text
stringlengths
145
7.65M
==================================================================================================================== SOURCE CODE FILE: lsun.py LINES: 1 SIZE: 5.77 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\lsun.py ENCODING: utf-8 ```py import io import os.path import pickle import string from collections.abc import Iterable from pathlib import Path from typing import Any, Callable, cast, List, Optional, Tuple, Union from PIL import Image from .utils import iterable_to_str, verify_str_arg from .vision import VisionDataset class LSUNClass(VisionDataset): def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None ) -> None: import lmdb super().__init__(root, transform=transform, target_transform=target_transform) self.env = lmdb.open(root, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: self.length = txn.stat()["entries"] cache_file = "_cache_" + "".join(c for c in root if c in string.ascii_letters) if os.path.isfile(cache_file): self.keys = pickle.load(open(cache_file, "rb")) else: with self.env.begin(write=False) as txn: self.keys = [key for key in txn.cursor().iternext(keys=True, values=False)] pickle.dump(self.keys, open(cache_file, "wb")) def __getitem__(self, index: int) -> Tuple[Any, Any]: img, target = None, None env = self.env with env.begin(write=False) as txn: imgbuf = txn.get(self.keys[index]) buf = io.BytesIO() buf.write(imgbuf) buf.seek(0) img = Image.open(buf).convert("RGB") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return self.length class LSUN(VisionDataset): """`LSUN <https://paperswithcode.com/dataset/lsun>`_ dataset. You will need to install the ``lmdb`` package to use this dataset: run ``pip install lmdb`` Args: root (str or ``pathlib.Path``): Root directory for the database files. classes (string or list): One of {'train', 'val', 'test'} or a list of categories to load. e,g. ['bedroom_train', 'church_outdoor_train']. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__( self, root: Union[str, Path], classes: Union[str, List[str]] = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.classes = self._verify_classes(classes) # for each class, create an LSUNClassDataset self.dbs = [] for c in self.classes: self.dbs.append(LSUNClass(root=os.path.join(root, f"{c}_lmdb"), transform=transform)) self.indices = [] count = 0 for db in self.dbs: count += len(db) self.indices.append(count) self.length = count def _verify_classes(self, classes: Union[str, List[str]]) -> List[str]: categories = [ "bedroom", "bridge", "church_outdoor", "classroom", "conference_room", "dining_room", "kitchen", "living_room", "restaurant", "tower", ] dset_opts = ["train", "val", "test"] try: classes = cast(str, classes) verify_str_arg(classes, "classes", dset_opts) if classes == "test": classes = [classes] else: classes = [c + "_" + classes for c in categories] except ValueError: if not isinstance(classes, Iterable): msg = "Expected type str or Iterable for argument classes, but got type {}." raise ValueError(msg.format(type(classes))) classes = list(classes) msg_fmtstr_type = "Expected type str for elements in argument classes, but got type {}." for c in classes: verify_str_arg(c, custom_msg=msg_fmtstr_type.format(type(c))) c_short = c.split("_") category, dset_opt = "_".join(c_short[:-1]), c_short[-1] msg_fmtstr = "Unknown value '{}' for {}. Valid values are {{{}}}." msg = msg_fmtstr.format(category, "LSUN class", iterable_to_str(categories)) verify_str_arg(category, valid_values=categories, custom_msg=msg) msg = msg_fmtstr.format(dset_opt, "postfix", iterable_to_str(dset_opts)) verify_str_arg(dset_opt, valid_values=dset_opts, custom_msg=msg) return classes def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: Tuple (image, target) where target is the index of the target category. """ target = 0 sub = 0 for ind in self.indices: if index < ind: break target += 1 sub = ind db = self.dbs[target] index = index - sub if self.target_transform is not None: target = self.target_transform(target) img, _ = db[index] return img, target def __len__(self) -> int: return self.length def extra_repr(self) -> str: return "Classes: {classes}".format(**self.__dict__) ```
===================================================================================================================== SOURCE CODE FILE: mnist.py LINES: 4 SIZE: 21.84 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\mnist.py ENCODING: utf-8 ```py import codecs import os import os.path import shutil import string import sys import warnings from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union from urllib.error import URLError import numpy as np import torch from PIL import Image from .utils import _flip_byte_order, check_integrity, download_and_extract_archive, extract_archive, verify_str_arg from .vision import VisionDataset class MNIST(VisionDataset): """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where ``MNIST/raw/train-images-idx3-ubyte`` and ``MNIST/raw/t10k-images-idx3-ubyte`` exist. train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``, otherwise from ``t10k-images-idx3-ubyte``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ mirrors = [ "https://ossci-datasets.s3.amazonaws.com/mnist/", "http://yann.lecun.com/exdb/mnist/", ] resources = [ ("train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"), ("train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"), ("t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"), ("t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c"), ] training_file = "training.pt" test_file = "test.pt" classes = [ "0 - zero", "1 - one", "2 - two", "3 - three", "4 - four", "5 - five", "6 - six", "7 - seven", "8 - eight", "9 - nine", ] @property def train_labels(self): warnings.warn("train_labels has been renamed targets") return self.targets @property def test_labels(self): warnings.warn("test_labels has been renamed targets") return self.targets @property def train_data(self): warnings.warn("train_data has been renamed data") return self.data @property def test_data(self): warnings.warn("test_data has been renamed data") return self.data def __init__( self, root: Union[str, Path], train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.train = train # training set or test set if self._check_legacy_exist(): self.data, self.targets = self._load_legacy_data() return if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self.data, self.targets = self._load_data() def _check_legacy_exist(self): processed_folder_exists = os.path.exists(self.processed_folder) if not processed_folder_exists: return False return all( check_integrity(os.path.join(self.processed_folder, file)) for file in (self.training_file, self.test_file) ) def _load_legacy_data(self): # This is for BC only. We no longer cache the data in a custom binary, but simply read from the raw data # directly. data_file = self.training_file if self.train else self.test_file return torch.load(os.path.join(self.processed_folder, data_file), weights_only=True) def _load_data(self): image_file = f"{'train' if self.train else 't10k'}-images-idx3-ubyte" data = read_image_file(os.path.join(self.raw_folder, image_file)) label_file = f"{'train' if self.train else 't10k'}-labels-idx1-ubyte" targets = read_label_file(os.path.join(self.raw_folder, label_file)) return data, targets def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.targets[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.numpy(), mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) @property def raw_folder(self) -> str: return os.path.join(self.root, self.__class__.__name__, "raw") @property def processed_folder(self) -> str: return os.path.join(self.root, self.__class__.__name__, "processed") @property def class_to_idx(self) -> Dict[str, int]: return {_class: i for i, _class in enumerate(self.classes)} def _check_exists(self) -> bool: return all( check_integrity(os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0])) for url, _ in self.resources ) def download(self) -> None: """Download the MNIST data if it doesn't exist already.""" if self._check_exists(): return os.makedirs(self.raw_folder, exist_ok=True) # download files for filename, md5 in self.resources: errors = [] for mirror in self.mirrors: url = f"{mirror}{filename}" try: download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5) except URLError as e: errors.append(e) continue break else: s = f"Error downloading {filename}:\n" for mirror, err in zip(self.mirrors, errors): s += f"Tried {mirror}, got:\n{str(err)}\n" raise RuntimeError(s) def extra_repr(self) -> str: split = "Train" if self.train is True else "Test" return f"Split: {split}" class FashionMNIST(MNIST): """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where ``FashionMNIST/raw/train-images-idx3-ubyte`` and ``FashionMNIST/raw/t10k-images-idx3-ubyte`` exist. train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``, otherwise from ``t10k-images-idx3-ubyte``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ mirrors = ["http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"] resources = [ ("train-images-idx3-ubyte.gz", "8d4fb7e6c68d591d4c3dfef9ec88bf0d"), ("train-labels-idx1-ubyte.gz", "25c81989df183df01b3e8a0aad5dffbe"), ("t10k-images-idx3-ubyte.gz", "bef4ecab320f06d8554ea6380940ec79"), ("t10k-labels-idx1-ubyte.gz", "bb300cfdad3c16e7a12a480ee83cd310"), ] classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] class KMNIST(MNIST): """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where ``KMNIST/raw/train-images-idx3-ubyte`` and ``KMNIST/raw/t10k-images-idx3-ubyte`` exist. train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``, otherwise from ``t10k-images-idx3-ubyte``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ mirrors = ["http://codh.rois.ac.jp/kmnist/dataset/kmnist/"] resources = [ ("train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"), ("train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"), ("t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"), ("t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134"), ] classes = ["o", "ki", "su", "tsu", "na", "ha", "ma", "ya", "re", "wo"] class EMNIST(MNIST): """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where ``EMNIST/raw/train-images-idx3-ubyte`` and ``EMNIST/raw/t10k-images-idx3-ubyte`` exist. split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``, ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies which one to use. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ url = "https://biometrics.nist.gov/cs_links/EMNIST/gzip.zip" md5 = "58c8d27c78d21e728a6bc7b3cc06412e" splits = ("byclass", "bymerge", "balanced", "letters", "digits", "mnist") # Merged Classes assumes Same structure for both uppercase and lowercase version _merged_classes = {"c", "i", "j", "k", "l", "m", "o", "p", "s", "u", "v", "w", "x", "y", "z"} _all_classes = set(string.digits + string.ascii_letters) classes_split_dict = { "byclass": sorted(list(_all_classes)), "bymerge": sorted(list(_all_classes - _merged_classes)), "balanced": sorted(list(_all_classes - _merged_classes)), "letters": ["N/A"] + list(string.ascii_lowercase), "digits": list(string.digits), "mnist": list(string.digits), } def __init__(self, root: Union[str, Path], split: str, **kwargs: Any) -> None: self.split = verify_str_arg(split, "split", self.splits) self.training_file = self._training_file(split) self.test_file = self._test_file(split) super().__init__(root, **kwargs) self.classes = self.classes_split_dict[self.split] @staticmethod def _training_file(split) -> str: return f"training_{split}.pt" @staticmethod def _test_file(split) -> str: return f"test_{split}.pt" @property def _file_prefix(self) -> str: return f"emnist-{self.split}-{'train' if self.train else 'test'}" @property def images_file(self) -> str: return os.path.join(self.raw_folder, f"{self._file_prefix}-images-idx3-ubyte") @property def labels_file(self) -> str: return os.path.join(self.raw_folder, f"{self._file_prefix}-labels-idx1-ubyte") def _load_data(self): return read_image_file(self.images_file), read_label_file(self.labels_file) def _check_exists(self) -> bool: return all(check_integrity(file) for file in (self.images_file, self.labels_file)) def download(self) -> None: """Download the EMNIST data if it doesn't exist already.""" if self._check_exists(): return os.makedirs(self.raw_folder, exist_ok=True) download_and_extract_archive(self.url, download_root=self.raw_folder, md5=self.md5) gzip_folder = os.path.join(self.raw_folder, "gzip") for gzip_file in os.listdir(gzip_folder): if gzip_file.endswith(".gz"): extract_archive(os.path.join(gzip_folder, gzip_file), self.raw_folder) shutil.rmtree(gzip_folder) class QMNIST(MNIST): """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset whose ``raw`` subdir contains binary files of the datasets. what (string,optional): Can be 'train', 'test', 'test10k', 'test50k', or 'nist' for respectively the mnist compatible training set, the 60k qmnist testing set, the 10k qmnist examples that match the mnist testing set, the 50k remaining qmnist testing examples, or all the nist digits. The default is to select 'train' or 'test' according to the compatibility argument 'train'. compat (bool,optional): A boolean that says whether the target for each example is class number (for compatibility with the MNIST dataloader) or a torch vector containing the full qmnist information. Default=True. train (bool,optional,compatibility): When argument 'what' is not specified, this boolean decides whether to load the training set or the testing set. Default: True. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ subsets = {"train": "train", "test": "test", "test10k": "test", "test50k": "test", "nist": "nist"} resources: Dict[str, List[Tuple[str, str]]] = { # type: ignore[assignment] "train": [ ( "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz", "ed72d4157d28c017586c42bc6afe6370", ), ( "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz", "0058f8dd561b90ffdd0f734c6a30e5e4", ), ], "test": [ ( "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz", "1394631089c404de565df7b7aeaf9412", ), ( "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz", "5b5b05890a5e13444e108efe57b788aa", ), ], "nist": [ ( "https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz", "7f124b3b8ab81486c9d8c2749c17f834", ), ( "https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz", "5ed0e788978e45d4a8bd4b7caec3d79d", ), ], } classes = [ "0 - zero", "1 - one", "2 - two", "3 - three", "4 - four", "5 - five", "6 - six", "7 - seven", "8 - eight", "9 - nine", ] def __init__( self, root: Union[str, Path], what: Optional[str] = None, compat: bool = True, train: bool = True, **kwargs: Any ) -> None: if what is None: what = "train" if train else "test" self.what = verify_str_arg(what, "what", tuple(self.subsets.keys())) self.compat = compat self.data_file = what + ".pt" self.training_file = self.data_file self.test_file = self.data_file super().