, ) elif dispatch_key is DispatchKey.CUDA: cuda_headers = "#include <ATen/native/cuda/Loops.cuh>" if rocm: cuda_headers = "#include <ATen/native/hip/Loops.cuh>" fm.write_with_template( f"UfuncCUDA_{name}.cu", "UfuncCUDA.cu", lambda: { "name": name, "cuda_headers": cuda_headers, "meta_declaration": compute_meta_function_declaration(g), "native_declaration": dest.compute_native_function_declaration( g, backend_indices[dispatch_key] ), "native_definitions": dest.compute_ufunc_cuda(g), }, ) else: raise AssertionError(f"unrecognized {dispatch_key} for ufunc") structured_func_group_dict = {} for func_group in structured_native_functions: for func in func_group.functions(): if func.structured_delegate is not None: structured_func_group_dict[func.structured_delegate] = func_group break if dispatch_key in aoti_backends: fallbacks = {} for func in native_functions: op_name = get_fallback_op_name(func) if op_name in inductor_fallback_ops: fallbacks[op_name] = func fallback_native_functions = tuple( value for _, value in sorted(fallbacks.items()) ) # header files were checked in for ABI-compatiblilty checking header_file_name = f"c_shim_{dispatch_key.lower()}.h" new_header = gen_aoti_c_shim( fallback_native_functions, structured_func_group_dict, dispatch_key, backend_indices, header=True, extend_aoti_c_shim=extend_aoti_c_shim, includes="", ) if update_aoti_c_shim: aoti_fm.write( header_file_name, lambda: new_header, ) else: try: with open( os.path.join(aoti_fm.install_dir, header_file_name) ) as old_file: old_header = old_file.read() assert old_header == new_header, """ WARNING: The generated AOTInductor C shim header files have unexpectedly changed. This indicates an AOTInductor fallback operator ABI backward compatibility breakage!!! Only in a limited number of situations, this is allowed: 1. You added a fallback op to the inductor_fallback_ops list in torchgen/aoti/fallback_ops.py. If that's the case, run `python torchgen/gen.py --update-aoti-c-shim` to update the existing C shim header files. 2. You added a new default argument to an existing fallback op. This is clearly a BC breaking change in the AOTInductor land. In this case, you need to keep a manual copy of that existing fallback op in a file, e.g. torch/csrc/inductor/aoti_torch/c/shim.h, bump up the version number of that fallback op in the newly generated C shim files, and update the cpp wrapper codegen to generate the correct cpp call for this op. Contact AOTInductor team for assistance. """ except FileNotFoundError: print( f"{os.path.join(aoti_fm.install_dir, header_file_name)} not found" ) # cpp files are always generated on-the-fly def headers_for_aoti() -> str: headers = [] for func in fallback_native_functions: header = get_header_for_aoti( func, structured_func_group_dict, dispatch_key, backend_indices, extend_aoti_c_shim=extend_aoti_c_shim, ) if header is not None: headers.append(header) return "\n".join(sorted(set(headers))) extra_headers = ( extra_cuda_headers if is_cuda_dispatch_key(dispatch_key) else "" ) aoti_fm.write( f"c_shim_{dispatch_key.lower()}.cpp", lambda: gen_aoti_c_shim( fallback_native_functions, structured_func_group_dict, dispatch_key, backend_indices, header=False, extend_aoti_c_shim=extend_aoti_c_shim, includes=headers_for_aoti() + "\n" + extra_headers, ), ) del fm # BackendSelect is generated specially def gen_backend_select() -> dict[str, list[str]]: relevant_fns = [ fn for fn in native_functions if needs_backend_select(fn, selector) ] return { "ops_headers": [ f"#include <ATen/ops/{fn.root_name}_ops.h>" for fn in relevant_fns ], "backend_select_method_definitions": list( mapMaybe( ComputeBackendSelect(Target.DEFINITION, selector), relevant_fns ) ), "backend_select_function_registrations": list( mapMaybe( ComputeBackendSelect(Target.REGISTRATION, selector), relevant_fns ) ), } cpu_fm.write("RegisterBackendSelect.cpp", gen_backend_select) schema_selector = selector if force_schema_registration: schema_selector = SelectiveBuilder.get_nop_selector() ( aten_schema_registrations, schema_registrations, ) = get_native_function_schema_registrations( native_functions=native_functions, schema_selector=schema_selector ) cpu_fm.write( "RegisterSchema.cpp", lambda: { "aten_schema_registrations": [] if skip_dispatcher_op_registration else aten_schema_registrations, "schema_registrations": [] if skip_dispatcher_op_registration else schema_registrations, }, ) def key_func( fn: NativeFunction | NativeFunctionsGroup | NativeFunctionsViewGroup, ) -> str: return fn.root_name cpu_fm.write_sharded( "Operators.cpp", native_functions, key_fn=key_func, env_callable=lambda fn: { "operator_headers": [f"#include <ATen/ops/{fn.root_name}.h>"], "definitions": [ ComputeOperators( Target.DEFINITION, static_dispatch_backend_indices=static_dispatch_idx, )(fn) ], }, base_env={ "static_dispatch_extra_headers": static_dispatch_extra_headers( static_dispatch_idx ), }, num_shards=5, sharded_keys={ "operator_headers", "definitions", "static_dispatch_extra_headers", }, ) cpu_fm.write("Functions.cpp", dict) core_fm.write("TensorMethods.cpp", dict) core_fm.write( "ATenOpList.cpp", lambda: { "aten_ops": list(mapMaybe(compute_aten_op, native_functions)), }, ) def functionalization_env_callable( g: NativeFunction | NativeFunctionsGroup | NativeFunctionsViewGroup, ) -> dict[str, list[str]]: def gen_op_headers( g: NativeFunction | NativeFunctionsGroup | NativeFunctionsViewGroup, ) -> list[str]: if isinstance(g, NativeFunctionsViewGroup): # view ops always get a functionalization kernel headers = [ f"#include <ATen/ops/{g.view.root_name}_native.h>", f"#include <ATen/ops/{g.view.root_name}_ops.h>", ] if g.view_copy is not None: headers += [ f"#include <ATen/ops/{g.view_copy.root_name}_native.h>", f"#include <ATen/ops/{g.view_copy.root_name}_ops.h>", ] return headers elif isinstance(g, NativeFunctionsGroup): headers = [ f"#include <ATen/ops/{g.functional.root_name}_native.h>", f"#include <ATen/ops/{g.functional.root_name}_ops.h>", f"#include <ATen/ops/{g.out.root_name}_native.h>", f"#include <ATen/ops/{g.out.root_name}_ops.h>", ] if g.inplace is not None: headers += [ f"#include <ATen/ops/{g.inplace.root_name}_native.h>", f"#include <ATen/ops/{g.inplace.root_name}_ops.h>", ] if g.mutable is not None: headers += [ f"#include <ATen/ops/{g.mutable.root_name}_native.h>", f"#include <ATen/ops/{g.mutable.root_name}_ops.h>", ] return headers else: return [ f"#include <ATen/ops/{g.root_name}_native.h>", f"#include <ATen/ops/{g.root_name}_ops.h>", ] return { "ops_headers": gen_op_headers(g), "func_definitions": gen_functionalization_definition( selector, g, ), "func_registrations": gen_functionalization_registration( selector, g, backend_indices[DispatchKey.CompositeImplicitAutograd], ), } all_groups: list[ NativeFunction | NativeFunctionsGroup | NativeFunctionsViewGroup ] = list(structured_native_functions) + list( view_groups # type: ignore[assignment, arg-type, operator] ) # Note: all operators that functionalization needs to handle (mutable and aliasing ops) should be grouped properly. # The only reason we really need to deal with direct NativeFunctions here (instead of the groups) is because: # (1) We can provide better error checking (error out if someone introduces a mutable op that doesn't obey the grouping logic) # (2) functionalization needs to manually register CompositeImplicitAutograd kernels, which might not be grouped. # Although this could go away long-term if we add a dedicated dispatch key for decompositions. structured_map: dict[OperatorName, NativeFunction] = { f.func.name: f for f in concatMap(lambda g: list(g.functions()), structured_native_functions) } view_map: dict[OperatorName, NativeFunction] = { f.func.name: f for f in concatMap(lambda g: list(g.functions()), view_groups) } all_groups.extend( f for f in native_functions if f.func.name not in structured_map and f.func.name not in view_map ) cpu_fm.write_sharded( "RegisterFunctionalization.cpp", all_groups, key_fn=key_func, env_callable=functionalization_env_callable, num_shards=4, sharded_keys={ "ops_headers", "func_definitions", "func_registrations", "func_add_back_views_definitions", "func_add_back_views_registrations", }, ) cpu_fm.write( "FunctionalInverses.h", lambda: { "view_inverse_declarations": list( mapMaybe( lambda g: gen_functionalization_view_inverse_declaration( selector, g ), view_groups, ) ) }, ) # Note [view_copy NativeFunctions] # Every view operator in native_functions.yaml that is not CompositeImplicitAutograd # needs to have a corresponding non-aliasing {view}_copy variant. # Backends that use functionalization and don't know how to handle aliasing ops # are expected to implement kernels for these {view}_copy kernels instead. # The code for {view}_copy operators in core is pretty boilerplate-heavy however, # so we codegen the following: # (1) A CompositeExplicitAutogradNonFunctional kernel for every {view}_copy operator. # These are never explicitly invoked by the functionalization pass, # but they could theoretically be called from user code (I added these kernels for completeness, # since the ops are part of the public API). # (2) A derivative formula for every {view}_copy operator # {view}_copy operators can re-use the same derivative formulas as their {view} op counterparts, # so rather than stamping all of the entries out in derivatives.yaml, # we codegen them in. # This is similar to how autograd codegen doesn't require inplace ops to have a derivatives.yaml entry. cpu_fm.write( "CompositeViewCopyKernels.cpp", lambda: { "ops_headers": [ "\n".join( f"#include <ATen/ops/{f.root_name}_ops.h>\n" # NB: this include is important as it ensures we # set the visibility on generated view_copy kernels # correctly f"#include <ATen/ops/{f.root_name}_native.h>" for f in ( [g.view] if g.view_copy is None else [g.view, g.view_copy] ) ) for g in view_groups ] + [ "\n".join( f"#include <ATen/ops/{f.root_name}_ops.h>\n" # NB: this include is also important for correct visibility f"#include <ATen/ops/{f.root_name}_native.h>" for f in [g.inplace, g.mutable, g.functional] if f is not None and "generated" not in f.tags ) for g in structured_native_functions ], "CompositeViewCopyKernel_Definitions": list( mapMaybe( GenCompositeViewCopyKernel( backend_indices[ DispatchKey.CompositeExplicitAutogradNonFunctional ] ), view_groups, ) ), "GeneratedCompositeFunctional_Definitions": list( mapMaybe( gen_composite_functional_kernel, structured_native_functions, ) ), "GeneratedCompositeOut_Definitions": list( mapMaybe( gen_composite_out_kernel, structured_native_functions, ) ), }, ) def gen_declarations_yaml( cpu_fm: FileManager, native_functions: Sequence[NativeFunction] ) -> None: cpu_fm.write( "Declarations.yaml", lambda: format_yaml([compute_declaration_yaml(f) for f in native_functions]), ) def get_torchgen_root() -> Path: """ If you're depending on torchgen out-of-tree, you can use the root to figure out the path to native_functions.yaml """ return Path(__file__).parent.resolve() def main() -> None: parser = argparse.ArgumentParser(description="Generate ATen source files") parser.add_argument( "-s", "--source-path", help="path to source directory for ATen", default="aten/src/ATen", ) parser.add_argument( "-o", "--output-dependencies", help="output a list of dependencies into the given file and exit", ) parser.add_argument( "--dry-run", action="store_true", help="run without writing any files (still updates outputs)", ) parser.add_argument( "--per-operator-headers", action="store_true", help="generate separate headers per operator in ATen/ops", ) parser.add_argument( "-d", "--install-dir", "--install_dir", help="output directory", default="build/aten/src/ATen", ) parser.add_argument( "--aoti-install-dir", "--aoti_install_dir", help="output directory for AOTInductor shim", default="torch/csrc/inductor/aoti_torch/generated", ) parser.add_argument( "--rocm", action="store_true", help="reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly", ) parser.add_argument( "--mps", action="store_true", help="Generate MPS registration code when set", ) parser.add_argument( "--xpu", action="store_true", help="Generate XPU registration code when set", ) # TODO: --op-registration-whitelist will be removed when all call-sites # for gen.py are moved over to using the operator YAML file for mobile # custom build. parser.add_argument( "--op-registration-whitelist", "--op_registration_whitelist", nargs="*", help="filter op registrations by the whitelist (if set); " "each item is `namespace`::`operator name` without overload name; " "e.g.: aten::empty aten::conv2d ...", ) parser.add_argument( "--op-selection-yaml-path", "--op_selection_yaml_path", help="Provide a path to the operator selection (for custom build) YAML " "that contains the information about the set of selected operators " "and their categories (training, ...). Each operator is either a " "full operator name with overload or just a bare operator name. " "The operator names also contain the namespace prefix (e.g. aten::)", ) parser.add_argument( "--backend-whitelist", "--backend_whitelist", nargs="*", help="filter dispatch backend by the whitelist (if set), " "e.g.: CPU CUDA QuantizedCPU ...", ) parser.add_argument( "--static-dispatch-backend", "--static_dispatch_backend", nargs="*", help="generate static dispatch code for the specific backend (if set)", ) parser.add_argument( "--skip-dispatcher-op-registration", "--skip_dispatcher_op_registration", action="store_true", help="Avoid registering operators into the dispatcher.", ) parser.add_argument( "--force-schema-registration", "--force_schema_registration", action="store_true", help="force it to generate schema-only registrations for all ops, including" "those that are not listed on --op-registration-whitelist", ) parser.add_argument( "--generate", type=str, nargs="*", choices=["headers", "sources", "declarations_yaml"], default=["headers", "sources", "declarations_yaml"], help="Generate only a subset of files", ) parser.add_argument( "--update-aoti-c-shim", action="store_true", help="Update AOTInductor C shim after adding an entry to inductor_fallback_ops in torchgen/aoti/fallback_ops.py. " "WARNING: Do not use this unless you are sure what you are doing!!!", ) parser.add_argument( "--extend-aoti-c-shim", action="store_true", help="This Flag indicates the generation of c shims for out-of-tree ATen ops," "which is an extension to the In-tree ATen op c shims. This flag needs to be combined with" "---source-path=<out-of-tree native_functions.yaml>" "--aoti-install-dir=<in-tree aoti_install_dir>/extend" " default is torch/csrc/inductor/aoti_torch/generated/extend" "WARNING: Do not use this unless you are sure what you are doing!!!", ) options = parser.parse_args() selector = get_custom_build_selector( options.op_registration_whitelist, options.op_selection_yaml_path, ) native_yaml_path = os.path.join(options.source_path, "native/native_functions.yaml") tags_yaml_path = os.path.join(options.source_path, "native/tags.yaml") from torchgen.model import dispatch_keys # TODO: stop generating CUDA kernels for non-CUDA builds ignore_keys = set() if not options.mps: ignore_keys.add(DispatchKey.MPS) if DispatchKey.MPS in dispatch_keys: del dispatch_keys[dispatch_keys.index(DispatchKey.MPS)] if not options.xpu: ignore_keys.add(DispatchKey.XPU) if DispatchKey.XPU in dispatch_keys: del dispatch_keys[dispatch_keys.index(DispatchKey.XPU)] parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path, ignore_keys) valid_tags = _GLOBAL_PARSE_TAGS_YAML_CACHE[tags_yaml_path] native_functions, backend_indices = ( parsed_yaml.native_functions, parsed_yaml.backend_indices, ) grouped_native_functions = get_grouped_native_functions(native_functions) structured_native_functions = [ g for g in grouped_native_functions if isinstance(g, NativeFunctionsGroup) ] native_functions_with_view_groups = get_grouped_by_view_native_functions( native_functions ) view_groups = [ g for g in native_functions_with_view_groups if isinstance(g, NativeFunctionsViewGroup) ] # NB: It is mandatory to NOT use os.path.join here, as the install directory # will eventually be ingested by cmake, which does not respect Windows style # path slashes. If you switch this to use os.path.join, you'll get an error # like: # # Syntax error in cmake code when parsing string # # C:/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-build/build/aten/src/ATen\core/TensorMethods.h # # Invalid character escape '\c'. core_install_dir = f"{options.install_dir}/core" Path(core_install_dir).mkdir(parents=True, exist_ok=True) ops_install_dir = f"{options.install_dir}/ops" Path(ops_install_dir).mkdir(parents=True, exist_ok=True) aoti_install_dir = f"{options.aoti_install_dir}" Path(aoti_install_dir).mkdir(parents=True, exist_ok=True) core_fm = make_file_manager(options=options, install_dir=core_install_dir) cpu_fm = make_file_manager(options=options) cpu_vec_fm = make_file_manager(options=options) cuda_fm = make_file_manager(options=options) ops_fm = make_file_manager(options=options, install_dir=ops_install_dir) aoti_fm = make_file_manager(options=options, install_dir=aoti_install_dir) device_fms = {"cuda": cuda_fm} if options.xpu: device_fms["xpu"] = make_file_manager(options=options) # Only a limited set of dispatch keys get CPUFunctions.h headers generated # for them; this is the set functions_keys = { DispatchKey.CPU, DispatchKey.CUDA, DispatchKey.CompositeImplicitAutograd, DispatchKey.CompositeImplicitAutogradNestedTensor, DispatchKey.CompositeExplicitAutograd, DispatchKey.CompositeExplicitAutogradNonFunctional, DispatchKey.Meta, } aoti_backends = { DispatchKey.CPU, DispatchKey.CUDA, } if options.mps: functions_keys.add(DispatchKey.MPS) if options.xpu: functions_keys.add(DispatchKey.XPU) aoti_backends.add(DispatchKey.XPU) if options.backend_whitelist: dispatch_keys = [ k for k in dispatch_keys if is_generic_dispatch_key(k) or str(k) in options.backend_whitelist ] static_dispatch_idx: list[BackendIndex] = [] if options.static_dispatch_backend: static_dispatch_idx = [ backend_indices[DispatchKey.parse(key)] for key in options.static_dispatch_backend ] for key in options.static_dispatch_backend: dp_key = DispatchKey.parse(key) if dp_key not in functions_keys: functions_keys.add(dp_key) if "sources" in options.generate: gen_source_files( native_functions=native_functions, grouped_native_functions=grouped_native_functions, structured_native_functions=structured_native_functions, view_groups=view_groups, selector=selector, static_dispatch_idx=static_dispatch_idx, backend_indices=backend_indices, aoti_fm=aoti_fm, core_fm=core_fm, cpu_vec_fm=cpu_vec_fm, cpu_fm=cpu_fm, device_fms=device_fms, dispatch_keys=dispatch_keys, functions_keys=functions_keys, rocm=options.rocm, force_schema_registration=options.force_schema_registration, per_operator_headers=options.per_operator_headers, skip_dispatcher_op_registration=options.skip_dispatcher_op_registration, update_aoti_c_shim=options.update_aoti_c_shim, aoti_backends=aoti_backends, extend_aoti_c_shim=options.extend_aoti_c_shim, ) if "headers" in options.generate: gen_headers( native_functions=native_functions, valid_tags=valid_tags, grouped_native_functions=grouped_native_functions, structured_native_functions=structured_native_functions, static_dispatch_idx=static_dispatch_idx, selector=selector, backend_indices=backend_indices, core_fm=core_fm, cpu_fm=cpu_fm, device_fms=device_fms, ops_fm=ops_fm, dispatch_keys=dispatch_keys, functions_keys=functions_keys, rocm=options.rocm, per_operator_headers=options.per_operator_headers, ) if "declarations_yaml" in options.generate: gen_declarations_yaml(native_functions=native_functions, cpu_fm=cpu_fm) if options.output_dependencies: depfile_path = Path(options.output_dependencies).resolve() depfile_name = depfile_path.name depfile_stem = depfile_path.stem for fm, prefix in [ (cpu_fm, ""), (cpu_vec_fm, "cpu_vec_"), (core_fm, "core_"), (ops_fm, "ops_"), ] + [(device_fm, f"{device}_") for device, device_fm in device_fms.items()]: varname = prefix + depfile_stem path = depfile_path.parent / (prefix + depfile_name) fm.write_outputs(varname, str(path)) if __name__ == "__main__": main() ```
=================================================================================================================== SOURCE CODE FILE: gen_aoti_c_shim.py LINES: 4 SIZE: 18.36 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen_aoti_c_shim.py ENCODING: utf-8 ```py from __future__ import annotations import textwrap from dataclasses import dataclass from typing import TYPE_CHECKING from torchgen.api.types import DispatcherSignature from torchgen.api.types.signatures import CppSignature, CppSignatureGroup from torchgen.context import method_with_native_function from torchgen.model import ( Argument, BackendIndex, BaseTy, BaseType, DispatchKey, FunctionSchema, ListType, NativeFunction, NativeFunctionsGroup, OperatorName, OptionalType, Type, ) from torchgen.utils import mapMaybe if TYPE_CHECKING: from collections.abc import Sequence base_type_to_c_type = { BaseTy.Tensor: "AtenTensorHandle", BaseTy.bool: "int32_t", # Use int to pass bool BaseTy.int: "int64_t", BaseTy.SymInt: "int64_t", # Inductor-generated code won't see a SymInt BaseTy.Scalar: "double", # Use double to pass both integer and floating point BaseTy.float: "double", # TODO: how about other floating point types? BaseTy.str: "const char*", BaseTy.DeviceIndex: "int32_t", BaseTy.Layout: "int32_t", # Represent enum as int BaseTy.MemoryFormat: "int32_t", # Represent enum as int BaseTy.ScalarType: "int32_t", # Represent enum as int BaseTy.Generator: "AtenGeneratorHandle", } base_type_to_aten_type = { BaseTy.Tensor: "at::Tensor", BaseTy.bool: "bool", BaseTy.int: "int64_t", BaseTy.SymInt: "c10::SymInt", BaseTy.Scalar: "c10::Scalar", BaseTy.float: "double", BaseTy.str: "c10::string_view", BaseTy.DeviceIndex: "c10::DeviceIndex", BaseTy.Layout: "c10::Layout", BaseTy.MemoryFormat: "c10::MemoryFormat", BaseTy.ScalarType: "c10::ScalarType", BaseTy.Generator: "at::Generator", } base_type_to_callsite_expr = { BaseTy.Tensor: "resolve_tensor_dispatch_flags", BaseTy.bool: "", BaseTy.int: "", BaseTy.SymInt: "", BaseTy.Scalar: "", BaseTy.float: "", BaseTy.str: "", BaseTy.DeviceIndex: "static_cast<c10::DeviceIndex>", BaseTy.Layout: "static_cast<c10::Layout>", BaseTy.MemoryFormat: "static_cast<c10::MemoryFormat>", BaseTy.ScalarType: "static_cast<c10::ScalarType>", BaseTy.Generator: "*generator_handle_to_generator_pointer", } # convert args to C types, names in declarations, and expressions in function bodies def convert_arg_type_and_name( typ: Type, name: str, is_write: bool = False, ) -> tuple[list[str], list[str], list[str], list[str]]: if isinstance(typ, BaseType): if typ.name in base_type_to_c_type: if typ.name == BaseTy.Tensor and is_write: # For output tensors, our normal call to resolve_tensor_dispatch_flags # results in an rvalue tensor, which can't be passed to at::Tensor&. # Override this case specifically. callsite_expr = [f"*tensor_handle_to_tensor_pointer({name})"] else: callsite_expr = [ f"{base_type_to_callsite_expr[typ.name]}({name})" if base_type_to_callsite_expr[typ.name] else name ] return ( [base_type_to_c_type[typ.name]], [name], [base_type_to_aten_type[typ.name]], callsite_expr, ) elif typ.name == BaseTy.Device: return ( ["int32_t", "int32_t"], [name, name + "_index_"], ["c10::Device"], [ f"c10::Device(static_cast<c10::DeviceType>({name}), static_cast<c10::DeviceIndex>({name}_index_))" ], ) else: # TODO: BaseTy.Dimname, etc. raise NotImplementedError(f"TODO: add support for arg type {repr(typ)}") elif isinstance(typ, OptionalType): c_types, names, aten_types, callsite_exprs = convert_arg_type_and_name( typ.elem, name ) j = 0 # index for names new_aten_types = [] new_callsite_exprs = [] for aten_type in aten_types: # Use pointer to denote optional type c_types[j] = c_types[j] + "*" if aten_type.startswith("c10::ArrayRef<"): # ArrayRef is passed as pointer + size, but no need to add "*" to the size argument new_aten_types.append(f"::std::optional<{aten_type}>") base_type = aten_type[len("c10::ArrayRef<") : -1] new_callsite_exprs.append( f"pointer_to_optional_list<{base_type}>({names[j]}, {names[j + 1]})" ) j += 2 elif aten_type == "c10::Device": # Device is passed as device_type + device_index new_aten_types.append("::std::optional<c10::Device>") new_callsite_exprs.append( f"pointer_to_optional_device({names[j]}, {names[j + 1]})" ) j += 2 elif aten_type == "at::Tensor": new_aten_types.append(f"::std::optional<{aten_type}>") new_callsite_exprs.append(f"resolve_tensor_dispatch_flags({names[j]})") j += 1 else: new_aten_types.append(f"::std::optional<{aten_type}>") new_callsite_exprs.append( f"pointer_to_optional<{aten_type}>({names[j]})" ) j += 1 return ( c_types, names, new_aten_types, new_callsite_exprs, ) elif isinstance(typ, ListType): # Need to explicitly pass the list as pointer + length c_types, names, aten_types, _ = convert_arg_type_and_name(typ.elem, name) assert len(c_types) == 1, "ListType with unsupported element type " + repr(typ) # The list content should never be modified c_types[0] = f"const {c_types[0]}*" c_types.append("int64_t") name = names[0] names.append(name + "_len_") atype = aten_types[0] callsite_exprs = [] if atype == "bool": # no converter from std::vector<bool> to c10::ArrayRef<bool> # construct std::array<bool, N> instead assert typ.size is not None callsite_exprs.append(f"pointer_to_list<{typ.size}>({name})") elif atype == "at::Tensor" and not is_write: callsite_exprs.append( f"resolve_tensor_list_dispatch_flags({name}, {name}_len_)" ) elif atype == "::std::optional<at::Tensor>": # convert from std::vector<::std::optional<at::Tensor>> to c10::List<::std::optional<at::Tensor>> callsite_exprs.append( f"c10::List<{atype}>(c10::ArrayRef<{atype}>(resolve_tensor_list_dispatch_flags({name}, {name}_len_)))" ) else: callsite_exprs.append(f"pointer_to_list<{atype}>({name}, {name}_len_)") aten_types = [f"c10::ArrayRef<{t}>" for t in aten_types] return ( c_types, names, aten_types, callsite_exprs, ) raise NotImplementedError(f"Argument type {repr(typ)} not supported!") def zip_type_and_name(types: list[str], names: list[str]) -> list[str]: return [typ + " " + name for typ, name in zip(types, names)] # Generate argument declarations and callsite expressions def gen_arguments(flat_arguments: Sequence[Argument]) -> tuple[list[str], list[str]]: types = [] new_names = [] callsite_exprs = [] for arg in flat_arguments: new_types, names, _, new_callsite_exprs = convert_arg_type_and_name( arg.type, arg.name, arg.is_write ) types.extend(new_types) new_names.extend(names) callsite_exprs.extend(new_callsite_exprs) return zip_type_and_name(types, new_names), callsite_exprs # Return values are passed out as pointer arguments because all the C shim functions # are expected to return AOTITorchError. # Generate returns as declarations and callsite expressions def gen_returns(schema: FunctionSchema) -> tuple[list[str], list[str]]: types = [] names = [] for idx, ret in enumerate(schema.returns): names.append(f"ret{idx}") if isinstance(ret.type, BaseType) and ret.type.name in base_type_to_c_type: types.append(base_type_to_c_type[ret.type.name] + "*") else: raise NotImplementedError( f"TODO: add support for return type {repr(ret.type)}" ) def convert_return(typ: BaseType, val: str) -> str: if typ.name == BaseTy.Tensor: return f"new_tensor_handle(std::move({val}));" elif typ.name == BaseTy.SymInt: return f"{val}.expect_int()" elif typ.name == BaseTy.Scalar: return f"{val}.toDouble()" else: return val ret_pointer_can_be_null = False unambiguous_name = schema.name.unambiguous_name() for name in [ "_scaled_dot_product_flash_attention", "_scaled_dot_product_efficient_attention", "_scaled_dot_product_cudnn_attention", "_scaled_dot_product_fused_attention_overrideable", "convolution_backward", ]: if name in unambiguous_name: ret_pointer_can_be_null = True break callsite_exprs: list[str] = [] for idx, ret in enumerate(schema.returns): tmp = "tmp_result" if len(names) == 1 else f"std::get<{idx}>(tmp_result)" assert isinstance(ret.type, BaseType) rval = convert_return(ret.type, tmp) if ret_pointer_can_be_null: callsite_exprs.append(f"if ({names[idx]}) {{ *{names[idx]} = {rval}; }}") else: callsite_exprs.append(f"*{names[idx]} = {rval};") return zip_type_and_name(types, names), callsite_exprs # gen.py generates header first and then src, so caching the result here to avoid duplicate work declaration_definition_cache: dict[tuple[str, str, str], tuple[str, str]] = {} def gen_declaration_and_definition( schema: FunctionSchema, device: str, backend_call: str ) -> tuple[str, str]: func_name = schema.name.unambiguous_name() global declaration_definition_cache if (func_name, device, backend_call) in declaration_definition_cache: return declaration_definition_cache[(func_name, device, backend_call)] if schema.is_out_fn(): # out_variant has out arguments in the front, and it's ok to ignore return values # because C shim functions only return AOTITorchError args, callsite_exprs = gen_arguments( [*schema.arguments.out, *schema.arguments.flat_non_out] ) ret_assignments: list[str] = [] else: args, callsite_exprs = gen_arguments(schema.arguments.flat_all) # ignore return values for inplace ops ret_declarations, ret_assignments = ( ([], []) if schema.name.name.inplace else gen_returns(schema) ) args.extend(ret_declarations) declaration = f"AOTITorchError aoti_torch_{device}_{func_name}({', '.join(args)})" tmp_result = "auto tmp_result = " if ret_assignments else "" ret_assignments_str = "\n" + "\n".join(ret_assignments) if ret_assignments else "" definition = f""" {declaration} {{ AOTI_TORCH_CONVERT_EXCEPTION_TO_ERROR_CODE({{ {tmp_result}{backend_call}( {textwrap.indent(", ".join(callsite_exprs), " ")} );{textwrap.indent(ret_assignments_str, " ")} }}); }} """ declaration_definition_cache[(func_name, device, backend_call)] = ( declaration, definition, ) return declaration, definition def gen_static_dispatch_backend_call_signature( sig: CppSignature | DispatcherSignature, f: NativeFunction, ) -> CppSignature: sig = DispatcherSignature.from_schema(f.func) cpp_sigs = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=False ) if sig.symint and f.func.has_symint(): cpp_sig = cpp_sigs.symint_signature else: cpp_sig = cpp_sigs.signature assert cpp_sig is not None return cpp_sig def gen_static_dispatch_backend_call( f: NativeFunction, backend_index: BackendIndex, ) -> str: sig = DispatcherSignature.from_schema(f.func) cpp_sig = gen_static_dispatch_backend_call_signature(sig, f) return f"at::{backend_index.dispatch_key.lower()}::{cpp_sig.name()}" def get_backend_index_for_aoti( func: NativeFunction, func_group_mapping: dict[OperatorName, NativeFunctionsGroup], dispatch_key: DispatchKey, backend_indices: dict[DispatchKey, BackendIndex], extend_aoti_c_shim: bool, ) -> BackendIndex | None: backend_index = None if backend_indices[dispatch_key].has_kernel(func) or ( func.structured_delegate is not None and func.structured_delegate in func_group_mapping and backend_indices[dispatch_key].has_kernel( func_group_mapping[func.structured_delegate] ) ): backend_index = backend_indices[dispatch_key] else: # for the extend out-of-tree kernels, we don't need to # duplicatly create C shim wrappers for other dispatch keys if extend_aoti_c_shim: return backend_index elif backend_indices[DispatchKey.CompositeExplicitAutograd].has_kernel(func): # We need to create C shim wrappers for CompositeExplicitAutograd kernels backend_index = backend_indices[DispatchKey.CompositeExplicitAutograd] elif backend_indices[ DispatchKey.CompositeExplicitAutogradNonFunctional ].has_kernel(func): # We need to create C shim wrappers for CompositeExplicitAutogradNonFunctional kernels backend_index = backend_indices[ DispatchKey.CompositeExplicitAutogradNonFunctional ] elif backend_indices[DispatchKey.CompositeImplicitAutograd].has_kernel(func): backend_index = backend_indices[DispatchKey.CompositeImplicitAutograd] return backend_index def get_header_for_aoti( func: NativeFunction, func_group_mapping: dict[OperatorName, NativeFunctionsGroup], dispatch_key: DispatchKey, backend_indices: dict[DispatchKey, BackendIndex], extend_aoti_c_shim: bool, ) -> str | None: backend_index = get_backend_index_for_aoti( func, func_group_mapping, dispatch_key, backend_indices, extend_aoti_c_shim ) return ( None if backend_index is None else f"#include <ATen/ops/{func.root_name}_{backend_index.dispatch_key.lower()}_dispatch.h>" ) def get_fallback_op_name(func: NativeFunction) -> str: return ( f"{func.namespace}.{func.func.name.name}.{func.func.name.overload_name}" if func.func.name.overload_name else f"{func.namespace}.{func.func.name.name}.default" ) def gen_c_shim( func: NativeFunction, func_group_mapping: dict[OperatorName, NativeFunctionsGroup], dispatch_key: DispatchKey, backend_indices: dict[DispatchKey, BackendIndex], header: bool, extend_aoti_c_shim: bool, ) -> str | None: backend_index = get_backend_index_for_aoti( func, func_group_mapping, dispatch_key, backend_indices, extend_aoti_c_shim ) if backend_index is None: return None schema = func.func device = dispatch_key.lower() backend_call = gen_static_dispatch_backend_call( func, backend_index, ) try: if header: declaration, _ = gen_declaration_and_definition( schema, device, backend_call ) return f"AOTI_TORCH_EXPORT {declaration};" else: _, definition = gen_declaration_and_definition(schema, device, backend_call) return definition except NotImplementedError: return None @dataclass(frozen=True) class ShimGenerator: func_group_mapping: dict[OperatorName, NativeFunctionsGroup] dispatch_key: DispatchKey backend_indices: dict[DispatchKey, BackendIndex] header: bool # True to generate .h and False to generate .cpp extend_aoti_c_shim: bool @method_with_native_function def __call__( self, func: NativeFunction, ) -> str | None: result = gen_c_shim( func, self.func_group_mapping, self.dispatch_key, self.backend_indices, self.header, self.extend_aoti_c_shim, ) return result def gen_aoti_c_shim( native_functions: Sequence[NativeFunction], func_group_mapping: dict[OperatorName, NativeFunctionsGroup], dispatch_key: DispatchKey, backend_indices: dict[DispatchKey, BackendIndex], header: bool, extend_aoti_c_shim: bool, includes: str = "", ) -> str: body = "\n".join( list( mapMaybe( ShimGenerator( func_group_mapping, dispatch_key, backend_indices, header, extend_aoti_c_shim, ), native_functions, ) ) ) device = dispatch_key.lower() warning = """ // WARNING: THIS FILE IS AUTOGENERATED BY torchgen. DO NOT MODIFY BY HAND. // See https://github.com/pytorch/pytorch/blob/7e86a7c0155295539996e0cf422883571126073e/torchgen/gen.py#L2424-L2436 for details""" if header: return f""" {warning} #pragma once #include <torch/csrc/inductor/aoti_torch/c/shim.h> #ifdef __cplusplus extern "C" {{ #endif {body} #ifdef __cplusplus }} // extern "C" #endif """ else: return f""" {warning} #include <torch/csrc/inductor/aoti_torch/generated/{"extend/" if extend_aoti_c_shim else ""}c_shim_{device}.h> #include <torch/csrc/inductor/aoti_torch/utils.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/{str(dispatch_key)}Functions.h> #include <ATen/CompositeExplicitAutogradFunctions.h> #include <ATen/CompositeExplicitAutogradNonFunctionalFunctions.h> #include <ATen/CompositeImplicitAutogradFunctions.h> #else {includes} #endif using namespace torch::aot_inductor; {body}""" ```
===================================================================================================================== SOURCE CODE FILE: gen_backend_stubs.py LINES: 5 SIZE: 22.48 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen_backend_stubs.py ENCODING: utf-8 ```py from __future__ import annotations import argparse import os import re from collections import Counter, defaultdict, namedtuple from pathlib import Path from typing import TYPE_CHECKING import yaml import torchgen.api.dispatcher as dispatcher import torchgen.dest as dest from torchgen.api.types import DispatcherSignature from torchgen.code_template import CodeTemplate from torchgen.context import native_function_manager from torchgen.gen import get_grouped_native_functions, parse_native_yaml from torchgen.model import ( BackendIndex, BackendMetadata, DispatchKey, NativeFunction, NativeFunctionsGroup, OperatorName, ) from torchgen.selective_build.selector import SelectiveBuilder from torchgen.utils import concatMap, context, FileManager, NamespaceHelper, Target from torchgen.yaml_utils import YamlLoader if TYPE_CHECKING: from collections.abc import Sequence # Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key. # Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping) ParsedExternalYaml = namedtuple( "ParsedExternalYaml", ["backend_key", "autograd_key", "class_name", "cpp_namespace", "backend_indices"], ) def parse_backend_yaml( backend_yaml_path: str, grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_indices: dict[DispatchKey, BackendIndex], ) -> ParsedExternalYaml: native_functions_map: dict[OperatorName, NativeFunction] = { f.func.name: f for f in concatMap( lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions, ) } with open(backend_yaml_path) as f: yaml_values = yaml.load(f, Loader=YamlLoader) assert isinstance(yaml_values, dict) valid_keys = [ "backend", "class_name", "cpp_namespace", "extra_headers", "supported", "autograd", "full_codegen", "non_native", "ir_gen", "symint", ] backend = yaml_values.pop("backend", None) assert backend is not None, 'You must provide a value for "backend"' class_name = yaml_values.pop("class_name", None) cpp_namespace = yaml_values.pop("cpp_namespace", None) assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"' # Mostly just defaulting to false to stick with LazyTensor convention. use_out_as_primary = yaml_values.pop("use_out_as_primary", False) assert isinstance(use_out_as_primary, bool), ( f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}" ) use_device_guard = yaml_values.pop("device_guard", False) assert isinstance(use_device_guard, bool), ( f"You must provide either True or False for device_guard. Provided: {use_device_guard}" ) supported = yaml_values.pop("supported", []) if supported is None: supported = [] # Allow an empty list of supported ops assert isinstance(supported, list), ( f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})' ) symint = yaml_values.pop("symint", []) if symint is None: symint = [] # Allow an empty list of symint ops assert isinstance(symint, list), ( f'expected "symint" to be a list, but got: {supported} (of type {type(supported)})' ) symint_set = set(symint) supported_autograd = yaml_values.pop("autograd", []) assert isinstance(supported_autograd, list), ( f'expected "autograd" to be a list, but got: {supported_autograd}' ) # full_codegen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py full_codegen = yaml_values.pop("full_codegen", []) supported.extend(full_codegen) # non_native is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py yaml_values.pop("non_native", {}) # ir_gen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py yaml_values.pop("ir_gen", {}) assert len(yaml_values.keys()) == 0, ( f"{backend_yaml_path} contains unexpected keys: {', '.join(yaml_values.keys())}. " f"Only the following keys are supported: {', '.join(valid_keys)}" ) def create_backend_index( backend_ops: list[str], symint_ops: set[str], dispatch_key: DispatchKey, *, use_out_as_primary: bool, use_device_guard: bool, ) -> BackendIndex: metadata: dict[OperatorName, BackendMetadata] = {} for op in backend_ops: op_name = OperatorName.parse(op) assert op_name in native_functions_map, ( f"Found an invalid operator name: {op_name}" ) # See Note [External Backends Follow Dispatcher API] kernel_name = dispatcher.name(native_functions_map[op_name].func) if op in symint_ops: kernel_name += "_symint" # TODO: allow structured external backends later. m = BackendMetadata( kernel=kernel_name, structured=False, cpp_namespace=cpp_namespace ) metadata[op_name] = m return BackendIndex( dispatch_key=dispatch_key, use_out_as_primary=use_out_as_primary, external=True, device_guard=use_device_guard, index=metadata, ) backend_key: DispatchKey | None = None if len(supported) > 0: with context( lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.' ): backend_key = DispatchKey.parse(backend) backend_idx = create_backend_index( supported, symint_set, backend_key, use_out_as_primary=use_out_as_primary, use_device_guard=use_device_guard, ) assert backend_key not in backend_indices backend_indices[backend_key] = backend_idx autograd_key: DispatchKey | None = None if len(supported_autograd) > 0: with context( lambda: f'The "autograd" key was specified, which indicates that you would like to override \ the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.' ): autograd_key = DispatchKey.parse(f"Autograd{backend}") autograd_idx = create_backend_index( supported_autograd, symint_set, autograd_key, use_out_as_primary=use_out_as_primary, use_device_guard=use_device_guard, ) assert autograd_key not in backend_indices backend_indices[autograd_key] = autograd_idx for g in grouped_native_functions: if isinstance(g, NativeFunction): forward_kernels = ( [] if backend_key is None else [ m for m in [backend_indices[backend_key].get_kernel(g)] if m is not None ] ) backward_kernels = ( [] if autograd_key is None else [ m for m in [backend_indices[autograd_key].get_kernel(g)] if m is not None ] ) else: forward_kernels = ( [] if backend_key is None else [ m for m in [ backend_indices[backend_key].get_kernel(f) for f in g.functions() ] if m is not None ] ) backward_kernels = ( [] if autograd_key is None else [ m for m in [ backend_indices[autograd_key].get_kernel(f) for f in g.functions() ] if m is not None ] ) forward_kernels = [f for f in forward_kernels if f is not None] backward_kernels = [f for f in backward_kernels if f is not None] assert len(forward_kernels) == 0 or len(backward_kernels) == 0, ( f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \ autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \ {forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".' ) return ParsedExternalYaml( backend_key, autograd_key, class_name, cpp_namespace, backend_indices ) def error_on_missing_kernels( native_functions: Sequence[NativeFunction], backend_indices: dict[DispatchKey, BackendIndex], backend_key: DispatchKey, autograd_key: DispatchKey | None, class_name: str, kernel_defn_file_path: str, full_codegen: list[OperatorName] | None = None, ) -> None: try: with open(kernel_defn_file_path) as f: backend_defns = f.read() except OSError as e: raise AssertionError( f"Unable to read from the specified impl_path file: {kernel_defn_file_path}" ) from e if full_codegen is None: full_codegen = [] indices = [backend_indices[backend_key].index] + ( [] if autograd_key is None else [backend_indices[autograd_key].index] ) # Quick mapping from each OperatorName used by the external backend # to its backend kernel name expected_backend_op_names: dict[OperatorName, str] = dict( list( concatMap( lambda index: [ (op_name, metadata.kernel) for op_name, metadata in index.items() ], indices, ) ) ) expected_backend_native_funcs: list[NativeFunction] = [ f for f in native_functions if f.func.name in expected_backend_op_names.keys() and f.func.name not in full_codegen ] expected_backend_kernel_name_counts: dict[str, list[NativeFunction]] = defaultdict( list ) for native_f in expected_backend_native_funcs: expected_backend_kernel_name_counts[ expected_backend_op_names[native_f.func.name] ].append(native_f) # This just looks for lines containing "foo(", and assumes that the kernel foo has been implemented. # It might cause false negatives (we won't catch all cases), but that's ok - if we catch a missing kernel # here, then we get a nicer error message. If we miss it, you get a linker error. kernel_defn_regex = rf"(.*){class_name}::\s*([\w\d]*)\(" actual_backend_kernel_name_counts = Counter( # A bit unwieldy (this could probably be moved into regex), # but we don't want to include kernel names that come from function calls, # like "return torch_xla::XLANativeFunctions::empty_strided_symint(...)". # Easy check is to ignore any lines with colons before the class name. [ y for (x, y) in re.findall(kernel_defn_regex, backend_defns) if not x.endswith(":") ] ) missing_kernels_err_msg = "" for expected_name, funcs in expected_backend_kernel_name_counts.items(): expected_overload_count = len(funcs) actual_overload_count = actual_backend_kernel_name_counts[expected_name] if expected_overload_count != actual_overload_count: def create_decl(f: NativeFunction) -> str: with native_function_manager(f): return DispatcherSignature.from_schema(f.func).decl() expected_schemas_str = "\n".join([create_decl(f) for f in funcs]) missing_kernels_err_msg += f""" {class_name} is missing a kernel definition for {expected_name}. We found {actual_overload_count} kernel(s) with that name, but expected {expected_overload_count} kernel(s). The expected function schemas for the missing operator are: {expected_schemas_str} """ assert missing_kernels_err_msg == "", missing_kernels_err_msg def main() -> None: parser = argparse.ArgumentParser(description="Generate backend stub files") parser.add_argument( "-s", "--source-yaml", "--source_yaml", help="path to source yaml file containing operator external definitions", ) parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory") parser.add_argument( "--dry-run", "--dry_run", type=bool, default=False, help="output directory" ) parser.add_argument( "--impl-path", "--impl_path", type=str, default=None, help="path to the source C++ file containing kernel definitions", ) options = parser.parse_args() run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path) def gen_dispatchkey_nativefunc_headers( fm: FileManager, class_name: str, cpp_namespace: str, backend_indices: dict[DispatchKey, BackendIndex], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_dispatch_key: DispatchKey, autograd_dispatch_key: DispatchKey | None, backend_name: str = "", ) -> None: assert class_name is not None generated_comment = ( "Autogenerated file by gen_backend_stubs.py. Do not edit directly!" ) # Convert to a set first to remove duplicate kernel names. # Backends are allowed to repeat kernel names; only generate the declaration once! # Sort for deterministic output. backend_declarations = sorted( set( concatMap( lambda f: dest.compute_native_function_declaration( f, backend_indices[backend_dispatch_key] ), grouped_native_functions, ) ) ) autograd_declarations = sorted( set( concatMap( lambda f: [] if autograd_dispatch_key is None else dest.compute_native_function_declaration( f, backend_indices[autograd_dispatch_key] ), grouped_native_functions, ) ) ) ns_helper = NamespaceHelper(cpp_namespace) fm.write_with_template( f"{backend_dispatch_key}NativeFunctions.h", "DispatchKeyNativeFunctions.h", lambda: { "generated_comment": generated_comment, "namespace_prologue": ns_helper.prologue, "class_name": class_name, "namespace_epilogue": ns_helper.epilogue, "dispatch_declarations": backend_declarations + autograd_declarations, "BackendName": backend_name, "DispatchKey": backend_dispatch_key, }, ) def gen_dispatcher_registrations( fm: FileManager, output_dir: str, class_name: str, backend_indices: dict[DispatchKey, BackendIndex], grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], backend_dispatch_key: DispatchKey, dispatch_key: DispatchKey, selector: SelectiveBuilder, # build_in_tree is true for lazy TS backend and affects include paths, not used for external backends build_in_tree: bool = False, per_operator_headers: bool = False, backend_name: str = "", eager_registration: bool = True, ) -> None: headers = [ f"{output_dir}/{backend_dispatch_key}NativeFunctions.h", ] if build_in_tree: external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers) else: external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers) assert class_name is not None backend_index = backend_indices[dispatch_key] dispatch_registrations_body = list( concatMap( dest.RegisterDispatchKey( backend_index, Target.REGISTRATION, selector, rocm=False, symint=True, class_method_name=f"{class_name}", skip_dispatcher_op_registration=False, ), grouped_native_functions, ) ) newline = "\n" ns_helper = NamespaceHelper(namespace_str="at") deferred_dispatch_registrations = "" static_init_dispatch_registrations = "" if eager_registration: static_template = CodeTemplate( """\ TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) { $dispatch_registrations_body }""" ) static_init_dispatch_registrations = static_template.substitute( dispatch_key=dispatch_key, dispatch_registrations_body=dispatch_registrations_body, ) else: deferred_template = CodeTemplate( """\ TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions(); TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() { static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key); $dispatch_registrations_body }""" ) deferred_dispatch_registrations = deferred_template.substitute( backend_name=backend_name, dispatch_key=dispatch_key, dispatch_registrations_body=dispatch_registrations_body, ) fm.write_with_template( f"Register{dispatch_key}.cpp", "RegisterDispatchKey.cpp", lambda: { "extra_cuda_headers": "", "external_backend_headers": external_backend_headers_str, "ops_headers": "#include <ATen/Functions.h>" if not per_operator_headers else "", "DispatchKey": dispatch_key, "dispatch_namespace": dispatch_key.lower(), "dispatch_headers": dest.gen_registration_headers( backend_index, per_operator_headers=per_operator_headers, rocm=False ), "dispatch_helpers": dest.gen_registration_helpers(backend_index), "dispatch_definitions": fm.substitute_with_template( "RegisterDispatchDefinitions.ini", lambda: { "ns_prologue": ns_helper.prologue, "ns_epilogue": ns_helper.epilogue, "static_init_dispatch_registrations": static_init_dispatch_registrations, "deferred_dispatch_registrations": deferred_dispatch_registrations, "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": "", "dispatch_anonymous_definitions": list( concatMap( dest.RegisterDispatchKey( backend_index, Target.ANONYMOUS_DEFINITION, selector, rocm=False, symint=True, class_method_name=f"{class_name}", skip_dispatcher_op_registration=False, ), grouped_native_functions, ) ), }, ).split(newline), }, ) def run( source_yaml: str, output_dir: str, dry_run: bool, impl_path: str | None = None ) -> None: # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py pytorch_root = Path(__file__).absolute().parent.parent template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") def make_file_manager(install_dir: str) -> FileManager: return FileManager( install_dir=install_dir, template_dir=template_dir, dry_run=dry_run ) fm = make_file_manager(output_dir) native_yaml_path = os.path.join( pytorch_root, "aten/src/ATen/native/native_functions.yaml" ) tags_yaml_path = os.path.join(pytorch_root, "aten/src/ATen/native/tags.yaml") parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) native_functions, backend_indices = ( parsed_yaml.native_functions, parsed_yaml.backend_indices, ) grouped_native_functions = get_grouped_native_functions(native_functions) parsed_backend_yaml = parse_backend_yaml( source_yaml, grouped_native_functions, backend_indices ) backend_key = parsed_backend_yaml.backend_key autograd_key = parsed_backend_yaml.autograd_key cpp_namespace = parsed_backend_yaml.cpp_namespace class_name = parsed_backend_yaml.class_name backend_indices = parsed_backend_yaml.backend_indices selector = SelectiveBuilder.get_nop_selector() if backend_key is None: # This could be useful if a backend wants to quickly set up a noop yaml file but doesn't have any kernels ready yet. return if class_name is None: # class_name is an optional argument to backend yaml file. # if specified it allows an external backend to override # the name of the class that all generated kernel definitions live under. # if not specified, its value is given as native_function_class_name. class_name = backend_indices[backend_key].native_function_class_name() assert class_name is not None if impl_path is not None: error_on_missing_kernels( native_functions, backend_indices, backend_key, autograd_key, class_name, impl_path, ) gen_dispatchkey_nativefunc_headers( fm, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, autograd_key, ) for dispatch_key in ( [backend_key] if autograd_key is None else [backend_key, autograd_key] ): gen_dispatcher_registrations( fm, output_dir, class_name, backend_indices, grouped_native_functions, backend_key, dispatch_key, selector, ) if __name__ == "__main__": main() ```
================================================================================================================== SOURCE CODE FILE: gen_executorch.py LINES: 7 SIZE: 37.34 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen_executorch.py ENCODING: utf-8 ```py from __future__ import annotations import argparse import os from collections import defaultdict from dataclasses import dataclass from pathlib import Path from typing import Any, Callable, TextIO, TYPE_CHECKING import yaml # Parse native_functions.yaml into a sequence of NativeFunctions and Backend Indices. from torchgen import dest from torchgen.api import cpp as aten_cpp from torchgen.api.types import CppSignature, CppSignatureGroup, CType, NamedCType from torchgen.context import ( method_with_native_function, method_with_nested_native_function, with_native_function_and_index, ) from torchgen.executorch.api import et_cpp from torchgen.executorch.api.custom_ops import ( ComputeNativeFunctionStub, gen_custom_ops_registration, ) from torchgen.executorch.api.types import contextArg, ExecutorchCppSignature from torchgen.executorch.api.unboxing import Unboxing from torchgen.executorch.model import ETKernelIndex, ETKernelKey, ETParsedYaml from torchgen.executorch.parse import ET_FIELDS, parse_et_yaml, parse_et_yaml_struct from torchgen.gen import ( get_custom_build_selector, get_native_function_declarations, get_native_function_declarations_from_ns_grouped_kernels, get_native_function_schema_registrations, LineLoader, parse_native_yaml, ) from torchgen.model import ( BackendIndex, BackendMetadata, DEFAULT_KERNEL_NAMESPACE, DispatchKey, FunctionSchema, Location, NativeFunction, NativeFunctionsGroup, OperatorName, Variant, ) from torchgen.utils import ( context, FileManager, make_file_manager, mapMaybe, NamespaceHelper, ) if TYPE_CHECKING: from collections.abc import Sequence from torchgen.selective_build.selector import SelectiveBuilder def _sig_decl_wrapper(sig: CppSignature | ExecutorchCppSignature) -> str: """ A wrapper function to basically get `sig.decl(include_context=True)`. For ATen kernel, the codegen has no idea about ET contextArg, so we use this wrapper to add it. """ if isinstance(sig, ExecutorchCppSignature): return sig.decl() returns_type = aten_cpp.returns_type(sig.func.returns).cpp_type() cpp_args = [a.decl() for a in sig.arguments()] cpp_args_str = ", ".join([contextArg.decl()] + cpp_args) sig_decl = f"{returns_type} {sig.name()}({cpp_args_str})" return sig_decl def static_dispatch( sig: CppSignature | ExecutorchCppSignature, f: NativeFunction, backend_indices: list[BackendIndex], ) -> str: """ For a given `NativeFunction`, find out the corresponding native function and dispatch to it. If zero or more than one native function exists, error out. A simplified version of register_dispatch_key.py Arguments: sig: A CppSignature for this native function we want to use. f: NativeFunction to generate static dispatch. backend_indices: All available backends. Return: C++ code to call backend-specific functions, e.g., "return at::native::add(self, other, scale);" """ if len(backend_indices) == 0 or f.manual_kernel_registration: return "" backends = [b for b in backend_indices if b.has_kernel(f)] static_block = None if len(backends) == 1: backend_metadata = backends[0].get_kernel(f) if backend_metadata: args = ", ".join(a.name for a in sig.arguments()) # Here we are assuming there's no difference between CppSignature and NativeSignature for Executorch. static_block = f"return ::{backend_metadata.cpp_namespace}::{backend_metadata.kernel}({args});" else: static_block = f""" ET_ASSERT_UNREACHABLE_MSG("The number of native function(s) binding to {f.func.name} is {len(backends)}."); """ return f""" // {f.namespace}::{f.func} TORCH_API inline {_sig_decl_wrapper(sig)} {{ {static_block} }} """ # Generates Functions.h, which provides the functional public C++ API, # and the scaffolding to call into the dispatcher from these functions. @dataclass(frozen=True) class ComputeFunction: static_dispatch_backend_indices: list[BackendIndex] selector: SelectiveBuilder use_aten_lib: bool is_custom_op: Callable[[NativeFunction], bool] @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: is_method_variant = False if not self.selector.is_root_operator(f"{f.namespace}::{f.func.name}"): return None if Variant.function not in f.variants and Variant.method in f.variants: is_method_variant = True # only valid remaining case is only function is in f.variants elif not (Variant.function in f.variants and Variant.method not in f.variants): raise Exception( # noqa: TRY002 f"Can't handle native function {f.func} with the following variant specification {f.variants}." ) sig: CppSignature | ExecutorchCppSignature = ( CppSignatureGroup.from_native_function( f, method=False, fallback_binding=f.manual_cpp_binding ).most_faithful_signature() if self.use_aten_lib else ExecutorchCppSignature.from_native_function(f) ) if self.use_aten_lib and not self.is_custom_op(f): comma = ", " if is_method_variant: return f""" // {f.namespace}::{f.func} TORCH_API inline {_sig_decl_wrapper(sig)} {{ return {sig.arguments()[0].name}.{sig.name()}({comma.join(e.name for e in sig.arguments()[1:])}); }} """ else: return f""" // {f.namespace}::{f.func} TORCH_API inline {_sig_decl_wrapper(sig)} {{ return at::{sig.name()}({comma.join(e.name for e in sig.arguments())}); }} """ else: return static_dispatch( sig, f, backend_indices=self.static_dispatch_backend_indices, ) # Generates RegisterCodegenUnboxedKernels.cpp. @dataclass(frozen=True) class ComputeCodegenUnboxedKernels: selector: SelectiveBuilder use_aten_lib: bool add_exception_boundary: bool @method_with_nested_native_function def __call__( self, unbox_kernel_entry: tuple[NativeFunction, tuple[ETKernelKey, BackendMetadata]], ) -> str: f: NativeFunction = unbox_kernel_entry[0] kernel_key: ETKernelKey | list[ETKernelKey] = unbox_kernel_entry[1][0] kernel_meta: BackendMetadata = unbox_kernel_entry[1][1] op_name = f"{f.namespace}::{f.func.name}" if not self.selector.is_root_operator(op_name): return "" if not isinstance(kernel_key, list): kernel_key = [kernel_key] used_kernel_keys = self.selector.et_get_selected_kernels( op_name, [k.to_native_string() for k in kernel_key] ) if not used_kernel_keys: return "" sig: CppSignature | ExecutorchCppSignature argument_type_gen: Callable[..., NamedCType] return_type_gen: Callable[..., CType] if self.use_aten_lib: sig = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=f.manual_cpp_binding ).most_faithful_signature() argument_type_gen = aten_cpp.argumenttype_type return_type_gen = aten_cpp.returns_type arguments = sig.arguments() kernel_call = f"torch::executor::{f.namespace}::{sig.name()}" else: sig = ExecutorchCppSignature.from_native_function(f) argument_type_gen = et_cpp.argumenttype_type return_type_gen = et_cpp.returns_type arguments = sig.arguments(include_context=False) kernel_call = f"{kernel_meta.cpp_namespace}::{kernel_meta.kernel}" # parse arguments into C++ code binding_list, code_list = Unboxing( argument_type_gen=argument_type_gen ).convert_arguments(arguments) # for each C++ argument, generate the conversion code code_connector = "\n\t" arg_connector = ", " args_str = f"{arg_connector.join(e.name for e in binding_list)}" event_tracer_output_logging = "" output_ids = [] if len(f.func.returns) == 0: if len(f.func.arguments.out) == 0: raise Exception( # noqa: TRY002 f"Can't handle native function {f.func} with no returns and no out yet." ) out = f.func.arguments.out[0] return_assignment = f"""stack[{len(binding_list)}] = &{out.name};""" ret_prefix = "" output_ids = [len(binding_list)] else: if len(f.func.arguments.out) == 0: return_assignment = ( f"""*stack[{len(binding_list)}] = EValue(result_);""" ) ret_prefix = return_type_gen(f.func.returns).cpp_type() + " result_ = " output_ids = [len(binding_list)] else: return_assignment = "" ret_prefix = "" output_ids = [ len(binding_list) - (i + 1) for i in reversed(range(len(f.func.arguments.out))) ] for output_id in output_ids: event_tracer_output_logging += ( f"internal::event_tracer_log_evalue(" f"context.internal_event_tracer(), " f"*stack[{output_id}]);\n" ) exception_boundary_begin = "" exception_boundary_end = "" if self.add_exception_boundary: indent = " " * 8 exception_boundary_begin = indent + "try {" exception_boundary_end = f"""{indent}}} catch (const std::exception& ex) {{ {indent} ET_LOG(Error, "Kernel threw an exception: %s", ex.what()); {indent} context.fail(torch::executor::Error::Internal); {indent}}}""" newline = "\n " return "\n".join( [ f""" Kernel( "{f.namespace}::{f.func.name}",{newline + '"' + (k + '",') if k != "default" else ""} []({contextArg.defn()}, EValue** stack) {{ {code_connector.join(code_list)} {exception_boundary_begin} internal::EventTracerProfileOpScope event_tracer_op_scope(context.internal_event_tracer(), "native_call_{f.func.name}"); EXECUTORCH_SCOPE_PROF("native_call_{f.func.name}"); {ret_prefix}{kernel_call}(context, {args_str}); {event_tracer_output_logging} {return_assignment} {exception_boundary_end} }} ), """ for k in used_kernel_keys ] ) def gen_unboxing( *, native_functions: Sequence[NativeFunction], cpu_fm: FileManager, selector: SelectiveBuilder, use_aten_lib: bool, kernel_index: ETKernelIndex, manual_registration: bool, add_exception_boundary: bool = False, ) -> None: # Iterable type for write_sharded is a Tuple of (native_function, (kernel_key, metadata)) def key_func( item: tuple[NativeFunction, tuple[ETKernelKey, BackendMetadata]], ) -> str: return item[0].root_name + ":" + item[1][0].to_native_string() items: list[tuple[NativeFunction, tuple[ETKernelKey, BackendMetadata]]] = [ (native_function, (kernel_key, metadata)) for native_function in native_functions for kernel_key, metadata in kernel_index.get_kernels(native_function).items() ] header = ["Functions.h" if use_aten_lib else "NativeFunctions.h"] filename = ( "RegisterKernels.cpp" if manual_registration else "RegisterCodegenUnboxedKernels.cpp" ) cpu_fm.write_sharded( filename, items, key_fn=key_func, env_callable=lambda unbox_kernel_entry: { "unboxed_kernels": [ ComputeCodegenUnboxedKernels( selector, use_aten_lib, add_exception_boundary )(unbox_kernel_entry) ], "fn_header": header if unbox_kernel_entry == items[0] else [], # Only write header once }, num_shards=1, sharded_keys={"unboxed_kernels", "fn_header"}, ) @with_native_function_and_index # type: ignore[arg-type] def compute_native_function_declaration( g: NativeFunctionsGroup | NativeFunction, kernel_index: ETKernelIndex ) -> list[str]: assert isinstance(g, NativeFunction) sig = ExecutorchCppSignature.from_native_function(f=g) metadata_list = kernel_index.get_kernels(g).values() if metadata_list is None: return [] # for kernels in lean mode, we declare two versions, one with context and one without. # In the end we will cleanup the unused one. def gen_decl(metadata: BackendMetadata, include_context: bool) -> str: return f"{sig.decl(name=metadata.kernel, include_context=include_context)};" return [ gen_decl(metadata, include_context) for include_context in [False, True] for metadata in metadata_list ] def gen_functions_declarations( *, native_functions: Sequence[NativeFunction], kernel_index: ETKernelIndex, selector: SelectiveBuilder, use_aten_lib: bool, custom_ops_native_functions: Sequence[NativeFunction] | None = None, ) -> str: """ Generates namespace separated C++ function API inline declaration/definitions. Native functions are grouped by namespaces and the generated code is wrapped inside namespace blocks. E.g., for `custom_1::foo.out` in yaml file we will generate a C++ API as a symbol in `torch::executor::custom_1::foo_out`. This way we avoid symbol conflict when the other `custom_2::foo.out` is available. """ # convert kernel index to BackendIndex. This is because we can't handle ETKernelIndex yet. # TODO larryliu: evaluate if this code is still needed. If yes let it handle ETKernelIndex. backend_index = kernel_index._to_backend_index() ns_grouped_functions = defaultdict(list) for native_function in native_functions: ns_grouped_functions[native_function.namespace].append(native_function) functions_declarations = "" newline = "\n" for namespace in ns_grouped_functions: ns_helper = NamespaceHelper( namespace_str=namespace, entity_name="", max_level=3, ) declarations = list( mapMaybe( ComputeFunction( static_dispatch_backend_indices=[backend_index], selector=selector, use_aten_lib=use_aten_lib, is_custom_op=lambda f: custom_ops_native_functions is not None and f in custom_ops_native_functions, ), ns_grouped_functions[namespace], ) ) functions_declarations += f""" {ns_helper.prologue} {newline.join(declarations)} {ns_helper.epilogue} """ return functions_declarations def get_ns_grouped_kernels( *, native_functions: Sequence[NativeFunction], kernel_index: ETKernelIndex, native_function_decl_gen: Callable[ [ NativeFunctionsGroup | NativeFunction, ETKernelIndex, ], list[str], ], ) -> dict[str, list[str]]: ns_grouped_kernels: dict[str, list[str]] = defaultdict(list) for f in native_functions: native_function_namespaces = set() op_kernels = kernel_index.get_kernels(f) for backend_metadata in op_kernels.values(): if backend_metadata: namespace = backend_metadata.cpp_namespace native_function_namespaces.add(namespace) else: namespace = DEFAULT_KERNEL_NAMESPACE assert len(native_function_namespaces) <= 1, ( f"Codegen only supports one namespace per operator, got {native_function_namespaces}" ) ns_grouped_kernels[namespace].extend( native_function_decl_gen(f, kernel_index) ) return ns_grouped_kernels def gen_headers( *, native_functions: Sequence[NativeFunction], gen_custom_ops_header: bool, custom_ops_native_functions: Sequence[NativeFunction], selector: SelectiveBuilder, kernel_index: ETKernelIndex, cpu_fm: FileManager, use_aten_lib: bool, ) -> None: """Generate headers. Args: native_functions (Sequence[NativeFunction]): a collection of NativeFunction for ATen ops. gen_custom_ops_header (bool): whether we should generate CustomOpsNativeFunctions.h custom_ops_native_functions (Sequence[NativeFunction]): a collection of NativeFunction for custom ops. kernel_index (ETKernelIndex): kernel collection cpu_fm (FileManager): file manager manages output stream use_aten_lib (bool): whether we are generating for PyTorch types or Executorch types. """ aten_headers = ["#include <ATen/Functions.h>"] backend_indices = {DispatchKey.CPU: kernel_index._to_backend_index()} if gen_custom_ops_header: cpu_fm.write_with_template( "CustomOpsNativeFunctions.h", "NativeFunctions.h", lambda: { "nativeFunctions_declarations": get_native_function_declarations( grouped_native_functions=custom_ops_native_functions, backend_indices=backend_indices, native_function_decl_gen=dest.compute_native_function_declaration, ), "headers": [ "#include <ATen/ATen.h>", "#include <torch/torch.h>", ], }, ) aten_headers.append('#include "CustomOpsNativeFunctions.h"') cpu_fm.write( "Functions.h", lambda: { "static_dispatch_extra_headers": aten_headers if use_aten_lib else ['#include "NativeFunctions.h"'], "Functions_declarations": gen_functions_declarations( native_functions=native_functions, kernel_index=kernel_index, selector=selector, use_aten_lib=use_aten_lib, custom_ops_native_functions=custom_ops_native_functions, ), }, ) cpu_fm.write( "RegisterKernels.h", lambda: { "generated_comment": "@" + "generated by torchgen/gen_executorch.py", }, ) headers = { "headers": [ "#include <executorch/runtime/core/exec_aten/exec_aten.h> // at::Tensor etc.", "#include <executorch/runtime/kernel/kernel_runtime_context.h>", ], } if use_aten_lib: headers["headers"].append("#include <executorch/codegen/macros.h> // TORCH_API") cpu_fm.write( "NativeFunctions.h", lambda: dict( { "nativeFunctions_declarations": get_native_function_declarations( grouped_native_functions=native_functions, backend_indices=backend_indices, native_function_decl_gen=dest.compute_native_function_declaration, ), }, **headers, ), ) else: ns_grouped_kernels = get_ns_grouped_kernels( native_functions=native_functions, kernel_index=kernel_index, native_function_decl_gen=compute_native_function_declaration, # type: ignore[arg-type] ) cpu_fm.write( "NativeFunctions.h", lambda: dict( { "nativeFunctions_declarations": get_native_function_declarations_from_ns_grouped_kernels( ns_grouped_kernels=ns_grouped_kernels, ), }, **headers, ), ) def gen_custom_ops( *, native_functions: Sequence[NativeFunction], selector: SelectiveBuilder, kernel_index: ETKernelIndex, cpu_fm: FileManager, rocm: bool, ) -> None: dispatch_key = DispatchKey.CPU ( anonymous_definition, static_init_dispatch_registrations, ) = gen_custom_ops_registration( native_functions=native_functions, selector=selector, kernel_index=kernel_index, rocm=rocm, ) cpu_fm.write_with_template( f"Register{dispatch_key}CustomOps.cpp", "RegisterDispatchKeyCustomOps.cpp", lambda: { "ops_headers": '#include "CustomOpsNativeFunctions.h"', "DispatchKey": dispatch_key, "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": "", "dispatch_anonymous_definitions": anonymous_definition, "static_init_dispatch_registrations": static_init_dispatch_registrations, }, ) cpu_fm.write_with_template( f"Register{dispatch_key}Stub.cpp", "RegisterDispatchKeyCustomOps.cpp", lambda: { "ops_headers": "", "DispatchKey": dispatch_key, "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": "", "dispatch_anonymous_definitions": list( mapMaybe(ComputeNativeFunctionStub(), native_functions) ), "static_init_dispatch_registrations": static_init_dispatch_registrations, }, ) ( aten_schema_registrations, schema_registrations, ) = get_native_function_schema_registrations( native_functions=native_functions, schema_selector=selector, ) cpu_fm.write( "RegisterSchema.cpp", lambda: { "schema_registrations": schema_registrations, "aten_schema_registrations": aten_schema_registrations, }, ) def translate_native_yaml( tags_yaml_path: str, aten_yaml_path: str, native_yaml_path: str | None, use_aten_lib: bool, out_file: TextIO, ) -> None: """Translates Executorch DSL dialect to use the same syntax as native_functions.yaml. The major difference is that Executorch DSL dialect supports "op" key, where it refers to the operator name in native_functions.yaml. For example, a functions.yaml may have the following entry: - op: add.out ... It needs to be translated to the following: - func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) ... We go in aten_yaml_path and find the operator schema for "add.out" and add it to the original functions.yaml. We also add required field "variants", where for Executorch it will always be "function". For ATen mode we don't have to do the translation because native_yaml_path is the same as native_functions.yaml. Args: tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing. It is not optional. aten_yaml_path: Path to ATen operator yaml file native_functions.yaml. native_yaml_path: Path to a functions.yaml file to parse. If the path does not exist in the filesystem, it is treated as an empty file. If `custom_ops_yaml_path` exists, the contents of that file are appended to the yaml input to be parsed. use_aten_lib: We use this flag to determine if we want to generate native functions. In ATen mode we should generate out= variants. out_file: The IO object that we are writing into. Returns: None """ if use_aten_lib: with open(aten_yaml_path) as aten_yaml: out_file.writelines(aten_yaml.readlines()) return native_functions, persisted_fields = parse_et_yaml( aten_yaml_path, tags_yaml_path, None, skip_native_fns_gen=False, ) func_to_scoped_name: dict[FunctionSchema, str] = { f.func: f"{f.namespace}::{f.func.name}" for f in native_functions } op_to_scoped_name: dict[OperatorName, str] = { func.name: name for func, name in func_to_scoped_name.items() } schema_dict = {name: str(func) for func, name in func_to_scoped_name.items()} kernel_persist_dict: dict[str, dict[str, Any]] = { op_to_scoped_name[op]: v for op, v in persisted_fields.items() } if ( not native_yaml_path or not os.path.exists(native_yaml_path) or os.stat(native_yaml_path).st_size == 0 ): return with open(native_yaml_path) as native_yaml: native_es = yaml.load(native_yaml, Loader=LineLoader) if not native_es: return for e in native_es: assert isinstance(e.get("__line__"), int), e loc = Location(native_yaml_path, e.pop("__line__")) with context(lambda: f"in {loc}:\n "): if "variants" not in e: e["variants"] = "function" if "func" in e: continue assert isinstance(e.get("op"), str), e opname = e.pop("op") if "::" not in opname: opname = "aten::" + opname assert opname in schema_dict e["func"] = schema_dict.get(opname) # Write out persisted kernel information if opname in kernel_persist_dict: for k, v in kernel_persist_dict[opname].items(): e[k] = v yaml.dump(native_es, out_file, width=1000) def parse_yaml( path: str | None, tags_yaml_path: str, function_filter: Callable[[NativeFunction], bool], skip_native_fns_gen: bool = False, ) -> tuple[ list[NativeFunction], dict[DispatchKey, dict[OperatorName, BackendMetadata]] | ETKernelIndex, ]: if path and os.path.exists(path) and os.stat(path).st_size > 0: with open(path) as f: es = yaml.load(f, Loader=LineLoader) # Check for kernel index structure kernel_index = ( parse_et_yaml_struct(es) if any("kernels" in e for e in es) else None ) # Remove ET specific fields from entries for BC compatibility for entry in es: for field in ET_FIELDS: entry.pop(field, None) parsed_yaml = parse_native_yaml( path, tags_yaml_path, None, skip_native_fns_gen=skip_native_fns_gen, loaded_yaml=es, ) native_functions = list(filter(function_filter, parsed_yaml.native_functions)) op_names = [f.func.name for f in native_functions] # (1) Return ETKernelIndex if kernel index is present if kernel_index is not None: filtered_index = { op_name: kernel_mapping for op_name, kernel_mapping in kernel_index.index.items() if op_name in op_names } return native_functions, ETKernelIndex(index=filtered_index) # (2) Return BackendIndices if kernel index is absent def map_index( m: dict[OperatorName, BackendMetadata], ) -> dict[OperatorName, BackendMetadata]: return {op: m[op] for op in m if op in op_names} backend_indices = { k: map_index(b.index) for (k, b) in parsed_yaml.backend_indices.items() } return native_functions, backend_indices else: return [], {} def parse_yaml_files( tags_yaml_path: str, aten_yaml_path: str, native_yaml_path: str | None, custom_ops_yaml_path: str | None, selector: SelectiveBuilder, use_aten_lib: bool, ) -> tuple[ETParsedYaml, ETParsedYaml | None]: """Parses functions.yaml and custom_ops.yaml files. Args: tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing. It is not optional. aten_yaml_path: Path to ATen operator yaml file native_functions.yaml. native_yaml_path: Path to a functions.yaml file to parse. If the path does not exist in the filesystem, it is treated as an empty file. If `custom_ops_yaml_path` exists, the contents of that file are appended to the yaml input to be parsed. custom_ops_yaml_path: Path to a custom_ops.yaml file to parse. If the path does not exist in the filesystem, it is ignored. selector: For selective build. use_aten_lib: We use this flag to determine if we want to generate native functions. In ATen mode we should generate out= variants. Returns: A tuple with two elements: [0]: The parsed results of concatenating the contents of `native_yaml_path` and `custom_ops_yaml_path`. [1]: The parsed results of the contents of `custom_ops_yaml_path`, if present. If not present, None. """ import tempfile # only include selected ops, this is because we want to avoid def function_filter(f: NativeFunction) -> bool: return selector.is_native_function_selected(f) with tempfile.TemporaryDirectory() as tmpdirname: translated_yaml_path = os.path.join(tmpdirname, "translated.yaml") with open(translated_yaml_path, "w") as translated: translate_native_yaml( tags_yaml_path, aten_yaml_path, native_yaml_path, use_aten_lib, translated, ) translated_functions, translated_indices = parse_yaml( translated_yaml_path, tags_yaml_path, function_filter, not use_aten_lib ) custom_ops_functions, custom_ops_indices = parse_yaml( custom_ops_yaml_path, tags_yaml_path, function_filter, True ) # Convert BackendIndices to ETKernelIndex if not isinstance(translated_indices, ETKernelIndex): translated_indices = ETKernelIndex.from_backend_indices(translated_indices) if not isinstance(custom_ops_indices, ETKernelIndex): custom_ops_indices = ETKernelIndex.from_backend_indices(custom_ops_indices) combined_functions = translated_functions + custom_ops_functions combined_kernel_index = ETKernelIndex.merge_indices( translated_indices, custom_ops_indices ) combined_yaml = ETParsedYaml(combined_functions, combined_kernel_index) custom_ops_parsed_yaml = ETParsedYaml(custom_ops_functions, custom_ops_indices) return combined_yaml, custom_ops_parsed_yaml def main() -> None: parser = argparse.ArgumentParser(description="Generate operator source files") # Although we don't refer to --source-path directly, make_file_manager() # expects it to point to a directory that contains a templates/ subdirectory # containing the file templates. parser.add_argument( "-s", "--source-path", help="path to source directory for kernel templates", ) parser.add_argument( "--functions-yaml-path", "--functions_yaml_path", help="path to the functions.yaml file to use. Optional, but at least " "one of --functions-yaml-path and --custom-ops-yaml-path must be " "specified.", ) parser.add_argument( "--custom-ops-yaml-path", "--custom_ops_yaml_path", help="path to the custom_ops.yaml file to use. Optional, but at least " "one of --functions-yaml-path and --custom-ops-yaml-path must be " "specified.", ) parser.add_argument( "--aten-yaml-path", "--aten_yaml_path", help="path to native_functions.yaml file.", ) # Note that make_file_manager() also looks at --install-dir. parser.add_argument( "-d", "--install-dir", "--install_dir", help="output directory", default="build/generated", ) parser.add_argument( "-o", "--output-dependencies", help="output a list of dependencies into the given file and exit", ) # Although we don't refer to --dry-run directly, make_file_manager() looks # for it. parser.add_argument( "--dry-run", action="store_true", help="run without writing any files (still updates outputs)", ) parser.add_argument( "--static-dispatch-backend", "--static_dispatch_backend", nargs="*", help="generate static dispatch code for the specific backend (if set)", ) parser.add_argument( "--op-registration-whitelist", "--op_registration_whitelist", nargs="*", help="filter op registrations by the whitelist (if set); " "each item is `namespace`::`operator name` without overload name; " "e.g.: aten::empty aten::conv2d ...", ) parser.add_argument( "--op-selection-yaml-path", "--op_selection_yaml_path", help="Provide a path to the operator selection (for custom build) YAML " "that contains the information about the set of selected operators " "and their categories (training, ...). Each operator is either a " "full operator name with overload or just a bare operator name. " "The operator names also contain the namespace prefix (e.g. aten::)", ) parser.add_argument( "--tags-path", help="Path to tags.yaml. Required by yaml parsing in codegen system.", ) parser.add_argument( "--rocm", action="store_true", help="reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly", ) parser.add_argument( "--use-aten-lib", "--use_aten_lib", action="store_true", help="a boolean flag to indicate whether we use ATen kernels or not, in the future this flag will be per " "operator", ) parser.add_argument( "--manual_registration", "--manual-registration", action="store_true", help="a boolean flag to indicate whether we want to manually call" "register_kernels() or rely on static init. ", ) parser.add_argument( "--generate", type=str, nargs="*", choices=["headers", "sources"], default=["headers", "sources"], help="Generate only a subset of files", ) parser.add_argument( "--add-exception-boundary", "--add_exception_boundary", action="store_true", help="whether to add a try/catch in the generated kernel wrapper to " "convert exceptions to clean failures.", ) options = parser.parse_args() assert options.tags_path, "tags.yaml is required by codegen yaml parsing." selector = get_custom_build_selector( options.op_registration_whitelist, options.op_selection_yaml_path, ) parsed_yaml, custom_ops_parsed_yaml = parse_yaml_files( aten_yaml_path=options.aten_yaml_path, tags_yaml_path=options.tags_path, native_yaml_path=options.functions_yaml_path, custom_ops_yaml_path=options.custom_ops_yaml_path, selector=selector, use_aten_lib=options.use_aten_lib, ) native_functions, kernel_index = ( parsed_yaml.native_functions, parsed_yaml.kernel_index, ) custom_ops_native_functions = ( custom_ops_parsed_yaml.native_functions if custom_ops_parsed_yaml else [] ) cpu_fm = make_file_manager(options=options) if "headers" in options.generate: # generate CustomOpsNativeFunctions.h when custom_ops.yaml is present, to match the build system. gen_headers( native_functions=native_functions, gen_custom_ops_header=options.custom_ops_yaml_path, custom_ops_native_functions=custom_ops_native_functions, selector=selector, kernel_index=kernel_index, cpu_fm=cpu_fm, use_aten_lib=options.use_aten_lib, ) if "sources" in options.generate: gen_unboxing( native_functions=native_functions, cpu_fm=cpu_fm, selector=selector, use_aten_lib=options.use_aten_lib, kernel_index=kernel_index, manual_registration=options.manual_registration, add_exception_boundary=options.add_exception_boundary, ) if custom_ops_native_functions: gen_custom_ops( native_functions=custom_ops_native_functions, selector=selector, kernel_index=kernel_index, cpu_fm=cpu_fm, rocm=options.rocm, ) if options.output_dependencies: depfile_path = Path(options.output_dependencies).resolve() depfile_name = depfile_path.name depfile_stem = depfile_path.stem for fm, prefix in [ (cpu_fm, ""), ]: varname = prefix + depfile_stem path = depfile_path.parent / (prefix + depfile_name) fm.write_outputs(varname, str(path)) if __name__ == "__main__": main() ```