__init__(root, train, **kwargs) @property def images_file(self) -> str: (url, _), _ = self.resources[self.subsets[self.what]] return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0]) @property def labels_file(self) -> str: _, (url, _) = self.resources[self.subsets[self.what]] return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0]) def _check_exists(self) -> bool: return all(check_integrity(file) for file in (self.images_file, self.labels_file)) def _load_data(self): data = read_sn3_pascalvincent_tensor(self.images_file) if data.dtype != torch.uint8: raise TypeError(f"data should be of dtype torch.uint8 instead of {data.dtype}") if data.ndimension() != 3: raise ValueError("data should have 3 dimensions instead of {data.ndimension()}") targets = read_sn3_pascalvincent_tensor(self.labels_file).long() if targets.ndimension() != 2: raise ValueError(f"targets should have 2 dimensions instead of {targets.ndimension()}") if self.what == "test10k": data = data[0:10000, :, :].clone() targets = targets[0:10000, :].clone() elif self.what == "test50k": data = data[10000:, :, :].clone() targets = targets[10000:, :].clone() return data, targets def download(self) -> None: """Download the QMNIST data if it doesn't exist already. Note that we only download what has been asked for (argument 'what'). """ if self._check_exists(): return os.makedirs(self.raw_folder, exist_ok=True) split = self.resources[self.subsets[self.what]] for url, md5 in split: download_and_extract_archive(url, self.raw_folder, md5=md5) def __getitem__(self, index: int) -> Tuple[Any, Any]: # redefined to handle the compat flag img, target = self.data[index], self.targets[index] img = Image.fromarray(img.numpy(), mode="L") if self.transform is not None: img = self.transform(img) if self.compat: target = int(target[0]) if self.target_transform is not None: target = self.target_transform(target) return img, target def extra_repr(self) -> str: return f"Split: {self.what}" def get_int(b: bytes) -> int: return int(codecs.encode(b, "hex"), 16) SN3_PASCALVINCENT_TYPEMAP = { 8: torch.uint8, 9: torch.int8, 11: torch.int16, 12: torch.int32, 13: torch.float32, 14: torch.float64, } def read_sn3_pascalvincent_tensor(path: str, strict: bool = True) -> torch.Tensor: """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh'). Argument may be a filename, compressed filename, or file object. """ # read with open(path, "rb") as f: data = f.read() # parse if sys.byteorder == "little" or sys.platform == "aix": magic = get_int(data[0:4]) nd = magic % 256 ty = magic // 256 else: nd = get_int(data[0:1]) ty = get_int(data[1:2]) + get_int(data[2:3]) * 256 + get_int(data[3:4]) * 256 * 256 assert 1 <= nd <= 3 assert 8 <= ty <= 14 torch_type = SN3_PASCALVINCENT_TYPEMAP[ty] s = [get_int(data[4 * (i + 1) : 4 * (i + 2)]) for i in range(nd)] if sys.byteorder == "big" and not sys.platform == "aix": for i in range(len(s)): s[i] = int.from_bytes(s[i].to_bytes(4, byteorder="little"), byteorder="big", signed=False) parsed = torch.frombuffer(bytearray(data), dtype=torch_type, offset=(4 * (nd + 1))) # The MNIST format uses the big endian byte order, while `torch.frombuffer` uses whatever the system uses. In case # that is little endian and the dtype has more than one byte, we need to flip them. if sys.byteorder == "little" and parsed.element_size() > 1: parsed = _flip_byte_order(parsed) assert parsed.shape[0] == np.prod(s) or not strict return parsed.view(*s) def read_label_file(path: str) -> torch.Tensor: x = read_sn3_pascalvincent_tensor(path, strict=False) if x.dtype != torch.uint8: raise TypeError(f"x should be of dtype torch.uint8 instead of {x.dtype}") if x.ndimension() != 1: raise ValueError(f"x should have 1 dimension instead of {x.ndimension()}") return x.long() def read_image_file(path: str) -> torch.Tensor: x = read_sn3_pascalvincent_tensor(path, strict=False) if x.dtype != torch.uint8: raise TypeError(f"x should be of dtype torch.uint8 instead of {x.dtype}") if x.ndimension() != 3: raise ValueError(f"x should have 3 dimension instead of {x.ndimension()}") return x ```
============================================================================================================================ SOURCE CODE FILE: moving_mnist.py LINES: 1 SIZE: 3.65 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\moving_mnist.py ENCODING: utf-8 ```py import os.path from pathlib import Path from typing import Callable, Optional, Union import numpy as np import torch from torchvision.datasets.utils import download_url, verify_str_arg from torchvision.datasets.vision import VisionDataset class MovingMNIST(VisionDataset): """`MovingMNIST <http://www.cs.toronto.edu/~nitish/unsupervised_video/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where ``MovingMNIST/mnist_test_seq.npy`` exists. split (string, optional): The dataset split, supports ``None`` (default), ``"train"`` and ``"test"``. If ``split=None``, the full data is returned. split_ratio (int, optional): The split ratio of number of frames. If ``split="train"``, the first split frames ``data[:, :split_ratio]`` is returned. If ``split="test"``, the last split frames ``data[:, split_ratio:]`` is returned. If ``split=None``, this parameter is ignored and the all frames data is returned. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in a torch Tensor and returns a transformed version. E.g, ``transforms.RandomCrop`` """ _URL = "http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy" def __init__( self, root: Union[str, Path], split: Optional[str] = None, split_ratio: int = 10, download: bool = False, transform: Optional[Callable] = None, ) -> None: super().__init__(root, transform=transform) self._base_folder = os.path.join(self.root, self.__class__.__name__) self._filename = self._URL.split("/")[-1] if split is not None: verify_str_arg(split, "split", ("train", "test")) self.split = split if not isinstance(split_ratio, int): raise TypeError(f"`split_ratio` should be an integer, but got {type(split_ratio)}") elif not (1 <= split_ratio <= 19): raise ValueError(f"`split_ratio` should be `1 <= split_ratio <= 19`, but got {split_ratio} instead.") self.split_ratio = split_ratio if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it.") data = torch.from_numpy(np.load(os.path.join(self._base_folder, self._filename))) if self.split == "train": data = data[: self.split_ratio] elif self.split == "test": data = data[self.split_ratio :] self.data = data.transpose(0, 1).unsqueeze(2).contiguous() def __getitem__(self, idx: int) -> torch.Tensor: """ Args: idx (int): Index Returns: torch.Tensor: Video frames (torch Tensor[T, C, H, W]). The `T` is the number of frames. """ data = self.data[idx] if self.transform is not None: data = self.transform(data) return data def __len__(self) -> int: return len(self.data) def _check_exists(self) -> bool: return os.path.exists(os.path.join(self._base_folder, self._filename)) def download(self) -> None: if self._check_exists(): return download_url( url=self._URL, root=self._base_folder, filename=self._filename, md5="be083ec986bfe91a449d63653c411eb2", ) ```
======================================================================================================================== SOURCE CODE FILE: omniglot.py LINES: 1 SIZE: 4.50 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\omniglot.py ENCODING: utf-8 ```py from os.path import join from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, list_dir, list_files from .vision import VisionDataset class Omniglot(VisionDataset): """`Omniglot <https://github.com/brendenlake/omniglot>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``omniglot-py`` exists. background (bool, optional): If True, creates dataset from the "background" set, otherwise creates from the "evaluation" set. This terminology is defined by the authors. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset zip files from the internet and puts it in root directory. If the zip files are already downloaded, they are not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ folder = "omniglot-py" download_url_prefix = "https://raw.githubusercontent.com/brendenlake/omniglot/master/python" zips_md5 = { "images_background": "68d2efa1b9178cc56df9314c21c6e718", "images_evaluation": "6b91aef0f799c5bb55b94e3f2daec811", } def __init__( self, root: Union[str, Path], background: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Optional[Callable[[Union[str, Path]], Any]] = None, ) -> None: super().__init__(join(root, self.folder), transform=transform, target_transform=target_transform) self.background = background if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") self.target_folder = join(self.root, self._get_target_folder()) self._alphabets = list_dir(self.target_folder) self._characters: List[str] = sum( ([join(a, c) for c in list_dir(join(self.target_folder, a))] for a in self._alphabets), [] ) self._character_images = [ [(image, idx) for image in list_files(join(self.target_folder, character), ".png")] for idx, character in enumerate(self._characters) ] self._flat_character_images: List[Tuple[str, int]] = sum(self._character_images, []) self.loader = loader def __len__(self) -> int: return len(self._flat_character_images) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target character class. """ image_name, character_class = self._flat_character_images[index] image_path = join(self.target_folder, self._characters[character_class], image_name) image = Image.open(image_path, mode="r").convert("L") if self.loader is None else self.loader(image_path) if self.transform: image = self.transform(image) if self.target_transform: character_class = self.target_transform(character_class) return image, character_class def _check_integrity(self) -> bool: zip_filename = self._get_target_folder() if not check_integrity(join(self.root, zip_filename + ".zip"), self.zips_md5[zip_filename]): return False return True def download(self) -> None: if self._check_integrity(): return filename = self._get_target_folder() zip_filename = filename + ".zip" url = self.download_url_prefix + "/" + zip_filename download_and_extract_archive(url, self.root, filename=zip_filename, md5=self.zips_md5[filename]) def _get_target_folder(self) -> str: return "images_background" if self.background else "images_evaluation" ```
=============================================================================================================================== SOURCE CODE FILE: oxford_iiit_pet.py LINES: 1 SIZE: 5.67 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\oxford_iiit_pet.py ENCODING: utf-8 ```py import os import os.path import pathlib from typing import Any, Callable, Optional, Sequence, Tuple, Union from PIL import Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class OxfordIIITPet(VisionDataset): """`Oxford-IIIT Pet Dataset <https://www.robots.ox.ac.uk/~vgg/data/pets/>`_. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"trainval"`` (default) or ``"test"``. target_types (string, sequence of strings, optional): Types of target to use. Can be ``category`` (default) or ``segmentation``. Can also be a list to output a tuple with all specified target types. The types represent: - ``category`` (int): Label for one of the 37 pet categories. - ``binary-category`` (int): Binary label for cat or dog. - ``segmentation`` (PIL image): Segmentation trimap of the image. If empty, ``None`` will be returned as target. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/oxford-iiit-pet``. If dataset is already downloaded, it is not downloaded again. """ _RESOURCES = ( ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz", "5c4f3ee8e5d25df40f4fd59a7f44e54c"), ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz", "95a8c909bbe2e81eed6a22bccdf3f68f"), ) _VALID_TARGET_TYPES = ("category", "binary-category", "segmentation") def __init__( self, root: Union[str, pathlib.Path], split: str = "trainval", target_types: Union[Sequence[str], str] = "category", transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ): self._split = verify_str_arg(split, "split", ("trainval", "test")) if isinstance(target_types, str): target_types = [target_types] self._target_types = [ verify_str_arg(target_type, "target_types", self._VALID_TARGET_TYPES) for target_type in target_types ] super().__init__(root, transforms=transforms, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / "oxford-iiit-pet" self._images_folder = self._base_folder / "images" self._anns_folder = self._base_folder / "annotations" self._segs_folder = self._anns_folder / "trimaps" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") image_ids = [] self._labels = [] self._bin_labels = [] with open(self._anns_folder / f"{self._split}.txt") as file: for line in file: image_id, label, bin_label, _ = line.strip().split() image_ids.append(image_id) self._labels.append(int(label) - 1) self._bin_labels.append(int(bin_label) - 1) self.bin_classes = ["Cat", "Dog"] self.classes = [ " ".join(part.title() for part in raw_cls.split("_")) for raw_cls, _ in sorted( {(image_id.rsplit("_", 1)[0], label) for image_id, label in zip(image_ids, self._labels)}, key=lambda image_id_and_label: image_id_and_label[1], ) ] self.bin_class_to_idx = dict(zip(self.bin_classes, range(len(self.bin_classes)))) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._images = [self._images_folder / f"{image_id}.jpg" for image_id in image_ids] self._segs = [self._segs_folder / f"{image_id}.png" for image_id in image_ids] def __len__(self) -> int: return len(self._images) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image = Image.open(self._images[idx]).convert("RGB") target: Any = [] for target_type in self._target_types: if target_type == "category": target.append(self._labels[idx]) elif target_type == "binary-category": target.append(self._bin_labels[idx]) else: # target_type == "segmentation" target.append(Image.open(self._segs[idx])) if not target: target = None elif len(target) == 1: target = target[0] else: target = tuple(target) if self.transforms: image, target = self.transforms(image, target) return image, target def _check_exists(self) -> bool: for folder in (self._images_folder, self._anns_folder): if not (os.path.exists(folder) and os.path.isdir(folder)): return False else: return True def _download(self) -> None: if self._check_exists(): return for url, md5 in self._RESOURCES: download_and_extract_archive(url, download_root=str(self._base_folder), md5=md5) ```