============================================================================================================================== SOURCE CODE FILE: gen_functionalization_type.py LINES: 7 SIZE: 38.20 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen_functionalization_type.py ENCODING: utf-8 ```py from __future__ import annotations from dataclasses import dataclass from typing import Callable, TYPE_CHECKING from torchgen.api import cpp, dispatcher from torchgen.api.translate import translate from torchgen.api.types import ( BaseCType, Binding, CType, DispatcherSignature, FunctionalizationLambda, iTensorListRefT, NativeSignature, OptionalCType, optionalSymIntArrayRefT, symIntArrayRefT, SymIntT, tensorListT, tensorT, VectorCType, ViewInverseSignature, ) from torchgen.context import ( method_with_native_function, native_function_manager, with_native_function, with_native_function_and, ) from torchgen.model import ( Argument, BackendIndex, BaseTy, BaseType, FunctionSchema, ListType, NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup, Return, SchemaKind, SelfArgument, TensorOptionsArguments, ) from torchgen.native_function_generation import ( INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY, MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT, OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY, ) from torchgen.utils import dataclass_repr if TYPE_CHECKING: from torchgen.selective_build.selector import SelectiveBuilder # Note: [Mutable Ops Not Using Functionalization] # Ops in this list currently do not work with functionalization and should be fixed. MUTABLE_OPS_NOT_USING_FUNCTIONALIZATION = ( OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY + MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT + INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY + [ # It will be BC-breaking, but we should fix their schemas. # should be inplace? "record_stream", # See Note [resize_ in Functionalization] "resize_", "resize_as_", # This function is used as for testing purposes only. "_fill_mem_eff_dropout_mask_", ] ) # This file contains codegen that relates to the functionalization pass. # It includes: # - gen_functionalization_definition # Generates dispatcher kernel definitions for the functionalization pass. # - gen_functionalization_registration # Generates dispatcher kernel registrations for the functionalization pass. # - gen_functionalization_view_inverse_declaration # Generates a declaration for an "inverse view", for every view op # that is needed in functionalization. We manually implement their definitions. # - gen_composite_view_copy_kernel # Generates view_copy() composite kernels for all view_copy operators. # Generates the body of the default composite C++ kernel for a {view}_copy NativeFunction # See Note [view_copy NativeFunctions] @dataclass(frozen=True) class GenCompositeViewCopyKernel: backend_index: BackendIndex @method_with_native_function def __call__(self, g: NativeFunctionsViewGroup) -> str | None: if g.view_copy is None: return None elif g.view_copy.func.name.name.base != f"{g.view.func.name.name}_copy": # If the view_copy doesn't match the standard naming scheme of <op>_copy, # assume it already exists and doesn't need to be generated. # Example: slice_inverse() with the copy variant named slice_scatter() # instead of slice_inverse_copy() return None metadata = self.backend_index.get_kernel(g.view_copy) assert metadata is not None # We can make view_copy work in more cases by using reshape() # when a normal view call would ordinarily fail. # This also makes LTC more efficient, because they don't need to include # clone() calls in their graph (which is normally needed by reshape). if str(g.view_copy.func.name) == "view_copy": assert metadata.kernel == "view_copy_symint" return """\ at::Tensor view_copy_symint(const at::Tensor & self, at::SymIntArrayRef size) { c10::SymDimVector shape = infer_size_dv(size, self.sym_numel()); if (!at::detail::computeStride(self.sym_sizes(), self.sym_strides(), shape).has_value()) { return self.reshape_symint(size); } else { auto output = at::_ops::view::call(self, size); return output.clone(/*memory_format=*/at::MemoryFormat::Contiguous); } } """ # view_copy is a native signature, since we're generating an at::native:: kernel # Functionalization always operates on symints though view_copy_sig = NativeSignature( g.view_copy.func, symint=metadata.supports_symint() ) # view is a dispatcher signature, since we're calling into the at::_ops API view_sig = DispatcherSignature(g.view.func) view_api_name = g.view.func.name.unambiguous_name() exprs = ", ".join( [e.expr for e in translate(view_copy_sig.arguments(), view_sig.arguments())] ) # view ops today always return either a Tensor or a list of Tensors assert len(g.view.func.returns) == 1 assert g.view.func.returns[0].type == BaseType( BaseTy.Tensor ) or g.view.func.returns[0].type == ListType(BaseType(BaseTy.Tensor), None) if g.view.func.returns[0].type == BaseType(BaseTy.Tensor): return_cloned_output = """\ return output.clone(/*memory_format=*/at::MemoryFormat::Contiguous);""" else: # If the return type is a list, we need to clone each tensor in the list. return_cloned_output = f"""\ {view_copy_sig.returns_type().cpp_type()} out_clone; for (const auto i : c10::irange(output.size())) {{ out_clone.push_back(output[i].clone(/*memory_format=*/at::MemoryFormat::Contiguous)); }} return out_clone;""" # The default generated composite kernel for {view}_copy() operators just clones # the input tensor, and runs the underlying view on the clone. return f""" {view_copy_sig.defn(name=metadata.kernel)} {{ auto output = at::_ops::{view_api_name}::call({exprs}); {return_cloned_output} }} """ def return_str(rets: tuple[Return, ...], names: list[str]) -> str: assert len(rets) == len(names) if len(rets) == 0: return "" elif len(rets) == 1: return f"return {names[0]};" else: return f"return {dispatcher.returns_type(rets).cpp_type()}({', '.join(names)});" def modifies_arguments(f: NativeFunction) -> bool: return any( a.annotation is not None and a.annotation.is_write for a in f.func.arguments.flat_all ) def wrapper_name(func: FunctionSchema) -> str: if func.name.overload_name: return f"{cpp.name(func)}_{func.name.overload_name}" else: return cpp.name(func) def is_tensor_like(a: Argument | TensorOptionsArguments | SelfArgument) -> bool: return isinstance(a, SelfArgument) or ( isinstance(a, Argument) and a.type.is_tensor_like() ) # We need to wrap / unwrap various arguments from the op in the functionalization kernels. # Some op schemas include non-owning types though (like TensorList), # and when we unwrap them we expect to get out an owning type!. # We also return a lambda that tells you how to conver the non-owning type argument into the owning type. def get_owning_type(t: CType) -> tuple[CType, Callable[[str], str]]: if t == BaseCType(tensorListT): return VectorCType(BaseCType(tensorT)), lambda x: f"{x}.vec()" if t == BaseCType(iTensorListRefT): return VectorCType(BaseCType(tensorT)), lambda x: f"{{{x}.begin(), {x}.end()}}" # There are technically other non-owning types out there (like IntArrayRef), # but functionalization only actually cares about the ones involving tensors. return t, lambda x: x # unwraps all tensor-like arguments, returning: # (1) a string containing all of the logic that does the unwrapping # (2) a context, to be used by translate(), with all of the relevant bindings. def unwrap_tensor_args( sig: DispatcherSignature, *, is_view_op: bool ) -> tuple[str, list[Binding]]: context: list[Binding] = [] unwrapped_tensor_args: list[str] = [] for arg in sig.arguments(): if is_tensor_like(arg.argument): # for tensor inputs, we want to unwrap them before passing them into the redispatch calls. unwrapped_name = f"{arg.name}_" # For most ops, the functionalization needs to sync any pending updates on the input tensors # before calling the operator, since otherwise the operator will act on stale data. # For view ops though, we can continue to defer syncing until the tensor is used by # a non-view operator. maybe_sync_input = ( "" if is_view_op else f"at::functionalization::impl::sync({arg.name});" ) unwrapped_type, conversion_fn = get_owning_type( arg.nctype.remove_const_ref().type ) unwrapped_tensor_args.append( f""" {unwrapped_type.cpp_type()} {unwrapped_name}; if (at::functionalization::impl::isFunctionalTensor({arg.name})) {{ {maybe_sync_input} {unwrapped_name} = at::functionalization::impl::from_functional_tensor({arg.name}); }} else {{ {unwrapped_name} = {conversion_fn(arg.name)}; }}""" ) context.append(arg.with_name(unwrapped_name)) else: # for non-tensor inputs, we want to pass them directly into the redispatch calls. context.append(arg) unwrap_tensor_args_str = "\n ".join(unwrapped_tensor_args) return unwrap_tensor_args_str, context # converts all tensor-like arguments to meta tensors, which are used to compute stride info. Returns: # (1) a string containing all of the logic that does the conversions. # (2) a context, to be used by translate(), with all of the relevant bindings. def convert_to_meta_tensors(sig: DispatcherSignature) -> tuple[str, list[Binding]]: context: list[Binding] = [] unwrapped_tensor_args: list[str] = [] for arg in sig.arguments(): if is_tensor_like(arg.argument): # for tensor inputs, we want to unwrap them before passing them into the redispatch calls. a_ = arg.name unwrapped_name = f"{arg.name}_meta" unwrapped_tensor_args.append(f"auto {unwrapped_name} = to_meta({a_});") context.append(arg.with_name(unwrapped_name)) else: # for non-tensor inputs, we want to pass them directly into the redispatch calls. context.append(arg) unwrap_tensor_args_str = "\n ".join(unwrapped_tensor_args) return unwrap_tensor_args_str, context # The functionalization codegen currently expects view op schemas to have this form: # foo(Tensor(a), ...) -> Tensor(a) (e.g. transpose) # foo(Tensor(a!), ...) -> Tensor(a!) (e.g. transpose_) def assert_view_op_properties(func: FunctionSchema) -> None: def is_alias(a: Argument) -> bool: return a.annotation is not None args = func.arguments.flat_non_out # The first argument is a tensor with an alias semantics (annotations) assert ( len(args) > 0 and args[0].type == BaseType(BaseTy.Tensor) ), f"""In the functionalization codegen, we expect the first argument of every view operator to be a tensor, but found an argument of type {str(args[0].type)} for operator: {str(func.name)}.""" # No other arguments have aliasing semantics assert ( is_alias(args[0]) and not any(is_alias(a) for a in args[1:]) ), """In the functionalization codegen, we expect the first argument of every view operator to alias the output. View operators with multiple aliasing inputs aren't supported yet. Found an operator that doesn't satisfy this constraint""" # One-liner expression for checking if an expression expr of type type has any # symbolic values. def emit_expr_has_symbolic_values(expr: str, type: CType) -> str: if type == BaseCType(SymIntT): return f"{expr}.is_symbolic()" if isinstance(type, OptionalCType): innerexpr = f"(*{expr})" return f"{expr}.has_value() ? {emit_expr_has_symbolic_values(innerexpr, type.elem)} : false" if type == BaseCType(optionalSymIntArrayRefT): return emit_expr_has_symbolic_values( expr, OptionalCType(BaseCType(symIntArrayRefT)) ) if type in (BaseCType(symIntArrayRefT), VectorCType(BaseCType(SymIntT))): argname = "arg" lambda_check = emit_expr_has_symbolic_values(argname, BaseCType(SymIntT)) return ( "std::any_of(" f"{expr}.begin(), {expr}.end(), " f"[=](auto& {argname}) {{ return {lambda_check}; }})" ) raise ValueError( "unsupported type for has_symbolic_values check. " "It should be a SymInt or a collection of those. " f"Got: {type.cpp_type()}" ) # Detects whether any of the SymInt arguments are, in fact, symbolic values. # This is used in the constructor of ViewMeta. def emit_has_symbolic_inputs(sig: DispatcherSignature) -> tuple[str, str]: name = "has_symbolic_inputs" statements = [ f"{name} = {name} | ({emit_expr_has_symbolic_values(binding.name, binding.nctype.type)});" for binding in sig.arguments() if ( isinstance(binding.argument, Argument) and binding.argument.type.is_symint_like() ) ] body = "\n ".join(statements) return ( name, f""" bool {name} = false; {body}""", ) # Generates the Functionalization kernel for: # - ops that create aliases (e.g. transpose()) # - ops that are views AND mutations (e.g. transpose_()) def emit_view_functionalization_body( g: NativeFunctionsViewGroup, *, view_inplace: bool ) -> str: if view_inplace: # This op is both an inplace op AND a view op. # See Note [Functionalization Pass - Inplace View Ops] for details. # I currently have the view meta call into the out-of-place variant of the view, to avoid # having to define an extra ~20 inplace {view}_inverse_ functions. # Most view ops don't have NativeFunctionGroup's both, because we don't define out= variants for view ops. # I'm assuming that every inplace-view op has a corresponding out-of-place view op, # with the same name but the trailing underscore removed. # This is currently asserted at parse time in gen.py (see error_check_native_functions). assert g.view_inplace is not None f = g.view_inplace else: f = g.view assert g.view_copy is not None with native_function_manager(f): call_sig = DispatcherSignature.from_schema(g.view_copy.func) # the "view_copy" op name that the functionalization kernels need to call api_name = g.view_copy.func.name.unambiguous_name() # Sometimes the functionalization pass needs to no-op (e.g. if it was passed non-functional tensors) # "no-op"ing in this context is just redispatching to the original op. noop_api_name = f.func.name.unambiguous_name() dispatcher_sig = DispatcherSignature.from_schema(f.func) assert_view_op_properties(f.func) view_tensor_name = dispatcher_sig.arguments()[0].name return_type = dispatcher_sig.returns_type().remove_const_ref().cpp_type() unwrap_tensor_args_str, unwrapped_args_ctx = unwrap_tensor_args( dispatcher_sig, is_view_op=True ) view_redispatch_args = [ e.expr for e in translate(unwrapped_args_ctx, call_sig.arguments(), method=False) ] forward_lambda = FunctionalizationLambda.from_func(g, is_reverse=False) reverse_lambda = FunctionalizationLambda.from_func(g, is_reverse=True) # The meta API call should use the same arguments, but convert all tensors to meta tensors first. meta_conversion_str, meta_call_ctx = convert_to_meta_tensors(dispatcher_sig) meta_call_args = [ e.expr for e in translate(meta_call_ctx, call_sig.arguments(), method=False) ] ( symbolic_inputs_varname, symbolic_inputs_check, ) = emit_has_symbolic_inputs(call_sig) if "inplace_view" in f.tags: # See Note [Functionalization Pass - Inplace View Ops] for more details return f""" {dispatcher_sig.defn(name=wrapper_name(f.func), is_redispatching_fn=True)} {{ if (!at::functionalization::impl::isFunctionalTensor({view_tensor_name})) {{ // functionalization is re-entrant, but will no-op if it wasn't passed a FunctionalTensorWrapper. {unwrap_tensor_args_str} at::AutoDispatchSkipFunctionalize guard; return at::_ops::{noop_api_name}::call({", ".join(view_redispatch_args)}); }} auto reapply_views = at::functionalization::impl::getFunctionalizationReapplyViewsTLS(); auto inverse_return_mode = ( reapply_views ? at::functionalization::InverseReturnMode::ViewOrScatterInverse : at::functionalization::InverseReturnMode::NeverView ); {symbolic_inputs_check} at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta( {forward_lambda.decl()} {{ if (reapply_views) {{ return {forward_lambda.inner_call(reapply_views=True)} }} else {{ return {forward_lambda.inner_call(reapply_views=False)} }} }}, {reverse_lambda.decl()} {{ return {reverse_lambda.inner_call()} }}, /*has_symbolic_inputs=*/{symbolic_inputs_varname} ); auto compute_reference_meta = {view_tensor_name}.key_set().has_backend(c10::BackendComponent::XLABit) || {view_tensor_name}.key_set().has_backend(c10::BackendComponent::LazyBit); {return_type} reference_tensor_output; if (compute_reference_meta && !disable_meta_reference()) {{ {meta_conversion_str} at::AutoDispatchSkipFunctionalize func_guard; c10::impl::ExcludeDispatchKeyGuard guard(exclude_keys_for_meta_dispatch); reference_tensor_output = at::_ops::{noop_api_name}::call({", ".join(meta_call_args)}); }} // This function adds the above view meta to the current tensor and replays them off the base, // mutating the size/stride info of the current FunctionalTensorWrapper. // Because of this, we need to make sure to run the reference shape function above, // BEFORE doing this (otherwise we'll end up runnin the reference function using the wrong sizes/strides) at::functionalization::impl::mutate_view_meta({view_tensor_name}, view_meta); // See Note [Propagating strides in the functionalization pass] // XLA/LTC don't implement the logic to propagate strides correctly, so we need to rely // on a reference implementation here (instead of relying on the output from the forward lambda // having the correct stride info) if (compute_reference_meta && !disable_meta_reference()) {{ at::functionalization::impl::set_sizes_strides_offset({view_tensor_name}, reference_tensor_output); }} return {view_tensor_name}; }} """ else: is_multi_output_view = isinstance(f.func.returns[0].type, ListType) return f""" {dispatcher_sig.defn(name=wrapper_name(f.func), is_redispatching_fn=True)} {{ {unwrap_tensor_args_str} if (!at::functionalization::impl::isFunctionalTensor({view_tensor_name})) {{ // functionalization is re-entrant, but will no-op if it wasn't passed a FunctionalTensorWrapper. at::AutoDispatchSkipFunctionalize guard; return at::_ops::{noop_api_name}::call({", ".join(view_redispatch_args)}); }} auto reapply_views = at::functionalization::impl::getFunctionalizationReapplyViewsTLS(); auto inverse_return_mode = ( reapply_views ? at::functionalization::InverseReturnMode::ViewOrScatterInverse : at::functionalization::InverseReturnMode::NeverView ); auto compute_reference_meta = {view_tensor_name}.key_set().has_backend(c10::BackendComponent::XLABit) || {view_tensor_name}.key_set().has_backend(c10::BackendComponent::LazyBit); {return_type} reference_tensor_output; if (compute_reference_meta && !disable_meta_reference()) {{ {meta_conversion_str} at::AutoDispatchSkipFunctionalize func_guard; c10::impl::ExcludeDispatchKeyGuard guard(exclude_keys_for_meta_dispatch); reference_tensor_output = at::_ops::{noop_api_name}::call({", ".join(meta_call_args)}); }} {return_type} tmp_output; {{ at::AutoDispatchSkipFunctionalize guard; if (reapply_views) {{ tmp_output = at::_ops::{noop_api_name}::call({", ".join(view_redispatch_args)}); }} else {{ tmp_output = at::_ops::{api_name}::call({", ".join(view_redispatch_args)}); }} }} {symbolic_inputs_check} at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta( {forward_lambda.decl()} {{ if (reapply_views) {{ return {forward_lambda.inner_call(reapply_views=True)} }} else {{ return {forward_lambda.inner_call(reapply_views=False)} }} }}, {reverse_lambda.decl()} {{ return {reverse_lambda.inner_call()} }}, /*has_symbolic_inputs=*/{symbolic_inputs_varname}, /*is_multi_output=*/{str(is_multi_output_view).lower()}, /*is_as_strided=*/{str(str(f.func.name) == "as_strided").lower()} ); auto out = at::functionalization::impl::create_functional_tensor_with_view_meta(tmp_output, {view_tensor_name}, view_meta); // See Note [Propagating strides in the functionalization pass] if (compute_reference_meta && !disable_meta_reference()) {{ at::functionalization::impl::set_sizes_strides_offset(out, reference_tensor_output); }} return out; }} """ def maybe_create_output(f: NativeFunction, var_name: str) -> str: if len(f.func.returns) == 0: return "" return_type = dispatcher.returns_type(f.func.returns).remove_const_ref().cpp_type() return f"{return_type} {var_name} = " # Given a NativeFunction, and a variable name corresponding to the output of redispatching on the function, # this returns two lists of names, consisting of: # - the names of returns corresponding to the original (mutable) inputs of the outer function # - the names of returns corresponding to the (immutable) outputs of the inner redispatched function def get_mutable_redispatch_return_names( f: NativeFunction, inner_return_var: str ) -> tuple[list[str], list[str]]: aliased_returns = [] non_aliased_returns = [] for i, name in enumerate(f.func.aliased_return_names()): if name is not None: aliased_returns.append(name) else: non_aliased_returns.append( inner_return_var if len(f.func.returns) == 1 else f"std::get<{i}>({inner_return_var})" ) return aliased_returns, non_aliased_returns # When functionalization "no-op's" and redispatches on a mutable operator, we need to take care so that: # - For fresh outputs, we return the result of the redispatch (without wrapping outputs) # - For outputs that were aliased to inputs, we return the inputs directly (since some of them might have been wrapped) def return_from_mutable_noop_redispatch( f: NativeFunction, inner_return_var: str ) -> str: aliased, non_aliased = get_mutable_redispatch_return_names(f, inner_return_var) # Just get all of the return names, and immediately return them return return_str(f.func.returns, aliased + non_aliased) def wrap_propagate_mutations_and_return( f: NativeFunction, functional_op: NativeFunction, inner_return_var: str ) -> str: mutable_arg_names = f.func.arguments.mutable_arg_names() ( aliased_outer_rets, non_aliased_outer_rets, ) = get_mutable_redispatch_return_names(f, inner_return_var) _, non_aliased_inner_rets = get_mutable_redispatch_return_names( functional_op, inner_return_var ) # The outer function may have a mix of aliased and non-aliased outputs, # But the inner functional op that we're transforming to should only have non-aliased outputs assert len(mutable_arg_names) + len(non_aliased_outer_rets) == len( non_aliased_inner_rets ) # First, take all of the newly created outputs from the inner call and wrap them into functional tensors updates = [] non_aliased_wrapped_ret_names = [] for i, inner_ret in enumerate( non_aliased_inner_rets[: len(non_aliased_outer_rets)] ): ret_name = f"output_{i}" updates.append( f"""\ auto output_{i} = at::functionalization::impl::to_functional_tensor({inner_ret});""" ) non_aliased_wrapped_ret_names.append(ret_name) # Next, take all of the mutated outputs from the inner call corresponding to mutated inputs, # and propagate the mutations for outer_arg, inner_ret in zip( mutable_arg_names, non_aliased_inner_rets[len(non_aliased_outer_rets) :] ): updates.append( f"""\ auto {outer_arg}_inner = at::functionalization::impl::from_functional_tensor({outer_arg}); at::functionalization::impl::replace_({outer_arg}, {inner_ret}); at::functionalization::impl::commit_update({outer_arg}); at::functionalization::impl::sync({outer_arg}); auto {outer_arg}_inner_updated = at::functionalization::impl::from_functional_tensor({outer_arg}); at::functionalization::impl::propagate_xla_data_direct({outer_arg}_inner, {outer_arg}_inner_updated);""" ) # Finally, we return: # - Any mutable arguments that also returns # - Any immutable returns that were created wrapping the output from the inner call returns_str = return_str( f.func.returns, aliased_outer_rets + non_aliased_wrapped_ret_names ) updates_str = "\n".join(updates) return f"""\ {updates_str} {returns_str}""" # Generates the Functionalization kernel for: # - mutation ops (inplace and out= ops) @with_native_function_and def emit_inplace_functionalization_body( f: NativeFunction, g: NativeFunctionsGroup ) -> str: # mutation case assert modifies_arguments(f) dispatcher_sig = DispatcherSignature.from_schema(f.func) unwrap_tensor_args_str, unwrapped_args_ctx = unwrap_tensor_args( dispatcher_sig, is_view_op=False ) mutated_names = [ a.name for a in f.func.arguments.flat_all if a.type.is_tensor_like() and a.annotation is not None ] non_mutated_names = [ a.name for a in f.func.arguments.flat_all if a.type.is_tensor_like() and a.annotation is None ] non_mutated_tensor_names = [ a.name for a in f.func.arguments.flat_all if a.type == BaseType(BaseTy.Tensor) and a.annotation is None ] # all mutable inputs must be functional tensors in order to participate in functionalization check_all_mutated_args_are_functional = " && ".join( ["true"] + [ f"at::functionalization::impl::isFunctionalTensor({a})" for a in mutated_names ] ) check_any_non_mutated_args_are_functional = " || ".join( ["false"] + [ f"at::functionalization::impl::isFunctionalTensor({a})" for a in non_mutated_names ] ) check_any_non_mutated_tensors_are_xla = " || ".join( ["false"] + [ f"{a}.device().type() == c10::DeviceType::XLA" for a in non_mutated_tensor_names ] ) # These are used in the cases where we don't functionalize and redispatch to the inplace op # case 1: we hit an inplace op that doesn't have an out-of-place equivalent # case 2: we hit an inplace ops but our inputs are not functional tensors (in which case our kernel just no-ops) inplace_exprs = [ e.expr for e in translate(unwrapped_args_ctx, dispatcher_sig.arguments(), method=False) ] # call the out-of-place variant of the op return_type = ( dispatcher.returns_type(g.functional.func.returns).remove_const_ref().cpp_type() ) functional_sig = DispatcherSignature.from_schema(g.functional.func) functional_exprs = [ e.expr for e in translate(unwrapped_args_ctx, functional_sig.arguments(), method=False) ] if f.func.is_out_fn(): mutable_input_post_processing = "\n".join( [ f""" at::functionalization::impl::replace_( {a.name}, {"std::get<" + str(i) + ">(tmp_output)" if len(f.func.returns) > 1 else "tmp_output"}); at::functionalization::impl::commit_update({a.name});""" for (i, a) in enumerate(f.func.arguments.out) if a.annotation and a.annotation.is_write and a.type.is_tensor_like() ] ) else: mutable_input_post_processing = "\n".join( # noqa: F841 [ f""" at::functionalization::impl::replace_({a.name}, tmp_output); at::functionalization::impl::commit_update({a.name});""" for a in f.func.arguments.flat_all if a.annotation and a.annotation.is_write and a.type.is_tensor_like() ] ) meta_conversion_str, meta_call_ctx = convert_to_meta_tensors(dispatcher_sig) # We don't want to run the inplace meta func for ops like .set_(), because: # (1) they're unnecessary: inplace meta checks are only useful for ops like add_(), # where broadcasting will work for the out-of-place case but should fail on the inplace call # (2) They'll also fail without adding extra infra: we'd need to convert the input storage argument # into a meta storage any_storage_args = any( a.type == BaseType(BaseTy.Storage) for a in f.func.arguments.flat_all ) return f""" {dispatcher_sig.defn(name=wrapper_name(f.func), is_redispatching_fn=True)} {{ if ({str(not any_storage_args and f.func.kind() == SchemaKind.inplace).lower()} && !disable_meta_reference()) {{ // Before converting the mutable op to its functional variant, run meta tensors through the original op. // This will help us catch shape errors that apply to inplace ops that wouldn't apply to their functional variants. // (We can only do this for inplace ops today though, because they technically all support meta tensors). {meta_conversion_str} at::AutoDispatchSkipFunctionalize func_guard; c10::impl::ExcludeDispatchKeyGuard guard(exclude_keys_for_meta_dispatch); at::_ops::{f.func.name.unambiguous_name()}::call({", ".join(a.name for a in meta_call_ctx)}); }} {unwrap_tensor_args_str} if (!({check_all_mutated_args_are_functional})) {{ // We want to disable this check if there are any XLA tensors. // cpu_tensor.copy_(xla_tensor) is valid code. if (!({check_any_non_mutated_tensors_are_xla}) && ({check_any_non_mutated_args_are_functional})) {{ // case 1: trying to mutate a non functional tensor with a functional tensor is an error TORCH_INTERNAL_ASSERT(false, "mutating a non-functional tensor with a functional tensor is not allowed.", " Please ensure that all of your inputs are wrapped inside of a functionalize() call."); }} else {{ // case 2: arguments are not functional tensors, so we no-op and redispatch. at::AutoDispatchSkipFunctionalize guard; {maybe_create_output(f, "tmp_output")}at::_ops::{f.func.name.unambiguous_name()}::call({", ".join(inplace_exprs)}); {return_from_mutable_noop_redispatch(f, "tmp_output")} }} }} else {{ {return_type} tmp_output; {{ at::AutoDispatchSkipFunctionalize guard; tmp_output = at::_ops::{g.functional.func.name.unambiguous_name()}::call({", ".join(functional_exprs)}); }} {wrap_propagate_mutations_and_return(f, g.functional, "tmp_output")} }} }}""" # The below functions generate RegisterFunctionalization.cpp # These files provide the kernels that run the functionalization pass, which can be opted into # per backend (e.g. XLA or Vulkan), or as a composable transform (functionalize() in functorch). # See Note [Functionalization Pass: View Inverses]. def gen_functionalization_view_inverse_declaration( selector: SelectiveBuilder, g: NativeFunctionsViewGroup ) -> str | None: # For every (non-composite) view op, we need a corresponding "inverse view" function. # This generates the declarations so we get a good compiler error when someone adds a new view. @with_native_function def emit_decl_helper(g: NativeFunctionsViewGroup) -> str | None: if g.view.has_composite_implicit_autograd_kernel: return None view_inverse_sig = ViewInverseSignature(g) return view_inverse_sig.decl() return emit_decl_helper(g) def gen_functionalization_registration( selector: SelectiveBuilder, g: NativeFunction | NativeFunctionsGroup | NativeFunctionsViewGroup, composite_implicit_autograd_index: BackendIndex, ) -> list[str]: @with_native_function def emit_registration_helper(f: NativeFunction) -> str: assert not f.has_composite_implicit_autograd_kernel registration_str = f"TORCH_FN(functionalization::{wrapper_name(f.func)})" return f'm.impl("{f.func.name}", {registration_str});' # Don't generate kernels in mobile build if not selector.include_all_operators: return [] if isinstance(g, NativeFunctionsViewGroup): # functionalization needs to register kernels for view + view_inplace ops # See Note [Functionalization <> torch.Tensor constructor] if str(g.view.func.name) == "lift_fresh": return [] view_str = [] if not g.view.has_composite_implicit_autograd_kernel: view_str.append(emit_registration_helper(g.view)) if ( g.view_inplace is not None and not g.view_inplace.has_composite_implicit_autograd_kernel ): assert g.view_inplace.is_view_op view_str.append(emit_registration_helper(g.view_inplace)) return view_str elif isinstance(g, NativeFunctionsGroup): # Gets a hand-written functionalization kernel if g.inplace is not None and str(g.inplace.func.name) == "set_.source_Tensor": fns = [] else: fns = list(g.functions()) else: if str(g.func.name) in MUTABLE_OPS_NOT_USING_FUNCTIONALIZATION: return [] fns = [g] registrations = [] for f in fns: if f.has_composite_implicit_autograd_kernel: continue if str(f.func.name) == "lift": # See Note [Functionalization <> torch.Tensor constructor] return [] if str(f.func.name) == "resize_": # See Note [resize_ in Functionalization] return [] if str(f.func.name.name) != "set_": assert not f.is_view_op # functionalization needs to generate and register kernels for inplace ops. # We *also* need to directly register CompositeImplicitAUtograd kernels # so that they decompose properly before functioanlization. if modifies_arguments(f): registrations.append(emit_registration_helper(f)) return registrations def gen_functionalization_definition( selector: SelectiveBuilder, # Note: Ideally this code should never have to look at NativeFunction # (and instead only need to operate on grouped NativeFunctions). # The only reason currently is because we need to emit direct dispatch registrations # For CompositeImplicitAutograd operators, which are potentially ungrouped. g: NativeFunction | NativeFunctionsGroup | NativeFunctionsViewGroup, ) -> list[str]: # Don't generate kernels in mobile build if not selector.include_all_operators: return [] if isinstance(g, NativeFunctionsViewGroup): # Case 1: emit view -> view_copy kernels for the functionalization pass view_defs = [] if not g.composite: # invariant: NativeFunctionsViewGroup's always have a view_copy operator # if the view is not composite (implicit autograd) assert g.view_copy is not None, dataclass_repr(g, indent=1) view_defs.append(emit_view_functionalization_body(g, view_inplace=False)) if g.view_inplace is not None: view_defs.append(emit_view_functionalization_body(g, view_inplace=True)) return view_defs elif isinstance(g, NativeFunction): # Invariant: all mutable operators that we need to handle in functionalization # should have been properly grouped up. # TODO: The below ops all have "problematic" schemas that prevent them from # getting functionalized. Instead of bending over backwards to get things to work, # I think we should either: # (1) fix their schemas (BC-breaking) # (2) hand-write their functionalization kernels if ( str(g.func.name) not in MUTABLE_OPS_NOT_USING_FUNCTIONALIZATION and str(g.func.name.name) not in MUTABLE_OPS_NOT_USING_FUNCTIONALIZATION ): assert g.has_composite_implicit_autograd_kernel or not modifies_arguments(g) return [] else: # Case 2: emit inplace -> out-of-place kernels for the functionalization pass mutation_defs = [] mutation_defs.append(emit_inplace_functionalization_body(g.out, g)) if g.inplace is not None: mutation_defs.append(emit_inplace_functionalization_body(g.inplace, g)) if g.mutable is not None: mutation_defs.append(emit_inplace_functionalization_body(g.mutable, g)) return mutation_defs return [] ```
=================================================================================================================== SOURCE CODE FILE: gen_lazy_tensor.py LINES: 5 SIZE: 22.77 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen_lazy_tensor.py ENCODING: utf-8 ```py from __future__ import annotations import argparse import os from collections import namedtuple from pathlib import Path from typing import Any, Callable, TYPE_CHECKING import yaml import torchgen.dest as dest from torchgen.api.lazy import setValueT from torchgen.api.types import BaseCppType from torchgen.dest.lazy_ir import GenLazyIR, GenLazyNativeFuncDefinition, GenTSLazyIR from torchgen.gen import get_grouped_native_functions, parse_native_yaml from torchgen.gen_backend_stubs import ( error_on_missing_kernels, gen_dispatcher_registrations, gen_dispatchkey_nativefunc_headers, parse_backend_yaml, ) from torchgen.model import NativeFunction, NativeFunctionsGroup, OperatorName from torchgen.selective_build.selector import SelectiveBuilder from torchgen.utils import FileManager, NamespaceHelper from torchgen.yaml_utils import YamlLoader if TYPE_CHECKING: from collections.abc import Iterable, Iterator, Sequence # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # Lazy Tensor Codegen # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Overview # ~~~~~~~~ # # This codegen script builds on existing data models and helpers used # by all ATen backends, and adds new functionality specific to lazy # tensor backends. # # Inputs: # - <backend>_native_functions.yaml: controls which operators are # supported by the backend. # # Outputs: # (for all backends) # <DispatchKey>Ir.h defines Lazy IR classes to be constructed during tracing # - opt-in: also generate 'lowering' methods for the TorchScript backend only # <DispatchKey>NativeFunctions.cpp defines implementations of native functions which perform lazy tracing # - opt-in: 'full_codegen' section of backend yaml; 'supported' section omits these implementations # <DispatchKey>NativeFunctions.h declares implementations of native functions for both 'supported' and 'full_codegen' # ops # # Register<DispatchKey>.cpp registers all op implementations with the dispatcher # RegisterAutograd<DispatchKey>.cpp registers all autograd implementations with the dispatcher # # Validation Helpers: # - Shape Inference: errs if any ops in backend yaml require shape inference not provided by meta kernels or # implementations in torch/csrc/lazy/core/shape_inference.* # - native function impls: errs if any 'supported' ops do not have an implementation defined in the backend # (non-codegen) implementation file # # # About the Data Model # ~~~~~~~~~~~~~~~~~~~~ # # Modeled after ATen codegen, the first step is to parse yaml and build a data model for the operators # we care about. In this case, the <backend>_native_functions yaml defines a subset of the core operators # (defined in more detail in the main native_functions.yaml), which will be supported by your backend. # Backends can list ops in two categories: # - `supported` ops require hand-implementations but still get codegenned declarations and registrations # - `full_codegen` ops get implementations (and IR classes) generated too # # Each native function is modeled as an object with a schema, and each schema has objects representing their # arguments. Much of the codegen is manipulation of the arguments and their types. For example, lazy tensor # backends need to transform 'at::Tensor' arguments into 'lazy::Value' objects, as well as replacing reference # types (stringref) with actual string objects, and this is done by manipulating the data model objects. # - see api/lazy.py for the lazy data model # # Once the data model is set up, the rest of this script processes a number of templates for output CPP file # and fills in the template values using helpers in `dest/lazy_ir.py` and `dest/lazy_ts_lowering.py`. These # helpers mostly iterate over functions and their arguments, outputting different c++ snippets. # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key. # Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen) ParsedExternalYaml = namedtuple( "ParsedExternalYaml", ["backend_key", "autograd_key", "cpp_namespace", "backend_indices", "full_codegen"], ) def parse_native_functions_keys( backend_yaml_path: str, grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], ) -> tuple[list[OperatorName], list[Any], list[OperatorName]]: with open(backend_yaml_path) as f: yaml_values = yaml.load(f, Loader=YamlLoader) assert isinstance(yaml_values, dict) full_codegen = yaml_values.pop("full_codegen", []) non_native = yaml_values.pop("non_native", []) ir_gen = yaml_values.pop("ir_gen", []) assert isinstance(full_codegen, list) assert isinstance(non_native, list) assert isinstance(ir_gen, list) full_codegen_opnames = [OperatorName.parse(name) for name in full_codegen] ir_gen_opnames = [OperatorName.parse(name) for name in ir_gen] return full_codegen_opnames, non_native, ir_gen_opnames def validate_shape_inference_header( shape_inference_hdr: str, expected_shape_infr_decls: list[str] ) -> None: try: with open(shape_inference_hdr) as f: shape_infr_decls = f.read() shape_infr_decl_lines = set(shape_infr_decls.split("\n")) except OSError as e: raise AssertionError( f"Unable to read from the specified shape_inference_hdr file: {shape_inference_hdr}" ) from e # TODO(whc) add a check for shape inference functions that have meta kernels implement and should be retired. missing_decls = [ decl for decl in expected_shape_infr_decls if decl not in shape_infr_decl_lines ] if missing_decls: raise Exception( # noqa: TRY002 f"""Missing shape inference function.\n Please add declare this function in {shape_inference_hdr}:\n and implement it in the corresponding shape_inference.cpp file.\n {os.linesep.join(missing_decls)}""" ) # Some helper functions for the codegen. def get_ltc_helper_fns() -> str: return """\ at::Tensor to_meta(const at::Tensor& tensor) { // undefined tensors can't be converted to the meta device, since they don't have sizes/strides if (!tensor.defined()) return tensor; auto out = at::native::empty_strided_meta_symint(tensor.sym_sizes(), tensor.sym_strides(), \ /*dtype=*/tensor.scalar_type(), /*layout=*/tensor.layout(), \ /*device=*/c10::Device(c10::kMeta), /*pin_memory=*/std::nullopt); // needs to handle wrapped numbers, so dtype promotion works properly. if (tensor.unsafeGetTensorImpl()->is_wrapped_number()) { out.unsafeGetTensorImpl()->set_wrapped_number(true); } return out; } std::optional<at::Tensor> to_meta(const std::optional<at::Tensor>& tensor) { if (tensor.has_value()) { return to_meta(*tensor); } return std::nullopt; } std::vector<at::Tensor> to_meta(at::ITensorListRef t_list) { std::vector<at::Tensor> outs; outs.reserve(t_list.size()); for (const auto& tensor : t_list) { outs.push_back(to_meta(tensor)); } return outs; } """ class default_args: node_base: str = "Node" node_base_hdr: str | None = None shape_inference_hdr: str = "torch/csrc/lazy/core/shape_inference.h" tensor_class: str = "torch::lazy::LazyTensor" tensor_class_hdr: str = "torch/csrc/lazy/core/tensor.h" lazy_ir_generator: type[GenLazyIR] = GenLazyIR native_func_definition_generator: type[GenLazyNativeFuncDefinition] = ( GenLazyNativeFuncDefinition ) backend_name: str = "TorchScript" def main() -> None: parser = argparse.ArgumentParser(description="Generate Lazy Tensor backend files") parser.add_argument( "-s", "--source-yaml", "--source_yaml", help="path to source yaml file containing operator external definitions", ) parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory") parser.add_argument( "--dry-run", "--dry_run", type=bool, default=False, help="output directory" ) parser.add_argument( "--impl-path", "--impl_path", type=str, default=None, help="path to the source C++ file containing kernel definitions", ) parser.add_argument( "--gen-ts-lowerings", "--gen_ts_lowerings", action="store_true", help="Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions", ) parser.add_argument( "--node-base", "--node_base", type=str, default=default_args.node_base, help="Name of backend specific custom Lazy IR Node base class", ) parser.add_argument( "--node-base-hdr", "--node_base_hdr", type=str, default=default_args.node_base_hdr, help="Path to header file defining custom Lazy IR Node base class", ) parser.add_argument( "--shape-inference-hdr", "--shape_inference_hdr", type=str, default=default_args.shape_inference_hdr, help="Path to header file defining custom Lazy shape inference functions", ) parser.add_argument( "--tensor-class", "--tensor_class", type=str, default=default_args.tensor_class, help="Name of backend specific custom Lazy Tensor class", ) parser.add_argument( "--tensor-class-hdr", "--tensor_class_hdr", type=str, default=default_args.tensor_class_hdr, help="Path to header file defining custom Lazy Tensor class", ) parser.add_argument( "--backend-name", "--backend_name", type=str, default=default_args.backend_name, help="Name of the backend to generate", ) options = parser.parse_args() # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py torch_root = Path(__file__).absolute().parents[2] aten_path = str(torch_root / "aten" / "src" / "ATen") lazy_ir_generator: type[GenLazyIR] = default_args.lazy_ir_generator if options.gen_ts_lowerings: lazy_ir_generator = GenTSLazyIR native_func_definition_generator: type[GenLazyNativeFuncDefinition] = ( default_args.native_func_definition_generator ) run_gen_lazy_tensor( aten_path, options.source_yaml, options.output_dir, options.dry_run, options.impl_path, options.node_base, options.node_base_hdr, options.tensor_class, options.tensor_class_hdr, options.shape_inference_hdr, lazy_ir_generator, native_func_definition_generator, options.backend_name, ) def run_gen_lazy_tensor( aten_path: str, source_yaml: str, output_dir: str, dry_run: bool, impl_path: str | None, node_base: str = default_args.node_base, node_base_hdr: str | None = default_args.node_base_hdr, tensor_class: str = default_args.tensor_class, tensor_class_hdr: str = default_args.tensor_class_hdr, shape_inference_hdr: str = default_args.shape_inference_hdr, lazy_ir_generator: type[GenLazyIR] = default_args.lazy_ir_generator, native_func_definition_generator: type[ GenLazyNativeFuncDefinition ] = default_args.native_func_definition_generator, # build_in_tree is true for TS backend and affects include paths build_in_tree: bool = False, # per_operator_headers changes whether ATen/Functions.h or individual operator headers are used # it must match how ATen was built per_operator_headers: bool = False, backend_name: str = default_args.backend_name, gen_forced_fallback_code: bool = False, use_lazy_shape: bool = True, # the following arguments are temporary customization points for xla backend migration. # do not rely on them otherwise, they should be removed once migration is complete backend_namespace: str = "torch::lazy", get_tensorlist: str = "GetTensorList", get_tensor_or_wrap_number: str = "GetLtcTensorOrCreateForWrappedNumber", try_get_tensor: str = "TryGetLtcTensor", metrics_counter: str = 'TORCH_LAZY_FN_COUNTER("lazy::")', create_tensor: str = "LazyTensor::Create", create_from_first_tensor: bool = False, create_aten_from_ltc_tensor: str = "torch::lazy::CreateAtenFromLtcTensor", tuple_aten_from_ltc_tensors: str = "torch::lazy::TupleAtenFromLtcTensors", lazy_value_class: str = "torch::lazy::Value", lazy_tensor_ptr: str = "LazyTensorPtr", get_device_fn: str = "torch::lazy::GetBackendDevice", ) -> None: lv_tokens = lazy_value_class.split("::") lv_class = lv_tokens[-1] lv_ns = "::".join(lv_tokens[:-1]) setValueT(BaseCppType(lv_ns, lv_class)) template_dir = os.path.join(aten_path, "templates") def make_file_manager(install_dir: str) -> FileManager: return FileManager( install_dir=install_dir, template_dir=template_dir, dry_run=dry_run ) fm = make_file_manager(output_dir) native_yaml_path = os.path.join(aten_path, "native/native_functions.yaml") tags_yaml_path = os.path.join(aten_path, "native/tags.yaml") parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) native_functions, backend_indices = ( parsed_yaml.native_functions, parsed_yaml.backend_indices, ) grouped_native_functions = get_grouped_native_functions(native_functions) def sort_native_function(f: NativeFunctionsGroup | NativeFunction) -> str: """ We sort the native function because of the note in concat_map_codegen. TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly. """ func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func return str(func.name.name) grouped_native_functions = sorted( grouped_native_functions, key=sort_native_function ) parsed_backend_yaml = parse_backend_yaml( source_yaml, grouped_native_functions, backend_indices ) backend_key = parsed_backend_yaml.backend_key autograd_key = parsed_backend_yaml.autograd_key cpp_namespace = parsed_backend_yaml.cpp_namespace backend_indices = parsed_backend_yaml.backend_indices # the following 3 keys are all processed differently # for full_codegen, we generate IR, kernels, etc # for ir_gen, we generate only IR # non_native is used to register kernels not declared in # native_functions.yaml full_codegen, non_native, ir_gen = parse_native_functions_keys( source_yaml, grouped_native_functions ) def concat_map_codegen( func: Callable[[NativeFunction], Sequence[str]], xs: Iterable[NativeFunctionsGroup | NativeFunction], ops_list: list[OperatorName] = full_codegen, ) -> Iterator[str]: """ We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we only code-gen additional entries for the inplace variant for the native functions. """ for x in xs: fs = list(x.functions()) if isinstance(x, NativeFunctionsGroup) else [x] for f in fs: if f.func.name in ops_list: yield from func(f) selector = SelectiveBuilder.get_nop_selector() assert backend_key is not None class_name = backend_indices[backend_key].native_function_class_name() if impl_path is not None: error_on_missing_kernels( native_functions, backend_indices, backend_key, autograd_key, class_name, impl_path, full_codegen, ) """ Validate Shape Inference Definitions Generated lazy native functions all perform shape inference, by first using a meta:: kernel if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator knows the call signature for compute_shape_{op} because it matches the nativefunction (and meta::) signature, so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides the expected signature which can be copy-pasted into shape_inference.h. compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported to structured kernels. See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information. """ if shape_inference_hdr is not None: expected_shape_infr_decls = list( concat_map_codegen( dest.GenLazyShapeInferenceDefinition( backend_indices[backend_key], tensor_class ), grouped_native_functions, ) ) validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls) assert class_name is not None # Generate nativefunction declarations # Note, eager registrations is set to False for the lazy TS backend as another LTC backend # may want to register their own lazy kernels instead of registering the TS ones. # The registration will lazily happen when init_ts_backend is called. gen_dispatchkey_nativefunc_headers( fm, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, autograd_key, backend_name, ) # Generate Dispatcher registrations which hook up the nativefunctions for dispatch_key in ( [backend_key] if autograd_key is None else [backend_key, autograd_key] ): gen_dispatcher_registrations( fm, output_dir, class_name, backend_indices, grouped_native_functions, backend_key, dispatch_key, selector, build_in_tree=build_in_tree, per_operator_headers=per_operator_headers, backend_name=backend_name, eager_registration=False, ) # Generate native function impls that build IR nodes ns_helper = NamespaceHelper(cpp_namespace) fm.write_with_template( f"{backend_key}NativeFunctions.cpp", "DispatchKeyNativeFunctions.cpp", lambda: { "includes": [ f"#include <{path}>" for path in [ tensor_class_hdr, shape_inference_hdr, "ATen/Functions.h", "ATen/native/TensorConversions.h", "ATen/NativeFunctions.h", "ATen/CompositeExplicitAutogradNonFunctionalFunctions.h", "ATen/MetaFunctions.h", "ATen/Operators.h", "ATen/native/CPUFallback.h", "torch/csrc/lazy/core/ir_builder.h", "torch/csrc/lazy/core/lazy_graph_executor.h", "torch/csrc/lazy/core/metrics.h", "torch/csrc/lazy/core/shape.h", f"{output_dir}/{backend_key}NativeFunctions.h", f"{output_dir}/LazyIr.h", ] + ( ["torch/csrc/lazy/ts_backend/ts_eager_fallback.h"] if gen_forced_fallback_code else [] ) ], "helper_fns": get_ltc_helper_fns(), "native_functions_include": "", "namespace_prologue": ns_helper.prologue, "namespace_epilogue": ns_helper.epilogue, "native_function_definitions": list( concat_map_codegen( native_func_definition_generator( f"{backend_key}NativeFunctions", backend_indices[backend_key], tensor_class, gen_forced_fallback_code, backend_namespace, get_tensorlist, get_tensor_or_wrap_number, try_get_tensor, metrics_counter, create_tensor, create_from_first_tensor, create_aten_from_ltc_tensor, tuple_aten_from_ltc_tensors, lazy_tensor_ptr, get_device_fn, ), grouped_native_functions, ) ), }, ) # Generate IR node classes lazy_ir_obj = lazy_ir_generator( backend_indices[backend_key], backend_name, node_base, use_lazy_shape ) fm.write_with_template( "LazyIr.h", "LazyIr.h", lambda: { "lazy_ir_sysinc": [ f"#include <{path}>" for path in [ "ATen/core/Formatting.h", "c10/core/ScalarType.h", "torch/csrc/lazy/core/hash.h", "torch/csrc/lazy/core/ir.h", "torch/csrc/lazy/core/shape.h", "optional", "vector", ] ], "lazy_ir_inc": [f'#include "{node_base_hdr}"'] if node_base_hdr is not None else [], "ir_declarations": list( concat_map_codegen( lazy_ir_obj, grouped_native_functions, full_codegen + ir_gen ) ), "namespace_prologue": ns_helper.prologue, "namespace_epilogue": ns_helper.epilogue, }, ) # Generate Non Native IR Node classes fm.write_with_template( "LazyNonNativeIr.h", "LazyNonNativeIr.h", lambda: { "lazy_non_native_ir_inc": [ f"#include <{path}>" for path in [ "torch/csrc/lazy/core/ir.h", "torch/csrc/lazy/core/ir_builder.h", "torch/csrc/lazy/core/internal_ops/ltc_ops.h", "torch/csrc/lazy/core/shape_inference.h", ] + ([node_base_hdr] if node_base_hdr else []) if path ], "non_native_ir_nodes": dest.generate_non_native_lazy_ir_nodes( non_native, lazy_ir_obj ), "namespace_prologue": ns_helper.prologue, "namespace_epilogue": ns_helper.epilogue, }, ) if __name__ == "__main__": main() ```
==================================================================================================================== SOURCE CODE FILE: gen_schema_utils.py LINES: 1 SIZE: 3.33 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen_schema_utils.py ENCODING: utf-8 ```py from typing import Any, Optional, Union from torchgen.model import ( Annotation, Argument, Arguments, BaseOperatorName, BaseTy, BaseType, CustomClassType, FunctionSchema, ListType, OperatorName, Return, ) # Note: These aren't actually used in torchgen, they're some utilities for generating a schema # from real arguments. For example, this is used to generate HigherOrderOperators' schema since # their schemas can vary for different instances of the same HOP. class TypeGen: convert_to_base_ty = { int: BaseTy.int, float: BaseTy.float, str: BaseTy.str, bool: BaseTy.bool, } @staticmethod def from_example(obj: Any) -> Union[BaseType, ListType, CustomClassType]: import torch if isinstance(obj, torch.fx.GraphModule): return BaseType(BaseTy.GraphModule) elif isinstance(obj, torch.Tensor): return BaseType(BaseTy.Tensor) elif isinstance(obj, torch.SymInt): return BaseType(BaseTy.SymInt) elif isinstance(obj, torch.SymBool): return BaseType(BaseTy.SymBool) elif isinstance(obj, torch.ScriptObject): return CustomClassType(obj._type().name()) # type: ignore[attr-defined] elif isinstance(obj, (list, tuple)): assert len(obj) > 0 all_base_tys = [TypeGen.from_example(x) for x in obj] if len(set(all_base_tys)) > 1: raise RuntimeError( f"Cannot generate schema for a seqeunce of args of heterogeneous types: {all_base_tys}. " "Consider unpacking the argument and give proper names to them if possible " "instead of using *args." ) return ListType(all_base_tys[0], len(obj)) tp = type(obj) if tp not in TypeGen.convert_to_base_ty: raise RuntimeError(f"unsupported type {tp}") return BaseType(TypeGen.convert_to_base_ty[tp]) class ReturnGen: @staticmethod def from_example( name: Optional[str], obj: Any, annotation: Optional[Annotation] ) -> Return: return Return(name, TypeGen.from_example(obj), annotation) class ArgumentGen: @staticmethod def from_example( name: str, obj: Any, default: Optional[str], annotation: Optional[Annotation] ) -> Argument: return Argument( name, TypeGen.from_example(obj), default=default, annotation=annotation ) class FunctionSchemaGen: @staticmethod def from_example( op_name: str, example_inputs: tuple[tuple[str, Any], ...], example_outputs: tuple[Any, ...], ) -> FunctionSchema: args = [] for name, inp in example_inputs: args.append(ArgumentGen.from_example(name, inp, None, None)) # ignore the annotations and other attributes for now, we could add more when needed. arguments = Arguments( tuple(), None, tuple(args), tuple(), None, tuple(), tuple() ) returns = tuple( ReturnGen.from_example(None, out, None) for out in example_outputs ) op_name = OperatorName(BaseOperatorName(op_name, False, False, False), "") return FunctionSchema(op_name, arguments, returns) ```
===================================================================================================================== SOURCE CODE FILE: gen_vmap_plumbing.py LINES: 5 SIZE: 9.44 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\gen_vmap_plumbing.py ENCODING: utf-8 ```py from __future__ import annotations import textwrap from dataclasses import dataclass from typing import TYPE_CHECKING from torchgen.api.translate import translate from torchgen.api.types import DispatcherSignature from torchgen.context import method_with_native_function from torchgen.model import ( Argument, BaseTy, BaseType, FunctionSchema, ListType, NativeFunction, OptionalType, Return, SchemaKind, Type, ) from torchgen.utils import mapMaybe if TYPE_CHECKING: from collections.abc import Sequence def is_tensor(typ: Type) -> bool: return isinstance(typ, BaseType) and typ.name == BaseTy.Tensor def is_optional_tensor(typ: Type) -> bool: return isinstance(typ, OptionalType) and is_tensor(typ.elem) def is_tensor_list(typ: Type) -> bool: return isinstance(typ, ListType) and is_tensor(typ.elem) def unwrap_tensor(name: str, cur_level_var: str) -> list[str]: result = f"""\ auto [{name}_value, {name}_bdim] = unwrapTensorAtLevel({name}, {cur_level_var});""" return textwrap.dedent(result).split("\n") def unwrap_optional_tensor(name: str, cur_level_var: str) -> list[str]: result = f"""\ std::optional<Tensor> {name}_value; std::optional<int64_t> {name}_bdim; if ({name}) {{ std::tie({name}_value, {name}_bdim) = unwrapTensorAtLevel({name}.value(), {cur_level_var}); }}""" return textwrap.dedent(result).split("\n") def gen_unwraps( flat_arguments: Sequence[Argument], cur_level_var: str ) -> tuple[str, list[str]]: arg_names = [a.name for a in flat_arguments] arg_types = [a.type for a in flat_arguments] tensors = [name for typ, name in zip(arg_types, arg_names) if is_tensor(typ)] optional_tensors = [ name for typ, name in zip(arg_types, arg_names) if is_optional_tensor(typ) ] unwraps = [] for tensor in tensors: unwraps += unwrap_tensor(tensor, cur_level_var) for opt_tensor in optional_tensors: unwraps += unwrap_optional_tensor(opt_tensor, cur_level_var) unwrap_code = "\n".join(unwraps) unwrapped_arg_list = [] for arg in arg_names: if arg in tensors or arg in optional_tensors: unwrapped_arg_list += [f"{arg}_value", f"{arg}_bdim"] else: unwrapped_arg_list.append(arg) return unwrap_code, unwrapped_arg_list def gen_case_where_all_bdims_are_none( outer_sig: DispatcherSignature, schema: FunctionSchema, cur_level_var: str ) -> str: conditions = [] flat_args = schema.arguments.flat_all for arg in flat_args: if not arg.type.is_tensor_like(): continue conditions.append(f"!isBatchedAtLevel({arg.name}, {cur_level_var})") sig = DispatcherSignature.from_schema(schema) translated_args = ", ".join( e.expr for e in translate(outer_sig.arguments(), sig.arguments()) ) return f"""\ if ({" && ".join(conditions)}) {{ return at::_ops::{sig.func.name.unambiguous_name()}::call({translated_args}); }}""" def gen_returns( returns: tuple[Return, ...], cur_level_var: str, results_var: str ) -> str: idx = 0 wrapped_returns = [] for ret in returns: if is_tensor(ret.type): wrapped_returns.append( f"makeBatched(std::get<{idx}>({results_var}), std::get<{idx + 1}>({results_var}), {cur_level_var})" ) idx += 2 elif is_tensor_list(ret.type): wrapped_returns.append( f"makeBatchedVector(std::get<{idx}>({results_var}), std::get<{idx + 1}>({results_var}), {cur_level_var})" ) idx += 2 else: wrapped_returns.append(f"std::get<{idx}>({results_var})") idx += 1 if len(wrapped_returns) == 1: result = f"return {wrapped_returns[0]};" else: result = f"return std::make_tuple({', '.join(wrapped_returns)});" return result def accepts_at_least_one_tensor_input(schema: FunctionSchema) -> bool: return any(a.type.is_tensor_like() for a in schema.arguments.flat_all) def is_mutated_arg(argument: Argument) -> bool: return argument.annotation is not None and argument.annotation.is_write def gen_vmap_inplace_plumbing(native_function: NativeFunction) -> str | None: # Assumptions: # - only one argument is being modified in-place # - the argument that is being modified in-place is the first argument # - all returns are either Tensor, tuple of Tensor, or TensorList schema = native_function.func sig = DispatcherSignature.from_schema(schema) returns = schema.returns # Check assumptions. If these are invalid we return None # and punt the work to handle them to the future. assert schema.kind() == SchemaKind.inplace if not is_mutated_arg(schema.arguments.flat_all[0]): return None if not len([arg for arg in schema.arguments.flat_all if is_mutated_arg(arg)]) == 1: return None # Only support cases where all returns are Tensors or vector<Tensor> if len(returns) == 0: return None if not all(is_tensor(ret.type) or is_tensor_list(ret.type) for ret in returns): return None if not accepts_at_least_one_tensor_input(schema): return None cur_level_var = "cur_level" unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var) bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var) return f"""\ template <typename batch_rule_t, batch_rule_t batch_rule> {sig.decl(name=schema.name.unambiguous_name() + "_generated_plumbing")} {{ c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); auto maybe_layer = maybeCurrentDynamicLayer(); vmap_check_escaped(maybe_layer, "gen_vmap_inplace_plumbing"); int64_t {cur_level_var} = maybe_layer->layerId(); {textwrap.indent(bdims_all_none_case, " ")} {textwrap.indent(unwraps, " ")} batch_rule({", ".join(unwrapped_arg_list)}); return {schema.arguments.flat_all[0].name}; }}""" def gen_vmap_plumbing_no_returns(native_function: NativeFunction) -> str: schema = native_function.func sig = DispatcherSignature.from_schema(schema) cur_level_var = "cur_level" unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var) bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var) return f"""\ template <typename batch_rule_t, batch_rule_t batch_rule> {sig.decl(name=schema.name.unambiguous_name() + "_generated_plumbing")} {{ c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); auto maybe_layer = maybeCurrentDynamicLayer(); vmap_check_escaped(maybe_layer, "gen_vmap_plumbing_no_returns"); int64_t {cur_level_var} = maybe_layer->layerId(); {textwrap.indent(bdims_all_none_case, " ")} {textwrap.indent(unwraps, " ")} batch_rule({", ".join(unwrapped_arg_list)}); }}""" def gen_vmap_plumbing(native_function: NativeFunction) -> str | None: schema = native_function.func sig = DispatcherSignature.from_schema(schema) returns = schema.returns # Only support cases where all returns are Tensors or vector<Tensor> if not accepts_at_least_one_tensor_input(schema): return None if len(returns) == 0: return gen_vmap_plumbing_no_returns(native_function) return_symint_overrides = [ "_scaled_dot_product_flash_attention", "_scaled_dot_product_cudnn_attention", ] if ( not all(ret.type.is_tensor_like() for ret in returns) and schema.name.unambiguous_name() not in return_symint_overrides ): return None # in-place views need special handling if "inplace_view" in native_function.tags: return None if schema.kind() == SchemaKind.inplace: return gen_vmap_inplace_plumbing(native_function) # Don't support these (mutable, out, scratch) if schema.kind() != SchemaKind.functional: return None results_var = "results" cur_level_var = "cur_level" unwraps, unwrapped_arg_list = gen_unwraps(schema.arguments.flat_all, cur_level_var) bdims_all_none_case = gen_case_where_all_bdims_are_none(sig, schema, cur_level_var) wrapped_returns = gen_returns(returns, cur_level_var, results_var) return f"""\ template <typename batch_rule_t, batch_rule_t batch_rule> {sig.decl(name=schema.name.unambiguous_name() + "_generated_plumbing")} {{ c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); auto maybe_layer = maybeCurrentDynamicLayer(); vmap_check_escaped(maybe_layer, "gen_vmap_plumbing"); int64_t {cur_level_var} = maybe_layer->layerId(); {textwrap.indent(bdims_all_none_case, " ")} {textwrap.indent(unwraps, " ")} auto {results_var} = batch_rule({", ".join(unwrapped_arg_list)}); {wrapped_returns} }}""" @dataclass(frozen=True) class ComputeBatchRulePlumbing: @method_with_native_function def __call__(self, f: NativeFunction) -> str | None: result = gen_vmap_plumbing(f) return result def gen_all_vmap_plumbing(native_functions: Sequence[NativeFunction]) -> str: body = "\n".join(list(mapMaybe(ComputeBatchRulePlumbing(), native_functions))) return f""" #pragma once #include <ATen/Operators.h> #include <ATen/functorch/PlumbingHelper.h> namespace at {{ namespace functorch {{ {body} }}}} // namespace at::functorch """ ```
========================================================================================================= SOURCE CODE FILE: local.py LINES: 1 SIZE: 2.18 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\local.py ENCODING: utf-8 ```py from __future__ import annotations import threading from contextlib import contextmanager from typing import TYPE_CHECKING if TYPE_CHECKING: from collections.abc import Iterator # Simple dynamic scoping implementation. The name "parametrize" comes # from Racket. # # WARNING WARNING: LOOKING TO EDIT THIS FILE? Think carefully about # why you need to add a toggle to the global behavior of code # generation. The parameters here should really only be used # for "temporary" situations, where we need to temporarily change # the codegen in some cases because we cannot conveniently update # all call sites, and are slated to be eliminated once all call # sites are eliminated. If you don't have a plan for how to get there, # DON'T add a new entry here. class Locals(threading.local): use_const_ref_for_mutable_tensors: bool | None = None use_ilistref_for_tensor_lists: bool | None = None _locals = Locals() def use_const_ref_for_mutable_tensors() -> bool: assert _locals.use_const_ref_for_mutable_tensors is not None, ( "need to initialize local.use_const_ref_for_mutable_tensors with " "local.parametrize" ) return _locals.use_const_ref_for_mutable_tensors def use_ilistref_for_tensor_lists() -> bool: assert _locals.use_ilistref_for_tensor_lists is not None, ( "need to initialize local.use_ilistref_for_tensor_lists with local.parametrize" ) return _locals.use_ilistref_for_tensor_lists @contextmanager def parametrize( *, use_const_ref_for_mutable_tensors: bool, use_ilistref_for_tensor_lists: bool ) -> Iterator[None]: old_use_const_ref_for_mutable_tensors = _locals.use_const_ref_for_mutable_tensors old_use_ilistref_for_tensor_lists = _locals.use_ilistref_for_tensor_lists try: _locals.use_const_ref_for_mutable_tensors = use_const_ref_for_mutable_tensors _locals.use_ilistref_for_tensor_lists = use_ilistref_for_tensor_lists yield finally: _locals.use_const_ref_for_mutable_tensors = ( old_use_const_ref_for_mutable_tensors ) _locals.use_ilistref_for_tensor_lists = old_use_ilistref_for_tensor_lists ```
========================================================================================================= SOURCE CODE FILE: model.py LINES: 4 SIZE: 114.43 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\model.py ENCODING: utf-8 ```py from __future__ import annotations import dataclasses import itertools import re from dataclasses import dataclass from enum import auto, Enum from typing import Callable, Optional, TYPE_CHECKING from torchgen.utils import assert_never, NamespaceHelper, OrderedSet if TYPE_CHECKING: from collections.abc import Iterator, Sequence # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # DATA MODEL # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # # Some general principles for our data model. # # - Stop using C++ data types as the internal data representation # format. Instead, the internal data structures are centered # around JIT schema representation. This avoid a big problem # with the old codegen where we read in all the types from # native_functions.yaml and then immediately had to retranslate # them into C++ types. # # - More semantic data representation. Instead of representing # everything as dicts and strings, we define dataclasses for # every interesting entity the code generation has to deal with. # These dataclasses have strong semantic invariants: for example, # we generally require them to roundtrip losslessly into the # form they were parsed from. These structures are immutable # and you're expected to populate information once during # construction. # Represent a source location; used for better error reporting @dataclass(frozen=True) class Location: file: str line: int def __str__(self) -> str: return f"{self.file}:{self.line}" # Valid values of the 'variants' field in native_functions.yaml class Variant(Enum): function = auto() method = auto() # Default kernel namespace DEFAULT_KERNEL_NAMESPACE = "at::native" # NOTE: Keep the list in sync with `DispatchKey` in c10/core/DispatchKey.h BACKEND_COMPONENTS = "CPU CUDA HIP XLA MTIA MPS IPU XPU HPU VE Lazy Meta PrivateUse1 PrivateUse2 PrivateUse3".split() FUNCTIONALITY_KEYS = [ "", "Quantized", "Sparse", "SparseCsr", "NestedTensor", "Autograd", ] # This list guards dispatches that can be used in derivatives.yaml # For now we omit AutogradFunctionality and AutogradOther AUTOGRAD_KEYS = ["AutogradNestedTensor"] + [ "Autograd" + component for component in BACKEND_COMPONENTS ] FRAGMENT_NAMESPACES = {"quantized", "quantized_decomposed"} # This doesn't have to be in sync with the header, it only needs to contain # entries that we actually use in the codegen or want pyi entries for class DispatchKey(Enum): Undefined = 0 CatchAll = Undefined FPGA = auto() MAIA = auto() Vulkan = auto() Metal = auto() MKLDNN = auto() OpenGL = auto() OpenCL = auto() IDEEP = auto() CustomRNGKeyId = auto() MkldnnCPU = auto() Sparse = auto() SparseCsr = auto() NestedTensor = auto() Dense = auto() PythonTLSSnapshot = auto() PreDispatch = auto() PythonDispatcher = auto() Python = auto() FuncTorchDynamicLayerBackMode = auto() ZeroTensor = auto() Conjugate = auto() Negative = auto() BackendSelect = auto() Named = auto() AutogradOther = auto() AutogradFunctionality = auto() AutogradNestedTensor = auto() Tracer = auto() Autocast = auto() AutocastCPU = auto() AutocastCUDA = auto() Batched = auto() VmapMode = auto() FuncTorchGradWrapper = auto() FuncTorchBatched = auto() BatchedNestedTensor = auto() FuncTorchVmapMode = auto() FuncTorchDynamicLayerFrontMode = auto() Functionalize = auto() TESTING_ONLY_GenericWrapper = auto() TESTING_ONLY_GenericMode = auto() ADInplaceOrView = auto() Autograd = auto() CompositeImplicitAutograd = auto() CompositeImplicitAutogradNestedTensor = auto() CompositeExplicitAutograd = auto() CompositeExplicitAutogradNonFunctional = auto() FuncTorchBatchedDecomposition = auto() # BEGIN autogenerated CPU = auto() CUDA = auto() HIP = auto() XLA = auto() MTIA = auto() MPS = auto() IPU = auto() XPU = auto() HPU = auto() VE = auto() Lazy = auto() Meta = auto() PrivateUse1 = auto() PrivateUse2 = auto() PrivateUse3 = auto() QuantizedCPU = auto() QuantizedCUDA = auto() QuantizedHIP = auto() QuantizedXLA = auto() QuantizedMTIA = auto() QuantizedMPS = auto() QuantizedIPU = auto() QuantizedXPU = auto() QuantizedHPU = auto() QuantizedVE = auto() QuantizedLazy = auto() QuantizedMeta = auto() QuantizedPrivateUse1 = auto() QuantizedPrivateUse2 = auto() QuantizedPrivateUse3 = auto() SparseCPU = auto() SparseCUDA = auto() SparseHIP = auto() SparseXLA = auto() SparseMTIA = auto() SparseMPS = auto() SparseIPU = auto() SparseXPU = auto() SparseHPU = auto() SparseVE = auto() SparseLazy = auto() SparseMeta = auto() SparsePrivateUse1 = auto() SparsePrivateUse2 = auto() SparsePrivateUse3 = auto() SparseCsrCPU = auto() SparseCsrCUDA = auto() SparseCsrHIP = auto() SparseCsrXLA = auto() SparseCsrMTIA = auto() SparseCsrMPS = auto() SparseCsrIPU = auto() SparseCsrXPU = auto() SparseCsrHPU = auto() SparseCsrVE = auto() SparseCsrLazy = auto() SparseCsrMeta = auto() SparseCsrPrivateUse1 = auto() SparseCsrPrivateUse2 = auto() SparseCsrPrivateUse3 = auto() NestedTensorCPU = auto() NestedTensorCUDA = auto() NestedTensorHIP = auto() NestedTensorXLA = auto() NestedTensorMTIA = auto() NestedTensorMPS = auto() NestedTensorIPU = auto() NestedTensorXPU = auto() NestedTensorHPU = auto() NestedTensorVE = auto() NestedTensorLazy = auto() NestedTensorMeta = auto() NestedTensorPrivateUse1 = auto() NestedTensorPrivateUse2 = auto() NestedTensorPrivateUse3 = auto() AutogradCPU = auto() AutogradCUDA = auto() AutogradHIP = auto() AutogradXLA = auto() AutogradMTIA = auto() AutogradMPS = auto() AutogradIPU = auto() AutogradXPU = auto() AutogradHPU = auto() AutogradVE = auto() AutogradLazy = auto() AutogradMeta = auto() AutogradPrivateUse1 = auto() AutogradPrivateUse2 = auto() AutogradPrivateUse3 = auto() # END autogenerated def __str__(self) -> str: return self.name def lower(self) -> str: return str(self).lower() @staticmethod def parse(value: str) -> DispatchKey: for k, v in DispatchKey.__members__.items(): if k == value: return v raise AssertionError(f"unknown dispatch key {value}") class _TorchDispatchModeKey(Enum): FAKE = auto() PROXY = auto() FUNCTIONAL = auto() def codegen_per_backend_entries() -> str: r: list[str] = [] for fk in FUNCTIONALITY_KEYS: r.extend(f" {fk}{bc} = auto()" for bc in BACKEND_COMPONENTS) return "\n".join(r) for fk in FUNCTIONALITY_KEYS: for bc in BACKEND_COMPONENTS: if not hasattr(DispatchKey, fk + bc): r = codegen_per_backend_entries() print(r) raise RuntimeError( f"Missing {fk}{bc} from DispatchKey enum. Here is the autogenerated list we expect to have:\n\n{r}" ) STRUCTURED_DISPATCH_KEYS = { DispatchKey.MPS, DispatchKey.CUDA, DispatchKey.CPU, DispatchKey.XPU, } UFUNC_DISPATCH_KEYS = {DispatchKey.CUDA, DispatchKey.CPU} # Set of supported dispatch keys dispatch_keys = [ DispatchKey.CPU, DispatchKey.SparseCPU, DispatchKey.SparseCsrCPU, DispatchKey.MkldnnCPU, DispatchKey.CUDA, DispatchKey.MPS, DispatchKey.XPU, DispatchKey.SparseXPU, DispatchKey.SparseCsrXPU, DispatchKey.SparseCUDA, DispatchKey.SparseCsrCUDA, DispatchKey.QuantizedCPU, DispatchKey.QuantizedCUDA, DispatchKey.CompositeImplicitAutograd, DispatchKey.CompositeImplicitAutogradNestedTensor, DispatchKey.CompositeExplicitAutograd, DispatchKey.CompositeExplicitAutogradNonFunctional, DispatchKey.NestedTensorCPU, DispatchKey.NestedTensorCUDA, DispatchKey.NestedTensorXPU, # Meta is a magic key: it is automatically generated for structured # kernels DispatchKey.Meta, DispatchKey.SparseMeta, DispatchKey.SparseCsrMeta, DispatchKey.QuantizedMeta, DispatchKey.NestedTensorMeta, DispatchKey.ZeroTensor, ] # Dispatch keys that "support all backends". These codegen slightly differently # then backend specific keys. def is_generic_dispatch_key(dk: DispatchKey) -> bool: return dk in { DispatchKey.CompositeExplicitAutograd, DispatchKey.CompositeExplicitAutogradNonFunctional, DispatchKey.CompositeImplicitAutograd, DispatchKey.CompositeImplicitAutogradNestedTensor, } # CUDA specific dispatch keys def is_cuda_dispatch_key(dk: DispatchKey) -> bool: return dk in { DispatchKey.CUDA, DispatchKey.QuantizedCUDA, DispatchKey.SparseCUDA, DispatchKey.SparseCsrCUDA, DispatchKey.NestedTensorCUDA, DispatchKey.AutogradCUDA, } # XPU specific dispatcy keys def is_xpu_dispatch_key(dk: DispatchKey) -> bool: return dk in { DispatchKey.XPU, DispatchKey.QuantizedXPU, DispatchKey.SparseXPU, DispatchKey.SparseCsrXPU, DispatchKey.NestedTensorXPU, DispatchKey.AutogradXPU, } # Structured kernel generation is only supported for certain key types; # otherwise use old-style def is_structured_dispatch_key(dk: DispatchKey) -> bool: return dk in STRUCTURED_DISPATCH_KEYS def is_ufunc_dispatch_key(dk: DispatchKey) -> bool: # For now, ufunc dispatch keys coincide with structured keys return dk in UFUNC_DISPATCH_KEYS dispatch_device_map = {is_cuda_dispatch_key: "cuda", is_xpu_dispatch_key: "xpu"} # This is oddly named ScalarType and not DType for symmetry with C++ class ScalarType(Enum): Byte = auto() Char = auto() Short = auto() Int = auto() Long = auto() Half = auto() Float = auto() Double = auto() ComplexHalf = auto() ComplexFloat = auto() ComplexDouble = auto() Bool = auto() BFloat16 = auto() Float8_e5m2 = auto() Float8_e5m2fnuz = auto() Float8_e4m3fn = auto() Float8_e4m3fnuz = auto() Float8_e8m0fnu = auto() def __str__(self) -> str: return self.name @staticmethod def maybe_parse(value: str) -> ScalarType | None: for k, v in ScalarType.__members__.items(): if k == value: return v return None @staticmethod def parse(value: str) -> ScalarType: mb_r = ScalarType.maybe_parse(value) assert mb_r is not None, f"unknown dtype {value}" return mb_r @staticmethod def parse_set(values: str) -> OrderedSet[ScalarType]: dtypes: OrderedSet[ScalarType] = OrderedSet() for value in values.split(", "): if value in DTYPE_CLASSES: dtypes.update(DTYPE_CLASSES[value]) else: dtypes.add(ScalarType.parse(value)) return dtypes DTYPE_CLASSES: dict[str, OrderedSet[ScalarType]] = {} # NB: Integral doesn't include boolean DTYPE_CLASSES["Integral"] = OrderedSet( [ ScalarType.Byte, ScalarType.Char, ScalarType.Int, ScalarType.Long, ScalarType.Short, ] ) # NB: Floating doesn't include low precision types DTYPE_CLASSES["Floating"] = OrderedSet([ScalarType.Float, ScalarType.Double]) DTYPE_CLASSES["Complex"] = OrderedSet( [ScalarType.ComplexFloat, ScalarType.ComplexDouble] ) DTYPE_CLASSES["All"] = DTYPE_CLASSES["Integral"] | DTYPE_CLASSES["Floating"] DTYPE_CLASSES["AllAndComplex"] = DTYPE_CLASSES["All"] | DTYPE_CLASSES["Complex"] DTYPE_CLASSES["FloatingAndComplex"] = ( DTYPE_CLASSES["Floating"] | DTYPE_CLASSES["Complex"] ) # Represents the valid entries for ufunc_inner_loop in native_functions.yaml. # NB: if you add a new UfuncKey, you will teach torchgen.dest.ufunc how # to process it. Most logic will ignore keys they don't understand, so your # new key will get silently ignored until you hook in logic to deal with it. class UfuncKey(Enum): # These are low level keys that represent exactly one particular # instantiation of the kernel produced by codegen CUDAFunctor = auto() CUDAFunctorOnOther = auto() CUDAFunctorOnSelf = auto() CPUScalar = auto() CPUVector = auto() # These are the ones users will usually specify, and # implicitly "fill in" the low level keys ScalarOnly = auto() # CUDA*, CPUScalar Generic = auto() # CUDA*, CPU* def __str__(self) -> str: return self.name @staticmethod def parse(value: str) -> UfuncKey: for k, v in UfuncKey.__members__.items(): if k == value: return v raise AssertionError(f"unknown ufunc key {value}") class DeviceCheckType(Enum): NoCheck = 0 ExactSame = 1 class ViewSchemaKind(Enum): aliasing = auto() aliasing_inplace = auto() non_aliasing = auto() # The basic input to the code generation is native_functions.yaml. # The name "native", BTW, comes from the distinction between native # functions and legacy TH functions. The legacy TH functions are gone, # but the "native" descriptor has stuck. # # NativeFunction models a single entry in native_functions.yaml. Its # fields roughly correspond to what you would see in the YAML itself, # but after canonicalization and parsing has occurred. # # You can see some of the overall design patterns for how we setup # dataclasses in this class, but we will defer a complete discussion # of this at FunctionSchema. @dataclass(frozen=True) class NativeFunction: # The namespace for this operator. For example, if we have "at::add" # then the namespace would be "at". This enables ops to be registered # through the same DSL with a custom namespace. If not specified, the # default namespace would be "at". namespace: str # The function schema of the operator in question. This schema # has been parsed; see FunctionSchema for more about its structure. # (This type is quoted as we are forward referencing a type # defined later in the file. I opted for this ordering of the # classes for expository clarity.) func: FunctionSchema # Whether or not to generate mutable tensor arguments like regular # ones use_const_ref_for_mutable_tensors: bool # Whether or not to omit automatic generation of a DeviceGuard device_guard: bool # How to emit automatic generation of device check device_check: DeviceCheckType # What python module to put the function in python_module: str | None # TODO: figure out what this does category_override: str | None # If no variants are specified in native_functions.yaml, this is # assumed to be {'function'}. variants: set[Variant] # Whether or not we should skip generating registrations for # this kernel. This is a bit of a double-edged sword, as manual # registrations don't participate in codegen-based selective build! manual_kernel_registration: bool # Whether or not to skip generating TensorMethod/Functions bindings # for this kernel. Technically, this doesn't actually skip generating # the binding; instead, the binding gets generated to __dispatch_{funcname} # so you can make use of the normal binding if you need it. manual_cpp_binding: bool # The location in the YAML file were this native function entry was # defined. This is for conveniently reporting error messages! loc: Location # A list of operators that are expected to be auto-generated for this NativeFunction. # Note: This list isn't actually directly used by the codegen to generate anything. # Instead, the codegen figures out what operators to generate purely based off of # function schema, and uses the autogen declarations to error check. # We expect every NativeFunction that gets auto-generated be explicitly called out # in native_functions.yaml autogen: list[OperatorName] # If non-empty, this kernel is subject to ufunc codegen. # Sorted by ufunc_key ufunc_inner_loop: dict[UfuncKey, UfuncInnerLoop] # Whether or not this out functions is a "structured kernel". Structured # kernels are defined a little differently from normal kernels; in # particular, their shape checking logic is defined separately from # the kernel. Only out functions can be structured; other functions # delegate to the out function using the structured_delegate keyword. # Every structured kernel must have at least an out and a functional # variant. structured: bool # Whether or not this non-out function is a structured kernel, defined # in terms of the out kernel referenced by the string here. structured_delegate: OperatorName | None # Only valid for structured kernels. Specifies alternative of what # to inherit from when defining the meta class for the structured # operator. This will usually be TensorIteratorBase. This also # changes the semantics of set_output to call the parent class. structured_inherits: str | None # Structured kernels can declare elements as "precomputed". These elements # are returned by the meta function in one struct and passed to the impl # function in lieu of certain kernel arguments that these precomputed # elements supersede. Information about the names and types of these # precomputed elements and how they correspond to kernel arguments is stored # in this member, if applicable. precomputed: Precompute | None # Argument names whose default should be excluded from the C++ interface. # Intended for resolving overload ambiguities between signatures. cpp_no_default_args: set[str] # Note [Abstract ATen methods] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # An abstract ATen method is one whose dispatch differs between # types. These are implemented in derived types (with a # standard (throwing) definition in Type). A concrete ATen # method is one which has the same dispatch for all types; # we just implement it in the base Type. This is exposed # in Declarations.yaml via a field named 'abstract'. is_abstract: bool # Whether or not the NativeFunction contains a backend-agnostic kernel has_composite_implicit_autograd_kernel: bool has_composite_implicit_autograd_nested_tensor_kernel: bool has_composite_explicit_autograd_kernel: bool has_composite_explicit_autograd_non_functional_kernel: bool # Tags are used to describe semantic information about (groups of) operators, # That aren't easily inferrable directly from the operator's schema. tags: set[str] # NB: The benefit of defining a dataclass is that we automatically get # a constructor defined for all the fields we specify. No need # to explicitly write it out. # We parse both the NativeFunction + backend-specific information about it, which it stored in a corresponding BackendIndex. @staticmethod def from_yaml( ei: dict[str, object], loc: Location, valid_tags: set[str], ignore_keys: set[DispatchKey] | None = None, ) -> tuple[NativeFunction, dict[DispatchKey, dict[OperatorName, BackendMetadata]]]: """ Parse a NativeFunction from a dictionary as directly parsed from native_functions.yaml """ e = ei.copy() funcs = e.pop("func") assert isinstance(funcs, str), f"not a str: {funcs}" # only support one level of namespace. E.g., aten::add namespace_helper = NamespaceHelper.from_namespaced_entity( namespaced_entity=funcs, max_level=1 ) namespace = namespace_helper.get_cpp_namespace(default="aten") func = FunctionSchema.parse(namespace_helper.entity_name) cpp_no_default_args_list = e.pop("cpp_no_default_args", []) assert isinstance(cpp_no_default_args_list, list) cpp_no_default_args = set(cpp_no_default_args_list) use_const_ref_for_mutable_tensors = e.pop( "use_const_ref_for_mutable_tensors", False ) assert isinstance(use_const_ref_for_mutable_tensors, bool) if use_const_ref_for_mutable_tensors: assert not func.arguments.out, ( "see https://github.com/pytorch/pytorch/issues/145522" ) variants_s = e.pop("variants", "function") assert isinstance(variants_s, str) variants: set[Variant] = set() for v in variants_s.split(", "): if v == "function": variants.add(Variant.function) elif v == "method": variants.add(Variant.method) else: raise AssertionError(f"illegal variant {v}") manual_kernel_registration = e.pop("manual_kernel_registration", False) assert isinstance(manual_kernel_registration, bool), ( f"not a bool: {manual_kernel_registration}" ) manual_cpp_binding = e.pop("manual_cpp_binding", False) assert isinstance(manual_cpp_binding, bool), f"not a bool: {manual_cpp_binding}" device_guard = e.pop("device_guard", True) assert isinstance(device_guard, bool), f"not a bool: {device_guard}" device_check_s = e.pop("device_check", None) assert device_check_s is None or isinstance(device_check_s, str), ( f"not a str: {device_check_s}" ) assert ( device_check_s is None or device_check_s in DeviceCheckType.__members__ ), f"illegal device_check: {device_check_s}" device_check: DeviceCheckType if device_check_s is None: device_check = DeviceCheckType.ExactSame else: device_check = DeviceCheckType[device_check_s] structured = e.pop("structured", False) assert isinstance(structured, bool), f"not a bool: {structured}" structured_delegate_s = e.pop("structured_delegate", None) assert structured_delegate_s is None or isinstance( structured_delegate_s, str ), f"not a str: {structured_delegate_s}" assert structured_delegate_s is None or "::" not in structured_delegate_s, ( "namespace is not supported in structured delegate," " using the same namespace as the native function" ) structured_delegate: OperatorName | None = None if structured_delegate_s is not None: structured_delegate = OperatorName.parse(structured_delegate_s) structured_inherits = e.pop("structured_inherits", None) assert structured_inherits is None or isinstance(structured_inherits, str), ( f"not a str: {structured_inherits}" ) assert structured_inherits is None or "::" not in structured_inherits, ( "namespace is not supported in structured inherits," " using the same namespace as the native function" ) python_module = e.pop("python_module", None) assert python_module is None or isinstance(python_module, str), ( f"not a str: {python_module}" ) assert python_module is None or Variant.method not in variants, ( "functions in modules cannot be methods" ) category_override = e.pop("category_override", None) assert category_override is None or isinstance(category_override, str), ( f"not a str: {category_override}" ) precomputed_dict = e.pop("precomputed", None) assert precomputed_dict is None or structured is True precomputed = Precompute.parse(precomputed_dict) if precomputed_dict else None tags_inp = e.pop("tags", []) if isinstance(tags_inp, str): tags_inp = [tags_inp] assert isinstance(tags_inp, list) # All aten ops generated by torchgen receive the pt2_compliant tag. if namespace == "aten" and "pt2_compliant_tag" in valid_tags: tags_inp.append("pt2_compliant_tag") tags: set[str] = set() for t in tags_inp: assert len(valid_tags) > 0 # TODO: verify that the tag is valid and has an entry in tags.yaml if t in valid_tags: tags.add(t) else: raise AssertionError(f"illegal tag {t}") from torchgen.api import cpp raw_dispatch = e.pop("dispatch", None) assert raw_dispatch is None or isinstance(raw_dispatch, dict), e dispatch: dict[DispatchKey, BackendMetadata] = {} num_dispatch_keys: int = 0 if raw_dispatch is not None: assert not manual_kernel_registration, ( "cannot specify both manual_kernel_registration and dispatch; with " "manual registration, dispatch has no effect!" ) redundant_composite_implicit_autograd = False for ks, v in raw_dispatch.items(): if ks == "__line__": continue # not worth tracking line numbers for dispatch entries assert isinstance(ks, str), ( f"illegal dispatch key '{ks}' in {raw_dispatch}" ) assert isinstance(v, str), ( f"illegal dispatch value '{v}' in {raw_dispatch}" ) for k in ks.split(","): dispatch_key = DispatchKey.parse(k.strip()) num_dispatch_keys += 1 if ignore_keys and dispatch_key in ignore_keys: continue assert dispatch_key in dispatch_keys, ( f"Dispatch key {dispatch_key} of kernel {v} " "is not a supported dispatch key." ) # We only allow at most 3 levels of namespace for kernels. # We will append "native" to a custom kernel namespace. namespace_helper = NamespaceHelper.from_namespaced_entity( v, max_level=3 ) kernel_namespace = namespace_helper.get_cpp_namespace(default="at") # Why is 'structured' included? External backends (e.g. # XLA) opt into which ops are structured independently # of which in-tree ops are structured dispatch[dispatch_key] = BackendMetadata( kernel=namespace_helper.entity_name, structured=structured and is_structured_dispatch_key(dispatch_key), cpp_namespace=(kernel_namespace + "::native"), ) if ( dispatch_key is DispatchKey.CompositeImplicitAutograd and v == cpp.name(func) ): redundant_composite_implicit_autograd = True # We count the number of dispatch keys which have not been ignored to prevent a dispatch table # in which all backend keys are ignored but necessarily kept, remaining compositeimplicit, # from being treated as redundant. assert not ( num_dispatch_keys == 1 and redundant_composite_implicit_autograd ), ( "unnecessary dispatch table for this function; just delete the dispatch " "key entirely" ) # if a function is a structured delegate, deleting the dispatch # table is NOT semantics preserving assert ( structured_delegate or dispatch.keys() != {DispatchKey.CompositeImplicitAutograd} or dispatch[DispatchKey.CompositeImplicitAutograd].supports_symint() or num_dispatch_keys != 1 ), ( f"unexpected name for singleton CompositeImplicitAutograd dispatch entry: expected {cpp.name(func)} " f"but got {dispatch[DispatchKey.CompositeImplicitAutograd]}. Rename your implementation to the expected " "name, then delete the dispatch table" ) elif not structured and structured_delegate is None: name = str(func.name.name) assert not ( name.startswith("new_") or name.endswith("_like") # TODO: maybe it's better to test the return or ( func.arguments.tensor_options and not func.arguments.has_tensor_arg() ) ), ( f"expected {name} to have a CompositeExplicitAutograd " "dispatch entry, but there was no dispatch table. Factory functions " "should not have implicit dispatch as they should not be decomposed " "for __torch_dispatch__" ) dispatch[DispatchKey.CompositeImplicitAutograd] = BackendMetadata( cpp.name(func), structured=False, cpp_namespace=DEFAULT_KERNEL_NAMESPACE ) composites_in_dispatch = [ d for d in dispatch if d == DispatchKey.CompositeExplicitAutograd or d == DispatchKey.CompositeExplicitAutogradNonFunctional or d == DispatchKey.CompositeImplicitAutograd or d == DispatchKey.CompositeImplicitAutogradNestedTensor ] assert len(composites_in_dispatch) <= 1 or ( len(composites_in_dispatch) == 2 and ( DispatchKey.CompositeExplicitAutogradNonFunctional not in composites_in_dispatch ) and ( DispatchKey.CompositeImplicitAutogradNestedTensor in composites_in_dispatch ) ), ( "cannot specify more than one of CompositeExplicitAutograd, CompositeExplicitAutogradNonFunctional, " "or CompositeImplicitAutograd on a single kernel; each " "strictly subsumes the other. If you wanted to provide an explicit autograd " "implementation, specify CompositeExplicitAutograd; otherwise specify CompositeImplicitAutograd only" ) autogen_str = e.pop("autogen", "") assert isinstance(autogen_str, str) autogen = ( [] if autogen_str == "" else [OperatorName.parse(x) for x in autogen_str.split(", ")] ) raw_ufunc_inner_loop = e.pop("ufunc_inner_loop", {}) ufunc_inner_loop = {} if isinstance(raw_ufunc_inner_loop, str): ufunc_inner_loop[UfuncKey.Generic] = UfuncInnerLoop.parse( raw_ufunc_inner_loop, UfuncKey.Generic ) elif isinstance(raw_ufunc_inner_loop, dict): for k, vo in raw_ufunc_inner_loop.items(): if k == "__line__": continue assert isinstance(k, str), f"ufunc_inner_loop key is not a str: {k}" assert isinstance(vo, str), f"ufunc_inner_loop value is not a str: {v}" ufunc_key = UfuncKey.parse(k) ufunc_inner_loop[ufunc_key] = UfuncInnerLoop.parse(vo, ufunc_key) else: raise AssertionError( f"ufunc_inner_loop not str or dict: {raw_ufunc_inner_loop}" ) # Program the BackendIndex for the implicit dispatch entry from ufunc if ufunc_inner_loop: assert structured, "ufunc must be structured" # Delay import ufunc here to avoid circular import issue # See: https://github.com/pytorch/pytorch/issues/81294 import torchgen.api.ufunc as ufunc for dispatch_key in UFUNC_DISPATCH_KEYS: assert dispatch_key not in dispatch, ( f"ufunc should not have explicit dispatch entry for {dispatch_key}" ) dispatch[dispatch_key] = BackendMetadata( kernel=ufunc.schema_kernel_name(func, dispatch_key), structured=True, cpp_namespace=DEFAULT_KERNEL_NAMESPACE, ) if structured_delegate: # Structured functions MUST have a dispatch table is_abstract = True else: is_abstract = ( dispatch.keys() != {DispatchKey.CompositeImplicitAutograd} and dispatch.keys() != {DispatchKey.CompositeImplicitAutogradNestedTensor} and dispatch.keys() != { DispatchKey.CompositeImplicitAutograd, DispatchKey.CompositeImplicitAutogradNestedTensor, } ) has_composite_implicit_autograd_kernel = ( DispatchKey.CompositeImplicitAutograd in dispatch ) has_composite_implicit_autograd_nested_tensor_kernel = ( DispatchKey.CompositeImplicitAutogradNestedTensor in dispatch ) has_composite_explicit_autograd_kernel = ( DispatchKey.CompositeExplicitAutograd in dispatch ) has_composite_explicit_autograd_non_functional_kernel = ( DispatchKey.CompositeExplicitAutogradNonFunctional in dispatch ) # We aren't going to store dispatch metadata inline in NativeFunctions; # instead it is separately indexed by backend (so other backends can # add more dispatch entries after the fact). Reindex the individual # metadata by OperatorName! backend_metadata = {k: {func.name: v} for k, v in dispatch.items()} # don't care if it exists or not; make it easier to use this function # with other yaml parsers that aren't setting __line__ in the dict e.pop("__line__", None) assert not e, f"leftover entries: {e}" # Asserts that we can't do in post_init, because they rely on backend-specific info if structured_delegate is not None: for key in STRUCTURED_DISPATCH_KEYS: assert key not in dispatch, ( f"if structured_delegate, then must not have {key} in dispatch dictionary " "(it is delegated!)" ) return ( NativeFunction( func=func, use_const_ref_for_mutable_tensors=use_const_ref_for_mutable_tensors, variants=variants, structured=structured, structured_delegate=structured_delegate, structured_inherits=structured_inherits, precomputed=precomputed, autogen=autogen, ufunc_inner_loop=ufunc_inner_loop, manual_kernel_registration=manual_kernel_registration, manual_cpp_binding=manual_cpp_binding, python_module=python_module, category_override=category_override, device_guard=device_guard, device_check=device_check, loc=loc, cpp_no_default_args=cpp_no_default_args, is_abstract=is_abstract, has_composite_implicit_autograd_kernel=has_composite_implicit_autograd_kernel, has_composite_implicit_autograd_nested_tensor_kernel=has_composite_implicit_autograd_nested_tensor_kernel, has_composite_explicit_autograd_kernel=has_composite_explicit_autograd_kernel, has_composite_explicit_autograd_non_functional_kernel=has_composite_explicit_autograd_non_functional_kernel, tags=tags, namespace=namespace, ), backend_metadata, ) def validate_unstructured(self) -> None: # TODO: probably better to accumulate these errors and report them all # at once assert not self.structured, ( "This function is structured, but there was " "no valid functional variant of it." ) assert self.structured_delegate, ( "This function delegates to another structured out function, " "but no valid function was found (the delegate may not exist, or it has the wrong type)" ) # __post_init__ functions in dataclasses can be used to do extra # validation after construction. # # Notice that we don't do any type validation here. In fact, we # rely exclusively on mypy to check if you've done types correctly! # Validation is for nontrivial invariants that cannot be (conveniently) # encoded in the type system. def __post_init__(self) -> None: if self.func.arguments.out: assert self.variants == {Variant.function}, ( "Native functions with out arguments MUST " "be declared with only function variant; e.g., variants: function; " "otherwise you will tickle a Python argument binding bug " "(which usually manifests itself as the result variable being undefined.)" ) if self.structured: assert self.func.kind() == SchemaKind.out, ( "Put structured field on the out= " "variant of a function; did you mean structured_delegate?" ) assert self.device_guard, ( "device_guard: False is not respected by structured kernels" ) if self.structured_delegate: assert self.func.kind() != SchemaKind.out, ( "structured_delegate field not allowed " "on out= functions; did you mean structured?" ) assert self.device_guard, ( "device_guard: False is not respected by structured kernels" ) # Technically, with the asserts above, this assert is impossible to # happen assert not (self.structured and self.structured_delegate), ( "Cannot have both structured and structured_delegate on function" ) defaulted_arguments = { a.name for a in self.func.schema_order_arguments() if a.default is not None } invalid_args = set.difference(self.cpp_no_default_args, defaulted_arguments) assert len(invalid_args) == 0, f"Invalid cpp_no_default_args: {invalid_args}" if self.structured_inherits is not None: assert self.structured, ( "structured_inherits must also imply structured: True" ) if str(self.func.name).startswith("_foreach"): assert self.device_check == DeviceCheckType.NoCheck, ( "foreach kernels fall back to slow path when tensor are on different devices, " "device_check not allowed to be enabled" ) # NB: if your function accidentally has rand/dropout/... in its name # but is not actually random, feel free to amend this to special case if ( "rand" in str(self.func.name) or ( ( "dropout" in str(self.func.name) or any( "dropout" in arg.name for arg in self.func.arguments.flat_all ) ) # Backwards of dropout is typically deterministic and "backward" not in str(self.func.name) and str(self.func.name.name) not in ["_cudnn_init_dropout_state"] ) or self.func.arguments.has_generator_arg() ): assert "nondeterministic_seeded" in self.tags, str(self.func.name) @property def has_composite_kernel(self) -> bool: return ( self.has_composite_implicit_autograd_kernel or self.has_composite_explicit_autograd_kernel or self.has_composite_explicit_autograd_non_functional_kernel ) or ( self.has_composite_implicit_autograd_kernel and self.has_composite_implicit_autograd_nested_tensor_kernel ) @property def is_view_op(self) -> bool: rets = self.func.returns is_non_mutating_view = len(rets) > 0 and any( r.annotation is not None and not r.annotation.is_write for r in rets ) # See Note [resize_ in Functionalization] for more dtails is_inplace_view = ( "inplace_view" in self.tags and str(self.func.name) != "resize_" and str(self.func.name) != "resize_as_" ) is_wildcard_view = any( inp.annotation is not None and "*" in inp.annotation.alias_set_after for inp in self.func.schema_order_arguments() ) return is_non_mutating_view or is_inplace_view or is_wildcard_view @property def view_schema_kind(self) -> ViewSchemaKind: if self.is_view_op and self.func.name.name.inplace: assert "inplace_view" in self.tags return ViewSchemaKind.aliasing_inplace if self.is_view_op: return ViewSchemaKind.aliasing else: return ViewSchemaKind.non_aliasing @property def root_name(self) -> str: return self.func.name.name.base @property def part_of_structured_group(self) -> bool: return self.structured or self.structured_delegate is not None class SchemaKind(Enum): functional = auto() inplace = auto() out = auto() mutable = auto() scratch = auto() # A structured kernel is guaranteed to have a functional and out variant, and # optionally an inplace variant. # # NB: we create NativeFunctionsGroup *even if* the function is not # actually annotated structured. Test the structured boolean to see if it # actually is structured or not. @dataclass(frozen=True) class NativeFunctionsGroup: functional: NativeFunction inplace: NativeFunction | None mutable: NativeFunction | None out: NativeFunction @property def structured(self) -> bool: # Whether or not the operator has a meta() function. This information is backend-agnostic. return self.out.structured def __post_init__(self) -> None: test_sig: FunctionSchema = self.functional.func.signature() for f in self.functions(): if test_sig != f.func.signature(): raise AssertionError( "NativeFunctionsGroup constructed from two NativeFunctions " f"that don't have matching signatures: {test_sig} != {f.func.signature()}" ) if self.structured != f.part_of_structured_group: raise AssertionError( "NativeFunctionsGroup constructed from structured and unstructured " f"functions: {self.out.func.name} and {f.func.name}" ) assert self.functional.func.kind() == SchemaKind.functional assert self.out.func.kind() == SchemaKind.out assert self.functional.namespace == self.out.namespace if self.inplace is not None: assert self.inplace.func.kind() == SchemaKind.inplace assert self.inplace.namespace == self.functional.namespace if self.mutable is not None: assert self.mutable.func.kind() == SchemaKind.mutable assert self.mutable.namespace == self.functional.namespace # See Note [Overload Ambiguity With Functional Variants] assert self.functional.func.name.name.functional_overload if self.structured: # For now, structured composite kernels are not supported (need some # design work to figure out how to make the composite case work) assert ( not self.out.has_composite_implicit_autograd_kernel and not self.out.has_composite_implicit_autograd_nested_tensor_kernel ) assert self.functional.structured_delegate == self.out.func.name, ( f"{self.functional.func.name} delegates to {self.functional.structured_delegate} " f"but its actual delegate is {self.out.func.name}" ) if self.inplace is not None: assert self.inplace.structured_delegate == self.out.func.name generated_fns = sorted( [str(f.func.name) for f in self.functions() if "generated" in f.tags] ) generated_fns_str = ", ".join(str(x) for x in generated_fns) expected_generated_fns: set[str] = set() for f in self.functions(): expected_generated_fns.update(str(op) for op in f.autogen) expected_generated_fns_str = ", ".join( str(x) for x in sorted(expected_generated_fns) ) if len(expected_generated_fns) == 0 and len(generated_fns) > 0: raise RuntimeError( f"The codegen expects to be able to generate '{generated_fns_str}'." " In order to generate them however, we expect them to be called out explicitly in the yaml." f" Please add an 'autogen: {generated_fns_str}' line to the entry for {str(f.func.name)}" ) if expected_generated_fns_str != generated_fns_str: raise RuntimeError( f"The codegen expects to be able to generate '{generated_fns_str}'." f" To do so, it expects a line: 'autogen: {generated_fns_str}'." f" Instead, it found 'autogen: {expected_generated_fns_str}'" ) def signature(self) -> FunctionSchema: return self.out.func.signature() def functions(self) -> Iterator[NativeFunction]: yield self.functional yield self.out if self.inplace is not None: yield self.inplace if self.mutable is not None: yield self.mutable @property def root_name(self) -> str: return self.functional.root_name @staticmethod def from_dict(d: dict[SchemaKind, NativeFunction]) -> NativeFunctionsGroup | None: assert d if len(d) == 1: return None d = dict(d) # non-destructive updates please functional = d.pop(SchemaKind.functional, None) inplace = d.pop(SchemaKind.inplace, None) mutable = d.pop(SchemaKind.mutable, None) out = d.pop(SchemaKind.out, None) assert not d assert functional is not None # There are a few operators which only have functional/inplace variants; # these don't count as structured for our purposes here if out is None: return None # assuming all variants have the same namespace return NativeFunctionsGroup( functional=functional, inplace=inplace, mutable=mutable, out=out, ) @dataclass(frozen=True) class BackendMetadata: # The name of the backend kernel, for a given operator # for in-tree backends. These names come directly from the 'dispatch" field # in native_functions.yaml. The dispatch entry is optional; in that # case, that is equivalent to having written: # # dispatch: # CompositeImplicitAutograd: $operator_name kernel: str # Whether or not the operator has a structured kernel implemented, for this particular backend. # For in-tree backends, they all have the same value for structured- this is listed # in native_functions.yaml. # However, external backends like XLA can indendently toggle which ops are structured. structured: bool # The namespace for kernels, default value: DEFAULT_KERNEL_NAMESPACE cpp_namespace: str def supports_symint(self) -> bool: return "_symint" in self.kernel @dataclass(frozen=True) class UfuncInnerLoop: name: str supported_dtypes: OrderedSet[ScalarType] # key is stored here because it affects the semantics of name, # so its helpful to have them together for further processing ufunc_key: UfuncKey @staticmethod def parse(value: str, ufunc_key: UfuncKey) -> UfuncInnerLoop: name, supported_dtypes_str = value.split(" ", 1) assert supported_dtypes_str[0] == "(" assert supported_dtypes_str[-1] == ")" supported_dtypes: OrderedSet[ScalarType] = OrderedSet() for k in supported_dtypes_str[1:-1].split(", "): supported_dtypes |= ScalarType.parse_set(k) return UfuncInnerLoop( name=name, supported_dtypes=supported_dtypes, ufunc_key=ufunc_key ) # BackendIndex represents a backend. # The BackendIndex encodes per-operator information that is potentially different # for each backend. The most obvious example is the name of the kernel # (the 'dispatch' entry in native_functions.yaml). # However, there can be other examples of different backends having different information. # External backends can choose to opt their kernels to be structured independently from in-tree backends, # which means that this information isn't inherently tied to a NativeFunction- it's different per backend. @dataclass(frozen=True) class BackendIndex: dispatch_key: DispatchKey # Mainly important for structured kernels, this determines which variant in the operator group is used to implement the others. # All in-tree ops use out kernels, while XLA uses functional kernels. use_out_as_primary: bool # Whether the backend requires a device guard, and device checks. # For in-tree backends, this is currently just CUDA/HIP # For out-of-tree backends, this is currently just Intel XPU device_guard: bool # Whether the backend is in-tree (CPU/CUDA) or out-of-tree (XLA) external: bool # Other backend-specific information that is on a per-operator basis index: dict[OperatorName, BackendMetadata] @staticmethod def grow_index( parent_index: dict[DispatchKey, dict[OperatorName, BackendMetadata]], child_index: dict[DispatchKey, dict[OperatorName, BackendMetadata]], ) -> None: for k, v in child_index.items(): for op_name, metadata in v.items(): assert op_name not in parent_index[k], ( f"duplicate operator {op_name} for dispatch key {k}" ) parent_index[k][op_name] = metadata def primary(self, g: NativeFunctionsGroup) -> NativeFunction: if self.use_out_as_primary: return g.out else: return g.functional def has_kernel(self, g: NativeFunction | NativeFunctionsGroup) -> bool: m = self.get_kernel(g) return m is not None def get_kernel( self, g: NativeFunction | NativeFunctionsGroup ) -> BackendMetadata | None: if isinstance(g, NativeFunction): f = g elif isinstance(g, NativeFunctionsGroup): f = self.primary(g) else: assert_never(g) if f.func.name not in self.index: return None return self.index[f.func.name] def native_function_class_name(self) -> str | None: if self.external: return f"{str(self.dispatch_key)}NativeFunctions" else: # TODO: This discrepancy isn't required; we could also generated # a class for in-tree kernels. It'll just require carefully # updating every kernel definition + callsite of every in-tree aten kernel. return None # The function schema is undoubtedly the most important data structure # in all of the codegen, as it defines the type signature for operators, # and most of the code generation we do is type directed (e.g., look at # the types, decide what to do. Think about how we code generate # C++ function stubs!) # # We will also see in this class the general structure for how we model # data in this code generation. A few notable properties to point out # ahead of time: # # - These dataclasses are a *lossless* representation of the strings # they are parsed from. In fact, we assert that given the # information stored in the dataclass, we can exactly reconstruct # the string we parsed from (and assert this inside the parse # definition). There are a few reasons for this: # # - If you find that it is difficult to reconstruct the string # given a dataclass, that is a clue that you are data # representation is wrong. # # - It helps ensure that all relevant information is present # in the dataclass, so that downstream users aren't tempted # to reparse the original string to get some information # that was omitted. # # - It forces you to represent the data in-memory in the same way # it is recorded textually, which makes the dataclasses easier # to understand for someone who is familiar with the # textual format. (As a tradeoff, it means you have to model # the syntax, even when it is inconvenient. But maybe that means # the syntax is bad!) If you don't understand the internal # representation, go look at the printing code to see how # it maps onto the surface syntax! # # - It makes it easy to test the parsing code, as parsing code # that is inconsistent with the string code will fail early # and loudly. (As a tradeoff, it makes the parsing code a bit # brittle (in particular, with trivial whitespace changes you # are likely to trigger an assert error). # # In general, try to make the __str__ code as simple as possible # (even at the cost of more complex parsing logic.) Additionally, # try to minimize redundancy in data representation. (Precomputed # fields are OK though: they are defined as a simple function on # the canonical representation in question.) # # - These dataclasses are all frozen; once constructed their # values never change. This makes it easy to tell where any # given data came from: just look to the constructor. As a # tradeoff, you can't easily "decorate" a schema with extra # information from a post-facto analysis. We impose this # restriction to make these structures more understandable. # @dataclass(frozen=True) class FunctionSchema: # The name of the operator this function schema describes. name: OperatorName arguments: Arguments # TODO: Need to handle collisions with argument names at some point returns: tuple[Return, ...] @property def is_mutable(self) -> bool: def is_write(arg: Argument) -> bool: if arg.annotation is None: return False return arg.annotation.is_write # Corresponds to torch._C._FunctionSchema.is_mutable # See aten/src/ATen/core/function_schema.h (keep these in sync) return any(is_write(a) for a in self.arguments.flat_all) def schema_order_arguments(self) -> Iterator[Argument]: return itertools.chain( self.arguments.flat_positional, self.arguments.flat_kwarg_only, self.arguments.out, ) decl_re = re.compile(r"(?P<name>[^\(]+)\((?P<args>.