==================================================================================================================== SOURCE CODE FILE: pcam.py LINES: 1 SIZE: 5.29 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\pcam.py ENCODING: utf-8 ```py import pathlib from typing import Any, Callable, Optional, Tuple, Union from PIL import Image from .utils import _decompress, download_file_from_google_drive, verify_str_arg from .vision import VisionDataset class PCAM(VisionDataset): """`PCAM Dataset <https://github.com/basveeling/pcam>`_. The PatchCamelyon dataset is a binary classification dataset with 327,680 color images (96px x 96px), extracted from histopathologic scans of lymph node sections. Each image is annotated with a binary label indicating presence of metastatic tissue. This dataset requires the ``h5py`` package which you can install with ``pip install h5py``. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"test"`` or ``"val"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/pcam``. If dataset is already downloaded, it is not downloaded again. .. warning:: To download the dataset `gdown <https://github.com/wkentaro/gdown>`_ is required. """ _FILES = { "train": { "images": ( "camelyonpatch_level_2_split_train_x.h5", # Data file name "1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", # Google Drive ID "1571f514728f59376b705fc836ff4b63", # md5 hash ), "targets": ( "camelyonpatch_level_2_split_train_y.h5", "1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG", "35c2d7259d906cfc8143347bb8e05be7", ), }, "test": { "images": ( "camelyonpatch_level_2_split_test_x.h5", "1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_", "d8c2d60d490dbd479f8199bdfa0cf6ec", ), "targets": ( "camelyonpatch_level_2_split_test_y.h5", "17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP", "60a7035772fbdb7f34eb86d4420cf66a", ), }, "val": { "images": ( "camelyonpatch_level_2_split_valid_x.h5", "1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3", "d5b63470df7cfa627aeec8b9dc0c066e", ), "targets": ( "camelyonpatch_level_2_split_valid_y.h5", "1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO", "2b85f58b927af9964a4c15b8f7e8f179", ), }, } def __init__( self, root: Union[str, pathlib.Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ): try: import h5py self.h5py = h5py except ImportError: raise RuntimeError( "h5py is not found. This dataset needs to have h5py installed: please run pip install h5py" ) self._split = verify_str_arg(split, "split", ("train", "test", "val")) super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / "pcam" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") def __len__(self) -> int: images_file = self._FILES[self._split]["images"][0] with self.h5py.File(self._base_folder / images_file) as images_data: return images_data["x"].shape[0] def __getitem__(self, idx: int) -> Tuple[Any, Any]: images_file = self._FILES[self._split]["images"][0] with self.h5py.File(self._base_folder / images_file) as images_data: image = Image.fromarray(images_data["x"][idx]).convert("RGB") targets_file = self._FILES[self._split]["targets"][0] with self.h5py.File(self._base_folder / targets_file) as targets_data: target = int(targets_data["y"][idx, 0, 0, 0]) # shape is [num_images, 1, 1, 1] if self.transform: image = self.transform(image) if self.target_transform: target = self.target_transform(target) return image, target def _check_exists(self) -> bool: images_file = self._FILES[self._split]["images"][0] targets_file = self._FILES[self._split]["targets"][0] return all(self._base_folder.joinpath(h5_file).exists() for h5_file in (images_file, targets_file)) def _download(self) -> None: if self._check_exists(): return for file_name, file_id, md5 in self._FILES[self._split].values(): archive_name = file_name + ".gz" download_file_from_google_drive(file_id, str(self._base_folder), filename=archive_name, md5=md5) _decompress(str(self._base_folder / archive_name)) ```
========================================================================================================================= SOURCE CODE FILE: phototour.py LINES: 1 SIZE: 7.91 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\phototour.py ENCODING: utf-8 ```py import os from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from PIL import Image from .utils import download_url from .vision import VisionDataset class PhotoTour(VisionDataset): """`Multi-view Stereo Correspondence <http://matthewalunbrown.com/patchdata/patchdata.html>`_ Dataset. .. note:: We only provide the newer version of the dataset, since the authors state that it is more suitable for training descriptors based on difference of Gaussian, or Harris corners, as the patches are centred on real interest point detections, rather than being projections of 3D points as is the case in the old dataset. The original dataset is available under http://phototour.cs.washington.edu/patches/default.htm. Args: root (str or ``pathlib.Path``): Root directory where images are. name (string): Name of the dataset to load. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ urls = { "notredame_harris": [ "http://matthewalunbrown.com/patchdata/notredame_harris.zip", "notredame_harris.zip", "69f8c90f78e171349abdf0307afefe4d", ], "yosemite_harris": [ "http://matthewalunbrown.com/patchdata/yosemite_harris.zip", "yosemite_harris.zip", "a73253d1c6fbd3ba2613c45065c00d46", ], "liberty_harris": [ "http://matthewalunbrown.com/patchdata/liberty_harris.zip", "liberty_harris.zip", "c731fcfb3abb4091110d0ae8c7ba182c", ], "notredame": [ "http://icvl.ee.ic.ac.uk/vbalnt/notredame.zip", "notredame.zip", "509eda8535847b8c0a90bbb210c83484", ], "yosemite": ["http://icvl.ee.ic.ac.uk/vbalnt/yosemite.zip", "yosemite.zip", "533b2e8eb7ede31be40abc317b2fd4f0"], "liberty": ["http://icvl.ee.ic.ac.uk/vbalnt/liberty.zip", "liberty.zip", "fdd9152f138ea5ef2091746689176414"], } means = { "notredame": 0.4854, "yosemite": 0.4844, "liberty": 0.4437, "notredame_harris": 0.4854, "yosemite_harris": 0.4844, "liberty_harris": 0.4437, } stds = { "notredame": 0.1864, "yosemite": 0.1818, "liberty": 0.2019, "notredame_harris": 0.1864, "yosemite_harris": 0.1818, "liberty_harris": 0.2019, } lens = { "notredame": 468159, "yosemite": 633587, "liberty": 450092, "liberty_harris": 379587, "yosemite_harris": 450912, "notredame_harris": 325295, } image_ext = "bmp" info_file = "info.txt" matches_files = "m50_100000_100000_0.txt" def __init__( self, root: Union[str, Path], name: str, train: bool = True, transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform) self.name = name self.data_dir = os.path.join(self.root, name) self.data_down = os.path.join(self.root, f"{name}.zip") self.data_file = os.path.join(self.root, f"{name}.pt") self.train = train self.mean = self.means[name] self.std = self.stds[name] if download: self.download() if not self._check_datafile_exists(): self.cache() # load the serialized data self.data, self.labels, self.matches = torch.load(self.data_file, weights_only=True) def __getitem__(self, index: int) -> Union[torch.Tensor, Tuple[Any, Any, torch.Tensor]]: """ Args: index (int): Index Returns: tuple: (data1, data2, matches) """ if self.train: data = self.data[index] if self.transform is not None: data = self.transform(data) return data m = self.matches[index] data1, data2 = self.data[m[0]], self.data[m[1]] if self.transform is not None: data1 = self.transform(data1) data2 = self.transform(data2) return data1, data2, m[2] def __len__(self) -> int: return len(self.data if self.train else self.matches) def _check_datafile_exists(self) -> bool: return os.path.exists(self.data_file) def _check_downloaded(self) -> bool: return os.path.exists(self.data_dir) def download(self) -> None: if self._check_datafile_exists(): return if not self._check_downloaded(): # download files url = self.urls[self.name][0] filename = self.urls[self.name][1] md5 = self.urls[self.name][2] fpath = os.path.join(self.root, filename) download_url(url, self.root, filename, md5) import zipfile with zipfile.ZipFile(fpath, "r") as z: z.extractall(self.data_dir) os.unlink(fpath) def cache(self) -> None: # process and save as torch files dataset = ( read_image_file(self.data_dir, self.image_ext, self.lens[self.name]), read_info_file(self.data_dir, self.info_file), read_matches_files(self.data_dir, self.matches_files), ) with open(self.data_file, "wb") as f: torch.save(dataset, f) def extra_repr(self) -> str: split = "Train" if self.train is True else "Test" return f"Split: {split}" def read_image_file(data_dir: str, image_ext: str, n: int) -> torch.Tensor: """Return a Tensor containing the patches""" def PIL2array(_img: Image.Image) -> np.ndarray: """Convert PIL image type to numpy 2D array""" return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64) def find_files(_data_dir: str, _image_ext: str) -> List[str]: """Return a list with the file names of the images containing the patches""" files = [] # find those files with the specified extension for file_dir in os.listdir(_data_dir): if file_dir.endswith(_image_ext): files.append(os.path.join(_data_dir, file_dir)) return sorted(files) # sort files in ascend order to keep relations patches = [] list_files = find_files(data_dir, image_ext) for fpath in list_files: img = Image.open(fpath) for y in range(0, img.height, 64): for x in range(0, img.width, 64): patch = img.crop((x, y, x + 64, y + 64)) patches.append(PIL2array(patch)) return torch.ByteTensor(np.array(patches[:n])) def read_info_file(data_dir: str, info_file: str) -> torch.Tensor: """Return a Tensor containing the list of labels Read the file and keep only the ID of the 3D point. """ with open(os.path.join(data_dir, info_file)) as f: labels = [int(line.split()[0]) for line in f] return torch.LongTensor(labels) def read_matches_files(data_dir: str, matches_file: str) -> torch.Tensor: """Return a Tensor containing the ground truth matches Read the file and keep only 3D point ID. Matches are represented with a 1, non matches with a 0. """ matches = [] with open(os.path.join(data_dir, matches_file)) as f: for line in f: line_split = line.split() matches.append([int(line_split[0]), int(line_split[3]), int(line_split[1] == line_split[4])]) return torch.LongTensor(matches) ```
========================================================================================================================= SOURCE CODE FILE: places365.py LINES: 2 SIZE: 7.48 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\places365.py ENCODING: utf-8 ```py import os from os import path from pathlib import Path from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union from urllib.parse import urljoin from .folder import default_loader from .utils import check_integrity, download_and_extract_archive, verify_str_arg from .vision import VisionDataset class Places365(VisionDataset): r"""`Places365 <http://places2.csail.mit.edu/index.html>`_ classification dataset. Args: root (str or ``pathlib.Path``): Root directory of the Places365 dataset. split (string, optional): The dataset split. Can be one of ``train-standard`` (default), ``train-challenge``, ``val``, ``test``. small (bool, optional): If ``True``, uses the small images, i.e. resized to 256 x 256 pixels, instead of the high resolution ones. download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already downloaded archives are not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. Attributes: classes (list): List of the class names. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples targets (list): The class_index value for each image in the dataset Raises: RuntimeError: If ``download is False`` and the meta files, i.e. the devkit, are not present or corrupted. RuntimeError: If ``download is True`` and the image archive is already extracted. """ _SPLITS = ("train-standard", "train-challenge", "val", "test") _BASE_URL = "http://data.csail.mit.edu/places/places365/" # {variant: (archive, md5)} _DEVKIT_META = { "standard": ("filelist_places365-standard.tar", "35a0585fee1fa656440f3ab298f8479c"), "challenge": ("filelist_places365-challenge.tar", "70a8307e459c3de41690a7c76c931734"), } # (file, md5) _CATEGORIES_META = ("categories_places365.txt", "06c963b85866bd0649f97cb43dd16673") # {split: (file, md5)} _FILE_LIST_META = { "train-standard": ("places365_train_standard.txt", "30f37515461640559006b8329efbed1a"), "train-challenge": ("places365_train_challenge.txt", "b2931dc997b8c33c27e7329c073a6b57"), "val": ("places365_val.txt", "e9f2fd57bfd9d07630173f4e8708e4b1"), "test": ("places365_test.txt", "2fce8233fe493576d724142e45d93653"), } # {(split, small): (file, md5)} _IMAGES_META = { ("train-standard", False): ("train_large_places365standard.tar", "67e186b496a84c929568076ed01a8aa1"), ("train-challenge", False): ("train_large_places365challenge.tar", "605f18e68e510c82b958664ea134545f"), ("val", False): ("val_large.tar", "9b71c4993ad89d2d8bcbdc4aef38042f"), ("test", False): ("test_large.tar", "41a4b6b724b1d2cd862fb3871ed59913"), ("train-standard", True): ("train_256_places365standard.tar", "53ca1c756c3d1e7809517cc47c5561c5"), ("train-challenge", True): ("train_256_places365challenge.tar", "741915038a5e3471ec7332404dfb64ef"), ("val", True): ("val_256.tar", "e27b17d8d44f4af9a78502beb927f808"), ("test", True): ("test_256.tar", "f532f6ad7b582262a2ec8009075e186b"), } def __init__( self, root: Union[str, Path], split: str = "train-standard", small: bool = False, download: bool = False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.split = self._verify_split(split) self.small = small self.loader = loader self.classes, self.class_to_idx = self.load_categories(download) self.imgs, self.targets = self.load_file_list(download) if download: self.download_images() def __getitem__(self, index: int) -> Tuple[Any, Any]: file, target = self.imgs[index] image = self.loader(file) if self.transforms is not None: image, target = self.transforms(image, target) return image, target def __len__(self) -> int: return len(self.imgs) @property def variant(self) -> str: return "challenge" if "challenge" in self.split else "standard" @property def images_dir(self) -> str: size = "256" if self.small else "large" if self.split.startswith("train"): dir = f"data_{size}_{self.variant}" else: dir = f"{self.split}_{size}" return path.join(self.root, dir) def load_categories(self, download: bool = True) -> Tuple[List[str], Dict[str, int]]: def process(line: str) -> Tuple[str, int]: cls, idx = line.split() return cls, int(idx) file, md5 = self._CATEGORIES_META file = path.join(self.root, file) if not self._check_integrity(file, md5, download): self.download_devkit() with open(file) as fh: class_to_idx = dict(process(line) for line in fh) return sorted(class_to_idx.keys()), class_to_idx def load_file_list( self, download: bool = True ) -> Tuple[List[Tuple[str, Union[int, None]]], List[Union[int, None]]]: def process(line: str, sep="/") -> Tuple[str, Union[int, None]]: image, idx = (line.split() + [None])[:2] image = cast(str, image) idx = int(idx) if idx is not None else None return path.join(self.images_dir, image.lstrip(sep).replace(sep, os.sep)), idx file, md5 = self._FILE_LIST_META[self.split] file = path.join(self.root, file) if not self._check_integrity(file, md5, download): self.download_devkit() with open(file) as fh: images = [process(line) for line in fh] _, targets = zip(*images) return images, list(targets) def download_devkit(self) -> None: file, md5 = self._DEVKIT_META[self.variant] download_and_extract_archive(urljoin(self._BASE_URL, file), self.root, md5=md5) def download_images(self) -> None: if path.exists(self.images_dir): return file, md5 = self._IMAGES_META[(self.split, self.small)] download_and_extract_archive(urljoin(self._BASE_URL, file), self.root, md5=md5) if self.split.startswith("train"): os.rename(self.images_dir.rsplit("_", 1)[0], self.images_dir) def extra_repr(self) -> str: return "\n".join(("Split: {split}", "Small: {small}")).format(**self.__dict__) def _verify_split(self, split: str) -> str: return verify_str_arg(split, "split", self._SPLITS) def _check_integrity(self, file: str, md5: str, download: bool) -> bool: integrity = check_integrity(file, md5=md5) if not integrity and not download: raise RuntimeError( f"The file {file} does not exist or is corrupted. You can set download=True to download it." ) return integrity ```
============================================================================================================================= SOURCE CODE FILE: rendered_sst2.py LINES: 1 SIZE: 3.96 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\rendered_sst2.py ENCODING: utf-8 ```py from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader, make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class RenderedSST2(VisionDataset): """`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_. Rendered SST2 is an image classification dataset used to evaluate the models capability on optical character recognition. This dataset was generated by rendering sentences in the Standford Sentiment Treebank v2 dataset. This dataset contains two classes (positive and negative) and is divided in three splits: a train split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images (444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative). Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ _URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz" _MD5 = "2384d08e9dcfa4bd55b324e610496ee5" def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[str], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._split_to_folder = {"train": "train", "val": "valid", "test": "test"} self._base_folder = Path(self.root) / "rendered-sst2" self.classes = ["negative", "positive"] self.class_to_idx = {"negative": 0, "positive": 1} if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",)) self.loader = loader def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._samples[idx] image = self.loader(image_file) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: for class_label in set(self.classes): if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir(): return False return True def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5) ```
================================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.16 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\samplers\__init__.py ENCODING: utf-8 ```py from .clip_sampler import DistributedSampler, RandomClipSampler, UniformClipSampler __all__ = ("DistributedSampler", "UniformClipSampler", "RandomClipSampler") ```
===================================================================================================================================== SOURCE CODE FILE: clip_sampler.py LINES: 1 SIZE: 6.27 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\samplers\clip_sampler.py ENCODING: utf-8 ```py import math from typing import cast, Iterator, List, Optional, Sized, Union import torch import torch.distributed as dist from torch.utils.data import Sampler from torchvision.datasets.video_utils import VideoClips class DistributedSampler(Sampler): """ Extension of DistributedSampler, as discussed in https://github.com/pytorch/pytorch/issues/23430 Example: dataset: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] num_replicas: 4 shuffle: False when group_size = 1 RANK | shard_dataset ========================= rank_0 | [0, 4, 8, 12] rank_1 | [1, 5, 9, 13] rank_2 | [2, 6, 10, 0] rank_3 | [3, 7, 11, 1] when group_size = 2 RANK | shard_dataset ========================= rank_0 | [0, 1, 8, 9] rank_1 | [2, 3, 10, 11] rank_2 | [4, 5, 12, 13] rank_3 | [6, 7, 0, 1] """ def __init__( self, dataset: Sized, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = False, group_size: int = 1, ) -> None: if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() if len(dataset) % group_size != 0: raise ValueError( f"dataset length must be a multiplier of group size dataset length: {len(dataset)}, group size: {group_size}" ) self.dataset = dataset self.group_size = group_size self.num_replicas = num_replicas self.rank = rank self.epoch = 0 dataset_group_length = len(dataset) // group_size self.num_group_samples = int(math.ceil(dataset_group_length * 1.0 / self.num_replicas)) self.num_samples = self.num_group_samples * group_size self.total_size = self.num_samples * self.num_replicas self.shuffle = shuffle def __iter__(self) -> Iterator[int]: # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices: Union[torch.Tensor, List[int]] if self.shuffle: indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] assert len(indices) == self.total_size total_group_size = self.total_size // self.group_size indices = torch.reshape(torch.LongTensor(indices), (total_group_size, self.group_size)) # subsample indices = indices[self.rank : total_group_size : self.num_replicas, :] indices = torch.reshape(indices, (-1,)).tolist() assert len(indices) == self.num_samples if isinstance(self.dataset, Sampler): orig_indices = list(iter(self.dataset)) indices = [orig_indices[i] for i in indices] return iter(indices) def __len__(self) -> int: return self.num_samples def set_epoch(self, epoch: int) -> None: self.epoch = epoch class UniformClipSampler(Sampler): """ Sample `num_video_clips_per_video` clips for each video, equally spaced. When number of unique clips in the video is fewer than num_video_clips_per_video, repeat the clips until `num_video_clips_per_video` clips are collected Args: video_clips (VideoClips): video clips to sample from num_clips_per_video (int): number of clips to be sampled per video """ def __init__(self, video_clips: VideoClips, num_clips_per_video: int) -> None: if not isinstance(video_clips, VideoClips): raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}") self.video_clips = video_clips self.num_clips_per_video = num_clips_per_video def __iter__(self) -> Iterator[int]: idxs = [] s = 0 # select num_clips_per_video for each video, uniformly spaced for c in self.video_clips.clips: length = len(c) if length == 0: # corner case where video decoding fails continue sampled = torch.linspace(s, s + length - 1, steps=self.num_clips_per_video).floor().to(torch.int64) s += length idxs.append(sampled) return iter(cast(List[int], torch.cat(idxs).tolist())) def __len__(self) -> int: return sum(self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0) class RandomClipSampler(Sampler): """ Samples at most `max_video_clips_per_video` clips for each video randomly Args: video_clips (VideoClips): video clips to sample from max_clips_per_video (int): maximum number of clips to be sampled per video """ def __init__(self, video_clips: VideoClips, max_clips_per_video: int) -> None: if not isinstance(video_clips, VideoClips): raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}") self.video_clips = video_clips self.max_clips_per_video = max_clips_per_video def __iter__(self) -> Iterator[int]: idxs = [] s = 0 # select at most max_clips_per_video for each video, randomly for c in self.video_clips.clips: length = len(c) size = min(length, self.max_clips_per_video) sampled = torch.randperm(length)[:size] + s s += length idxs.append(sampled) idxs_ = torch.cat(idxs) # shuffle all clips randomly perm = torch.randperm(len(idxs_)) return iter(idxs_[perm].tolist()) def __len__(self) -> int: return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips) ```
=================================================================================================================== SOURCE CODE FILE: sbd.py LINES: 3 SIZE: 5.41 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\sbd.py ENCODING: utf-8 ```py import os import shutil from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import download_and_extract_archive, download_url, verify_str_arg from .vision import VisionDataset class SBDataset(VisionDataset): """`Semantic Boundaries Dataset <http://home.bharathh.info/pubs/codes/SBD/download.html>`_ The SBD currently contains annotations from 11355 images taken from the PASCAL VOC 2011 dataset. .. note :: Please note that the train and val splits included with this dataset are different from the splits in the PASCAL VOC dataset. In particular some "train" images might be part of VOC2012 val. If you are interested in testing on VOC 2012 val, then use `image_set='train_noval'`, which excludes all val images. .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Args: root (str or ``pathlib.Path``): Root directory of the Semantic Boundaries Dataset image_set (string, optional): Select the image_set to use, ``train``, ``val`` or ``train_noval``. Image set ``train_noval`` excludes VOC 2012 val images. mode (string, optional): Select target type. Possible values 'boundaries' or 'segmentation'. In case of 'boundaries', the target is an array of shape `[num_classes, H, W]`, where `num_classes=20`. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. Input sample is PIL image and target is a numpy array if `mode='boundaries'` or PIL image if `mode='segmentation'`. """ url = "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz" md5 = "82b4d87ceb2ed10f6038a1cba92111cb" filename = "benchmark.tgz" voc_train_url = "https://www.cs.cornell.edu/~bharathh/train_noval.txt" voc_split_filename = "train_noval.txt" voc_split_md5 = "79bff800c5f0b1ec6b21080a3c066722" def __init__( self, root: Union[str, Path], image_set: str = "train", mode: str = "boundaries", download: bool = False, transforms: Optional[Callable] = None, ) -> None: try: from scipy.io import loadmat self._loadmat = loadmat except ImportError: raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy") super().__init__(root, transforms) self.image_set = verify_str_arg(image_set, "image_set", ("train", "val", "train_noval")) self.mode = verify_str_arg(mode, "mode", ("segmentation", "boundaries")) self.num_classes = 20 sbd_root = self.root image_dir = os.path.join(sbd_root, "img") mask_dir = os.path.join(sbd_root, "cls") if download: download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.md5) extracted_ds_root = os.path.join(self.root, "benchmark_RELEASE", "dataset") for f in ["cls", "img", "inst", "train.txt", "val.txt"]: old_path = os.path.join(extracted_ds_root, f) shutil.move(old_path, sbd_root) if self.image_set == "train_noval": # Note: this is failing as of June 2024 https://github.com/pytorch/vision/issues/8471 download_url(self.voc_train_url, sbd_root, self.voc_split_filename, self.voc_split_md5) if not os.path.isdir(sbd_root): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") split_f = os.path.join(sbd_root, image_set.rstrip("\n") + ".txt") with open(os.path.join(split_f)) as fh: file_names = [x.strip() for x in fh.readlines()] self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names] self.masks = [os.path.join(mask_dir, x + ".mat") for x in file_names] self._get_target = self._get_segmentation_target if self.mode == "segmentation" else self._get_boundaries_target def _get_segmentation_target(self, filepath: str) -> Image.Image: mat = self._loadmat(filepath) return Image.fromarray(mat["GTcls"][0]["Segmentation"][0]) def _get_boundaries_target(self, filepath: str) -> np.ndarray: mat = self._loadmat(filepath) return np.concatenate( [np.expand_dims(mat["GTcls"][0]["Boundaries"][0][i][0].toarray(), axis=0) for i in range(self.num_classes)], axis=0, ) def __getitem__(self, index: int) -> Tuple[Any, Any]: img = Image.open(self.images[index]).convert("RGB") target = self._get_target(self.masks[index]) if self.transforms is not None: img, target = self.transforms(img, target) return img, target def __len__(self) -> int: return len(self.images) def extra_repr(self) -> str: lines = ["Image set: {image_set}", "Mode: {mode}"] return "\n".join(lines).format(**self.__dict__) ```
=================================================================================================================== SOURCE CODE FILE: sbu.py LINES: 1 SIZE: 4.48 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\sbu.py ENCODING: utf-8 ```py import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, loader: Callable[[str], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.loader = loader if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = self.loader(filename) if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass ```
======================================================================================================================= SOURCE CODE FILE: semeion.py LINES: 1 SIZE: 3.11 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\semeion.py ENCODING: utf-8 ```py import os.path from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import check_integrity, download_url from .vision import VisionDataset class SEMEION(VisionDataset): r"""`SEMEION <http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``semeion.py`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data" filename = "semeion.data" md5_checksum = "cb545d371d2ce14ec121470795a77432" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") fp = os.path.join(self.root, self.filename) data = np.loadtxt(fp) # convert value to 8 bit unsigned integer # color (white #255) the pixels self.data = (data[:, :256] * 255).astype("uint8") self.data = np.reshape(self.data, (-1, 16, 16)) self.labels = np.nonzero(data[:, 256:])[1] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: if self._check_integrity(): return root = self.root download_url(self.url, root, self.filename, self.md5_checksum) ```