*)\) -> (?P<returns>.*)") @staticmethod def parse(func: str) -> FunctionSchema: # We should probably get a proper parser here decls = FunctionSchema.decl_re.findall(func) assert len(decls) == 1, f"Invalid function schema: {func}" ops, args, return_decl = decls[0] name = OperatorName.parse(ops) arguments = Arguments.parse(args) returns = parse_returns(return_decl) r = FunctionSchema(name=name, arguments=arguments, returns=returns) assert str(r) == func, f"{str(r)} != {func}" return r def returns_are_aliased(self) -> bool: # We assert earlier that schemas can't have a mix of aliased and non-aliased returns return any( r for r in self.returns if r.annotation is not None and r.annotation.is_write ) def __post_init__(self) -> None: for arg, ret in zip(self.arguments.out, self.returns): assert arg.annotation == ret.annotation, ( "Out arguments must have matching return Tensor; furthermore, " "the ith-argument needs to correspond to the ith return" ) # We also enforce that if you have any mutable, positional args, then they are not returned. # This makes it easier to group these functions properly with their functional/out= counterparts. for a in self.arguments.post_self_positional_mutable: assert not any(a.annotation == r.annotation for r in self.returns), ( f"If you have a schema with mutable positional args, we expect them to not be returned. schema: {str(self)}" ) # Invariant: we expect out arguments to appear as keyword arguments in the schema. # This means that all mutable returns should be aliased to a keyword argument # (except for "self", which we explicitly don't treat as an out argument because of its use in methods) # See Note [is_out_fn] out_and_self = list(self.arguments.out) + [ arg for arg in self.arguments.flat_positional if arg.name == "self" ] mutable_returns = [ ret for ret in self.returns if ret.annotation is not None and ret.annotation.is_write ] immutable_returns = [ ret for ret in self.returns if ret.annotation is None or not ret.annotation.is_write ] # Some assertions: We don't want any functions with a return type of "-> (Tensor(a!), Tensor)", # because: # (1) It's more annoying to handle properly # (2) It's unnecessary - you can't method-chain on the first (mutated) output because it's part of a tuple. # Instead, we expect the (a!) argument to not be returned. assert len(mutable_returns) == 0 or len(immutable_returns) == 0, ( f"NativeFunctions must have either only mutable returns, or only immutable returns. Found: {str(self)}" ) for ret in mutable_returns: assert any(ret.annotation == arg.annotation for arg in out_and_self), ( 'All mutable returns must be aliased either to a keyword argument, or to "self". ' "Did you forget to mark an out argument as keyword-only?" ) if self.arguments.out: # out= ops that return their mutable inputs are only really useful for method chaining. # And method chaining is only really useful if the thing you're returning is a plain Tensor. # So ideally, we'd enforce that out= ops with a single plain mutable tensor should return the tensor, # and all other types of out= op schemas should return void. # There are a bunch of existing out= ops that return tuples of tensors though, so we're stuck with allowing that. if any(a.type != BaseType(BaseTy.Tensor) for a in self.arguments.out): assert len(self.returns) == 0, ( "out= ops that accept tensor lists as out arguments " ) "are expected to have no return type (since you can't do method chaining on them)" else: # mutable keyword arguments whose name has _scratch_ prefix are # scratch tensors for memory planning and should not be returned assert len( [ arg for arg in self.arguments.out if not arg.name.startswith("_scratch_") ] ) == len(self.returns), ( "Must return as many arguments as there are out arguments, or no return at all" ) if self.name.name.inplace: self_a = self.arguments.self_arg assert ( self_a and self_a.argument.annotation and self_a.argument.annotation.is_write ) if self_a.argument.type == BaseType(BaseTy.Tensor): # All inplace ops with an ordinary `Tensor self` argument should return self, # to allow for method chaining. assert ( len(self.returns) == 1 and self.returns[0].annotation == self_a.argument.annotation ) else: # You can't method chain on non-tensor self arguments though (like a list[Tensor]) # so in all other cases we expect the return type to be none. assert len(self.returns) == 0 if self.arguments.tensor_options is not None: assert self.kind() == SchemaKind.functional, ( "Found an operator that is not functional or out variant, but has tensor options arguments." "This is not allowed- tensor options arguments are only allowed for factory functions." f"schema: {str(self)}" ) if self.is_functional_fn(): assert self.kind() == SchemaKind.functional, ( "Found an operator that is not functional, but its overload contains the string 'functional'." "This is a special keyword in the codegen, please use a different overload name." f"schema: {str(self)}" ) def is_functional_fn(self) -> bool: return "functional" in self.name.overload_name def is_out_fn(self) -> bool: # Note [is_out_fn] # # out functions are the variants which take an explicit out= argument # to populate into. We need to know if a schema corresponds to an # out function for several reasons: # # - They codegen differently in C++ API # - codegen to at::add_out rather than at::add # - out argument is moved to front of C++ argument list # # out functions are DEFINED to be any function with a keyword-only # argument that is mutable. In principle, this could lead to a # false positive if you define a function that mutates a # kwarg only argument, but this isn't the "true" output of this # function. A more robust definition that would work in this # case would also look at: # # - The output types. Out functions take in the arguments # they mutate and then return them again; this is sort # of "definitionally" what makes something an out function. # Historically, we DO check this for consistency. # - Correspondence with pure variant. An out function # should have a signature equivalent to its pure variant, # but just with extra kwargs for the output elements. This # is difficult to actually check for and historically # we only do this check in tools/ return bool(self.arguments.out) def kind(self) -> SchemaKind: """ What kind of schema is this? A functional schema is one that returns a newly allocated output; an inplace schema modifies the self argument inplace; an out schema writes the result into an explicitly provided out argument. """ is_out = bool(self.arguments.out) is_scratch = bool( [arg for arg in self.arguments.out if arg.name.startswith("_scratch_")] ) is_inplace = self.name.name.inplace is_mutable = any( a.annotation is not None and a.annotation.is_write for a in self.arguments.post_self_positional ) assert not (is_out and is_inplace) # out= and inplace schemas can also have post_self_positional mutable args, # but we give precedence to out= and inplace when deciding the schema kind. # Tradeoff: we probably don't want to have to teach codegen that looks at inplace ops # to also worry about mutable post_self_positional arguments, # but it seems like a much bigger lift to classify them has having a new schema kind. # The number of ops that fit in this strange category is small enough that # we can probably manually write code for them instead of forcing the codegen to handle them. if is_inplace: return SchemaKind.inplace elif is_scratch: assert is_out, ( "invariant: all scratch operators are expected to be out= operators too" ) return SchemaKind.scratch elif is_out: assert not is_scratch, ( "We should not categorize a scratch op as an out variant. Check if the order of if statements are expected!" ) # noqa: B950 return SchemaKind.out elif is_mutable: return SchemaKind.mutable else: return SchemaKind.functional # For every return: # - If the return aliases an input, we return the input name # - Otherwise, we return None. # If return names were enforced to be consistent with aliasing information, then we wouldn't need this. def aliased_return_names(self) -> list[str | None]: outs: list[str | None] = [] for r in self.returns: aliased_args = [ a for a in self.arguments.flat_all if a.annotation is not None and a.annotation == r.annotation ] if len(aliased_args) == 0: outs.append(None) elif len(aliased_args) == 1: outs.append(aliased_args[0].name) else: aliased_names = ", ".join(a.name for a in aliased_args) raise AssertionError( f"Found a return ({r.name})that aliases multiple inputs ({aliased_names})" ) return outs def signature( self, *, strip_default: bool = False, strip_view_copy_name: bool = False, keep_return_names: bool = False, ) -> FunctionSchema: """ Certain schemas are 'related', in that they are simply inplace/out/functional versions of the same function. This method factors these schemas into the "core" functional signature which is equal across all versions. Here is what normalization happens to the schema to convert it to a signature: - The overload name is stripped (name is retained, since it expresses semantic content about what the function does) - Inplace is set False - Out arguments are stripped - Mutable post_self_positional args are converted to returns - Mutability annotations are stripped (this is sound because you cannot overload on mutability annotation) - Return names are stripped since they are not overloadable and some variants have return names but some not - TensorOptions are dropped because out= variants of factory functions don't include them (and we want to be able to pair up factory functions with their out variants) Finally, we want to be able to pair up related "view" and their corresponding "view_copy" operators. We do this by optionally stripping the trailing "_copy" from the base name. Example of a mutable op before and after: f.func (Mutable operator): _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950 f.func (Corresponding functional operator): _fused_moving_avg_obs_fq_helper.functional(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor running_min, Tensor running_max, Tensor scale, Tensor zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask, Tensor running_min_out, Tensor running_max_out, Tensor scale_out, Tensor zero_point_out) # noqa: B950 f.func.signature() output: _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor running_min, Tensor running_max, Tensor scale, Tensor zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) # noqa: B950 """ def strip_ret_annotation(r: Return) -> Return: return Return( name=r.name if keep_return_names else None, type=r.type, annotation=None, ) base_name = self.name.name.base if strip_view_copy_name: if base_name.endswith("_copy"): base_name = base_name.replace("_copy", "") elif base_name.endswith("_scatter"): base_name = base_name.replace("scatter", "inverse") # find mutable inputs that are not originally returned, and convert them to returns returns_from_mutable_inputs = tuple( # When we're grouping functions we strip the return names, # but when we're generating the actual functional variants then we follow # a convention for what to name the returns Return( name=f"{a.name}_out" if keep_return_names else None, type=a.type, annotation=None, ) for a in itertools.chain( # Order is important here (otherwise e.g. inplace with mutable args # and out= with mutable args won't have the same signature) ( [self.arguments.self_arg.argument] if self.arguments.self_arg is not None else [] ), self.arguments.out, self.arguments.post_self_positional, ) if a.annotation is not None and a.annotation.is_write and not any(a.annotation == r.annotation for r in self.returns) ) original_returns = tuple(map(strip_ret_annotation, self.returns)) # Ordering is important here. We expect the "mutable input" returns to come last. returns = original_returns + returns_from_mutable_inputs args_sig = self.arguments.signature(strip_default=strip_default) # See Note [bernoulli.p schema] if str(self.name) == "bernoulli.p": args_sig = Arguments.parse(str(args_sig).replace("float p", "float p=0.5")) return FunctionSchema( name=OperatorName( name=BaseOperatorName( base=base_name, inplace=False, dunder_method=self.name.name.dunder_method, ), overload_name="", # stripped ), arguments=args_sig, returns=returns, ) def view_signature(self) -> FunctionSchema: return self.signature(strip_view_copy_name=True) def with_name(self, name: OperatorName) -> FunctionSchema: return FunctionSchema( name=name, arguments=self.arguments, returns=self.returns, ) @property def modifies_arguments(self) -> bool: return self.kind() in [SchemaKind.inplace, SchemaKind.out, SchemaKind.mutable] def has_symint(self) -> bool: return self.arguments.has_symint_arg() def __str__(self) -> str: all_arguments_str = str(self.arguments) if len(self.returns) == 1: returns = str(self.returns[0]) # omit parentheses else: returns = "(" + ", ".join(map(str, self.returns)) + ")" return f"{self.name}({all_arguments_str}) -> {returns}" # Here is the rest of the data model, described more briefly. # Simplified version for what actually shows up in built-ins. # Look at alias_info.h for expanded syntax. If you need the structure, # you also need to make this structure recursive so it can be lined # up with the type components too. For primitives this isn't really # necessary @dataclass(frozen=True) class Annotation: # Typically only has one element. Not actually a set so # we can conveniently assume it is canonically ordered alias_set: tuple[str, ...] is_write: bool alias_set_after: tuple[str, ...] @staticmethod def parse(ann: str) -> Annotation: # TODO: implement a proper parser if this gets more ugly # Regex Explanation: # Example: "a! -> a|b" # Group #1: alias before optional '|', required. Matches the first # character 'a' in the example # Group #2: optional alias set after optional '|', matches empty string # in the example # Group #3: optional "is write" flag, matches '!' in the example. # Group #4: optional section containing arrow, matches " -> a|b" in the # example. # Group #5: optional alias after set, supports wildcard, matches "a|b" # in the example. # Group #6: optional sub-section of alias after set, matches "|b" in the # example. m = re.match(r"^([a-z])(\|[a-z])*(!?)( -> (\*|[a-z](\|[a-z])*))?$", ann) assert m is not None, f"unrecognized alias annotation {ann}" before_alias = m.group(1) + (m.group(2) if m.group(2) else "") alias_set = tuple(before_alias.split("|")) is_write = m.group(3) == "!" assert not (is_write and len(alias_set) > 1), ( f"alias set larger than 1 is not mutable, got {ann} instead." ) after_set = tuple(m.group(5).split("|")) if m.group(5) else () assert not (len(before_alias) > 1 and len(after_set) > 1), ( f"before alias set and after alias set cannot be larger than 1 at the same time, got {ann} instead." ) r = Annotation( alias_set=alias_set, is_write=is_write, alias_set_after=after_set ) assert str(r) == ann, f"{r} != {ann}" return r def __str__(self) -> str: alias_set = "|".join(self.alias_set) if self.is_write: alias_set = f"{alias_set}!" alias_set_after = "|".join(self.alias_set_after) if alias_set_after: alias_set = f"{alias_set} -> {alias_set_after}" return alias_set # The base class for the type system. This is also loosely modeled # off of jit_type.h, but we've simplified the hierarchy to focus # in on the aspects of the type system that matter for code generation # (for example, there's no SingleElementType subclass anymore). # You never actually construct a Type; usually it's going to be one # of the subclasses. If Python had ADTs this would be one! @dataclass(frozen=True) class Type: @staticmethod def parse(t: str) -> Type: r = Type._parse(t) assert str(r) == t, f"{r} != {t}" return r @staticmethod def _parse(t: str) -> Type: m = re.match(r"^(.+)\?$", t) if m is not None: return OptionalType(Type.parse(m.group(1))) m = re.match(r"^(.+)\[([0-9]+)?\]$", t) if m is not None: size = int(m.group(2)) if m.group(2) is not None else None return ListType(elem=Type.parse(m.group(1)), size=size) # '__torch__.torch.classes.' is the prefix for custom class m = re.match(r"^__torch__\.torch\.classes\.([a-zA-Z0-9_.]+)$", t) if m is not None: return CustomClassType(m.group(1)) try: return BaseType(BaseTy[t]) except KeyError as e: raise RuntimeError(f"unrecognized type {t}") from e def __str__(self) -> str: raise NotImplementedError # WARNING: These concepts are not very well-defined. For example, # is "int?" nullable? How about "int?[]". They are defined # so we can conveniently generate legacy Declarations.yaml but # really we should probably just remove these at some point def is_base_ty_like(self, base_ty: BaseTy) -> bool: raise NotImplementedError def is_tensor_like(self) -> bool: return self.is_base_ty_like(BaseTy.Tensor) def is_generator_like(self) -> bool: return self.is_base_ty_like(BaseTy.Generator) def is_symint_like(self) -> bool: return self.is_base_ty_like(BaseTy.SymInt) def is_nullable(self) -> bool: raise NotImplementedError def is_list_like(self) -> ListType | None: raise NotImplementedError # Base types are simple, atomic types with no further structure class BaseTy(Enum): Generator = auto() ScalarType = auto() Tensor = auto() int = auto() Dimname = auto() DimVector = auto() float = auto() str = auto() bool = auto() Layout = auto() Device = auto() DeviceIndex = auto() Scalar = auto() MemoryFormat = auto() QScheme = auto() Storage = auto() Stream = auto() SymInt = auto() SymBool = auto() GraphModule = auto() @dataclass(frozen=True) class BaseType(Type): name: BaseTy def __str__(self) -> str: return f"{self.name.name}" def is_base_ty_like(self, base_ty: BaseTy) -> bool: return self.name == base_ty def is_nullable(self) -> bool: return False def is_list_like(self) -> ListType | None: return None def is_symint_like(self) -> bool: return self.name == BaseTy.SymInt # Optional types may be specified, or may also be validly given None @dataclass(frozen=True) class OptionalType(Type): elem: Type def __str__(self) -> str: return f"{self.elem}?" def is_base_ty_like(self, base_ty: BaseTy) -> bool: return self.elem.is_base_ty_like(base_ty) def is_symint_like(self) -> bool: return self.elem.is_symint_like() def is_nullable(self) -> bool: return True def is_list_like(self) -> ListType | None: return self.elem.is_list_like() # A type representing a PyTorch custom class @dataclass(frozen=True) class CustomClassType(Type): class_name: str def __str__(self) -> str: """ Return the class name will prefix __torch__.torch.classes """ return f"__torch__.torch.classes.{self.class_name}" def is_base_ty_like(self, base_ty: BaseTy) -> bool: return False def is_symint_like(self) -> bool: return False def is_nullable(self) -> bool: """ Assume a custom class is not nullable. """ return False def is_list_like(self) -> ListType | None: return None # List types specify that we may have multiples of an element. We # also support explicit sizes on list types, but these have # some nontrivial semantics! (However, for C++ API purposes, explicit # sizes are mostly erased from the type system.) # # DANGER WILL ROBINSON: C++ elaboration depends on elem type; e.g., # int[] elaborates differently than bool[3]! @dataclass(frozen=True) class ListType(Type): elem: Type size: int | None def __str__(self) -> str: size = f"{self.size}" if self.size else "" return f"{self.elem}[{size}]" def is_base_ty_like(self, base_ty: BaseTy) -> bool: return self.elem.is_base_ty_like(base_ty) def is_symint_like(self) -> bool: return self.elem.is_symint_like() def is_nullable(self) -> bool: return self.elem.is_nullable() def is_list_like(self) -> ListType | None: return self @dataclass(frozen=True) class Argument: # NB: I didn't put kwarg_only as a boolean field here, unlike # c10::Argument, so that printing works correctly name: str type: Type default: str | None # The semantics of the annotation field are a little strange. # # Alias annotations parametrize Tensors (since Tensors are the only things # that can alias.) This motivates why I write Tensor(a!)? (and not, for # example, Tensor?(a!)), because the (a!) describes aliasing on the tensor, # which may be optional (i.e., the alias annotation should bind first to # Tensor, before the optional postfix annotation). # # However, despite being a property of Tensor, we (and c10::Argument) # store the annotation at the top level of the Argument, rather than # inside the embedded Tensor type. In the C++ version of this # class, we then go through great lengths to mimic the type # structure in the annotation structure so we can correlate # annotations with types. # # Now, it turns out, in all applications in code generation, the # structure of annotated types is very simple. So we just hard # code it here. But if we ever do get anything more complex, this # model will have to change! annotation: Annotation | None @property def alias_info(self) -> Annotation | None: return self.annotation @staticmethod def parse(arg: str) -> Argument: name: str default: str | None assert " " in arg, f"illegal argument '{arg}'" if "=" in arg: assert arg.count("=") == 1, f"illegal argument with default value: '{arg}'" type_and_annot_and_name, default = arg.split("=") type_and_annot, name = type_and_annot_and_name.rsplit(" ", 1) name_and_default = f"{name}={default}" else: type_and_annot, name_and_default = arg.rsplit(" ", 1) name = name_and_default default = None # TODO: deduplicate annotation matching with Return match = re.match(r"Tensor\((.+)\)(.*)", type_and_annot) annotation: Annotation | None if match: # If you update this, make sure the __str__ still works too assert match.group(2) in [ "", "?", "[]", ], "unrecognized alias analysis form with Tensor" type_s = "Tensor" + match.group(2) annotation = Annotation.parse(match.group(1)) else: type_s = type_and_annot annotation = None type = Type.parse(type_s) r = Argument( name=name, type=type, default=default, annotation=annotation, ) assert str(r) == arg, f"{str(r)} != {arg}" return r @property def is_write(self) -> bool: return self.annotation is not None and self.annotation.is_write def __str__(self) -> str: type = f"{self.type}" if self.annotation: assert type in ["Tensor", "Tensor?", "Tensor[]"] type = type.replace("Tensor", f"Tensor({self.annotation})") if self.name is None: return type else: mb_default = "" if self.default: mb_default = f"={self.default}" return f"{type} {self.name}{mb_default}" @dataclass(frozen=True) class Return: name: str | None type: Type annotation: Annotation | None @property def alias_info(self) -> Annotation | None: return self.annotation @staticmethod def parse(arg: str) -> Return: name: str | None if " " in arg: type_and_annot, name = arg.rsplit(" ", 1) else: type_and_annot = arg name = None match = re.match(r"Tensor\((.+)\)(.*)", type_and_annot) annotation: Annotation | None if match: # If you update this, make sure the __str__ still works too assert match.group(2) in [ "", "?", "[]", ], "unrecognized alias analysis form with Tensor" type_s = "Tensor" + match.group(2) annotation = Annotation.parse(match.group(1)) else: type_s = type_and_annot annotation = None type = Type.parse(type_s) r = Return( name=name, type=type, annotation=annotation, ) assert str(r) == arg, f"{str(r)} != {arg}" return r @property def is_write(self) -> bool: return self.annotation is not None and self.annotation.is_write def __str__(self) -> str: type = f"{self.type}" if self.annotation: assert type in ["Tensor", "Tensor?", "Tensor[]"] type = type.replace("Tensor", f"Tensor({self.annotation})") if self.name is None: return type else: return f"{type} {self.name}" # Represents the self argument for functions that may be methods @dataclass(frozen=True) class SelfArgument: argument: Argument # Bundle of arguments that represent a TensorOptions. This is mostly # relevant for the public C++ API but we bake it into the core data # model because other APIs often have to interact with it @dataclass(frozen=True) class TensorOptionsArguments: dtype: Argument layout: Argument device: Argument pin_memory: Argument def all(self) -> Sequence[Argument]: return [self.dtype, self.layout, self.device, self.pin_memory] @dataclass(frozen=True) class Arguments: # pre_self_positional is usually empty, but is notably non-empty # for where.self, where the condition argument comes before the # self argument pre_self_positional: tuple[Argument, ...] self_arg: SelfArgument | None post_self_positional: tuple[Argument, ...] pre_tensor_options_kwarg_only: tuple[Argument, ...] tensor_options: TensorOptionsArguments | None # post_tensor_options is typically memory format, which should be # part of tensor options but isn't right now, and is usually # placed after the tensor options arguments post_tensor_options_kwarg_only: tuple[Argument, ...] # Unlike in the previous codegen, we have factored out 'out' arguments # in the canonical representation, removing them from kwarg # arguments. This choice is justified by numerous downstream # transformations which treat out arguments specially; additionally, # you can see that canonicity is not violated! out: tuple[Argument, ...] # these are also kwarg-only @property def flat_non_out(self) -> Sequence[Argument]: ret: list[Argument] = [] ret.extend(self.flat_positional) ret.extend(self.flat_kwarg_only) return ret @property def flat_positional(self) -> Sequence[Argument]: ret: list[Argument] = [] ret.extend(self.pre_self_positional) if self.self_arg is not None: ret.append(self.self_arg.argument) ret.extend(self.post_self_positional) return ret @property def post_self_positional_mutable(self) -> Sequence[Argument]: return [a for a in self.post_self_positional if a.is_write] # NB: doesn't contain out arguments @property def flat_kwarg_only(self) -> Sequence[Argument]: ret: list[Argument] = [] ret.extend(self.pre_tensor_options_kwarg_only) if self.tensor_options is not None: ret.extend(self.tensor_options.all()) ret.extend(self.post_tensor_options_kwarg_only) return ret @property def flat_all(self) -> Sequence[Argument]: ret: list[Argument] = [] ret.extend(self.flat_positional) ret.extend(self.flat_kwarg_only) ret.extend(self.out) return ret @property def non_out( self, ) -> Sequence[Argument | SelfArgument | TensorOptionsArguments]: ret: list[Argument | SelfArgument | TensorOptionsArguments] = [] ret.extend(self.positional) ret.extend(self.kwarg_only) return ret @property def positional(self) -> Sequence[Argument | SelfArgument]: ret: list[Argument | SelfArgument] = [] ret.extend(self.pre_self_positional) if self.self_arg is not None: ret.append(self.self_arg) ret.extend(self.post_self_positional) return ret @property def kwarg_only(self) -> Sequence[Argument | TensorOptionsArguments]: ret: list[Argument | TensorOptionsArguments] = [] ret.extend(self.pre_tensor_options_kwarg_only) if self.tensor_options is not None: ret.append(self.tensor_options) ret.extend(self.post_tensor_options_kwarg_only) return ret @property def all(self) -> Sequence[Argument | SelfArgument | TensorOptionsArguments]: ret: list[Argument | SelfArgument | TensorOptionsArguments] = [] ret.extend(self.positional) ret.extend(self.kwarg_only) ret.extend(self.out) return ret def mutable_arg_names(self) -> list[str]: return [ a.name for a in self.flat_all if a.annotation is not None and a.annotation.is_write ] def has_tensor_arg(self) -> bool: return any(a.type.is_tensor_like() for a in self.flat_non_out) def has_symint_arg(self) -> bool: return any(a.type.is_symint_like() for a in self.flat_non_out) def has_generator_arg(self) -> bool: return any(a.type.is_generator_like() for a in self.flat_non_out) def signature(self, *, strip_default: bool = False) -> Arguments: # dataclasses.replace could be used here, but it is less # type safe so for now I've opted to type everything out def strip_arg_annotation(a: Argument) -> Argument: return Argument( name=a.name, type=a.type, default=a.default if not strip_default else None, annotation=None, ) return Arguments( pre_self_positional=tuple( map(strip_arg_annotation, self.pre_self_positional) ), self_arg=( SelfArgument(strip_arg_annotation(self.self_arg.argument)) if self.self_arg is not None else None ), post_self_positional=tuple( map(strip_arg_annotation, self.post_self_positional) ), # Since TensorOptions are dropped, the post_tensor_options_kwargs are # converted to pre_tensor_options_kwargs pre_tensor_options_kwarg_only=tuple( map(strip_arg_annotation, self.pre_tensor_options_kwarg_only) ) + tuple(map(strip_arg_annotation, self.post_tensor_options_kwarg_only)), # TensorOptions are dropped in signature, # so we can pair factory functions with their out= variants. tensor_options=None, post_tensor_options_kwarg_only=(), # out arguments are dropped in signature out=(), ) def remove_self_annotation(self) -> Arguments: assert self.self_arg is not None return dataclasses.replace( self, self_arg=SelfArgument( dataclasses.replace(self.self_arg.argument, annotation=None) ), ) def with_out_args(self, outs: list[Argument]) -> Arguments: assert len(self.out) == 0 return dataclasses.replace( self, out=tuple(outs), ) @staticmethod def _preparse(args: str) -> tuple[list[Argument], list[Argument], list[Argument]]: positional: list[Argument] = [] kwarg_only: list[Argument] = [] out: list[Argument] = [] arguments_acc = positional # TODO: Use a real parser here; this will get bamboozled # by signatures that contain things like std::array<bool, 2> (note the space) for arg in args.split(", "): if not arg: continue if arg == "*": assert arguments_acc is positional, ( "invalid syntax: kwarg-only specifier * can only occur once" ) arguments_acc = kwarg_only continue parg = Argument.parse(arg) # Currently, we rely directly on the invariant that there are NO # kwarg-only mutating arguments. If you want to relax this, # we will need a more semantic way of matching that takes # into account return arguments. In that case, you will have # to manage out computation a level up, in FunctionSchema. See Note # [is_out_fn] if parg.annotation is not None and parg.annotation.is_write: if arguments_acc is positional: pass # do nothing elif arguments_acc is kwarg_only: arguments_acc = out else: assert arguments_acc is not out arguments_acc.append(parg) return positional, kwarg_only, out @staticmethod def parse(args: str) -> Arguments: """ Input: 'int x, int y, int z' """ # We do this in two phases. First we parse into three # main categories: positional, kwarg_only, out. # Then, we reparse positional and kwarg_only to separate # out the self argument and tensor options arguments. positional, kwarg_only, out = Arguments._preparse(args) # Split self argument self_ix = None for i, a in enumerate(positional): if a.name == "self": self_ix = i break pre_self_positional: list[Argument] self_arg: SelfArgument | None post_self_positional: list[Argument] if self_ix is not None: pre_self_positional = positional[:self_ix] self_arg = SelfArgument(positional[self_ix]) post_self_positional = positional[self_ix + 1 :] else: pre_self_positional = [] self_arg = None post_self_positional = positional # Group tensor options arguments pre_tensor_options_kwarg_only: list[Argument] = [] tensor_options: TensorOptionsArguments | None = None post_tensor_options_kwarg_only: list[Argument] = [] kwarg_only_acc = pre_tensor_options_kwarg_only def pred(name: str, ty: Type) -> Callable[[Argument], bool]: return lambda a: a.name == name and a.type in [ty, OptionalType(ty)] predicates = [ # order matters pred("dtype", Type.parse("ScalarType")), pred("layout", Type.parse("Layout")), pred("device", Type.parse("Device")), pred("pin_memory", Type.parse("bool")), ] i = 0 while i < len(kwarg_only): # If there is enough space... if i <= len(kwarg_only) - len(predicates): # And the next len(predicates) arguments look like TensorOptions arguments if all( p(a) for p, a in zip(predicates, kwarg_only[i : i + len(predicates)]) ): assert kwarg_only_acc is pre_tensor_options_kwarg_only # Group them together as one argument tensor_options = TensorOptionsArguments( dtype=kwarg_only[i], layout=kwarg_only[i + 1], device=kwarg_only[i + 2], pin_memory=kwarg_only[i + 3], ) i += len(predicates) kwarg_only_acc = post_tensor_options_kwarg_only continue kwarg_only_acc.append(kwarg_only[i]) i += 1 return Arguments( pre_self_positional=tuple(pre_self_positional), self_arg=self_arg, post_self_positional=tuple(post_self_positional), pre_tensor_options_kwarg_only=tuple(pre_tensor_options_kwarg_only), tensor_options=tensor_options, post_tensor_options_kwarg_only=tuple(post_tensor_options_kwarg_only), out=tuple(out), ) def __str__(self) -> str: all_arguments: list[str] = [] all_arguments.extend(map(str, self.flat_positional)) if self.flat_kwarg_only or self.out: all_arguments.append("*") all_arguments.extend(map(str, self.flat_kwarg_only)) all_arguments.extend(map(str, self.out)) return ", ".join(all_arguments) def __post_init__(self) -> None: # TODO: These invariants are weirdly asymmetric? # TODO: Fancier types? if self.self_arg is None: assert not self.pre_self_positional if self.tensor_options is None: assert not self.post_tensor_options_kwarg_only # We don't allow any of the following to have argument annotations, # to keep things simple. mutable_pre_self_positionals = [ a for a in self.pre_self_positional if a.annotation is not None and a.annotation.is_write ] assert len(mutable_pre_self_positionals) == 0, ( "mutable pre_self_positional arguments are not currently supported in the schema" ) # Names that validly are __iXXX__ indicating inplace operations. # Taken from https://www.python.org/dev/peps/pep-0203/#new-methods # NB: PyTorch hasn't actually implemented all of these AUGMENTED_ASSIGNMENT_NAMES = [ "add", "sub", "mul", "div", "mod", "pow", "lshift", "rshift", "and", "xor", "or", ] # A BaseOperatorName is what we think of the operator name, without # the overload name. Unusually, we don't represent this as just a # string; instead, we directly represent a few important semantic # bits of information we derive from the string: namely whether # or not it's inplace (add_) and whether or not it's a double-underscore # method (__add__) @dataclass(frozen=True) class BaseOperatorName: base: str inplace: bool dunder_method: bool # Note [Overload Ambiguity With Functional Variants] # A handful of operators have both a "mutable" and a "functional" variant. # (native_batch_norm is a good example, although this isn't the case today). # For those operators, the mutable and functional variant take in the same set of # arguments, but have different alias annotations. # this makes it ambiguous when you try to resolve an OverloadPacket into an overload, # given a set of input arguments. # # So instead of making the "functional" variant in this case a real overload, e.g: # native_batch_norm (mutable variant) # native_batch_norm.functional (functional variant) # we make it a new base operator, # native_batch_norm_functional (functional variant) # # In an ideal world, we would probably invert this so the operators were: # native_batch_norm.mutable (mutable variant) # native_batch_norm (functional variant) # # Doing that is BC-breaking though, so we're stuck with the above modeling. functional_overload: bool = False # NB: We don't officially support namespace in FunctionSchema, we treat this prefix # as part of the base operator name, for __str__() to consume. # The canonical input (from the rest of the infra) will not contain namespace, but # we have a usecase in ExecuTorch where we want to support BaseOperatorName with namespace. namespace: Optional[str] = None @staticmethod def parse(op: str) -> BaseOperatorName: assert op != "" assert not op.endswith("_out"), ( "_out suffix is reserved and not permitted for operator names; " "did you mean to specify an out overload name instead?" ) # Extract namespace out. Base operator name may or may not contain namespace. # E.g., aten::__lshift__ is a valid base operator name, __lshift__ is also valid. # We want to split the namespace out from the base operator name. match = re.match(r"^(?:(.*)::)?(.*)$", op) namespace = match.group(1) if match else "" op_without_ns = match.group(2) if match else op m = re.match(r"^__([^_]+)__$", op_without_ns) if m is not None: dunder_method = True base = m.group(1) if any(base == f"i{n}" for n in AUGMENTED_ASSIGNMENT_NAMES): inplace = True base = base[1:] else: inplace = False # temporary, this is not intrinsically true but # has been historically true for dunder methods # we support (but, if we ever got, say, __int__, this would # be wrong!) assert base[0] != "i" else: dunder_method = False base = op_without_ns if base[-1] == "_": inplace = True base = base[:-1] else: inplace = False # See Note [Overload Ambiguity With Functional Variants] functional_suffix = "_functional" if base.endswith(functional_suffix): functional_overload = True base = base[: -len(functional_suffix)] # This seems complicated and unnecessary, so banning dunder methods # for now on ops that have a functional + mutable variant (like native_batch_norm). assert not dunder_method and not inplace else: functional_overload = False r = BaseOperatorName( base=base, inplace=inplace, dunder_method=dunder_method, functional_overload=functional_overload, namespace=namespace, ) assert str(r) == op, f"{str(r)} != {op}" return r def __str__(self) -> str: namespace_prefix = f"{self.namespace}::" if self.namespace else "" if self.dunder_method: i = "i" if self.inplace else "" return f"{namespace_prefix}__{i}{self.base}__" else: i = ( "_" if self.inplace else "_functional" if self.functional_overload else "" ) return f"{namespace_prefix}{self.base}{i}" # Operator name is the base operator name along with the (typically not # user visible) overload string. @dataclass(frozen=True) class OperatorName: name: BaseOperatorName overload_name: str @staticmethod def parse(op_name: str) -> OperatorName: if "." in op_name: name, overload_name = op_name.split(".", 1) else: name = op_name overload_name = "" r = OperatorName(name=BaseOperatorName.parse(name), overload_name=overload_name) assert str(r) == op_name, f"{str(r)} != {op_name}" return r def __str__(self) -> str: if self.overload_name: return f"{self.name}.{self.overload_name}" else: return f"{self.name}" # NB: This must be synchronized with the naming scheme in # aten/src/ATen/templates/Operators.h # Given a function schema "aten::op.overload(...)", # If there is no overload name, this returns f"{op}" # If there is an overload name, this returns f"{op}_{overload}" def unambiguous_name(self) -> str: if self.overload_name: return f"{self.name}_{self.overload_name}" else: return f"{self.name}" def remove_inplace(self) -> OperatorName: return OperatorName( name=BaseOperatorName( base=self.name.base, inplace=False, dunder_method=self.name.dunder_method, ), overload_name=self.overload_name, ) def with_overload(self, overload: str) -> OperatorName: return OperatorName( name=BaseOperatorName( base=self.name.base, inplace=False, dunder_method=self.name.dunder_method, ), overload_name=overload, ) def gets_generated_out_inplace_wrapper( f: NativeFunction, g: NativeFunctionsGroup, b: BackendIndex ) -> bool: return ( f.func.kind() is not SchemaKind.functional and not b.has_kernel(f) and b.has_kernel(g.functional) ) # NativeFunction objects that are views (f.is_view_op returns True) # are added into a `NativeFunctionsViewGroup`, which we can use to # easily access the generated (optional) view_copy NativeFunction. # It's convenient to group them together, so we pair them up in NativeFunctionsViewGroup. # See Note [Codegen'd {view}_copy Operators] # # One property of this representation is that in order for a view-like op to be part of # a NativeFunctionsViewGroup, the "aliasing" version of that view op must exist. # There's one case where that doesn't happen: we have a non-aliasing `narrow_copy.out` op, # but don't have corresponding aliasing `narrow.out` op. # This means that `narrow_copy.out` won't appear as a NativeFunctionsViewGroup. @dataclass(frozen=True) class NativeFunctionsViewGroup: view: NativeFunction # Note: the {view}_copy operator is optional because we currently don't generate copy variants # for all view ops. Notably, we don't generate them for CompositeImplicitAutograd views # (we already get them "for free" through decomposition) view_copy: NativeFunction | None # view_inplace ops are also optional, but every view_inplace op should have out-of-place variant. view_inplace: NativeFunction | None def __post_init__(self) -> None: assert self.view.is_view_op if self.view_copy is None: assert not gets_generated_view_copy(self.view), ( f"{str(self.view.func.name)} appears to be a new operator that aliases its inputs." " The codegen expects you to add a corresponding operator to native_functions.yaml:" f" {get_view_copy_name(self.view)!s}." " See Note [view_copy NativeFunctions] for details." ) else: assert self.view_copy.func.name.name.base.endswith(("_copy", "_scatter")) assert self.view.func.signature() == self.view_copy.func.signature( strip_view_copy_name=True, ) assert "view_copy" in self.view_copy.tags, ( f"{str(self.view_copy.func.name), str(self.view.tags)} appears to be a view_copy operator. The codegen expects" " view_copy operators to be annotated with the 'view_copy' tag in native_functions.yaml." " See Note [view_copy NativeFunction] for details." ) if self.view_inplace is not None: assert self.view.func.signature() == self.view_inplace.func.signature() if self.view.has_composite_implicit_autograd_kernel: if self.view_inplace is not None: assert self.view_inplace.has_composite_implicit_autograd_kernel, ( f"{str(self.view.func.name)} and {str(self.view_inplace.func.name)} must either" " both have CompositeImplicitAutograd kernels, or both not have composite kernels." ) if self.view.has_composite_implicit_autograd_nested_tensor_kernel: if self.view_inplace is not None: assert self.view_inplace.has_composite_implicit_autograd_nested_tensor_kernel, ( f"{str(self.view.func.name)} and {str(self.view_inplace.func.name)} must either" " both have CompositeImplicitAutogradNestedTensor kernels, or both not have composite kernels." ) def functions(self, *, include_copy: bool = True) -> Iterator[NativeFunction]: yield self.view if self.view_inplace is not None: yield self.view_inplace if self.view_copy is not None and include_copy: yield self.view_copy @property def root_name(self) -> str: return self.view.root_name @property def composite(self) -> bool: # We currently assert that the "group" is consistent. # If the view op is composite, then its view_inplace op is too. return self.view.has_composite_implicit_autograd_kernel def gets_generated_view_copy(f: NativeFunction) -> bool: # Only aliasing (view) operators get a copy variant. if not f.is_view_op: return False # We don't need to bother generating copy variants for CompositeImplicitAutograd ops, # because we can let them decompose into base view ops. if f.has_composite_implicit_autograd_kernel: return False # We also don't need to generate copy variants for inplace views. if "inplace_view" in f.tags: return False # Assume ops ending in _inverse have manually-defined copy variants # (e.g. slice_inverse() has the copy variant slice_scatter()). # We -could- probably generate these as well, but the codegen will be # slightly different, and hand-writing these few kernels keeps codegen # complexity lower. if f.func.name.name.base.endswith("_inverse"): return False return True # Given a NativeFunction that corresponds to a view op, # returns the OperatorName of the corresponding "copy" variant of the op. def get_view_copy_name(f: NativeFunction) -> OperatorName: # Right now, when asking for a view op's corresponding "view_copy" name # we assert for sanity that the op is allowed to have a generated view_copy variant. # (We can do this because "gets_generated_view_copy()" tell us which ops get a generated view_copy op). # However, narrow_copy() already exists as an op directly in native_functions.yaml. # I'm hardcoding narrow_copy here for now to maintain the assert, # But we could also just get rid of the assert. list_of_ops_with_explicit_view_copy_operators = ["narrow"] if str(f.func.name) not in list_of_ops_with_explicit_view_copy_operators: assert gets_generated_view_copy(f) base_name = f"{f.func.name.name.base}_copy" view_copy_name = OperatorName( name=BaseOperatorName( base=base_name, inplace=False, dunder_method=f.func.name.name.dunder_method ), overload_name=f.func.name.overload_name, ) return view_copy_name # Helper functions for parsing argument lists (both inputs and returns) def parse_returns(return_decl: str) -> tuple[Return, ...]: """ Input: '()' Output: [] """ if return_decl == "()": return () if return_decl[0] == "(" and return_decl[-1] == ")": return_decl = return_decl[1:-1] return tuple(Return.parse(arg) for arg in return_decl.split(", ")) # A Precompute instance consists of a map from kernel argument name # to the list of Argument instances that should replace that # kernel argument in the impl function. @dataclass(frozen=True) class Precompute: # A map from kernel argument name -> a list of precomputed # elements that replaces/supersedes it. replace: dict[str, list[Argument]] # List of precomputed args added without replacement add: list[Argument] @staticmethod def parse(src: object) -> Precompute: assert isinstance(src, list) # src is a list of strings of the format: # {kernel param name} -> {replacement decl}[, {replacement decl}, ...] # [{add decl}[, {add decl}, ...]] # The last line is optional and contains the precomputed parameters that are # added without replacement. # The other lines are parsed to get the names of which precomputed elements # should replace which kernel arguments. add_args = [] if " -> " not in src[-1]: add_list = src[-1].split(",") add_args = [Argument.parse(name.strip()) for name in add_list] src = src[:-1] replace = {} for raw_replace_item in src: assert isinstance(raw_replace_item, str) assert " -> " in raw_replace_item, ( "precomputed parameters without replacement" " are allowed only in the last line" ) arg, with_list_raw = raw_replace_item.split(" -> ") assert " " not in arg, ( f"illegal kernel param name '{arg}' in precomputed parameters'" ) with_list = with_list_raw.split(",") with_list_args = [Argument.parse(name.strip()) for name in with_list] replace[arg] = with_list_args r = Precompute(replace=replace, add=add_args) assert r.to_list() == src, "r.to_list() != src" return r def __post_init__(self) -> None: # the template parameters are upper so if these are the # same then it is ambiguous for a in self.add: assert a.name.upper() != a.name for args in self.replace.values(): for a in args: assert a.name.upper() != a.name def to_list(self) -> list[str]: replace_list = [] for kernel_param, replacement_params in self.replace.items(): replacements = ", ".join(str(param) for param in replacement_params) replace_list.append(f"{kernel_param} -> {replacements}") return replace_list ```
============================================================================================================================== SOURCE CODE FILE: native_function_generation.py LINES: 3 SIZE: 29.70 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\native_function_generation.py ENCODING: utf-8 ```py from __future__ import annotations import string from collections import defaultdict from typing import TYPE_CHECKING import torchgen.api.dispatcher as dispatcher from torchgen.api.translate import translate from torchgen.api.types import Binding, DispatcherSignature, Expr from torchgen.context import with_native_function from torchgen.model import ( Annotation, Argument, BackendIndex, BackendMetadata, BaseOperatorName, BaseTy, BaseType, DEFAULT_KERNEL_NAMESPACE, DeviceCheckType, DispatchKey, FunctionSchema, NativeFunction, NativeFunctionsGroup, OperatorName, Return, SchemaKind, Variant, ) from torchgen.utils import concatMap if TYPE_CHECKING: from collections.abc import Sequence # See Note: [Out ops with functional variants that don't get grouped properly] OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [ # This has a functional variant, but it's currently marked private. # This function should be marked private as well (*_backward ops aren't exposed to python anyway). "adaptive_avg_pool3d_backward.grad_input", # There's a functional variant, _slow_conv2d_backward.output_mask, that isn't grouped properly. # Maybe we can kill this operator in favor of convolution_backward? "_slow_conv2d_backward.grad_input", ] # See Note: [Mutable ops that cannot get an out variant] MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [ # should be out=? "_cummax_helper", # should be out=? "_cummin_helper", ] # All of these operators don't have any tensor like returns FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [ "_assert_async", # no return "_assert_async.msg", # no return "_assert_tensor_metadata", # no return "_cslt_sparse_mm_search", # returns an int "_assert_scalar", # no return "_dimI", # returns an int "_dimV", # returns an int "_has_same_storage_numel", # returns a boolean "_linalg_check_errors", # no return "_local_scalar_dense", # returns a Scalar "_nested_tensor_from_mask_left_aligned", # returns a boolean "_nnz", # returns an int "_use_cudnn_ctc_loss", # returns a boolean "_use_cudnn_ctc_loss.Tensor", # returns a boolean "_validate_compressed_sparse_indices", # no return "allclose", # returns a boolean "dense_dim", # returns an int "equal", # returns a boolean "is_coalesced", # returns an boolean "is_pinned", # returns a boolean "is_same_size", # returns a boolean "is_set_to", # returns a boolean "q_per_channel_axis", # returns an int "q_scale", # returns a float "q_zero_point", # returns an int "qscheme", # returns a QScheme "record_stream", # no return "sparse_dim", # returns an int "sym_constrain_range", # no return "sym_constrain_range_for_size", # no return "_nested_tensor_storage_offsets", # returns a vector of ints "_chunk_grad_outputs_efficient_attention", # returns a bool "_fused_sdp_choice", # returns an int "_print", # no return "_sink_tokens", # no return "_nested_get_ragged_idx", # returns an int ] INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [ # polygamma and polygamma.out both exist, but have a # pre-self arg (while polygamma_ does not) # We should either fix this schema so it can be grouped properly, # or allow the codegen to generate new functional/out= NativeFunctions for this op # (which would require changing its overload name to prevent overload ambiguity). "polygamma_" ] # Groups "similar" NativeFunctions together # example add.Tensor, add_.Tensor, add.out # "similar" NativeFunctions are all expected to have an identical `signature()`, # But have differing SchemaKinds. def pre_group_native_functions( native_functions: Sequence[NativeFunction], ) -> dict[FunctionSchema, dict[SchemaKind, NativeFunction]]: pre_grouped_native_functions: dict[ FunctionSchema, dict[SchemaKind, NativeFunction] ] = defaultdict(dict) for f in native_functions: d = pre_grouped_native_functions[f.func.signature()] assert f.func.kind() not in d d[f.func.kind()] = f return pre_grouped_native_functions # Returns the out variant overload name given a base function overload name def get_expected_out_variant_overload_name(overload_name: str | None) -> str: return "out" if not overload_name else f"{overload_name}_out" # Helper function: given an inplace FunctionSchema, generate its corresponding out= variant # Example before: # _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) # Example after: # _add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out) def self_to_out_signature(func: FunctionSchema) -> FunctionSchema: # Generating an out= schema from an inplace schema. assert func.kind() == SchemaKind.inplace assert func.arguments.self_arg is not None # The new out= schema has: # - a new out argument with the same type as "func" (but with a mutable annotation) # - The returns (if any) now alias the out= argument instead of "func" # - an "out" overload name return FunctionSchema( name=func.name.remove_inplace().with_overload( get_expected_out_variant_overload_name(func.name.overload_name) ), arguments=func.arguments.remove_self_annotation().with_out_args( [ Argument( name="out", type=func.arguments.self_arg.argument.type, default=None, annotation=func.arguments.self_arg.argument.annotation, ) ] ), returns=func.returns, ) # Helper function: given a functional FunctionSchema, generate its corresponding out= variant # Example before: # _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, # bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor # Example after: # _to_copy._out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, # Tensor(a!) out) -> Tensor(a!) def functional_to_out_signature(func: FunctionSchema) -> FunctionSchema: # Generating an out= schema from a functional schema. assert func.kind() == SchemaKind.functional new_returns, new_out_args = generate_out_args_from_schema(func) # The new out= schema has: # - one or more new out argument(s) with the same type as returns (but with a mutable annotation) # - The returns now alias the out= arguments # - an "_out" overload name return FunctionSchema( name=func.name.with_overload( get_expected_out_variant_overload_name(func.name.overload_name) ), arguments=func.arguments.signature().with_out_args( new_out_args, ), returns=tuple(new_returns), ) # Helper function: given a function schema, generate corresponding out arguments, also the updated return annotations. def generate_out_args_from_schema( func: FunctionSchema, ) -> tuple[list[Return], list[Argument]]: # More of a sanity check - our existing restrictions on schemas should enforce that # mutable schema kinds never return their mutable arguments. assert not any( r.annotation is not None and r.annotation.is_write for r in func.returns ) tensorlike_rets = [r for r in func.returns if r.type.is_tensor_like()] assert len(tensorlike_rets) > 0 used_annotations = concatMap( lambda a: [] if a.annotation is None else a.annotation.alias_set, func.arguments.flat_all, ) valid_annotations = [x for x in string.ascii_lowercase if x not in used_annotations] all_rets_are_tensors = all(r.type == BaseType(BaseTy.Tensor) for r in func.returns) new_out_args: list[Argument] = [] # The end result of new_returns is that: # - If every return is a plain tensor, then the new returns == the old returns, but with the out= alias annotations added. # - Otherwise, none of the out arguments show up in the returns (and we're only left with non-tensor-like returns, if any). new_returns: list[Return] = [] for i, r in enumerate(func.returns): if r.type.is_tensor_like(): new_out = Argument( name="out" if len(func.returns) == 1 else f"out{i}", type=r.type, default=None, annotation=Annotation.parse(f"{valid_annotations[i]}!"), ) new_out_args.append(new_out) if all_rets_are_tensors: # The convention for out= schemas is that they only return their out arguments # if the return is a plain Tensor (or if it's a tuple of plain Tensors) new_ret = Return( name=None, type=new_out.type, annotation=new_out.annotation ) new_returns.append(new_ret) else: new_returns.append(r) return new_returns, new_out_args # Helper function: given a mutable FunctionSchema, generate its corresponding out= variant # Example before: # _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950 # Example after: # _fused_moving_avg_obs_fq_helper._out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!)) # noqa: B950 def mutable_to_out_signature(func: FunctionSchema) -> FunctionSchema: # Generating an out= schema from a mutable schema. assert func.kind() == SchemaKind.mutable # The new out= schema has: # - Any non-aliased tensor-like returns are converted to mutable, aliased out= arguments # (if the argument is a tensor then we also return it for method chaining, # otherwise we return nothing) # - an "out" overload name # # Note that: # (1) This also means that we can *only* generate an out= variant from a mutable schema # if the mutable schema has at least one tensor-like non-aliasing return. # (2) The generated out= variant still has mutable positional arguments, # but if necessary we could probably add another out= variant that also # functionalizes the mutable arguments (a functional_out variant) new_returns, new_out_args = generate_out_args_from_schema(func) return FunctionSchema( name=func.name.remove_inplace().with_overload( get_expected_out_variant_overload_name(func.name.overload_name) ), arguments=func.arguments.with_out_args(new_out_args), returns=tuple(new_returns), ) # This function, given function of one SchemaKind, as well as a target SchemaKind, # generates a new NativeFunction with the same properties, but using the target SchemaKind. # We only actually generate functions for either functional or out= SchemaKinds. # This function returns a tuple, with: # - The generated NativeFunction # - a dictionary of `BackendIndex` objects, describing which dispatch keys # we will generate kernels for, for the new NativeFunction. # Details are in the function, but we only generate composite kernels (in some cases) today. def generate_function( f: NativeFunction, k: SchemaKind ) -> tuple[NativeFunction, dict[DispatchKey, dict[OperatorName, BackendMetadata]]]: from torchgen.api import cpp if k == SchemaKind.functional: assert f.func.kind() != SchemaKind.functional # The new "functional" NativeFunction has: # - any mutable arguments have been converted into (immutable) returns. # (if a mutable argument was not also a return, it gets converted to one) # - "_functional" appended to the base name, ONLY IF this op has a mutable variant. # See Note [Overload Ambiguity With Functional Variants] # The default grouping logic in signature() actually already does this, # so we can piggy-back off it (but we still want return names) func = f.func.signature(keep_return_names=True).with_name( OperatorName( name=BaseOperatorName( base=f.func.name.name.base, inplace=False, dunder_method=f.func.name.name.dunder_method, # See Note [Overload Ambiguity With Functional Variants] functional_overload=f.func.kind() == SchemaKind.mutable, ), overload_name=f.func.name.overload_name, ) ) elif k == SchemaKind.out: # We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily, # but at least today, there is no good reason to actually use them. # we'll generate a dispatcher entry for them, but won't actually register any kernels for them. if f.func.kind() == SchemaKind.inplace: func = self_to_out_signature(f.func) elif f.func.kind() == SchemaKind.mutable: func = mutable_to_out_signature(f.func) elif f.func.kind() == SchemaKind.functional: func = functional_to_out_signature(f.func) else: raise AssertionError( "We only bother generating out= functions from either inplace or mutable or functional variants" ) else: raise AssertionError( "We currently only generate either functional or out= NativeFunctions" ) # Generated kernel naming convention for out: <op_name>_<overload_name>. The reason for this is to # disambiguate operator with the same name but different overload name, e.g., `randn.names_out` and # `randn.generator_with_names_out`. kernel_name = ( func.name.unambiguous_name() if func.kind() == SchemaKind.out else cpp.name(func) ) if f.func.has_symint(): kernel_name += "_symint" backend_metadata = { DispatchKey.CompositeExplicitAutograd: { func.name: BackendMetadata( kernel=kernel_name, structured=False, cpp_namespace=DEFAULT_KERNEL_NAMESPACE, ) } } tags = {"generated"} | set( f.tags & {"nondeterministic_seeded", "view_copy", "pt2_compliant_tag"} ) return ( NativeFunction( func=func, use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors, # These generated fn's aren't meant to be user friendly- don't generate methods. variants={Variant.function}, structured=False, structured_delegate=None, structured_inherits=None, precomputed=None, autogen=[], ufunc_inner_loop={}, manual_kernel_registration=False, manual_cpp_binding=False, python_module=None, category_override=None, device_guard=False, device_check=DeviceCheckType.NoCheck, loc=f.loc, cpp_no_default_args=set(), is_abstract=f.is_abstract, has_composite_implicit_autograd_kernel=False, has_composite_implicit_autograd_nested_tensor_kernel=False, has_composite_explicit_autograd_kernel=True, has_composite_explicit_autograd_non_functional_kernel=False, # Every generated NativeFunction gets a "generated" tag, so it's easy to tell # which NativeFunction objects did not come directly from native_functions.yaml. tags=tags, namespace=f.namespace, ), backend_metadata, ) # This function is responsible for adding generated NativeFunctions which don't appear # explicitly in the codegen. # You can inspect the full list of NativeFunctions yourself with the torchgen package, by running # torchgen.parse_native_yaml("aten/src/ATen/native/native_functions.yaml", "aten/src/ATen/native/tags.yaml") # (Maybe we should make a friendly API for this) # # Note: this function *mutates* its two inputs, # adding the new NativeFunctions / BackendMetadata to them def add_generated_native_functions( rs: list[NativeFunction], indices: dict[DispatchKey, dict[OperatorName, BackendMetadata]], ) -> None: # The main code for generating new NativeFunctions # First we group of NativeFunctions by schema kind, # then we detect which ones are missing and generate them. pre_grouped_native_functions = pre_group_native_functions(rs) for d in pre_grouped_native_functions.values(): has_functional = SchemaKind.functional in d has_inplace = SchemaKind.inplace in d has_mutable = SchemaKind.mutable in d has_out = SchemaKind.out in d is_core = any("core" in variant.tags for variant in d.values()) # We automatically generate a few native functions that don't exist in the yaml, for a few reasons: # (1) If an operator has an inplace/out= variant but no functional variant, we can generate # a simple functional variant that the functionalization pass can consume. # (2) If an operator has an inplace or functional but no out= variant, we generate an out= # variant, mostly so we can easily pair up functions into NativeFunctionsGroup, # while maintaining the constraint that the out= variant is "required". if has_mutable or has_inplace or has_out or has_functional: # Don't bother generating functions trio's for native functions that bypass the dispatcher. are_manual = all(f.manual_cpp_binding for f in d.values()) # Don't bother generating functional + out= variants for view operators # set_ is technically an inplace_view, but for now it is treated # as a normal inplace op in the codegen has_view_ops = any( f.is_view_op and str(f.func.name.name) != "set_" for f in d.values() ) # Don't generate the other variants for non-core CompositeImplicitAutograd operators. # We could probably do this, but the main benefit of generating the function triplets # is for transforms that need them, and transforms don't need to act directly # on CompositeImplicitAutograd operators (since we let them decompose). are_composite_implicit = all( f.has_composite_implicit_autograd_kernel for f in d.values() ) if are_manual or has_view_ops or are_composite_implicit and not is_core: continue if has_out and len(d.values()) == 1: # Note: [Out ops with functional variants that don't get grouped properly] # In theory we could validly have an out= operator in native_functions.yaml # that has no other variants. # But today, all of the operators where that's the case actually do have # functional variants, that we are just unable to pair up properly. # I think banning this all together is probably safer # (you can always add a functional variant yourself if you want to add a new out= operator). # # We should probably fix the existing cases; this check is to prevent us from adding more over time. if ( str(d[SchemaKind.out].func.name) not in OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY ): raise AssertionError( f"Found an out= operator that we could not find any other variants of: {str(d[SchemaKind.out].func)}" ) continue # Some inplace ops that have problematic schemas (that we should fix), which prevent us # from generating out= and functional variants if ( has_inplace and str(d[SchemaKind.inplace].func.name) in INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY ): continue base_fn = ( d[SchemaKind.mutable] if has_mutable else d[SchemaKind.inplace] if has_inplace else d[SchemaKind.out] if has_out else d[SchemaKind.functional] ) # Note: [Mutable ops that cannot get an out variant] # We can only generate an out= variant if either: # - the original function has tensor-like returns (since we can convert them to out kwargs) # - or it's inplace (since we can convert `self` to an out kwarg) # There are only two functions that don't fit this criteria today though, # and they both look like they should be fixed to be out= variants, # so if feels safer to ban this schema all-together base_fn_valid = base_fn.func.kind() == SchemaKind.inplace or any( r.type.is_tensor_like() for r in base_fn.func.returns ) # Note: [Loosen the assertion that all functional should have out variant] # By design all functional operators should have our variants. The needs_out check # is loosening this requirement, changing it to only generate out variant if there's # an `autogen` block in the native function, in the long run it should be removed. # FIXME: Remove this after figuring out CI job failures related to min, max, mean needs_out = any("out" in str(op_name) for op_name in base_fn.autogen) gets_out_variant = not has_out and base_fn_valid and needs_out if not has_out and not base_fn_valid: if ( str(base_fn.func.name) not in MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT and str(base_fn.func.name) not in FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT ): raise AssertionError( f"""Found an operator that we could not generate an out= variant for: {str(base_fn.func)}. This type of operators don't have tensor-like return, making it difficult to generate a proper out= variant. If out= variant is not needed, please add the function name into FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT list.""" ) # Generate an out= variant if gets_out_variant: fn, metadata = generate_function(base_fn, SchemaKind.out) d[SchemaKind.out] = fn BackendIndex.grow_index(indices, metadata) rs.append(fn) # Generate a functional variant, but only do it if the operator got an out= variant # (Functional variants are only useful if we can group up the variants, # which we can only do if they have an out= variant) if not has_functional and (has_out or gets_out_variant): fn, metadata = generate_function(base_fn, SchemaKind.functional) d[SchemaKind.functional] = fn BackendIndex.grow_index(indices, metadata) rs.append(fn) def return_str(rets: tuple[Return, ...], names: list[str]) -> str: assert len(rets) == len(names) if len(rets) == 0: return "" elif len(rets) == 1: return f"return {names[0]};" else: return f"return {dispatcher.returns_type(rets).cpp_type()}({', '.join(names)});" # Given a function, and the name of a variable corresponding to the output of that function, # gather up all of the individual returns that are not aliased def gather_nonaliased_inner_rets(func: FunctionSchema, out_var: str) -> list[str]: aliased_rets = func.aliased_return_names() non_aliased_names = [] is_out_var_a_tuple = len(func.returns) > 1 for i, r in enumerate(aliased_rets): if r is None: non_aliased_names.append( f"std::get<{i}>({out_var})" if is_out_var_a_tuple else out_var ) return non_aliased_names # Generates functional kernels in terms of their inplace.mutable counterparts. # We only do this for "generated" NativeFunctions @with_native_function def gen_composite_functional_kernel(g: NativeFunctionsGroup) -> str | None: # We should only be generating these for code-generated NativeFunctions if "generated" not in g.functional.tags: return None # And we always write the kernel for a generated op in terms of a non-generated op. if g.inplace is not None and "generated" not in g.inplace.tags: target_f = g.inplace elif g.mutable is not None and "generated" not in g.mutable.tags: target_f = g.mutable else: # We should be guaranteed to have a valid inplace/mutable variant to call into. # See Note: [Mutable Ops Not Using Functionalization] raise AssertionError(str(g.functional.func)) sig = DispatcherSignature(g.functional.func) target_sig = DispatcherSignature(target_f.func) context: list[Binding | Expr] = [] clone_mutable_inputs = [] cloned_return_names = [] # We can't just directly pass all of the arguments from the functional op into the mutating op. # We need to check for which inputs to the mutating operator are mutable, # and clone those inputs first. for a_curr, a_tgt in zip( dispatcher.jit_arguments(g.functional.func), dispatcher.jit_arguments(target_f.func), ): if a_tgt.annotation is not None and a_tgt.annotation.is_write: clone_mutable_inputs.append( f"auto {a_curr.name}_clone = clone_arg({a_curr.name});" ) context.append( Expr( expr=f"{a_curr.name}_clone", type=dispatcher.argument_type(a_curr, binds=a_curr.name), ) ) # Invariant: mutable arguments on the inner mutable op are always returns on the functional op. cloned_return_names.append(f"{a_curr.name}_clone") else: context.append(dispatcher.argument(a_curr)) exprs = ", ".join([e.expr for e in translate(context, target_sig.arguments())]) out_name = "output" maybe_assign = f"auto {out_name} = " if len(target_f.func.returns) > 0 else "" inner_return_names = gather_nonaliased_inner_rets(target_f.func, out_name) ret_str = return_str( g.functional.func.returns, inner_return_names + cloned_return_names ) clone_mutable_inputs_str = "\n".join(clone_mutable_inputs) return f""" {sig.defn(name=sig.name() + ("_symint" if g.out.func.has_symint() else ""))} {{ {clone_mutable_inputs_str} {maybe_assign}at::_ops::{target_f.func.name.unambiguous_name()}::call({exprs}); {ret_str} }} """ # Generates out= kernels in terms of their functional counterparts. # We only do this for "generated" NativeFunctions @with_native_function def gen_composite_out_kernel(g: NativeFunctionsGroup) -> str | None: # We should only be generating these for code-generated NativeFunctions if "generated" not in g.out.tags: return None # And we always write the kernel for the out= op in terms of the functional. # Note that the functional op might have also been generated, but we don't have to # worry about cycles, because the generated functional kernels are always implemented # in terms of non-generated kernels (see gen_composite_functional_kernel). sig = DispatcherSignature(g.out.func) target_sig = DispatcherSignature(g.functional.func) exprs = ", ".join( [e.expr for e in translate(sig.arguments(), target_sig.arguments())] ) copy_outs = [] out_name = "tmp_output" for i, out_arg in enumerate(g.out.func.arguments.out): functional_return_name = ( out_name if len(g.functional.func.returns) == 1 else f"std::get<{i}>({out_name})" ) copy_outs.append( f"""\ resize_out_helper({out_arg.name}, {functional_return_name}); copy_arg({out_arg.name}, {functional_return_name});""" ) rets = [] # For each return arg in the calling (out=) operator, # If it corresponds to an aliased input, return the input. # Otherwise, return the corresponding output from calling the functional operator. for i, ret_name in enumerate(g.out.func.aliased_return_names()): if ret_name is not None: rets.append(ret_name) else: functional_return_name = ( out_name if len(g.functional.func.returns) == 1 else f"std::get<{i}>({out_name})" ) rets.append(functional_return_name) copy_outs_str = "\n".join(copy_outs) # Kernel name needs to follow the naming convention defined in `generate_function()` return f""" {sig.defn(name=g.out.func.name.unambiguous_name() + ("_symint" if g.out.func.has_symint() else ""))} {{ auto {out_name} = at::_ops::{g.functional.func.name.unambiguous_name()}::call({exprs}); {copy_outs_str} {return_str(g.out.func.returns, rets)} }} """ ```
============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.00 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\operator_versions\__init__.py ENCODING: utf-8 ```py ```
========================================================================================================================================== SOURCE CODE FILE: gen_mobile_upgraders.py LINES: 9 SIZE: 12.51 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\operator_versions\gen_mobile_upgraders.py ENCODING: utf-8 ```py #!/usr/bin/env python3 from __future__ import annotations import os from enum import Enum from operator import itemgetter from pathlib import Path from typing import Any import torch from torch.jit.generate_bytecode import generate_upgraders_bytecode from torchgen.code_template import CodeTemplate from torchgen.operator_versions.gen_mobile_upgraders_constant import ( MOBILE_UPGRADERS_HEADER_DESCRIPTION, ) class ByteCode(Enum): instructions = 1 constants = 2 types = 3 operators = 4 register_size = 5 EXCLUDED_OP_SET = [ "aten::full.names", "aten::full.out", "aten::full", ] EXCLUE_UPGRADER_SET = ["full_0_4", "full_out_0_4"] ONE_INSTRUCTION = CodeTemplate( """ Instruction{OpCode::${operator_name}, ${X}, ${N}},""" ) INSTRUCTION_LIST = CodeTemplate( """std::vector<Instruction>({ ${instruction_list} }), // instructions list""" ) ONE_CONSTANT = CodeTemplate( """ c10::IValue(${constant}),""" ) CONSTANT_LIST = CodeTemplate( """std::vector<c10::IValue>({ ${constant_list} }), // constants list""" ) CONSTANTS_LIST_EMPTY = """std::vector<c10::IValue>(), // constants list""" ONE_TYPE = CodeTemplate("""c10::parseType("${type_str}"),""") TYPE_LIST = CodeTemplate( """std::vector<c10::TypePtr>({ ${type_list} }), // types list""" ) TYPE_LIST_EMPTY = """std::vector<c10::TypePtr>(), // types list""" ONE_OPERATOTR_STRING = CodeTemplate( """ OperatorString({"${operator_name}", "${overload_name}", ${num_of_args}}),""" ) OPERATOR_STRING_LIST = CodeTemplate( """ std::vector<OperatorString>({ ${operator_string_list} }), // operators list""" ) ONE_UPGRADER_FUNCTION = CodeTemplate( """ mobile::Function::registerFunc( "${upgrader_name}", ${instruction_list}, ${constant_list}, ${type_list}, ${register_size} )""" ) ONE_UPGRADER_SRC = CodeTemplate( """ ByteCodeFunctionWithOperator({ ${bytecode_function}, ${operator_string_list} }),""" ) ONE_UPGRADER_IN_VERSION_MAP = CodeTemplate( """Upgrader({${upgrader_min_version}, ${upgrader_max_version}, "${upgrader_name}", ${bytecode_func_index}})""" ) # noqa: E501 ONE_OPERATOR_IN_VERSION_MAP = CodeTemplate( """ {std::string("${operator_name}"), std::vector<Upgrader>({ ${upgrader_list_in_version_map} })},""" ) OPERATOR_VERSION_MAP = CodeTemplate( """ const std::unordered_map<std::string, std::vector<Upgrader>> getOperatorVersionMapForMobile() { static std::unordered_map<std::string, std::vector<Upgrader>> operatorVersionMapForMobile({ ${operator_list_in_version_map} }); return operatorVersionMapForMobile; } """ ) UPGRADER_CPP_SRC = CodeTemplate( MOBILE_UPGRADERS_HEADER_DESCRIPTION + """ #include <caffe2/serialize/versions.h> #include <torch/csrc/jit/mobile/upgrader_mobile.h> namespace c10 { TypePtr parseType(const std::string& pythonStr); } // namespace c10 namespace torch { namespace jit { // clang-format off // From operator_versions_map ${operator_version_map} const std::vector<ByteCodeFunctionWithOperator>& getUpgraderBytecodeList() { auto generate_upgrader_bytecode_list = []() { std::vector<ByteCodeFunctionWithOperator> upgrader_function_list({ ${upgrader_bytecode} }); for (const auto& upgrader_function : upgrader_function_list) { for (const auto& op : upgrader_function.operators) { upgrader_function.function.append_operator( op.name, op.overload_name, op.num_specified_args); } } return upgrader_function_list; }; static std::vector<ByteCodeFunctionWithOperator> upgraderBytecodeList = generate_upgrader_bytecode_list(); return upgraderBytecodeList; } // clang-format on } // namespace jit } // namespace torch """ ) UPGRADER_MOBILE_FILE_NAME = "upgrader_mobile.cpp" UPGRADER_ELEMENT = CodeTemplate( """\ Upgrader({${min_version}, ${max_version}, ${operator_name}, ${index}}), """ ) PER_OPERATOR_UPGRADER_LIST = CodeTemplate( """\ { std::string(${operator_name}), std::vector<Upgrader>({${upgrader_list}}); } """ ) def construct_instruction(instruction_list_from_yaml: list[Any]) -> str: instruction_list_part = [ ONE_INSTRUCTION.substitute( operator_name=instruction[0], X=instruction[1], N=instruction[2], ) for instruction in instruction_list_from_yaml ] return INSTRUCTION_LIST.substitute( instruction_list="".join(instruction_list_part).lstrip("\n") ) def construct_constants(constants_list_from_yaml: list[Any]) -> str: constants_list_part = [] for constant_from_yaml in constants_list_from_yaml: convert_constant = None if isinstance(constant_from_yaml, str): # Add quotes if it's string convert_constant = f'"{constant_from_yaml}"' elif isinstance(constant_from_yaml, bool): convert_constant = "true" if constant_from_yaml else "false" elif constant_from_yaml is None: convert_constant = "" elif isinstance(constant_from_yaml, int): convert_constant = str(constant_from_yaml) else: raise ValueError( f"The type of {constant_from_yaml} is {type(constant_from_yaml)}. " "Please add change in construct_constants function in gen_mobile_upgraders.py." ) constants_list_part.append(ONE_CONSTANT.substitute(constant=convert_constant)) if len(constants_list_part) == 0: return CONSTANTS_LIST_EMPTY return CONSTANT_LIST.substitute( constant_list="".join(constants_list_part).lstrip("\n") ) def construct_operators(operator_list_from_yaml: list[Any]) -> str: operator_list_part = [ ONE_OPERATOTR_STRING.substitute( operator_name=operator[0], overload_name=operator[1], num_of_args=operator[2], ) for operator in operator_list_from_yaml ] return OPERATOR_STRING_LIST.substitute( operator_string_list="".join(operator_list_part).lstrip("\n") ) def construct_types(types_tr_list_from_yaml: list[Any]) -> str: types_tr_list_part = [ ONE_TYPE.substitute(type_str=types_tr) for types_tr in types_tr_list_from_yaml ] if len(types_tr_list_part) == 0: return TYPE_LIST_EMPTY return TYPE_LIST.substitute(type_list="".join(types_tr_list_part).lstrip("\n")) def construct_register_size(register_size_from_yaml: int) -> str: if not isinstance(register_size_from_yaml, int): raise ValueError( f"Input register size is {register_size_from_yaml} and" "it's type is {type(register_size_from_yaml)}. An int type is expected." ) return str(register_size_from_yaml) def construct_version_maps( upgrader_bytecode_function_to_index_map: dict[str, Any], ) -> str: version_map = torch._C._get_operator_version_map() sorted_version_map_ = sorted(version_map.items(), key=itemgetter(0)) # type: ignore[no-any-return] sorted_version_map = dict(sorted_version_map_) operator_list_in_version_map_part = [] for op_name in sorted_version_map: upgraders_in_version_map_part = [] # TODO: remove the skip after these two operators schemas are fixed if op_name in EXCLUDED_OP_SET: continue upgrader_ranges = torch._C._get_upgrader_ranges(op_name) upgrader_entries = sorted_version_map[op_name] assert len(upgrader_ranges) == len(upgrader_entries) for idx, upgrader_entry in enumerate(upgrader_entries): upgrader_name = upgrader_entry.upgrader_name bytecode_function_index = upgrader_bytecode_function_to_index_map[ upgrader_name ] upgraders_in_version_map_part.append( ONE_UPGRADER_IN_VERSION_MAP.substitute( upgrader_min_version=upgrader_ranges[idx].min_version, upgrader_max_version=upgrader_ranges[idx].max_version, upgrader_name=upgrader_name, bytecode_func_index=bytecode_function_index, ) ) operator_list_in_version_map_part.append( ONE_OPERATOR_IN_VERSION_MAP.substitute( operator_name=op_name, upgrader_list_in_version_map="".join(upgraders_in_version_map_part), ) ) return OPERATOR_VERSION_MAP.substitute( operator_list_in_version_map="".join(operator_list_in_version_map_part).lstrip( "\n" ) ) def get_upgrader_bytecode_function_to_index_map( upgrader_dict: list[dict[str, Any]], ) -> dict[str, Any]: upgrader_bytecode_function_to_index_map = {} index = 0 for upgrader_bytecode in upgrader_dict: for upgrader_name in upgrader_bytecode.keys(): if upgrader_name in EXCLUE_UPGRADER_SET: continue upgrader_bytecode_function_to_index_map[upgrader_name] = index index += 1 return upgrader_bytecode_function_to_index_map def write_cpp(cpp_path: str, upgrader_dict: list[dict[str, Any]]) -> None: upgrader_bytecode_function_to_index_map = ( get_upgrader_bytecode_function_to_index_map(upgrader_dict) ) version_map_src = construct_version_maps(upgrader_bytecode_function_to_index_map) all_upgrader_src_string = [] for upgrader_bytecode in upgrader_dict: for upgrader_name, bytecode in upgrader_bytecode.items(): # TODO: remove the skip after these two operators schemas are fixed if upgrader_name in EXCLUE_UPGRADER_SET: continue instruction_list_str = "" constant_list_str = "" type_list_str = "" register_size_str = "" operator_list_str = "" for table_name, contents in bytecode.items(): element = ByteCode[table_name] if element is ByteCode.instructions: instruction_list_str = construct_instruction(contents) elif element is ByteCode.constants: constant_list_str = construct_constants(contents) elif element is ByteCode.operators: operator_list_str = construct_operators(contents) elif element is ByteCode.types: type_list_str = construct_types(contents) elif element is ByteCode.register_size: register_size_str = construct_register_size(contents) one_upgrader_function_string = ONE_UPGRADER_FUNCTION.substitute( upgrader_name=upgrader_name, instruction_list=instruction_list_str, constant_list=constant_list_str, type_list=type_list_str, register_size=register_size_str, ) one_upgrader_src_string = ONE_UPGRADER_SRC.substitute( bytecode_function=one_upgrader_function_string.lstrip("\n"), operator_string_list=operator_list_str.lstrip("\n"), ) all_upgrader_src_string.append(one_upgrader_src_string) upgrader_file_content = UPGRADER_CPP_SRC.substitute( operator_version_map=version_map_src, upgrader_bytecode="".join(all_upgrader_src_string).lstrip("\n"), ) print("writing file to : ", cpp_path + "/" + UPGRADER_MOBILE_FILE_NAME) with open(os.path.join(cpp_path, UPGRADER_MOBILE_FILE_NAME), "wb") as out_file: out_file.write(upgrader_file_content.encode("utf-8")) def sort_upgrader(upgrader_list: list[dict[str, Any]]) -> list[dict[str, Any]]: sorted_upgrader_list = sorted( upgrader_list, key=lambda one_upgrader: next(iter(one_upgrader)) ) return sorted_upgrader_list def main() -> None: upgrader_list = generate_upgraders_bytecode() sorted_upgrader_list = sort_upgrader(upgrader_list) for up in sorted_upgrader_list: print("after sort upgrader : ", next(iter(up))) pytorch_dir = Path(__file__).resolve().parents[2] upgrader_path = pytorch_dir / "torch" / "csrc" / "jit" / "mobile" write_cpp(str(upgrader_path), sorted_upgrader_list) if __name__ == "__main__": main() ```