============================================================================================================================= SOURCE CODE FILE: stanford_cars.py LINES: 1 SIZE: 4.29 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\stanford_cars.py ENCODING: utf-8 ```py import pathlib from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import verify_str_arg from .vision import VisionDataset class StanfordCars(VisionDataset): """Stanford Cars Dataset The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50 split The original URL is https://ai.stanford.edu/~jkrause/cars/car_dataset.html, the dataset isn't available online anymore. .. note:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Args: root (str or ``pathlib.Path``): Root directory of dataset split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): This parameter exists for backward compatibility but it does not download the dataset, since the original URL is not available anymore. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ def __init__( self, root: Union[str, pathlib.Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[str], Any] = default_loader, ) -> None: try: import scipy.io as sio except ImportError: raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy") super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = pathlib.Path(root) / "stanford_cars" devkit = self._base_folder / "devkit" if self._split == "train": self._annotations_mat_path = devkit / "cars_train_annos.mat" self._images_base_path = self._base_folder / "cars_train" else: self._annotations_mat_path = self._base_folder / "cars_test_annos_withlabels.mat" self._images_base_path = self._base_folder / "cars_test" if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found.") self._samples = [ ( str(self._images_base_path / annotation["fname"]), annotation["class"] - 1, # Original target mapping starts from 1, hence -1 ) for annotation in sio.loadmat(self._annotations_mat_path, squeeze_me=True)["annotations"] ] self.classes = sio.loadmat(str(devkit / "cars_meta.mat"), squeeze_me=True)["class_names"].tolist() self.class_to_idx = {cls: i for i, cls in enumerate(self.classes)} self.loader = loader def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx: int) -> Tuple[Any, Any]: """Returns pil_image and class_id for given index""" image_path, target = self._samples[idx] image = self.loader(image_path) if self.transform is not None: image = self.transform(image) if self.target_transform is not None: target = self.target_transform(target) return image, target def _check_exists(self) -> bool: if not (self._base_folder / "devkit").is_dir(): return False return self._annotations_mat_path.exists() and self._images_base_path.is_dir() def download(self): raise ValueError("The original URL is broken so the StanfordCars dataset cannot be downloaded anymore.") ```
===================================================================================================================== SOURCE CODE FILE: stl10.py LINES: 1 SIZE: 7.23 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\stl10.py ENCODING: utf-8 ```py import os.path from pathlib import Path from typing import Any, Callable, cast, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import check_integrity, download_and_extract_archive, verify_str_arg from .vision import VisionDataset class STL10(VisionDataset): """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``stl10_binary`` exists. split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}. Accordingly, dataset is selected. folds (int, optional): One of {0-9} or None. For training, loads one of the 10 pre-defined folds of 1k samples for the standard evaluation procedure. If no value is passed, loads the 5k samples. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ base_folder = "stl10_binary" url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz" filename = "stl10_binary.tar.gz" tgz_md5 = "91f7769df0f17e558f3565bffb0c7dfb" class_names_file = "class_names.txt" folds_list_file = "fold_indices.txt" train_list = [ ["train_X.bin", "918c2871b30a85fa023e0c44e0bee87f"], ["train_y.bin", "5a34089d4802c674881badbb80307741"], ["unlabeled_X.bin", "5242ba1fed5e4be9e1e742405eb56ca4"], ] test_list = [["test_X.bin", "7f263ba9f9e0b06b93213547f721ac82"], ["test_y.bin", "36f9794fa4beb8a2c72628de14fa638e"]] splits = ("train", "train+unlabeled", "unlabeled", "test") def __init__( self, root: Union[str, Path], split: str = "train", folds: Optional[int] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.split = verify_str_arg(split, "split", self.splits) self.folds = self._verify_folds(folds) if download: self.download() elif not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # now load the picked numpy arrays self.labels: Optional[np.ndarray] if self.split == "train": self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0]) self.labels = cast(np.ndarray, self.labels) self.__load_folds(folds) elif self.split == "train+unlabeled": self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0]) self.labels = cast(np.ndarray, self.labels) self.__load_folds(folds) unlabeled_data, _ = self.__loadfile(self.train_list[2][0]) self.data = np.concatenate((self.data, unlabeled_data)) self.labels = np.concatenate((self.labels, np.asarray([-1] * unlabeled_data.shape[0]))) elif self.split == "unlabeled": self.data, _ = self.__loadfile(self.train_list[2][0]) self.labels = np.asarray([-1] * self.data.shape[0]) else: # self.split == 'test': self.data, self.labels = self.__loadfile(self.test_list[0][0], self.test_list[1][0]) class_file = os.path.join(self.root, self.base_folder, self.class_names_file) if os.path.isfile(class_file): with open(class_file) as f: self.classes = f.read().splitlines() def _verify_folds(self, folds: Optional[int]) -> Optional[int]: if folds is None: return folds elif isinstance(folds, int): if folds in range(10): return folds msg = "Value for argument folds should be in the range [0, 10), but got {}." raise ValueError(msg.format(folds)) else: msg = "Expected type None or int for argument folds, but got type {}." raise ValueError(msg.format(type(folds))) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ target: Optional[int] if self.labels is not None: img, target = self.data[index], int(self.labels[index]) else: img, target = self.data[index], None # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(np.transpose(img, (1, 2, 0))) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return self.data.shape[0] def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: labels = None if labels_file: path_to_labels = os.path.join(self.root, self.base_folder, labels_file) with open(path_to_labels, "rb") as f: labels = np.fromfile(f, dtype=np.uint8) - 1 # 0-based path_to_data = os.path.join(self.root, self.base_folder, data_file) with open(path_to_data, "rb") as f: # read whole file in uint8 chunks everything = np.fromfile(f, dtype=np.uint8) images = np.reshape(everything, (-1, 3, 96, 96)) images = np.transpose(images, (0, 1, 3, 2)) return images, labels def _check_integrity(self) -> bool: for filename, md5 in self.train_list + self.test_list: fpath = os.path.join(self.root, self.base_folder, filename) if not check_integrity(fpath, md5): return False return True def download(self) -> None: if self._check_integrity(): return download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) self._check_integrity() def extra_repr(self) -> str: return "Split: {split}".format(**self.__dict__) def __load_folds(self, folds: Optional[int]) -> None: # loads one of the folds if specified if folds is None: return path_to_folds = os.path.join(self.root, self.base_folder, self.folds_list_file) with open(path_to_folds) as f: str_idx = f.read().splitlines()[folds] list_idx = np.fromstring(str_idx, dtype=np.int64, sep=" ") self.data = self.data[list_idx, :, :, :] if self.labels is not None: self.labels = self.labels[list_idx] ```
====================================================================================================================== SOURCE CODE FILE: sun397.py LINES: 1 SIZE: 3.19 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\sun397.py ENCODING: utf-8 ```py from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import download_and_extract_archive from .vision import VisionDataset class SUN397(VisionDataset): """`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_. The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of 397 categories with 108'754 images. Args: root (str or ``pathlib.Path``): Root directory of the dataset. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ _DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz" _DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[Union[str, Path]], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._data_dir = Path(self.root) / "SUN397" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") with open(self._data_dir / "ClassName.txt") as f: self.classes = [c[3:].strip() for c in f] self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._image_files = list(self._data_dir.rglob("sun_*.jpg")) self._labels = [ self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files ] self.loader = loader def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = self.loader(image_file) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _check_exists(self) -> bool: return self._data_dir.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5) ```
==================================================================================================================== SOURCE CODE FILE: svhn.py LINES: 1 SIZE: 4.84 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\svhn.py ENCODING: utf-8 ```py import os.path from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import check_integrity, download_url, verify_str_arg from .vision import VisionDataset class SVHN(VisionDataset): """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset. Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset, we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which expect the class labels to be in the range `[0, C-1]` .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format. Args: root (str or ``pathlib.Path``): Root directory of the dataset where the data is stored. split (string): One of {'train', 'test', 'extra'}. Accordingly dataset is selected. 'extra' is Extra training set. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373", ], "test": [ "http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3", ], "extra": [ "http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7", ], } def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat["X"] # loading from the .mat file gives an np.ndarray of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.labels = loaded_mat["y"].astype(np.int64).squeeze() # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.labels, self.labels == 10, 0) self.data = np.transpose(self.data, (3, 2, 0, 1)) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(np.transpose(img, (1, 2, 0))) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self) -> None: md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self) -> str: return "Split: {split}".format(**self.__dict__) ```
====================================================================================================================== SOURCE CODE FILE: ucf101.py LINES: 1 SIZE: 5.53 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\ucf101.py ENCODING: utf-8 ```py import os from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union from torch import Tensor from .folder import find_classes, make_dataset from .video_utils import VideoClips from .vision import VisionDataset class UCF101(VisionDataset): """ `UCF101 <https://www.crcv.ucf.edu/data/UCF101.php>`_ dataset. UCF101 is an action recognition video dataset. This dataset consider every video as a collection of video clips of fixed size, specified by ``frames_per_clip``, where the step in frames between each clip is given by ``step_between_clips``. The dataset itself can be downloaded from the dataset website; annotations that ``annotation_path`` should be pointing to can be downloaded from `here <https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip>`_. To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5`` and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two elements will come from video 1, and the next three elements from video 2. Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all frames in a video might be present. Internally, it uses a VideoClips object to handle clip creation. Args: root (str or ``pathlib.Path``): Root directory of the UCF101 Dataset. annotation_path (str): path to the folder containing the split files; see docstring above for download instructions of these files frames_per_clip (int): number of frames in a clip. step_between_clips (int, optional): number of frames between each clip. fold (int, optional): which fold to use. Should be between 1 and 3. train (bool, optional): if ``True``, creates a dataset from the train split, otherwise from the ``test`` split. transform (callable, optional): A function/transform that takes in a TxHxWxC video and returns a transformed version. output_format (str, optional): The format of the output video tensors (before transforms). Can be either "THWC" (default) or "TCHW". Returns: tuple: A 3-tuple with the following entries: - video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points - label (int): class of the video clip """ def __init__( self, root: Union[str, Path], annotation_path: str, frames_per_clip: int, step_between_clips: int = 1, frame_rate: Optional[int] = None, fold: int = 1, train: bool = True, transform: Optional[Callable] = None, _precomputed_metadata: Optional[Dict[str, Any]] = None, num_workers: int = 1, _video_width: int = 0, _video_height: int = 0, _video_min_dimension: int = 0, _audio_samples: int = 0, output_format: str = "THWC", ) -> None: super().__init__(root) if not 1 <= fold <= 3: raise ValueError(f"fold should be between 1 and 3, got {fold}") extensions = ("avi",) self.fold = fold self.train = train self.classes, class_to_idx = find_classes(self.root) self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None) video_list = [x[0] for x in self.samples] video_clips = VideoClips( video_list, frames_per_clip, step_between_clips, frame_rate, _precomputed_metadata, num_workers=num_workers, _video_width=_video_width, _video_height=_video_height, _video_min_dimension=_video_min_dimension, _audio_samples=_audio_samples, output_format=output_format, ) # we bookkeep the full version of video clips because we want to be able # to return the metadata of full version rather than the subset version of # video clips self.full_video_clips = video_clips self.indices = self._select_fold(video_list, annotation_path, fold, train) self.video_clips = video_clips.subset(self.indices) self.transform = transform @property def metadata(self) -> Dict[str, Any]: return self.full_video_clips.metadata def _select_fold(self, video_list: List[str], annotation_path: str, fold: int, train: bool) -> List[int]: name = "train" if train else "test" name = f"{name}list{fold:02d}.txt" f = os.path.join(annotation_path, name) selected_files = set() with open(f) as fid: data = fid.readlines() data = [x.strip().split(" ")[0] for x in data] data = [os.path.join(self.root, *x.split("/")) for x in data] selected_files.update(data) indices = [i for i in range(len(video_list)) if video_list[i] in selected_files] return indices def __len__(self) -> int: return self.video_clips.num_clips() def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]: video, audio, info, video_idx = self.video_clips.get_clip(idx) label = self.samples[self.indices[video_idx]][1] if self.transform is not None: video = self.transform(video) return video, audio, label ```
==================================================================================================================== SOURCE CODE FILE: usps.py LINES: 2 SIZE: 3.51 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\usps.py ENCODING: utf-8 ```py import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import download_url from .vision import VisionDataset class USPS(VisionDataset): """`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset. The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``. The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]`` and make pixel values in ``[0, 255]``. Args: root (str or ``pathlib.Path``): Root directory of dataset to store``USPS`` data files. train (bool, optional): If True, creates dataset from ``usps.bz2``, otherwise from ``usps.t.bz2``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2", "usps.bz2", "ec16c51db3855ca6c91edd34d0e9b197", ], "test": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2", "usps.t.bz2", "8ea070ee2aca1ac39742fdd1ef5ed118", ], } def __init__( self, root: Union[str, Path], train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) split = "train" if train else "test" url, filename, checksum = self.split_list[split] full_path = os.path.join(self.root, filename) if download and not os.path.exists(full_path): download_url(url, self.root, filename, md5=checksum) import bz2 with bz2.open(full_path) as fp: raw_data = [line.decode().split() for line in fp.readlines()] tmp_list = [[x.split(":")[-1] for x in data[1:]] for data in raw_data] imgs = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16)) imgs = ((imgs + 1) / 2 * 255).astype(dtype=np.uint8) targets = [int(d[0]) - 1 for d in raw_data] self.data = imgs self.targets = targets def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.targets[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) ```
===================================================================================================================== SOURCE CODE FILE: utils.py LINES: 2 SIZE: 16.08 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\utils.py ENCODING: utf-8 ```py import bz2 import gzip import hashlib import lzma import os import os.path import pathlib import re import sys import tarfile import urllib import urllib.error import urllib.request import zipfile from typing import Any, Callable, Dict, IO, Iterable, List, Optional, Tuple, TypeVar, Union from urllib.parse import urlparse import numpy as np import torch from torch.utils.model_zoo import tqdm from .._internally_replaced_utils import _download_file_from_remote_location, _is_remote_location_available USER_AGENT = "pytorch/vision" def _urlretrieve(url: str, filename: Union[str, pathlib.Path], chunk_size: int = 1024 * 32) -> None: with urllib.request.urlopen(urllib.request.Request(url, headers={"User-Agent": USER_AGENT})) as response: with open(filename, "wb") as fh, tqdm(total=response.length, unit="B", unit_scale=True) as pbar: while chunk := response.read(chunk_size): fh.write(chunk) pbar.update(len(chunk)) def calculate_md5(fpath: Union[str, pathlib.Path], chunk_size: int = 1024 * 1024) -> str: # Setting the `usedforsecurity` flag does not change anything about the functionality, but indicates that we are # not using the MD5 checksum for cryptography. This enables its usage in restricted environments like FIPS. Without # it torchvision.datasets is unusable in these environments since we perform a MD5 check everywhere. if sys.version_info >= (3, 9): md5 = hashlib.md5(usedforsecurity=False) else: md5 = hashlib.md5() with open(fpath, "rb") as f: while chunk := f.read(chunk_size): md5.update(chunk) return md5.hexdigest() def check_md5(fpath: Union[str, pathlib.Path], md5: str, **kwargs: Any) -> bool: return md5 == calculate_md5(fpath, **kwargs) def check_integrity(fpath: Union[str, pathlib.Path], md5: Optional[str] = None) -> bool: if not os.path.isfile(fpath): return False if md5 is None: return True return check_md5(fpath, md5) def _get_redirect_url(url: str, max_hops: int = 3) -> str: initial_url = url headers = {"Method": "HEAD", "User-Agent": USER_AGENT} for _ in range(max_hops + 1): with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response: if response.url == url or response.url is None: return url url = response.url else: raise RecursionError( f"Request to {initial_url} exceeded {max_hops} redirects. The last redirect points to {url}." ) def _get_google_drive_file_id(url: str) -> Optional[str]: parts = urlparse(url) if re.match(r"(drive|docs)[.]google[.]com", parts.netloc) is None: return None match = re.match(r"/file/d/(?P<id>[^/]*)", parts.path) if match is None: return None return match.group("id") def download_url( url: str, root: Union[str, pathlib.Path], filename: Optional[Union[str, pathlib.Path]] = None, md5: Optional[str] = None, max_redirect_hops: int = 3, ) -> None: """Download a file from a url and place it in root. Args: url (str): URL to download file from root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the basename of the URL md5 (str, optional): MD5 checksum of the download. If None, do not check max_redirect_hops (int, optional): Maximum number of redirect hops allowed """ root = os.path.expanduser(root) if not filename: filename = os.path.basename(url) fpath = os.fspath(os.path.join(root, filename)) os.makedirs(root, exist_ok=True) # check if file is already present locally if check_integrity(fpath, md5): return if _is_remote_location_available(): _download_file_from_remote_location(fpath, url) else: # expand redirect chain if needed url = _get_redirect_url(url, max_hops=max_redirect_hops) # check if file is located on Google Drive file_id = _get_google_drive_file_id(url) if file_id is not None: return download_file_from_google_drive(file_id, root, filename, md5) # download the file try: _urlretrieve(url, fpath) except (urllib.error.URLError, OSError) as e: # type: ignore[attr-defined] if url[:5] == "https": url = url.replace("https:", "http:") _urlretrieve(url, fpath) else: raise e # check integrity of downloaded file if not check_integrity(fpath, md5): raise RuntimeError("File not found or corrupted.") def list_dir(root: Union[str, pathlib.Path], prefix: bool = False) -> List[str]: """List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found """ root = os.path.expanduser(root) directories = [p for p in os.listdir(root) if os.path.isdir(os.path.join(root, p))] if prefix is True: directories = [os.path.join(root, d) for d in directories] return directories def list_files(root: Union[str, pathlib.Path], suffix: str, prefix: bool = False) -> List[str]: """List all files ending with a suffix at a given root Args: root (str): Path to directory whose folders need to be listed suffix (str or tuple): Suffix of the files to match, e.g. '.png' or ('.jpg', '.png'). It uses the Python "str.endswith" method and is passed directly prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the files found """ root = os.path.expanduser(root) files = [p for p in os.listdir(root) if os.path.isfile(os.path.join(root, p)) and p.endswith(suffix)] if prefix is True: files = [os.path.join(root, d) for d in files] return files def download_file_from_google_drive( file_id: str, root: Union[str, pathlib.Path], filename: Optional[Union[str, pathlib.Path]] = None, md5: Optional[str] = None, ): """Download a Google Drive file from and place it in root. Args: file_id (str): id of file to be downloaded root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the id of the file. md5 (str, optional): MD5 checksum of the download. If None, do not check """ try: import gdown except ModuleNotFoundError: raise RuntimeError( "To download files from GDrive, 'gdown' is required. You can install it with 'pip install gdown'." ) root = os.path.expanduser(root) if not filename: filename = file_id fpath = os.fspath(os.path.join(root, filename)) os.makedirs(root, exist_ok=True) if check_integrity(fpath, md5): return gdown.download(id=file_id, output=fpath, quiet=False, user_agent=USER_AGENT) if not check_integrity(fpath, md5): raise RuntimeError("File not found or corrupted.") def _extract_tar( from_path: Union[str, pathlib.Path], to_path: Union[str, pathlib.Path], compression: Optional[str] ) -> None: with tarfile.open(from_path, f"r:{compression[1:]}" if compression else "r") as tar: tar.extractall(to_path) _ZIP_COMPRESSION_MAP: Dict[str, int] = { ".bz2": zipfile.ZIP_BZIP2, ".xz": zipfile.ZIP_LZMA, } def _extract_zip( from_path: Union[str, pathlib.Path], to_path: Union[str, pathlib.Path], compression: Optional[str] ) -> None: with zipfile.ZipFile( from_path, "r", compression=_ZIP_COMPRESSION_MAP[compression] if compression else zipfile.ZIP_STORED ) as zip: zip.extractall(to_path) _ARCHIVE_EXTRACTORS: Dict[str, Callable[[Union[str, pathlib.Path], Union[str, pathlib.Path], Optional[str]], None]] = { ".tar": _extract_tar, ".zip": _extract_zip, } _COMPRESSED_FILE_OPENERS: Dict[str, Callable[..., IO]] = { ".bz2": bz2.open, ".gz": gzip.open, ".xz": lzma.open, } _FILE_TYPE_ALIASES: Dict[str, Tuple[Optional[str], Optional[str]]] = { ".tbz": (".tar", ".bz2"), ".tbz2": (".tar", ".bz2"), ".tgz": (".tar", ".gz"), } def _detect_file_type(file: Union[str, pathlib.Path]) -> Tuple[str, Optional[str], Optional[str]]: """Detect the archive type and/or compression of a file. Args: file (str): the filename Returns: (tuple): tuple of suffix, archive type, and compression Raises: RuntimeError: if file has no suffix or suffix is not supported """ suffixes = pathlib.Path(file).suffixes if not suffixes: raise RuntimeError( f"File '{file}' has no suffixes that could be used to detect the archive type and compression." ) suffix = suffixes[-1] # check if the suffix is a known alias if suffix in _FILE_TYPE_ALIASES: return (suffix, *_FILE_TYPE_ALIASES[suffix]) # check if the suffix is an archive type if suffix in _ARCHIVE_EXTRACTORS: return suffix, suffix, None # check if the suffix is a compression if suffix in _COMPRESSED_FILE_OPENERS: # check for suffix hierarchy if len(suffixes) > 1: suffix2 = suffixes[-2] # check if the suffix2 is an archive type if suffix2 in _ARCHIVE_EXTRACTORS: return suffix2 + suffix, suffix2, suffix return suffix, None, suffix valid_suffixes = sorted(set(_FILE_TYPE_ALIASES) | set(_ARCHIVE_EXTRACTORS) | set(_COMPRESSED_FILE_OPENERS)) raise RuntimeError(f"Unknown compression or archive type: '{suffix}'.\nKnown suffixes are: '{valid_suffixes}'.") def _decompress( from_path: Union[str, pathlib.Path], to_path: Optional[Union[str, pathlib.Path]] = None, remove_finished: bool = False, ) -> pathlib.Path: r"""Decompress a file. The compression is automatically detected from the file name. Args: from_path (str): Path to the file to be decompressed. to_path (str): Path to the decompressed file. If omitted, ``from_path`` without compression extension is used. remove_finished (bool): If ``True``, remove the file after the extraction. Returns: (str): Path to the decompressed file. """ suffix, archive_type, compression = _detect_file_type(from_path) if not compression: raise RuntimeError(f"Couldn't detect a compression from suffix {suffix}.") if to_path is None: to_path = pathlib.Path(os.fspath(from_path).replace(suffix, archive_type if archive_type is not None else "")) # We don't need to check for a missing key here, since this was already done in _detect_file_type() compressed_file_opener = _COMPRESSED_FILE_OPENERS[compression] with compressed_file_opener(from_path, "rb") as rfh, open(to_path, "wb") as wfh: wfh.write(rfh.read()) if remove_finished: os.remove(from_path) return pathlib.Path(to_path) def extract_archive( from_path: Union[str, pathlib.Path], to_path: Optional[Union[str, pathlib.Path]] = None, remove_finished: bool = False, ) -> Union[str, pathlib.Path]: """Extract an archive. The archive type and a possible compression is automatically detected from the file name. If the file is compressed but not an archive the call is dispatched to :func:`decompress`. Args: from_path (str): Path to the file to be extracted. to_path (str): Path to the directory the file will be extracted to. If omitted, the directory of the file is used. remove_finished (bool): If ``True``, remove the file after the extraction. Returns: (str): Path to the directory the file was extracted to. """ def path_or_str(ret_path: pathlib.Path) -> Union[str, pathlib.Path]: if isinstance(from_path, str): return os.fspath(ret_path) else: return ret_path if to_path is None: to_path = os.path.dirname(from_path) suffix, archive_type, compression = _detect_file_type(from_path) if not archive_type: ret_path = _decompress( from_path, os.path.join(to_path, os.path.basename(from_path).replace(suffix, "")), remove_finished=remove_finished, ) return path_or_str(ret_path) # We don't need to check for a missing key here, since this was already done in _detect_file_type() extractor = _ARCHIVE_EXTRACTORS[archive_type] extractor(from_path, to_path, compression) if remove_finished: os.remove(from_path) return path_or_str(pathlib.Path(to_path)) def download_and_extract_archive( url: str, download_root: Union[str, pathlib.Path], extract_root: Optional[Union[str, pathlib.Path]] = None, filename: Optional[Union[str, pathlib.Path]] = None, md5: Optional[str] = None, remove_finished: bool = False, ) -> None: download_root = os.path.expanduser(download_root) if extract_root is None: extract_root = download_root if not filename: filename = os.path.basename(url) download_url(url, download_root, filename, md5) archive = os.path.join(download_root, filename) extract_archive(archive, extract_root, remove_finished) def iterable_to_str(iterable: Iterable) -> str: return "'" + "', '".join([str(item) for item in iterable]) + "'" T = TypeVar("T", str, bytes) def verify_str_arg( value: T, arg: Optional[str] = None, valid_values: Optional[Iterable[T]] = None, custom_msg: Optional[str] = None, ) -> T: if not isinstance(value, str): if arg is None: msg = "Expected type str, but got type {type}." else: msg = "Expected type str for argument {arg}, but got type {type}." msg = msg.format(type=type(value), arg=arg) raise ValueError(msg) if valid_values is None: return value if value not in valid_values: if custom_msg is not None: msg = custom_msg else: msg = "Unknown value '{value}' for argument {arg}. Valid values are {{{valid_values}}}." msg = msg.format(value=value, arg=arg, valid_values=iterable_to_str(valid_values)) raise ValueError(msg) return value def _read_pfm(file_name: Union[str, pathlib.Path], slice_channels: int = 2) -> np.ndarray: """Read file in .pfm format. Might contain either 1 or 3 channels of data. Args: file_name (str): Path to the file. slice_channels (int): Number of channels to slice out of the file. Useful for reading different data formats stored in .pfm files: Optical Flows, Stereo Disparity Maps, etc. """ with open(file_name, "rb") as f: header = f.readline().rstrip() if header not in [b"PF", b"Pf"]: raise ValueError("Invalid PFM file") dim_match = re.match(rb"^(\d+)\s(\d+)\s$", f.readline()) if not dim_match: raise Exception("Malformed PFM header.") w, h = (int(dim) for dim in dim_match.groups()) scale = float(f.readline().rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: endian = ">" # big-endian data = np.fromfile(f, dtype=endian + "f") pfm_channels = 3 if header == b"PF" else 1 data = data.reshape(h, w, pfm_channels).transpose(2, 0, 1) data = np.flip(data, axis=1) # flip on h dimension data = data[:slice_channels, :, :] return data.astype(np.float32) def _flip_byte_order(t: torch.Tensor) -> torch.Tensor: return ( t.contiguous().view(torch.uint8).view(*t.shape, t.element_size()).flip(-1).view(*t.shape[:-1], -1).view(t.dtype) ) ```