=================================================================================================================================================== SOURCE CODE FILE: gen_mobile_upgraders_constant.py LINES: 1 SIZE: 0.24 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\operator_versions\gen_mobile_upgraders_constant.py ENCODING: utf-8 ```py MOBILE_UPGRADERS_HEADER_DESCRIPTION = """/** * @generated * This is an auto-generated file. Please do not modify it by hand. * To re-generate, please run: * cd ~/pytorch && python torchgen/operator_versions/gen_mobile_upgraders.py */ """ ```
=========================================================================================================================================== # See README.md in this directory for more guidance # *********NB: _cast_* operators are DEPRECATED and will be removed # eventually. These were previously used before TorchScript IR supported # representing ScalarType's. They are now superseded by usage of # `aten::to()`. The ops remain here for backward compatibility purposes. # DEPRECATED. DO NOT USE - func: _cast_Byte(Tensor self, bool non_blocking=False) -> Tensor variants: function # DEPRECATED. DO NOT USE - func: _cast_Char(Tensor self, bool non_blocking=False) -> Tensor variants: function # DEPRECATED. DO NOT USE - func: _cast_Double(Tensor self, bool non_blocking=False) -> Tensor variants: function # DEPRECATED. DO NOT USE - func: _cast_Float(Tensor self, bool non_blocking=False) -> Tensor variants: function # DEPRECATED. DO NOT USE - func: _cast_Int(Tensor self, bool non_blocking=False) -> Tensor variants: function # DEPRECATED. DO NOT USE - func: _cast_Long(Tensor self, bool non_blocking=False) -> Tensor variants: function # DEPRECATED. DO NOT USE - func: _cast_Short(Tensor self, bool non_blocking=False) -> Tensor variants: function # DEPRECATED. DO NOT USE - func: _cast_Half(Tensor self, bool non_blocking=False) -> Tensor variants: function # Computes the gradient of current tensor w.r.t. graph leaves. - func: _backward(Tensor self, Tensor[] inputs, Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False) -> () manual_cpp_binding: True variants: method # DEPRECATED. Sets the tensor data held by this `Variable` to be the same as # `new_data`. It requires that `new_data` and `Variable` have compatible tensor # type, by checking `_has_compatible_shallow_copy_type(this, new_data)`. # # This function is deprecated because it doesn't really make sense in a world # where Variables *are* Tensors (as opposed to them containing tensors, which # is what the previous interpretation was.) - func: set_data(Tensor(a!) self, Tensor new_data) -> () manual_cpp_binding: True variants: method - func: data(Tensor self) -> Tensor manual_cpp_binding: True variants: method # True if this `Variable` is a leaf and thus does not have a `grad_fn`. - func: is_leaf(Tensor self) -> bool manual_cpp_binding: True variants: method # Returns the output index of this variable from the forward operation that # produced it. Conversely, it returns the input index of the gradient `Node` to # which this `Variable` is connected (because in the gradient computation, # inputs and outputs switch meaning). For example: # # y0, y1, y2 = f(x) # assert y0.output_nr == 0 # assert y1.output_nr == 1 # assert y2.output_nr == 2 # - func: output_nr(Tensor self) -> int manual_cpp_binding: True variants: method - func: _version(Tensor self) -> int manual_cpp_binding: True variants: method - func: requires_grad_(Tensor(a!) self, bool requires_grad=True) -> Tensor(a!) manual_cpp_binding: True variants: method # Enables .grad attribute for non-leaf Tensors. - func: retain_grad(Tensor(a!) self) -> () manual_cpp_binding: True variants: method - func: retains_grad(Tensor self) -> bool manual_cpp_binding: True variants: method - func: _fw_primal(Tensor(a) self, int level) -> Tensor(a) variants: method dispatch: CompositeExplicitAutograd: _fw_primal - func: _make_dual(Tensor(a) primal, Tensor tangent, int level) -> Tensor(a) variants: function dispatch: CompositeExplicitAutograd: _make_dual - func: _unpack_dual(Tensor(a) dual, int level) -> (Tensor(a) primal, Tensor tangent) variants: function # NOTE: [_new_zeros_with_same_feature_meta] # This function creates a new tensor with the layout and TensorOptions # of `other` but also takes into account the batch dimensions of `self` # # This function has a couple extra constraints because it is also used for `jvp` # in functorch. # - is used for forward AD because there is the restriction # that the primal and tangent must have the same layout # - We cannot assume that `self` and `other` have the same sizes or even dim # because in the inplace over view case, `other` is the base tensor, and # `self` is the forward grad with respect to the view, which can have an # entirely different shape # - takes the number of batch dims for `self` because we also handle # some batching logic. We handle that here instead of a batching rule because # we'd like to avoid calling as_strided in the batching rule (as to enable # nested vmap in functorch). # - needs to be CompositeExplicitAutograd for jvp support in functorch. # functorch currently relies on TensorWrapper which does not have storage # CompositeExplicitAutograd makes sure the TensorWrapper is unwrapped. # - this function may eventually take on another int argument to store the # the number of batch dims for other once we support that use case - func: _new_zeros_with_same_feature_meta(Tensor self, Tensor other, *, int self_num_batch_dims=0) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _new_zeros_with_same_feature_meta autogen: _new_zeros_with_same_feature_meta.out # This function compares the storage numel of self with that of other, where # storage numel is computed as: `other.storage().nbytes() / other.itemsize()`. # We create this function for composite compliance purposes. The batching rule # always returns true because vmapped as_strided does not support accessing # storage locations not indexable by the input tensor. # See the note above for more information. - func: _has_same_storage_numel(Tensor self, Tensor other) -> bool variants: function dispatch: CompositeExplicitAutograd: _has_same_storage_numel - func: rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!) variants: method tags: inplace_view - func: rename(Tensor(a) self, Dimname[]? names) -> Tensor(a) variants: method - func: align_to(Tensor(a) self, Dimname[] names) -> Tensor(a) variants: method - func: align_to.ellipsis_idx(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a) variants: method - func: align_as(Tensor self, Tensor other) -> Tensor variants: method - func: align_tensors(Tensor[] tensors) -> Tensor[] # Not assert because it's a keyword; not Assert because FX already # took that syntax # TODO: need to specify this is side-effectful somehow - func: _assert_async(Tensor self) -> () dispatch: CPU: _assert_async_cpu CUDA: _assert_async_cuda - func: _assert_async.msg(Tensor self, str assert_msg) -> () dispatch: CPU: _assert_async_msg_cpu CUDA: _assert_async_msg_cuda - func: _assert_scalar(Scalar self, str assert_msg) -> () dispatch: CompositeExplicitAutograd: _assert_scalar - func: _functional_assert_scalar(Scalar self, str assert_msg, Tensor dep_token) -> Tensor dispatch: CompositeExplicitAutograd: _functional_assert_scalar - func: _functional_assert_async.msg(Tensor self, str assert_msg, Tensor dep_token) -> Tensor dispatch: CPU: _functional_assert_async_msg_cpu - func: _assert_tensor_metadata(Tensor a, SymInt[]? size=None, SymInt[]? stride=None, ScalarType? dtype=None, *, Device? device=None, Layout? layout=None) -> () dispatch: CompositeExplicitAutograd: _assert_tensor_metadata Meta: _assert_tensor_metadata_meta_symint - func: _print(str s) -> () dispatch: CompositeExplicitAutograd: _print - func: sym_constrain_range(Scalar size, *, int? min=None, int? max=None) -> () dispatch: CompositeExplicitAutograd: sym_constrain_range - func: sym_constrain_range_for_size(Scalar size, *, int? min=None, int? max=None) -> () dispatch: CompositeExplicitAutograd: sym_constrain_range_for_size - func: _functional_sym_constrain_range(Scalar size, int? min, int? max, Tensor dep_token) -> Tensor dispatch: CompositeExplicitAutograd: _functional_sym_constrain_range - func: _functional_sym_constrain_range_for_size(Scalar size, int? min, int? max, Tensor dep_token) -> Tensor dispatch: CompositeExplicitAutograd: _functional_sym_constrain_range_for_size - func: _make_dep_token(*, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor dispatch: CPU: _make_dep_token_cpu - func: refine_names(Tensor(a) self, Dimname[] names) -> Tensor(a) variants: method - func: _use_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank) -> bool device_check: NoCheck # Tensor arguments allowed to be on different devices, see also _cudnn_ctc_loss dispatch: CUDA: _use_cudnn_ctc_loss - func: _use_cudnn_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank) -> bool device_check: NoCheck # Tensor arguments allowed to be on different devices, see also _cudnn_ctc_loss dispatch: CUDA: _use_cudnn_ctc_loss_tensor - func: _cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor) device_check: NoCheck # log_probs is expected to be on CUDA while targets is expected to be on CPU dispatch: CUDA: _cudnn_ctc_loss autogen: _cudnn_ctc_loss.out - func: _cudnn_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor) device_check: NoCheck # log_probs is expected to be on CUDA while targets is expected to be on CPU dispatch: CUDA: _cudnn_ctc_loss_tensor - func: _use_cudnn_rnn_flatten_weight() -> bool - func: _cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor dispatch: CUDA: _cudnn_rnn_flatten_weight autogen: _cudnn_rnn_flatten_weight.out - func: _cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor) # rnn_tanh may or may not redispatch to _cudnn_rnn based on algorithm and build. Thus it might hit dispatch or kernel device check. # Disable dispatch time device check for consistent behavior. device_check: NoCheck dispatch: CUDA: _cudnn_rnn autogen: _cudnn_rnn.out tags: nondeterministic_seeded - func: _cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[]) dispatch: CUDA: _cudnn_rnn_backward autogen: _cudnn_rnn_backward.out - func: _cudnn_init_dropout_state(float dropout, bool train, int dropout_seed, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor dispatch: CUDA: _cudnn_init_dropout_state autogen: _cudnn_init_dropout_state.out tags: nondeterministic_seeded - func: _debug_has_internal_overlap(Tensor self) -> int variants: function - func: _fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor) variants: function dispatch: CUDA: fused_dropout_cuda tags: nondeterministic_seeded autogen: _fused_dropout.out - func: _masked_scale(Tensor self, Tensor mask, float scale) -> Tensor variants: function dispatch: CUDA: masked_scale_cuda autogen: _masked_scale.out - func: native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor) variants: function dispatch: CPU: native_dropout_cpu CUDA: native_dropout_cuda NestedTensorCPU, NestedTensorCUDA: native_dropout_nested tags: [nondeterministic_seeded, core] autogen: native_dropout.out - func: native_dropout_backward(Tensor grad_output, Tensor mask, float scale) -> Tensor dispatch: CPU, NestedTensorCPU, NestedTensorCUDA: native_dropout_backward CUDA: native_dropout_backward_cuda autogen: native_dropout_backward.out tags: pointwise - func: _sobol_engine_draw(Tensor quasi, int n, Tensor sobolstate, int dimension, int num_generated, ScalarType? dtype) -> (Tensor, Tensor) - func: _sobol_engine_ff_(Tensor(a!) self, int n, Tensor sobolstate, int dimension, int num_generated) -> Tensor(a!) - func: _sobol_engine_scramble_(Tensor(a!) self, Tensor ltm, int dimension) -> Tensor(a!) - func: _sobol_engine_initialize_state_(Tensor(a!) self, int dimension) -> Tensor(a!) - func: _reshape_from_tensor(Tensor self, Tensor shape) -> Tensor - func: _shape_as_tensor(Tensor self) -> Tensor - func: dropout(Tensor input, float p, bool train) -> Tensor tags: [nondeterministic_seeded, maybe_aliasing_or_mutating] - func: dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) tags: nondeterministic_seeded - func: feature_dropout(Tensor input, float p, bool train) -> Tensor tags: [nondeterministic_seeded, maybe_aliasing_or_mutating] - func: feature_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) tags: nondeterministic_seeded - func: alpha_dropout(Tensor input, float p, bool train) -> Tensor tags: [nondeterministic_seeded, maybe_aliasing_or_mutating] - func: alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) tags: nondeterministic_seeded - func: feature_alpha_dropout(Tensor input, float p, bool train) -> Tensor tags: [nondeterministic_seeded, maybe_aliasing_or_mutating] - func: feature_alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!) tags: nondeterministic_seeded - func: abs(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: abs SparseCPU, SparseCUDA: abs_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: abs_sparse_csr NestedTensorCPU, NestedTensorCUDA: NestedTensor_abs tags: [core, pointwise] - func: abs_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: abs_ SparseCPU, SparseCUDA: abs_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: abs_sparse_csr_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_abs_ - func: abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: abs_out MPS: abs_out_mps SparseCPU, SparseCUDA: abs_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: abs_sparse_csr_out tags: pointwise # Note [Adding an alias] # To add an alias do the following: # # 1) Copy the original functions native_functions.yaml entry, but replace the # original function's name with their own and delete any dispatch # keys for the aliases. Specifying a dispatch key will prevent # autograd from recording the operations the alias performs, which # will stop it from "inheriting" the original operation's autograd behavior. # 2) Implement the corresponding functions and have them redispatch to the # original function. # 3) Add docstrings to the new function that reference the original function, # and document the method as usual (if it exists.) # (See torch/_torch_docs.py and docs/source/torch.rst if adding a function, # torch/_tensor_docs.py and docs/source/tensors.rst if adding a method, # or module-specific doc bindings (like torch/linalg/__init__.py) if # adding an alias in a namespace.) # 4) Update torch/overrides.py consistent with the original function. # 5) Update the alias_map in torch/csrc/jit/passes/normalize_ops.cpp. # 6) Add aliases argument to existing OpInfo/UnaryUfuncInfo or create new OpInfo/UnaryUfuncInfo entry # in op_db list in torch/testing/_internal/common_methods_invocations.py # # See torch.absolute, an alias for torch.abs, as an example. # Absolute, alias for abs - func: absolute(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: absolute_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: absolute.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: angle(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: angle MPS: angle_mps SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: angle_sparse_csr tags: pointwise - func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: angle_out MPS: angle_out_mps SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: angle_sparse_csr_out tags: pointwise - func: view_as_real(Tensor(a) self) -> Tensor(a) variants: function dispatch: CPU, CUDA, MPS, Meta: view_as_real - func: view_as_complex(Tensor(a) self) -> Tensor(a) variants: function dispatch: CPU, CUDA, MPS, Meta: view_as_complex - func: sgn(Tensor self) -> Tensor variants: function, method structured_delegate: sgn.out dispatch: SparseCPU, SparseCUDA: sgn_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sgn_sparse_csr NestedTensorCPU, NestedTensorCUDA: NestedTensor_sgn tags: pointwise - func: sgn_(Tensor(a!) self) -> Tensor(a!) variants: method structured_delegate: sgn.out dispatch: SparseCPU, SparseCUDA: sgn_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sgn_sparse_csr_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_sgn_ tags: pointwise - func: sgn.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: sgn_out MPS: sgn_out_mps SparseCPU, SparseCUDA: sgn_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sgn_sparse_csr_out tags: pointwise - func: chalf(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor variants: method - func: real(Tensor(a) self) -> Tensor(a) device_check: NoCheck # TensorIterator variants: function - func: imag(Tensor(a) self) -> Tensor(a) device_check: NoCheck # TensorIterator variants: function - func: _conj(Tensor(a) self) -> Tensor(a) variants: function, method dispatch: CompositeExplicitAutograd: _conj - func: conj(Tensor(a) self) -> Tensor(a) variants: function, method manual_cpp_binding: True - func: _conj_physical(Tensor self) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: _conj_physical SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: conj_physical_sparse_csr autogen: _conj_physical.out - func: conj_physical(Tensor self) -> Tensor variants: function, method tags: [pointwise, maybe_aliasing_or_mutating] - func: conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: conj_physical_out MPS: conj_physical_out_mps SparseCPU, SparseCUDA: conj_physical_out_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: conj_physical_sparse_csr_out tags: pointwise - func: conj_physical_(Tensor(a!) self) -> Tensor(a!) variants: function, method dispatch: CompositeExplicitAutograd: conj_physical_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: conj_physical_sparse_csr_ tags: pointwise - func: resolve_conj(Tensor(a) self) -> Tensor(a) variants: function, method - func: resolve_neg(Tensor(a) self) -> Tensor(a) variants: function, method - func: _neg_view(Tensor(a) self) -> Tensor(a) variants: function, method dispatch: CompositeExplicitAutograd: _neg_view - func: acos(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: acos.out tags: [core, pointwise] - func: acos_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method structured_delegate: acos.out tags: pointwise - func: acos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: acos_out MPS: acos_out_mps tags: pointwise # arccos, alias of acos - func: arccos(Tensor self) -> Tensor variants: function, method - func: arccos_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: arccos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, bool ceil_mode=False, bool count_include_pad=True) -> Tensor tags: core autogen: avg_pool1d.out - func: adaptive_avg_pool1d(Tensor self, int[1] output_size) -> Tensor tags: core autogen: adaptive_avg_pool1d.out # Return: (Tensor output, Tensor indices) - func: adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor) - func: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: add.out variants: function, method dispatch: SparseCPU, SparseCUDA, SparseMeta: add_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: add_sparse_csr MkldnnCPU: mkldnn_add ZeroTensor: add_zerotensor NestedTensorCPU, NestedTensorCUDA: NestedTensor_add_Tensor tags: [core, pointwise] - func: add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: add.out dispatch: SparseCPU, SparseCUDA, SparseMeta: add_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: add_sparse_csr_ MkldnnCPU: mkldnn_add_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_add__Tensor tags: pointwise - func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase ufunc_inner_loop: Generic: add (AllAndComplex, BFloat16, Half, ComplexHalf) ScalarOnly: add (Bool) dispatch: SparseCPU, SparseMeta: add_out_sparse_cpu SparseCUDA: add_out_sparse_cuda SparseCsrCPU, SparseCsrMeta: add_out_sparse_compressed_cpu SparseCsrCUDA: add_out_sparse_compressed_cuda MkldnnCPU: mkldnn_add_out MPS: add_out_mps tags: pointwise - func: _add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor variants: function dispatch: CPU: add_relu - func: _add_relu_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) variants: function dispatch: CPU: add_relu_ - func: _add_relu.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) variants: function dispatch: CPU: add_relu_out - func: _add_relu.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor variants: function dispatch: CPU: add_relu - func: _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) variants: function dispatch: CPU: add_relu_ autogen: _add_relu.Scalar_out # For C++ only, until we have conversion from C++ numbers to Tensor - func: add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: add tags: [core, pointwise] - func: add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: add_ autogen: add.Scalar_out tags: pointwise - func: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor structured_delegate: addmv.out variants: function, method - func: addmv_(Tensor(a!) self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) structured_delegate: addmv.out variants: function, method - func: addmv.out(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: addmv_out_cpu CUDA: addmv_out_cuda MPS: addmv_out_mps XPU: addmv_out_xpu SparseCsrCPU: addmv_out_sparse_compressed SparseCsrCUDA: addmv_out_sparse_compressed_cuda - func: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor variants: function, method dispatch: CPU, CUDA: addr MPS: addr_mps CompositeExplicitAutograd: math_addr - func: addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) variants: method dispatch: CompositeExplicitAutograd: addr_ - func: addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: addr_out MPS: addr_out_mps CompositeExplicitAutograd: math_addr_out - func: affine_grid_generator(Tensor theta, SymInt[] size, bool align_corners) -> Tensor variants: function dispatch: CompositeExplicitAutograd: affine_grid_generator autogen: affine_grid_generator.out - func: affine_grid_generator_backward(Tensor grad, SymInt[] size, bool align_corners) -> Tensor variants: function - func: _is_all_true(Tensor self) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: _is_all_true - func: _is_any_true(Tensor self) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: _is_any_true # Note: this function is only for testing. - func: _test_check_tensor(Tensor self) -> Tensor variants: function # Note; this function is only for testing - func: _test_functorch_fallback(Tensor self, Tensor other) -> Tensor variants: function dispatch: CPU: _test_functorch_fallback autogen: _test_functorch_fallback.out - func: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: all.out variants: function, method dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_all - func: all.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: all.dims_out variants: function, method cpp_no_default_args: ['dim'] dispatch: CompositeExplicitAutograd: all_dims_default - func: all.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True dispatch: CPU, CUDA: all_out MPS: all_out_mps - func: all.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True dispatch: CPU, CUDA: all_dims_out CompositeExplicitAutograd: all_dims_out_default cpp_no_default_args: ['dim'] - func: all.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: all.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: allclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> bool variants: function, method tags: data_dependent_output dispatch: CompositeExplicitAutograd: allclose - func: any.dim(Tensor self, int dim, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: any.out variants: function, method tags: core - func: any.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: any.dims_out variants: function, method cpp_no_default_args: ['dim'] tags: core dispatch: CompositeExplicitAutograd: any_dims_default - func: any.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True dispatch: CPU, CUDA: any_out MPS: any_out_mps - func: any.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True dispatch: CPU, CUDA: any_dims_out CompositeExplicitAutograd: any_dims_out_default cpp_no_default_args: ['dim'] - func: any.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: any.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: arange(Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: arange - func: arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: arange # This operator should be named `arange.start_out` if following the naming convention. However that # name is already taken. Disabled because of CI job failures. # FIXME: enable this #- func: arange.start_out_(Scalar start, Scalar end, *, Tensor(a!) out) -> Tensor(a!) # dispatch: # CompositeExplicitAutograd: arange_start_out - func: arange.start_step(Scalar start, Scalar end, Scalar step=1, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: arange cpp_no_default_args: ['step'] tags: core - func: arange.out(Scalar end, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: arange_out - func: arange.start_out(Scalar start, Scalar end, Scalar step=1, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, Meta: arange_out CUDA: arange_cuda_out MPS: arange_mps_out cpp_no_default_args: ['step'] # This function is a temporary hack to allow tracing of arange like constructs with dynamic # bounds on arange. Normal arange is not traceable because it does not take any tensor inputs; # if the range you need is based on another tensor, calling this function directly will # preserve tracing. Get rid of this when arange can directly take tensors for bounds # (so that it can be traced directly). - func: _dim_arange(Tensor like, int dim) -> Tensor - func: argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor structured_delegate: argmax.out device_check: NoCheck # TensorIterator variants: function, method tags: core - func: argmax.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU, CUDA: argmax_out MPS: argmax_out_mps - func: argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor structured_delegate: argmin.out device_check: NoCheck # TensorIterator variants: function, method tags: core - func: argmin.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU, CUDA: argmin_out MPS: argmin_out_mps - func: acosh(Tensor self) -> Tensor variants: function, method structured_delegate: acosh.out tags: [core, pointwise] - func: acosh_(Tensor(a!) self) -> Tensor(a!) variants: function, method structured_delegate: acosh.out tags: pointwise - func: acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: acosh_out MPS: acosh_out_mps tags: pointwise # arccosh, alias for acosh - func: arccosh(Tensor self) -> Tensor variants: function, method - func: arccosh_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: arccosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: asinh(Tensor self) -> Tensor variants: function, method structured_delegate: asinh.out dispatch: SparseCPU, SparseCUDA: asinh_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: asinh_sparse_csr tags: [core, pointwise] - func: asinh_(Tensor(a!) self) -> Tensor(a!) variants: function, method structured_delegate: asinh.out dispatch: SparseCPU, SparseCUDA: asinh_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: asinh_sparse_csr_ tags: pointwise - func: asinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: asinh_out MPS: asinh_out_mps SparseCPU, SparseCUDA: asinh_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: asinh_sparse_csr_out tags: pointwise # arcsinh, alias for asinh - func: arcsinh(Tensor self) -> Tensor variants: function, method - func: arcsinh_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: arcsinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: atanh(Tensor self) -> Tensor structured_delegate: atanh.out variants: function, method dispatch: SparseCPU, SparseCUDA: atanh_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: atanh_sparse_csr tags: [core, pointwise] - func: atanh_(Tensor(a!) self) -> Tensor(a!) structured_delegate: atanh.out variants: function, method dispatch: SparseCPU, SparseCUDA: atanh_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: atanh_sparse_csr_ tags: pointwise - func: atanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: atanh_out MPS: atanh_out_mps SparseCPU, SparseCUDA: atanh_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: atanh_sparse_csr_out tags: pointwise # arctanh, alias for atanh - func: arctanh(Tensor self) -> Tensor variants: function, method - func: arctanh_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: arctanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: as_strided(Tensor(a) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a) variants: function, method dispatch: ZeroTensor, CPU, CUDA: as_strided_tensorimpl Meta: as_strided_tensorimpl_meta_symint MPS: as_strided_tensorimpl_mps QuantizedCPU, QuantizedCUDA: as_strided_qtensorimpl device_check: NoCheck device_guard: False tags: core - func: as_strided_(Tensor(a!) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a!) use_const_ref_for_mutable_tensors: True variants: function, method device_check: NoCheck device_guard: False tags: inplace_view dispatch: CompositeExplicitAutogradNonFunctional: as_strided__symint - func: asin(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: asin.out dispatch: SparseCPU, SparseCUDA: asin_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: asin_sparse_csr tags: [core, pointwise] - func: asin_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method structured_delegate: asin.out dispatch: SparseCPU, SparseCUDA: asin_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: asin_sparse_csr_ tags: pointwise - func: asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: asin_out MPS: asin_out_mps SparseCPU, SparseCUDA: asin_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: asin_sparse_csr_out tags: pointwise # arcsin, alias of asin - func: arcsin(Tensor self) -> Tensor variants: function, method - func: arcsin_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: arcsin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: atan(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: atan.out variants: function, method dispatch: SparseCPU, SparseCUDA: atan_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: atan_sparse_csr tags: [core, pointwise] - func: atan_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: atan.out variants: function, method dispatch: SparseCPU, SparseCUDA: atan_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: atan_sparse_csr_ tags: pointwise - func: atan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: atan_out MPS: atan_out_mps SparseCPU, SparseCUDA: atan_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: atan_sparse_csr_out tags: pointwise # arctan, alias of atan - func: arctan(Tensor self) -> Tensor variants: function, method - func: arctan_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: arctan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: atleast_1d(Tensor self) -> Tensor variants: function tags: maybe_aliasing_or_mutating - func: atleast_1d.Sequence(Tensor[] tensors) -> Tensor[] - func: atleast_2d(Tensor self) -> Tensor variants: function tags: maybe_aliasing_or_mutating - func: atleast_2d.Sequence(Tensor[] tensors) -> Tensor[] variants: function - func: atleast_3d(Tensor self) -> Tensor variants: function tags: maybe_aliasing_or_mutating - func: atleast_3d.Sequence(Tensor[] tensors) -> Tensor[] variants: function - func: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor variants: function, method structured_delegate: baddbmm.out - func: baddbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) variants: method structured_delegate: baddbmm.out - func: baddbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU: baddbmm_out_cpu CUDA: baddbmm_out_cuda MPS: baddbmm_out_mps XPU: baddbmm_out_xpu SparseCsrCUDA: baddbmm_out_sparse_csr_cuda - func: bartlett_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: bartlett_window autogen: bartlett_window.out - func: bartlett_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: bartlett_window autogen: bartlett_window.periodic_out - func: batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor tags: maybe_aliasing_or_mutating - func: quantized_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point) -> Tensor dispatch: QuantizedCPU: quantized_batch_norm autogen: quantized_batch_norm.out - func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int) tags: maybe_aliasing_or_mutating - func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask, Tensor reservedSpace) -> (Tensor, Tensor, Tensor) # Sample bernoulli with values in `self` as probability. - func: bernoulli(Tensor self, *, Generator? generator=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: bernoulli tags: nondeterministic_seeded - func: bernoulli.out(Tensor self, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function tags: nondeterministic_seeded dispatch: CPU, CUDA: bernoulli_out MPS: bernoulli_out_mps - func: bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method tags: nondeterministic_seeded dispatch: CPU, CUDA: bernoulli_ MPS: bernoulli_mps_ autogen: bernoulli.Tensor, bernoulli.Tensor_out - func: bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method tags: nondeterministic_seeded dispatch: CPU, CUDA: bernoulli_ MPS: bernoulli_mps_ autogen: bernoulli.float_out # Note [bernoulli.p schema] # We should probably just fix the overload ambiguity by appending a _functional to the C++ API name (BC breaking) # This out-of-place version isn't used explicitly, but needed by jit. # There is no default valid on `p` here because it would introduce ambiguity # with `bernoulli(Tensor self, *, Generator? generator=None)` declaration. - func: bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method tags: nondeterministic_seeded dispatch: CompositeExplicitAutogradNonFunctional: bernoulli - func: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias=None) -> Tensor - func: binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor device_check: NoCheck # TensorIterator python_module: nn variants: function dispatch: CPU: binary_cross_entropy_cpu CUDA: binary_cross_entropy_cuda MPS: binary_cross_entropy_mps - func: binary_cross_entropy.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: nn variants: function dispatch: CPU: binary_cross_entropy_out_cpu CUDA: binary_cross_entropy_out_cuda MPS: binary_cross_entropy_out_mps - func: binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor python_module: nn variants: function dispatch: CPU: binary_cross_entropy_backward_cpu CUDA: binary_cross_entropy_backward_cuda MPS: binary_cross_entropy_backward_mps - func: binary_cross_entropy_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn variants: function dispatch: CPU: binary_cross_entropy_backward_out_cpu CUDA: binary_cross_entropy_backward_out_cuda MPS: binary_cross_entropy_backward_out_mps - func: binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: binary_cross_entropy_with_logits autogen: binary_cross_entropy_with_logits.out - func: bincount(Tensor self, Tensor? weights=None, int minlength=0) -> Tensor variants: function, method dispatch: CPU: _bincount_cpu CUDA: _bincount_cuda MPS: _bincount_mps tags: dynamic_output_shape autogen: bincount.out - func: bitwise_not(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: bitwise_not.out variants: function, method tags: [core, pointwise] - func: bitwise_not_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: bitwise_not.out variants: method tags: pointwise - func: bitwise_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: bitwise_not_out MPS: bitwise_not_out_mps tags: pointwise - func: copysign.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: copysign_out tags: pointwise - func: copysign.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: copysign.out tags: pointwise - func: copysign_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: copysign.out - func: copysign.Scalar(Tensor self, Scalar other) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: copysign tags: pointwise - func: copysign_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method dispatch: CompositeExplicitAutograd: copysign_ - func: copysign.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: copysign_out tags: pointwise - func: _lazy_clone(Tensor self) -> Tensor # Like clone, but the copy takes place lazily, only if either the # input or the output are written. variants: function, method dispatch: CompositeExplicitAutograd: _lazy_clone - func: logical_not(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: logical_not NestedTensorCPU, NestedTensorCUDA: NestedTensor_logical_not tags: [core, pointwise] - func: logical_not_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: logical_not_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_logical_not_ tags: pointwise - func: logical_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: logical_not_out MPS: logical_not_out_mps tags: pointwise - func: logical_xor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: logical_xor tags: [core, pointwise] - func: logical_xor_(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: logical_xor_ tags: pointwise - func: logical_xor.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: logical_xor_out MPS: logical_xor_out_mps tags: pointwise - func: logical_and(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: logical_and tags: [core, pointwise] - func: logical_and_(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: logical_and_ tags: pointwise - func: logical_and.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: logical_and_out MPS: logical_and_out_mps tags: pointwise - func: logical_or(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: logical_or tags: [core, pointwise] - func: logical_or_(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: logical_or_ tags: pointwise - func: logical_or.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: logical_or_out MPS: logical_or_out_mps tags: pointwise - func: blackman_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: blackman_window autogen: blackman_window.out - func: blackman_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: blackman_window autogen: blackman_window.periodic_out - func: bmm(Tensor self, Tensor mat2) -> Tensor structured_delegate: bmm.out variants: function, method dispatch: SparseCPU: bmm_sparse_cpu SparseCUDA: bmm_sparse_cuda NestedTensorCPU: bmm_nested NestedTensorCUDA: bmm_nested_cuda tags: core - func: bmm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU: bmm_out_cpu CUDA: bmm_out_cuda MPS: bmm_out_mps XPU: bmm_out_xpu SparseCPU: bmm_out_sparse_cpu SparseCUDA: bmm_out_sparse_cuda SparseCsrCUDA: bmm_out_sparse_csr_cuda - func: broadcast_tensors(Tensor[] tensors) -> Tensor[] device_check: NoCheck device_guard: False - func: broadcast_to(Tensor(a) self, SymInt[] size) -> Tensor(a) variants: function, method dispatch: CompositeImplicitAutograd: broadcast_to_symint - func: _sparse_broadcast_to(Tensor(a) self, int[] size) -> Tensor(a) variants: function dispatch: SparseCPU, SparseCUDA: sparse_broadcast_to - func: cat(Tensor[] tensors, int dim=0) -> Tensor structured_delegate: cat.out dispatch: SparseCPU, SparseCUDA: cat_sparse QuantizedCPU: cat_quantized_cpu NestedTensorCPU, NestedTensorCUDA: cat_nested tags: core - func: cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) structured: True precomputed: - dim -> int dim, int valid, bool all_contiguous, bool all_same_dtype, bool all_same_sizes_and_stride, MemoryFormat memory_format dispatch: CPU: cat_out_cpu CUDA: cat_out_cuda MPS: cat_out_mps QuantizedCPU: cat_out_quantized_cpu - func: cat.names(Tensor[] tensors, Dimname dim) -> Tensor - func: cat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!) # alias for torch.cat - func: concat(Tensor[] tensors, int dim=0) -> Tensor - func: concat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) - func: concat.names(Tensor[] tensors, Dimname dim) -> Tensor - func: concat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!) # alias for torch.cat - func: concatenate(Tensor[] tensors, int dim=0) -> Tensor - func: concatenate.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) - func: concatenate.names(Tensor[] tensors, Dimname dim) -> Tensor - func: concatenate.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!) - func: block_diag(Tensor[] tensors) -> Tensor variants: function dispatch: CompositeExplicitAutograd: block_diag autogen: block_diag.out - func: ceil(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: ceil.out variants: function, method dispatch: SparseCPU, SparseCUDA: ceil_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: ceil_sparse_csr tags: [core, pointwise] - func: ceil_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: ceil.out variants: function, method dispatch: SparseCPU, SparseCUDA: ceil_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: ceil_sparse_csr_ tags: pointwise - func: ceil.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: ceil_out SparseCPU, SparseCUDA: ceil_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: ceil_sparse_csr_out tags: pointwise # alias for torch.linalg.multi_dot - func: chain_matmul(Tensor[] matrices) -> Tensor variants: function # alias for torch.linalg.multi_dot - func: chain_matmul.out(Tensor[] matrices, *, Tensor(a!) out) -> Tensor(a!) - func: unsafe_chunk(Tensor self, int chunks, int dim=0) -> Tensor[] variants: function, method device_check: NoCheck device_guard: False tags: maybe_aliasing_or_mutating - func: chunk(Tensor(a -> *) self, int chunks, int dim=0) -> Tensor(a)[] variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: chunk NestedTensorCPU, NestedTensorCUDA: chunk_nested_tensor - func: tensor_split.sections(Tensor(a -> *) self, SymInt sections, int dim=0) -> Tensor(a)[] variants: function, method dispatch: CompositeImplicitAutograd: tensor_split_sections_symint - func: tensor_split.indices(Tensor(a -> *) self, SymInt[] indices, int dim=0) -> Tensor(a)[] variants: function, method dispatch: CompositeImplicitAutograd: tensor_split_indices_symint - func: tensor_split.tensor_indices_or_sections(Tensor(a -> *) self, Tensor tensor_indices_or_sections, int dim=0) -> Tensor(a)[] variants: function, method - func: clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method cpp_no_default_args: ['min'] structured_delegate: clamp.out dispatch: QuantizedCPU: clamp_quantized_cpu tags: [core, pointwise] - func: clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor variants: function, method structured_delegate: clamp.Tensor_out tags: [core, pointwise] - func: clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method cpp_no_default_args: ['min'] structured_delegate: clamp.out tags: pointwise - func: clamp_.Tensor(Tensor(a!) self, Tensor? min=None, Tensor? max=None) -> Tensor(a!) variants: function, method structured_delegate: clamp.Tensor_out tags: pointwise - func: clamp.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator cpp_no_default_args: ['min'] structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: clamp_out MPS: clamp_out_mps tags: pointwise - func: clamp.Tensor_out(Tensor self, Tensor? min=None, Tensor? max=None, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: clamp_Tensor_out MPS: clamp_Tensor_out_mps tags: pointwise - func: clamp_max(Tensor self, Scalar max) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: clamp_max.out tags: pointwise - func: clamp_max.Tensor(Tensor self, Tensor max) -> Tensor variants: function, method structured_delegate: clamp_max.Tensor_out tags: pointwise - func: clamp_max_(Tensor(a!) self, Scalar max) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method structured_delegate: clamp_max.out tags: pointwise - func: clamp_max_.Tensor(Tensor(a!) self, Tensor max) -> Tensor(a!) variants: function, method structured_delegate: clamp_max.Tensor_out tags: pointwise - func: clamp_max.out(Tensor self, Scalar max, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: clamp_max_out MPS: clamp_max_out_mps tags: pointwise - func: clamp_max.Tensor_out(Tensor self, Tensor max, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: clamp_max_Tensor_out MPS: clamp_max_Tensor_out_mps tags: pointwise - func: clamp_min(Tensor self, Scalar min) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: clamp_min.out tags: pointwise - func: clamp_min.Tensor(Tensor self, Tensor min) -> Tensor variants: function, method structured_delegate: clamp_min.Tensor_out tags: pointwise - func: clamp_min_(Tensor(a!) self, Scalar min) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method structured_delegate: clamp_min.out tags: pointwise - func: clamp_min_.Tensor(Tensor(a!) self, Tensor min) -> Tensor(a!) variants: function, method structured_delegate: clamp_min.Tensor_out tags: pointwise - func: clamp_min.out(Tensor self, Scalar min, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: clamp_min_out MPS: clamp_min_out_mps tags: pointwise - func: clamp_min.Tensor_out(Tensor self, Tensor min, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: clamp_min_Tensor_out MPS: clamp_min_Tensor_out_mps tags: pointwise # clip is an alias for clamp - func: clip(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor cpp_no_default_args: ['min'] variants: function, method tags: pointwise - func: clip.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor variants: function, method tags: pointwise - func: clip_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!) cpp_no_default_args: ['min'] variants: function, method tags: pointwise - func: clip_.Tensor(Tensor(a!) self, Tensor? min=None, Tensor? max=None) -> Tensor(a!) variants: function, method tags: pointwise - func: clip.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!) cpp_no_default_args: ['min'] tags: pointwise - func: clip.Tensor_out(Tensor self, Tensor? min=None, Tensor? max=None, *, Tensor(a!) out) -> Tensor(a!) - func: cudnn_is_acceptable(Tensor self) -> bool device_check: NoCheck device_guard: False - func: complex(Tensor real, Tensor imag) -> Tensor variants: function dispatch: CompositeExplicitAutograd: complex - func: complex.out(Tensor real, Tensor imag, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: complex_out MPS: complex_out_mps - func: polar(Tensor abs, Tensor angle) -> Tensor variants: function dispatch: CompositeExplicitAutograd: polar - func: polar.out(Tensor abs, Tensor angle, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: polar_out MPS: polar_out_mps - func: constant_pad_nd(Tensor self, SymInt[] pad, Scalar value=0) -> Tensor variants: function dispatch: CompositeExplicitAutograd: constant_pad_nd MPS: constant_pad_nd_mps autogen: constant_pad_nd.out tags: core - func: contiguous(Tensor(a) self, *, MemoryFormat memory_format=contiguous_format) -> Tensor(a) variants: method manual_cpp_binding: True - func: convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor dispatch: CompositeExplicitAutograd: convolution autogen: convolution.out tags: core - func: convolution_backward(Tensor grad_output, Tensor input, Tensor weight, SymInt[]? bias_sizes, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor) dispatch: CompositeExplicitAutograd, CUDA: convolution_backward autogen: convolution_backward.out tags: core - func: convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor dispatch: CompositeExplicitAutograd: convolution_overrideable autogen: convolution_overrideable.out - func: convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) dispatch: CompositeExplicitAutograd: convolution_backward_overrideable autogen: convolution_backward_overrideable.out - func: _convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor dispatch: CompositeExplicitAutograd: _convolution autogen: _convolution.out - func: _convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, int[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor - func: _convolution_mode(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, str padding, SymInt[] dilation, SymInt groups) -> Tensor dispatch: CompositeImplicitAutograd: _convolution_mode_symint - func: _convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor) - func: conv1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] dilation=1, SymInt groups=1) -> Tensor dispatch: CompositeImplicitAutograd: conv1d_symint - func: conv2d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1, SymInt groups=1) -> Tensor dispatch: CompositeImplicitAutograd: conv2d_symint - func: conv3d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1, SymInt groups=1) -> Tensor dispatch: CompositeImplicitAutograd: conv3d_symint - func: conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, str padding="valid", SymInt[1] dilation=1, SymInt groups=1) -> Tensor cpp_no_default_args: ['bias', 'stride', 'padding'] dispatch: CompositeImplicitAutograd: conv1d_padding_symint - func: conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, str padding="valid", SymInt[2] dilation=1, SymInt groups=1) -> Tensor cpp_no_default_args: ['bias', 'stride', 'padding'] dispatch: CompositeImplicitAutograd: conv2d_padding_symint - func: conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, str padding="valid", SymInt[3] dilation=1, SymInt groups=1) -> Tensor cpp_no_default_args: ['bias', 'stride', 'padding'] dispatch: CompositeImplicitAutograd: conv3d_padding_symint - func: conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> Tensor dispatch: CompositeExplicitAutograd: conv_tbc autogen: conv_tbc.out - func: conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor) # NB: we inherit the goofy argument order from PyTorch torch.nn.functional - func: conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] output_padding=0, SymInt groups=1, SymInt[1] dilation=1) -> Tensor dispatch: CompositeImplicitAutograd: conv_transpose1d_symint - func: conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt groups=1, SymInt[2] dilation=1) -> Tensor dispatch: CompositeImplicitAutograd: conv_transpose2d_symint - func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt groups=1, SymInt[3] dilation=1) -> Tensor dispatch: CompositeImplicitAutograd: conv_transpose3d_symint - func: copy(Tensor self, Tensor src, bool non_blocking=False) -> Tensor variants: function dispatch: Meta: copy_meta CompositeExplicitAutogradNonFunctional: copy tags: core - func: copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False dispatch: MkldnnCPU: copy_mkldnn_ SparseCPU, SparseCUDA: copy_sparse_wrapper_ CompositeExplicitAutograd: copy_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: copy_sparse_compressed_ NestedTensorCPU, NestedTensorCUDA: copy_nested_ autogen: copy.out - func: _copy_from(Tensor self, Tensor dst, bool non_blocking=False) -> Tensor dispatch: MPS: _copy_from_mps autogen: _copy_from.out # We need this to be able to properly copy from a CPU to an XLA tensor with different sizes. # See https://github.com/pytorch/xla/issues/2881 - func: _copy_from_and_resize(Tensor self, Tensor dst) -> Tensor dispatch: MPS: _copy_from_and_resize_mps autogen: _copy_from_and_resize.out - func: cos(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: cos.out dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_cos tags: [core, pointwise] - func: cos_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method structured_delegate: cos.out tags: pointwise - func: cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: cos_out MPS: cos_out_mps tags: pointwise - func: cosh(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: cosh.out tags: [core, pointwise] - func: cosh_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method structured_delegate: cosh.out tags: pointwise - func: cosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: cosh_out MPS: cosh_out_mps tags: pointwise - func: cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor - func: count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor variants: function, method dispatch: CPU: count_nonzero_cpu CUDA: count_nonzero_cuda MPS: count_nonzero_mps autogen: count_nonzero.dim_IntList_out - func: count_nonzero(Tensor self, int? dim=None) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: count_nonzero autogen: count_nonzero.out - func: cov(Tensor self, *, int correction=1, Tensor? fweights=None, Tensor? aweights=None) -> Tensor variants: function, method - func: corrcoef(Tensor self) -> Tensor variants: function, method - func: cudnn_affine_grid_generator(Tensor theta, int N, int C, int H, int W) -> Tensor grid dispatch: CUDA: cudnn_affine_grid_generator_forward autogen: cudnn_affine_grid_generator.out # TODO: Why do I have to call this grad?! - func: cudnn_affine_grid_generator_backward(Tensor grad, int N, int C, int H, int W) -> Tensor grad_theta dispatch: CUDA: cudnn_affine_grid_generator_backward autogen: cudnn_affine_grid_generator_backward.out - func: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor) dispatch: CUDA: cudnn_batch_norm autogen: cudnn_batch_norm.out # NB: You can only use this if you used cudnn_batch_norm training=True - func: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, Tensor reserveSpace) -> (Tensor, Tensor, Tensor) dispatch: CUDA: cudnn_batch_norm_backward autogen: cudnn_batch_norm_backward.out - func: cudnn_convolution(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor dispatch: CUDA: cudnn_convolution - func: cudnn_convolution.out(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!) dispatch: CUDA: cudnn_convolution_out - func: cudnn_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor dispatch: CUDA: cudnn_convolution_transpose autogen: cudnn_convolution_transpose.out - func: _mps_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor dispatch: MPS: _mps_convolution_transpose autogen: _mps_convolution_transpose.out - func: mps_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[2] output_mask) -> (Tensor, Tensor) dispatch: MPS: mps_convolution_transpose_backward autogen: mps_convolution_transpose_backward.out - func: cudnn_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor dispatch: CUDA: cudnn_convolution_relu autogen: cudnn_convolution_relu.out - func: cudnn_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor dispatch: CUDA: cudnn_convolution_add_relu autogen: cudnn_convolution_add_relu.out # NB: input is special cased in a way I don't quite understand - func: cudnn_grid_sampler(Tensor self, Tensor grid) -> Tensor output dispatch: CUDA: cudnn_grid_sampler_forward autogen: cudnn_grid_sampler.out - func: cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output) -> (Tensor grad_self, Tensor grad_grid) dispatch: CUDA: cudnn_grid_sampler_backward autogen: cudnn_grid_sampler_backward.out - func: cummax(Tensor self, int dim) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: cummax - func: cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator dispatch: CompositeExplicitAutograd: cummax_out - func: cummax.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator variants: function, method - func: cummax.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator - func: _cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> () variants: function dispatch: CPU: cummax_helper_cpu CUDA: cummax_helper_cuda - func: cummin(Tensor self, int dim) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: cummin - func: cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator dispatch: CompositeExplicitAutograd: cummin_out - func: cummin.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator variants: function, method - func: cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator - func: _cummin_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> () variants: function dispatch: CPU: cummin_helper_cpu CUDA: cummin_helper_cuda - func: cummaxmin_backward(Tensor grad, Tensor input, Tensor indices, int dim) -> Tensor variants: function device_check: NoCheck device_guard: False - func: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor structured_delegate: cumprod.out device_check: NoCheck # TensorIterator variants: function, method - func: cumprod_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!) structured_delegate: cumprod.out variants: method - func: cumprod.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) structured: True device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: cumprod_out MPS: cumprod_out_mps - func: cumprod.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: cumprod_.dimname(Tensor(a!) self, Dimname dim, *, ScalarType? dtype=None) -> Tensor(a!) variants: method - func: cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: cumprod_backward(Tensor grad, Tensor input, int dim, Tensor output) -> Tensor variants: function device_check: NoCheck device_guard: False - func: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor structured_delegate: cumsum.out device_check: NoCheck # TensorIterator variants: function, method tags: core - func: cumsum_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!) structured_delegate: cumsum.out variants: method - func: cumsum.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) structured: True device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: cumsum_out MPS: cumsum_out_mps - func: cumsum.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: cumsum_.dimname(Tensor(a!) self, Dimname dim, *, ScalarType? dtype=None) -> Tensor(a!) variants: method - func: cumsum.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: cumulative_trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor - func: cumulative_trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> Tensor - func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor # convenience function that converts to intlists for you - func: ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor - func: _ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor) dispatch: CPU: ctc_loss_cpu CUDA: ctc_loss_gpu Meta: ctc_loss_meta autogen: _ctc_loss.out tags: dynamic_output_shape # the shape of second output is data dependent - func: _ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor) dispatch: CPU, CUDA: ctc_loss_tensor autogen: _ctc_loss.Tensor_out tags: dynamic_output_shape # the shape of second output is data dependent - func: _ctc_loss_backward(Tensor grad, Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor dispatch: CPU: ctc_loss_backward_cpu CUDA: ctc_loss_backward_gpu autogen: _ctc_loss_backward.out - func: _ctc_loss_backward.Tensor(Tensor grad, Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor dispatch: CPU, CUDA: ctc_loss_backward_tensor - func: diag_embed(Tensor self, int offset=0, int dim1=-2, int dim2=-1) -> Tensor variants: function, method dispatch: CompositeExplicitAutogradNonFunctional: diag_embed autogen: diag_embed.out - func: diagflat(Tensor self, int offset=0) -> Tensor variants: function, method - func: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a) variants: function, method dispatch: CompositeExplicitAutograd: diagonal tags: core - func: linalg_diagonal(Tensor(a) A, *, int offset=0, int dim1=-2, int dim2=-1) -> Tensor(a) python_module: linalg variants: function - func: diagonal.Dimname(Tensor(a) self, *, Dimname outdim, Dimname dim1, Dimname dim2, int offset=0) -> Tensor(a) variants: function, method - func: diagonal_backward(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2) -> Tensor variants: function device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: diagonal_backward_symint autogen: diagonal_backward.out - func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!) variants: method - func: diff(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None) -> Tensor variants: function, method - func: diff.out(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None, *, Tensor(a!) out) -> Tensor(a!) variants: function - func: gradient.scalarint(Tensor self, *, Scalar? spacing=None, int? dim=None, int edge_order=1) -> Tensor[] variants: function - func: gradient.scalararray(Tensor self, *, Scalar spacing, int[] dim, int edge_order=1) -> Tensor[] variants: function - func: gradient.array(Tensor self, *, int[] dim, int edge_order=1) -> Tensor[] variants: function - func: gradient.scalarrayint(Tensor self, *, Scalar[] spacing, int? dim=None, int edge_order=1) -> Tensor[] variants: function - func: gradient.scalarrayarray(Tensor self, *, Scalar[] spacing, int[] dim, int edge_order=1) -> Tensor[] variants: function - func: gradient.tensorarrayint(Tensor self, *, Tensor[] spacing, int? dim=None, int edge_order=1) -> Tensor[] variants: function - func: gradient.tensorarray(Tensor self, *, Tensor[] spacing, int[] dim, int edge_order=1) -> Tensor[] variants: function - func: div.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: div.out dispatch: SparseCPU, SparseCUDA: div_sparse ZeroTensor: div_zerotensor NestedTensorCPU, NestedTensorCUDA: NestedTensor_div_Tensor tags: [core, pointwise] - func: div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: div.out dispatch: SparseCPU, SparseCUDA: div_sparse_ tags: pointwise - func: div.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: div_out MPS: div_out_mps SparseCPU, SparseCUDA: div_out_sparse_zerodim tags: pointwise - func: div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: div.out_mode dispatch: SparseCPU, SparseCUDA: div_sparse tags: [core, pointwise] - func: div_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: div.out_mode dispatch: SparseCPU, SparseCUDA: div_sparse_ tags: pointwise - func: div.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: div_out_mode MPS: div_out_mode_mps SparseCPU, SparseCUDA: div_out_sparse_zerodim tags: pointwise # For C++ only, until we have conversion from C++ numbers to Tensor - func: div.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: div NestedTensorCPU, NestedTensorCUDA: NestedTensor_div_Scalar tags: [core, pointwise] - func: div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: div_ autogen: div.Scalar_out tags: pointwise - func: div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: div tags: [core, pointwise] - func: div_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!) variants: method dispatch: CompositeExplicitAutograd: div_ autogen: div.Scalar_mode_out tags: pointwise # divide, alias for div - func: divide.Tensor(Tensor self, Tensor other) -> Tensor variants: function, method - func: divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: divide.Scalar(Tensor self, Scalar other) -> Tensor variants: function, method - func: divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method - func: divide.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor variants: function, method - func: divide_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!) variants: method - func: divide.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!) - func: divide.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor variants: function, method - func: divide_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!) variants: method # true_divide, an alias for div - func: true_divide.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method tags: pointwise - func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: dot(Tensor self, Tensor tensor) -> Tensor variants: function, method dispatch: CPU: dot CUDA: dot_cuda MPS: dot_mps - func: dot.out(Tensor self, Tensor tensor, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: dot_out - func: vdot(Tensor self, Tensor other) -> Tensor variants: function, method dispatch: CPU: vdot CUDA: vdot_cuda - func: vdot.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: vdot_out - func: einsum(str equation, Tensor[] tensors, *, int[]? path=None) -> Tensor - func: embedding(Tensor weight, Tensor indices, SymInt padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor dispatch: CompositeExplicitAutograd: embedding_symint NestedTensorCPU, NestedTensorCUDA: NestedTensor_embedding autogen: embedding.out tags: core - func: embedding_backward(Tensor grad, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, bool sparse) -> Tensor dispatch: CompositeImplicitAutograd: embedding_backward_symint - func: embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor dispatch: CPU: embedding_dense_backward_cpu CUDA: embedding_dense_backward_cuda MPS: embedding_dense_backward_mps autogen: embedding_dense_backward.out tags: core - func: embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!) dispatch: CPU: embedding_renorm_cpu_ CUDA: embedding_renorm_cuda_ autogen: embedding_renorm, embedding_renorm.out - func: embedding_sparse_backward(Tensor grad, Tensor indices, int num_weights, int padding_idx, bool scale_grad_by_freq) -> Tensor # NOTE [ embedding_bag Native Functions ] # The `_embedding_bag.*` variants assume that input tensors except for `weight`, # e.g. `indices` and `offsets` (and `offset2bag`), are contiguous. # We really only need to enforce this for `_embedding_bag` (the forward) because # the backward inputs are the same as forward ones. # The above `embedding_bag` wrapper is created to achieve this, e.g., # applying indices = indices.contiguous(). # The backward functions apply a check that these input tensors are contiguous. - func: _embedding_bag_forward_only(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor) dispatch: CPU: _embedding_bag_forward_only_cpu CUDA: _embedding_bag_forward_only_cuda autogen: _embedding_bag_forward_only.out - func: _rowwise_prune(Tensor weight, Tensor mask, ScalarType compressed_indices_dtype) -> (Tensor, Tensor) # row_stack is the alias of vstack - func: row_stack(Tensor[] tensors) -> Tensor - func: row_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) - func: embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor) # To keep backward and forward compatibility, and to avoid ambiguity with the # original signature above, scale_grad_by_freq, mode, sparse, # per_sample_weights, and include_last_offset parameters do not have default # values. Once the original signature is removed, default values can be added. - func: embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor, Tensor) - func: _embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor) dispatch: CPU: _embedding_bag_cpu CUDA: _embedding_bag_cuda autogen: _embedding_bag.out tags: core - func: _embedding_bag_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor dispatch: CPU, CUDA: _embedding_bag_backward_symint - func: _embedding_bag_sparse_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor dispatch: CompositeImplicitAutograd: _embedding_bag_sparse_backward_symint - func: _embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor dispatch: CPU: _embedding_bag_dense_backward_cpu CUDA: _embedding_bag_dense_backward_cuda autogen: _embedding_bag_dense_backward.out - func: _embedding_bag_per_sample_weights_backward(Tensor grad, Tensor weight, Tensor indices, Tensor offsets, Tensor offset2bag, int mode, int padding_idx=-1) -> Tensor dispatch: CPU: _embedding_bag_per_sample_weights_backward_cpu CUDA: _embedding_bag_per_sample_weights_backward_cuda autogen: _embedding_bag_per_sample_weights_backward.out - func: empty.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: empty_names autogen: empty.names_out - func: empty.memory_format(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor dispatch: CPU: empty_cpu CUDA: empty_cuda MPS: empty_mps Meta: empty_meta_symint MkldnnCPU: empty_mkldnn SparseCPU, SparseCUDA: empty_sparse SparseMeta: empty_sparse_symint SparseCsrCPU, SparseCsrCUDA: empty_sparse_compressed SparseCsrMeta: empty_sparse_compressed_symint QuantizedCPU, QuantizedCUDA, QuantizedMeta: empty_unknown_quantized tags: core - func: empty_permuted(SymInt[] size, int[] physical_layout, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: empty_permuted_symint autogen: empty_permuted.out # We do not make new_empty a composite that calls into new_empty_strided, as the strided version # is significantly more difficult to implement by different backends - func: new_empty(Tensor self, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor variants: method dispatch: CompositeExplicitAutograd: new_empty_symint autogen: new_empty.out - func: new_empty_strided(Tensor self, SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor variants: method dispatch: CompositeExplicitAutogradNonFunctional: new_empty_strided_symint autogen: new_empty_strided.out - func: new_full(Tensor self, SymInt[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor variants: method dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: new_full autogen: new_full.out - func: new_zeros(Tensor self, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor variants: method dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: new_zeros autogen: new_zeros.out - func: new_ones(Tensor self, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor variants: method dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: new_ones autogen: new_ones.out # other overrides are to provide a more helpful error message that dtype is required - func: _empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor dispatch: CPU: empty_affine_quantized_other_backends_stub QuantizedCPU, QuantizedCUDA: empty_affine_quantized autogen: _empty_affine_quantized.out # it's a factory function receiving a tensor argument, thus overriding explicitly # other overrides are to provide a more helpful error message that dtype is required - func: _empty_per_channel_affine_quantized(SymInt[] size, *, Tensor scales, Tensor zero_points, int axis, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=contiguous_format) -> Tensor category_override: factory dispatch: CPU: empty_per_channel_affine_quantized_other_backends_stub QuantizedCPU, QuantizedCUDA: empty_per_channel_affine_quantized autogen: _empty_per_channel_affine_quantized.out - func: resize_(Tensor(a!) self, SymInt[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!) use_const_ref_for_mutable_tensors: True variants: method device_check: NoCheck device_guard: False tags: [core, inplace_view] dispatch: Meta: resize__symint CPU: resize_ CUDA: resize_cuda_ MPS: resize_mps_ QuantizedCPU: quantized_resize_cpu_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: resize_sparse_csr_ autogen: resize, resize.out # This is a utility function to enable users to resize out tensor while registering kernels for out variants. # Eventually, we can consider exposing `resize_output` as a public API to ship it with python op registration # to make it easy to register out variants for ops. - func: _resize_output_(Tensor(a!) self, SymInt[] size, Device device) -> Tensor(a!) use_const_ref_for_mutable_tensors: True variants: function dispatch: Meta: _resize_output_ autogen: _resize_output, _resize_output.out - func: empty_quantized(int[] size, Tensor qtensor, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor category_override: factory variants: function dispatch: QuantizedCPU, QuantizedCUDA: empty_quantized autogen: empty_quantized.out - func: empty.out(SymInt[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck device_guard: False - func: empty_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: empty_like QuantizedCPU, QuantizedCUDA: empty_like_quantized SparseCPU, SparseCUDA, SparseMeta: empty_like_sparse_coo SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: empty_like_sparse_csr NestedTensorCPU, NestedTensorCUDA: empty_like_nested autogen: empty_like.out - func: empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CPU: empty_strided_cpu CUDA: empty_strided_cuda MPS: empty_strided_mps Meta: empty_strided_meta_symint QuantizedCPU, QuantizedCUDA: empty_strided_unknown_quantized autogen: empty_strided.out tags: core - func: erf(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: erf.out variants: function, method dispatch: SparseCPU, SparseCUDA: erf_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erf_sparse_csr tags: [core, pointwise] - func: erf_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: erf.out variants: function, method dispatch: SparseCPU, SparseCUDA: erf_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erf_sparse_csr_ tags: pointwise - func: erf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: erf_out MPS: erf_out_mps SparseCPU, SparseCUDA: erf_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erf_sparse_csr_out tags: pointwise - func: erfc(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: erfc.out variants: function, method tags: pointwise - func: erfc_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: erfc.out variants: function, method tags: pointwise - func: erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: erfc_out tags: pointwise - func: exp(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: exp.out variants: function, method tags: [core, pointwise] - func: exp_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: exp.out variants: function, method tags: pointwise - func: exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: exp_out tags: pointwise - func: exp2(Tensor self) -> Tensor structured_delegate: exp2.out variants: function, method tags: pointwise - func: exp2_(Tensor(a!) self) -> Tensor(a!) structured_delegate: exp2.out variants: function, method tags: pointwise - func: exp2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: exp2_out MPS: exp2_out_mps tags: pointwise - func: expm1(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: expm1.out variants: function, method dispatch: SparseCPU, SparseCUDA: expm1_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: expm1_sparse_csr tags: [core, pointwise] - func: expm1_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: expm1.out variants: function, method dispatch: SparseCPU, SparseCUDA: expm1_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: expm1_sparse_csr_ tags: pointwise - func: expm1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: expm1_out MPS: expm1_out_mps SparseCPU, SparseCUDA: expm1_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: expm1_sparse_csr_out tags: pointwise - func: expand(Tensor(a) self, SymInt[] size, *, bool implicit=False) -> Tensor(a) variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too. device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: expand tags: core - func: expand_as(Tensor(a) self, Tensor other) -> Tensor(a) variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too. device_check: NoCheck device_guard: False # decomposes to eye.m - func: eye(SymInt n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: eye - func: eye.m(SymInt n, SymInt m, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: eye - func: eye.out(SymInt n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, Meta: eye_out_cpu CUDA: eye_out_cuda MPS: eye_out_mps - func: eye.m_out(SymInt n, SymInt m, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, Meta: eye_out_cpu CUDA: eye_out_cuda MPS: eye_out_mps - func: flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> Tensor(a) variants: function, method - func: flatten.named_out_dim(Tensor(a) self, int start_dim, int end_dim, Dimname out_dim) -> Tensor(a) variants: function, method - func: flatten.using_names(Tensor(a) self, Dimname start_dim, Dimname end_dim, Dimname out_dim) -> Tensor(a) variants: function, method - func: flatten.DimnameList(Tensor(a) self, Dimname[] dims, Dimname out_dim) -> Tensor(a) variants: function, method - func: unflatten.int(Tensor(a) self, int dim, SymInt[] sizes) -> Tensor(a) variants: function, method dispatch: CompositeImplicitAutograd: unflatten_symint - func: unflatten.Dimname(Tensor(a) self, Dimname dim, SymInt[] sizes, Dimname[] names) -> Tensor(a) variants: function, method dispatch: CompositeImplicitAutograd: unflatten_dimname_symint - func: fill.Scalar(Tensor self, Scalar value) -> Tensor variants: function dispatch: CompositeExplicitAutograd: fill tags: core - func: fill.Tensor(Tensor self, Tensor value) -> Tensor variants: function dispatch: CompositeExplicitAutograd: fill - func: fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: fill_ MPS: fill_scalar_mps QuantizedCPU, QuantizedCUDA: fill_quantized_ Meta: fill_meta_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: fill_sparse_csr_ NestedTensorCPU, NestedTensorCUDA: fill_nested_ autogen: fill.Scalar_out - func: fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: fill_ MPS: fill_tensor_mps_ QuantizedCPU, QuantizedCUDA: fill_quantized_ Meta: fill_meta_ NestedTensorCPU, NestedTensorCUDA: fill_nested_ autogen: fill.Tensor_out - func: floor(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: floor.out variants: function, method dispatch: SparseCPU, SparseCUDA: floor_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: floor_sparse_csr tags: [core, pointwise] - func: floor_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: floor.out variants: function, method dispatch: SparseCPU, SparseCUDA: floor_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: floor_sparse_csr_ tags: pointwise - func: floor.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: floor_out SparseCPU, SparseCUDA: floor_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: floor_sparse_csr_out tags: pointwise - func: floor_divide(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: floor_divide MPS: floor_divide_mps SparseCPU, SparseCUDA: floor_divide_sparse - func: floor_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU, CUDA: floor_divide_ MPS: floor_divide_mps_ SparseCPU, SparseCUDA: floor_divide_sparse_ - func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: floor_divide_out MPS: floor_divide_out_mps SparseCPU, SparseCUDA: floor_divide_out_sparse_zerodim - func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: floor_divide - func: floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: floor_divide_ autogen: floor_divide.Scalar_out - func: frac(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: frac.out variants: function, method dispatch: SparseCPU, SparseCUDA: frac_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: frac_sparse_csr tags: pointwise - func: frac_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: frac.out variants: function, method dispatch: SparseCPU, SparseCUDA: frac_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: frac_sparse_csr_ tags: pointwise - func: frac.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: frac_out MPS: frac_out_mps SparseCPU, SparseCUDA: frac_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: frac_sparse_csr_out tags: pointwise - func: full.names(int[] size, Scalar fill_value, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: full autogen: full.names_out - func: full(SymInt[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: full tags: core - func: full.out(SymInt[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: full_out - func: full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: full_like autogen: full_like.out tags: core - func: from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CPU: from_file autogen: from_file.out - func: gcd.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: gcd_out tags: pointwise - func: gcd(Tensor self, Tensor other) -> Tensor structured_delegate: gcd.out variants: function, method tags: pointwise - func: gcd_(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: gcd.out variants: function, method - func: lcm.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: lcm_out tags: pointwise - func: lcm(Tensor self, Tensor other) -> Tensor structured_delegate: lcm.out variants: function, method tags: pointwise - func: lcm_(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: lcm.out variants: function, method # NOTE [ grid_sampler Native Functions ] # `grid_sampler` is _supposed to_ do all the shape checking and then dispatch to # one of `cudnn_grid_sampler`, `grid_sampler_2d`, or `grid_sampler_3d`, each of # which has the corresponding backward defined as native functions as well. # However, we do shape checking everywhere for now since each of the mentioned # functions can be called directly, which will lead to crashes otherwise. # See https://github.com/pytorch/pytorch/issues/73187 for more information. # # There is also _grid_sampler_2d_backward_cpu_fallback which is an # implementation detail of grid_sampler_2d and is only exposed here for testing # purposes. # # Additionally, arguments `padding_mode` and `interpolation_mode` are cast to # enums defined in `native/GridSampler.h`. `cudnn_grid_sampler` doesn't take in # `interpolation_mode` because it only supports Bilinear interpolation mode. # Nor does it take in `align_corners` because it only supports the mode # `align_corners = True`. - func: grid_sampler(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor - func: grid_sampler_2d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor dispatch: CPU, QuantizedCPU: grid_sampler_2d_cpu CUDA: grid_sampler_2d_cuda MPS: grid_sampler_2d_mps autogen: grid_sampler_2d.out tags: core # `grid_sampler_2d_backward` takes in `output_mask` to optimize performance for # the case where `input` doesn't require gradient. Gradient for `grid` is always # computed (only `output_mask[0]` is checked by the implementations). - func: grid_sampler_2d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask) -> (Tensor, Tensor) dispatch: CPU: grid_sampler_2d_backward_cpu CUDA: grid_sampler_2d_backward_cuda autogen: grid_sampler_2d_backward.out # See NOTE [ grid_sample CPU fallback ] - func: _grid_sampler_2d_cpu_fallback(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor dispatch: CompositeExplicitAutograd: _grid_sampler_2d_cpu_fallback autogen: _grid_sampler_2d_cpu_fallback.out - func: _grid_sampler_2d_cpu_fallback_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor) - func: grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor dispatch: CPU: grid_sampler_3d_cpu CUDA: grid_sampler_3d_cuda autogen: grid_sampler_3d.out # `grid_sampler_3d_backward` takes in `output_mask` to optimize performance for # the case where `input` doesn't require gradient. Gradient for `grid` is always # computed (only `output_mask[0]` is checked by the implementations). - func: grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask) -> (Tensor, Tensor) dispatch: CPU: grid_sampler_3d_backward_cpu CUDA: grid_sampler_3d_backward_cuda autogen: grid_sampler_3d_backward.out - func: hann_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: hann_window autogen: hann_window.out - func: hann_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: hann_window autogen: hann_window.periodic_out - func: hamming_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: hamming_window autogen: hamming_window.out - func: hamming_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: hamming_window autogen: hamming_window.periodic_out - func: hamming_window.periodic_alpha(int window_length, bool periodic, float alpha, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: hamming_window autogen: hamming_window.periodic_alpha_out - func: hamming_window.periodic_alpha_beta(int window_length, bool periodic, float alpha, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: hamming_window autogen: hamming_window.periodic_alpha_beta_out - func: kaiser_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: kaiser_window autogen: kaiser_window.out - func: kaiser_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: kaiser_window autogen: kaiser_window.periodic_out - func: kaiser_window.beta(int window_length, bool periodic, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: kaiser_window autogen: kaiser_window.beta_out - func: hinge_embedding_loss(Tensor self, Tensor target, float margin=1.0, int reduction=Mean) -> Tensor - func: group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor - func: native_group_norm(Tensor input, Tensor? weight, Tensor? bias, SymInt N, SymInt C, SymInt HxW, int group, float eps) -> (Tensor, Tensor, Tensor) dispatch: CPU, CUDA: native_group_norm CompositeExplicitAutograd: math_group_norm autogen: native_group_norm.out tags: core - func: native_group_norm_backward(Tensor grad_out, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, SymInt N, SymInt C, SymInt HxW, int group, bool[3] output_mask) -> (Tensor, Tensor, Tensor) dispatch: CPU, CUDA: native_group_norm_backward autogen: native_group_norm_backward.out tags: core # Real to complex forward FFT - func: _fft_r2c(Tensor self, int[] dim, int normalization, bool onesided) -> Tensor variants: function dispatch: CPU: _fft_r2c_mkl CUDA: _fft_r2c_cufft MPS: _fft_r2c_mps tags: core - func: _fft_r2c.out(Tensor self, int[] dim, int normalization, bool onesided, *, Tensor(a!) out) -> Tensor(a!) variants: function dispatch: CPU: _fft_r2c_mkl_out CUDA: _fft_r2c_cufft_out MPS: _fft_r2c_mps_out # Complex to real inverse FFT - func: _fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor variants: function dispatch: CPU: _fft_c2r_mkl CUDA: _fft_c2r_cufft MPS: _fft_c2r_mps - func: _fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!) variants: function dispatch: CPU: _fft_c2r_mkl_out CUDA: _fft_c2r_cufft_out MPS: _fft_c2r_mps_out # Standard complex to complex FFT (forward or backward) - func: _fft_c2c(Tensor self, SymInt[] dim, int normalization, bool forward) -> Tensor variants: function dispatch: CPU: _fft_c2c_mkl CUDA: _fft_c2c_cufft MPS: _fft_c2c_mps - func: _fft_c2c.out(Tensor self, SymInt[] dim, int normalization, bool forward, *, Tensor(a!) out) -> Tensor(a!) variants: function dispatch: CPU: _fft_c2c_mkl_out CUDA: _fft_c2c_cufft_out MPS: _fft_c2c_mps_out - func: _validate_compressed_sparse_indices(bool is_crow, Tensor compressed_idx, Tensor plain_idx, int cdim, int dim, int nnz) -> () device_check: NoCheck variants: function dispatch: CPU: _validate_compressed_sparse_indices_cpu CUDA: _validate_compressed_sparse_indices_cuda - func: _cufft_get_plan_cache_size(DeviceIndex device_index) -> int - func: _cufft_get_plan_cache_max_size(DeviceIndex device_index) -> int - func: _cufft_set_plan_cache_max_size(DeviceIndex device_index, int max_size) -> () - func: _cufft_clear_plan_cache(DeviceIndex device_index) -> () - func: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: index.Tensor_out variants: function, method dispatch: QuantizedCPU: quantized_index tags: [core, dynamic_output_shape] # NB: This function is special-cased in tools/autograd/gen_variable_type.py # NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp: # - Tensor Tensor::index(ArrayRef<TensorIndex> indices) # - Tensor Tensor::index(std::initializer_list<TensorIndex> indices) - func: index.Tensor_out(Tensor self, Tensor?[] indices, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck structured: True structured_inherits: TensorIteratorBase precomputed: - indices -> DimVector sizes, DimVector strides dispatch: CPU, CUDA, MPS: index_out # Used by inductor to signal indexing without bounds checks # Note that we don't support boolean indexing, to avoid dynamic output shapes - func: _unsafe_index.Tensor(Tensor self, Tensor?[] indices) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _unsafe_index # Used by inductor to generate masked loads # Note that we don't support boolean indexing, to avoid dynamic output shapes - func: _unsafe_masked_index(Tensor self, Tensor mask, Tensor?[] indices, Scalar fill) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _unsafe_masked_index - func: _unsafe_masked_index_put_accumulate(Tensor self, Tensor mask, Tensor?