=========================================================================================================================== SOURCE CODE FILE: video_utils.py LINES: 1 SIZE: 17.22 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\video_utils.py ENCODING: utf-8 ```py import bisect import math import warnings from fractions import Fraction from typing import Any, Callable, cast, Dict, List, Optional, Tuple, TypeVar, Union import torch from torchvision.io import _probe_video_from_file, _read_video_from_file, read_video, read_video_timestamps from .utils import tqdm T = TypeVar("T") def pts_convert(pts: int, timebase_from: Fraction, timebase_to: Fraction, round_func: Callable = math.floor) -> int: """convert pts between different time bases Args: pts: presentation timestamp, float timebase_from: original timebase. Fraction timebase_to: new timebase. Fraction round_func: rounding function. """ new_pts = Fraction(pts, 1) * timebase_from / timebase_to return round_func(new_pts) def unfold(tensor: torch.Tensor, size: int, step: int, dilation: int = 1) -> torch.Tensor: """ similar to tensor.unfold, but with the dilation and specialized for 1d tensors Returns all consecutive windows of `size` elements, with `step` between windows. The distance between each element in a window is given by `dilation`. """ if tensor.dim() != 1: raise ValueError(f"tensor should have 1 dimension instead of {tensor.dim()}") o_stride = tensor.stride(0) numel = tensor.numel() new_stride = (step * o_stride, dilation * o_stride) new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size) if new_size[0] < 1: new_size = (0, size) return torch.as_strided(tensor, new_size, new_stride) class _VideoTimestampsDataset: """ Dataset used to parallelize the reading of the timestamps of a list of videos, given their paths in the filesystem. Used in VideoClips and defined at top level, so it can be pickled when forking. """ def __init__(self, video_paths: List[str]) -> None: self.video_paths = video_paths def __len__(self) -> int: return len(self.video_paths) def __getitem__(self, idx: int) -> Tuple[List[int], Optional[float]]: return read_video_timestamps(self.video_paths[idx]) def _collate_fn(x: T) -> T: """ Dummy collate function to be used with _VideoTimestampsDataset """ return x class VideoClips: """ Given a list of video files, computes all consecutive subvideos of size `clip_length_in_frames`, where the distance between each subvideo in the same video is defined by `frames_between_clips`. If `frame_rate` is specified, it will also resample all the videos to have the same frame rate, and the clips will refer to this frame rate. Creating this instance the first time is time-consuming, as it needs to decode all the videos in `video_paths`. It is recommended that you cache the results after instantiation of the class. Recreating the clips for different clip lengths is fast, and can be done with the `compute_clips` method. Args: video_paths (List[str]): paths to the video files clip_length_in_frames (int): size of a clip in number of frames frames_between_clips (int): step (in frames) between each clip frame_rate (float, optional): if specified, it will resample the video so that it has `frame_rate`, and then the clips will be defined on the resampled video num_workers (int): how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0) output_format (str): The format of the output video tensors. Can be either "THWC" (default) or "TCHW". """ def __init__( self, video_paths: List[str], clip_length_in_frames: int = 16, frames_between_clips: int = 1, frame_rate: Optional[float] = None, _precomputed_metadata: Optional[Dict[str, Any]] = None, num_workers: int = 0, _video_width: int = 0, _video_height: int = 0, _video_min_dimension: int = 0, _video_max_dimension: int = 0, _audio_samples: int = 0, _audio_channels: int = 0, output_format: str = "THWC", ) -> None: self.video_paths = video_paths self.num_workers = num_workers # these options are not valid for pyav backend self._video_width = _video_width self._video_height = _video_height self._video_min_dimension = _video_min_dimension self._video_max_dimension = _video_max_dimension self._audio_samples = _audio_samples self._audio_channels = _audio_channels self.output_format = output_format.upper() if self.output_format not in ("THWC", "TCHW"): raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.") if _precomputed_metadata is None: self._compute_frame_pts() else: self._init_from_metadata(_precomputed_metadata) self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate) def _compute_frame_pts(self) -> None: self.video_pts = [] # len = num_videos. Each entry is a tensor of shape (num_frames_in_video,) self.video_fps: List[float] = [] # len = num_videos # strategy: use a DataLoader to parallelize read_video_timestamps # so need to create a dummy dataset first import torch.utils.data dl: torch.utils.data.DataLoader = torch.utils.data.DataLoader( _VideoTimestampsDataset(self.video_paths), # type: ignore[arg-type] batch_size=16, num_workers=self.num_workers, collate_fn=_collate_fn, ) with tqdm(total=len(dl)) as pbar: for batch in dl: pbar.update(1) batch_pts, batch_fps = list(zip(*batch)) # we need to specify dtype=torch.long because for empty list, # torch.as_tensor will use torch.float as default dtype. This # happens when decoding fails and no pts is returned in the list. batch_pts = [torch.as_tensor(pts, dtype=torch.long) for pts in batch_pts] self.video_pts.extend(batch_pts) self.video_fps.extend(batch_fps) def _init_from_metadata(self, metadata: Dict[str, Any]) -> None: self.video_paths = metadata["video_paths"] assert len(self.video_paths) == len(metadata["video_pts"]) self.video_pts = metadata["video_pts"] assert len(self.video_paths) == len(metadata["video_fps"]) self.video_fps = metadata["video_fps"] @property def metadata(self) -> Dict[str, Any]: _metadata = { "video_paths": self.video_paths, "video_pts": self.video_pts, "video_fps": self.video_fps, } return _metadata def subset(self, indices: List[int]) -> "VideoClips": video_paths = [self.video_paths[i] for i in indices] video_pts = [self.video_pts[i] for i in indices] video_fps = [self.video_fps[i] for i in indices] metadata = { "video_paths": video_paths, "video_pts": video_pts, "video_fps": video_fps, } return type(self)( video_paths, clip_length_in_frames=self.num_frames, frames_between_clips=self.step, frame_rate=self.frame_rate, _precomputed_metadata=metadata, num_workers=self.num_workers, _video_width=self._video_width, _video_height=self._video_height, _video_min_dimension=self._video_min_dimension, _video_max_dimension=self._video_max_dimension, _audio_samples=self._audio_samples, _audio_channels=self._audio_channels, output_format=self.output_format, ) @staticmethod def compute_clips_for_video( video_pts: torch.Tensor, num_frames: int, step: int, fps: Optional[float], frame_rate: Optional[float] = None ) -> Tuple[torch.Tensor, Union[List[slice], torch.Tensor]]: if fps is None: # if for some reason the video doesn't have fps (because doesn't have a video stream) # set the fps to 1. The value doesn't matter, because video_pts is empty anyway fps = 1 if frame_rate is None: frame_rate = fps total_frames = len(video_pts) * frame_rate / fps _idxs = VideoClips._resample_video_idx(int(math.floor(total_frames)), fps, frame_rate) video_pts = video_pts[_idxs] clips = unfold(video_pts, num_frames, step) if not clips.numel(): warnings.warn( "There aren't enough frames in the current video to get a clip for the given clip length and " "frames between clips. The video (and potentially others) will be skipped." ) idxs: Union[List[slice], torch.Tensor] if isinstance(_idxs, slice): idxs = [_idxs] * len(clips) else: idxs = unfold(_idxs, num_frames, step) return clips, idxs def compute_clips(self, num_frames: int, step: int, frame_rate: Optional[float] = None) -> None: """ Compute all consecutive sequences of clips from video_pts. Always returns clips of size `num_frames`, meaning that the last few frames in a video can potentially be dropped. Args: num_frames (int): number of frames for the clip step (int): distance between two clips frame_rate (int, optional): The frame rate """ self.num_frames = num_frames self.step = step self.frame_rate = frame_rate self.clips = [] self.resampling_idxs = [] for video_pts, fps in zip(self.video_pts, self.video_fps): clips, idxs = self.compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate) self.clips.append(clips) self.resampling_idxs.append(idxs) clip_lengths = torch.as_tensor([len(v) for v in self.clips]) self.cumulative_sizes = clip_lengths.cumsum(0).tolist() def __len__(self) -> int: return self.num_clips() def num_videos(self) -> int: return len(self.video_paths) def num_clips(self) -> int: """ Number of subclips that are available in the video list. """ return self.cumulative_sizes[-1] def get_clip_location(self, idx: int) -> Tuple[int, int]: """ Converts a flattened representation of the indices into a video_idx, clip_idx representation. """ video_idx = bisect.bisect_right(self.cumulative_sizes, idx) if video_idx == 0: clip_idx = idx else: clip_idx = idx - self.cumulative_sizes[video_idx - 1] return video_idx, clip_idx @staticmethod def _resample_video_idx(num_frames: int, original_fps: float, new_fps: float) -> Union[slice, torch.Tensor]: step = original_fps / new_fps if step.is_integer(): # optimization: if step is integer, don't need to perform # advanced indexing step = int(step) return slice(None, None, step) idxs = torch.arange(num_frames, dtype=torch.float32) * step idxs = idxs.floor().to(torch.int64) return idxs def get_clip(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any], int]: """ Gets a subclip from a list of videos. Args: idx (int): index of the subclip. Must be between 0 and num_clips(). Returns: video (Tensor) audio (Tensor) info (Dict) video_idx (int): index of the video in `video_paths` """ if idx >= self.num_clips(): raise IndexError(f"Index {idx} out of range ({self.num_clips()} number of clips)") video_idx, clip_idx = self.get_clip_location(idx) video_path = self.video_paths[video_idx] clip_pts = self.clips[video_idx][clip_idx] from torchvision import get_video_backend backend = get_video_backend() if backend == "pyav": # check for invalid options if self._video_width != 0: raise ValueError("pyav backend doesn't support _video_width != 0") if self._video_height != 0: raise ValueError("pyav backend doesn't support _video_height != 0") if self._video_min_dimension != 0: raise ValueError("pyav backend doesn't support _video_min_dimension != 0") if self._video_max_dimension != 0: raise ValueError("pyav backend doesn't support _video_max_dimension != 0") if self._audio_samples != 0: raise ValueError("pyav backend doesn't support _audio_samples != 0") if backend == "pyav": start_pts = clip_pts[0].item() end_pts = clip_pts[-1].item() video, audio, info = read_video(video_path, start_pts, end_pts) else: _info = _probe_video_from_file(video_path) video_fps = _info.video_fps audio_fps = None video_start_pts = cast(int, clip_pts[0].item()) video_end_pts = cast(int, clip_pts[-1].item()) audio_start_pts, audio_end_pts = 0, -1 audio_timebase = Fraction(0, 1) video_timebase = Fraction(_info.video_timebase.numerator, _info.video_timebase.denominator) if _info.has_audio: audio_timebase = Fraction(_info.audio_timebase.numerator, _info.audio_timebase.denominator) audio_start_pts = pts_convert(video_start_pts, video_timebase, audio_timebase, math.floor) audio_end_pts = pts_convert(video_end_pts, video_timebase, audio_timebase, math.ceil) audio_fps = _info.audio_sample_rate video, audio, _ = _read_video_from_file( video_path, video_width=self._video_width, video_height=self._video_height, video_min_dimension=self._video_min_dimension, video_max_dimension=self._video_max_dimension, video_pts_range=(video_start_pts, video_end_pts), video_timebase=video_timebase, audio_samples=self._audio_samples, audio_channels=self._audio_channels, audio_pts_range=(audio_start_pts, audio_end_pts), audio_timebase=audio_timebase, ) info = {"video_fps": video_fps} if audio_fps is not None: info["audio_fps"] = audio_fps if self.frame_rate is not None: resampling_idx = self.resampling_idxs[video_idx][clip_idx] if isinstance(resampling_idx, torch.Tensor): resampling_idx = resampling_idx - resampling_idx[0] video = video[resampling_idx] info["video_fps"] = self.frame_rate assert len(video) == self.num_frames, f"{video.shape} x {self.num_frames}" if self.output_format == "TCHW": # [T,H,W,C] --> [T,C,H,W] video = video.permute(0, 3, 1, 2) return video, audio, info, video_idx def __getstate__(self) -> Dict[str, Any]: video_pts_sizes = [len(v) for v in self.video_pts] # To be back-compatible, we convert data to dtype torch.long as needed # because for empty list, in legacy implementation, torch.as_tensor will # use torch.float as default dtype. This happens when decoding fails and # no pts is returned in the list. video_pts = [x.to(torch.int64) for x in self.video_pts] # video_pts can be an empty list if no frames have been decoded if video_pts: video_pts = torch.cat(video_pts) # type: ignore[assignment] # avoid bug in https://github.com/pytorch/pytorch/issues/32351 # TODO: Revert it once the bug is fixed. video_pts = video_pts.numpy() # type: ignore[attr-defined] # make a copy of the fields of self d = self.__dict__.copy() d["video_pts_sizes"] = video_pts_sizes d["video_pts"] = video_pts # delete the following attributes to reduce the size of dictionary. They # will be re-computed in "__setstate__()" del d["clips"] del d["resampling_idxs"] del d["cumulative_sizes"] # for backwards-compatibility d["_version"] = 2 return d def __setstate__(self, d: Dict[str, Any]) -> None: # for backwards-compatibility if "_version" not in d: self.__dict__ = d return video_pts = torch.as_tensor(d["video_pts"], dtype=torch.int64) video_pts = torch.split(video_pts, d["video_pts_sizes"], dim=0) # don't need this info anymore del d["video_pts_sizes"] d["video_pts"] = video_pts self.__dict__ = d # recompute attributes "clips", "resampling_idxs" and other derivative ones self.compute_clips(self.num_frames, self.step, self.frame_rate) ```