[] indices, Tensor values) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _unsafe_masked_index_put_accumulate - func: index_copy.out(Tensor self, int dim, Tensor index, Tensor source, *, Tensor(a!) out) -> Tensor(a!) structured: True variants: function precomputed: - dim -> int dim dispatch: CPU, CUDA: index_copy_out - func: index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!) variants: method structured_delegate: index_copy.out - func: index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor variants: function, method structured_delegate: index_copy.out - func: index_copy_.dimname(Tensor(a!) self, Dimname dim, Tensor index, Tensor source) -> Tensor(a!) variants: method - func: index_copy.dimname(Tensor self, Dimname dim, Tensor index, Tensor source) -> Tensor variants: function, method - func: index_put_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor(a!) device_check: NoCheck # delegate to _index_put_impl_, which leverages TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: index_put_ autogen: index_put.out # NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp: # - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Tensor const & rhs) # - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Scalar v) # - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Tensor const & rhs) # - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Scalar v) - func: index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor device_check: NoCheck # delegate to _index_put_impl_ after clone, which leverages TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: index_put tags: core - func: _unsafe_index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor device_check: NoCheck # delegate to _index_put_impl_ after clone, which leverages TensorIterator variants: function dispatch: CompositeExplicitAutograd: _unsafe_index_put - func: _index_put_impl_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CPU, CUDA, MPS: _index_put_impl_ QuantizedCPU: _index_put_impl_quantized_cpu_ QuantizedCUDA: _index_put_impl_quantized_cuda_ autogen: _index_put_impl, _index_put_impl.out - func: instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> Tensor variants: function - func: isclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> Tensor variants: function, method - func: isin.Tensor_Tensor_out(Tensor elements, Tensor test_elements, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!) variants: function structured: True dispatch: CPU, CUDA: isin_Tensor_Tensor_out MPS: isin_Tensor_Tensor_out_mps - func: isin.Tensor_Tensor(Tensor elements, Tensor test_elements, *, bool assume_unique=False, bool invert=False) -> Tensor variants: function structured_delegate: isin.Tensor_Tensor_out - func: isin.Tensor_Scalar_out(Tensor elements, Scalar test_element, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!) variants: function structured: True dispatch: CPU, CUDA: isin_Tensor_Scalar_out - func: isin.Tensor_Scalar(Tensor elements, Scalar test_element, *, bool assume_unique=False, bool invert=False) -> Tensor variants: function structured_delegate: isin.Tensor_Scalar_out - func: isin.Scalar_Tensor_out(Scalar element, Tensor test_elements, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!) variants: function structured: True dispatch: CPU, CUDA: isin_Scalar_Tensor_out - func: isin.Scalar_Tensor(Scalar element, Tensor test_elements, *, bool assume_unique=False, bool invert=False) -> Tensor variants: function structured_delegate: isin.Scalar_Tensor_out - func: isnan(Tensor self) -> Tensor variants: function, method device_check: NoCheck device_guard: False dispatch: CPU, CUDA, MPS: isnan NestedTensorCPU, NestedTensorCUDA: NestedTensor_isnan SparseCPU, SparseCUDA: isnan_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: isnan_sparse_csr autogen: isnan.out tags: [core, pointwise] - func: is_distributed(Tensor self) -> bool variants: function, method device_check: NoCheck device_guard: False - func: is_floating_point(Tensor self) -> bool variants: function, method device_check: NoCheck device_guard: False manual_cpp_binding: True - func: is_complex(Tensor self) -> bool variants: function, method device_check: NoCheck device_guard: False manual_cpp_binding: True - func: is_conj(Tensor self) -> bool variants: function, method device_guard: False manual_cpp_binding: True - func: _is_zerotensor(Tensor self) -> bool variants: function, method device_guard: False manual_cpp_binding: True - func: is_neg(Tensor self) -> bool variants: function, method device_guard: False manual_cpp_binding: True - func: isreal(Tensor self) -> Tensor variants: function, method - func: is_nonzero(Tensor self) -> bool variants: function, method device_check: NoCheck device_guard: False - func: is_same_size(Tensor self, Tensor other) -> bool variants: function, method device_check: NoCheck device_guard: False dispatch: NestedTensorCPU, NestedTensorCUDA: nested_is_same_size CompositeExplicitAutograd: is_same_size - func: is_signed(Tensor self) -> bool variants: function, method device_check: NoCheck device_guard: False manual_cpp_binding: True - func: is_inference(Tensor self) -> bool variants: function, method device_check: NoCheck device_guard: False manual_cpp_binding: True - func: kl_div(Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor - func: kron(Tensor self, Tensor other) -> Tensor variants: function, method - func: kron.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method dispatch: CompositeExplicitAutograd: kthvalue - func: kthvalue.values(Tensor self, int k, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) dispatch: CPU: kthvalue_out_cpu CUDA: kthvalue_out_cuda - func: kthvalue.dimname(Tensor self, int k, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method - func: kthvalue.dimname_out(Tensor self, int k, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) - func: layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor dispatch: CompositeImplicitAutograd: layer_norm_symint - func: native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor) dispatch: CPU: layer_norm_cpu CUDA: layer_norm_cuda MPS: layer_norm_mps CompositeExplicitAutograd: math_native_layer_norm NestedTensorCPU, NestedTensorCUDA: nested_layer_norm autogen: native_layer_norm.out tags: core - func: native_layer_norm_backward(Tensor grad_out, Tensor input, SymInt[] normalized_shape, Tensor mean, Tensor rstd, Tensor? weight, Tensor? bias, bool[3] output_mask) -> (Tensor, Tensor, Tensor) dispatch: CPU: layer_norm_backward_cpu CUDA: layer_norm_backward_cuda MPS: layer_norm_backward_mps NestedTensorCPU, NestedTensorCUDA: layer_norm_backward_nested autogen: native_layer_norm_backward.out tags: core - func: rms_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight=None, float? eps=None) -> Tensor dispatch: CompositeImplicitAutograd: rms_norm_symint - func: nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: nan_to_num SparseCPU, SparseCUDA: nan_to_num_sparse tags: pointwise - func: nan_to_num_(Tensor(a!) self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor(a!) variants: function, method dispatch: CompositeExplicitAutograd: nan_to_num_ SparseCPU, SparseCUDA: nan_to_num_sparse_ tags: pointwise - func: nan_to_num.out(Tensor self, float? nan=None, float? posinf=None, float? neginf=None, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: nan_to_num_out MPS: nan_to_num_out_mps SparseCPU, SparseCUDA: nan_to_num_sparse_out tags: pointwise - func: linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: linear NestedTensorCPU, NestedTensorCUDA: nested_linear MPS: _mps_linear - func: linear_backward(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask) -> (Tensor, Tensor, Tensor) dispatch: NestedTensorCPU, NestedTensorCUDA: nested_linear_backward MPS: mps_linear_backward autogen: linear_backward.out - func: linear.out(Tensor input, Tensor weight, Tensor? bias=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CompositeExplicitAutograd: linear_out - func: mkldnn_linear(Tensor self, Tensor weight, Tensor? bias=None) -> Tensor python_module: nn dispatch: MkldnnCPU: mkldnn_linear autogen: mkldnn_linear.out - func: mkldnn_linear_backward_input(int[] input_size, Tensor grad_output, Tensor weight) -> Tensor dispatch: MkldnnCPU: mkldnn_linear_backward_input autogen: mkldnn_linear_backward_input.out - func: mkldnn_linear_backward_weights(Tensor grad_output, Tensor input, Tensor weight, bool bias_defined) -> (Tensor, Tensor) dispatch: MkldnnCPU: mkldnn_linear_backward_weights autogen: mkldnn_linear_backward_weights.out - func: mkldnn_linear_backward(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask) -> (Tensor, Tensor, Tensor) dispatch: MkldnnCPU: mkldnn_linear_backward autogen: mkldnn_linear_backward.out - func: _cslt_compress(Tensor input) -> Tensor dispatch: CUDA: _cslt_compress - func: _cslt_sparse_mm(Tensor compressed_A, Tensor dense_B, Tensor? bias=None, Tensor? alpha=None, ScalarType? out_dtype=None, bool transpose_result=False, int alg_id=0, int split_k=1, bool split_k_one_kernel=True) -> Tensor dispatch: CUDA: _cslt_sparse_mm tags: needs_fixed_stride_order - func: _cslt_sparse_mm_search(Tensor compressed_A, Tensor dense_B, Tensor? bias=None, Tensor? alpha=None, ScalarType? out_dtype=None, bool transpose_result=False) -> int dispatch: CUDA: _cslt_sparse_mm_search - func: _sparse_semi_structured_tile(Tensor input, str algorithm="", bool use_cutlass=True) -> (Tensor, Tensor, Tensor, Tensor, Tensor) dispatch: CUDA: _sparse_semi_structured_tile - func: _sparse_semi_structured_apply(Tensor input, Tensor thread_masks) -> (Tensor, Tensor) dispatch: CUDA: _sparse_semi_structured_apply - func: _sparse_semi_structured_apply_dense(Tensor input, Tensor thread_masks) -> Tensor dispatch: CUDA: _sparse_semi_structured_apply_dense # DEPRECATED: Use torch.__sparse_semi_structured_mm/torch._sparse_semi_structured_addmm instead - func: _sparse_semi_structured_linear(Tensor input, Tensor weight, Tensor meta, *, Tensor? bias=None, str? activation=None, ScalarType? out_dtype=None) -> Tensor dispatch: CUDA: _sparse_semi_structured_linear - func: _sparse_semi_structured_mm(Tensor mat1, Tensor mat1_meta, Tensor mat2, *, ScalarType? out_dtype=None) -> Tensor dispatch: CUDA: _sparse_semi_structured_mm - func: _sparse_semi_structured_addmm(Tensor input, Tensor mat1, Tensor mat1_meta, Tensor mat2, *, Scalar alpha=1, Scalar beta=1, ScalarType? out_dtype=None) -> Tensor dispatch: CUDA: _sparse_semi_structured_addmm - func: _mixed_dtypes_linear(Tensor input, Tensor weight, Tensor scale, *, Tensor? bias=None, str? activation=None) -> Tensor dispatch: CUDA: _mixed_dtypes_linear - func: fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor - func: fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor - func: fbgemm_linear_quantize_weight(Tensor input) -> (Tensor, Tensor, float, int) - func: fbgemm_pack_gemm_matrix_fp16(Tensor input) -> Tensor - func: _wrapped_linear_prepack(Tensor weight, Tensor weight_scale, Tensor weight_zero_point, Tensor bias) -> Tensor - func: _wrapped_quantized_linear_prepacked(Tensor input, Tensor input_scale, Tensor input_zero_point, Tensor packed_weight, Tensor output_scale, Tensor output_zero_point, int out_channel) -> Tensor - func: fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor - func: fbgemm_linear_fp16_weight(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor - func: fbgemm_pack_quantized_matrix(Tensor input) -> Tensor - func: fbgemm_pack_quantized_matrix.KN(Tensor input, int K, int N) -> Tensor - func: ldexp.Tensor(Tensor self, Tensor other) -> Tensor variants: function, method - func: ldexp_(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: function, method tags: pointwise - func: ldexp.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) tags: pointwise - func: linspace(Scalar start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: linspace - func: linspace.Tensor_Tensor(Tensor start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor category_override: factory dispatch: CompositeExplicitAutograd: linspace - func: linspace.Tensor_Scalar(Tensor start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor category_override: factory dispatch: CompositeExplicitAutograd: linspace - func: linspace.Scalar_Tensor(Scalar start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor category_override: factory dispatch: CompositeExplicitAutograd: linspace - func: linspace.out(Scalar start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, Meta: linspace_out CUDA: linspace_cuda_out MPS: linspace_out_mps - func: linspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!) category_override: factory dispatch: CompositeExplicitAutograd: linspace_out - func: linspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!) category_override: factory dispatch: CompositeExplicitAutograd: linspace_out - func: linspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!) category_override: factory dispatch: CompositeExplicitAutograd: linspace_out - func: log(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: log.out variants: function, method tags: [core, pointwise] - func: log_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: log.out variants: function, method tags: pointwise - func: log.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: log_out MPS: log_out_mps tags: pointwise - func: log10(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: log10.out variants: function, method tags: [core, pointwise] - func: log10_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: log10.out variants: function, method tags: pointwise - func: log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: log10_out MPS: log10_out_mps tags: pointwise - func: log1p(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: log1p.out variants: function, method dispatch: SparseCPU, SparseCUDA: log1p_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: log1p_sparse_csr tags: [core, pointwise] - func: log1p_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: log1p.out variants: function, method dispatch: SparseCPU, SparseCUDA: log1p_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: log1p_sparse_csr_ tags: pointwise - func: log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: log1p_out MPS: log1p_out_mps SparseCPU, SparseCUDA: log1p_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: log1p_sparse_csr_out tags: pointwise - func: log2(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: log2.out variants: function, method tags: [core, pointwise] - func: log2_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: log2.out variants: function, method tags: pointwise - func: log2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: log2_out MPS: log2_out_mps tags: pointwise - func: logaddexp.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: logaddexp_out MPS: logaddexp_out_mps tags: pointwise - func: logaddexp(Tensor self, Tensor other) -> Tensor variants: method, function structured_delegate: logaddexp.out tags: pointwise - func: logaddexp2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: logaddexp2_out MPS: logaddexp2_out_mps tags: pointwise - func: logaddexp2(Tensor self, Tensor other) -> Tensor variants: method, function structured_delegate: logaddexp2.out tags: pointwise - func: xlogy.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: xlogy.OutTensor variants: function, method tags: pointwise - func: xlogy.Scalar_Self(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: xlogy tags: pointwise - func: xlogy.Scalar_Other(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: xlogy tags: pointwise # xlogy: inplace variant - func: xlogy_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method structured_delegate: xlogy.OutTensor tags: pointwise - func: xlogy_.Scalar_Other(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: xlogy_ # xlogy: out variant - func: xlogy.OutTensor(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase variants: function dispatch: CPU, CUDA: xlogy_out MPS: xlogy_out_mps tags: pointwise - func: xlogy.OutScalar_Self(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: xlogy_out tags: pointwise - func: xlogy.OutScalar_Other(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: xlogy_out tags: pointwise - func: logspace(Scalar start, Scalar end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: logspace - func: logspace.Tensor_Tensor(Tensor start, Tensor end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor category_override: factory dispatch: CompositeExplicitAutograd: logspace - func: logspace.Tensor_Scalar(Tensor start, Scalar end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor category_override: factory dispatch: CompositeExplicitAutograd: logspace - func: logspace.Scalar_Tensor(Scalar start, Tensor end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor category_override: factory dispatch: CompositeExplicitAutograd: logspace - func: logspace.out(Scalar start, Scalar end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, Meta: logspace_out CUDA: logspace_cuda_out - func: logspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!) category_override: factory dispatch: CompositeExplicitAutograd: logspace_out - func: logspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!) category_override: factory dispatch: CompositeExplicitAutograd: logspace_out - func: logspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!) category_override: factory dispatch: CompositeExplicitAutograd: logspace_out # log_softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models. - func: log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor variants: function, method - func: log_softmax.int_out(Tensor self, int dim, ScalarType? dtype=None, *, Tensor(a!) out) -> Tensor(a!) variants: function dispatch: CompositeExplicitAutograd: log_softmax_out - func: log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor variants: function, method - func: _log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor structured_delegate: _log_softmax.out tags: core - func: _log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: log_softmax_cpu_out CUDA: log_softmax_cuda_out MPS: log_softmax_mps_out - func: _log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype) -> Tensor structured_delegate: _log_softmax_backward_data.out - func: _log_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: log_softmax_backward_cpu_out CUDA: log_softmax_backward_cuda_out MPS: log_softmax_backward_mps_out - func: _logcumsumexp(Tensor self, int dim) -> Tensor dispatch: CPU: _logcumsumexp_cpu CUDA: _logcumsumexp_cuda - func: _logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: _logcumsumexp_out_cpu CUDA: _logcumsumexp_out_cuda - func: logcumsumexp(Tensor self, int dim) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: logcumsumexp - func: logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: logcumsumexp_out - func: logcumsumexp.dimname(Tensor self, Dimname dim) -> Tensor variants: function, method - func: logcumsumexp.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) out) -> Tensor(a!) - func: logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: logsumexp - func: logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: # calls squeeze CompositeExplicitAutogradNonFunctional: logsumexp_out - func: logsumexp.names(Tensor self, Dimname[1] dim, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: logsumexp.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor - func: matmul(Tensor self, Tensor other) -> Tensor variants: function, method dispatch: CompositeImplicitAutograd: matmul NestedTensorCPU, NestedTensorCUDA: matmul_nested - func: matmul_backward(Tensor grad, Tensor self, Tensor other, bool[2] mask) -> (Tensor, Tensor) dispatch: NestedTensorCPU, NestedTensorCUDA: matmul_backward_nested autogen: matmul_backward.out - func: matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeImplicitAutograd: matmul_out NestedTensorCPU, NestedTensorCUDA: matmul_out_nested # Alias to linalg.matrix_power - func: matrix_power(Tensor self, int n) -> Tensor variants: function, method # Alias to linalg.matrix_power - func: matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!) # Alias to linalg.matrix_exp - func: matrix_exp(Tensor self) -> Tensor variants: function, method # This function should be deprecated in favor of differential_analytic_matrix_function in FunctionsManual.cpp - func: matrix_exp_backward(Tensor self, Tensor grad) -> Tensor # DEPRECATED: Use torch.aminmax instead - func: _aminmax(Tensor self) -> (Tensor, Tensor) dispatch: CPU, CUDA: _aminmax_all autogen: _aminmax.out # DEPRECATED: Use torch.aminmax instead - func: _aminmax.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor) dispatch: CPU, CUDA: _aminmax autogen: _aminmax.dim_out - func: aminmax(Tensor self, *, int? dim=None, bool keepdim=False) -> (Tensor min, Tensor max) device_check: NoCheck # TensorIterator structured_delegate: aminmax.out variants: function, method - func: aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max) device_check: NoCheck # TensorIterator structured: True dispatch: CPU, CUDA: aminmax_out MPS: aminmax_out_mps - func: _compute_linear_combination(Tensor input, Tensor coefficients) -> Tensor dispatch: CPU, CUDA: _compute_linear_combination - func: _compute_linear_combination.out(Tensor input, Tensor coefficients, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: _compute_linear_combination_out - func: max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator structured_delegate: max.dim_max variants: function, method dispatch: QuantizedCPU, QuantizedCUDA: qmax tags: core - func: max.dim_max(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator structured: True precomputed: - dim -> int dim dispatch: CPU, CUDA: max_out MPS: max_out_mps - func: max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator variants: function, method - func: max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator - func: value_selecting_reduction_backward(Tensor grad, int dim, Tensor indices, SymInt[] sizes, bool keepdim) -> Tensor variants: function device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: value_selecting_reduction_backward_symint NestedTensorCPU, NestedTensorCUDA: value_selecting_reduction_backward_nested_symint - func: amax(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor variants: function, method structured_delegate: amax.out tags: core - func: amax.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU, CUDA: amax_out MPS: amax_out_mps # Return: (Tensor output, Tensor indices) - func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) - func: max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor - func: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor dispatch: CompositeImplicitAutograd: max_pool2d MPS: mps_max_pool2d - func: max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor dispatch: MPS: mps_max_pool2d_backward autogen: max_pool2d_backward.out - func: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor dispatch: MkldnnCPU: mkldnn_max_pool2d autogen: mkldnn_max_pool2d.out - func: mkldnn_max_pool2d_backward(Tensor grad_output, Tensor output, Tensor input, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor dispatch: MkldnnCPU: mkldnn_max_pool2d_backward autogen: mkldnn_max_pool2d_backward.out - func: mkldnn_max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor dispatch: MkldnnCPU: mkldnn_max_pool3d autogen: mkldnn_max_pool3d.out - func: mkldnn_max_pool3d_backward(Tensor grad_output, Tensor output, Tensor input, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor dispatch: MkldnnCPU: mkldnn_max_pool3d_backward autogen: mkldnn_max_pool3d_backward.out - func: quantized_max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor dispatch: QuantizedCPU: quantized_max_pool1d autogen: quantized_max_pool1d.out - func: quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor dispatch: QuantizedCPU: quantized_max_pool2d QuantizedCUDA: quantized_max_pool2d_cudnn autogen: quantized_max_pool2d.out - func: quantized_max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor dispatch: QuantizedCPU: quantized_max_pool3d autogen: quantized_max_pool3d.out - func: max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor # The CPU and GPU dispatch variants are named weirdly here because otherwise there # are namespacing issues in C++ - func: mean(Tensor self, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: mean tags: core # For normal naming convention this should be `mean.out`. However since we already have `mean.out` we have to rename this. - func: mean.dtype_out(Tensor self, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CompositeExplicitAutograd: mean_dtype_out - func: mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor structured_delegate: mean.out device_check: NoCheck # TensorIterator variants: function, method dispatch: QuantizedCPU: mean_quantized_cpu tags: core - func: mean.out(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) structured: True device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: mean_out MPS: mean_out_mps QuantizedCPU: mean_out_quantized_cpu - func: mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: nanmean(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # Composite variants: function, method - func: nanmean.out(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # Composite - func: median(Tensor self) -> Tensor variants: function, method dispatch: CPU: median_cpu CUDA: median_cuda MPS: median_mps autogen: median.out - func: median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method dispatch: CompositeExplicitAutograd: median - func: median.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) dispatch: CPU: median_out_cpu CUDA: median_out_cuda MPS: median_out_mps - func: median.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method - func: median.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) - func: nanmedian(Tensor self) -> Tensor variants: function, method dispatch: CPU: nanmedian_cpu CUDA: nanmedian_cuda autogen: nanmedian.out - func: nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method dispatch: CompositeExplicitAutograd: nanmedian - func: nanmedian.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) dispatch: CPU: nanmedian_out_cpu CUDA: nanmedian_out_cuda - func: nanmedian.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method - func: nanmedian.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) - func: min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator structured_delegate: min.dim_min variants: function, method dispatch: QuantizedCPU, QuantizedCUDA: qmin tags: core - func: min.dim_min(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator structured: True precomputed: - dim -> int dim dispatch: CPU, CUDA: min_out MPS: min_out_mps - func: min.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator variants: function, method - func: min.names_dim_min(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator - func: amin(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor variants: function, method structured_delegate: amin.out tags: core - func: amin.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU, CUDA: amin_out MPS: amin_out_mps # TODO: Add this function to MPS dispatch key so that we avoid declaring it in # native_functions.yaml # https://github.com/pytorch/pytorch/issues/77394 - func: _mps_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor dispatch: MPS: _mps_convolution autogen: _mps_convolution.out - func: mps_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor) dispatch: MPS: mps_convolution_backward autogen: mps_convolution_backward.out - func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor dispatch: CompositeExplicitAutograd: mkldnn_convolution autogen: mkldnn_convolution.out - func: mkldnn_rnn_layer(Tensor input, Tensor weight0, Tensor weight1, Tensor weight2, Tensor weight3, Tensor hx_, Tensor cx_, bool reverse, int[] batch_sizes, int mode, int hidden_size, int num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train) -> (Tensor, Tensor, Tensor, Tensor) dispatch: CPU: mkldnn_rnn_layer MkldnnCPU: mkldnn_rnn_layer autogen: mkldnn_rnn_layer.out - func: mkldnn_rnn_layer_backward(Tensor input, Tensor weight1, Tensor weight2, Tensor weight3, Tensor weight4, Tensor hx_, Tensor cx_tmp, Tensor output, Tensor hy_, Tensor cy_, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, bool reverse, int mode, int hidden_size, int num_layers, bool has_biases, bool train, bool bidirectional, int[] batch_sizes, bool batch_first, Tensor workspace) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) dispatch: CPU: mkldnn_rnn_layer_backward autogen: mkldnn_rnn_layer_backward.out - func: miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor) dispatch: CUDA: miopen_batch_norm autogen: miopen_batch_norm.out - func: miopen_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon) -> (Tensor, Tensor, Tensor) dispatch: CUDA: miopen_batch_norm_backward autogen: miopen_batch_norm_backward.out - func: miopen_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor dispatch: CUDA: miopen_convolution autogen: miopen_convolution.out - func: miopen_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor dispatch: CUDA: miopen_convolution_transpose autogen: miopen_convolution_transpose.out - func: miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor dispatch: CUDA: miopen_depthwise_convolution autogen: miopen_depthwise_convolution.out - func: miopen_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor dispatch: CUDA: miopen_convolution_relu - func: miopen_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor dispatch: CUDA: miopen_convolution_add_relu - func: miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor) dispatch: CUDA: miopen_rnn autogen: miopen_rnn.out tags: nondeterministic_seeded - func: miopen_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[]) dispatch: CUDA: miopen_rnn_backward autogen: miopen_rnn_backward.out - func: mm(Tensor self, Tensor mat2) -> Tensor structured_delegate: mm.out variants: function, method dispatch: SparseCPU, SparseCUDA: _sparse_mm SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _sparse_csr_mm tags: core - func: mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: mm_out_cpu CUDA: mm_out_cuda MPS: mm_out_mps XPU: mm_out_xpu SparseCPU, SparseCUDA: _sparse_mm_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _sparse_csr_mm_out - func: _int_mm(Tensor self, Tensor mat2) -> Tensor dispatch: CPU: _int_mm_cpu CUDA: _int_mm_cuda - func: _int_mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: _int_mm_out_cpu CUDA: _int_mm_out_cuda - func: _convert_weight_to_int4pack(Tensor self, int innerKTiles) -> Tensor dispatch: CUDA: _convert_weight_to_int4pack_cuda MPS: _convert_weight_to_int4pack_mps - func: _weight_int4pack_mm(Tensor self, Tensor mat2, int qGroupSize, Tensor qScaleAndZeros) -> Tensor dispatch: MPS: _weight_int4pack_mm_mps CUDA: _weight_int4pack_mm_cuda # Split int4 pack weight between cpu and other devices due to # https://github.com/pytorch/ao/issues/1117#issuecomment-2451252756. - func: _convert_weight_to_int4pack_for_cpu(Tensor self, int innerKTiles) -> Tensor dispatch: CPU: _convert_weight_to_int4pack_cpu - func: _weight_int4pack_mm_for_cpu(Tensor self, Tensor mat2, int qGroupSize, Tensor qScaleAndZeros) -> Tensor dispatch: CPU: _weight_int4pack_mm_cpu - func: _dyn_quant_pack_4bit_weight(Tensor weights, Tensor scales_zeros, Tensor? bias, int block_size, int in_features, int out_features) -> Tensor dispatch: CPU: _dyn_quant_pack_4bit_weight_cpu - func: _dyn_quant_matmul_4bit(Tensor inp, Tensor packed_weights, int block_size, int in_features, int out_features) -> Tensor dispatch: CPU: _dyn_quant_matmul_4bit_cpu - func: _weight_int8pack_mm(Tensor self, Tensor mat2, Tensor scales) -> Tensor dispatch: CPU: _weight_int8pack_mm_cpu MPS: _weight_int8pack_mm_mps - func: _sparse_mm(Tensor sparse, Tensor dense) -> Tensor python_module: sparse - func: _sparse_mm.reduce(Tensor sparse, Tensor dense, str reduce) -> Tensor python_module: sparse - func: _sparse_sparse_matmul(Tensor self, Tensor other) -> Tensor dispatch: SparseCPU: sparse_sparse_matmul_cpu SparseCUDA: sparse_sparse_matmul_cuda autogen: _sparse_sparse_matmul.out - func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method dispatch: CPU, CUDA: mode - func: mode.values(Tensor self, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) dispatch: CompositeExplicitAutograd: mode_out - func: mode.dimname(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices) variants: function, method - func: mode.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) - func: mul.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: mul.out variants: function, method dispatch: SparseCPU, SparseCUDA: mul_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: mul_sparse_csr MkldnnCPU: mkldnn_mul ZeroTensor: mul_zerotensor NestedTensorCPU, NestedTensorCUDA: NestedTensor_mul_Tensor tags: [core, pointwise] - func: mul_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: mul.out variants: method dispatch: SparseCPU, SparseCUDA: mul_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: mul_sparse_csr_ MkldnnCPU: mkldnn_mul_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_mul__Tensor tags: pointwise - func: mul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: mul_out MPS: mul_out_mps SparseCPU: mul_out_sparse_cpu SparseCUDA: mul_out_sparse_cuda SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: mul_out_sparse_csr MkldnnCPU: mkldnn_mul_out tags: pointwise # For C++ only, until we have conversion from C++ numbers to Tensor - func: mul.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: mul SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: mul_scalar_sparse_csr NestedTensorCPU, NestedTensorCUDA: NestedTensor_mul_Scalar tags: [core, pointwise] - func: mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: mul_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: mul__scalar_sparse_csr NestedTensorCPU, NestedTensorCUDA: NestedTensor_mul__Scalar autogen: mul.Scalar_out tags: pointwise # multiply, alias for mul - func: multiply.Tensor(Tensor self, Tensor other) -> Tensor variants: function, method - func: multiply_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: multiply.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: multiply.Scalar(Tensor self, Scalar other) -> Tensor variants: function, method - func: multiply_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method - func: mv(Tensor self, Tensor vec) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: mv SparseCPU, SparseCUDA: mv_sparse - func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: mv_out - func: mvlgamma.out(Tensor self, int p, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: mvlgamma_out tags: pointwise - func: mvlgamma(Tensor self, int p) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: mvlgamma tags: pointwise - func: mvlgamma_(Tensor(a!) self, int p) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: mvlgamma_ tags: pointwise - func: narrow_copy(Tensor self, int dim, SymInt start, SymInt length) -> Tensor variants: function, method dispatch: CPU: narrow_copy_dense_cpu SparseCPU, SparseCUDA: narrow_copy_sparse CompositeExplicitAutogradNonFunctional: narrow_copy_dense_symint tags: view_copy - func: narrow_copy.out(Tensor self, int dim, SymInt start, SymInt length, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: narrow_copy_dense_cpu_out - func: narrow(Tensor(a) self, int dim, SymInt start, SymInt length) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: narrow_symint NestedTensorCPU, NestedTensorCUDA: narrow_nested_symint - func: narrow.Tensor(Tensor(a) self, int dim, Tensor start, SymInt length) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: narrow_tensor_symint - func: native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) dispatch: CPU: batch_norm_cpu CUDA: batch_norm_cuda MPS: batch_norm_mps MkldnnCPU: mkldnn_batch_norm - func: native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!)) dispatch: CUDA: batch_norm_cuda_out MPS: batch_norm_mps_out CPU: batch_norm_cpu_out # TODO: In 2 weeks, we should make native_batch_norm composite implicit so that this correct schema percolates correctly through our dispatching - func: _native_batch_norm_legit(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) dispatch: CPU: _batch_norm_legit_cpu CUDA: _batch_norm_legit_cuda MPS: _batch_norm_legit_mps MkldnnCPU: _mkldnn_batch_norm_legit autogen: _native_batch_norm_legit_functional tags: core # HACK: identical to _native_batch_norm_legit, but training is known to be False, # So we known that running stats will not be mutated. # The real fix here is batch norm consolidation. - func: _native_batch_norm_legit_no_training(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor) dispatch: CompositeExplicitAutograd: _batch_norm_legit_no_training autogen: _native_batch_norm_legit_no_training.out tags: core - func: _native_batch_norm_legit.out(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, bool training, float momentum, float eps, *, Tensor(d!) out, Tensor(e!) save_mean, Tensor(f!) save_invstd) -> (Tensor(d!), Tensor(e!), Tensor(f!)) dispatch: CPU: _batch_norm_legit_cpu_out CUDA: _batch_norm_legit_cuda_out MPS: _batch_norm_legit_mps_out - func: _native_batch_norm_legit.no_stats(Tensor input, Tensor? weight, Tensor? bias, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) dispatch: CPU: _batch_norm_legit_no_stats_cpu CUDA: _batch_norm_legit_no_stats_cuda MPS: _batch_norm_legit_no_stats_mps MkldnnCPU: _mkldnn_batch_norm_legit_no_stats tags: core - func: _native_batch_norm_legit.no_stats_out(Tensor input, Tensor? weight, Tensor? bias, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!)) dispatch: CPU: _batch_norm_legit_no_stats_cpu_out CUDA: _batch_norm_legit_no_stats_cuda_out MPS: _batch_norm_legit_no_stats_mps_out - func: batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor) dispatch: CUDA: batch_norm_stats_cuda autogen: batch_norm_stats.out - func: batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> Tensor dispatch: CUDA: batch_norm_elemt_cuda - func: batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!) dispatch: CUDA: batch_norm_elemt_cuda_out # for backward compatibility - func: batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor) dispatch: CUDA: batch_norm_gather_stats_cuda autogen: batch_norm_gather_stats.out - func: batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts) -> (Tensor, Tensor) dispatch: CUDA: batch_norm_gather_stats_with_counts_cuda autogen: batch_norm_gather_stats_with_counts.out - func: native_batch_norm_backward(Tensor grad_out, Tensor input, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_invstd, bool train, float eps, bool[3] output_mask) -> (Tensor, Tensor, Tensor) dispatch: CPU: batch_norm_backward_cpu CUDA: batch_norm_backward_cuda MPS: batch_norm_backward_mps MkldnnCPU: mkldnn_batch_norm_backward autogen: native_batch_norm_backward.out - func: batch_norm_backward_reduce(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, bool input_g, bool weight_g, bool bias_g) -> (Tensor, Tensor, Tensor, Tensor) dispatch: CUDA: batch_norm_backward_reduce_cuda autogen: batch_norm_backward_reduce.out - func: batch_norm_backward_elemt(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor sum_dy, Tensor sum_dy_xmu, Tensor count) -> Tensor dispatch: CUDA: batch_norm_backward_elemt_cuda autogen: batch_norm_backward_elemt.out - func: batch_norm_update_stats(Tensor input, Tensor? running_mean, Tensor? running_var, float momentum) -> (Tensor, Tensor) dispatch: CPU: batch_norm_update_stats_cpu CUDA: batch_norm_update_stats_cuda autogen: batch_norm_update_stats.out - func: is_vulkan_available() -> bool - func: _nnpack_available() -> bool - func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _nnpack_spatial_convolution autogen: _nnpack_spatial_convolution.out - func: ones.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: ones autogen: ones.names_out - func: ones(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: ones - func: ones.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: ones_out - func: ones_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: ones_like NestedTensorCPU, NestedTensorCUDA: ones_like autogen: ones_like.out - func: pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor - func: cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor - func: _euclidean_dist(Tensor x1, Tensor x2) -> Tensor dispatch: CompositeExplicitAutograd: _euclidean_dist autogen: _euclidean_dist.out - func: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor dispatch: CPU, CUDA: _cdist_forward MPS: _cdist_forward_mps autogen: _cdist_forward.out tags: core - func: _cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor dispatch: CPU, CUDA: _cdist_backward autogen: _cdist_backward.out - func: pdist(Tensor self, float p=2) -> Tensor - func: _pdist_forward(Tensor self, float p=2) -> Tensor dispatch: CPU, CUDA: _pdist_forward autogen: _pdist_forward.out tags: core - func: _pdist_backward(Tensor grad, Tensor self, float p, Tensor pdist) -> Tensor dispatch: CPU, CUDA: _pdist_backward autogen: _pdist_backward.out - func: cosine_similarity(Tensor x1, Tensor x2, int dim=1, float eps=1e-08) -> Tensor variants: function - func: permute(Tensor(a) self, int[] dims) -> Tensor(a) variants: function, method dispatch: CompositeExplicitAutograd: permute MPS: permute_mps SparseCPU, SparseCUDA: permute_sparse_coo tags: core - func: movedim.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a) variants: function, method - func: movedim.int(Tensor(a) self, int source, int destination) -> Tensor(a) variants: function, method # moveaxis, alias for movedim - func: moveaxis.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a) variants: function, method - func: moveaxis.int(Tensor(a) self, int source, int destination) -> Tensor(a) variants: function, method # Only exposed from C++ -- in Python, # we expose it as an attribute `T`, not a function. # # I'd like to name this "T" in C++ too, but # calling a native function "T" causes undefined # behavior on Windows, for reasons I don't understand # (maybe related to capital letter collation somehow...) - func: numpy_T(Tensor(a) self) -> Tensor(a) variants: method # Exposed on Python as an attribute 'H' - func: matrix_H(Tensor(a) self) -> Tensor(a) variants: method # Exposed on Python as an attribute 'mT' - func: mT(Tensor(a) self) -> Tensor(a) variants: method # Exposed on Python as an attribute 'mH' - func: mH(Tensor(a) self) -> Tensor(a) variants: method - func: adjoint(Tensor(a) self) -> Tensor(a) variants: function, method - func: pixel_shuffle(Tensor self, int upscale_factor) -> Tensor dispatch: CPU: pixel_shuffle_cpu MPS: pixel_shuffle_mps CompositeExplicitAutogradNonFunctional: math_pixel_shuffle autogen: pixel_shuffle.out - func: pixel_unshuffle(Tensor self, int downscale_factor) -> Tensor dispatch: CPU: pixel_unshuffle_cpu MPS: pixel_unshuffle_mps CompositeExplicitAutogradNonFunctional: math_pixel_unshuffle autogen: pixel_unshuffle.out - func: channel_shuffle(Tensor self, SymInt groups) -> Tensor dispatch: CPU, CUDA: channel_shuffle QuantizedCPU: channel_shuffle_quantized_cpu autogen: channel_shuffle.out - func: native_channel_shuffle(Tensor self, SymInt groups) -> Tensor dispatch: CPU: channel_shuffle_cpu CompositeImplicitAutograd: math_channel_shuffle - func: is_pinned(Tensor self, Device? device=None) -> bool variants: method dispatch: # the NestedTensor keys are necessary because NestedTensor has been removed # from the CompositeExplicitAutograd keyset see Note [NestedTensor Not Included in Backend Keys] CompositeExplicitAutograd, NestedTensorCPU: is_pinned SparseCsrCPU: is_pinned_sparse_compressed SparseCPU: is_pinned_sparse_coo # TODO: add a copy kwarg that guarantees that the tensor is put into fresh # pinned memory - func: pin_memory(Tensor(a) self, Device? device=None) -> Tensor(a) variants: method # Unlike pin_memory, this is guaranteed to give a new non-aliasing tensor - func: _pin_memory(Tensor self, Device? device=None) -> Tensor dispatch: CompositeExplicitAutograd: _pin_memory NestedTensorCPU: _pin_memory_nested SparseCPU: _pin_memory_sparse_coo SparseCsrCPU: _pin_memory_sparse_compressed autogen: _pin_memory.out - func: pinverse(Tensor self, float rcond=1e-15) -> Tensor variants: function, method - func: poisson_nll_loss(Tensor input, Tensor target, bool log_input, bool full, float eps, int reduction) -> Tensor variants: function - func: rad2deg(Tensor self) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: rad2deg SparseCPU, SparseCUDA: rad2deg_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: rad2deg_sparse_csr tags: pointwise - func: rad2deg_(Tensor(a!) self) -> Tensor(a!) variants: function, method dispatch: CompositeExplicitAutograd: rad2deg_ SparseCPU, SparseCUDA: rad2deg_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: rad2deg_sparse_csr_ tags: pointwise - func: rad2deg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: rad2deg_out SparseCPU, SparseCUDA: rad2deg_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: rad2deg_sparse_csr_out tags: pointwise - func: deg2rad(Tensor self) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: deg2rad SparseCPU, SparseCUDA: deg2rad_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: deg2rad_sparse_csr tags: pointwise - func: deg2rad_(Tensor(a!) self) -> Tensor(a!) variants: function, method dispatch: CompositeExplicitAutograd: deg2rad_ SparseCPU, SparseCUDA: deg2rad_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: deg2rad_sparse_csr_ tags: pointwise - func: deg2rad.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: deg2rad_out SparseCPU, SparseCUDA: deg2rad_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: deg2rad_sparse_csr_out tags: pointwise - func: scalar_tensor(Scalar s, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: scalar_tensor autogen: scalar_tensor.out tags: core - func: rand.names(SymInt[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: rand autogen: rand.names_out tags: nondeterministic_seeded - func: rand.generator_with_names(SymInt[] size, *, Generator? generator, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor device_check: NoCheck device_guard: False tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: rand autogen: rand.generator_with_names_out - func: rand(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: [core, nondeterministic_seeded] dispatch: CompositeExplicitAutograd: rand - func: rand.generator(SymInt[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: rand - func: rand.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: rand_out - func: rand.generator_out(SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded - func: rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor tags: nondeterministic_seeded dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: rand_like autogen: rand_like.out - func: randint(SymInt high, SymInt[] size, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint - func: randint.generator(SymInt high, SymInt[] size, *, Generator? generator, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint - func: randint.low(SymInt low, SymInt high, SymInt[] size, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint - func: randint.low_generator(SymInt low, SymInt high, SymInt[] size, *, Generator? generator, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint - func: randint.out(SymInt high, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint_out - func: randint.generator_out(SymInt high, SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint_out - func: randint.low_out(SymInt low, SymInt high, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint_out - func: randint.low_generator_out(SymInt low, SymInt high, SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randint_out - func: randint_like(Tensor self, SymInt high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor tags: nondeterministic_seeded dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: randint_like autogen: randint_like.out - func: randint_like.low_dtype(Tensor self, SymInt low, SymInt high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor tags: nondeterministic_seeded dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd: randint_like autogen: randint_like.low_dtype_out - func: randn(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: [core, nondeterministic_seeded] dispatch: CompositeExplicitAutograd: randn - func: randn.generator(SymInt[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randn - func: randn.names(SymInt[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: randn autogen: randn.names_out - func: randn.generator_with_names(SymInt[] size, *, Generator? generator, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: randn autogen: randn.generator_with_names_out - func: randn.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded - func: randn.generator_out(SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded - func: randn_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor tags: nondeterministic_seeded dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd, CompositeImplicitAutogradNestedTensor: randn_like autogen: randn_like.out - func: randperm(SymInt n, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: [core, nondeterministic_seeded] dispatch: CompositeExplicitAutograd: randperm - func: randperm.generator(SymInt n, *, Generator? generator, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randperm - func: randperm.out(SymInt n, *, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: randperm_out - func: randperm.generator_out(SymInt n, *, Generator? generator, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CPU: randperm_out_cpu CUDA: randperm_out_cuda MPS: randperm_out_mps - func: range.step(Scalar start, Scalar end, Scalar step=1, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: range - func: range(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: range - func: range.out_(Scalar start, Scalar end, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: range_out_no_step - func: range.out(Scalar start, Scalar end, Scalar step=1, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, Meta: range_out CUDA: range_cuda_out MPS: range_mps_out cpp_no_default_args: ['step'] - func: ravel(Tensor(a) self) -> Tensor(a) variants: function, method - func: reciprocal(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: reciprocal.out variants: function, method tags: [core, pointwise] - func: reciprocal_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: reciprocal.out variants: function, method tags: pointwise - func: reciprocal.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: reciprocal_out MPS: reciprocal_out_mps tags: pointwise - func: neg(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: neg.out variants: function, method dispatch: SparseCPU, SparseCUDA: neg_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: neg_sparse_csr NestedTensorCPU, NestedTensorCUDA: NestedTensor_neg tags: [core, pointwise] - func: neg_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: neg.out variants: function, method dispatch: SparseCPU, SparseCUDA: neg_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: neg_sparse_csr_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_neg_ tags: pointwise - func: neg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: neg_out MPS: neg_out_mps SparseCPU, SparseCUDA: neg_out_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: neg_sparse_csr_out tags: pointwise # Alias for neg - func: negative(Tensor self) -> Tensor variants: function, method - func: negative_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: negative.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: repeat(Tensor self, SymInt[] repeats) -> Tensor variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too. dispatch: CompositeExplicitAutograd: repeat MPS: repeat_mps autogen: repeat.out tags: core - func: repeat_interleave.Tensor(Tensor repeats, *, SymInt? output_size=None) -> Tensor variants: function dispatch: CPU: repeat_interleave_cpu CUDA: repeat_interleave_cuda MPS: repeat_interleave_mps tags: dynamic_output_shape autogen: repeat_interleave.Tensor_out - func: repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None, *, SymInt? output_size=None) -> Tensor variants: function, method dispatch: CompositeImplicitAutograd: repeat_interleave_symint - func: repeat_interleave.self_int(Tensor self, SymInt repeats, int? dim=None, *, SymInt? output_size=None) -> Tensor variants: function, method dispatch: CompositeImplicitAutograd: repeat_interleave_symint - func: reshape(Tensor(a) self, SymInt[] shape) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: reshape_symint CompositeImplicitAutogradNestedTensor: reshape_nested_symint - func: _reshape_copy(Tensor self, SymInt[] size) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _reshape_copy_symint # NOTE [ _reshape_alias ] is meant to be used in the implementation of reshape. # They are not user-facing, hence the leading underscore. Please don't use it # anywhere else. - func: _reshape_alias(Tensor(a) self, SymInt[] size, SymInt[] stride) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CPU, CUDA, Meta, QuantizedCPU, QuantizedCUDA, ZeroTensor, MPS: _reshape_alias # We don't need to support mkldnn since this is handled explicitly by the reshape operator. - func: _mkldnn_reshape(Tensor self, int[] shape) -> Tensor device_check: NoCheck device_guard: False dispatch: MkldnnCPU: mkldnn_reshape autogen: _mkldnn_reshape.out - func: reshape_as(Tensor(a) self, Tensor other) -> Tensor(a) variants: method device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: reshape_as CompositeImplicitAutogradNestedTensor: reshape_as_nested - func: round(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: round.out variants: function, method dispatch: SparseCPU, SparseCUDA: round_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: round_sparse_csr tags: [core, pointwise] - func: round_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: round.out variants: function, method dispatch: SparseCPU, SparseCUDA: round_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: round_sparse_csr_ tags: pointwise - func: round.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: round_out SparseCPU, SparseCUDA: round_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: round_sparse_csr_out tags: pointwise - func: round.decimals(Tensor self, *, int decimals) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: round.decimals_out variants: function, method tags: pointwise - func: round_.decimals(Tensor(a!) self, *, int decimals) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: round.decimals_out variants: function, method tags: pointwise - func: round.decimals_out(Tensor self, *, int decimals, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: round_decimals_out tags: pointwise - func: rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor device_check: NoCheck # TensorIterator tags: [pointwise, nondeterministic_seeded] - func: rrelu_(Tensor(a!) self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!) tags: nondeterministic_seeded device_check: NoCheck # TensorIterator - func: relu(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: relu MPS: relu_mps MkldnnCPU: mkldnn_relu QuantizedCPU: relu_quantized_cpu QuantizedCUDA: relu_quantized_cuda NestedTensorCPU, NestedTensorCUDA: NestedTensor_relu SparseCPU, SparseCUDA: relu_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: relu_sparse_csr tags: [core, pointwise] - func: relu_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: relu_ MPS: relu_mps_ MkldnnCPU: mkldnn_relu_ QuantizedCPU: relu_quantized_cpu_ QuantizedCUDA: relu_quantized_cuda_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_relu_ SparseCPU, SparseCUDA: relu_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: relu_sparse_csr_ autogen: relu.out tags: pointwise - func: relu6(Tensor self) -> Tensor python_module: nn tags: pointwise - func: relu6_(Tensor(a!) self) -> Tensor(a!) python_module: nn - func: prelu(Tensor self, Tensor weight) -> Tensor variants: function, method autogen: prelu.out - func: _prelu_kernel(Tensor self, Tensor weight) -> Tensor dispatch: CPU, CUDA: _prelu_kernel QuantizedCPU: _prelu_kernel_quantized_cpu MkldnnCPU: mkldnn_prelu MPS: prelu_mps - func: _prelu_kernel_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor) dispatch: CPU, CUDA: _prelu_kernel_backward MkldnnCPU: mkldnn_prelu_backward MPS: prelu_backward_mps - func: gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU: gelu_out_cpu CUDA: gelu_out_cuda MPS: gelu_out_mps - func: gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!) structured_delegate: gelu.out device_check: NoCheck # TensorIterator python_module: nn dispatch: QuantizedCPU: gelu_quantized_cpu_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_gelu_ - func: gelu(Tensor self, *, str approximate='none') -> Tensor structured_delegate: gelu.out device_check: NoCheck # TensorIterator python_module: nn dispatch: MkldnnCPU: mkldnn_gelu QuantizedCPU: gelu_quantized_cpu QuantizedCUDA: gelu_quantized_cuda NestedTensorCPU, NestedTensorCUDA: NestedTensor_gelu tags: [core, pointwise] - func: gelu_backward.grad_input(Tensor grad_output, Tensor self, *, str approximate='none', Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU: gelu_backward_out_cpu CUDA: gelu_backward_out_cuda MPS: gelu_backward_out_mps - func: gelu_backward(Tensor grad_output, Tensor self, *, str approximate='none') -> Tensor structured_delegate: gelu_backward.grad_input python_module: nn dispatch: MkldnnCPU: mkldnn_gelu_backward NestedTensorCPU, NestedTensorCUDA: gelu_backwards_nested tags: pointwise - func: infinitely_differentiable_gelu_backward(Tensor grad, Tensor self) -> Tensor variants: function python_module: nn device_check: NoCheck device_guard: False - func: hardshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: hardshrink_out - func: hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor structured_delegate: hardshrink.out device_check: NoCheck # TensorIterator variants: function, method tags: pointwise - func: hardshrink_backward.grad_input(Tensor grad_out, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: hardshrink_backward_out - func: hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor structured_delegate: hardshrink_backward.grad_input variants: function, method - func: rsqrt(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: rsqrt.out variants: function, method tags: [core, pointwise] - func: rsqrt_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: rsqrt.out variants: function, method tags: pointwise - func: rsqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: rsqrt_out MPS: rsqrt_out_mps tags: pointwise - func: select.Dimname(Tensor(a) self, Dimname dim, int index) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False - func: select.int(Tensor(a) self, int dim, SymInt index) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: select_symint SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: select_sparse_csr NestedTensorCPU, NestedTensorCUDA: select_nested tags: core - func: select_backward(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt index) -> Tensor variants: function device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutogradNonFunctional: select_backward_symint autogen: select_backward.out - func: _nested_select_backward(Tensor grad_output, Tensor self, int dim, SymInt index) -> Tensor variants: function device_check: NoCheck device_guard: False dispatch: NestedTensorCPU, NestedTensorCUDA: _nested_select_backward_symint - func: selu(Tensor self) -> Tensor device_check: NoCheck # TensorIterator tags: pointwise - func: selu_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: celu(Tensor self, Scalar alpha=1.0) -> Tensor device_check: NoCheck # TensorIterator dispatch: CompositeExplicitAutograd: celu tags: pointwise - func: celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CompositeExplicitAutograd: celu_ autogen: celu.out - func: silu(Tensor self) -> Tensor structured_delegate: silu.out python_module: nn dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_silu tags: pointwise - func: silu_(Tensor(a!) self) -> Tensor(a!) structured_delegate: silu.out python_module: nn dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_silu_ tags: pointwise - func: silu.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: silu_out MPS: silu_out_mps tags: pointwise - func: silu_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: silu_backward_out MPS: silu_backward_out_mps tags: pointwise - func: silu_backward(Tensor grad_output, Tensor self) -> Tensor structured_delegate: silu_backward.grad_input python_module: nn dispatch: CompositeImplicitAutograd: math_silu_backward NestedTensorCPU, NestedTensorCUDA: silu_backward_nested tags: pointwise - func: mish(Tensor self) -> Tensor structured_delegate: mish.out python_module: nn tags: pointwise - func: mish_(Tensor(a!) self) -> Tensor(a!) structured_delegate: mish.out python_module: nn - func: mish.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: mish_out MPS: mish_out_mps - func: mish_backward(Tensor grad_output, Tensor self) -> Tensor python_module: nn dispatch: CPU, CUDA: mish_backward MPS: mish_backward_mps CompositeImplicitAutograd: math_mish_backward - func: sigmoid(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: sigmoid.out variants: function, method dispatch: QuantizedCPU: sigmoid_quantized_cpu MkldnnCPU: mkldnn_sigmoid tags: [core, pointwise] - func: sigmoid_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: sigmoid.out variants: function, method dispatch: MkldnnCPU: mkldnn_sigmoid_ tags: pointwise - func: sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: sigmoid_out MPS: sigmoid_out_mps tags: pointwise - func: logit(Tensor self, float? eps=None) -> Tensor variants: function, method dispatch: CPU, CUDA: logit MPS: logit_mps tags: pointwise - func: logit_(Tensor(a!) self, float? eps=None) -> Tensor(a!) variants: function, method dispatch: CPU, CUDA: logit_ tags: pointwise - func: logit.out(Tensor self, float? eps=None, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: logit_out MPS: logit_out_mps tags: pointwise - func: sin(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: sin.out variants: function, method dispatch: SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sin_sparse_csr SparseCPU, SparseCUDA: sin_sparse NestedTensorCPU, NestedTensorCUDA: NestedTensor_sin tags: [core, pointwise] - func: sin_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: sin.out variants: function, method dispatch: SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sin_sparse_csr_ SparseCPU, SparseCUDA: sin_sparse_ tags: pointwise - func: sin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: sin_out MPS: sin_out_mps SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sin_sparse_csr_out SparseCPU, SparseCUDA: sin_sparse_out tags: pointwise - func: sinc(Tensor self) -> Tensor structured_delegate: sinc.out variants: function, method tags: pointwise - func: sinc_(Tensor(a!) self) -> Tensor(a!) structured_delegate: sinc.out variants: function, method tags: pointwise - func: sinc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: sinc_out tags: pointwise - func: sinh(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: sinh.out variants: function, method dispatch: SparseCPU, SparseCUDA: sinh_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sinh_sparse_csr tags: [core, pointwise] - func: sinh_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: sinh.out variants: function, method dispatch: SparseCPU, SparseCUDA: sinh_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sinh_sparse_csr_ tags: pointwise - func: sinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: sinh_out MPS: sinh_out_mps SparseCPU, SparseCUDA: sinh_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sinh_sparse_csr_out # Returns a copy of this `Variable` that is detached from its autograd graph. # This method is OK to call if the `Variable` is a view. # # NOTE: Previously, if we change the tensor metadata (e.g. sizes / strides / # storage / storage_offset) of a tensor created from `detach()`, those metadata # in the original tensor will also be updated. However, the new behavior is that # those metadata changes to the detached tensor will not update the original tensor # anymore, and in the `detach()` function we need to set `allow_tensor_metadata_change_` # to false to make such changes explicitly illegal, in order to prevent users from # changing metadata of the detached tensor and expecting the original tensor to also # be updated. tags: pointwise - func: detach(Tensor(a) self) -> Tensor(a) variants: function, method dispatch: CompositeExplicitAutograd: detach NestedTensorCPU, NestedTensorCUDA: detach # Like `detach()`, but modifies this `Variable` in-place. This method may # only be called on non-view `Variable`s. You can use `is_view()` to check # this. If this `Variable` is a view, throws an `std::runtime_error()`. - func: detach_(Tensor(a!) self) -> Tensor(a!) variants: function, method tags: inplace_view dispatch: CompositeExplicitAutograd: detach_ - func: size.int(Tensor self, int dim) -> int variants: function device_check: NoCheck device_guard: False manual_cpp_binding: True - func: size.Dimname(Tensor self, Dimname dim) -> int variants: function, method device_check: NoCheck device_guard: False - func: sym_size.int(Tensor self, int dim) -> SymInt variants: function device_check: NoCheck device_guard: False tags: core manual_cpp_binding: True - func: sym_numel(Tensor self) -> SymInt variants: function device_check: NoCheck device_guard: False tags: core manual_cpp_binding: True - func: sym_storage_offset(Tensor self) -> SymInt variants: function device_check: NoCheck device_guard: False tags: core manual_cpp_binding: True - func: slice.Tensor(Tensor(a) self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: slice tags: core # NOTE: The implementation of split_with_sizes bypasses the dispatcher to call this; undo # that if adding specific implementations here! - func: slice_backward(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt start, SymInt end, SymInt step) -> Tensor variants: function device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: slice_backward autogen: slice_backward.out # NB: This op exists to back the implementation of reverse view_funcs for various views (chunk, # slice.Tensor, split_with_sizes, et al.). Currently, these are only used during fake-ification # of PT2 graph input subclass instances that are views. This means: # * This op shouldn't really show up in eager mode (so e.g. XLA shouldn't have to implement it) # * This op shouldn't show up in a PT2 graph (so a PT2 backend shouldn't have to implement it) # * A subclass will have to implement this to work in PT2 if a subclass view is used as a graph # input AND the view utilizes this op in its inverse. The idea is that slice_inverse() is # easier to implement for a subclass than as_strided() - func: slice_inverse(Tensor(a) self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: slice_inverse_symint - func: slice_scatter(Tensor self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutogradNonFunctional: slice_scatter autogen: slice_scatter.out tags: [core, view_copy] - func: select_scatter(Tensor self, Tensor src, int dim, SymInt index) -> Tensor variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutogradNonFunctional: select_scatter_symint autogen: select_scatter.out tags: core - func: diagonal_scatter(Tensor self, Tensor src, int offset=0, int dim1=0, int dim2=1) -> Tensor variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutogradNonFunctional: diagonal_scatter autogen: diagonal_scatter.out - func: as_strided_scatter(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutogradNonFunctional: as_strided_scatter_symint autogen: as_strided_scatter.out - func: smm(Tensor self, Tensor mat2) -> Tensor variants: function, method # softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models. - func: softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor variants: function, method - func: softmax.int_out(Tensor self, int dim, ScalarType? dtype=None, *, Tensor(a!) out) -> Tensor(a!) variants: function dispatch: CompositeExplicitAutograd: softmax_out - func: softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor variants: function, method - func: _softmax(Tensor self, int dim, bool half_to_float) -> Tensor structured_delegate: _softmax.out dispatch: MkldnnCPU: mkldnn_softmax NestedTensorCPU, NestedTensorCUDA: softmax_nested tags: core - func: _softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: softmax_cpu_out CUDA: softmax_cuda_out MPS: softmax_mps_out - func: _softmax_backward_data(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype) -> Tensor structured_delegate: _softmax_backward_data.out dispatch: NestedTensorCPU, NestedTensorCUDA: nested_softmax_backward - func: _softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True dispatch: CPU: softmax_backward_cpu_out CUDA: softmax_backward_cuda_out MPS: softmax_backward_mps_out - func: unsafe_split.Tensor(Tensor self, SymInt split_size, int dim=0) -> Tensor[] variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: unsafe_split autogen: unsafe_split.Tensor_out - func: split.Tensor(Tensor(a -> *) self, SymInt split_size, int dim=0) -> Tensor(a)[] variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: split - func: split.sizes(Tensor(a -> *) self, SymInt[] split_size, int dim=0) -> Tensor(a)[] variants: function, method device_guard: False dispatch: CompositeImplicitAutograd: split_symint - func: unsafe_split_with_sizes(Tensor self, SymInt[] split_sizes, int dim=0) -> Tensor[] variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: unsafe_split_with_sizes autogen: unsafe_split_with_sizes.out - func: split_with_sizes(Tensor(a -> *) self, SymInt[] split_sizes, int dim=0) -> Tensor(a)[] variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: split_with_sizes NestedTensorCPU, NestedTensorCUDA: split_with_sizes_nested tags: core - func: hsplit.int(Tensor(a -> *) self, int sections) -> Tensor(a)[] variants: function, method - func: hsplit.array(Tensor(a -> *) self, int[] indices) -> Tensor(a)[] variants: function, method - func: vsplit.int(Tensor(a -> *) self, int sections) -> Tensor(a)[] variants: function, method - func: vsplit.array(Tensor(a -> *) self, int[] indices) -> Tensor(a)[] variants: function, method - func: dsplit.int(Tensor(a -> *) self, int sections) -> Tensor(a)[] variants: function, method - func: dsplit.array(Tensor(a -> *) self, int[] indices) -> Tensor(a)[] variants: function, method - func: squeeze(Tensor(a) self) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: squeeze QuantizedCPU, QuantizedCUDA: squeeze_quantized NestedTensorCPU, NestedTensorCUDA: squeeze_nested - func: squeeze.dim(Tensor(a) self, int dim) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: squeeze QuantizedCPU, QuantizedCUDA: squeeze_quantized NestedTensorCPU, NestedTensorCUDA: squeeze_dim_nested tags: core - func: squeeze.dimname(Tensor(a) self, Dimname dim) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False - func: squeeze.dims(Tensor(a) self, int[] dim) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: squeeze QuantizedCPU, QuantizedCUDA: squeeze_quantized NestedTensorCPU, NestedTensorCUDA: squeeze_dim_nested tags: core - func: squeeze_(Tensor(a!) self) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view dispatch: CompositeExplicitAutograd: squeeze_ - func: squeeze_.dim(Tensor(a!) self, int dim) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view dispatch: CompositeExplicitAutograd: squeeze_ - func: squeeze_.dims(Tensor(a!) self, int[] dim) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view dispatch: CompositeExplicitAutograd: squeeze_ - func: squeeze_.dimname(Tensor(a!) self, Dimname dim) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view - func: sspaddmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor variants: function, method - func: sspaddmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: _sspaddmm_out_only_sparse CUDA: _sspaddmm_out_only_sparse_cuda SparseCPU: _sspaddmm_out_cpu SparseCUDA: _sspaddmm_out_cuda - func: _chunk_cat(Tensor[] tensors, int dim, int num_chunks) -> Tensor dispatch: CompositeExplicitAutograd: _chunk_cat CUDA: _chunk_cat_cuda - func: _chunk_cat.out(Tensor[] tensors, int dim, int num_chunks, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: _chunk_cat_out CUDA: _chunk_cat_out_cuda - func: stack(Tensor[] tensors, int dim=0) -> Tensor dispatch: CompositeExplicitAutograd: stack - func: stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: stack_out - func: _stack(Tensor[] tensors, int dim=0) -> Tensor dispatch: # match the backends supported by _cat CPU: _stack_cpu CompositeExplicitAutograd: _stack - func: _stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) dispatch: # match the backends supported by _cat_out CPU: _stack_out_cpu CompositeExplicitAutograd: _stack_out - func: hstack(Tensor[] tensors) -> Tensor - func: hstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) - func: vstack(Tensor[] tensors) -> Tensor - func: vstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) - func: dstack(Tensor[] tensors) -> Tensor - func: dstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) # Overload without center & pad mode, needed for forward-compatibility - func: stft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool normalized=False, bool? onesided=None, bool? return_complex=None, bool? align_to_window=None) -> Tensor variants: function, method cpp_no_default_args: ['hop_length', 'win_length', 'window', 'normalized'] - func: stft.center(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, str pad_mode="reflect", bool normalized=False, bool? onesided=None, bool? return_complex=None, bool? align_to_window=None) -> Tensor variants: function, method - func: istft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, bool normalized=False, bool? onesided=None, int? length=None, bool return_complex=False) -> Tensor variants: function, method - func: stride.int(Tensor self, int dim) -> int variants: function device_check: NoCheck device_guard: False manual_cpp_binding: True - func: stride.Dimname(Tensor self, Dimname dim) -> int variants: function, method device_check: NoCheck device_guard: False - func: sym_stride.int(Tensor self, int dim) -> SymInt variants: function device_check: NoCheck device_guard: False tags: core manual_cpp_binding: True - func: sum(Tensor self, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: sum SparseCPU, SparseCUDA, SparseMeta: sum_coo SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sum_csr autogen: sum.out - func: sum.dim_IntList(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor # TODO: Align the signature of sum.dim_IntList and _sparse_csr_sum.dim_dtype structured_delegate: sum.IntList_out device_check: NoCheck # TensorIterator variants: function, method dispatch: NestedTensorCPU: NestedTensor_sum_dim_CPU SparseCPU, SparseCUDA: sum_sparse_coo SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sum_sparse_compressed tags: core - func: sum.dim_DimnameList(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: sum.IntList_out(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) structured: True device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: sum_out MPS: sum_out_mps - func: sum.DimnameList_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator # TODO: this function will be replaced once nested expand semantics have been settled on - func: _nested_sum_backward(Tensor grad, Tensor self, int[1]? dim, bool keepdim=False) -> Tensor dispatch: NestedTensorCPU: _nested_sum_backward_cpu - func: nansum(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor variants: function, method dispatch: CPU, CUDA: nansum MPS: nansum_mps - func: nansum.out(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: nansum_out MPS: nansum_out_mps - func: sum_to_size(Tensor self, SymInt[] size) -> Tensor variants: method device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: sum_to_size_symint - func: sqrt(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: sqrt.out variants: function, method dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_sqrt SparseCPU, SparseCUDA: sqrt_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sqrt_sparse_csr tags: [core, pointwise] - func: sqrt_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: sqrt.out variants: function, method dispatch: SparseCPU, SparseCUDA: sqrt_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sqrt_sparse_csr_ tags: pointwise - func: sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: sqrt_out SparseCPU, SparseCUDA: sqrt_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sqrt_sparse_csr_out tags: pointwise - func: square(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method tags: pointwise - func: square_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function, method tags: pointwise - func: square.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) tags: pointwise - func: std(Tensor self, bool unbiased=True) -> Tensor device_check: NoCheck # TensorIterator variants: function, method cpp_no_default_args: ["unbiased"] - func: std.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method cpp_no_default_args: ["unbiased"] - func: std.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: std MPS: std_mps QuantizedCPU: std_quantized_cpu - func: std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function cpp_no_default_args: ["unbiased"] - func: std_mean.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function cpp_no_default_args: ["unbiased"] - func: std_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function dispatch: CPU, CUDA: std_mean MPS: std_mean_mps autogen: std_mean.correction_out - func: std_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function cpp_no_default_args: ["unbiased"] - func: std_mean.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function - func: std.out(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator cpp_no_default_args: ["unbiased"] - func: std.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: std_out QuantizedCPU: std_out_quantized_cpu - func: std.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method cpp_no_default_args: ["unbiased"] - func: std.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator cpp_no_default_args: ["unbiased"] - func: std.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: std.correction_names_out(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function - func: prod(Tensor self, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: prod MPS: prod_mps autogen: prod.out tags: core - func: prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor structured_delegate: prod.int_out device_check: NoCheck # TensorIterator variants: function, method tags: core - func: prod.int_out(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) structured: True device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: prod_out MPS: prod_out_mps - func: prod.dim_Dimname(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: prod.Dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: t(Tensor(a) self) -> Tensor(a) device_check: NoCheck device_guard: False variants: function, method dispatch: CompositeExplicitAutograd: t - func: t_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck device_guard: False variants: method tags: inplace_view dispatch: CompositeExplicitAutograd: t_ - func: tan(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: tan.out variants: function, method dispatch: SparseCPU, SparseCUDA: tan_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: tan_sparse_csr tags: [core, pointwise] - func: tan_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: tan.out variants: function, method dispatch: SparseCPU, SparseCUDA: tan_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: tan_sparse_csr_ tags: pointwise - func: tan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: tan_out MPS: tan_out_mps SparseCPU, SparseCUDA: tan_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: tan_sparse_csr_out tags: pointwise - func: tanh(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: tanh.out variants: function, method dispatch: QuantizedCPU: tanh_quantized_cpu MkldnnCPU: mkldnn_tanh SparseCPU, SparseCUDA: tanh_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: tanh_sparse_csr NestedTensorCPU, NestedTensorCUDA: NestedTensor_tanh tags: [core, pointwise] - func: tanh_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: tanh.out variants: function, method dispatch: MkldnnCPU: mkldnn_tanh_ SparseCPU, SparseCUDA: tanh_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: tanh_sparse_csr_ NestedTensorCPU, NestedTensorCUDA: NestedTensor_tanh_ tags: pointwise - func: tanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: tanh_out SparseCPU, SparseCUDA: tanh_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: tanh_sparse_csr_out tags: pointwise - func: tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> Tensor variants: function - func: tensordot.out(Tensor self, Tensor other, int[] dims_self, int[] dims_other, *, Tensor(a!) out) -> Tensor(a!) variants: function # TODO: namespace threshold in 'nn' - func: threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor device_check: NoCheck # TensorIterator variants: function structured_delegate: threshold.out dispatch: QuantizedCPU: threshold_quantized_cpu tags: pointwise - func: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function structured_delegate: threshold.out - func: threshold.out(Tensor self, Scalar threshold, Scalar value, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: threshold_out MPS: threshold_out_mps - func: threshold_backward.grad_input(Tensor grad_output, Tensor self, Scalar threshold, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: threshold_backward_out MPS: threshold_backward_out_mps SparseCPU, SparseCUDA: threshold_backward_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: threshold_backward_sparse_compressed_out - func: threshold_backward(Tensor grad_output, Tensor self, Scalar threshold) -> Tensor variants: function structured_delegate: threshold_backward.grad_input dispatch: MkldnnCPU: mkldnn_relu_backward SparseCPU, SparseCUDA: threshold_backward_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: threshold_backward_sparse_compressed NestedTensorCPU, NestedTensorCUDA: threshold_backwards_nested tags: pointwise - func: tile(Tensor self, SymInt[] dims) -> Tensor variants: function, method dispatch: CompositeImplicitAutograd: tile_symint - func: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: transpose NestedTensorCPU, NestedTensorCUDA: transpose_nested - func: transpose.Dimname(Tensor(a) self, Dimname dim0, Dimname dim1) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False - func: _mkldnn_transpose(Tensor self, int dim0, int dim1) -> Tensor device_check: NoCheck device_guard: False dispatch: MkldnnCPU: mkldnn_transpose - func: transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view dispatch: CompositeExplicitAutograd: transpose_ - func: _mkldnn_transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!) device_check: NoCheck device_guard: False dispatch: MkldnnCPU: mkldnn_transpose_ autogen: _mkldnn_transpose.out - func: one_hot(Tensor self, int num_classes=-1) -> Tensor python_module: nn variants: function tags: dynamic_output_shape - func: flip(Tensor self, int[] dims) -> Tensor variants: function, method dispatch: CPU, QuantizedCPU, CUDA, QuantizedCUDA: flip MPS: flip_mps autogen: flip.out tags: core - func: fliplr(Tensor self) -> Tensor variants: function, method - func: flipud(Tensor self) -> Tensor variants: function, method - func: roll(Tensor self, SymInt[1] shifts, int[1] dims=[]) -> Tensor variants: function, method dispatch: CPU, MPS: roll CUDA: roll_cuda autogen: roll.out # default int[] value [0,1] should not add space after comma, since codegen parser uses ', ' to split args - func: rot90(Tensor self, int k=1, int[] dims=[0,1]) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: rot90 autogen: rot90.out - func: trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor - func: trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> Tensor - func: trapz.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor - func: trapz.dx(Tensor y, *, float dx=1, int dim=-1) -> Tensor # Fused implementation detail for transformers. Adds in-projection bias to QKV and divides Q by sqrt(D/num_heads). - func: _transform_bias_rescale_qkv(Tensor qkv, Tensor qkv_bias, int num_heads) -> (Tensor, Tensor, Tensor) dispatch: CPU, NestedTensorCPU: transform_bias_rescale_qkv_cpu CUDA, NestedTensorCUDA: transform_bias_rescale_qkv_cuda autogen: _transform_bias_rescale_qkv.out - func: _nested_tensor_from_mask(Tensor t, Tensor mask, bool mask_check=True) -> Tensor dispatch: CPU, CUDA: NestedTensor_nested_tensor_from_mask autogen: _nested_tensor_from_mask.out - func: _nested_tensor_from_mask_left_aligned(Tensor t, Tensor mask) -> bool dispatch: CPU, CUDA: NestedTensor_nested_tensor_from_mask_left_aligned - func: _nested_from_padded(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False) -> Tensor device_check: NoCheck # cpu_nested_shape_example will always be on CPU dispatch: CPU: nested_from_padded_generic CUDA: nested_from_padded_cuda autogen: _nested_from_padded.out # These private functions are temporary. They will be updated/deleted when nested tensors switch to using SymInts for their metadata representation - func: _nested_tensor_size(Tensor self) -> Tensor variants: method dispatch: NestedTensorCPU, NestedTensorCUDA: _nested_tensor_size autogen: _nested_tensor_size.out - func: _nested_tensor_strides(Tensor self) -> Tensor variants: method dispatch: NestedTensorCPU, NestedTensorCUDA: _nested_tensor_strides autogen: _nested_tensor_strides.out - func: _nested_tensor_storage_offsets(Tensor self) -> Tensor variants: method dispatch: NestedTensorCPU, NestedTensorCUDA, NestedTensorMeta: _nested_tensor_storage_offsets autogen: _nested_tensor_storage_offsets.out # _nested_from_padded is not usable from Python, so # _nested_from_padded_and_nested_example is available for testing. - func: _nested_from_padded_and_nested_example(Tensor padded, Tensor nt_example) -> Tensor dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_from_padded_and_nested_example autogen: _nested_from_padded_and_nested_example.out # The input arguments' types to this functions are temporary. When nested tensors switch to using SymInts for their metadata representation # this will need to be updated - func: _nested_view_from_buffer(Tensor(a) self, Tensor nested_size, Tensor nested_strides, Tensor offsets) -> Tensor(a) variants: function device_check: NoCheck dispatch: CPU, CUDA: _nested_view_from_buffer - func: _nested_view_from_buffer_copy(Tensor self, Tensor nested_size, Tensor nested_strides, Tensor offsets) -> Tensor variants: function device_check: NoCheck tags: view_copy dispatch: CompositeExplicitAutogradNonFunctional: _nested_view_from_buffer_copy autogen: _nested_view_from_buffer_copy.out - func: _nested_view_from_jagged(Tensor(a) self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1, Tensor? min_seqlen=None, Tensor? max_seqlen=None) -> Tensor(a) variants: function device_check: NoCheck dispatch: {} - func: _nested_view_from_jagged_copy(Tensor self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1, Tensor? min_seqlen=None, Tensor? max_seqlen=None) -> Tensor variants: function device_check: NoCheck tags: view_copy dispatch: CompositeExplicitAutogradNonFunctional: _nested_view_from_jagged_copy autogen: _nested_view_from_jagged_copy.out - func: _nested_get_values(Tensor(a) self) -> Tensor(a) variants: function device_check: NoCheck dispatch: {} - func: _nested_get_values_copy(Tensor self) -> Tensor variants: function device_check: NoCheck tags: view_copy dispatch: CompositeExplicitAutogradNonFunctional: _nested_get_values_copy autogen: _nested_get_values_copy.out - func: _nested_get_offsets(Tensor self) -> Tensor variants: function device_check: NoCheck dispatch: {} # returns undefined Tensor if no lengths present - func: _nested_get_lengths(Tensor self) -> Tensor variants: function device_check: NoCheck dispatch: {} - func: _nested_get_ragged_idx(Tensor self) -> int variants: function device_check: NoCheck dispatch: {} - func: _nested_get_min_seqlen(Tensor self) -> Tensor variants: function device_check: NoCheck dispatch: {} - func: _nested_get_max_seqlen(Tensor self) -> Tensor variants: function device_check: NoCheck dispatch: {} - func: _nested_get_jagged_dummy(Tensor any) -> Tensor category_override: dummy dispatch: {} - func: _nested_compute_contiguous_strides_offsets(Tensor nested_size) -> (Tensor, Tensor) variants: function device_check: NoCheck dispatch: CPU, CUDA: _nested_compute_contiguous_strides_offsets - func: _trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> Tensor dispatch: # calls unsqueeze CompositeExplicitAutogradNonFunctional: _trilinear autogen: _trilinear.out - func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor - func: trunc(Tensor self) -> Tensor structured_delegate: trunc.out device_check: NoCheck # TensorIterator variants: function, method dispatch: SparseCPU, SparseCUDA: trunc_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: trunc_sparse_csr tags: [core, pointwise] - func: trunc_(Tensor(a!) self) -> Tensor(a!) structured_delegate: trunc.out device_check: NoCheck # TensorIterator variants: function, method dispatch: SparseCPU, SparseCUDA: trunc_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: trunc_sparse_csr_ tags: pointwise - func: trunc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA, MPS: trunc_out SparseCPU, SparseCUDA: trunc_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: trunc_sparse_csr_out tags: pointwise # Alias for trunc - func: fix(Tensor self) -> Tensor variants: function, method - func: fix_(Tensor(a!) self) -> Tensor(a!) variants: function, method - func: fix.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: type_as(Tensor self, Tensor other) -> Tensor variants: method - func: _has_compatible_shallow_copy_type(Tensor self, Tensor from) -> bool variants: function - func: _unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor) variants: function dispatch: CPU: _unique_cpu CUDA: _unique_cuda autogen: _unique.out - func: unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) variants: function dispatch: CPU: unique_dim_cpu CUDA: unique_dim_cuda tags: dynamic_output_shape autogen: unique_dim.out - func: unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor) variants: function dispatch: CPU: unique_consecutive_cpu CUDA: unique_consecutive_cuda MPS: unique_consecutive_mps tags: dynamic_output_shape autogen: unique_consecutive.out - func: unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) variants: function dispatch: CPU: unique_dim_consecutive_cpu CUDA: unique_dim_consecutive_cuda MPS: unique_dim_consecutive_mps tags: dynamic_output_shape autogen: unique_dim_consecutive.out # _unique and _unique_dim are fragile and modifying them easily cause internal break # the below operator is a temporary hack for adding return_counts support # Please don't rely on these two operators, they will be removed soon - func: _unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) variants: function dispatch: CPU: _unique2_cpu CUDA: _unique2_cuda MPS: _unique2_mps tags: dynamic_output_shape autogen: _unique2.out - func: _unsafe_view(Tensor self, SymInt[] size) -> Tensor dispatch: CompositeExplicitAutograd: _unsafe_view autogen: _unsafe_view.out - func: unsqueeze(Tensor(a) self, int dim) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: unsqueeze SparseCPU, SparseCUDA: unsqueeze_sparse QuantizedCPU, QuantizedCUDA: unsqueeze_quantized NestedTensorCPU, NestedTensorCUDA: unsqueeze_nested tags: core - func: unsqueeze_(Tensor(a!) self, int dim) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view dispatch: CompositeExplicitAutograd: unsqueeze_ - func: vander(Tensor x, int? N=None, bool increasing=False) -> Tensor - func: var(Tensor self, bool unbiased=True) -> Tensor device_check: NoCheck # TensorIterator variants: function, method cpp_no_default_args: ["unbiased"] - func: var.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method tags: core cpp_no_default_args: ["unbiased"] - func: var.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA: var MPS: var_mps tags: core - func: var.out(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator cpp_no_default_args: ["unbiased"] - func: var.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: var_out - func: var.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method cpp_no_default_args: ["unbiased"] - func: var.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator cpp_no_default_args: ["unbiased"] - func: var.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: var.correction_names_out(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function - func: var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function cpp_no_default_args: ["unbiased"] - func: var_mean.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function cpp_no_default_args: ["unbiased"] - func: var_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function dispatch: CPU, CUDA: var_mean MPS: var_mean_mps autogen: var_mean.correction_out - func: var_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function cpp_no_default_args: ["unbiased"] - func: var_mean.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor) device_check: NoCheck # TensorIterator variants: function - func: view_as(Tensor(a) self, Tensor other) -> Tensor(a) variants: method device_check: NoCheck device_guard: False - func: where.self(Tensor condition, Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CPU, CUDA, MPS: where NestedTensorCPU, NestedTensorCUDA: NestedTensor_where tags: [core, pointwise] - func: where.self_out(Tensor condition, Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA, MPS: where_self_out NestedTensorCPU, NestedTensorCUDA: NestedTensor_where_out - func: where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> Tensor variants: function - func: where.ScalarOther(Tensor condition, Tensor self, Scalar other) -> Tensor variants: function, method - func: where.Scalar(Tensor condition, Scalar self, Scalar other) -> Tensor variants: function - func: where(Tensor condition) -> Tensor[] device_check: NoCheck # TensorIterator variants: function - func: norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor variants: function # VariableType::_weight_norm does not want to be given a gap in the autograd graph, # so we don't define "dispatch" variants for it. - func: _weight_norm(Tensor v, Tensor g, int dim=0) -> Tensor variants: function - func: _weight_norm_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor) variants: function dispatch: CPU: weight_norm_cpu CUDA: weight_norm_cuda MPS: weight_norm_mps autogen: _weight_norm_interface.out - func: _weight_norm_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor) variants: function dispatch: CPU: weight_norm_backward_cpu CUDA: weight_norm_backward_cuda MPS: weight_norm_backward_mps autogen: _weight_norm_interface_backward.out - func: _weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor) variants: function - func: zeros.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: zeros autogen: zeros.names_out - func: _efficientzerotensor(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CPU: _efficientzerotensor CUDA: _efficientzerotensor_cuda MPS: _efficientzerotensor_mps Meta: _efficientzerotensor_meta_symint autogen: _efficientzerotensor.out - func: zeros(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: zeros_symint - func: zeros.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: zeros_out SparseCPU, SparseCUDA, SparseMeta: zeros_sparse_out - func: zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor dispatch: # NB: Although this composite mutates on the inside, it is # non-differentiable so NonFunctional doesn't apply CompositeExplicitAutograd, CompositeImplicitAutogradNestedTensor: zeros_like autogen: zeros_like.out - func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor variants: function dispatch: CPU: _standard_gamma_grad_cpu CUDA: _standard_gamma_grad_cuda autogen: _standard_gamma_grad.out - func: _standard_gamma(Tensor self, Generator? generator=None) -> Tensor variants: function dispatch: CPU: _s_gamma_cpu CUDA: _s_gamma_cuda tags: nondeterministic_seeded autogen: _standard_gamma.out - func: _dirichlet_grad(Tensor x, Tensor alpha, Tensor total) -> Tensor dispatch: CPU: _dirichlet_grad_cpu CUDA: _dirichlet_grad_cuda autogen: _dirichlet_grad.out - func: _sample_dirichlet(Tensor self, Generator? generator=None) -> Tensor tags: nondeterministic_seeded variants: function dispatch: CPU: _s_dirichlet_cpu CUDA: _s_dirichlet_cuda autogen: _sample_dirichlet.out - func: poisson(Tensor self, Generator? generator=None) -> Tensor device_check: NoCheck # TensorIterator dispatch: CPU: _s_poisson_cpu CUDA: _s_poisson_cuda tags: nondeterministic_seeded autogen: poisson.out - func: binomial(Tensor count, Tensor prob, Generator? generator=None) -> Tensor device_check: NoCheck # TensorIterator dispatch: CPU: _s_binomial_cpu CUDA: _s_binomial_cuda tags: nondeterministic_seeded autogen: binomial.out # When more variants get ported to native, this dispatch will get more # complicated - func: native_norm(Tensor self, Scalar p=2) -> Tensor dispatch: SparseCPU, SparseCUDA: norm_sparse autogen: native_norm.out - func: native_norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, ScalarType? dtype) -> Tensor dispatch: SparseCPU, SparseCUDA: norm_sparse autogen: native_norm.ScalarOpt_dim_dtype_out - func: _batch_norm_with_update(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor, Tensor) dispatch: CPU: _batch_norm_with_update_cpu CUDA: _batch_norm_with_update_cuda MPS: _batch_norm_with_update_mps MkldnnCPU: _batch_norm_with_update_mkldnn autogen: _batch_norm_with_update_functional - func: _batch_norm_with_update.out(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, float momentum, float eps, *, Tensor(d!) out, Tensor(e!) save_mean, Tensor(f!) save_invstd, Tensor(g!) reserve) -> (Tensor(d!), Tensor(e!), Tensor(f!), Tensor(g!)) dispatch: CPU: _batch_norm_with_update_cpu_out CUDA: _batch_norm_with_update_cuda_out MPS: _batch_norm_with_update_mps_out - func: _batch_norm_no_update(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor, Tensor) dispatch: CompositeExplicitAutograd: _batch_norm_no_update autogen: _batch_norm_no_update.out - func: batch_norm_backward(Tensor grad_out, Tensor input, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, bool update, float eps, bool[3] output_mask, Tensor reserve) -> (Tensor, Tensor, Tensor) dispatch: CPU: _new_batch_norm_backward_cpu CUDA: _new_batch_norm_backward_cuda MPS: _new_batch_norm_backward_mps MkldnnCPU: _new_batch_norm_backward_mkldnn # TODO: reduce signatures down to one when optional args is available - func: _sparse_sum(Tensor self) -> Tensor - func: _sparse_sum.dtype(Tensor self, *, ScalarType dtype) -> Tensor - func: _sparse_sum.dim(Tensor self, int[1] dim) -> Tensor dispatch: CompositeExplicitAutograd: _sparse_sum autogen: _sparse_sum.dim_out - func: _sparse_sum.dim_dtype(Tensor self, int[1] dim, *, ScalarType dtype) -> Tensor - func: _sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor dispatch: SparseCPU: _sparse_sum_backward_cpu SparseCUDA: _sparse_sum_backward_cuda autogen: _sparse_sum_backward.out - func: _sparse_csr_sum.dim_dtype(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor dispatch: SparseCsrCPU: _sparse_csr_sum_cpu SparseCsrCUDA: _sparse_csr_sum_cuda autogen: _sparse_csr_sum.dim_dtype_out - func: _sparse_csr_prod.dim_dtype(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor dispatch: SparseCsrCPU: _sparse_csr_prod_cpu SparseCsrCUDA: _sparse_csr_prod_cuda autogen: _sparse_csr_prod.dim_dtype_out - func: _sparse_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor python_module: sparse variants: function - func: _sparse_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor python_module: sparse variants: function - func: _sparse_softmax(Tensor self, int dim, bool half_to_float) -> Tensor python_module: sparse dispatch: SparseCPU: softmax_sparse_cpu SparseCUDA: softmax_sparse_cuda autogen: _sparse_softmax.out - func: _sparse_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor dispatch: SparseCPU: softmax_backward_sparse_cpu SparseCUDA: softmax_backward_sparse_cuda autogen: _sparse_softmax_backward_data.out - func: _sparse_log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor python_module: sparse variants: function - func: _sparse_log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor python_module: sparse variants: function - func: _sparse_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor python_module: sparse dispatch: SparseCPU: log_softmax_sparse_cpu SparseCUDA: log_softmax_sparse_cuda autogen: _sparse_log_softmax.out - func: _sparse_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor dispatch: SparseCPU: log_softmax_backward_sparse_cpu SparseCUDA: log_softmax_backward_sparse_cuda autogen: _sparse_log_softmax_backward_data.out - func: _spdiags(Tensor diagonals, Tensor offsets, int[] shape, Layout? layout=None) -> Tensor python_module: sparse dispatch: CPU: spdiags autogen: _spdiags.out - func: norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: norm autogen: norm.ScalarOpt_dtype_out - func: norm.Scalar(Tensor self, Scalar p=2) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: norm autogen: norm.Scalar_out - func: norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor structured_delegate: norm.dtype_out device_check: NoCheck # TensorIterator variants: function, method dispatch: SparseCPU, SparseCUDA: sparse_dtype_norm - func: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor structured_delegate: norm.out device_check: NoCheck # TensorIterator variants: function, method dispatch: SparseCPU, SparseCUDA: sparse_norm - func: norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!) structured: True device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: norm_dtype_out MPS: norm_dtype_out_mps - func: norm.out(Tensor self, Scalar? p, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) structured: True device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: norm_out MPS: norm_out_mps # These four redispatch in their implementation, so OK to be CompositeImplicitAutograd - func: norm.names_ScalarOpt_dim_dtype(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: norm.names_ScalarOpt_dim(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: norm.names_dtype_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: norm.names_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent) variants: method, function dispatch: CompositeExplicitAutograd: frexp tags: pointwise - func: frexp.Tensor_out(Tensor self, *, Tensor(a!) mantissa, Tensor(b!) exponent) -> (Tensor(a!) mantissa, Tensor(b!) exponent) dispatch: CPU, CUDA: frexp_out tags: pointwise # Deprecated (v.1.12) - func: frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor variants: function # Deprecated (v.1.12) - func: frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) variants: function # Deprecated (v.1.12) - func: nuclear_norm(Tensor self, bool keepdim=False) -> Tensor variants: function # Deprecated (v.1.12) - func: nuclear_norm.out(Tensor self, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) variants: function # Deprecated (v.1.12) - func: nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> Tensor variants: function # Deprecated (v.1.12) - func: nuclear_norm.dim_out(Tensor self, int[2] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) variants: function - func: clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: clone SparseCPU, SparseCUDA: clone_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: clone_sparse_compressed MkldnnCPU: mkldnn_clone QuantizedCPU, QuantizedCUDA: quantized_clone NestedTensorCPU, NestedTensorCUDA: clone_nested autogen: clone.out tags: [core, pointwise] - func: positive(Tensor(a) self) -> Tensor(a) variants: function, method tags: pointwise - func: resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!) use_const_ref_for_mutable_tensors: True variants: function, method dispatch: CompositeExplicitAutograd: resize_as_ autogen: resize_as, resize_as.out tags: inplace_view - func: resize_as_sparse_(Tensor(a!) self, Tensor the_template) -> Tensor(a!) use_const_ref_for_mutable_tensors: True variants: function, method dispatch: SparseCPU, SparseCUDA: resize_as_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: resize_as_sparse_compressed_ autogen: resize_as_sparse, resize_as_sparse.out - func: zero_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method, function dispatch: CPU, CUDA: zero_ MPS: zero_mps_ Meta: zero_meta_ SparseCPU, SparseCUDA, SparseMeta: zero_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: zero_sparse_csr_ MkldnnCPU: mkldnn_zero_ NestedTensorCPU, NestedTensorCUDA: zero_nested_ autogen: zero, zero.out - func: sub.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: sub_out MPS: sub_out_mps SparseCPU, SparseCUDA: sub_out_sparse tags: pointwise - func: sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: sub.out dispatch: SparseCPU, SparseCUDA: sub_sparse ZeroTensor: sub_zerotensor NestedTensorCPU, NestedTensorCUDA: NestedTensor_sub_Tensor tags: [core, pointwise] - func: sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: sub.out dispatch: SparseCPU, SparseCUDA: sub_sparse_ tags: pointwise # For C++ only, until we have conversion from C++ numbers to Tensor - func: sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: sub tags: [core, pointwise] - func: sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: sub_ autogen: sub.Scalar_out tags: pointwise # subtract, alias for sub - func: subtract.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) - func: subtract.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor variants: function, method - func: subtract_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) variants: method # For C++ only, until we have conversion from C++ numbers to Tensor - func: subtract.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor variants: function, method - func: subtract_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) variants: method - func: rsub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CPU, CUDA: rsub autogen: rsub.Tensor_out - func: heaviside.out(Tensor self, Tensor values, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: heaviside_out tags: pointwise - func: heaviside(Tensor self, Tensor values) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: heaviside.out tags: pointwise - func: heaviside_(Tensor(a!) self, Tensor values) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: heaviside.out # For C++ only, until we have conversion from C++ numbers to Tensor - func: rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: rsub autogen: rsub.Scalar_out # Functionally the same as addmm, but we give it a different derivative formula # that doesn't propagate gradients to non-present entries on sparse. tags: pointwise - func: _sparse_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor python_module: sparse dispatch: CompositeExplicitAutograd: _sparse_addmm autogen: _sparse_addmm.out - func: sparse_sampled_addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) python_module: sparse dispatch: SparseCsrCUDA: sparse_sampled_addmm_out_sparse_csr_cuda SparseCsrCPU: sparse_sampled_addmm_out_sparse_csr_cpu - func: sparse_sampled_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor python_module: sparse dispatch: SparseCsrCUDA: sparse_sampled_addmm_sparse_csr_cuda SparseCsrCPU: sparse_sampled_addmm_sparse_csr_cpu - func: _sparse_mm_reduce_impl(Tensor self, Tensor other, str reduce) -> (Tensor, Tensor) python_module: sparse dispatch: SparseCsrCPU: _sparse_mm_reduce_impl_sparse_csr_cpu - func: _sparse_mm_reduce_impl_backward(Tensor self, Tensor grad_out, Tensor weight, str reduce, Tensor arg_out, bool[2] output_mask) -> (Tensor, Tensor) python_module: sparse dispatch: SparseCsrCPU: _sparse_mm_reduce_impl_backward_sparse_csr_cpu - func: addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: addmm_out_cpu CUDA: addmm_out_cuda MPS: addmm_out_mps XPU: addmm_out_xpu SparseCPU: addmm_out_sparse_dense_cpu SparseCUDA: addmm_out_sparse_dense_cuda SparseCsrCPU: addmm_out_sparse_compressed_cpu SparseCsrCUDA: addmm_out_sparse_compressed_cuda - func: addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor structured_delegate: addmm.out variants: function, method dispatch: SparseCPU: addmm_sparse_dense_cpu SparseCUDA: addmm_sparse_dense_cuda SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: addmm_sparse_compressed_dense tags: core - func: addmm_(Tensor(a!) self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) structured_delegate: addmm.out variants: method dispatch: # Warning! For whatever reason, the inplace sparse addmm is NON # broadcasting SparseCPU: s_addmm_sparse_dense_cpu_ SparseCUDA: s_addmm_sparse_dense_cuda_ - func: _addmm_activation.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, bool use_gelu=False, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: addmm_activation_out_cpu CUDA: addmm_activation_out_cuda XPU: addmm_activation_out_xpu - func: _addmm_activation(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, bool use_gelu=False) -> Tensor structured_delegate: _addmm_activation.out variants: function, method - func: _scaled_mm(Tensor self, Tensor mat2, Tensor scale_a, Tensor scale_b, Tensor? bias=None, Tensor? scale_result=None, ScalarType? out_dtype=None, bool use_fast_accum=False) -> Tensor variants: function dispatch: CUDA: _scaled_mm_cuda - func: _scaled_mm.out(Tensor self, Tensor mat2, Tensor scale_a, Tensor scale_b, Tensor? bias=None, Tensor? scale_result=None, ScalarType? out_dtype=None, bool use_fast_accum=False, *, Tensor(a!) out) -> Tensor(a!) variants: function dispatch: CUDA: _scaled_mm_out_cuda - func: _scaled_grouped_mm(Tensor self, Tensor mat2, Tensor scale_a, Tensor scale_b, Tensor? offs=None, Tensor? bias=None, Tensor? scale_result=None, ScalarType? out_dtype=None, bool use_fast_accum=False) -> Tensor variants: function dispatch: CUDA: _scaled_grouped_mm_cuda # NOTE [ Sparse: autograd and API ] # # # Sparse Tensor Constructors # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # # The API entry points to sparse tensor construction should be # `sparse_coo tensor` and `_sparse_coo_tensor_unsafe`. Depending on whether the # indices and values tensors are given, they eventually dispatch to either # `sparse_coo_tensor_with_dims` or `sparse_coo_tensor_with_dims_and_tensors`. # # The autograd support for ctor is implement on `sparse_coo_tensor_with_dims_and_tensors`. # # The API methods `sparse_coo tensor` and `_sparse_coo_tensor_unsafe` # **must not** have specific type dispatches because otherwise codegen will # consider them as abstract methods (see Note [Abstract ATen methods]), dispatch # using **Tensor** type, and thus lose autograd tracking on the actual method # they dispatch to, e.g., `sparse_coo_tensor_with_dims_and_tensors`. # # # Sparse Methods API Design # ~~~~~~~~~~~~~~~~~~~~~~~~~ # # Goals: 1. Flexible API for users to write custom sparse ops # 2. ctor and member accessor with autograd support # # To achieve 1, we need to provide a set of *dangerous* APIs (dangerous in the # sense that misusing them will break sparse tensor invariant and may out in # unexpected behavior, e.g., crash). These methods are all prefixed with # underscore "_" to indicate that they should be used with care. We provide: # # + `_indices()`: returns the *raw* indices within the sparse tensor (not just # sharing storage). Any inplace operation will change the # actual indices, including t_, set_, as_strided_, resize_, # etc. # + `_values()`: returns the *raw* values within the sparse tensor. Similar # semantics as `_indices()` # + `_nnz()`: returns the number of non-zero entries. This will always be # determined by the shapes of indices and values. # + `_coalesced_(bool)`: inplace sets whether the tensor is coalesced, and # returns itself. # # These methods are very useful in writing new operations, e.g., a custom # autograd Function. # # We also provide other public *safe* APIs: # + `indices()`: returns a **view** of the indices tensor if the sparse tensor # is **coalesced**. # + `values()`: returns a **view** of the values tensor if the containing # sparse tensor is **coalesced**. # + `sparse_dim()`: number of sparse dimensions # + `dense_dim()`: number of dense dimensions # + `is_coalesced()`: whether the sparse tensor is coalesced # # `_indices()` and `_values()` should returns the raw indices and values dense # tensors within a sparse tensor. They can be quite unsafe with inplace # operations like `t_()`, and exposes uncoalesced indices and values. The public # recommended API is `indices()` and `values()`, both of which first check that # the tensor is coalesced and return views on those tensors. # # # Autograd Support # ~~~~~~~~~~~~~~~~ # # Autograd is supported on `values()` and sparse tensor ctor with indices and # values tensors. E.g., `torch.sparse_coo_tensor(i, v).values().sum()` is # differentiable w.r.t. `v`. # # NB: The `values()` and `_values()` operators are special in that they are # layout-aware, i.e., the output depends not just on the data it represents, but # also on the input layout details (in this case, the `indices` tensor). See # NOTE [ as_strided Backward and layout-aware/agnostic autograd ] in Functions.cpp # for discussion on layout-aware vs layout-agnostic autograd. Since PyTorch ops # operate in the layout-agnostic mode, similar to `as_strided`, backward of # these two operators need to consider them in a layout-agnostic way: # + `values()`: # Input is coalesced. # We just pretend having `input.indices()` as an additional argument # `input_indices`, then forward is similar to # `input.to(kStrided).index_select(input_indices)` regardless of the layout. # Note that `values()` normally is layout-aware even if we constrain # ourselves on sparse inputs since it may include all zeros values entries # as "present" entries. # + `_values()`: # Input may be uncoalesced. # It is not straightforward to construct a layout-agnostic version because # duplicate indices entries may exist and additional parameterization is # needed to distribute the value into different values entries. Furthermore, # this op is intended to provide ways to write custom sparse ops, rather # than being used in autograd graph, so it is marked as *non-differentiable* # in derivatives.yaml. # # Before reading the following, see NOTE [ Autograd Variable Views ] in # variable.h for details on views that are tracked by autograd, and views that # are not. # # Moreover, these methods return tensors that share storage with inputs, so we # mark these methods as view ops to support autograd history tracking. # The sparse tensor ctor output should technically be view of both input indices # and values tensors, but currently we only support setting as view of a single # Variable, so it is only view of the values tensor. # TODO: clone indices in sparse tensor ctor. # # For other methods that return outputs that share storage with inputs, i.e., # `indices()` and `_indices()`. We mark their outputs as non-differentiable, so # the view relation is not tracked by autograd, but the version counter is still # shared. In other words, their outputs are non-differentiable views of the # sparse tensor. # FIXME: would be nicer if TensorOptions was optional based; not adding default arguments for options given # the default would never make sense. - func: _sparse_compressed_tensor_with_dims(int nnz, int dense_dim, int[] size, int[] blocksize, ScalarType index_dtype, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor dispatch: CompositeExplicitAutograd: sparse_compressed_tensor_with_dims - func: sparse_compressed_tensor.comp_plain_value_size(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor dispatch: CompositeExplicitAutograd: sparse_compressed_tensor - func: sparse_csr_tensor.crow_col_value_size(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: sparse_csc_tensor.ccol_row_value_size(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: sparse_bsr_tensor.crow_col_value_size(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: sparse_bsc_tensor.ccol_row_value_size(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: sparse_compressed_tensor.comp_plain_value(Tensor compressed_indices, Tensor plain_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor dispatch: CompositeExplicitAutograd: sparse_compressed_tensor - func: sparse_csr_tensor.crow_col_value(Tensor crow_indices, Tensor col_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: sparse_csc_tensor.ccol_row_value(Tensor ccol_indices, Tensor row_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: sparse_bsr_tensor.crow_col_value(Tensor crow_indices, Tensor col_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: sparse_bsc_tensor.ccol_row_value(Tensor ccol_indices, Tensor row_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor - func: _sparse_compressed_tensor_unsafe(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeImplicitAutograd: _sparse_compressed_tensor_unsafe_symint - func: _sparse_csr_tensor_unsafe(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor - func: _sparse_csc_tensor_unsafe(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor - func: _sparse_bsr_tensor_unsafe(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor - func: _sparse_bsc_tensor_unsafe(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor - func: sparse_coo_tensor.size(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor dispatch: CompositeExplicitAutograd: sparse_coo_tensor autogen: sparse_coo_tensor.size_out - func: sparse_coo_tensor.indices(Tensor indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool? is_coalesced=None) -> Tensor - func: sparse_coo_tensor.indices_size(Tensor indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool? is_coalesced=None) -> Tensor - func: _sparse_coo_tensor_unsafe(Tensor indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool? is_coalesced=None) -> Tensor dispatch: CompositeImplicitAutograd: _sparse_coo_tensor_unsafe_symint - func: _validate_sparse_coo_tensor_args(Tensor indices, Tensor values, int[] size, bool? is_coalesced=None) -> () - func: _validate_sparse_compressed_tensor_args(Tensor compressed_indices, Tensor plain_indices, Tensor values, int[] size, Layout layout) -> () - func: _validate_sparse_csr_tensor_args(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size) -> () - func: _validate_sparse_csc_tensor_args(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size) -> () - func: _validate_sparse_bsr_tensor_args(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size) -> () - func: _validate_sparse_bsc_tensor_args(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size) -> () - func: _sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor dispatch: SparseCPU, SparseCUDA, SparseMeta, Meta: new_with_dims_sparse autogen: _sparse_coo_tensor_with_dims.out - func: _sparse_coo_tensor_with_dims_and_tensors(int sparse_dim, int dense_dim, SymInt[] size, Tensor indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False, bool? is_coalesced=None) -> Tensor dispatch: SparseCPU, SparseCUDA, SparseMeta, Meta: new_with_dims_and_tensor_sparse_symint autogen: _sparse_coo_tensor_with_dims_and_tensors.out - func: sparse_resize_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!) use_const_ref_for_mutable_tensors: True variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: sparse_resize_ autogen: sparse_resize, sparse_resize.out - func: sparse_resize_and_clear_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!) use_const_ref_for_mutable_tensors: True variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: sparse_resize_and_clear_ autogen: sparse_resize_and_clear, sparse_resize_and_clear.out - func: sparse_mask(Tensor self, Tensor mask) -> Tensor variants: method dispatch: SparseCPU, SparseCUDA: sparse_mask SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_mask_sparse_compressed autogen: sparse_mask.out - func: _sparse_mask_projection(Tensor self, Tensor mask, bool accumulate_matches=False) -> Tensor variants: method dispatch: SparseCPU, SparseCUDA: sparse_mask_projection autogen: _sparse_mask_projection.out - func: _to_cpu(Tensor[] tensors) -> Tensor[] variants: function - func: to_dense(Tensor self, ScalarType? dtype=None, *, bool? masked_grad=None) -> Tensor variants: method # Special case of to_dense with custom derivative - func: _to_dense(Tensor self, ScalarType? dtype=None, bool? masked_grad=None) -> Tensor variants: method dispatch: SparseCPU, SparseCUDA: sparse_to_dense SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_compressed_to_dense MkldnnCPU: mkldnn_to_dense autogen: _to_dense.out - func: to_dense_backward(Tensor grad, Tensor input, bool? masked_grad=None) -> Tensor - func: sparse_dim(Tensor self) -> int variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: sparse_dim_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_dim_sparse_csr CompositeExplicitAutograd: sparse_dim_default device_check: NoCheck device_guard: False # legacy method - func: _dimI(Tensor self) -> int variants: method dispatch: SparseCPU, SparseCUDA: sparse_dim_sparse device_check: NoCheck device_guard: False - func: dense_dim(Tensor self) -> int variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: dense_dim_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: dense_dim_sparse_csr CompositeExplicitAutograd: dense_dim_default device_check: NoCheck device_guard: False # legacy method - func: _dimV(Tensor self) -> int variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: dense_dim_sparse device_check: NoCheck device_guard: False - func: _nnz(Tensor self) -> int variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: _nnz_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _nnz_sparse_csr device_check: NoCheck device_guard: False # NOTE: [ coalesce autograd ] # coalesce returns self directly for already coalesced sparse tensors. # This means coalesce cannot have a derivative registered, otherwise it creates # circular references in the autograd graph (see gh-52874). # Instead, the derivative is registered on the slow-path "_coalesce" - func: coalesce(Tensor(a) self) -> Tensor(a) variants: method - func: _coalesce(Tensor self) -> Tensor dispatch: SparseCPU: _coalesce_sparse_cpu SparseCUDA: _coalesce_sparse_cuda autogen: _coalesce.out - func: is_coalesced(Tensor self) -> bool variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: is_coalesced_sparse CompositeExplicitAutograd: is_coalesced_default device_check: NoCheck device_guard: False - func: _indices(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: _indices_sparse device_check: NoCheck device_guard: False - func: _values(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: _values_sparse device_check: NoCheck device_guard: False # This method doesn't do any check but only directly sets the flag. So it can be # a bit unsafe. Similar to _indices and _values, this is useful for implementing # custom sparse operations in Python/C++ extension. - func: _coalesced_(Tensor(a!) self, bool coalesced) -> Tensor(a!) variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: _coalesced_sparse_ device_check: NoCheck device_guard: False autogen: _coalesced, _coalesced.out - func: indices(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: indices_sparse CompositeExplicitAutograd: indices_default device_check: NoCheck device_guard: False - func: values(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCPU, SparseCUDA, SparseMeta: values_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: values_sparse_csr NestedTensorCPU, NestedTensorCUDA: values_nested CompositeExplicitAutograd: values_default device_check: NoCheck device_guard: False - func: crow_indices(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: crow_indices_sparse_csr CompositeExplicitAutograd: crow_indices_default device_check: NoCheck device_guard: False - func: col_indices(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: col_indices_sparse_csr CompositeExplicitAutograd: col_indices_default device_check: NoCheck device_guard: False - func: ccol_indices(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: ccol_indices_sparse_csr CompositeExplicitAutograd: ccol_indices_default device_check: NoCheck device_guard: False - func: row_indices(Tensor(a) self) -> Tensor(a) variants: method dispatch: SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: row_indices_sparse_csr CompositeExplicitAutograd: row_indices_default device_check: NoCheck device_guard: False - func: hspmm.out(Tensor mat1, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!) dispatch: SparseCPU: hspmm_out_sparse_cpu SparseCUDA: hspmm_out_sparse_cuda - func: hspmm(Tensor mat1, Tensor mat2) -> Tensor dispatch: SparseCPU: hspmm_sparse_cpu SparseCUDA: hspmm_sparse_cuda - func: copy_sparse_to_sparse_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!) device_check: NoCheck # Allows copy into different device variants: function dispatch: SparseCPU, SparseCUDA, SparseMeta: copy_sparse_ autogen: copy_sparse_to_sparse, copy_sparse_to_sparse.out # By adding the AutogradNestedTensor this makes this function CompositeImplicit-like for nested tensors - func: unbind.int(Tensor(a -> *) self, int dim=0) -> Tensor(a)[] variants: function, method dispatch: CompositeExplicitAutograd: unbind NestedTensorCPU, NestedTensorCUDA: NestedTensor_unbind - func: unbind.Dimname(Tensor(a -> *) self, Dimname dim) -> Tensor(a)[] variants: function, method - func: to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor variants: method # Special case of to_sparse.sparse_dim with custom derivative - func: _to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor variants: method dispatch: CPU, CUDA: dense_to_sparse SparseCPU, SparseCUDA: sparse_coo_to_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_compressed_to_sparse autogen: _to_sparse.sparse_dim_out - func: to_sparse(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None) -> Tensor variants: method # Special case of to_sparse with custom derivative - func: _to_sparse(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None) -> Tensor variants: method dispatch: CPU, CUDA: dense_to_sparse SparseCPU, SparseCUDA: sparse_coo_to_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_compressed_to_sparse autogen: _to_sparse.out - func: to_sparse_csr(Tensor self, int? dense_dim=None) -> Tensor variants: method # Special case of to_sparse_csr with custom derivative - func: _to_sparse_csr(Tensor self, int? dense_dim=None) -> Tensor variants: method dispatch: CPU, CUDA: dense_to_sparse_csr SparseCPU, SparseCUDA: coo_to_sparse_csr SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_compressed_to_sparse_csr autogen: _to_sparse_csr.out - func: to_sparse_csc(Tensor self, int? dense_dim=None) -> Tensor variants: method # Special case of to_sparse_csc with custom derivative - func: _to_sparse_csc(Tensor self, int? dense_dim=None) -> Tensor variants: method dispatch: CPU, CUDA: dense_to_sparse_csc SparseCPU, SparseCUDA: coo_to_sparse_csc SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_compressed_to_sparse_csc autogen: _to_sparse_csc.out - func: to_sparse_bsr(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor variants: method # Special case of to_sparse_bsr with custom derivative - func: _to_sparse_bsr(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor variants: method dispatch: CPU, CUDA: dense_to_sparse_bsr SparseCPU, SparseCUDA: coo_to_sparse_bsr SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_compressed_to_sparse_bsr autogen: _to_sparse_bsr.out - func: to_sparse_bsc(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor variants: method # Special case of to_sparse_bsc with custom derivative - func: _to_sparse_bsc(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor variants: method dispatch: CPU, CUDA: dense_to_sparse_bsc SparseCPU, SparseCUDA: coo_to_sparse_bsc SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_compressed_to_sparse_bsc autogen: _to_sparse_bsc.out - func: _to_sparse_semi_structured(Tensor dense) -> (Tensor, Tensor) variants: function dispatch: CUDA: _to_sparse_semi_structured - func: to_mkldnn(Tensor self, ScalarType? dtype=None) -> Tensor variants: method dispatch: CPU: dense_to_mkldnn autogen: to_mkldnn.out - func: mkldnn_reorder_conv2d_weight(Tensor self, SymInt[2] padding=0, SymInt[2] stride=1, SymInt[2] dilation=1, SymInt groups=1, SymInt[]? input_size=None) -> Tensor variants: function python_module: nn dispatch: MkldnnCPU: mkldnn_reorder_conv2d_weight autogen: mkldnn_reorder_conv2d_weight.out - func: mkldnn_reorder_conv3d_weight(Tensor self, SymInt[3] padding=0, SymInt[3] stride=1, SymInt[3] dilation=1, SymInt groups=1, SymInt[]? input_size=None) -> Tensor variants: function python_module: nn dispatch: MkldnnCPU: mkldnn_reorder_conv3d_weight autogen: mkldnn_reorder_conv3d_weight.out - func: to_mkldnn_backward(Tensor grad, Tensor input) -> Tensor - func: quantize_per_tensor_dynamic(Tensor self, ScalarType dtype, bool reduce_range) -> Tensor variants: function dispatch: CPU, CUDA: quantize_per_tensor_dynamic autogen: quantize_per_tensor_dynamic.out - func: quantize_per_tensor(Tensor self, float scale, int zero_point, ScalarType dtype) -> Tensor variants: function dispatch: CPU, CUDA: quantize_per_tensor autogen: quantize_per_tensor.out - func: quantize_per_tensor.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, ScalarType dtype) -> Tensor variants: function dispatch: CPU, CUDA: quantize_per_tensor_tensor_qparams autogen: quantize_per_tensor.tensor_qparams_out - func: quantize_per_tensor.tensors(Tensor[] tensors, Tensor scales, Tensor zero_points, ScalarType dtype) -> Tensor[] variants: function dispatch: CPU: quantize_per_tensor_list_cpu autogen: quantize_per_tensor.tensors_out - func: quantize_per_channel(Tensor self, Tensor scales, Tensor zero_points, int axis, ScalarType dtype) -> Tensor variants: function dispatch: CPU, CUDA: quantize_per_channel autogen: quantize_per_channel.out - func: dequantize.self(Tensor self) -> Tensor variants: function, method dispatch: CPU, CUDA: dequantize_cpu_or_cuda QuantizedCPU, QuantizedCUDA: dequantize_quantized autogen: dequantize.self_out - func: dequantize.tensors(Tensor[] tensors) -> Tensor[] variants: function dispatch: QuantizedCPU: dequantize_tensors_quantized_cpu autogen: dequantize.tensors_out - func: q_scale(Tensor self) -> float variants: function, method dispatch: QuantizedCPU, QuantizedCUDA: q_scale_quant - func: q_zero_point(Tensor self) -> int variants: function, method dispatch: QuantizedCPU, QuantizedCUDA: q_zero_point_quant - func: q_per_channel_scales(Tensor self) -> Tensor variants: function, method dispatch: QuantizedCPU, QuantizedCUDA: q_per_channel_scales autogen: q_per_channel_scales.out - func: q_per_channel_zero_points(Tensor self) -> Tensor variants: function, method dispatch: QuantizedCPU, QuantizedCUDA: q_per_channel_zero_points autogen: q_per_channel_zero_points.out - func: q_per_channel_axis(Tensor self) -> int variants: function, method dispatch: QuantizedCPU, QuantizedCUDA: q_per_channel_axis - func: int_repr(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: QuantizedCPU: int_repr_quantized_cpu QuantizedCUDA: int_repr_quantized_cuda autogen: int_repr.out - func: _make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> Tensor dispatch: CPU: make_per_tensor_quantized_tensor_cpu CUDA: make_per_tensor_quantized_tensor_cuda autogen: _make_per_tensor_quantized_tensor.out - func: _make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> Tensor dispatch: CPU: make_per_channel_quantized_tensor_cpu CUDA: make_per_channel_quantized_tensor_cuda autogen: _make_per_channel_quantized_tensor.out - func: qscheme(Tensor self) -> QScheme variants: method dispatch: QuantizedCPU, QuantizedCUDA: qscheme_quant - func: fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor device_check: NoCheck # TensorIterator variants: function - func: fake_quantize_per_tensor_affine.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max) -> Tensor device_check: NoCheck # TensorIterator variants: function - func: fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask) variants: function dispatch: CPU, CUDA: fake_quantize_per_tensor_affine_cachemask autogen: fake_quantize_per_tensor_affine_cachemask.out - func: _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max) -> (Tensor output, Tensor mask) variants: function dispatch: CPU, CUDA: _fake_quantize_per_tensor_affine_cachemask_tensor_qparams autogen: _fake_quantize_per_tensor_affine_cachemask_tensor_qparams.out - func: fake_quantize_per_tensor_affine_cachemask_backward(Tensor grad, Tensor mask) -> Tensor variants: function - func: _fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor variants: function dispatch: CPU, CUDA: _fake_quantize_learnable_per_tensor_affine autogen: _fake_quantize_learnable_per_tensor_affine.out - func: _fake_quantize_learnable_per_tensor_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor) variants: function dispatch: CPU, CUDA: _fake_quantize_learnable_per_tensor_affine_backward - func: fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor device_check: NoCheck # TensorIterator variants: function - func: fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask) variants: function dispatch: CPU, CUDA: fake_quantize_per_channel_affine_cachemask autogen: fake_quantize_per_channel_affine_cachemask.out - func: fake_quantize_per_channel_affine_cachemask_backward(Tensor grad, Tensor mask) -> Tensor variants: function - func: _fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor variants: function dispatch: CPU, CUDA: _fake_quantize_learnable_per_channel_affine autogen: _fake_quantize_learnable_per_channel_affine.out - func: _fake_quantize_learnable_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor) variants: function dispatch: CPU, CUDA: _fake_quantize_learnable_per_channel_affine_backward - func: fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> Tensor variants: function - func: _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) dispatch: CPU: fused_moving_avg_obs_fake_quant_cpu CUDA: fused_moving_avg_obs_fake_quant_cuda autogen: _fused_moving_avg_obs_fq_helper_functional, _fused_moving_avg_obs_fq_helper.out - func: _choose_qparams_per_tensor(Tensor self, bool reduce_range=False) -> (float, int) variants: function - func: _saturate_weight_to_fp16(Tensor weight) -> Tensor variants: function - func: choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor) variants: function - func: _autocast_to_reduced_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled, ScalarType cuda_dtype, ScalarType cpu_dtype) -> Tensor(a) variants: method device_guard: False - func: _autocast_to_full_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled) -> Tensor(a) variants: method device_guard: False - func: _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: _to_copy NestedTensorCPU, NestedTensorCUDA: _to_copy_nested autogen: _to_copy.out tags: core # to(Device) must not exist because all constructors of Device also works for # TensorOptions. Otherwise, an ambiguity error is thrown. # See NOTE [ TensorOptions Constructors ]. - func: to.dtype_layout(Tensor(a) self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a) variants: method device_check: NoCheck device_guard: False - func: to.device(Tensor(a) self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a) variants: method device_check: NoCheck device_guard: False - func: to.dtype(Tensor(a) self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a) variants: method device_check: NoCheck device_guard: False - func: to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a) variants: method device_check: NoCheck device_guard: False - func: meshgrid(Tensor[] tensors) -> Tensor[] # TODO: Two weeks after this lands, combine these two overloads, # making "indexing" optional. These are temporarily distinct for # forward-compatibility reasons. - func: meshgrid.indexing(Tensor[] tensors, *, str indexing) -> Tensor[] - func: cartesian_prod(Tensor[] tensors) -> Tensor variants: function tags: maybe_aliasing_or_mutating - func: combinations(Tensor self, int r=2, bool with_replacement=False) -> Tensor variants: function - func: item(Tensor self) -> Scalar tags: data_dependent_output variants: method - func: result_type.Tensor(Tensor tensor, Tensor other) -> ScalarType variants: function - func: result_type.Scalar(Tensor tensor, Scalar other) -> ScalarType variants: function - func: result_type.Scalar_Tensor(Scalar scalar, Tensor tensor) -> ScalarType variants: function - func: result_type.Scalar_Scalar(Scalar scalar1, Scalar scalar2) -> ScalarType - func: can_cast(ScalarType from_, ScalarType to) -> bool variants: function - func: promote_types(ScalarType type1, ScalarType type2) -> ScalarType variants: function # NB: Does NOT check precondition that numel == 1 - func: _local_scalar_dense(Tensor self) -> Scalar tags: [core, data_dependent_output] dispatch: CPU: _local_scalar_dense_cpu CUDA: _local_scalar_dense_cuda MPS: _local_scalar_dense_mps variants: function # MPS LSTM implementation - func: _lstm_mps(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) dispatch: MPS: _lstm_mps autogen: _lstm_mps.out tags: nondeterministic_seeded - func: lstm_mps_backward(Tensor? grad_y, Tensor? grad_hy, Tensor? grad_cy, Tensor z_state, Tensor cell_state_fwd, Tensor input, Tensor layersOutputs, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor[], Tensor[]) dispatch: MPS: lstm_mps_backward autogen: lstm_mps_backward.out # Fused RNN kernels - func: _thnn_fused_lstm_cell(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor, Tensor) dispatch: CUDA: _thnn_fused_lstm_cell_cuda autogen: _thnn_fused_lstm_cell.out # NB: The composite version of this function below is a simple wrapper that duplicates some of the outputs # It is necessary to avoid triggering TensorImpl use count checks in debug mode # NB: this is function is NOT differentiable - func: _thnn_fused_lstm_cell_backward_impl(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor) dispatch: CUDA: _thnn_fused_lstm_cell_backward_impl_cuda autogen: _thnn_fused_lstm_cell_backward_impl.out - func: _thnn_fused_lstm_cell_backward(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor) - func: _thnn_differentiable_lstm_cell_backward(Tensor? grad_hy, Tensor? grad_cy, Tensor input_gates, Tensor hidden_gates, Tensor? input_bias, Tensor? hidden_bias, Tensor cx, Tensor cy) -> (Tensor, Tensor, Tensor, Tensor, Tensor) - func: _thnn_fused_gru_cell(Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor) dispatch: CUDA: _thnn_fused_gru_cell_cuda autogen: _thnn_fused_gru_cell.out - func: _thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor) dispatch: CUDA: _thnn_fused_gru_cell_backward_cuda autogen: _thnn_fused_gru_cell_backward.out - func: _thnn_differentiable_gru_cell_backward(Tensor grad_hy, Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias, Tensor? hidden_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor) # RNN cells and layers - func: lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor) tags: nondeterministic_seeded - func: lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor) tags: nondeterministic_seeded - func: gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) tags: nondeterministic_seeded - func: gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) tags: nondeterministic_seeded - func: rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) tags: nondeterministic_seeded - func: rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) tags: nondeterministic_seeded - func: rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) tags: nondeterministic_seeded - func: rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) tags: nondeterministic_seeded - func: lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor) - func: gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor - func: rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor - func: rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor # Quantized RNN layer registration has been moved to C10 dispatch in `RNN.cpp` # Quantized RNN layers # - func: quantized_lstm(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor) # - func: quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor) # Quantized GRU layers # - func: quantized_gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) # # - func: quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) # # Quantized RNN cells - func: quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor) - func: quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor - func: quantized_rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor - func: quantized_rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor # PackedSequence utilities - func: _pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor) dispatch: CompositeExplicitAutograd: _pack_padded_sequence autogen: _pack_padded_sequence.out - func: _pack_padded_sequence_backward(Tensor grad, SymInt[] input_size, Tensor batch_sizes, bool batch_first) -> Tensor dispatch: CompositeImplicitAutograd: _pack_padded_sequence_backward_symint - func: _pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor) # wrappers for legacy TH methods - func: set_.source_Storage(Tensor(a!) self, Storage source) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False dispatch: CPU, CUDA, Meta, MPS: set_ autogen: set.source_Storage, set.source_Storage_out tags: inplace_view - func: set_.source_Storage_storage_offset(Tensor(a!) self, Storage source, SymInt storage_offset, SymInt[] size, SymInt[] stride=[]) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False dispatch: CPU: set_storage_cpu_ Meta: set_storage_meta__symint CUDA: set_storage_cuda_ MPS: set_storage_mps_ QuantizedCPU, QuantizedCUDA: set_storage_quantized_ autogen: set.source_Storage_storage_offset, set.source_Storage_storage_offset_out tags: inplace_view - func: set_.source_Tensor_storage_offset(Tensor(a!) self, Tensor source, SymInt storage_offset, SymInt[] size, SymInt[] stride=[]) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: set__symint tags: inplace_view - func: set_.source_Tensor(Tensor(a!) self, Tensor source) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False dispatch: CPU, CUDA, Meta, MPS: set_tensor_ autogen: set.source_Tensor, set.source_Tensor_out tags: inplace_view - func: set_(Tensor(a!) self) -> Tensor(a!) variants: method dispatch: CPU: set_cpu_ CUDA: set_cuda_ Meta: set_meta_ MPS: set_mps_ autogen: set, set.out tags: inplace_view # Not making it CompositeImplicitAutograd because lift # should be a primitive w.r.t. functorch # TODO: this should have a view annotation # TODO: shouldn't be a method - func: lift(Tensor self) -> Tensor dispatch: CompositeExplicitAutograd: lift autogen: lift.out # lift_fresh is called with an argument that is guaranteed to be # fresh (i.e., newly allocated). This is ONLY called from a # torch.tensor call; if you FX trace a lift_fresh, you are obligated # to convert this into a lift_fresh_copy (because FX will violate the # freshness invariant when tracing). - func: lift_fresh(Tensor(a) self) -> Tensor(a) dispatch: CompositeExplicitAutograd: lift_fresh # Like lift, but it clones the input. - func: lift_fresh_copy(Tensor self) -> Tensor tags: view_copy dispatch: CompositeExplicitAutogradNonFunctional: lift_fresh_copy autogen: lift_fresh_copy.out - func: is_set_to(Tensor self, Tensor tensor) -> bool variants: method device_check: NoCheck device_guard: False dispatch: CPU, CUDA, MPS: is_set_to - func: masked_fill_.Scalar(Tensor(a!) self, Tensor mask, Scalar value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU: masked_fill__cpu CUDA: masked_fill__cuda QuantizedCPU: masked_fill__quantized_cpu QuantizedCUDA: masked_fill__quantized_cuda MPS: masked_fill__mps autogen: masked_fill.Scalar_out - func: masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: masked_fill NestedTensorCPU, NestedTensorCUDA: NestedTensor_masked_fill tags: pointwise - func: masked_fill_.Tensor(Tensor(a!) self, Tensor mask, Tensor value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU: masked_fill__cpu CUDA: masked_fill__cuda QuantizedCPU: masked_fill__quantized_cpu QuantizedCUDA: masked_fill__quantized_cuda MPS: masked_fill__mps autogen: masked_fill.Tensor_out - func: masked_fill.Tensor(Tensor self, Tensor mask, Tensor value) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: masked_fill - func: masked_scatter_(Tensor(a!) self, Tensor mask, Tensor source) -> Tensor(a!) variants: method dispatch: CPU: masked_scatter__cpu CUDA: masked_scatter__cuda MPS: masked_scatter__mps autogen: masked_scatter.out - func: masked_scatter(Tensor self, Tensor mask, Tensor source) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: masked_scatter tags: core - func: masked_scatter_backward(Tensor grad_output, Tensor mask, SymInt[] sizes) -> Tensor dispatch: CompositeExplicitAutograd: masked_scatter_backward_symint - func: _masked_softmax(Tensor self, Tensor mask, int? dim=None, int? mask_type=None) -> Tensor dispatch: CUDA: masked_softmax_cuda CPU: masked_softmax_cpu autogen: _masked_softmax.out - func: _masked_softmax_backward(Tensor grad_output, Tensor output, Tensor mask, int? dim=None) -> Tensor dispatch: CUDA: masked_softmax_backward_cuda CPU: masked_softmax_backward_cpu autogen: _masked_softmax_backward.out - func: view(Tensor(a) self, SymInt[] size) -> Tensor(a) variants: method device_check: NoCheck device_guard: False dispatch: ZeroTensor, Meta, CPU, CUDA, QuantizedCPU, QuantizedCUDA, MPS: view MkldnnCPU: mkldnn_view NestedTensorCPU, NestedTensorCUDA: view_nested tags: core # Warning: If you want to change the name or overload name of this # operator, you might also want to change the `isBlockListedSchema` # function in `torch/csrc/jit/frontend/schema_catching.cpp`. # The name and overload name of this operator is hardcoded in that # function in order to workaround a bug: # https://github.com/pytorch/pytorch/issues/47964 - func: view.dtype(Tensor(a) self, ScalarType dtype) -> Tensor(a) variants: method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: view_dtype - func: put_(Tensor(a!) self, Tensor index, Tensor source, bool accumulate=False) -> Tensor(a!) variants: method dispatch: CPU, CUDA: put_ autogen: put.out - func: put(Tensor self, Tensor index, Tensor source, bool accumulate=False) -> Tensor variants: function, method dispatch: CompositeExplicitAutograd: put - func: index_add.out(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) structured: True variants: function precomputed: - dim -> int dim dispatch: CPU: index_add_cpu_out CUDA: index_add_cuda_out MPS: index_add_mps_out - func: index_add_(Tensor(a!) self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor(a!) structured_delegate: index_add.out variants: method - func: index_add(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor structured_delegate: index_add.out variants: function, method - func: index_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor variants: function, method - func: index_reduce.out(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True, Tensor(a!) out) -> Tensor(a!) structured: True variants: function precomputed: - dim -> int dim dispatch: CPU: index_reduce_cpu_out CUDA: index_reduce_cuda_out - func: index_reduce_(Tensor(a!) self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> Tensor(a!) structured_delegate: index_reduce.out variants: method - func: index_reduce(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> Tensor structured_delegate: index_reduce.out variants: function, method - func: index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU: index_fill_ CUDA: index_fill_ MPS: index_fill_mps_ autogen: index_fill.int_Scalar_out - func: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: index_fill - func: index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU, CUDA: index_fill_ MPS: index_fill_mps_ autogen: index_fill.int_Tensor_out - func: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor device_check: NoCheck # TensorIterator variants: function, method dispatch: CompositeExplicitAutograd: index_fill - func: index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor device_check: NoCheck # TensorIterator variants: function, method - func: scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor structured_delegate: scatter.src_out variants: function, method tags: core - func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!) structured_delegate: scatter.src_out variants: method - func: scatter.src_out(Tensor self, int dim, Tensor index, Tensor src, *, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU, CUDA: scatter_src_out MPS: scatter_src_out_mps - func: scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor structured_delegate: scatter.value_out variants: function, method tags: core - func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!) structured_delegate: scatter.value_out variants: method - func: scatter.value_out(Tensor self, int dim, Tensor index, Scalar value, *, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU, CUDA: scatter_value_out MPS: scatter_value_out_mps - func: scatter.reduce(Tensor self, int dim, Tensor index, Tensor src, *, str reduce) -> Tensor structured_delegate: scatter.reduce_out variants: function, method - func: scatter_.reduce(Tensor(a!) self, int dim, Tensor index, Tensor src, *, str reduce) -> Tensor(a!) structured_delegate: scatter.reduce_out variants: method - func: scatter.reduce_out(Tensor self, int dim, Tensor index, Tensor src, *, str reduce, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU, CUDA: scatter_reduce_out MPS: scatter_reduce_out_mps - func: scatter.value_reduce(Tensor self, int dim, Tensor index, Scalar value, *, str reduce) -> Tensor structured_delegate: scatter.value_reduce_out variants: function, method - func: scatter_.value_reduce(Tensor(a!) self, int dim, Tensor index, Scalar value, *, str reduce) -> Tensor(a!) structured_delegate: scatter.value_reduce_out variants: method - func: scatter.value_reduce_out(Tensor self, int dim, Tensor index, Scalar value, *, str reduce, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU, CUDA: scatter_value_reduce_out MPS: scatter_value_reduce_out_mps - func: scatter.dimname_src(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor variants: function, method - func: scatter.dimname_value(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor variants: function, method - func: scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor structured_delegate: scatter_add.out variants: function, method tags: core - func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!) structured_delegate: scatter_add.out variants: method - func: scatter_add.out(Tensor self, int dim, Tensor index, Tensor src, *, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU, CUDA: scatter_add MPS: scatter_add_mps_out - func: scatter_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor variants: function, method - func: scatter_reduce.two(Tensor self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True) -> Tensor structured_delegate: scatter_reduce.two_out variants: function, method tags: core - func: scatter_reduce_.two(Tensor(a!) self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True) -> Tensor(a!) structured_delegate: scatter_reduce.two_out variants: method - func: scatter_reduce.two_out(Tensor self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True, Tensor(a!) out) -> Tensor(a!) structured: True variants: function dispatch: CPU, CUDA, MPS: scatter_reduce_two - func: eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) structured_delegate: eq.Scalar_out device_check: NoCheck # TensorIterator variants: method - func: eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: eq.Tensor_out device_check: NoCheck # TensorIterator variants: method - func: bitwise_and.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase variants: function dispatch: CPU, CUDA: bitwise_and_out MPS: bitwise_and_out_mps tags: pointwise - func: bitwise_and.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_and_out tags: pointwise - func: bitwise_and.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: bitwise_and tags: [core, pointwise] - func: bitwise_and.Scalar_Tensor(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_and autogen: bitwise_and.Scalar_Tensor_out tags: pointwise - func: bitwise_and.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function structured_delegate: bitwise_and.Tensor_out tags: [core, pointwise] - func: bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: bitwise_and_ tags: pointwise - func: bitwise_and_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: bitwise_and.Tensor_out tags: pointwise - func: __and__.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function - func: __and__.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function - func: __iand__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: __iand__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: bitwise_or.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase variants: function dispatch: CPU, CUDA: bitwise_or_out MPS: bitwise_or_out_mps tags: pointwise - func: bitwise_or.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_or_out tags: pointwise - func: bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: bitwise_or tags: [core, pointwise] - func: bitwise_or.Scalar_Tensor(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_or autogen: bitwise_or.Scalar_Tensor_out tags: pointwise - func: bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function structured_delegate: bitwise_or.Tensor_out tags: [core, pointwise] - func: bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: bitwise_or_ tags: pointwise - func: bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: bitwise_or.Tensor_out tags: pointwise - func: __or__.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function - func: __or__.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function - func: __ior__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: __ior__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method - func: bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase variants: function dispatch: CPU, CUDA: bitwise_xor_out MPS: bitwise_xor_out_mps tags: pointwise - func: bitwise_xor.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_xor_out tags: pointwise - func: bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: bitwise_xor tags: [core, pointwise] - func: bitwise_xor.Scalar_Tensor(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_xor autogen: bitwise_xor.Scalar_Tensor_out tags: pointwise - func: bitwise_xor.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function structured_delegate: bitwise_xor.Tensor_out tags: [core, pointwise] - func: bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: bitwise_xor_ tags: pointwise - func: bitwise_xor_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: bitwise_xor.Tensor_out tags: pointwise - func: __xor__.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: __xor__.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: __ixor__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method tags: pointwise - func: __ixor__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method tags: pointwise - func: __lshift__.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CPU, CUDA, MPS: __lshift__ tags: pointwise - func: __lshift__.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CPU, CUDA, MPS: __lshift__ tags: pointwise - func: __ilshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU, CUDA, MPS: __ilshift__ autogen: __lshift__.Scalar_out tags: pointwise - func: __ilshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU, CUDA, MPS: __ilshift__ autogen: __lshift__.Tensor_out tags: pointwise - func: bitwise_left_shift.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: bitwise_left_shift.Tensor_out tags: pointwise - func: bitwise_left_shift_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: bitwise_left_shift.Tensor_out tags: pointwise - func: bitwise_left_shift.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: bitwise_left_shift_out tags: pointwise - func: bitwise_left_shift.Tensor_Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: bitwise_left_shift tags: pointwise - func: bitwise_left_shift_.Tensor_Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: bitwise_left_shift_ tags: pointwise - func: bitwise_left_shift.Tensor_Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_left_shift_out tags: pointwise - func: bitwise_left_shift.Scalar_Tensor(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_left_shift autogen: bitwise_left_shift.Scalar_Tensor_out tags: pointwise - func: __rshift__.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CPU, CUDA, MPS: __rshift__ tags: pointwise - func: __rshift__.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CPU, CUDA, MPS: __rshift__ tags: pointwise - func: __irshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU, CUDA, MPS: __irshift__ autogen: __rshift__.Scalar_out - func: __irshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CPU, CUDA, MPS: __irshift__ autogen: __rshift__.Tensor_out - func: bitwise_right_shift.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function, method structured_delegate: bitwise_right_shift.Tensor_out tags: pointwise - func: bitwise_right_shift_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: bitwise_right_shift.Tensor_out tags: pointwise - func: bitwise_right_shift.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: bitwise_right_shift_out tags: pointwise - func: bitwise_right_shift.Tensor_Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: bitwise_right_shift tags: pointwise - func: bitwise_right_shift_.Tensor_Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: bitwise_right_shift_ tags: pointwise - func: bitwise_right_shift.Tensor_Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_right_shift_out tags: pointwise - func: bitwise_right_shift.Scalar_Tensor(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CompositeExplicitAutograd: bitwise_right_shift autogen: bitwise_right_shift.Scalar_Tensor_out tags: pointwise - func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!) structured_delegate: tril.out variants: method - func: triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!) structured_delegate: triu.out variants: method - func: digamma_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: digamma.out variants: method tags: pointwise - func: lerp_.Scalar(Tensor(a!) self, Tensor end, Scalar weight) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: lerp.Scalar_out tags: pointwise - func: lerp_.Tensor(Tensor(a!) self, Tensor end, Tensor weight) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: lerp.Tensor_out tags: pointwise - func: addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!) variants: method dispatch: CPU, CUDA, XPU: addbmm_ MPS: addbmm_mps_ - func: addbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA, XPU: addbmm_out MPS: addbmm_out_mps - func: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor variants: method, function dispatch: CPU, CUDA, XPU: addbmm MPS: addbmm_mps - func: random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method tags: nondeterministic_seeded dispatch: CPU, CUDA: random_ Meta: random_meta_ MPS: random_mps_ autogen: random.from, random.from_out - func: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: nondeterministic_seeded variants: method dispatch: CPU, CUDA: random_ Meta: random_meta_ MPS: random_mps_ autogen: random.to, random.to_out - func: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: nondeterministic_seeded variants: method dispatch: CPU, CUDA: random_ MPS: random_mps_ Meta: random_meta_ autogen: random, random.out - func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: nondeterministic_seeded variants: method dispatch: CPU, CUDA: uniform_ MPS: uniform_mps_ Meta: uniform_meta_ autogen: uniform, uniform.out - func: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method tags: nondeterministic_seeded dispatch: CPU, CUDA: cauchy_ autogen: cauchy, cauchy.out - func: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: nondeterministic_seeded variants: method dispatch: CPU, CUDA: log_normal_ autogen: log_normal, log_normal.out - func: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: nondeterministic_seeded variants: method dispatch: CPU, CUDA: exponential_ MPS: exponential_mps_ autogen: exponential, exponential.out - func: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: nondeterministic_seeded variants: method dispatch: CPU, CUDA: geometric_ # wrappers for TH functions autogen: geometric, geometric.out - func: diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!) - func: diag(Tensor self, int diagonal=0) -> Tensor variants: method, function - func: cross.out(Tensor self, Tensor other, int? dim=None, *, Tensor(a!) out) -> Tensor(a!) - func: cross(Tensor self, Tensor other, int? dim=None) -> Tensor variants: method, function - func: triu.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: triu_cpu CUDA: triu_cuda MPS: triu_mps_out - func: triu(Tensor self, int diagonal=0) -> Tensor structured_delegate: triu.out variants: method, function - func: tril.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: tril_cpu CUDA: tril_cuda MPS: tril_mps_out - func: tril(Tensor self, int diagonal=0) -> Tensor structured_delegate: tril.out variants: method, function - func: tril_indices(int row, int col, int offset=0, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CPU: tril_indices_cpu CUDA: tril_indices_cuda MPS: tril_indices_mps autogen: tril_indices.out - func: triu_indices(int row, int col, int offset=0, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CPU: triu_indices_cpu CUDA: triu_indices_cuda MPS: triu_indices_mps autogen: triu_indices.out - func: trace(Tensor self) -> Tensor variants: method, function dispatch: CPU: trace_cpu CUDA: trace_cuda MPS: trace_mps autogen: trace.out - func: trace_backward(Tensor grad, SymInt[] sizes) -> Tensor variants: function device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: trace_backward_symint - func: ne.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: ne_Scalar_out MPS: ne_scalar_out_mps QuantizedCPU: ne_out_quantized_cpu tags: pointwise - func: ne.Scalar(Tensor self, Scalar other) -> Tensor structured_delegate: ne.Scalar_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: ne_quantized_cpu tags: [core, pointwise] - func: ne.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: ne_Tensor_out MPS: ne_tensor_out_mps QuantizedCPU: ne_out_quantized_cpu tags: pointwise - func: ne.Tensor(Tensor self, Tensor other) -> Tensor structured_delegate: ne.Tensor_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: ne_quantized_cpu tags: [core, pointwise] - func: ne_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) structured_delegate: ne.Scalar_out device_check: NoCheck # TensorIterator variants: method - func: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: ne.Tensor_out device_check: NoCheck # TensorIterator variants: method # not_equal, alias for torch.ne - func: not_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) - func: not_equal.Scalar(Tensor self, Scalar other) -> Tensor variants: method, function - func: not_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: not_equal.Tensor(Tensor self, Tensor other) -> Tensor variants: method, function - func: not_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method - func: not_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: eq.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: eq_Scalar_out MPS: eq_scalar_out_mps QuantizedCPU: eq_out_quantized_cpu tags: pointwise - func: eq.Scalar(Tensor self, Scalar other) -> Tensor structured_delegate: eq.Scalar_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: eq_quantized_cpu NestedTensorCPU, NestedTensorCUDA: eq_scalar_nested tags: [core, pointwise] - func: eq.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: eq_Tensor_out MPS: eq_tensor_out_mps QuantizedCPU: eq_out_quantized_cpu tags: pointwise - func: eq.Tensor(Tensor self, Tensor other) -> Tensor structured_delegate: eq.Tensor_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: eq_quantized_cpu NestedTensorCPU, NestedTensorCUDA: eq_tensor_nested tags: [core, pointwise] - func: ge.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: ge_Scalar_out MPS: ge_scalar_out_mps QuantizedCPU: ge_out_quantized_cpu tags: pointwise - func: ge.Scalar(Tensor self, Scalar other) -> Tensor structured_delegate: ge.Scalar_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: ge_quantized_cpu NestedTensorCPU, NestedTensorCUDA: ge_scalar_nested tags: [core, pointwise] - func: ge.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: ge_Tensor_out MPS: ge_tensor_out_mps QuantizedCPU: ge_out_quantized_cpu tags: pointwise - func: ge.Tensor(Tensor self, Tensor other) -> Tensor structured_delegate: ge.Tensor_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: ge_quantized_cpu tags: [core, pointwise] - func: ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) structured_delegate: ge.Scalar_out device_check: NoCheck # TensorIterator variants: method - func: ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: ge.Tensor_out device_check: NoCheck # TensorIterator variants: method # greater_equal, alias for torch.ge - func: greater_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) - func: greater_equal.Scalar(Tensor self, Scalar other) -> Tensor variants: method, function - func: greater_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: greater_equal.Tensor(Tensor self, Tensor other) -> Tensor variants: method, function - func: greater_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method - func: greater_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: le.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: le_Scalar_out MPS: le_scalar_out_mps QuantizedCPU: le_out_quantized_cpu tags: pointwise - func: le.Scalar(Tensor self, Scalar other) -> Tensor structured_delegate: le.Scalar_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: le_quantized_cpu tags: [core, pointwise] - func: le.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: le_Tensor_out MPS: le_tensor_out_mps QuantizedCPU: le_out_quantized_cpu tags: pointwise - func: le.Tensor(Tensor self, Tensor other) -> Tensor structured_delegate: le.Tensor_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: le_quantized_cpu tags: [core, pointwise] - func: le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) structured_delegate: le.Scalar_out device_check: NoCheck # TensorIterator variants: method - func: le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: le.Tensor_out device_check: NoCheck # TensorIterator variants: method # less_equal, alias for torch.le - func: less_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) - func: less_equal.Scalar(Tensor self, Scalar other) -> Tensor variants: method, function - func: less_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: less_equal.Tensor(Tensor self, Tensor other) -> Tensor variants: method, function - func: less_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method - func: less_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: gt_Scalar_out MPS: gt_scalar_out_mps QuantizedCPU: gt_out_quantized_cpu tags: pointwise - func: gt.Scalar(Tensor self, Scalar other) -> Tensor structured_delegate: gt.Scalar_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: gt_quantized_cpu NestedTensorCPU, NestedTensorCUDA: gt_scalar_nested tags: [core, pointwise] - func: gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: gt_Tensor_out MPS: gt_tensor_out_mps QuantizedCPU: gt_out_quantized_cpu tags: pointwise - func: gt.Tensor(Tensor self, Tensor other) -> Tensor structured_delegate: gt.Tensor_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: gt_quantized_cpu tags: [core, pointwise] - func: gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) structured_delegate: gt.Scalar_out device_check: NoCheck # TensorIterator variants: method - func: gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: gt.Tensor_out device_check: NoCheck # TensorIterator variants: method # greater, alias for torch.gt - func: greater.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) - func: greater.Scalar(Tensor self, Scalar other) -> Tensor variants: method, function - func: greater.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: greater.Tensor(Tensor self, Tensor other) -> Tensor variants: method, function - func: greater_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method - func: greater_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: lt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: lt_Scalar_out MPS: lt_scalar_out_mps QuantizedCPU: lt_out_quantized_cpu tags: pointwise - func: lt.Scalar(Tensor self, Scalar other) -> Tensor structured_delegate: lt.Scalar_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: lt_quantized_cpu tags: [core, pointwise] - func: lt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: lt_Tensor_out MPS: lt_tensor_out_mps QuantizedCPU: lt_out_quantized_cpu tags: pointwise - func: lt.Tensor(Tensor self, Tensor other) -> Tensor structured_delegate: lt.Tensor_out device_check: NoCheck # TensorIterator variants: method, function dispatch: QuantizedCPU: lt_quantized_cpu tags: [core, pointwise] - func: lt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) structured_delegate: lt.Scalar_out device_check: NoCheck # TensorIterator variants: method - func: lt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: lt.Tensor_out device_check: NoCheck # TensorIterator variants: method # less, alias for torch.lt - func: less.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) - func: less.Scalar(Tensor self, Scalar other) -> Tensor variants: method, function - func: less.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: less.Tensor(Tensor self, Tensor other) -> Tensor variants: method, function - func: less_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method - func: less_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: take.out(Tensor self, Tensor index, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: take_out - func: take(Tensor self, Tensor index) -> Tensor variants: method, function dispatch: CPU, CUDA: take - func: take_along_dim.out(Tensor self, Tensor indices, int? dim=None, *, Tensor(a!) out) -> Tensor(a!) - func: take_along_dim(Tensor self, Tensor indices, int? dim=None) -> Tensor variants: method, function - func: index_select.out(Tensor self, int dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, QuantizedCPU: index_select_out_cpu_ CUDA, QuantizedCUDA: index_select_out_cuda MPS: index_select_out_mps - func: index_select(Tensor self, int dim, Tensor index) -> Tensor variants: method, function dispatch: CPU: index_select_cpu_ QuantizedCPU: index_select_quantized_cpu_ CUDA: index_select_cuda QuantizedCUDA: index_select_quantized_cuda SparseCPU: index_select_sparse_cpu SparseCUDA: index_select_sparse_cuda MPS: index_select_mps tags: core - func: index_select.dimname_out(Tensor self, Dimname dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!) - func: index_select.dimname(Tensor self, Dimname dim, Tensor index) -> Tensor variants: method, function - func: index_select_backward(Tensor grad, SymInt[] self_sizes, int dim, Tensor index) -> Tensor variants: function device_check: NoCheck device_guard: False dispatch: CompositeImplicitAutograd: index_select_backward_symint - func: masked_select.out(Tensor self, Tensor mask, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: masked_select_out_cpu CUDA: masked_select_out_cuda MPS: masked_select_out_mps tags: dynamic_output_shape - func: masked_select(Tensor self, Tensor mask) -> Tensor variants: method, function dispatch: CPU: masked_select_cpu CUDA: masked_select_cuda MPS: masked_select_mps tags: dynamic_output_shape - func: masked_select_backward(Tensor grad, Tensor input, Tensor mask) -> Tensor variants: function device_check: NoCheck device_guard: False - func: nonzero.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: nonzero_out_cpu CUDA: nonzero_out_cuda MPS: nonzero_out_mps tags: dynamic_output_shape - func: nonzero(Tensor self) -> Tensor variants: method, function dispatch: CPU: nonzero_cpu CUDA: nonzero_cuda MPS: nonzero_mps tags: [dynamic_output_shape, core] - func: nonzero_static.out(Tensor self, *, SymInt size, int fill_value=-1, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: nonzero_static_out_cpu CUDA: nonzero_static_out_cuda - func: nonzero_static(Tensor self, *, SymInt size, int fill_value=-1) -> Tensor variants: method, function dispatch: CPU: nonzero_static_cpu CUDA: nonzero_static_cuda - func: nonzero_numpy(Tensor self) -> Tensor[] variants: method, function - func: argwhere(Tensor self) -> Tensor variants: method, function tags: dynamic_output_shape - func: gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU, CUDA: gather_out MPS: gather_out_mps - func: gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor variants: method, function structured_delegate: gather.out tags: core - func: gather_backward(Tensor grad, Tensor self, int dim, Tensor index, bool sparse_grad) -> Tensor variants: function device_check: NoCheck device_guard: False - func: gather.dimname_out(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!) - func: gather.dimname(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False) -> Tensor variants: method, function - func: _gather_sparse_backward(Tensor self, int dim, Tensor index, Tensor grad) -> Tensor - func: addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: addcmul_out MPS: addcmul_out_mps tags: pointwise - func: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor structured_delegate: addcmul.out device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: addcmul_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!) structured_delegate: addcmul.out device_check: NoCheck # TensorIterator variants: method tags: pointwise - func: addcdiv.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: addcdiv_out MPS: addcdiv_out_mps tags: pointwise - func: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor structured_delegate: addcdiv.out device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!) structured_delegate: addcdiv.out device_check: NoCheck # TensorIterator variants: method tags: pointwise - func: cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, float label_smoothing=0.0) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: cross_entropy_loss_symint - func: triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient) structured: True dispatch: CPU, CUDA: triangular_solve_out MPS: triangular_solve_mps_out SparseCsrCPU: triangular_solve_out_sparse_csr_cpu SparseCsrCUDA: triangular_solve_out_sparse_csr_cuda - func: triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient) structured_delegate: triangular_solve.X variants: method, function - func: _linalg_check_errors(Tensor info, str api_name, *, bool is_matrix) -> () dispatch: CompositeExplicitAutograd: _linalg_check_errors - func: linalg_solve_triangular.out(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False, Tensor(a!) out) -> Tensor(a!) python_module: linalg dispatch: CPU, CUDA: linalg_solve_triangular_out MPS: linalg_solve_triangular_mps_out - func: linalg_solve_triangular(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False) -> Tensor python_module: linalg variants: function dispatch: CPU, CUDA: linalg_solve_triangular MPS: linalg_solve_triangular_mps - func: linalg_vander(Tensor x, *, SymInt? N=None) -> Tensor python_module: linalg dispatch: CompositeImplicitAutograd: linalg_vander_symint - func: svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) - func: svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V) variants: method, function # swapaxes, alias for transpose - func: swapaxes(Tensor(a) self, int axis0, int axis1) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False - func: swapaxes_(Tensor(a!) self, int axis0, int axis1) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view # swapdims, alias for transpose - func: swapdims(Tensor(a) self, int dim0, int dim1) -> Tensor(a) variants: function, method device_check: NoCheck device_guard: False - func: swapdims_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!) variants: method device_check: NoCheck device_guard: False tags: inplace_view - func: cholesky.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: cholesky_out MPS: cholesky_mps_out - func: cholesky(Tensor self, bool upper=False) -> Tensor variants: method, function dispatch: CPU, CUDA: cholesky MPS: cholesky_mps - func: cholesky_solve.out(Tensor self, Tensor input2, bool upper=False, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: cholesky_solve_out - func: cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> Tensor variants: method, function dispatch: CompositeExplicitAutograd: cholesky_solve - func: _cholesky_solve_helper(Tensor self, Tensor A, bool upper) -> Tensor variants: function dispatch: CPU: _cholesky_solve_helper_cpu CUDA: _cholesky_solve_helper_cuda autogen: _cholesky_solve_helper.out - func: cholesky_inverse(Tensor self, bool upper=False) -> Tensor variants: method, function dispatch: CPU, CUDA: cholesky_inverse - func: cholesky_inverse.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: cholesky_inverse_out - func: qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R) - func: qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R) variants: method, function - func: geqrf.a(Tensor self, *, Tensor(a!) a, Tensor(b!) tau) -> (Tensor(a!) a, Tensor(b!) tau) dispatch: CPU, CUDA: geqrf_out - func: geqrf(Tensor self) -> (Tensor a, Tensor tau) variants: method, function dispatch: CPU, CUDA: geqrf # orgqr, alias for linalg_householder_product - func: orgqr(Tensor self, Tensor input2) -> Tensor variants: method, function - func: orgqr.out(Tensor self, Tensor input2, *, Tensor(a!) out) -> Tensor(a!) - func: ormqr.out(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: ormqr_out - func: ormqr(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False) -> Tensor variants: method, function dispatch: CPU, CUDA: ormqr - func: _lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor LU, Tensor pivots, Tensor info) variants: function - func: lu_solve.out(Tensor self, Tensor LU_data, Tensor LU_pivots, *, Tensor(a!) out) -> Tensor(a!) - func: lu_solve(Tensor self, Tensor LU_data, Tensor LU_pivots) -> Tensor variants: method, function # lu_unpack - func: lu_unpack(Tensor LU_data, Tensor LU_pivots, bool unpack_data=True, bool unpack_pivots=True) -> (Tensor P, Tensor L, Tensor U) structured_delegate: lu_unpack.out variants: function - func: lu_unpack.out(Tensor LU_data, Tensor LU_pivots, bool unpack_data=True, bool unpack_pivots=True, *, Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) -> (Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) variants: function structured: True dispatch: CPU, CUDA: lu_unpack_out MPS: lu_unpack_out_mps # TODO: remove dispatch section when porting TH CUDA to ATen - func: multinomial.out(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CPU, CUDA: multinomial_out MPS: multinomial_out_mps - func: multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor variants: method, function dispatch: CPU, CUDA: multinomial MPS: multinomial_mps tags: nondeterministic_seeded - func: lgamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: lgamma_out MPS: lgamma_out_mps tags: pointwise - func: lgamma_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: lgamma.out variants: method tags: pointwise - func: lgamma(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: lgamma.out variants: method, function tags: pointwise - func: digamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: digamma_out MPS: digamma_out_mps tags: pointwise - func: digamma(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: digamma.out variants: method, function tags: pointwise - func: polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: polygamma_out MPS: polygamma_out_mps tags: pointwise - func: polygamma(int n, Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: polygamma.out variants: method, function tags: pointwise - func: polygamma_(Tensor(a!) self, int n) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: polygamma_ tags: pointwise - func: erfinv(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: erfinv.out variants: method, function dispatch: SparseCPU, SparseCUDA: erfinv_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr tags: pointwise - func: erfinv_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: erfinv.out variants: method dispatch: SparseCPU, SparseCUDA: erfinv_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_ tags: pointwise - func: erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: erfinv_out SparseCPU, SparseCUDA: erfinv_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_out tags: pointwise - func: i0(Tensor self) -> Tensor structured_delegate: i0.out variants: function, method tags: pointwise - func: i0_(Tensor(a!) self) -> Tensor(a!) structured_delegate: i0.out variants: function, method tags: pointwise - func: i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: i0_out tags: pointwise - func: sign(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: sign.out variants: function, method dispatch: SparseCPU, SparseCUDA: sign_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sign_sparse_csr tags: [core, pointwise] - func: sign_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: sign.out variants: method dispatch: SparseCPU, SparseCUDA: sign_sparse_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sign_sparse_csr_ tags: pointwise - func: sign.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: sign_out MPS: sign_out_mps SparseCPU, SparseCUDA: sign_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sign_sparse_csr_out tags: pointwise - func: signbit(Tensor self) -> Tensor variants: function, method structured_delegate: signbit.out dispatch: SparseCPU, SparseCUDA: signbit_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: signbit_sparse_csr tags: pointwise - func: signbit.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU: signbit_out CUDA: signbit_out MPS: signbit_out_mps SparseCPU, SparseCUDA: signbit_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: signbit_sparse_csr_out tags: pointwise - func: dist(Tensor self, Tensor other, Scalar p=2) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: dist autogen: dist.out - func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: atan2_out MPS: atan2_out_mps tags: [core, pointwise] - func: atan2_(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: atan2.out variants: method tags: pointwise - func: atan2(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: atan2.out variants: method, function tags: [core, pointwise] # arctan2, alias of atan2 - func: arctan2(Tensor self, Tensor other) -> Tensor variants: method, function - func: arctan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator - func: arctan2_(Tensor(a!) self, Tensor other) -> Tensor(a!) variants: method - func: lerp.Scalar_out(Tensor self, Tensor end, Scalar weight, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: lerp_Scalar MPS: lerp_Scalar_mps tags: pointwise - func: lerp.Tensor_out(Tensor self, Tensor end, Tensor weight, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: lerp_Tensor MPS: lerp_Tensor_mps tags: pointwise - func: lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> Tensor device_check: NoCheck # TensorIterator variants: method, function structured_delegate: lerp.Scalar_out tags: pointwise - func: lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor device_check: NoCheck # TensorIterator variants: method, function structured_delegate: lerp.Tensor_out tags: pointwise - func: histc.out(Tensor self, int bins=100, Scalar min=0, Scalar max=0, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, MPS: histogram_histc_out CUDA: _histc_out_cuda - func: histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> Tensor variants: method, function dispatch: CPU, MPS: histogram_histc CUDA: _histc_cuda - func: histogram.bins_tensor_out(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges) dispatch: CPU, MPS: histogram_out - func: histogram.bins_tensor(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges) variants: method, function dispatch: CPU, MPS: histogram - func: histogram.bin_ct_out(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges) dispatch: CPU, MPS: histogram_out - func: histogram.bin_ct(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges) variants: method, function dispatch: CPU, MPS: histogram - func: _histogramdd_bin_edges(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> Tensor[] dispatch: CPU, MPS: histogramdd_bin_edges autogen: _histogramdd_bin_edges.out - func: _histogramdd_from_bin_cts(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> Tensor dispatch: CPU, MPS: _histogramdd autogen: _histogramdd_from_bin_cts.out - func: _histogramdd_from_bin_tensors(Tensor self, Tensor[] bins, *, Tensor? weight=None, bool density=False) -> Tensor dispatch: CPU, MPS: _histogramdd autogen: _histogramdd_from_bin_tensors.out - func: histogramdd(Tensor self, int[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges) - func: histogramdd.int_bins(Tensor self, int bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges) - func: histogramdd.TensorList_bins(Tensor self, Tensor[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges) - func: fmod.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CompositeExplicitAutograd: fmod_out tags: pointwise - func: fmod.Scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: fmod tags: [core, pointwise] - func: fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method dispatch: CompositeExplicitAutograd: fmod_ tags: pointwise - func: fmod.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: fmod_out MPS: fmod_mps_out tags: pointwise - func: fmod.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: fmod.Tensor_out variants: method, function tags: [core, pointwise] - func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: fmod.Tensor_out tags: pointwise - func: hypot.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: hypot_out MPS: hypot_out_mps tags: pointwise - func: hypot(Tensor self, Tensor other) -> Tensor structured_delegate: hypot.out variants: method, function tags: pointwise - func: hypot_(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: hypot.out variants: method tags: pointwise - func: igamma.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: igamma_out tags: pointwise - func: igamma(Tensor self, Tensor other) -> Tensor structured_delegate: igamma.out variants: method, function tags: pointwise - func: igamma_(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: igamma.out variants: method tags: pointwise - func: igammac.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: igammac_out tags: pointwise - func: igammac(Tensor self, Tensor other) -> Tensor structured_delegate: igammac.out variants: method, function tags: pointwise - func: igammac_(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: igammac.out variants: method tags: pointwise - func: nextafter.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: nextafter_out tags: pointwise - func: nextafter(Tensor self, Tensor other) -> Tensor structured_delegate: nextafter.out variants: method, function tags: pointwise - func: nextafter_(Tensor(a!) self, Tensor other) -> Tensor(a!) structured_delegate: nextafter.out variants: method tags: pointwise - func: remainder.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: remainder_out tags: pointwise - func: remainder.Scalar(Tensor self, Scalar other) -> Tensor variants: method, function dispatch: CompositeExplicitAutograd: remainder tags: [core, pointwise] - func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) variants: method dispatch: CompositeExplicitAutograd: remainder_ tags: pointwise - func: remainder.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: remainder_out MPS: remainder_out_mps tags: pointwise - func: remainder.Tensor(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: remainder.Tensor_out variants: method, function tags: [core, pointwise] - func: remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: remainder.Tensor_out variants: method tags: pointwise - func: remainder.Scalar_Tensor(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: function dispatch: CPU, CUDA, MPS: remainder autogen: remainder.Scalar_Tensor_out tags: pointwise - func: min(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CPU, CUDA: min MPS: min_mps QuantizedCPU: min_quantized_cpu - func: min.unary_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: min_unary_out QuantizedCPU: min_quantized_unary_out - func: fmin(Tensor self, Tensor other) -> Tensor structured_delegate: fmin.out device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: fmin.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA, MPS: fmin_out tags: pointwise - func: max(Tensor self) -> Tensor device_check: NoCheck # TensorIterator variants: method, function dispatch: CPU, CUDA: max MPS: max_mps QuantizedCPU: max_quantized_cpu - func: fmax(Tensor self, Tensor other) -> Tensor structured_delegate: fmax.out device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: fmax.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA, MPS: fmax_out tags: pointwise - func: maximum(Tensor self, Tensor other) -> Tensor structured_delegate: maximum.out device_check: NoCheck # TensorIterator variants: method, function tags: [core, pointwise] - func: maximum.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: maximum_out MPS: maximum_out_mps tags: pointwise # binary max, alias of maximum # NOTE: max is not an alias for maximum, since there is also unary max - func: max.other(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: max.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: pointwise - func: max.unary_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: max_unary_out QuantizedCPU: max_quantized_unary_out - func: minimum(Tensor self, Tensor other) -> Tensor structured_delegate: minimum.out device_check: NoCheck # TensorIterator variants: method, function tags: [core, pointwise] - func: minimum.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator dispatch: CPU, CUDA: minimum_out MPS: minimum_out_mps tags: pointwise # binary min, alias for minimum # NOTE: min is not an alias for minimum, since there is also unary min - func: min.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: pointwise - func: min.other(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator variants: method, function tags: pointwise - func: quantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor variants: method, function - func: quantile.out(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!) - func: quantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor variants: method, function - func: quantile.scalar_out(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!) - func: nanquantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor variants: method, function - func: nanquantile.out(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!) - func: nanquantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor variants: method, function - func: nanquantile.scalar_out(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!) - func: sort.values(Tensor self, int dim=-1, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) device_check: NoCheck # TensorIterator dispatch: CompositeExplicitAutograd: sort_out - func: sort.values_stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) structured: True dispatch: CPU, CUDA: sort_stable_out MPS: sort_stable_out_mps - func: sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) device_check: NoCheck # TensorIterator variants: method, function dispatch: CompositeExplicitAutograd: sort tags: core - func: sort.stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) structured_delegate: sort.values_stable variants: method, function dispatch: QuantizedCPU: sort_quantized_cpu_stable - func: sort.dimname_values(Tensor self, Dimname dim, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) - func: sort.dimname_values_stable(Tensor self, *, bool? stable, Dimname dim, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) - func: sort.dimname(Tensor self, Dimname dim, bool descending=False) -> (Tensor values, Tensor indices) variants: method, function - func: sort.dimname_stable(Tensor self, *, bool? stable, Dimname dim, bool descending=False) -> (Tensor values, Tensor indices) variants: method, function - func: msort.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: msort(Tensor self) -> Tensor variants: method, function - func: argsort(Tensor self, int dim=-1, bool descending=False) -> Tensor device_check: NoCheck # TensorIterator variants: method, function - func: argsort.stable(Tensor self, *, bool stable, int dim=-1, bool descending=False) -> Tensor device_check: NoCheck # TensorIterator variants: method, function - func: argsort.stable_out(Tensor self, *, bool stable, int dim=-1, bool descending=False, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: function - func: argsort.dimname(Tensor self, Dimname dim, bool descending=False) -> Tensor variants: method, function - func: topk.values(Tensor self, SymInt k, int dim=-1, bool largest=True, bool sorted=True, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) structured: True dispatch: CPU: topk_out_cpu CUDA: topk_out_cuda MPS: topk_out_mps - func: topk(Tensor self, SymInt k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices) variants: method, function structured_delegate: topk.values dispatch: QuantizedCPU: topk_quantized_cpu tags: core - func: all(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: all.all_out variants: method, function - func: all.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck structured: True dispatch: CPU, CUDA: all_all_out MPS: all_all_out_mps - func: any(Tensor self) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: any.all_out variants: method, function dispatch: SparseCPU, SparseCUDA: any_sparse tags: core - func: any.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck structured: True dispatch: CPU, CUDA: any_all_out MPS: any_all_out_mps - func: renorm.out(Tensor self, Scalar p, int dim, Scalar maxnorm, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True dispatch: CPU, CUDA: renorm_out MPS: renorm_out_mps - func: renorm(Tensor self, Scalar p, int dim, Scalar maxnorm) -> Tensor device_check: NoCheck # TensorIterator variants: method, function structured_delegate: renorm.out - func: renorm_(Tensor(a!) self, Scalar p, int dim, Scalar maxnorm) -> Tensor(a!) device_check: NoCheck # TensorIterator variants: method structured_delegate: renorm.out - func: unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a) variants: method device_check: NoCheck device_guard: False dispatch: CPU, CUDA, Meta, MPS: unfold QuantizedCPU, QuantizedCUDA: unfold - func: unfold_backward(Tensor grad_in, SymInt[] input_sizes, int dim, int size, int step) -> Tensor variants: function dispatch: CPU, CUDA, MPS: unfold_backward autogen: unfold_backward.out - func: equal(Tensor self, Tensor other) -> bool tags: [data_dependent_output, pointwise] variants: method, function dispatch: CPU: cpu_equal CUDA: cuda_equal MPS: mps_equal QuantizedCPU: equal_quantized_cpu - func: pow.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: pow_Tensor_Tensor_out MPS: pow_tensor_tensor_out_mps tags: pointwise - func: pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: pow.Tensor_Tensor_out variants: method, function tags: [core, pointwise] - func: pow.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True dispatch: CPU, CUDA: pow_Scalar_out MPS: pow_Scalar_out_mps tags: pointwise - func: pow.Scalar(Scalar self, Tensor exponent) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: pow.Scalar_out tags: [core, pointwise] - func: pow.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: pow_Tensor_Scalar_out SparseCPU, SparseCUDA: pow_out_sparse_scalar MPS: pow_tensor_scalar_out_mps tags: pointwise - func: pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: pow.Tensor_Scalar_out variants: function, method dispatch: SparseCPU, SparseCUDA: pow_sparse_scalar tags: [core, pointwise] - func: pow_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: pow.Tensor_Scalar_out variants: method tags: pointwise - func: pow_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!) device_check: NoCheck # TensorIterator structured_delegate: pow.Tensor_Tensor_out variants: method tags: pointwise - func: float_power.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) tags: pointwise - func: float_power.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor variants: function, method tags: pointwise - func: float_power.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!) tags: pointwise - func: float_power.Scalar(Scalar self, Tensor exponent) -> Tensor tags: pointwise - func: float_power.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!) tags: pointwise - func: float_power.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor variants: function, method tags: pointwise - func: float_power_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!) variants: method tags: pointwise - func: float_power_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!) variants: method tags: pointwise - func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!) device_check: NoCheck # TensorIterator tags: nondeterministic_seeded variants: method dispatch: CPU, CUDA: normal_ MPS: normal_mps_ Meta: normal_meta_ SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: normal_sparse_csr_ NestedTensorCPU, NestedTensorCUDA: normal_nested_ autogen: normal.out # Only used by the functionalization pass. # Normally, the codegen would be able to generate a normal() NativeFunction, # but we can't due to overload ambiguity with normal.Tensor_float. - func: normal_functional(Tensor self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor device_check: NoCheck # TensorIterator tags: nondeterministic_seeded dispatch: CompositeExplicitAutograd: normal_functional - func: normal.Tensor_float_out(Tensor mean, float std=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) tags: nondeterministic_seeded dispatch: CPU, CUDA: normal_out MPS: normal_mps_out Meta: normal_out_meta - func: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor dispatch: CPU, CUDA: normal MPS: normal_mps Meta: normal_meta tags: nondeterministic_seeded - func: normal.float_Tensor_out(float mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: normal_out Meta: normal_out_meta MPS: normal_mps_out tags: nondeterministic_seeded - func: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor dispatch: CPU, CUDA: normal MPS: normal_mps Meta: normal_meta tags: nondeterministic_seeded - func: normal.Tensor_Tensor_out(Tensor mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: normal_out Meta: normal_out_meta MPS: normal_mps_out tags: nondeterministic_seeded - func: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor dispatch: CPU, CUDA: normal MPS: normal_mps Meta: normal_meta tags: nondeterministic_seeded - func: normal.float_float(float mean, float std, SymInt[] size, *, Generator? generator=None, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor dispatch: CompositeExplicitAutograd: normal tags: nondeterministic_seeded - func: normal.float_float_out(float mean, float std, SymInt[] size, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: normal_out tags: nondeterministic_seeded - func: alias(Tensor(a) self) -> Tensor(a) variants: method, function dispatch: CompositeExplicitAutograd: alias NestedTensorCPU, NestedTensorCUDA: alias_nested tags: core - func: _amp_foreach_non_finite_check_and_unscale_(Tensor(a!)[] self, Tensor(b!) found_inf, Tensor inv_scale) -> () variants: function dispatch: CUDA: _amp_foreach_non_finite_check_and_unscale_cuda_ CPU: _amp_foreach_non_finite_check_and_unscale_cpu_ autogen: _amp_foreach_non_finite_check_and_unscale, _amp_foreach_non_finite_check_and_unscale.out - func: _amp_update_scale_(Tensor(a!) self, Tensor(b!) growth_tracker, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> Tensor(a!) variants: function dispatch: CUDA: _amp_update_scale_cuda_ CPU: _amp_update_scale_cpu_ autogen: _amp_update_scale, _amp_update_scale.out #- func: _cat(Tensor[] tensors, int dim=0) -> Tensor #dispatch: #CPU: _cat_cpu #CUDA: cat_cuda #MPS: cat_mps #QuantizedCPU: cat_quantized_cpu #- func: _cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!) #dispatch: #CPU: _cat_out_cpu #CUDA: cat_out_cuda #QuantizedCPU: cat_out_quantized_cpu - func: _foreach_add.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_scalar_kernel_slow CUDA: foreach_tensor_add_scalar_kernel_cuda - func: _foreach_add_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_scalar_kernel_slow_ CUDA: foreach_tensor_add_scalar_kernel_cuda_ autogen: _foreach_add.Scalar_out - func: _foreach_add.List(Tensor[] self, Tensor[] other, *, Scalar alpha=1) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_list_kernel_slow CUDA: foreach_tensor_add_list_kernel_cuda - func: _foreach_add_.List(Tensor(a!)[] self, Tensor[] other, *, Scalar alpha=1) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_list_kernel_slow_ CUDA: foreach_tensor_add_list_kernel_cuda_ autogen: _foreach_add.List_out - func: _foreach_add.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_scalarlist_kernel_slow CUDA: foreach_tensor_add_scalarlist_kernel_cuda - func: _foreach_add_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_scalarlist_kernel_slow_ CUDA: foreach_tensor_add_scalarlist_kernel_cuda_ autogen: _foreach_add.ScalarList_out - func: _foreach_add.Tensor(Tensor[] self, Tensor other, *, Scalar alpha=1) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_tensor_kernel_slow CUDA: foreach_tensor_add_tensor_kernel_cuda - func: _foreach_add_.Tensor(Tensor(a!)[] self, Tensor other, *, Scalar alpha=1) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_add_tensor_kernel_slow_ CUDA: foreach_tensor_add_tensor_kernel_cuda_ autogen: _foreach_add.Tensor_out - func: _foreach_sub.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sub_scalar_kernel_slow CUDA: foreach_tensor_sub_scalar_kernel_cuda - func: _foreach_sub_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sub_scalar_kernel_slow_ CUDA: foreach_tensor_sub_scalar_kernel_cuda_ autogen: _foreach_sub.Scalar_out - func: _foreach_sub.List(Tensor[] self, Tensor[] other, *, Scalar alpha=1) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sub_list_kernel_slow CUDA: foreach_tensor_sub_list_kernel_cuda - func: _foreach_sub_.List(Tensor(a!)[] self, Tensor[] other, *, Scalar alpha=1) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sub_list_kernel_slow_ CUDA: foreach_tensor_sub_list_kernel_cuda_ autogen: _foreach_sub.List_out - func: _foreach_sub.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sub_scalarlist_kernel_slow CUDA: foreach_tensor_sub_scalarlist_kernel_cuda - func: _foreach_sub_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sub_scalarlist_kernel_slow_ CUDA: foreach_tensor_sub_scalarlist_kernel_cuda_ autogen: _foreach_sub.ScalarList_out - func: _foreach_mul.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_scalar_kernel_slow CUDA: foreach_tensor_mul_scalar_kernel_cuda - func: _foreach_mul_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_scalar_kernel_slow_ CUDA: foreach_tensor_mul_scalar_kernel_cuda_ autogen: _foreach_mul.Scalar_out - func: _foreach_mul.List(Tensor[] self, Tensor[] other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_list_kernel_slow CUDA: foreach_tensor_mul_list_kernel_cuda - func: _foreach_mul_.List(Tensor(a!)[] self, Tensor[] other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_list_kernel_slow_ CUDA: foreach_tensor_mul_list_kernel_cuda_ autogen: _foreach_mul.List_out - func: _foreach_mul.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_scalarlist_kernel_slow CUDA: foreach_tensor_mul_scalarlist_kernel_cuda - func: _foreach_mul_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_scalarlist_kernel_slow_ CUDA: foreach_tensor_mul_scalarlist_kernel_cuda_ autogen: _foreach_mul.ScalarList_out - func: _foreach_mul.Tensor(Tensor[] self, Tensor other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_tensor_kernel_slow CUDA: foreach_tensor_mul_tensor_kernel_cuda - func: _foreach_mul_.Tensor(Tensor(a!)[] self, Tensor other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_mul_tensor_kernel_slow_ CUDA: foreach_tensor_mul_tensor_kernel_cuda_ autogen: _foreach_mul.Tensor_out - func: _foreach_div.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_scalar_kernel_slow CUDA: foreach_tensor_div_scalar_kernel_cuda - func: _foreach_div_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_scalar_kernel_slow_ CUDA: foreach_tensor_div_scalar_kernel_cuda_ autogen: _foreach_div.Scalar_out - func: _foreach_div.List(Tensor[] self, Tensor[] other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_list_kernel_slow CUDA: foreach_tensor_div_list_kernel_cuda - func: _foreach_div_.List(Tensor(a!)[] self, Tensor[] other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_list_kernel_slow_ CUDA: foreach_tensor_div_list_kernel_cuda_ autogen: _foreach_div.List_out - func: _foreach_div.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_scalarlist_kernel_slow CUDA: foreach_tensor_div_scalarlist_kernel_cuda - func: _foreach_div_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_scalarlist_kernel_slow_ CUDA: foreach_tensor_div_scalarlist_kernel_cuda_ autogen: _foreach_div.ScalarList_out - func: _foreach_div.Tensor(Tensor[] self, Tensor other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_tensor_kernel_slow CUDA: foreach_tensor_div_tensor_kernel_cuda - func: _foreach_div_.Tensor(Tensor(a!)[] self, Tensor other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_div_tensor_kernel_slow_ CUDA: foreach_tensor_div_tensor_kernel_cuda_ autogen: _foreach_div.Tensor_out - func: _foreach_clamp_max.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalar_kernel_slow CUDA: foreach_tensor_clamp_max_scalar_kernel_cuda - func: _foreach_clamp_max_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalar_kernel_slow_ CUDA: foreach_tensor_clamp_max_scalar_kernel_cuda_ autogen: _foreach_clamp_max.Scalar_out - func: _foreach_clamp_max.List(Tensor[] self, Tensor[] other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_list_kernel_slow CUDA: foreach_tensor_clamp_max_list_kernel_cuda - func: _foreach_clamp_max_.List(Tensor(a!)[] self, Tensor[] other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_list_kernel_slow_ CUDA: foreach_tensor_clamp_max_list_kernel_cuda_ autogen: _foreach_clamp_max.List_out - func: _foreach_clamp_max.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalarlist_kernel_slow CUDA: foreach_tensor_clamp_max_scalarlist_kernel_cuda - func: _foreach_clamp_max_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalarlist_kernel_slow_ CUDA: foreach_tensor_clamp_max_scalarlist_kernel_cuda_ autogen: _foreach_clamp_max.ScalarList_out - func: _foreach_clamp_min.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalar_kernel_slow CUDA: foreach_tensor_clamp_min_scalar_kernel_cuda - func: _foreach_clamp_min_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalar_kernel_slow_ CUDA: foreach_tensor_clamp_min_scalar_kernel_cuda_ autogen: _foreach_clamp_min.Scalar_out - func: _foreach_clamp_min.List(Tensor[] self, Tensor[] other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_list_kernel_slow CUDA: foreach_tensor_clamp_min_list_kernel_cuda - func: _foreach_clamp_min_.List(Tensor(a!)[] self, Tensor[] other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_list_kernel_slow_ CUDA: foreach_tensor_clamp_min_list_kernel_cuda_ autogen: _foreach_clamp_min.List_out - func: _foreach_clamp_min.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalarlist_kernel_slow CUDA: foreach_tensor_clamp_min_scalarlist_kernel_cuda - func: _foreach_clamp_min_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalarlist_kernel_slow_ CUDA: foreach_tensor_clamp_min_scalarlist_kernel_cuda_ autogen: _foreach_clamp_min.ScalarList_out # foreach_minimum/maximum dispatches to clamp_max/min - func: _foreach_maximum.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalar_kernel_slow CUDA: foreach_tensor_clamp_min_scalar_kernel_cuda - func: _foreach_maximum_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalar_kernel_slow_ CUDA: foreach_tensor_clamp_min_scalar_kernel_cuda_ autogen: _foreach_maximum.Scalar_out # foreach_minimum/maximum dispatches to clamp_max/min - func: _foreach_maximum.List(Tensor[] self, Tensor[] other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_list_kernel_slow CUDA: foreach_tensor_clamp_min_list_kernel_cuda - func: _foreach_maximum_.List(Tensor(a!)[] self, Tensor[] other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_list_kernel_slow_ CUDA: foreach_tensor_clamp_min_list_kernel_cuda_ autogen: _foreach_maximum.List_out # foreach_minimum/maximum dispatches to clamp_max/min - func: _foreach_maximum.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalarlist_kernel_slow CUDA: foreach_tensor_clamp_min_scalarlist_kernel_cuda - func: _foreach_maximum_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_min_scalarlist_kernel_slow_ CUDA: foreach_tensor_clamp_min_scalarlist_kernel_cuda_ autogen: _foreach_maximum.ScalarList_out - func: _foreach_minimum.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalar_kernel_slow CUDA: foreach_tensor_clamp_max_scalar_kernel_cuda - func: _foreach_minimum_.Scalar(Tensor(a!)[] self, Scalar scalar) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalar_kernel_slow_ CUDA: foreach_tensor_clamp_max_scalar_kernel_cuda_ autogen: _foreach_minimum.Scalar_out - func: _foreach_minimum.List(Tensor[] self, Tensor[] other) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_list_kernel_slow CUDA: foreach_tensor_clamp_max_list_kernel_cuda - func: _foreach_minimum_.List(Tensor(a!)[] self, Tensor[] other) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_list_kernel_slow_ CUDA: foreach_tensor_clamp_max_list_kernel_cuda_ autogen: _foreach_minimum.List_out - func: _foreach_minimum.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalarlist_kernel_slow CUDA: foreach_tensor_clamp_max_scalarlist_kernel_cuda - func: _foreach_minimum_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_clamp_max_scalarlist_kernel_slow_ CUDA: foreach_tensor_clamp_max_scalarlist_kernel_cuda_ autogen: _foreach_minimum.ScalarList_out - func: _foreach_addcdiv.Scalar(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcdiv_scalar_slow CUDA: foreach_tensor_addcdiv_scalar_cuda - func: _foreach_addcdiv.ScalarList(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcdiv_scalarlist_slow CUDA: foreach_tensor_addcdiv_scalarlist_cuda - func: _foreach_addcdiv.Tensor(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcdiv_tensor_slow CUDA: foreach_tensor_addcdiv_tensor_cuda - func: _foreach_addcdiv_.Scalar(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcdiv_scalar_slow_ CUDA: foreach_tensor_addcdiv_scalar_cuda_ autogen: _foreach_addcdiv.Scalar_out - func: _foreach_addcdiv_.ScalarList(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcdiv_scalarlist_slow_ CUDA: foreach_tensor_addcdiv_scalarlist_cuda_ autogen: _foreach_addcdiv.ScalarList_out - func: _foreach_addcdiv_.Tensor(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcdiv_tensor_slow_ CUDA: foreach_tensor_addcdiv_tensor_cuda_ autogen: _foreach_addcdiv.Tensor_out - func: _foreach_addcmul.Scalar(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcmul_scalar_slow CUDA: foreach_tensor_addcmul_scalar_cuda - func: _foreach_addcmul.ScalarList(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcmul_scalarlist_slow CUDA: foreach_tensor_addcmul_scalarlist_cuda - func: _foreach_addcmul.Tensor(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcmul_tensor_slow CUDA: foreach_tensor_addcmul_tensor_cuda - func: _foreach_addcmul_.Scalar(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcmul_scalar_slow_ CUDA: foreach_tensor_addcmul_scalar_cuda_ autogen: _foreach_addcmul.Scalar_out - func: _foreach_addcmul_.ScalarList(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcmul_scalarlist_slow_ CUDA: foreach_tensor_addcmul_scalarlist_cuda_ autogen: _foreach_addcmul.ScalarList_out - func: _foreach_addcmul_.Tensor(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_addcmul_tensor_slow_ CUDA: foreach_tensor_addcmul_tensor_cuda_ autogen: _foreach_addcmul.Tensor_out - func: _foreach_abs(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_abs_slow CUDA: foreach_tensor_abs_cuda - func: _foreach_abs_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_abs_slow_ CUDA: foreach_tensor_abs_cuda_ autogen: _foreach_abs.out - func: _foreach_acos(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_acos_slow CUDA: foreach_tensor_acos_cuda - func: _foreach_acos_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_acos_slow_ CUDA: foreach_tensor_acos_cuda_ autogen: _foreach_acos.out - func: _foreach_asin(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_asin_slow CUDA: foreach_tensor_asin_cuda - func: _foreach_asin_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_asin_slow_ CUDA: foreach_tensor_asin_cuda_ autogen: _foreach_asin.out - func: _foreach_atan(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_atan_slow CUDA: foreach_tensor_atan_cuda - func: _foreach_atan_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_atan_slow_ CUDA: foreach_tensor_atan_cuda_ autogen: _foreach_atan.out - func: _foreach_ceil(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_ceil_slow CUDA: foreach_tensor_ceil_cuda - func: _foreach_ceil_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_ceil_slow_ CUDA: foreach_tensor_ceil_cuda_ autogen: _foreach_ceil.out - func: _foreach_cos(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_cos_slow CUDA: foreach_tensor_cos_cuda - func: _foreach_cos_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_cos_slow_ CUDA: foreach_tensor_cos_cuda_ autogen: _foreach_cos.out - func: _foreach_cosh(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_cosh_slow CUDA: foreach_tensor_cosh_cuda - func: _foreach_cosh_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_cosh_slow_ CUDA: foreach_tensor_cosh_cuda_ autogen: _foreach_cosh.out - func: _foreach_erf(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_erf_slow CUDA: foreach_tensor_erf_cuda - func: _foreach_erf_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_erf_slow_ CUDA: foreach_tensor_erf_cuda_ autogen: _foreach_erf.out - func: _foreach_erfc(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_erfc_slow CUDA: foreach_tensor_erfc_cuda - func: _foreach_erfc_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_erfc_slow_ CUDA: foreach_tensor_erfc_cuda_ autogen: _foreach_erfc.out - func: _foreach_exp(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_exp_slow CUDA: foreach_tensor_exp_cuda - func: _foreach_exp_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_exp_slow_ CUDA: foreach_tensor_exp_cuda_ autogen: _foreach_exp.out - func: _foreach_expm1(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_expm1_slow CUDA: foreach_tensor_expm1_cuda - func: _foreach_expm1_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_expm1_slow_ CUDA: foreach_tensor_expm1_cuda_ autogen: _foreach_expm1.out - func: _foreach_floor(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_floor_slow CUDA: foreach_tensor_floor_cuda - func: _foreach_floor_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_floor_slow_ CUDA: foreach_tensor_floor_cuda_ autogen: _foreach_floor.out - func: _foreach_frac(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_frac_slow CUDA: foreach_tensor_frac_cuda - func: _foreach_frac_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_frac_slow_ CUDA: foreach_tensor_frac_cuda_ autogen: _foreach_frac.out - func: _foreach_lerp.List(Tensor[] self, Tensor[] tensors1, Tensor[] weights) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensors are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_ternary_lerp_slow CUDA: foreach_tensor_lerp_ternary_cuda autogen: _foreach_lerp.List_out - func: _foreach_lerp_.List(Tensor(a!)[] self, Tensor[] tensors1, Tensor[] weights) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensors are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_ternary_lerp_slow_ CUDA: foreach_tensor_lerp_ternary_cuda_ autogen: _foreach_lerp.List_out - func: _foreach_lerp.Scalar(Tensor[] self, Tensor[] tensors1, Scalar weight) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensors are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_lerp_list_kernel_slow CUDA: foreach_tensor_lerp_list_cuda autogen: _foreach_lerp.Scalar_out - func: _foreach_lerp_.Scalar(Tensor(a!)[] self, Tensor[] tensors1, Scalar weight) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensors are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_lerp_list_kernel_slow_ CUDA: foreach_tensor_lerp_list_cuda_ autogen: _foreach_lerp.Scalar_out - func: _foreach_lerp.ScalarList(Tensor[] self, Tensor[] tensors1, Scalar[] weight) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensors are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_lerp_scalarlist_kernel_slow CUDA: foreach_tensor_lerp_scalarlist_cuda autogen: _foreach_lerp.ScalarList_out - func: _foreach_lerp_.ScalarList(Tensor(a!)[] self, Tensor[] tensors1, Scalar[] weight) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensors are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_lerp_scalarlist_kernel_slow_ CUDA: foreach_tensor_lerp_scalarlist_cuda_ autogen: _foreach_lerp.ScalarList_out - func: _foreach_lgamma(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_lgamma_slow CUDA: foreach_tensor_lgamma_cuda - func: _foreach_lgamma_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_lgamma_slow_ CUDA: foreach_tensor_lgamma_cuda_ autogen: _foreach_lgamma.out - func: _foreach_log(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log_slow CUDA: foreach_tensor_log_cuda - func: _foreach_log_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log_slow_ CUDA: foreach_tensor_log_cuda_ autogen: _foreach_log.out - func: _foreach_log10(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log10_slow CUDA: foreach_tensor_log10_cuda - func: _foreach_log10_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log10_slow_ CUDA: foreach_tensor_log10_cuda_ autogen: _foreach_log10.out - func: _foreach_log1p(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log1p_slow CUDA: foreach_tensor_log1p_cuda - func: _foreach_log1p_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log1p_slow_ CUDA: foreach_tensor_log1p_cuda_ autogen: _foreach_log1p.out - func: _foreach_log2(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log2_slow CUDA: foreach_tensor_log2_cuda - func: _foreach_log2_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_log2_slow_ CUDA: foreach_tensor_log2_cuda_ autogen: _foreach_log2.out - func: _foreach_max(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_max_slow CUDA: foreach_tensor_max_cuda autogen: _foreach_max.out - func: _foreach_neg(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_neg_slow CUDA: foreach_tensor_neg_cuda - func: _foreach_neg_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_neg_slow_ CUDA: foreach_tensor_neg_cuda_ autogen: _foreach_neg.out - func: _foreach_norm.Scalar(Tensor[] self, Scalar ord=2, ScalarType? dtype=None) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_norm_slow CUDA: foreach_tensor_norm_cuda autogen: _foreach_norm.Scalar_out - func: _foreach_pow.List(Tensor[] self, Tensor[] exponent) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_pow_list_kernel_slow CUDA: foreach_tensor_pow_list_kernel_cuda - func: _foreach_pow.Scalar(Tensor[] self, Scalar exponent) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_pow_scalar_kernel_slow CUDA: foreach_tensor_pow_scalar_kernel_cuda - func: _foreach_pow.ScalarList(Tensor[] self, Scalar[] exponent) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_pow_scalarlist_kernel_slow CUDA: foreach_tensor_pow_scalarlist_kernel_cuda - func: _foreach_pow.ScalarAndTensor(Scalar self, Tensor[] exponent) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_scalar_pow_list_kernel_slow CUDA: foreach_scalar_pow_list_kernel_cuda - func: _foreach_pow_.List(Tensor(a!)[] self, Tensor[] exponent) -> () device_check: NoCheck variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_pow_list_kernel_slow_ CUDA: foreach_tensor_pow_list_kernel_cuda_ autogen: _foreach_pow.List_out - func: _foreach_pow_.Scalar(Tensor(a!)[] self, Scalar exponent) -> () device_check: NoCheck variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_pow_scalar_kernel_slow_ CUDA: foreach_tensor_pow_scalar_kernel_cuda_ autogen: _foreach_pow.Scalar_out - func: _foreach_pow_.ScalarList(Tensor(a!)[] self, Scalar[] exponent) -> () device_check: NoCheck variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_pow_scalarlist_kernel_slow_ CUDA: foreach_tensor_pow_scalarlist_kernel_cuda_ autogen: _foreach_pow.ScalarList_out - func: _foreach_reciprocal(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_reciprocal_slow CUDA: foreach_tensor_reciprocal_cuda - func: _foreach_reciprocal_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_reciprocal_slow_ CUDA: foreach_tensor_reciprocal_cuda_ autogen: _foreach_reciprocal.out - func: _foreach_round(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_round_slow CUDA: foreach_tensor_round_cuda - func: _foreach_round_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_round_slow_ CUDA: foreach_tensor_round_cuda_ autogen: _foreach_round.out - func: _foreach_rsqrt(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_rsqrt_slow CUDA: foreach_tensor_rsqrt_cuda - func: _foreach_rsqrt_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_rsqrt_slow_ CUDA: foreach_tensor_rsqrt_cuda_ autogen: _foreach_rsqrt.out - func: _foreach_sigmoid(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sigmoid_slow CUDA: foreach_tensor_sigmoid_cuda - func: _foreach_sigmoid_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sigmoid_slow_ CUDA: foreach_tensor_sigmoid_cuda_ autogen: _foreach_sigmoid.out - func: _foreach_sign(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sign_slow CUDA: foreach_tensor_sign_cuda - func: _foreach_sign_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sign_slow_ CUDA: foreach_tensor_sign_cuda_ autogen: _foreach_sign.out - func: _foreach_sin(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sin_slow CUDA: foreach_tensor_sin_cuda - func: _foreach_sin_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sin_slow_ CUDA: foreach_tensor_sin_cuda_ autogen: _foreach_sin.out - func: _foreach_sinh(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sinh_slow CUDA: foreach_tensor_sinh_cuda - func: _foreach_sinh_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sinh_slow_ CUDA: foreach_tensor_sinh_cuda_ autogen: _foreach_sinh.out - func: _foreach_sqrt(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sqrt_slow CUDA: foreach_tensor_sqrt_cuda - func: _foreach_sqrt_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_sqrt_slow_ CUDA: foreach_tensor_sqrt_cuda_ autogen: _foreach_sqrt.out - func: _foreach_tan(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_tan_slow CUDA: foreach_tensor_tan_cuda - func: _foreach_tan_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_tan_slow_ CUDA: foreach_tensor_tan_cuda_ autogen: _foreach_tan.out - func: _foreach_tanh(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_tanh_slow CUDA: foreach_tensor_tanh_cuda - func: _foreach_tanh_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_tanh_slow_ CUDA: foreach_tensor_tanh_cuda_ autogen: _foreach_tanh.out - func: _foreach_trunc(Tensor[] self) -> Tensor[] device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_trunc_slow CUDA: foreach_tensor_trunc_cuda - func: _foreach_trunc_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_trunc_slow_ CUDA: foreach_tensor_trunc_cuda_ autogen: _foreach_trunc.out - func: _foreach_zero_(Tensor(a!)[] self) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_zero_slow_ CUDA: foreach_tensor_zero_cuda_ autogen: _foreach_zero, _foreach_zero.out - func: _foreach_copy_(Tensor(a!)[] self, Tensor[] src, bool non_blocking=False) -> () device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices variants: function dispatch: CompositeExplicitAutograd: foreach_tensor_copy_list_kernel_slow_ CUDA: foreach_tensor_copy_list_kernel_cuda_ autogen: _foreach_copy.out - func: _foreach_copy(Tensor[] self, Tensor[] src, bool non_blocking=False) -> Tensor[] self_out device_check: NoCheck variants: function dispatch: CompositeExplicitAutograd: _foreach_copy - func: bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor dispatch: CPU: bucketize_cpu CUDA: bucketize_cuda MPS: bucketize_mps - func: bucketize.Tensor_out(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: bucketize_out_cpu CUDA: bucketize_out_cuda MPS: bucketize_out_mps - func: bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor dispatch: CPU: bucketize_cpu CUDA: bucketize_cuda MPS: bucketize_mps autogen: bucketize.Scalar_out - func: searchsorted.Tensor(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> Tensor dispatch: CPU: searchsorted_cpu CUDA: searchsorted_cuda MPS: searchsorted_mps - func: searchsorted.Tensor_out(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: searchsorted_out_cpu CUDA: searchsorted_out_cuda MPS: searchsorted_out_mps - func: searchsorted.Scalar(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> Tensor dispatch: CPU: searchsorted_cpu CUDA: searchsorted_cuda MPS: searchsorted_mps - func: searchsorted.Scalar_out(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None, Tensor(a!) out) -> Tensor(a!) dispatch: CPU: searchsorted_out_cpu CUDA: searchsorted_out_cuda MPS: searchsorted_out_mps - func: _convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> Tensor structured_delegate: _convert_indices_from_coo_to_csr.out - func: _convert_indices_from_coo_to_csr.out(Tensor self, int size, *, bool out_int32=False, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: _convert_indices_from_coo_to_csr_structured_cpu CUDA: _convert_indices_from_coo_to_csr_structured_cuda - func: _convert_indices_from_csr_to_coo(Tensor crow_indices, Tensor col_indices, *, bool out_int32=False, bool transpose=False) -> Tensor structured_delegate: _convert_indices_from_csr_to_coo.out - func: _convert_indices_from_csr_to_coo.out(Tensor crow_indices, Tensor col_indices, *, bool out_int32=False, bool transpose=False, Tensor(a!) out) -> Tensor(a!) structured: True dispatch: CPU: _convert_indices_from_csr_to_coo_structured_cpu CUDA: _convert_indices_from_csr_to_coo_structured_cuda ## NN wrappers - func: mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: mse_loss_out MPS: mse_loss_out_mps - func: mse_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: mse_loss.out python_module: nn - func: mse_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU, CUDA: mse_loss_backward_out MPS: mse_loss_backward_out_mps - func: mse_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor python_module: nn dispatch: CPU, CUDA: mse_loss_backward MPS: mse_loss_backward_mps - func: l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor python_module: nn - func: multi_margin_loss.out(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: multi_margin_loss_cpu_out CUDA: multi_margin_loss_cuda_out - func: multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean) -> Tensor python_module: nn dispatch: CPU: multi_margin_loss_cpu CUDA: multi_margin_loss_cuda - func: multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: multi_margin_loss_cpu_backward_out CUDA: multi_margin_loss_cuda_backward_out - func: multi_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean) -> Tensor python_module: nn dispatch: CPU: multi_margin_loss_cpu_backward CUDA: multi_margin_loss_cuda_backward - func: multilabel_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) python_module: nn - func: multilabel_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor python_module: nn - func: multilabel_margin_loss_forward.output(Tensor self, Tensor target, int reduction, *, Tensor(a!) output, Tensor(b!) is_target) -> (Tensor(a!), Tensor(b!)) python_module: nn dispatch: CPU: multilabel_margin_loss_forward_out_cpu CUDA: multilabel_margin_loss_forward_out_cuda - func: multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target) python_module: nn dispatch: CPU: multilabel_margin_loss_forward_cpu CUDA: multilabel_margin_loss_forward_cuda - func: multilabel_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: multilabel_margin_loss_backward_cpu_out CUDA: multilabel_margin_loss_backward_cuda_out - func: multilabel_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target) -> Tensor python_module: nn dispatch: CPU: multilabel_margin_loss_backward_cpu CUDA: multilabel_margin_loss_backward_cuda - func: nll_loss.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!) python_module: nn - func: nll_loss_nd(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: nll_loss_nd_symint - func: nll_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: nll_loss_symint - func: nll_loss_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!)) python_module: nn structured: True dispatch: CPU: nll_loss_forward_out_cpu CUDA: nll_loss_forward_out_cuda MPS: nll_loss_forward_out_mps - func: nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index) -> (Tensor output, Tensor total_weight) python_module: nn structured_delegate: nll_loss_forward.output - func: nll_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: nll_loss_backward_out_cpu CUDA: nll_loss_backward_out_cuda MPS: nll_loss_backward_out_mps - func: nll_loss_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor python_module: nn structured_delegate: nll_loss_backward.grad_input - func: nll_loss2d.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!) python_module: nn - func: nll_loss2d(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: nll_loss2d_symint - func: nll_loss2d_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!)) python_module: nn dispatch: CPU: nll_loss2d_forward_out_cpu CUDA: nll_loss2d_forward_out_cuda MPS: nll_loss2d_forward_out_mps - func: nll_loss2d_forward(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index) -> (Tensor output, Tensor total_weight) python_module: nn dispatch: CPU: nll_loss2d_forward_cpu CUDA: nll_loss2d_forward_cuda MPS: nll_loss2d_forward_mps - func: nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: nll_loss2d_backward_out_cpu CUDA: nll_loss2d_backward_out_cuda MPS: nll_loss2d_backward_out_mps - func: nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor python_module: nn dispatch: CPU: nll_loss2d_backward_cpu CUDA: nll_loss2d_backward_cuda MPS: nll_loss2d_backward_mps - func: smooth_l1_loss.out(Tensor self, Tensor target, int reduction=Mean, float beta=1.0, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: smooth_l1_loss_out MPS: smooth_l1_loss_out_mps - func: smooth_l1_loss(Tensor self, Tensor target, int reduction=Mean, float beta=1.0) -> Tensor device_check: NoCheck # TensorIterator structured_delegate: smooth_l1_loss.out python_module: nn - func: smooth_l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, float beta, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: smooth_l1_loss_backward_out CUDA: smooth_l1_loss_backward_out MPS: smooth_l1_loss_backward_out_mps - func: smooth_l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float beta) -> Tensor python_module: nn dispatch: CompositeExplicitAutograd: smooth_l1_loss_backward - func: huber_loss.out(Tensor self, Tensor target, int reduction=Mean, float delta=1.0, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU, CUDA: huber_loss_out MPS: huber_loss_out_mps - func: huber_loss(Tensor self, Tensor target, int reduction=Mean, float delta=1.0) -> Tensor python_module: nn dispatch: CPU, CUDA: huber_loss MPS: huber_loss_mps - func: huber_loss_backward.out(Tensor grad_output, Tensor self, Tensor target, int reduction, float delta, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU, CUDA: huber_loss_backward_out MPS: huber_loss_backward_out_mps - func: huber_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float delta) -> Tensor python_module: nn dispatch: CompositeExplicitAutograd: huber_loss_backward - func: soft_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CompositeExplicitAutograd: soft_margin_loss_out - func: soft_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor python_module: nn dispatch: CompositeExplicitAutograd: soft_margin_loss - func: soft_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CompositeExplicitAutograd: soft_margin_loss_backward_out - func: soft_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor python_module: nn dispatch: CompositeExplicitAutograd: soft_margin_loss_backward - func: elu.out(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: elu_out MPS: elu_out_mps - func: elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor structured_delegate: elu.out device_check: NoCheck # TensorIterator python_module: nn tags: pointwise - func: elu_backward.grad_input(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: elu_backward_out MPS: elu_backward_out_mps - func: elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result) -> Tensor structured_delegate: elu_backward.grad_input python_module: nn - func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!) structured_delegate: elu.out device_check: NoCheck # TensorIterator python_module: nn - func: glu.out(Tensor self, int dim=-1, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: glu_out MPS: glu_out_mps - func: glu(Tensor self, int dim=-1) -> Tensor structured_delegate: glu.out device_check: NoCheck # TensorIterator python_module: nn - func: glu_backward.grad_input(Tensor grad_output, Tensor self, int dim, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: glu_backward_cpu_out CUDA: glu_backward_cuda_out MPS: glu_backward_mps_out - func: glu_backward(Tensor grad_output, Tensor self, int dim) -> Tensor python_module: nn dispatch: CPU: glu_backward_cpu CUDA: glu_backward_cuda MPS: glu_backward_mps - func: glu_jvp(Tensor glu, Tensor x, Tensor dx, int dim) -> Tensor python_module: nn dispatch: CPU, CUDA: glu_jvp autogen: glu_jvp.out - func: glu_backward_jvp(Tensor grad_x, Tensor grad_glu, Tensor x, Tensor dgrad_glu, Tensor dx, int dim) -> Tensor python_module: nn dispatch: CPU, CUDA: glu_backward_jvp autogen: glu_backward_jvp.out - func: hardsigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: hardsigmoid_out MPS: hardsigmoid_out_mps QuantizedCPU: hardsigmoid_out_quantized_cpu - func: hardsigmoid(Tensor self) -> Tensor structured_delegate: hardsigmoid.out device_check: NoCheck # TensorIterator python_module: nn dispatch: QuantizedCPU: hardsigmoid_quantized_cpu tags: pointwise - func: hardsigmoid_(Tensor(a!) self) -> Tensor(a!) structured_delegate: hardsigmoid.out device_check: NoCheck # TensorIterator python_module: nn - func: hardsigmoid_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: hardsigmoid_backward_out MPS: hardsigmoid_backward_out_mps - func: hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor structured_delegate: hardsigmoid_backward.grad_input python_module: nn - func: hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA, MPS: hardtanh_out QuantizedCPU: hardtanh_out_quantized_cpu - func: hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA, MPS: hardtanh QuantizedCPU: hardtanh_quantized_cpu tags: [pointwise, core] - func: hardtanh_backward.grad_input(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU, CUDA: hardtanh_backward_out MPS: hardtanh_backward_out_mps - func: hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor python_module: nn dispatch: CPU, CUDA: hardtanh_backward MPS: hardtanh_backward_mps - func: hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA, MPS: hardtanh_ QuantizedCPU: hardtanh_quantized_cpu_ - func: hardswish.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: hardswish_out MPS: hardswish_out_mps - func: hardswish(Tensor self) -> Tensor device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: hardswish MPS: hardswish_mps - func: hardswish_(Tensor(a!) self) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: hardswish_ MPS: hardswish_mps_ - func: hardswish_backward(Tensor grad_output, Tensor self) -> Tensor python_module: nn dispatch: CPU, CUDA: hardswish_backward MPS: hardswish_backward_mps autogen: hardswish_backward.out - func: leaky_relu.out(Tensor self, Scalar negative_slope=0.01, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: leaky_relu_out MPS: leaky_relu_out_mps QuantizedCPU: leaky_relu_out_quantized_cpu - func: leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor structured_delegate: leaky_relu.out device_check: NoCheck # TensorIterator python_module: nn dispatch: QuantizedCPU: leaky_relu_quantized_cpu tags: core - func: leaky_relu_backward.grad_input(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: leaky_relu_backward_out MPS: leaky_relu_backward_out_mps - func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor structured_delegate: leaky_relu_backward.grad_input python_module: nn - func: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!) structured_delegate: leaky_relu.out device_check: NoCheck # TensorIterator python_module: nn dispatch: QuantizedCPU: leaky_relu_quantized_cpu_ - func: log_sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: nn - func: log_sigmoid(Tensor self) -> Tensor device_check: NoCheck # TensorIterator python_module: nn - func: log_sigmoid_forward.output(Tensor self, *, Tensor(a!) output, Tensor(b!) buffer) -> (Tensor(a!), Tensor(b!)) device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU: log_sigmoid_forward_out_cpu CUDA: log_sigmoid_forward_out_cuda MPS: log_sigmoid_forward_out_mps - func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer) device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU: log_sigmoid_forward_cpu CUDA: log_sigmoid_forward_cuda MPS: log_sigmoid_forward_mps - func: log_sigmoid_backward.grad_input(Tensor grad_output, Tensor self, Tensor buffer, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: log_sigmoid_backward_cpu_out CUDA: log_sigmoid_backward_cuda_out MPS: log_sigmoid_backward_mps_out - func: log_sigmoid_backward(Tensor grad_output, Tensor self, Tensor buffer) -> Tensor python_module: nn dispatch: CPU: log_sigmoid_backward_cpu CUDA: log_sigmoid_backward_cuda MPS: log_sigmoid_backward_mps - func: rrelu_with_noise.out(Tensor self, Tensor(b!) noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn tags: nondeterministic_seeded dispatch: CPU: rrelu_with_noise_out_cpu CUDA: rrelu_with_noise_out_cuda - func: rrelu_with_noise(Tensor self, Tensor(b!) noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor python_module: nn dispatch: CPU: rrelu_with_noise_cpu CUDA: rrelu_with_noise_cuda tags: nondeterministic_seeded autogen: rrelu_with_noise_functional - func: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result) -> Tensor python_module: nn dispatch: CompositeExplicitAutograd: rrelu_with_noise_backward autogen: rrelu_with_noise_backward.out - func: rrelu_with_noise_(Tensor(a!) self, Tensor(b!) noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!) python_module: nn tags: nondeterministic_seeded dispatch: CPU: rrelu_with_noise_cpu_ CUDA: rrelu_with_noise_cuda_ - func: softplus.out(Tensor self, Scalar beta=1, Scalar threshold=20, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: softplus_out MPS: softplus_out_mps - func: softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> Tensor structured_delegate: softplus.out device_check: NoCheck # TensorIterator python_module: nn tags: pointwise - func: softplus_backward.grad_input(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: softplus_backward_out MPS: softplus_backward_out_mps - func: softplus_backward(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold) -> Tensor structured_delegate: softplus_backward.grad_input python_module: nn - func: softshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase device_check: NoCheck # TensorIterator python_module: nn dispatch: CPU, CUDA: softshrink_out MPS: softshrink_out_mps - func: softshrink(Tensor self, Scalar lambd=0.5) -> Tensor structured_delegate: softshrink.out device_check: NoCheck # TensorIterator python_module: nn tags: pointwise - func: softshrink_backward.grad_input(Tensor grad_output, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: nn dispatch: CPU, CUDA: softshrink_backward_out MPS: softshrink_backward_out_mps - func: softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor structured_delegate: softshrink_backward.grad_input python_module: nn - func: adaptive_avg_pool2d.out(Tensor self, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: adaptive_avg_pool2d_out_cpu CUDA: adaptive_avg_pool2d_out_cuda MPS: adaptive_avg_pool2d_out_mps MkldnnCPU: mkldnn_adaptive_avg_pool2d_out_stub - func: adaptive_avg_pool2d(Tensor self, SymInt[2] output_size) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: adaptive_avg_pool2d_symint - func: mkldnn_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor dispatch: MkldnnCPU: mkldnn_adaptive_avg_pool2d - func: mkldnn_adaptive_avg_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!) dispatch: MkldnnCPU: mkldnn_adaptive_avg_pool2d_out - func: mkldnn_adaptive_avg_pool2d_backward(Tensor grad_output, Tensor self) -> Tensor dispatch: MkldnnCPU: mkldnn_adaptive_avg_pool2d_backward autogen: mkldnn_adaptive_avg_pool2d_backward.out - func: _adaptive_avg_pool2d(Tensor self, SymInt[2] output_size) -> Tensor dispatch: CPU: adaptive_avg_pool2d_cpu CUDA: adaptive_avg_pool2d_cuda MPS: adaptive_avg_pool2d_mps QuantizedCPU: adaptive_avg_pool2d_quantized_cpu QuantizedCUDA: adaptive_avg_pool2d_quantized_cuda autogen: _adaptive_avg_pool2d.out tags: core - func: _adaptive_avg_pool2d_backward(Tensor grad_output, Tensor self) -> Tensor python_module: nn dispatch: CPU: adaptive_avg_pool2d_backward_cpu CUDA: adaptive_avg_pool2d_backward_cuda MPS: adaptive_avg_pool2d_backward_mps autogen: _adaptive_avg_pool2d_backward.out tags: core - func: adaptive_avg_pool3d.out(Tensor self, SymInt[3] output_size, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: adaptive_avg_pool3d_out_cpu CUDA: adaptive_avg_pool3d_out_cuda QuantizedCPU: adaptive_avg_pool3d_out_quantized_cpu - func: adaptive_avg_pool3d(Tensor self, SymInt[3] output_size) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: adaptive_avg_pool3d_symint - func: _adaptive_avg_pool3d(Tensor self, SymInt[3] output_size) -> Tensor dispatch: CPU: adaptive_avg_pool3d_cpu CUDA: adaptive_avg_pool3d_cuda QuantizedCPU: adaptive_avg_pool3d_quantized_cpu autogen: _adaptive_avg_pool3d.out tags: core - func: adaptive_avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: adaptive_avg_pool3d_backward_out_cpu CUDA: adaptive_avg_pool3d_backward_out_cuda - func: _adaptive_avg_pool3d_backward(Tensor grad_output, Tensor self) -> Tensor python_module: nn dispatch: CPU: adaptive_avg_pool3d_backward_cpu CUDA: adaptive_avg_pool3d_backward_cuda autogen: _adaptive_avg_pool3d_backward.out # Return: (Tensor output, Tensor indices) - func: adaptive_max_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) python_module: nn structured: True dispatch: CPU: adaptive_max_pool2d_out_cpu CUDA: adaptive_max_pool2d_out_cuda MPS: adaptive_max_pool2d_out_mps # Return: (Tensor output, Tensor indices) - func: adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor) python_module: nn structured_delegate: adaptive_max_pool2d.out - func: adaptive_max_pool2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: adaptive_max_pool2d_backward_out_cpu CUDA: adaptive_max_pool2d_backward_out_cuda MPS: adaptive_max_pool2d_backward_out_mps - func: adaptive_max_pool2d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor python_module: nn structured_delegate: adaptive_max_pool2d_backward.grad_input # Return: (Tensor output, Tensor indices) - func: adaptive_max_pool3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) python_module: nn structured: True dispatch: CPU: adaptive_max_pool3d_out_cpu CUDA: adaptive_max_pool3d_out_cuda # Return: (Tensor output, Tensor indices) - func: adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor) python_module: nn structured_delegate: adaptive_max_pool3d.out - func: adaptive_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: adaptive_max_pool3d_backward_out_cpu CUDA: adaptive_max_pool3d_backward_out_cuda - func: adaptive_max_pool3d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor python_module: nn structured_delegate: adaptive_max_pool3d_backward.grad_input - func: avg_pool2d.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True precomputed: - kernel_size -> int kH, int kW - stride -> int dH, int dW - padding -> int padH, int padW dispatch: CPU: avg_pool2d_out_cpu CUDA: avg_pool2d_out_cuda MPS: avg_pool2d_out_mps MkldnnCPU: mkldnn_avg_pool2d_out - func: avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor python_module: nn structured_delegate: avg_pool2d.out dispatch: MkldnnCPU: mkldnn_avg_pool2d QuantizedCPU: avg_pool2d_quantized_cpu tags: core - func: avg_pool2d_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: avg_pool2d_backward_out_cpu CUDA: avg_pool2d_backward_out_cuda MPS: avg_pool2d_backward_out_mps MkldnnCPU: mkldnn_avg_pool2d_backward_out - func: avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor python_module: nn structured_delegate: avg_pool2d_backward.grad_input dispatch: MkldnnCPU: mkldnn_avg_pool2d_backward tags: core - func: avg_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: avg_pool3d_out_cpu CUDA: avg_pool3d_out_cuda MkldnnCPU: mkldnn_avg_pool3d_out - func: avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor python_module: nn structured_delegate: avg_pool3d.out dispatch: MkldnnCPU: mkldnn_avg_pool3d QuantizedCPU: avg_pool3d_quantized_cpu tags: core - func: avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: avg_pool3d_backward_out_cpu CUDA: avg_pool3d_backward_out_cuda MkldnnCPU: mkldnn_avg_pool3d_backward_out - func: avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor python_module: nn structured_delegate: avg_pool3d_backward.grad_input dispatch: MkldnnCPU: mkldnn_avg_pool3d_backward # Return: (Tensor output, Tensor indices) - func: fractional_max_pool2d.output(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) python_module: nn structured: True dispatch: CPU: fractional_max_pool2d_out_cpu CUDA: fractional_max_pool2d_out_cuda # Return: (Tensor output, Tensor indices) - func: fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor) python_module: nn structured_delegate: fractional_max_pool2d.output - func: fractional_max_pool2d_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: fractional_max_pool2d_backward_cpu CUDA: fractional_max_pool2d_backward_cuda - func: fractional_max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices) -> Tensor python_module: nn structured_delegate: fractional_max_pool2d_backward.grad_input # Return: (Tensor output, Tensor indices) - func: fractional_max_pool3d.output(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) python_module: nn structured: True precomputed: - kernel_size -> int poolSizeT, int poolSizeH, int poolSizeW - output_size -> int outputT, int outputH, int outputW - int numBatch, int numPlanes, int inputT, int inputH, int inputW dispatch: CPU: fractional_max_pool3d_out_cpu CUDA: fractional_max_pool3d_out_cuda # Return: (Tensor output, Tensor indices) - func: fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor) python_module: nn structured_delegate: fractional_max_pool3d.output - func: fractional_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: fractional_max_pool3d_backward_out_cpu CUDA: fractional_max_pool3d_backward_out_cuda - func: fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor python_module: nn dispatch: CPU: fractional_max_pool3d_backward_cpu CUDA: fractional_max_pool3d_backward_cuda # Return: (Tensor output, Tensor indices) - func: max_pool2d_with_indices.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) python_module: nn structured: True dispatch: CPU: max_pool2d_with_indices_out_cpu CUDA: max_pool2d_with_indices_out_cuda MPS: max_pool2d_with_indices_out_mps # Return: (Tensor output, Tensor indices) - func: max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) python_module: nn structured_delegate: max_pool2d_with_indices.out tags: core - func: max_pool2d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: max_pool2d_with_indices_backward_out_cpu CUDA: max_pool2d_with_indices_backward_out_cuda MPS: max_pool2d_with_indices_backward_out_mps - func: max_pool2d_with_indices_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices) -> Tensor python_module: nn structured_delegate: max_pool2d_with_indices_backward.grad_input tags: core # Return: (Tensor output, Tensor indices) - func: max_pool3d_with_indices.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!)) python_module: nn dispatch: CPU: max_pool3d_with_indices_out_cpu CUDA: max_pool3d_with_indices_out_cuda # Return: (Tensor output, Tensor indices) - func: max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) python_module: nn dispatch: CPU: max_pool3d_with_indices_cpu CUDA: max_pool3d_with_indices_cuda tags: core - func: max_pool3d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: max_pool3d_with_indices_backward_out_cpu CUDA: max_pool3d_with_indices_backward_out_cuda - func: max_pool3d_with_indices_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices) -> Tensor python_module: nn dispatch: CPU: max_pool3d_with_indices_backward_cpu CUDA: max_pool3d_with_indices_backward_cuda - func: max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: max_unpooling2d_forward_out_cpu CUDA: max_unpooling2d_forward_out_cuda - func: max_unpool2d(Tensor self, Tensor indices, SymInt[2] output_size) -> Tensor python_module: nn dispatch: CPU: max_unpooling2d_forward_cpu CUDA: max_unpooling2d_forward_cuda - func: max_unpool3d.out(Tensor self, Tensor indices, SymInt[3] output_size, int[3] stride, int[3] padding, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: max_unpooling3d_forward_out_cpu CUDA: max_unpooling3d_forward_out_cuda - func: max_unpool3d(Tensor self, Tensor indices, SymInt[3] output_size, int[3] stride, int[3] padding) -> Tensor python_module: nn dispatch: CPU: max_unpooling3d_forward_cpu CUDA: max_unpooling3d_forward_cuda - func: reflection_pad1d.out(Tensor self, SymInt[2] padding, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: reflection_pad1d_out_cpu QuantizedCPU: reflection_pad1d_out_quantized_cpu CUDA: reflection_pad1d_out_cuda MPS: reflection_pad1d_out_mps - func: reflection_pad1d(Tensor self, SymInt[2] padding) -> Tensor python_module: nn structured_delegate: reflection_pad1d.out tags: core - func: reflection_pad1d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: reflection_pad1d_backward_out_cpu CUDA: reflection_pad1d_backward_out_cuda MPS: reflection_pad1d_backward_out_mps - func: reflection_pad1d_backward(Tensor grad_output, Tensor self, SymInt[2] padding) -> Tensor python_module: nn structured_delegate: reflection_pad1d_backward.grad_input - func: reflection_pad2d.out(Tensor self, SymInt[4] padding, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU, QuantizedCPU: reflection_pad2d_out_cpu CUDA: reflection_pad2d_out_cuda MPS: reflection_pad2d_out_mps - func: reflection_pad2d(Tensor self, SymInt[4] padding) -> Tensor python_module: nn dispatch: CPU: reflection_pad2d_cpu QuantizedCPU: reflection_pad2d_quantized_cpu CUDA: reflection_pad2d_cuda MPS: reflection_pad2d_mps tags: core - func: reflection_pad2d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[4] padding, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: reflection_pad2d_backward_out_cpu CUDA: reflection_pad2d_backward_out_cuda MPS: reflection_pad2d_backward_out_mps - func: reflection_pad2d_backward(Tensor grad_output, Tensor self, SymInt[4] padding) -> Tensor python_module: nn dispatch: CPU: reflection_pad2d_backward_cpu CUDA: reflection_pad2d_backward_cuda MPS: reflection_pad2d_backward_mps - func: reflection_pad3d.out(Tensor self, SymInt[6] padding, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: reflection_pad3d_out_cpu CUDA: reflection_pad3d_out_cuda MPS: reflection_pad3d_out_mps - func: reflection_pad3d(Tensor self, SymInt[6] padding) -> Tensor python_module: nn structured_delegate: reflection_pad3d.out tags: core - func: reflection_pad3d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[6] padding, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: reflection_pad3d_backward_out_cpu CUDA: reflection_pad3d_backward_out_cuda MPS: reflection_pad3d_backward_out_mps - func: reflection_pad3d_backward(Tensor grad_output, Tensor self, SymInt[6] padding) -> Tensor python_module: nn structured_delegate: reflection_pad3d_backward.grad_input - func: replication_pad1d.out(Tensor self, SymInt[2] padding, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: replication_pad1d_out_cpu CUDA: replication_pad1d_out_cuda MPS: replication_pad1d_out_mps - func: replication_pad1d(Tensor self, SymInt[2] padding) -> Tensor python_module: nn structured_delegate: replication_pad1d.out - func: replication_pad1d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: replication_pad1d_backward_out_cpu CUDA: replication_pad1d_backward_out_cuda MPS: replication_pad1d_backward_out_mps - func: replication_pad1d_backward(Tensor grad_output, Tensor self, SymInt[2] padding) -> Tensor python_module: nn structured_delegate: replication_pad1d_backward.grad_input - func: replication_pad2d.out(Tensor self, SymInt[4] padding, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: replication_pad2d_out_cpu CUDA: replication_pad2d_out_cuda MPS: replication_pad2d_out_mps - func: replication_pad2d(Tensor self, SymInt[4] padding) -> Tensor python_module: nn structured_delegate: replication_pad2d.out tags: core - func: replication_pad2d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[4] padding, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: replication_pad2d_backward_out_cpu CUDA: replication_pad2d_backward_out_cuda MPS: replication_pad2d_backward_out_mps - func: replication_pad2d_backward(Tensor grad_output, Tensor self, SymInt[4] padding) -> Tensor python_module: nn dispatch: CPU: replication_pad2d_backward_cpu CUDA: replication_pad2d_backward_cuda MPS: replication_pad2d_backward_mps - func: replication_pad3d.out(Tensor self, SymInt[6] padding, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: replication_pad3d_out_cpu CUDA: replication_pad3d_out_cuda MPS: replication_pad3d_out_mps - func: replication_pad3d(Tensor self, SymInt[6] padding) -> Tensor python_module: nn structured_delegate: replication_pad3d.out tags: core - func: replication_pad3d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[6] padding, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn dispatch: CPU: replication_pad3d_backward_out_cpu CUDA: replication_pad3d_backward_out_cuda MPS: replication_pad3d_backward_out_mps - func: replication_pad3d_backward(Tensor grad_output, Tensor self, SymInt[6] padding) -> Tensor python_module: nn dispatch: CPU: replication_pad3d_backward_cpu CUDA: replication_pad3d_backward_cuda MPS: replication_pad3d_backward_mps - func: _pad_circular(Tensor self, SymInt[] pad) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: _pad_circular_symint - func: _pad_enum(Tensor self, SymInt[] pad, int mode, float? value=None) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: _pad_enum_symint - func: pad(Tensor self, SymInt[] pad, str mode="constant", float? value=None) -> Tensor python_module: nn dispatch: CompositeImplicitAutograd: pad_symint - func: upsample_linear1d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor python_module: nn autogen: upsample_linear1d.vec_out - func: upsample_bilinear2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor python_module: nn autogen: upsample_bilinear2d.vec_out tags: core - func: _upsample_bilinear2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor python_module: nn autogen: _upsample_bilinear2d_aa.vec_out - func: upsample_trilinear3d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor python_module: nn autogen: upsample_trilinear3d.vec_out - func: upsample_bicubic2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor python_module: nn autogen: upsample_bicubic2d.vec_out - func: _upsample_bicubic2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor python_module: nn autogen: _upsample_bicubic2d_aa.vec_out - func: upsample_nearest1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor python_module: nn autogen: upsample_nearest1d.vec_out - func: _upsample_nearest_exact1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor python_module: nn autogen: _upsample_nearest_exact1d.vec_out - func: upsample_nearest2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor python_module: nn autogen: upsample_nearest2d.vec_out tags: core - func: _upsample_nearest_exact2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor python_module: nn autogen: _upsample_nearest_exact2d.vec_out - func: upsample_nearest3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor python_module: nn autogen: upsample_nearest3d.vec_out - func: _upsample_nearest_exact3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor python_module: nn autogen: _upsample_nearest_exact3d.vec_out # NOTE: all of the non-"vec" upsample overloads are only kept for backward compatibility. - func: upsample_linear1d.out(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_linear1d_out_cpu CUDA: upsample_linear1d_out_cuda MPS: upsample_linear1d_out_mps - func: upsample_linear1d(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None) -> Tensor python_module: nn structured_delegate: upsample_linear1d.out - func: upsample_linear1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_linear1d_backward_out_cpu CUDA: upsample_linear1d_backward_out_cuda MPS: upsample_linear1d_backward_out_mps - func: upsample_linear1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None) -> Tensor python_module: nn structured_delegate: upsample_linear1d_backward.grad_input - func: upsample_bilinear2d.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_bilinear2d_out_cpu CUDA: upsample_bilinear2d_out_cuda MPS: upsample_bilinear2d_out_mps - func: upsample_bilinear2d(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_bilinear2d.out dispatch: QuantizedCPU: upsample_bilinear2d_quantized_cpu - func: upsample_bilinear2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_bilinear2d_backward_out_cpu CUDA: upsample_bilinear2d_backward_out_cuda MPS: upsample_bilinear2d_backward_out_mps - func: upsample_bilinear2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_bilinear2d_backward.grad_input - func: _upsample_bilinear2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_bilinear2d_aa_out_cpu CUDA: _upsample_bilinear2d_aa_out_cuda MPS: _upsample_bilinear2d_aa_out_mps - func: _upsample_bilinear2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_bilinear2d_aa.out - func: _upsample_bilinear2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_bilinear2d_aa_backward_out_cpu CUDA: _upsample_bilinear2d_aa_backward_out_cuda - func: _upsample_bilinear2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_bilinear2d_aa_backward.grad_input - func: upsample_bicubic2d.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_bicubic2d_out_cpu CUDA: upsample_bicubic2d_out_cuda MPS: upsample_bicubic2d_out_mps - func: upsample_bicubic2d(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_bicubic2d.out - func: upsample_bicubic2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_bicubic2d_backward_out_cpu CUDA: upsample_bicubic2d_backward_out_cuda MPS: upsample_bicubic2d_backward_out_mps - func: upsample_bicubic2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_bicubic2d_backward.grad_input - func: _upsample_bicubic2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_bicubic2d_aa_out_cpu CUDA: _upsample_bicubic2d_aa_out_cuda - func: _upsample_bicubic2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_bicubic2d_aa.out - func: _upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_bicubic2d_aa_backward_out_cpu CUDA: _upsample_bicubic2d_aa_backward_out_cuda - func: _upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_bicubic2d_aa_backward.grad_input - func: upsample_trilinear3d.out(Tensor self, SymInt[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_trilinear3d_out_cpu CUDA: upsample_trilinear3d_out_cuda - func: upsample_trilinear3d(Tensor self, SymInt[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_trilinear3d.out - func: upsample_trilinear3d_backward.grad_input(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_trilinear3d_backward_out_cpu CUDA: upsample_trilinear3d_backward_out_cuda - func: upsample_trilinear3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_trilinear3d_backward.grad_input - func: upsample_nearest1d.out(Tensor self, SymInt[1] output_size, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_nearest1d_out_cpu CUDA: upsample_nearest1d_out_cuda MPS: upsample_nearest1d_out_mps - func: _upsample_nearest_exact1d.out(Tensor self, SymInt[1] output_size, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_nearest_exact1d_out_cpu CUDA: _upsample_nearest_exact1d_out_cuda MPS: _upsample_nearest_exact1d_out_mps - func: upsample_nearest1d(Tensor self, SymInt[1] output_size, float? scales=None) -> Tensor python_module: nn structured_delegate: upsample_nearest1d.out - func: _upsample_nearest_exact1d(Tensor self, SymInt[1] output_size, float? scales=None) -> Tensor python_module: nn structured_delegate: _upsample_nearest_exact1d.out - func: upsample_nearest1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_nearest1d_backward_out_cpu CUDA: upsample_nearest1d_backward_out_cuda MPS: upsample_nearest1d_backward_out_mps - func: _upsample_nearest_exact1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_nearest_exact1d_backward_out_cpu CUDA: _upsample_nearest_exact1d_backward_out_cuda MPS: _upsample_nearest_exact1d_backward_out_mps - func: upsample_nearest1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor python_module: nn structured_delegate: upsample_nearest1d_backward.grad_input - func: _upsample_nearest_exact1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor python_module: nn structured_delegate: _upsample_nearest_exact1d_backward.grad_input - func: upsample_nearest2d.out(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_nearest2d_out_cpu CUDA: upsample_nearest2d_out_cuda MPS: upsample_nearest2d_out_mps - func: _upsample_nearest_exact2d.out(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_nearest_exact2d_out_cpu CUDA: _upsample_nearest_exact2d_out_cuda MPS: _upsample_nearest_exact2d_out_mps - func: upsample_nearest2d(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_nearest2d.out dispatch: QuantizedCPU: upsample_nearest2d_quantized_cpu - func: _upsample_nearest_exact2d(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_nearest_exact2d.out dispatch: QuantizedCPU: _upsample_nearest_exact2d_quantized_cpu - func: upsample_nearest2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_nearest2d_backward_out_cpu CUDA: upsample_nearest2d_backward_out_cuda MPS: upsample_nearest2d_backward_out_mps - func: _upsample_nearest_exact2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_nearest_exact2d_backward_out_cpu CUDA: _upsample_nearest_exact2d_backward_out_cuda MPS: _upsample_nearest_exact2d_backward_out_mps - func: upsample_nearest2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_nearest2d_backward.grad_input - func: _upsample_nearest_exact2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_nearest_exact2d_backward.grad_input - func: upsample_nearest3d.out(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_nearest3d_out_cpu CUDA: upsample_nearest3d_out_cuda - func: _upsample_nearest_exact3d.out(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_nearest_exact3d_out_cpu CUDA: _upsample_nearest_exact3d_out_cuda - func: upsample_nearest3d(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_nearest3d.out dispatch: QuantizedCPU: upsample_nearest3d_quantized_cpu - func: _upsample_nearest_exact3d(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_nearest_exact3d.out dispatch: QuantizedCPU: _upsample_nearest_exact3d_quantized_cpu - func: upsample_nearest3d_backward.grad_input(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: upsample_nearest3d_backward_out_cpu CUDA: upsample_nearest3d_backward_out_cuda - func: _upsample_nearest_exact3d_backward.grad_input(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: _upsample_nearest_exact3d_backward_out_cpu CUDA: _upsample_nearest_exact3d_backward_out_cuda - func: upsample_nearest3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: upsample_nearest3d_backward.grad_input - func: _upsample_nearest_exact3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor python_module: nn structured_delegate: _upsample_nearest_exact3d_backward.grad_input - func: sigmoid_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: sigmoid_backward_out MPS: sigmoid_backward_out_mps tags: pointwise - func: sigmoid_backward(Tensor grad_output, Tensor output) -> Tensor python_module: nn structured_delegate: sigmoid_backward.grad_input tags: pointwise - func: logit_backward.grad_input(Tensor grad_output, Tensor self, float? eps=None, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: logit_backward_out MPS: logit_backward_out_mps tags: pointwise - func: logit_backward(Tensor grad_output, Tensor self, float? eps=None) -> Tensor python_module: nn structured_delegate: logit_backward.grad_input tags: pointwise - func: tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!) python_module: nn structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: tanh_backward_out MPS: tanh_backward_out_mps tags: pointwise - func: tanh_backward(Tensor grad_output, Tensor output) -> Tensor python_module: nn structured_delegate: tanh_backward.grad_input # What's a thnn_conv_ versus a slow_conv_? # # Historically, we have inefficient implementations of convolutions # coming from the THNN/THCUNN library. These convolutions typically # operated by computing the Toeplitz matrix and then doing a matrix # multiply with the input; this is very memory inefficient! However, # occasionally, we really don't have anything better, so it's helpful # to have these fallbacks when there is no more optimized implementation # in cudnn or mkldnn, etc. Both thnn_ and slow_ convolutions fall # into this bucket. # # The difference between these two designations, is that thnn_ refers # to a convolution that is still written in the "legacy" style; that is, # C code in the THNN/ or THCUNN/ directory. A slow_ convolution is # one that is written in the native style: modern C++. Algorithmically, # these are the same thing, but we give them different prefixes to # make the operational distinction clear. tags: pointwise - func: slow_conv_transpose2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!) python_module: nn structured: True dispatch: CPU: slow_conv_transpose2d_structured_cpu CUDA: slow_conv_transpose2d_structured_cuda - func: slow_conv_transpose2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt[2] dilation=1) -> Tensor python_module: nn structured_delegate: slow_conv_transpose2d.out - func: slow_conv_transpose3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt[3] dilation=1, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: slow_conv_transpose3d_out_cpu CUDA: slow_conv_transpose3d_out_cuda - func: slow_conv_transpose3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt[3] dilation=1) -> Tensor python_module: nn dispatch: CPU: slow_conv_transpose3d_cpu CUDA: slow_conv_transpose3d_cuda - func: thnn_conv2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, *, Tensor(a!) out) -> Tensor(a!) python_module: nn - func: thnn_conv2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0) -> Tensor python_module: nn - func: _slow_conv2d_forward.output(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) output) -> Tensor(a!) python_module: nn dispatch: CPU: slow_conv2d_forward_out_cpu CUDA: slow_conv2d_forward_out_cuda - func: _slow_conv2d_forward(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding) -> Tensor python_module: nn dispatch: CPU: slow_conv2d_forward_cpu CUDA: slow_conv2d_forward_cuda - func: _slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) python_module: nn dispatch: CPU: slow_conv2d_backward_out_cpu CUDA: slow_conv2d_backward_out_cuda - func: _slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) python_module: nn dispatch: CPU: slow_conv2d_backward_cpu CUDA: slow_conv2d_backward_cuda autogen: _slow_conv2d_backward.output_mask_out - func: _conv_depthwise2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, SymInt[2] dilation, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CUDA: conv_depthwise2d_cuda_out - func: _conv_depthwise2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, SymInt[2] dilation) -> Tensor python_module: nn dispatch: CUDA: conv_depthwise2d_cuda - func: conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor python_module: nn dispatch: CUDA: conv_depthwise3d_cuda autogen: conv_depthwise3d.out - func: slow_conv3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, *, Tensor(a!) out) -> Tensor(a!) python_module: nn - func: slow_conv3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0) -> Tensor python_module: nn - func: slow_conv3d_forward.output(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, *, Tensor(a!) output) -> Tensor(a!) python_module: nn dispatch: CPU: slow_conv3d_forward_out_cpu - func: slow_conv3d_forward(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding) -> Tensor python_module: nn dispatch: CPU: slow_conv3d_forward_cpu - func: slow_conv_dilated2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1) -> Tensor python_module: nn dispatch: CPU: slow_conv_dilated2d_cpu CUDA: slow_conv_dilated2d_cuda autogen: slow_conv_dilated2d.out - func: slow_conv_dilated3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1) -> Tensor python_module: nn dispatch: CPU: slow_conv_dilated3d_cpu CUDA: slow_conv_dilated3d_cuda autogen: slow_conv_dilated3d.out - func: col2im.out(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: col2im_out_cpu CUDA: col2im_out_cuda - func: col2im(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor python_module: nn dispatch: CPU: col2im_cpu CUDA: col2im_cuda tags: core - func: column_stack(Tensor[] tensors) -> Tensor - func: column_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) - func: im2col.out(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!) python_module: nn dispatch: CPU: im2col_out_cpu CUDA: im2col_out_cuda MPS: im2col_out_mps - func: im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor python_module: nn dispatch: CPU: im2col_cpu CUDA: im2col_cuda MPS: im2col_mps - func: isfinite(Tensor self) -> Tensor variants: function, method device_check: NoCheck device_guard: False tags: pointwise - func: isinf(Tensor self) -> Tensor variants: function, method device_check: NoCheck device_guard: False dispatch: CompositeExplicitAutograd: isinf NestedTensorCPU, NestedTensorCUDA: NestedTensor_isinf SparseCPU, SparseCUDA: isinf_sparse SparseMeta: isinf_sparse_meta SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: isinf_sparse_csr autogen: isinf.out tags: [core, pointwise] - func: record_stream(Tensor(a!) self, Stream s) -> () variants: method dispatch: CUDA: record_stream_cuda - func: isposinf(Tensor self) -> Tensor variants: function, method structured_delegate: isposinf.out dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_isposinf SparseCPU, SparseCUDA: isposinf_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: isposinf_sparse_csr tags: pointwise - func: isposinf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: isposinf_out SparseCPU, SparseCUDA: isposinf_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: isposinf_sparse_csr_out tags: pointwise - func: isneginf(Tensor self) -> Tensor variants: function, method structured_delegate: isneginf.out dispatch: NestedTensorCPU, NestedTensorCUDA: NestedTensor_isneginf SparseCPU, SparseCUDA: isneginf_sparse SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: isneginf_sparse_csr tags: pointwise - func: isneginf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: isneginf_out SparseCPU, SparseCUDA: isneginf_sparse_out SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: isneginf_sparse_csr_out tags: pointwise # NOTE [_add_batch_dim and _remove_batch_dim] # _add_batch_dim and _remove_batch_dim are meant to be used in the implementation # of the vmap frontend API (see torch/_vmap_internals.py). They are not # user-facing, hence the leading underscore. Please don't use them them anywhere else. - func: _add_batch_dim(Tensor self, int batch_dim, int level) -> Tensor variants: function # See NOTE [_add_batch_dim and _remove_batch_dim] - func: _remove_batch_dim(Tensor self, int level, SymInt batch_size, int out_dim) -> Tensor variants: function ## Functions related to the `torch.special` namespace # Note [special namespace binding] # Functions in the special python module should have their names start with # "special_" underscore and be bound to the desired Python name in # torch/special/__init__.py, and the desired C++ name in torch/csrc/api/include/torch/special.h. # The "special_" names should be hidden from the user and not documented. - func: special_entr(Tensor self) -> Tensor structured_delegate: special_entr.out python_module: special variants: function tags: pointwise - func: special_entr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: special variants: function dispatch: CPU, CUDA, MPS: special_entr_out tags: pointwise - func: special_ndtri(Tensor self) -> Tensor structured_delegate: special_ndtri.out python_module: special variants: function tags: pointwise - func: special_ndtri.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: special variants: function dispatch: CPU, CUDA: special_ndtri_out tags: pointwise - func: special_log_ndtr(Tensor self) -> Tensor structured_delegate: special_log_ndtr.out python_module: special variants: function tags: pointwise - func: special_log_ndtr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase python_module: special variants: function dispatch: CPU, CUDA: special_log_ndtr_out tags: pointwise - func: special_expm1(Tensor self) -> Tensor python_module: special variants: function - func: special_expm1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_exp2(Tensor self) -> Tensor python_module: special variants: function - func: special_exp2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_psi(Tensor self) -> Tensor python_module: special variants: function - func: special_psi.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_digamma(Tensor self) -> Tensor python_module: special variants: function - func: special_digamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_gammaln(Tensor self) -> Tensor python_module: special variants: function - func: special_gammaln.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_erf(Tensor self) -> Tensor python_module: special variants: function - func: special_erf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_erfc(Tensor self) -> Tensor python_module: special variants: function - func: special_erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special - func: special_erfcx(Tensor self) -> Tensor python_module: special variants: function structured_delegate: special_erfcx.out tags: pointwise - func: special_erfcx.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: special_erfcx_out tags: pointwise - func: special_erfinv(Tensor self) -> Tensor python_module: special variants: function - func: special_erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special - func: special_ndtr(Tensor self) -> Tensor python_module: special variants: function - func: special_ndtr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_xlog1py(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function structured_delegate: special_xlog1py.out tags: pointwise - func: special_xlog1py.self_scalar(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_xlog1py tags: pointwise - func: special_xlog1py.other_scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_xlog1py tags: pointwise - func: special_xlog1py.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase python_module: special variants: function dispatch: CPU, CUDA, MPS: special_xlog1py_out tags: pointwise - func: special_xlog1py.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_xlog1py_out tags: pointwise - func: special_xlog1py.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_xlog1py_out tags: pointwise - func: special_xlogy(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function - func: special_xlogy.self_scalar(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function - func: special_xlogy.other_scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function - func: special_xlogy.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: special variants: function - func: special_xlogy.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: special variants: function - func: special_xlogy.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: special variants: function - func: special_zeta(Tensor self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function structured_delegate: special_zeta.out tags: pointwise - func: special_zeta.self_scalar(Scalar self, Tensor other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_zeta tags: pointwise - func: special_zeta.other_scalar(Tensor self, Scalar other) -> Tensor device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_zeta tags: pointwise - func: special_zeta.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator structured: True structured_inherits: TensorIteratorBase python_module: special variants: function dispatch: CPU, CUDA, MPS: special_zeta_out tags: pointwise - func: special_zeta.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_zeta_out tags: pointwise - func: special_zeta.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck # TensorIterator python_module: special variants: function dispatch: CompositeExplicitAutograd: special_zeta_out tags: pointwise - func: special_i0(Tensor self) -> Tensor python_module: special variants: function - func: special_i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_i0e(Tensor self) -> Tensor python_module: special variants: function structured_delegate: special_i0e.out tags: pointwise - func: special_i0e.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: special_i0e_out tags: pointwise - func: special_i1(Tensor self) -> Tensor python_module: special variants: function structured_delegate: special_i1.out tags: pointwise - func: special_i1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA, MPS: special_i1_out tags: pointwise - func: special_i1e(Tensor self) -> Tensor python_module: special variants: function structured_delegate: special_i1e.out tags: pointwise - func: special_i1e.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special structured: True structured_inherits: TensorIteratorBase dispatch: CPU, CUDA: special_i1e_out tags: pointwise - func: special_logit(Tensor self, float? eps=None) -> Tensor python_module: special variants: function - func: special_logit.out(Tensor self, float? eps=None, *, Tensor(a!) out) -> Tensor(a!) python_module: special - func: special_polygamma(int n, Tensor self) -> Tensor python_module: special variants: function - func: special_polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special - func: special_logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor python_module: special variants: function - func: special_logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!) python_module: special - func: special_expit(Tensor self) -> Tensor python_module: special variants: function - func: special_expit.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_sinc(Tensor self) -> Tensor python_module: special variants: function - func: special_sinc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_round(Tensor self, *, int decimals=0) -> Tensor python_module: special variants: function - func: special_round.out(Tensor self, *, int decimals=0, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_log1p(Tensor self) -> Tensor python_module: special variants: function - func: special_log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_log_softmax(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor python_module: special variants: function - func: special_gammainc.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_gammainc(Tensor self, Tensor other) -> Tensor python_module: special variants: function - func: special_gammaincc.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_gammaincc(Tensor self, Tensor other) -> Tensor python_module: special variants: function - func: special_multigammaln(Tensor self, int p) -> Tensor python_module: special variants: function - func: special_multigammaln.out(Tensor self, int p, *, Tensor(a!) out) -> Tensor(a!) python_module: special variants: function - func: special_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor python_module: special variants: function ## Functions related to the fast Fourier transform and the torch.fft namespace # Note [FFT namespace binding] # Functions in the fft python module should have their names start with # "fft_" underscore and be bound to the desired Python name in # torch/fft/__init__.py, and the desired C++ name in torch/csrc/api/include/torch/fft.h. # The "fft_" names should be hidden from the user and not documented. # # See fft_fft as an example. # torch.fft.fft # NOTE: NOT an alias for torch.fft, which has different semantics - func: fft_fft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_fft_symint - func: fft_fft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_fft_symint_out - func: fft_ifft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ifft_symint - func: fft_ifft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ifft_symint_out - func: fft_rfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_rfft_symint - func: fft_rfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_rfft_symint_out - func: fft_irfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_irfft_symint - func: fft_irfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_irfft_symint_out - func: fft_hfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_hfft_symint - func: fft_hfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_hfft_symint_out - func: fft_ihfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ihfft_symint - func: fft_ihfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ihfft_symint_out - func: fft_fft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_fft2_symint - func: fft_fft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_fft2_symint_out - func: fft_ifft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ifft2_symint - func: fft_ifft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ifft2_symint_out - func: fft_rfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_rfft2_symint - func: fft_rfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_rfft2_symint_out - func: fft_irfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_irfft2_symint - func: fft_irfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_irfft2_symint_out - func: fft_hfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor use_const_ref_for_mutable_tensors: True python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_hfft2_symint - func: fft_hfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_hfft2_symint_out - func: fft_ihfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor use_const_ref_for_mutable_tensors: True python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ihfft2_symint - func: fft_ihfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ihfft2_symint_out - func: fft_fftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_fftn_symint - func: fft_fftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_fftn_symint_out - func: fft_ifftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ifftn_symint - func: fft_ifftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ifftn_symint_out - func: fft_rfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_rfftn_symint - func: fft_rfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_rfftn_symint_out - func: fft_irfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_irfftn_symint - func: fft_irfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_irfftn_symint_out - func: fft_hfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor use_const_ref_for_mutable_tensors: True python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_hfftn_symint - func: fft_hfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_hfftn_symint_out - func: fft_ihfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor use_const_ref_for_mutable_tensors: True python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ihfftn_symint - func: fft_ihfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeImplicitAutograd: fft_ihfftn_symint_out - func: fft_fftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor python_module: fft variants: function dispatch: CompositeExplicitAutograd: fft_fftfreq - func: fft_fftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeExplicitAutograd: fft_fftfreq_out - func: fft_rfftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor python_module: fft variants: function dispatch: CompositeExplicitAutograd: fft_rfftfreq - func: fft_rfftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!) python_module: fft variants: function dispatch: CompositeExplicitAutograd: fft_rfftfreq_out - func: fft_fftshift(Tensor self, int[1]? dim=None) -> Tensor python_module: fft variants: function - func: fft_ifftshift(Tensor self, int[1]? dim=None) -> Tensor python_module: fft variants: function ## Functions for linear algebra and the torch.linalg namespace # Note [linalg namespace binding] # Functions in the linalg python module should have their names start with # "linalg_" and be bound to the desired Python name in # torch/linalg/__init__.py, and the desired C++ name in torch/csrc/api/include/torch/linalg.h. # The "linalg_" names should be hidden from the user and not documented. # # See linalg_det as an example. # "_ex" stands for experimental - func: linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info) python_module: linalg structured_delegate: linalg_cholesky_ex.L - func: linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info) python_module: linalg structured: True dispatch: CPU, CUDA: linalg_cholesky_ex_out MPS: linalg_cholesky_ex_out_mps - func: linalg_cholesky(Tensor self, *, bool upper=False) -> Tensor python_module: linalg - func: linalg_cholesky.out(Tensor self, *, bool upper=False, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: linalg_cross(Tensor self, Tensor other, *, int dim=-1) -> Tensor python_module: linalg variants: function structured_delegate: linalg_cross.out dispatch: ZeroTensor: linalg_cross_zerotensor - func: linalg_cross.out(Tensor self, Tensor other, *, int dim=-1, Tensor(a!) out) -> Tensor(a!) python_module: linalg structured: True dispatch: CPU, CUDA, MPS: linalg_cross_out # linalg.lu_factor - func: linalg_lu_factor(Tensor A, *, bool pivot=True) -> (Tensor LU, Tensor pivots) python_module: linalg variants: function dispatch: CompositeImplicitAutograd: linalg_lu_factor MPS: linalg_lu_factor_mps - func: linalg_lu_factor.out(Tensor A, *, bool pivot=True, Tensor(a!) LU, Tensor(b!) pivots) -> (Tensor(a!) LU, Tensor(b!) pivots) python_module: linalg variants: function dispatch: CompositeImplicitAutograd: linalg_lu_factor_out MPS: linalg_lu_factor_out_mps - func: linalg_lu_factor_ex(Tensor A, *, bool pivot=True, bool check_errors=False) -> (Tensor LU, Tensor pivots, Tensor info) python_module: linalg structured_delegate: linalg_lu_factor_ex.out variants: function - func: linalg_lu_factor_ex.out(Tensor A, *, bool pivot=True, bool check_errors=False, Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info) python_module: linalg variants: function structured: True dispatch: CPU, CUDA: linalg_lu_factor_ex_out MPS: linalg_lu_factor_ex_out_mps # linalg.lu - func: linalg_lu(Tensor A, *, bool pivot=True) -> (Tensor P, Tensor L, Tensor U) python_module: linalg structured_delegate: linalg_lu.out variants: function - func: linalg_lu.out(Tensor A, *, bool pivot=True, Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) -> (Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) python_module: linalg variants: function structured: True dispatch: CPU, CUDA: linalg_lu_out # linalg.lu_solve - func: linalg_lu_solve(Tensor LU, Tensor pivots, Tensor B, *, bool left=True, bool adjoint=False) -> Tensor python_module: linalg structured_delegate: linalg_lu_solve.out variants: function - func: linalg_lu_solve.out(Tensor LU, Tensor pivots, Tensor B, *, bool left=True, bool adjoint=False, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function structured: True dispatch: CPU, CUDA: linalg_lu_solve_out # linalg.det - func: _linalg_det(Tensor A) -> (Tensor result, Tensor LU, Tensor pivots) structured_delegate: _linalg_det.result - func: _linalg_det.result(Tensor A, *, Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots) -> (Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots) structured: True dispatch: CPU, CUDA, MPS: _linalg_det_out - func: linalg_det(Tensor A) -> Tensor python_module: linalg variants: function - func: linalg_det.out(Tensor A, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg # torch.det, alias for torch.linalg.det - func: det(Tensor self) -> Tensor variants: function, method - func: linalg_ldl_factor_ex(Tensor self, *, bool hermitian=False, bool check_errors=False) -> (Tensor LD, Tensor pivots, Tensor info) structured_delegate: linalg_ldl_factor_ex.out python_module: linalg variants: function - func: linalg_ldl_factor_ex.out(Tensor self, *, bool hermitian=False, bool check_errors=False, Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info) structured: True python_module: linalg variants: function dispatch: CPU, CUDA: linalg_ldl_factor_ex_out - func: linalg_ldl_factor(Tensor self, *, bool hermitian=False) -> (Tensor LD, Tensor pivots) python_module: linalg variants: function - func: linalg_ldl_factor.out(Tensor self, *, bool hermitian=False, Tensor(a!) LD, Tensor(b!) pivots) -> (Tensor(a!) LD, Tensor(b!) pivots) python_module: linalg variants: function - func: linalg_ldl_solve(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False) -> Tensor structured_delegate: linalg_ldl_solve.out python_module: linalg variants: function - func: linalg_ldl_solve.out(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False, Tensor(a!) out) -> Tensor(a!) structured: True python_module: linalg variants: function dispatch: CPU, CUDA: linalg_ldl_solve_out - func: linalg_lstsq(Tensor self, Tensor b, float? rcond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values) python_module: linalg variants: function dispatch: CompositeExplicitAutograd: linalg_lstsq tags: dynamic_output_shape - func: linalg_lstsq.out(Tensor self, Tensor b, float? rcond=None, *, str? driver=None, Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) -> (Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) python_module: linalg variants: function dispatch: CPU, CUDA: linalg_lstsq_out tags: dynamic_output_shape # torch.linalg.matmul, alias for torch.matmul - func: linalg_matmul(Tensor self, Tensor other) -> Tensor python_module: linalg variants: function - func: linalg_matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: linalg_vecdot(Tensor x, Tensor y, *, int dim=-1) -> Tensor python_module: linalg variants: function - func: linalg_vecdot.out(Tensor x, Tensor y, *, int dim=-1, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: linalg_matrix_exp(Tensor self) -> Tensor python_module: linalg variants: function dispatch: CPU, CUDA: linalg_matrix_exp autogen: linalg_matrix_exp.out - func: _linalg_slogdet(Tensor A) -> (Tensor sign, Tensor logabsdet, Tensor LU, Tensor pivots) structured_delegate: _linalg_slogdet.sign - func: _linalg_slogdet.sign(Tensor A, *, Tensor(a!) sign, Tensor(b!) logabsdet, Tensor(c!) LU, Tensor(d!) pivots) -> (Tensor(a!) sign, Tensor(b!) logabsdet, Tensor(c!) LU, Tensor(d!) pivots) structured: True dispatch: CPU, CUDA, MPS: _linalg_slogdet_out - func: linalg_slogdet(Tensor A) -> (Tensor sign, Tensor logabsdet) python_module: linalg - func: linalg_slogdet.out(Tensor A, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet) python_module: linalg - func: slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet) variants: function, method - func: slogdet.out(Tensor self, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet) variants: function - func: logdet(Tensor self) -> Tensor variants: function, method - func: linalg_eig(Tensor self) -> (Tensor eigenvalues, Tensor eigenvectors) python_module: linalg variants: function dispatch: CPU, CUDA: linalg_eig - func: linalg_eig.out(Tensor self, *, Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) python_module: linalg dispatch: CPU, CUDA: linalg_eig_out - func: _linalg_eigvals(Tensor self) -> Tensor python_module: linalg dispatch: CPU, CUDA: _linalg_eigvals - func: linalg_eigvals(Tensor self) -> Tensor python_module: linalg - func: linalg_eigvals.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg dispatch: CPU, CUDA: linalg_eigvals_out # This function is exposes the `compute_v` flag, which is then used to implement `linalg.eigh` and # `linalg.eigvalsh` as composite functions that call this one - func: _linalg_eigh(Tensor A, str UPLO="L", bool compute_v=True) -> (Tensor eigenvalues, Tensor eigenvectors) structured_delegate: _linalg_eigh.eigenvalues - func: _linalg_eigh.eigenvalues(Tensor A, str UPLO="L", bool compute_v=True, *, Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) structured: True dispatch: CPU, CUDA: _linalg_eigh_out - func: linalg_eigh(Tensor self, str UPLO="L") -> (Tensor eigenvalues, Tensor eigenvectors) python_module: linalg - func: linalg_eigh.eigvals(Tensor self, str UPLO="L", *, Tensor(a!) eigvals, Tensor(b!) eigvecs) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) python_module: linalg - func: linalg_eigvalsh(Tensor self, str UPLO="L") -> Tensor python_module: linalg - func: linalg_eigvalsh.out(Tensor self, str UPLO="L", *, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: linalg_householder_product(Tensor input, Tensor tau) -> Tensor python_module: linalg variants: function dispatch: CPU, CUDA: linalg_householder_product - func: linalg_householder_product.out(Tensor input, Tensor tau, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg dispatch: CPU, CUDA: linalg_householder_product_out - func: linalg_inv_ex(Tensor A, *, bool check_errors=False) -> (Tensor inverse, Tensor info) python_module: linalg structured_delegate: linalg_inv_ex.inverse - func: linalg_inv_ex.inverse(Tensor A, *, bool check_errors=False, Tensor(a!) inverse, Tensor(b!) info) -> (Tensor(a!) inverse, Tensor(b!) info) python_module: linalg structured: True dispatch: CPU, CUDA: linalg_inv_ex_out MPS: linalg_inv_ex_out_mps - func: linalg_inv(Tensor A) -> Tensor python_module: linalg - func: linalg_inv.out(Tensor A, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: inverse(Tensor self) -> Tensor variants: function, method - func: inverse.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) - func: inner(Tensor self, Tensor other) -> Tensor variants: function, method - func: inner.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) - func: outer(Tensor self, Tensor vec2) -> Tensor variants: function, method - func: outer.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!) # torch.ger, alias for torch.outer - func: ger(Tensor self, Tensor vec2) -> Tensor variants: function, method - func: ger.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!) - func: linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor python_module: linalg variants: function - func: linalg_norm.ord_str(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor python_module: linalg variants: function - func: linalg_norm.out(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_norm.ord_str_out(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_vector_norm(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor python_module: linalg variants: function structured_delegate: linalg_vector_norm.out - func: linalg_vector_norm.out(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) python_module: linalg structured: True dispatch: CPU, CUDA: linalg_vector_norm_out MPS: linalg_vector_norm_out_mps - func: linalg_matrix_norm(Tensor self, Scalar ord, int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None) -> Tensor python_module: linalg - func: linalg_matrix_norm.out(Tensor self, Scalar ord, int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: linalg_matrix_norm.str_ord(Tensor self, str ord='fro', int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None) -> Tensor python_module: linalg - func: linalg_matrix_norm.str_ord_out(Tensor self, str ord='fro', int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!) python_module: linalg # This function is exposes the `compute_uv` flag, which is then used to implement `linalg.svd` and # `linalg.svdvals` as composite functions that call this one - func: _linalg_svd(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None) -> (Tensor U, Tensor S, Tensor Vh) variants: function structured_delegate: _linalg_svd.U - func: _linalg_svd.U(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) structured: True dispatch: CPU, CUDA: _linalg_svd_out - func: linalg_svd(Tensor A, bool full_matrices=True, *, str? driver=None) -> (Tensor U, Tensor S, Tensor Vh) python_module: linalg variants: function - func: linalg_svd.U(Tensor A, bool full_matrices=True, *, str? driver=None, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) python_module: linalg variants: function - func: linalg_svdvals(Tensor A, *, str? driver=None) -> Tensor python_module: linalg variants: function - func: linalg_svdvals.out(Tensor A, *, str? driver=None, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_cond(Tensor self, Scalar? p=None) -> Tensor python_module: linalg variants: function - func: linalg_cond.out(Tensor self, Scalar? p=None, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_cond.p_str(Tensor self, str p) -> Tensor python_module: linalg variants: function - func: linalg_cond.p_str_out(Tensor self, str p, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_pinv.atol_rtol_tensor(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> Tensor python_module: linalg variants: function dispatch: # calls svd, which calls mH() (view op) # also calls narrow() CompositeExplicitAutogradNonFunctional: linalg_pinv - func: linalg_pinv.atol_rtol_tensor_out(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function dispatch: CompositeExplicitAutograd: linalg_pinv_out - func: linalg_pinv.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> Tensor cpp_no_default_args: ['atol', 'rtol'] python_module: linalg variants: function - func: linalg_pinv.atol_rtol_float_out(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!) cpp_no_default_args: ['atol', 'rtol'] python_module: linalg variants: function - func: linalg_pinv(Tensor self, float rcond, bool hermitian=False) -> Tensor python_module: linalg variants: function - func: linalg_pinv.rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False) -> Tensor python_module: linalg variants: function - func: linalg_pinv.out(Tensor self, float rcond, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_pinv.out_rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: _linalg_solve_ex(Tensor A, Tensor B, *, bool left=True, bool check_errors=False) -> (Tensor result, Tensor LU, Tensor pivots, Tensor info) structured_delegate: _linalg_solve_ex.result - func: _linalg_solve_ex.result(Tensor A, Tensor B, *, bool left=True, bool check_errors=False, Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots, Tensor(d!) info) -> (Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots, Tensor(d!) info) structured: True dispatch: CPU, CUDA: _linalg_solve_ex_out MPS: _linalg_solve_ex_out_mps - func: linalg_solve_ex(Tensor A, Tensor B, *, bool left=True, bool check_errors=False) -> (Tensor result, Tensor info) python_module: linalg - func: linalg_solve_ex.out(Tensor A, Tensor B, *, bool left=True, bool check_errors=False, Tensor(a!) result, Tensor(b!) info) -> (Tensor(a!) result, Tensor(b!) info) python_module: linalg - func: linalg_solve(Tensor A, Tensor B, *, bool left=True) -> Tensor python_module: linalg - func: _spsolve(Tensor A, Tensor B, *, bool left=True) -> Tensor python_module: sparse dispatch: SparseCsrCUDA: _sparse_csr_linear_solve - func: linalg_solve.out(Tensor A, Tensor B, *, bool left=True, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: linalg_tensorinv(Tensor self, int ind=2) -> Tensor python_module: linalg variants: function - func: linalg_tensorinv.out(Tensor self, int ind=2, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_tensorsolve(Tensor self, Tensor other, int[]? dims=None) -> Tensor python_module: linalg variants: function - func: linalg_tensorsolve.out(Tensor self, Tensor other, int[]? dims=None, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_qr(Tensor A, str mode='reduced') -> (Tensor Q, Tensor R) python_module: linalg variants: function structured_delegate: linalg_qr.out - func: linalg_qr.out(Tensor A, str mode='reduced', *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R) python_module: linalg structured: True dispatch: CPU, CUDA: linalg_qr_out - func: linalg_matrix_power(Tensor self, int n) -> Tensor python_module: linalg - func: linalg_matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg - func: linalg_matrix_rank.atol_rtol_tensor(Tensor input, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> Tensor python_module: linalg variants: function - func: linalg_matrix_rank.atol_rtol_tensor_out(Tensor input, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_matrix_rank.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> Tensor cpp_no_default_args: ['atol', 'rtol'] python_module: linalg variants: function - func: linalg_matrix_rank.atol_rtol_float_out(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!) cpp_no_default_args: ['atol', 'rtol'] python_module: linalg variants: function - func: linalg_matrix_rank(Tensor self, float tol, bool hermitian=False) -> Tensor python_module: linalg variants: function - func: linalg_matrix_rank.out(Tensor self, float tol, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_matrix_rank.tol_tensor(Tensor input, Tensor tol, bool hermitian=False) -> Tensor python_module: linalg variants: function - func: linalg_matrix_rank.out_tol_tensor(Tensor input, Tensor tol, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg variants: function - func: linalg_multi_dot(Tensor[] tensors) -> Tensor python_module: linalg - func: linalg_multi_dot.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!) python_module: linalg ## Functions related to the `torch.nested` namespace # Note [nested namespace binding] # Functions in the nested python module should have their names start with # "nested_" underscore and be bound to the desired Python name in # torch/nested/__init__.py, and the desired C++ name in torch/csrc/api/include/torch/nested.h. # The "nested_" names should be hidden from the user and not documented. - func: nested_to_padded_tensor(Tensor self, float padding, int[]? output_size=None) -> Tensor python_module: nested variants: function ## Functions that are only for testing # It is undocumented and should not be used outside of tests. - func: _test_serialization_subcmul(Tensor self, Tensor other, Scalar alpha=1) -> Tensor # Note: for testing COW materialization within `at::parallel_for` loop function - func: _test_parallel_materialize(Tensor self, int num_parallel, bool skip_first=False) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _test_parallel_materialize # Note: this function is only for testing. - func: _test_optional_intlist(Tensor values, int[]? addends) -> Tensor python_module: nn dispatch: CPU: _test_optional_intlist autogen: _test_optional_intlist.out # Note: this function is only for testing. - func: _test_optional_filled_intlist(Tensor values, int[2]? addends) -> Tensor python_module: nn dispatch: CPU: _test_optional_intlist autogen: _test_optional_filled_intlist.out # Note: this function is only for testing. - func: _test_optional_floatlist(Tensor values, float[]? addends) -> Tensor python_module: nn dispatch: CPU: _test_optional_floatlist autogen: _test_optional_floatlist.out # Note: this function is only for testing. - func: _test_string_default(Tensor dummy, str a="\"'\\", str b='"\'\\') -> Tensor python_module: nn # Note: this function is only for testing. - func: _test_ambiguous_defaults.a(Tensor dummy, int a=1, int b=1) -> Tensor python_module: nn # Note: this function is only for testing. - func: _test_ambiguous_defaults.b(Tensor dummy, int a=2, str b="2") -> Tensor cpp_no_default_args: ['a', 'b'] python_module: nn # Note: this function is only for testing. - func: _test_warn_in_autograd(Tensor self) -> Tensor python_module: nn dispatch: CompositeExplicitAutograd: _test_warn_in_autograd autogen: _test_warn_in_autograd.out # Note: this function is only for testing. - func: _test_autograd_multiple_dispatch.fullcoverage(Tensor self) -> Tensor dispatch: # the NestedTensor keys are necessary because NestedTensor has been removed # from the CompositeExplicitAutograd keyset see Note [NestedTensor Not Included in Backend Keys] CompositeExplicitAutograd, NestedTensorCPU, NestedTensorCUDA: _test_autograd_multiple_dispatch_fullcoverage autogen: _test_autograd_multiple_dispatch.fullcoverage_out # Note: this function is only for testing. - func: _test_autograd_multiple_dispatch.ntonly(Tensor self, bool b) -> Tensor dispatch: CompositeImplicitAutograd, NestedTensorCPU, NestedTensorCUDA: _test_autograd_multiple_dispatch_ntonly # Note: this function is only for testing. - func: _test_autograd_multiple_dispatch_view(Tensor(a) self) -> Tensor(a) dispatch: CompositeExplicitAutograd: _test_autograd_multiple_dispatch_view # Note: this function is only for testing. - func: _test_autograd_multiple_dispatch_view_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _test_autograd_multiple_dispatch_view_copy tags: view_copy autogen: _test_autograd_multiple_dispatch_view_copy.out - func: segment_reduce(Tensor data, str reduce, *, Tensor? lengths=None, Tensor? indices=None, Tensor? offsets=None, int axis=0, bool unsafe=False, Scalar? initial=None) -> Tensor variants: function dispatch: CPU, CUDA: segment_reduce_kernel autogen: segment_reduce.out - func: _segment_reduce_backward(Tensor grad, Tensor output, Tensor data, str reduce, *, Tensor? lengths=None, Tensor? offsets=None, int axis=0, Scalar? initial=None) -> Tensor variants: function dispatch: CPU, CUDA: _segment_reduce_backward_kernel autogen: _segment_reduce_backward.out - func: pad_sequence(Tensor[] sequences, bool batch_first=False, float padding_value=0.0, str padding_side="right") -> Tensor python_module: nn variants: function - func: flatten_dense_tensors(Tensor[] tensors) -> Tensor variants: function python_module: nn - func: unflatten_dense_tensors(Tensor flat, Tensor[] tensors) -> Tensor[] variants: function python_module: nn - func: _nested_tensor_from_tensor_list(Tensor[] list, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor variants: function dispatch: CompositeExplicitAutograd: _nested_tensor_from_tensor_list autogen: _nested_tensor_from_tensor_list.out - func: _fw_primal_copy(Tensor self, int level) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _fw_primal_copy tags: view_copy autogen: _fw_primal_copy.out - func: _make_dual_copy(Tensor primal, Tensor tangent, int level) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _make_dual_copy tags: view_copy autogen: _make_dual_copy.out - func: view_as_real_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: view_as_real_copy tags: view_copy autogen: view_as_real_copy.out - func: view_as_complex_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: view_as_complex_copy tags: view_copy autogen: view_as_complex_copy.out - func: _conj_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _conj_copy tags: view_copy autogen: _conj_copy.out - func: _neg_view_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _neg_view_copy tags: view_copy autogen: _neg_view_copy.out - func: as_strided_copy(Tensor self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: as_strided_copy_symint tags: view_copy autogen: as_strided_copy.out - func: _sparse_broadcast_to_copy(Tensor self, int[] size) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _sparse_broadcast_to_copy tags: view_copy autogen: _sparse_broadcast_to_copy.out - func: diagonal_copy(Tensor self, int offset=0, int dim1=0, int dim2=1) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: diagonal_copy tags: view_copy autogen: diagonal_copy.out - func: expand_copy(Tensor self, SymInt[] size, *, bool implicit=False) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: expand_copy_symint tags: view_copy autogen: expand_copy.out - func: permute_copy(Tensor self, int[] dims) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: permute_copy tags: view_copy autogen: permute_copy.out - func: _reshape_alias_copy(Tensor self, SymInt[] size, SymInt[] stride) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _reshape_alias_copy_symint tags: view_copy autogen: _reshape_alias_copy.out - func: select_copy.int(Tensor self, int dim, SymInt index) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: select_copy_symint SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: select_copy_sparse_csr tags: view_copy autogen: select_copy.int_out - func: detach_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: detach_copy tags: view_copy autogen: detach_copy.out - func: slice_copy.Tensor(Tensor self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: slice_copy_Tensor_symint tags: view_copy autogen: slice_copy.Tensor_out - func: split_copy.Tensor(Tensor self, SymInt split_size, int dim=0) -> Tensor[] variants: function dispatch: CompositeExplicitAutogradNonFunctional: split_copy_Tensor_symint tags: view_copy - func: split_with_sizes_copy(Tensor self, SymInt[] split_sizes, int dim=0) -> Tensor[] variants: function dispatch: CompositeExplicitAutogradNonFunctional: split_with_sizes_copy_symint tags: view_copy - func: squeeze_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: squeeze_copy tags: view_copy autogen: squeeze_copy.out - func: squeeze_copy.dim(Tensor self, int dim) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: squeeze_copy_dim tags: view_copy autogen: squeeze_copy.dim_out - func: squeeze_copy.dims(Tensor self, int[] dim) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: squeeze_copy_dims tags: view_copy autogen: squeeze_copy.dims_out - func: t_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: t_copy tags: view_copy autogen: t_copy.out - func: transpose_copy.int(Tensor self, int dim0, int dim1) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: transpose_copy_int tags: view_copy autogen: transpose_copy.int_out - func: unsqueeze_copy(Tensor self, int dim) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: unsqueeze_copy tags: view_copy autogen: unsqueeze_copy.out - func: _indices_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _indices_copy tags: view_copy autogen: _indices_copy.out - func: _values_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: _values_copy tags: view_copy autogen: _values_copy.out - func: indices_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: indices_copy tags: view_copy autogen: indices_copy.out - func: values_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: values_copy tags: view_copy autogen: values_copy.out - func: crow_indices_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: crow_indices_copy tags: view_copy autogen: crow_indices_copy.out - func: col_indices_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: col_indices_copy tags: view_copy autogen: col_indices_copy.out - func: ccol_indices_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: ccol_indices_copy tags: view_copy autogen: ccol_indices_copy.out - func: row_indices_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: row_indices_copy tags: view_copy autogen: row_indices_copy.out - func: unbind_copy.int(Tensor self, int dim=0) -> Tensor[] variants: function dispatch: CompositeExplicitAutogradNonFunctional: unbind_copy_int tags: view_copy - func: unbind_copy.int_out(Tensor self, int dim=0, *, Tensor(a!)[] out) -> () variants: function dispatch: CompositeExplicitAutograd: unbind_copy_int_out - func: split_copy.Tensor_out(Tensor self, SymInt split_size, int dim=0, *, Tensor(a!)[] out) -> () variants: function dispatch: CompositeExplicitAutograd: split_copy_Tensor_out - func: split_with_sizes_copy.out(Tensor self, SymInt[] split_sizes, int dim=0, *, Tensor(a!)[] out) -> () variants: function dispatch: CompositeExplicitAutograd: split_with_sizes_copy_out CUDA: split_with_sizes_copy_out_cuda - func: view_copy(Tensor self, SymInt[] size) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: view_copy_symint tags: view_copy autogen: view_copy.out - func: view_copy.dtype(Tensor self, ScalarType dtype) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: view_copy_dtype tags: view_copy autogen: view_copy.dtype_out - func: unfold_copy(Tensor self, int dimension, int size, int step) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: unfold_copy tags: view_copy autogen: unfold_copy.out - func: alias_copy(Tensor self) -> Tensor variants: function dispatch: CompositeExplicitAutogradNonFunctional: alias_copy tags: view_copy autogen: alias_copy.out - func: to_padded_tensor(Tensor self, float padding, SymInt[]? output_size=None) -> Tensor variants: method dispatch: NestedTensorCPU: NestedTensor_to_padded_tensor_generic NestedTensorCUDA: NestedTensor_to_padded_tensor_cuda autogen: to_padded_tensor.out - func: _jagged_to_padded_dense_forward(Tensor values, Tensor[] offsets, SymInt[] max_lengths, float padding_value=0.0) -> Tensor variants: function dispatch: CUDA: _fbgemm_jagged_to_padded_dense_forward CPU: _jagged_to_padded_dense_forward_cpu - func: _padded_dense_to_jagged_forward(Tensor dense, Tensor[] offsets, SymInt? total_L=None) -> Tensor variants: function dispatch: CUDA: _fbgemm_dense_to_jagged_forward_symint CPU: _padded_dense_to_jagged_forward_cpu - func: _nested_from_padded_tensor(Tensor padded, Tensor offsets, Tensor dummy, int ragged_idx=1, Tensor? min_seqlen=None, Tensor? max_seqlen=None, SymInt? sum_S=None) -> Tensor variants: function device_check: NoCheck dispatch: {} - func: _nested_tensor_softmax_with_shape(Tensor self, Tensor query) -> Tensor dispatch: NestedTensorCPU: NestedTensor_softmax_dropout NestedTensorCUDA: NestedTensor_softmax_dropout_cuda tags: nondeterministic_seeded - func: _safe_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor dispatch: CompositeExplicitAutograd: _safe_softmax NestedTensorCPU, NestedTensorCUDA: _safe_softmax # Apparently, putting "forward" in the name will cause Python bindings to be skipped, so "fwd" it is. - func: _transformer_encoder_layer_fwd(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None, int? mask_type=None) -> Tensor variants: function dispatch: CPU, CUDA, NestedTensorCPU, NestedTensorCUDA: transformer_encoder_layer_forward autogen: _transformer_encoder_layer_fwd.out - func: _native_multi_head_attention(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, bool need_weights=True, bool average_attn_weights=True, int? mask_type=None) -> (Tensor, Tensor) variants: function dispatch: CPU, NestedTensorCPU: native_multi_head_attention_cpu CUDA, NestedTensorCUDA: native_multi_head_attention_cuda autogen: _native_multi_head_attention.out - func: scaled_dot_product_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, *, float? scale=None, bool enable_gqa=False) -> Tensor python_module: nn variants: function autogen: scaled_dot_product_attention.out tags: nondeterministic_seeded # This aten function is kept so that we can test the choice function from Python - func: _fused_sdp_choice(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, *, float? scale=None, bool enable_gqa=False) -> int dispatch: Meta: _fused_sdp_choice_meta CPU, NestedTensorCPU: _fused_sdp_choice_cpp CUDA, NestedTensorCUDA: _fused_sdp_choice_cuda XPU: _fused_sdp_choice_xpu tags: nondeterministic_seeded - func: _scaled_dot_product_attention_math(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, Tensor? dropout_mask=None, *, float? scale=None, bool enable_gqa=False) -> (Tensor, Tensor) variants: function tags: nondeterministic_seeded - func: _scaled_dot_product_attention_math_for_mps(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, Tensor? dropout_mask=None, *, float? scale=None) -> (Tensor, Tensor) dispatch: MPS: _scaled_dot_product_attention_math_mps tags: nondeterministic_seeded - func: _scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor rng_state, Tensor unused, Tensor debug_attn_mask) dispatch: CUDA: _scaled_dot_product_flash_attention_cuda NestedTensorCUDA: _scaled_dot_product_flash_attention_nestedtensor_cuda tags: nondeterministic_seeded - func: _scaled_dot_product_flash_attention_for_cpu(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, *, Tensor? attn_mask=None, float? scale=None) -> (Tensor output, Tensor logsumexp) dispatch: CPU: _scaled_dot_product_flash_attention_cpu tags: nondeterministic_seeded - func: _scaled_dot_product_fused_attention_overrideable(Tensor query, Tensor key, Tensor value, Tensor? attn_bias=None, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask) dispatch: CompositeExplicitAutograd: _scaled_dot_product_fused_attention_overrideable XPU: _scaled_dot_product_fused_attention_overrideable_xpu tags: nondeterministic_seeded - func: _scaled_dot_product_flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor philox_seed, Tensor philox_offset, *, float? scale=None) -> (Tensor grad_query, Tensor grad_key, Tensor grad_value) device_check: NoCheck variants: function dispatch: CUDA: _scaled_dot_product_flash_attention_backward_cuda NestedTensorCUDA: _scaled_dot_product_flash_attention_backward_nested - func: _scaled_dot_product_flash_attention_for_cpu_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, float dropout_p, bool is_causal, *, Tensor? attn_mask=None, float? scale=None) -> (Tensor grad_query, Tensor grad_key, Tensor grad_value) device_check: NoCheck variants: function dispatch: CPU: _scaled_dot_product_flash_attention_cpu_backward - func: _scaled_dot_product_fused_attention_overrideable_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor attn_bias, bool[4] grad_input_mask, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor philox_seed, Tensor philox_offset, *, float? scale=None) -> (Tensor grad_query, Tensor grad_key, Tensor grad_value, Tensor grad_attn_bias) device_check: NoCheck variants: function dispatch: CompositeExplicitAutograd: _scaled_dot_product_fused_attention_overrideable_backward - func: _scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset) dispatch: CUDA: _scaled_dot_product_efficient_attention_cuda NestedTensorCUDA: _scaled_dot_product_efficient_attention_nestedtensor_cuda tags: nondeterministic_seeded - func: _scaled_dot_product_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor attn_bias, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, float dropout_p, bool[4] grad_input_mask, bool is_causal=False, *, float? scale=None) -> (Tensor, Tensor, Tensor, Tensor) device_check: NoCheck dispatch: CUDA: _scaled_dot_product_efficient_attention_backward_cuda tags: nondeterministic_seeded - func: _scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask) dispatch: CUDA: _scaled_dot_product_cudnn_attention_cuda NestedTensorCUDA: _scaled_dot_product_cudnn_attention_nestedtensor_cuda tags: nondeterministic_seeded - func: _scaled_dot_product_cudnn_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, Tensor attn_bias, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, *, float? scale=None) -> (Tensor, Tensor, Tensor) dispatch: CUDA: _scaled_dot_product_cudnn_attention_backward_cuda tags: nondeterministic_seeded - func: _flash_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? cum_seq_q, Tensor? cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, bool return_debug_mask, *, float? scale=None, SymInt? window_size_left=None, SymInt? window_size_right=None, Tensor? seqused_k=None, Tensor? alibi_slopes=None) -> (Tensor output, Tensor softmax_logsumexp, Tensor rng_state, Tensor unused, Tensor debug_attn_mask) variants: function dispatch: CUDA: _flash_attention_forward tags: nondeterministic_seeded - func: _flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor rng_state, Tensor unused, *, float? scale=None, SymInt? window_size_left=None, SymInt? window_size_right=None) -> (Tensor, Tensor, Tensor) device_check: NoCheck variants: function dispatch: CUDA: _flash_attention_backward # Returns output, logsumexp if compute_logsumexp - func: _efficient_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt? max_seqlen_q, SymInt? max_seqlen_k, float dropout_p, int custom_mask_type, bool compute_log_sumexp=False, *, float? scale=None, Tensor? seqlen_k=None, int? window_size=None) -> (Tensor output, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, SymInt max_seqlen_batch_q, SymInt max_seqlen_batch_k) variants: function dispatch: CUDA: _efficient_attention_forward tags: nondeterministic_seeded - func: _efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt max_seqlen_q, SymInt max_seqlen_k, Tensor logsumexp, float dropout_p, Tensor philox_seed, Tensor philox_offset, int custom_mask_type, bool bias_requires_grad, *, float? scale=None, int? num_splits_key=None, int? window_size=None, bool shared_storage_dqdkdv=False) -> (Tensor, Tensor, Tensor, Tensor) device_check: NoCheck variants: function dispatch: CUDA: _efficient_attention_backward - func: _cudnn_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, Tensor? cum_seq_q, Tensor? cum_seq_k, SymInt max_q, SymInt max_k, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask) dispatch: CUDA: _cudnn_attention_forward tags: nondeterministic_seeded - func: _triton_scaled_dot_attention(Tensor q, Tensor k, Tensor v, float dropout_p=0.0) -> Tensor variants: function dispatch: CUDA: triton_scaled_dot_attention tags: nondeterministic_seeded autogen: _triton_scaled_dot_attention.out - func: _fill_mem_eff_dropout_mask_(Tensor(a!) self, float dropout_p, int seed, int offset) -> Tensor(a!) variants: function dispatch: CUDA: _fill_mem_eff_dropout_mask_ tags: nondeterministic_seeded - func: _triton_multi_head_attention(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None) -> Tensor variants: function dispatch: CUDA: triton_multi_head_attention autogen: _triton_multi_head_attention.out - func: special_airy_ai(Tensor x) -> Tensor python_module: special structured_delegate: special_airy_ai.out variants: function tags: pointwise - func: special_airy_ai.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_airy_ai_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_bessel_j0(Tensor self) -> Tensor python_module: special structured_delegate: special_bessel_j0.out variants: function tags: pointwise - func: special_bessel_j0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_bessel_j0_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_bessel_j1(Tensor self) -> Tensor python_module: special structured_delegate: special_bessel_j1.out variants: function tags: pointwise - func: special_bessel_j1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_bessel_j1_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_bessel_y0(Tensor self) -> Tensor python_module: special structured_delegate: special_bessel_y0.out variants: function tags: pointwise - func: special_bessel_y0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_bessel_y0_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_bessel_y1(Tensor self) -> Tensor python_module: special structured_delegate: special_bessel_y1.out variants: function tags: pointwise - func: special_bessel_y1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_bessel_y1_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_chebyshev_polynomial_t(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_chebyshev_polynomial_t.out variants: function tags: pointwise - func: special_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_t device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_t device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_t.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_chebyshev_polynomial_t_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_chebyshev_polynomial_t.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_t_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_t.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_t_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_u(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_chebyshev_polynomial_u.out variants: function tags: pointwise - func: special_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_u device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_u device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_u.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_chebyshev_polynomial_u_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_chebyshev_polynomial_u.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_u_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_u.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_u_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_v(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_chebyshev_polynomial_v.out variants: function tags: pointwise - func: special_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_v device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_v device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_v.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_chebyshev_polynomial_v_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_chebyshev_polynomial_v.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_v_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_v.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_v_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_w(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_chebyshev_polynomial_w.out variants: function tags: pointwise - func: special_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_w device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_w device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_w.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_chebyshev_polynomial_w_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_chebyshev_polynomial_w.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_w_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_chebyshev_polynomial_w.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_chebyshev_polynomial_w_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_h(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_hermite_polynomial_h.out variants: function tags: pointwise - func: special_hermite_polynomial_h.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_hermite_polynomial_h device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_h.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_hermite_polynomial_h device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_h.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_hermite_polynomial_h_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_hermite_polynomial_h.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_hermite_polynomial_h_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_h.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_hermite_polynomial_h_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_he(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_hermite_polynomial_he.out variants: function tags: pointwise - func: special_hermite_polynomial_he.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_hermite_polynomial_he device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_he.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_hermite_polynomial_he device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_he.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_hermite_polynomial_he_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_hermite_polynomial_he.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_hermite_polynomial_he_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_hermite_polynomial_he.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_hermite_polynomial_he_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_laguerre_polynomial_l(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_laguerre_polynomial_l.out variants: function tags: pointwise - func: special_laguerre_polynomial_l.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_laguerre_polynomial_l device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_laguerre_polynomial_l.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_laguerre_polynomial_l device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_laguerre_polynomial_l.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_laguerre_polynomial_l_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_laguerre_polynomial_l.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_laguerre_polynomial_l_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_laguerre_polynomial_l.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_laguerre_polynomial_l_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_legendre_polynomial_p(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_legendre_polynomial_p.out variants: function tags: pointwise - func: special_legendre_polynomial_p.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_legendre_polynomial_p device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_legendre_polynomial_p.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_legendre_polynomial_p device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_legendre_polynomial_p.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_legendre_polynomial_p_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_legendre_polynomial_p.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_legendre_polynomial_p_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_legendre_polynomial_p.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_legendre_polynomial_p_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_modified_bessel_i0(Tensor self) -> Tensor python_module: special structured_delegate: special_modified_bessel_i0.out variants: function tags: pointwise - func: special_modified_bessel_i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_modified_bessel_i0_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_modified_bessel_i1(Tensor self) -> Tensor python_module: special structured_delegate: special_modified_bessel_i1.out variants: function tags: pointwise - func: special_modified_bessel_i1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_modified_bessel_i1_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_modified_bessel_k0(Tensor self) -> Tensor python_module: special structured_delegate: special_modified_bessel_k0.out variants: function tags: pointwise - func: special_modified_bessel_k0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_modified_bessel_k0_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_modified_bessel_k1(Tensor self) -> Tensor python_module: special structured_delegate: special_modified_bessel_k1.out variants: function tags: pointwise - func: special_modified_bessel_k1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_modified_bessel_k1_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_scaled_modified_bessel_k0(Tensor x) -> Tensor python_module: special structured_delegate: special_scaled_modified_bessel_k0.out variants: function tags: pointwise - func: special_scaled_modified_bessel_k0.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_scaled_modified_bessel_k0_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_scaled_modified_bessel_k1(Tensor x) -> Tensor python_module: special structured_delegate: special_scaled_modified_bessel_k1.out variants: function tags: pointwise - func: special_scaled_modified_bessel_k1.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA: special_scaled_modified_bessel_k1_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_t(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_shifted_chebyshev_polynomial_t.out variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_t device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_t device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_t.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_shifted_chebyshev_polynomial_t_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_t.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_t_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_t.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_t_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_u(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_shifted_chebyshev_polynomial_u.out variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_u device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_u device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_u.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_shifted_chebyshev_polynomial_u_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_u.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_u_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_u.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_u_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_v(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_shifted_chebyshev_polynomial_v.out variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_v device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_v device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_v.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_shifted_chebyshev_polynomial_v_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_v.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_v_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_v.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_v_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_w(Tensor x, Tensor n) -> Tensor device_check: NoCheck python_module: special structured_delegate: special_shifted_chebyshev_polynomial_w.out variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_w device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_w device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_w.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) device_check: NoCheck dispatch: CPU, CUDA: special_shifted_chebyshev_polynomial_w_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_w.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_w_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_shifted_chebyshev_polynomial_w.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!) dispatch: CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_w_out device_check: NoCheck python_module: special variants: function tags: pointwise - func: special_spherical_bessel_j0(Tensor x) -> Tensor python_module: special structured_delegate: special_spherical_bessel_j0.out variants: function tags: pointwise - func: special_spherical_bessel_j0.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!) dispatch: CPU, CUDA, MPS: special_spherical_bessel_j0_out python_module: special structured_inherits: TensorIteratorBase structured: True variants: function tags: pointwise # Aux function used in the test TestPythonDispatch.test_kwarg_only_and_positional_default # within test/test_python_dispatch.py - func: _foobar(Tensor self, bool arg1=True, bool arg2=True, *, bool arg3=True) -> Tensor dispatch: CPU: foobar autogen: _foobar.out - func: _fused_adam_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> () # Unlike "foreach" functions, lists of tensors should be guaranteed to be on the same device (for now). variants: function dispatch: CPU: _fused_adam_kernel_cpu_ CUDA: _fused_adam_kernel_cuda_ MPS: _fused_adam_kernel_mps_ autogen: _fused_adam, _fused_adam.out - func: _fused_adam_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> () # Unlike "foreach" functions, lists of tensors should be guaranteed to be on the same device (for now), # but still skip the device check as the Tensor LR can be on CPU device_check: NoCheck variants: function dispatch: CPU: _fused_adam_kernel_cpu_ CUDA: _fused_adam_kernel_cuda_ MPS: _fused_adam_kernel_mps_ autogen: _fused_adam.tensor_lr, _fused_adam.tensor_lr_out - func: _fused_adamw_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> () # Unlike "foreach" functions, lists of tensors should be guaranteed to be on the same device (for now). variants: function dispatch: CPU: _fused_adamw_kernel_cpu_ CUDA: _fused_adamw_kernel_cuda_ MPS: _fused_adamw_kernel_mps_ autogen: _fused_adamw, _fused_adamw.out - func: _fused_adamw_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> () # Unlike "foreach" functions, lists of tensors should be guaranteed to be on the same device (for now), # but still skip the device check as the Tensor LR can be on CPU device_check: NoCheck variants: function dispatch: CPU: _fused_adamw_kernel_cpu_ CUDA: _fused_adamw_kernel_cuda_ MPS: _fused_adamw_kernel_mps_ autogen: _fused_adamw.tensor_lr, _fused_adamw.tensor_lr_out - func: _fused_sgd_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] momentum_buffer_list, *, float weight_decay, float momentum, float lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None) -> () # Unlike "foreach" functions, lists of tensors should be guaranteed to be on the same device (for now). variants: function dispatch: CPU: _fused_sgd_kernel_cpu_ CUDA: _fused_sgd_kernel_cuda_ MPS: _fused_sgd_kernel_mps_ autogen: _fused_sgd, _fused_sgd.out - func: _fused_sgd_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] momentum_buffer_list, *, float weight_decay, float momentum, Tensor lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None) -> () # Unlike "foreach" functions, lists of tensors should be guaranteed to be on the same device (for now). # but still skip the device check as the Tensor LR can be on CPU device_check: NoCheck variants: function dispatch: CPU: _fused_sgd_kernel_cpu_ CUDA: _fused_sgd_kernel_cuda_ MPS: _fused_sgd_kernel_mps_ autogen: _fused_sgd.tensor_lr, _fused_sgd.tensor_lr_out - func: _fused_adagrad_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] state_sums, Tensor(d!)[] state_steps, *, float lr, float lr_decay, float weight_decay, float eps, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> () variants: function dispatch: CPU: _fused_adagrad_kernel_cpu_ autogen: _fused_adagrad, _fused_adagrad.out # This op is ONLY used by pytorch/XLA in functionalization, and should never show up in vanilla eager mode or in any pytorch tracing contexts. - func: _propagate_xla_data(Tensor input, Tensor output) -> () variants: function
=============================================================================================================================== # This yaml file contains all the possible tags that can be defined in `tags` in `native_functions.yaml` - tag: inplace_view desc: | This tag indicates if an operator *only* modifies the tensor metadata - tag: pt2_compliant_tag desc: | This tag indicates if the operator is guaranteed to work with the PT2 compilation APIs (torch.compile, torch.export, etc). If you add this tag to an operator, please use `torch.testing._internal.optest.opcheck` to test that the operator has been registered correctly and works with torch.compile - tag: view_copy desc: | This tag indicates operators that are *_copy* variants of view/aliasing operators. If an operator has a view_copy tag, then it should have the name {op}_copy, where {op} is a view operator. - tag: dynamic_output_shape desc: | This tag indicates if an operator's output's shape depends on input Tensor data. - tag: data_dependent_output desc: | Operator has a non-Tensor output whose value is dependent on the data of Tensor inputs. Among other things, this implies that this operator cannot be run with meta tensor (since data is not available), nor can it be symbolically traced. - tag: generated desc: | This tag indicates that the operator doesn't have an explicit entry in native_functions.yaml, and instead was generated automatically by the codegen. - tag: nondeterministic_seeded desc: | This tag indicates if an operator is nondeterministically seeded (i.e., is random) such that the operator intentionally produces different results when run twice on the same inputs, but this randomness is controlled by a Generator which, if reseeded would give you the same result. - tag: nondeterministic_bitwise desc: | This tag indicates if an operator doesn't guarantee bitwise equivalence across different runs of an operator with identical inputs. - tag: needs_fixed_stride_order desc: | This tag indicates that the operator should be passed Tensors following the same stride permutation as observed in eager when compiled in inductor. Only one of {needs_fixed_stride_order, flexible_layout} can apply; if multiple are assigned then we assume the most restrictive one. - tag: flexible_layout desc: | This tag indicates that the custom operator can accept inputs with varying strides/storage_offset and that when compiled, Inductor is allowed to change the strides/storage_offset of inputs to the custom operator. Only one of {needs_fixed_stride_order, flexible_layout} can apply; if multiple are assigned then we assume the most restrictive one. # NOTE [Core ATen Ops] - tag: core desc: | Core aten ops is a subset of aten ops that remains after aten-to-aten decomposition and functionalization pass. Core aten ops are fully functional and adhere to single static assignment (SSA): this implies there will be no `inplace` or `_out` variants in this opset. This opset is designed to serve as the functional IR to interface with compiler backends. In contrast to primTorch, core aten opset doesn't decompose ops into explicit type promotion and broadcasting ops. Core aten ops is also effectively the opset produced by torchdynamo.export(aten_graph=True), and thus can be used as an opset for export purpose. - tag: pointwise desc: | Pointwise operators are operators where each element of the output is computed only by accessing the corresponding element of all the broadcasted inputs. The output shape will be the broadcasted shape of the inputs. - tag: maybe_aliasing_or_mutating desc: | For some ops, we can't statically determine whether the op is functional or not. Note that this is only relevant to CIA ops that decompose before functionalization/autograd. It is useful to know this information for export as we would want to decompose these ops as they are unsafe to be preserved.
======================================================================================================================================= SOURCE CODE FILE: ATenOpList.cpp LINES: 1 SIZE: 1.07 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\ATenOpList.cpp ENCODING: utf-8 ```cpp #include <ATen/core/ATenOpList.h> #include <string> #include <cstring> #include <utility> #include <unordered_set> #include <ATen/core/operator_name.h> // ${generated_comment} namespace at { namespace { struct OpNameEquals final { bool operator()(const std::pair<const char*, const char*>& lhs, const std::pair<const char*, const char*>& rhs) const { return 0 == strcmp(lhs.first, rhs.first) && 0 == strcmp(lhs.second, rhs.second); } }; struct OpNameHash final { size_t operator()(const std::pair<const char*, const char*>& p) const { // use std::hash<std::string> because std::hash<const char*> would hash pointers and not pointed-to strings return std::hash<std::string>()(p.first) ^ (~ std::hash<std::string>()(p.second)); } }; } bool is_custom_op(const c10::OperatorName& opName) { static std::unordered_set<std::pair<const char*, const char*>, OpNameHash, OpNameEquals> ops { ${aten_ops} {"", ""} }; return ops.count(std::make_pair( opName.name.c_str(), opName.overload_name.c_str())) == 0; } } ```
===================================================================================================================================================== SOURCE CODE FILE: CompositeViewCopyKernels.cpp LINES: 1 SIZE: 2.10 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\CompositeViewCopyKernels.cpp ENCODING: utf-8 ```cpp #define TORCH_ASSERT_ONLY_METHOD_OPERATORS // ${generated_comment} #include <ATen/InferSize.h> #include <ATen/Tensor.h> #include <ATen/native/Resize.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Operators.h> #else #include <ATen/ops/clone.h> $ops_headers #endif namespace at { namespace native { // This file contains a number of kernels for aten functions that are fully code-generated. // TODO: rename this file to something more generic. namespace { at::Tensor clone_arg(const at::Tensor& t) { return t.clone(); } std::vector<at::Tensor> clone_arg(const at::TensorList& t_list) { std::vector<at::Tensor> out(t_list.size()); for (const auto& i : c10::irange(t_list.size())) { out[i] = t_list[i].clone(); } return out; } // duped with gen_resize_out_helper from structured kernels void copy_arg(const at::Tensor& dst, const at::Tensor& src) { TORCH_CHECK(src.dtype() == dst.dtype(), "Expected out tensor to have dtype ", src.dtype(), ", but got ", dst.dtype(), " instead"); TORCH_CHECK(src.device() == dst.device(), "Expected out tensor to have device ", src.device(), ", but got ", dst.device(), " instead"); dst.copy_(src); } void copy_arg(const at::TensorList& dst, const at::TensorList& src) { TORCH_INTERNAL_ASSERT(dst.size() == src.size()); for (const auto& i : c10::irange(dst.size())) { copy_arg(dst[i], src[i]); } } // TODO: this doesn't handle restriding empty tensors correctly; see // gen_resize_out_helper for the correct algorithm void resize_out_helper(const at::Tensor& dst, const at::Tensor& src) { at::native::resize_output(dst, src.sizes()); } void resize_out_helper(const at::TensorList& dst, const at::TensorList& src) { TORCH_INTERNAL_ASSERT(dst.size() == src.size()); for (const auto& i : c10::irange(dst.size())) { at::native::resize_output(dst[i], src[i].sizes()); } } } ${CompositeViewCopyKernel_Definitions} ${GeneratedCompositeFunctional_Definitions} ${GeneratedCompositeOut_Definitions} } // namespace native } // namespace at ```
============================================================================================================================================== SOURCE CODE FILE: DispatchKeyFunction.h LINES: 1 SIZE: 0.71 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\DispatchKeyFunction.h ENCODING: utf-8 ```h #pragma once // ${generated_comment} // NB: The implementing C++ file is RegisterDispatchKey.cpp // The only #includes we need are for custom classes that have defaults in the C++ API #include <c10/core/MemoryFormat.h> #include <c10/core/Scalar.h> #include <ATen/core/Reduction.h> // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include <ATen/core/ATen_fwd.h> namespace at { namespace ${dispatch_namespace} { ${dispatch_namespaced_declarations} } // namespace ${dispatch_namespace} } // namespace at ```
=============================================================================================================================================== SOURCE CODE FILE: DispatchKeyFunctions.h LINES: 1 SIZE: 1.92 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\DispatchKeyFunctions.h ENCODING: utf-8 ```h #include <ATen/core/TensorBody.h> // TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch] // Code introduced to avoid cyclic dependency in static dispatch is no longer // needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place, // to Operators.cpp for supporting multiple backends with multiple kernels. // // Note [Avoiding Include Cycles In Static Dispatch] // In order to avoid #include cycles in the static dispatch build, we've carefully split out // the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h. // // Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h. // - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods // all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all // directly inlined into TensorBody.h. // - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API, // which include functions that have defaultable std::optional<Tensor> arguments. // That requires knowing the full Tensor class definition. // // We break the cycle by doing the following: // - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h // - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl., // - CPUFunctions_inl.h includes everything else // - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class, // and then it includes CPUFunctions_inl.h. // - All other files that want the cpu fastpath functions can include CPUFunctions.h directly. // - This also means that static dispatch build, CPUFunctions.h only needs to // #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h. ${inline_headers} ```
=================================================================================================================================================== SOURCE CODE FILE: DispatchKeyFunctions_inl.h LINES: 1 SIZE: 0.83 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\DispatchKeyFunctions_inl.h ENCODING: utf-8 ```h #pragma once // ${generated_comment} // NB: The implementing C++ file is RegisterDispatchKey.cpp // The only #includes we need are for custom classes that have defaults in the C++ API #include <c10/core/MemoryFormat.h> #include <c10/core/Scalar.h> #include <ATen/core/Reduction.h> #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS) #error This change adds a dependency on all pytorch operators, meaning the \ file will need to be re-compiled every time an operator is changed or added. \ Consider including a specific operator from \ <ATen/ops/{my_operator}_${dispatch_namespace}_dispatch.h>. \ See NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS]. #endif ${DispatchKeyFunctions_inl_includes} ${dispatch_namespaced_declarations} ```
======================================================================================================================================================= SOURCE CODE FILE: DispatchKeyNativeFunctions.cpp LINES: 1 SIZE: 0.19 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\DispatchKeyNativeFunctions.cpp ENCODING: utf-8 ```cpp // ${generated_comment} ${includes} ${native_functions_include} namespace { ${helper_fns} } // namespace ${namespace_prologue} ${native_function_definitions} ${namespace_epilogue} ```
===================================================================================================================================================== SOURCE CODE FILE: DispatchKeyNativeFunctions.h LINES: 1 SIZE: 0.39 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\DispatchKeyNativeFunctions.h ENCODING: utf-8 ```h #pragma once // an external backend might generate file within its code tree // and check all the source files within the tree with clang-format. // so, disable it since the backend might have a different config. // clang-format off // ${generated_comment} #include <ATen/Tensor.h> ${namespace_prologue} struct ${class_name} { ${dispatch_declarations} }; ${namespace_epilogue} ```
=================================================================================================================================== SOURCE CODE FILE: Function.h LINES: 1 SIZE: 0.53 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\Function.h ENCODING: utf-8 ```h #pragma once // ${generated_comment} #include <ATen/Context.h> #include <ATen/DeviceGuard.h> #include <ATen/TensorUtils.h> #include <ATen/TracerMode.h> #include <ATen/core/Generator.h> #include <ATen/core/Reduction.h> #include <ATen/core/Tensor.h> #include <c10/core/Scalar.h> #include <c10/core/Storage.h> #include <c10/core/TensorOptions.h> #include <c10/util/Deprecated.h> #include <optional> #include <string_view> ${static_dispatch_ops_headers} ${operator_includes} namespace at { ${function_definitions} } ```
============================================================================================================================================= SOURCE CODE FILE: FunctionalInverses.h LINES: 1 SIZE: 1.23 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\FunctionalInverses.h ENCODING: utf-8 ```h #pragma once // ${generated_comment} #include <ATen/Tensor.h> namespace at { namespace functionalization { enum class InverseReturnMode { /// Specifies that functional inverses should always return a view. AlwaysView, /// Specifies that functional inverses should always return a non-view / copy. NeverView, /// Specifies that functional inverses should return a view unless a (copying) scatter /// inverse exists, in which case that will be used instead. /// This avoids as_strided() calls that can be difficult for subclasses to handle. ViewOrScatterInverse, }; struct FunctionalInverses { ${view_inverse_declarations} // NB: These are not generated! They're manually implemented in the template. // TODO: Change codegen to generate these. See the following link: // https://github.com/pytorch/pytorch/blob/main/torchgen/model.py#L2583-L2585 static at::Tensor chunk_inverse(const at::Tensor & base, const at::Tensor & mutated_view, InverseReturnMode inverse_return_mode, int64_t mutated_view_idx, int chunks, int dim); static at::Tensor narrow_inverse(const at::Tensor & base, const at::Tensor & mutated_view, InverseReturnMode inverse_return_mode, int dim, c10::SymInt start, c10::SymInt length); }; } } ```
====================================================================================================================================== SOURCE CODE FILE: Functions.cpp LINES: 1 SIZE: 3.06 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\Functions.cpp ENCODING: utf-8 ```cpp #include <array> #include <ATen/Functions.h> #include <ATen/Utils.h> #include <c10/core/Allocator.h> namespace at { Tensor TensorMaker::make_tensor() { AutoDispatchBelowADInplaceOrView guard{}; // TODO: Remove. tracer::impl::NoTracerDispatchMode tracer_guard{}; check_size_nonnegative(sizes_); TORCH_CHECK_VALUE( !deleter_ || !ctx_, "The deleter and context arguments are mutually exclusive."); if (device_ == std::nullopt) { device_ = globalContext().getDeviceFromPtr(data_, opts_.device().type()); } if (opts_.device().has_index()) { // clang-format off TORCH_CHECK_VALUE( opts_.device() == *device_, "Specified device ", opts_.device(), " does not match device of data ", *device_); // clang-format on } std::size_t size_bytes = computeStorageSize(); DataPtr data_ptr{}; if (deleter_) { data_ptr = makeDataPtrFromDeleter(); } else { data_ptr = makeDataPtrFromContext(); } TORCH_CHECK(!resizeable_ || allocator_ != nullptr, "Must specify an allocator with allocator() if you want to use resizeable_storage()"); Storage storage{Storage::use_byte_size_t{}, size_bytes, std::move(data_ptr), /*allocator=*/allocator_, /*resizable=*/resizeable_}; Tensor tensor = detail::make_tensor<TensorImpl>( std::move(storage), opts_.computeDispatchKey(), opts_.dtype()); TensorImpl* tensor_impl = tensor.unsafeGetTensorImpl(); if (strides_) { tensor_impl->set_sizes_and_strides(sizes_, *strides_); } else { tensor_impl->set_sizes_contiguous(sizes_); } if (storage_offset_) { tensor_impl->set_storage_offset(*storage_offset_); } return tensor; } std::size_t TensorMaker::computeStorageSize() const noexcept { std::size_t itemsize = opts_.dtype().itemsize(); if (strides_) { auto storage_size = detail::computeStorageNbytes(sizes_, *strides_, itemsize); if (storage_offset_) { storage_size += storage_offset_.value(); } return storage_size; } std::size_t size = 1; for (std::int64_t s : sizes_) { size *= static_cast<std::size_t>(s); } auto storage_size = size * itemsize; if (storage_offset_) { storage_size += storage_offset_.value(); } return storage_size; } inline DataPtr TensorMaker::makeDataPtrFromDeleter() noexcept { return InefficientStdFunctionContext::makeDataPtr(data_, std::move(deleter_), *device_); } inline DataPtr TensorMaker::makeDataPtrFromContext() noexcept { return DataPtr{data_, ctx_.release(), ctx_.get_deleter(), *device_}; } IntArrayRef TensorMaker::makeTempSizes() const noexcept { static std::int64_t zeros[5] = {0, 0, 0, 0, 0}; if (opts_.has_memory_format()) { MemoryFormat format = *opts_.memory_format_opt(); if (format == MemoryFormat::ChannelsLast) { return IntArrayRef(zeros, 4); } if (format == MemoryFormat::ChannelsLast3d) { return IntArrayRef(zeros, 5); } } return IntArrayRef(zeros, 1); } } // namespace at ```
==================================================================================================================================== SOURCE CODE FILE: Functions.h LINES: 1 SIZE: 4.71 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\Functions.h ENCODING: utf-8 ```h #pragma once // ${generated_comment} #ifdef TORCH_ASSERT_NO_OPERATORS #error This change adds a dependency on native_functions.yaml, \ meaning the file will need to be re-compiled every time an operator \ is changed or added. Consider if your change would be better placed in \ another file, or if a more specific header might achieve the same goal. \ See NOTE: [Tensor vs. TensorBase] #endif #if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS) #error This change adds a dependency on all pytorch operators, meaning the \ file will need to be re-compiled every time an operator is changed or added. \ Consider including a specific operator from <ATen/ops/{my_operator}.h> and \ see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS]. #endif // NOTE: [TORCH_ASSERT_ONLY_METHOD_OPERATORS] // // In ATen, certain generated headers files include the definitions of // every single operator in PyTorch. Unfortunately this means every // time an operator signature is updated or changed in // native_functions.yaml, you (and every other PyTorch developer) need // to recompile every source file that includes any of these headers. // // To break up these header dependencies, and improve incremental // build times for all PyTorch developers. These headers are split // into per-operator headers in the `ATen/ops` folder. This limits // incremental builds to only changes to methods of `Tensor`, or files // that use the specific operator being changed. With `at::sum` as an // example, you should include // // <ATen/ops/sum.h> // instead of ATen/Functions.h // <ATen/ops/sum_native.h> // instead of ATen/NativeFunctions.h // <ATen/ops/sum_ops.h> // instead of ATen/Operators.h // <ATen/ops/sum_cpu_dispatch.h> // instead of ATen/CPUFunctions.h // // However, even if you're careful to use this in your own code. // `Functions.h` might be included indirectly through another header // without you realising. To avoid this, you can add // // #define TORCH_ASSERT_ONLY_METHOD_OPERATORS // // to the top of your source file. This way any time the non-specific // headers are included, the compiler will error out. // // Also, be aware that `ops` are not available in all build // configurations (namely fb-internal) so you must guard these // includes with `#ifdef AT_PER_OPERATOR_HEADERS`. e.g. // // #ifndef AT_PER_OPERATOR_HEADERS // #include <ATen/Functions.h> // #else // #include <ATen/ops/sum.h> // #endif #include <ATen/Context.h> #include <ATen/DeviceGuard.h> #include <ATen/TensorUtils.h> #include <ATen/TracerMode.h> #include <ATen/core/Generator.h> #include <ATen/core/Reduction.h> #include <c10/core/SymInt.h> #include <ATen/core/Tensor.h> #include <c10/core/Scalar.h> #include <c10/core/Storage.h> #include <c10/core/TensorOptions.h> #include <c10/util/Deprecated.h> #include <optional> #include <c10/util/OptionalArrayRef.h> #include <ATen/ops/from_blob.h> #include <ATen/ops/tensor.h> ${Functions_includes} namespace at { ${Functions_declarations} // Special C++ only overloads for std()-like functions (See gh-40287) // These are needed because int -> bool conversion takes precedence over int -> IntArrayRef // So, for example std(0) would select the std(unbiased=False) overload TORCH_API inline Tensor var(const Tensor& self, int dim) { return at::var(self, IntArrayRef{dim}); } TORCH_API inline std::tuple<Tensor, Tensor> var_mean(const Tensor& self, int dim) { return at::var_mean(self, IntArrayRef{dim}); } TORCH_API inline Tensor std(const Tensor& self, int dim) { return at::std(self, IntArrayRef{dim}); } TORCH_API inline std::tuple<Tensor, Tensor> std_mean(const Tensor& self, int dim) { return at::std_mean(self, IntArrayRef{dim}); } inline int64_t numel(const Tensor& tensor) { return tensor.numel(); } inline int64_t size(const Tensor& tensor, int64_t dim) { return tensor.size(dim); } inline int64_t stride(const Tensor& tensor, int64_t dim) { return tensor.stride(dim); } inline bool is_complex(const Tensor& tensor) { return tensor.is_complex(); } inline bool is_floating_point(const Tensor& tensor) { return tensor.is_floating_point(); } inline bool is_signed(const Tensor& tensor) { return tensor.is_signed(); } inline bool is_inference(const Tensor& tensor) { return tensor.is_inference(); } inline bool _is_zerotensor(const Tensor& tensor) { return tensor._is_zerotensor(); } inline bool is_conj(const Tensor& tensor) { return tensor.is_conj(); } inline Tensor conj(const Tensor& tensor) { return tensor.conj(); } inline bool is_neg(const Tensor& tensor) { return tensor.is_neg(); } } ```
================================================================================================================================= SOURCE CODE FILE: LazyIr.h LINES: 1 SIZE: 0.59 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\LazyIr.h ENCODING: utf-8 ```h #pragma once // This file contains autogenerated LazyTensor IR nodes ${lazy_ir_sysinc} ${lazy_ir_inc} ${namespace_prologue} using at::operator<<; // kNullValue is used to contribute a static hash value any time // a node has an Optional<Value> input that is nullopt. It is important // to differentiate between HASH(std::nullopt, something) and HASH(something, std::nullopt), // and using kNullValue in the hash function in the order of arguments // serves this purpose. static const torch::lazy::Value kNullValue = torch::lazy::Value(); ${ir_declarations} ${namespace_epilogue} ```
========================================================================================================================================== SOURCE CODE FILE: LazyNonNativeIr.h LINES: 1 SIZE: 0.18 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\LazyNonNativeIr.h ENCODING: utf-8 ```h #pragma once ${lazy_non_native_ir_inc} // This file contains autogenerated LazyTensor Non Native IR nodes ${namespace_prologue} ${non_native_ir_nodes} ${namespace_epilogue} ```
========================================================================================================================================== SOURCE CODE FILE: MethodOperators.h LINES: 1 SIZE: 0.83 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\MethodOperators.h ENCODING: utf-8 ```h #pragma once // ${generated_comment} #ifdef TORCH_ASSERT_NO_OPERATORS #error This change adds a dependency on native_functions.yaml, \ meaning the file will need to be re-compiled every time an operator \ is changed or added. Consider if your change would be better placed in \ another file, or if a more specific header might achieve the same goal. \ See NOTE: [Tensor vs. TensorBase] #endif // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include <ATen/core/ATen_fwd.h> ${MethodOperators_includes} namespace at { namespace _ops { ${MethodOperators_declarations} } // namespace _ops } // namespace at ```
========================================================================================================================================= SOURCE CODE FILE: NativeFunction.h LINES: 1 SIZE: 0.37 KB PATH: scripts\freecad_env\Lib\site-packages\torchgen\packaged\ATen\templates\NativeFunction.h ENCODING: utf-8 ```h #pragma once // ${generated_comment} #include <c10/core/Scalar.h> #include <c10/core/Storage.h> #include <c10/core/TensorOptions.h> #include <c10/util/Deprecated.h> #include <optional> #include <c10/core/QScheme.h> #include <ATen/core/Reduction.h> #include <ATen/core/Tensor.h> #include <tuple> #include <vector> ${extra_includes} ${native_function_declarations} ```