====================================================================================================================== SOURCE CODE FILE: vision.py LINES: 3 SIZE: 4.26 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\vision.py ENCODING: utf-8 ```py import os from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, Union import torch.utils.data as data from ..utils import _log_api_usage_once class VisionDataset(data.Dataset): """ Base Class For making datasets which are compatible with torchvision. It is necessary to override the ``__getitem__`` and ``__len__`` method. Args: root (string, optional): Root directory of dataset. Only used for `__repr__`. transforms (callable, optional): A function/transforms that takes in an image and a label and returns the transformed versions of both. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: :attr:`transforms` and the combination of :attr:`transform` and :attr:`target_transform` are mutually exclusive. """ _repr_indent = 4 def __init__( self, root: Union[str, Path] = None, # type: ignore[assignment] transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: _log_api_usage_once(self) if isinstance(root, str): root = os.path.expanduser(root) self.root = root has_transforms = transforms is not None has_separate_transform = transform is not None or target_transform is not None if has_transforms and has_separate_transform: raise ValueError("Only transforms or transform/target_transform can be passed as argument") # for backwards-compatibility self.transform = transform self.target_transform = target_transform if has_separate_transform: transforms = StandardTransform(transform, target_transform) self.transforms = transforms def __getitem__(self, index: int) -> Any: """ Args: index (int): Index Returns: (Any): Sample and meta data, optionally transformed by the respective transforms. """ raise NotImplementedError def __len__(self) -> int: raise NotImplementedError def __repr__(self) -> str: head = "Dataset " + self.__class__.__name__ body = [f"Number of datapoints: {self.__len__()}"] if self.root is not None: body.append(f"Root location: {self.root}") body += self.extra_repr().splitlines() if hasattr(self, "transforms") and self.transforms is not None: body += [repr(self.transforms)] lines = [head] + [" " * self._repr_indent + line for line in body] return "\n".join(lines) def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def extra_repr(self) -> str: return "" class StandardTransform: def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None: self.transform = transform self.target_transform = target_transform def __call__(self, input: Any, target: Any) -> Tuple[Any, Any]: if self.transform is not None: input = self.transform(input) if self.target_transform is not None: target = self.target_transform(target) return input, target def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def __repr__(self) -> str: body = [self.__class__.__name__] if self.transform is not None: body += self._format_transform_repr(self.transform, "Transform: ") if self.target_transform is not None: body += self._format_transform_repr(self.target_transform, "Target transform: ") return "\n".join(body) ```
=================================================================================================================== SOURCE CODE FILE: voc.py LINES: 2 SIZE: 8.85 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\voc.py ENCODING: utf-8 ```py import collections import os from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union from xml.etree.ElementTree import Element as ET_Element try: from defusedxml.ElementTree import parse as ET_parse except ImportError: from xml.etree.ElementTree import parse as ET_parse from PIL import Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset DATASET_YEAR_DICT = { "2012": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar", "filename": "VOCtrainval_11-May-2012.tar", "md5": "6cd6e144f989b92b3379bac3b3de84fd", "base_dir": os.path.join("VOCdevkit", "VOC2012"), }, "2011": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar", "filename": "VOCtrainval_25-May-2011.tar", "md5": "6c3384ef61512963050cb5d687e5bf1e", "base_dir": os.path.join("TrainVal", "VOCdevkit", "VOC2011"), }, "2010": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar", "filename": "VOCtrainval_03-May-2010.tar", "md5": "da459979d0c395079b5c75ee67908abb", "base_dir": os.path.join("VOCdevkit", "VOC2010"), }, "2009": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar", "filename": "VOCtrainval_11-May-2009.tar", "md5": "a3e00b113cfcfebf17e343f59da3caa1", "base_dir": os.path.join("VOCdevkit", "VOC2009"), }, "2008": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar", "filename": "VOCtrainval_11-May-2012.tar", "md5": "2629fa636546599198acfcfbfcf1904a", "base_dir": os.path.join("VOCdevkit", "VOC2008"), }, "2007": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar", "filename": "VOCtrainval_06-Nov-2007.tar", "md5": "c52e279531787c972589f7e41ab4ae64", "base_dir": os.path.join("VOCdevkit", "VOC2007"), }, "2007-test": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar", "filename": "VOCtest_06-Nov-2007.tar", "md5": "b6e924de25625d8de591ea690078ad9f", "base_dir": os.path.join("VOCdevkit", "VOC2007"), }, } class _VOCBase(VisionDataset): _SPLITS_DIR: str _TARGET_DIR: str _TARGET_FILE_EXT: str def __init__( self, root: Union[str, Path], year: str = "2012", image_set: str = "train", download: bool = False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None, ): super().__init__(root, transforms, transform, target_transform) self.year = verify_str_arg(year, "year", valid_values=[str(yr) for yr in range(2007, 2013)]) valid_image_sets = ["train", "trainval", "val"] if year == "2007": valid_image_sets.append("test") self.image_set = verify_str_arg(image_set, "image_set", valid_image_sets) key = "2007-test" if year == "2007" and image_set == "test" else year dataset_year_dict = DATASET_YEAR_DICT[key] self.url = dataset_year_dict["url"] self.filename = dataset_year_dict["filename"] self.md5 = dataset_year_dict["md5"] base_dir = dataset_year_dict["base_dir"] voc_root = os.path.join(self.root, base_dir) if download: download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.md5) if not os.path.isdir(voc_root): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") splits_dir = os.path.join(voc_root, "ImageSets", self._SPLITS_DIR) split_f = os.path.join(splits_dir, image_set.rstrip("\n") + ".txt") with open(os.path.join(split_f)) as f: file_names = [x.strip() for x in f.readlines()] image_dir = os.path.join(voc_root, "JPEGImages") self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names] target_dir = os.path.join(voc_root, self._TARGET_DIR) self.targets = [os.path.join(target_dir, x + self._TARGET_FILE_EXT) for x in file_names] assert len(self.images) == len(self.targets) def __len__(self) -> int: return len(self.images) class VOCSegmentation(_VOCBase): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset. Args: root (str or ``pathlib.Path``): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``. image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If ``year=="2007"``, can also be ``"test"``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ _SPLITS_DIR = "Segmentation" _TARGET_DIR = "SegmentationClass" _TARGET_FILE_EXT = ".png" @property def masks(self) -> List[str]: return self.targets def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is the image segmentation. """ img = Image.open(self.images[index]).convert("RGB") target = Image.open(self.masks[index]) if self.transforms is not None: img, target = self.transforms(img, target) return img, target class VOCDetection(_VOCBase): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Detection Dataset. Args: root (str or ``pathlib.Path``): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``. image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If ``year=="2007"``, can also be ``"test"``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. (default: alphabetic indexing of VOC's 20 classes). transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, required): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ _SPLITS_DIR = "Main" _TARGET_DIR = "Annotations" _TARGET_FILE_EXT = ".xml" @property def annotations(self) -> List[str]: return self.targets def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a dictionary of the XML tree. """ img = Image.open(self.images[index]).convert("RGB") target = self.parse_voc_xml(ET_parse(self.annotations[index]).getroot()) if self.transforms is not None: img, target = self.transforms(img, target) return img, target @staticmethod def parse_voc_xml(node: ET_Element) -> Dict[str, Any]: voc_dict: Dict[str, Any] = {} children = list(node) if children: def_dic: Dict[str, Any] = collections.defaultdict(list) for dc in map(VOCDetection.parse_voc_xml, children): for ind, v in dc.items(): def_dic[ind].append(v) if node.tag == "annotation": def_dic["object"] = [def_dic["object"]] voc_dict = {node.tag: {ind: v[0] if len(v) == 1 else v for ind, v in def_dic.items()}} if node.text: text = node.text.strip() if not children: voc_dict[node.tag] = text return voc_dict ```
========================================================================================================================= SOURCE CODE FILE: widerface.py LINES: 2 SIZE: 8.26 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\datasets\widerface.py ENCODING: utf-8 ```py import os from os.path import abspath, expanduser from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from PIL import Image from .utils import download_and_extract_archive, download_file_from_google_drive, extract_archive, verify_str_arg from .vision import VisionDataset class WIDERFace(VisionDataset): """`WIDERFace <http://shuoyang1213.me/WIDERFACE/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory where images and annotations are downloaded to. Expects the following folder structure if download=False: .. code:: <root> └── widerface ├── wider_face_split ('wider_face_split.zip' if compressed) ├── WIDER_train ('WIDER_train.zip' if compressed) ├── WIDER_val ('WIDER_val.zip' if compressed) └── WIDER_test ('WIDER_test.zip' if compressed) split (string): The dataset split to use. One of {``train``, ``val``, ``test``}. Defaults to ``train``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. .. warning:: To download the dataset `gdown <https://github.com/wkentaro/gdown>`_ is required. """ BASE_FOLDER = "widerface" FILE_LIST = [ # File ID MD5 Hash Filename ("15hGDLhsx8bLgLcIRD5DhYt5iBxnjNF1M", "3fedf70df600953d25982bcd13d91ba2", "WIDER_train.zip"), ("1GUCogbp16PMGa39thoMMeWxp7Rp5oM8Q", "dfa7d7e790efa35df3788964cf0bbaea", "WIDER_val.zip"), ("1HIfDbVEWKmsYKJZm4lchTBDLW5N7dY5T", "e5d8f4248ed24c334bbd12f49c29dd40", "WIDER_test.zip"), ] ANNOTATIONS_FILE = ( "http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip", "0e3767bcf0e326556d407bf5bff5d27c", "wider_face_split.zip", ) def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__( root=os.path.join(root, self.BASE_FOLDER), transform=transform, target_transform=target_transform ) # check arguments self.split = verify_str_arg(split, "split", ("train", "val", "test")) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download and prepare it") self.img_info: List[Dict[str, Union[str, Dict[str, torch.Tensor]]]] = [] if self.split in ("train", "val"): self.parse_train_val_annotations_file() else: self.parse_test_annotations_file() def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a dict of annotations for all faces in the image. target=None for the test split. """ # stay consistent with other datasets and return a PIL Image img = Image.open(self.img_info[index]["img_path"]) # type: ignore[arg-type] if self.transform is not None: img = self.transform(img) target = None if self.split == "test" else self.img_info[index]["annotations"] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.img_info) def extra_repr(self) -> str: lines = ["Split: {split}"] return "\n".join(lines).format(**self.__dict__) def parse_train_val_annotations_file(self) -> None: filename = "wider_face_train_bbx_gt.txt" if self.split == "train" else "wider_face_val_bbx_gt.txt" filepath = os.path.join(self.root, "wider_face_split", filename) with open(filepath) as f: lines = f.readlines() file_name_line, num_boxes_line, box_annotation_line = True, False, False num_boxes, box_counter = 0, 0 labels = [] for line in lines: line = line.rstrip() if file_name_line: img_path = os.path.join(self.root, "WIDER_" + self.split, "images", line) img_path = abspath(expanduser(img_path)) file_name_line = False num_boxes_line = True elif num_boxes_line: num_boxes = int(line) num_boxes_line = False box_annotation_line = True elif box_annotation_line: box_counter += 1 line_split = line.split(" ") line_values = [int(x) for x in line_split] labels.append(line_values) if box_counter >= num_boxes: box_annotation_line = False file_name_line = True labels_tensor = torch.tensor(labels) self.img_info.append( { "img_path": img_path, "annotations": { "bbox": labels_tensor[:, 0:4].clone(), # x, y, width, height "blur": labels_tensor[:, 4].clone(), "expression": labels_tensor[:, 5].clone(), "illumination": labels_tensor[:, 6].clone(), "occlusion": labels_tensor[:, 7].clone(), "pose": labels_tensor[:, 8].clone(), "invalid": labels_tensor[:, 9].clone(), }, } ) box_counter = 0 labels.clear() else: raise RuntimeError(f"Error parsing annotation file {filepath}") def parse_test_annotations_file(self) -> None: filepath = os.path.join(self.root, "wider_face_split", "wider_face_test_filelist.txt") filepath = abspath(expanduser(filepath)) with open(filepath) as f: lines = f.readlines() for line in lines: line = line.rstrip() img_path = os.path.join(self.root, "WIDER_test", "images", line) img_path = abspath(expanduser(img_path)) self.img_info.append({"img_path": img_path}) def _check_integrity(self) -> bool: # Allow original archive to be deleted (zip). Only need the extracted images all_files = self.FILE_LIST.copy() all_files.append(self.ANNOTATIONS_FILE) for (_, md5, filename) in all_files: file, ext = os.path.splitext(filename) extracted_dir = os.path.join(self.root, file) if not os.path.exists(extracted_dir): return False return True def download(self) -> None: if self._check_integrity(): return # download and extract image data for (file_id, md5, filename) in self.FILE_LIST: download_file_from_google_drive(file_id, self.root, filename, md5) filepath = os.path.join(self.root, filename) extract_archive(filepath) # download and extract annotation files download_and_extract_archive( url=self.ANNOTATIONS_FILE[0], download_root=self.root, md5=self.ANNOTATIONS_FILE[1] ) ```
================================================================================================================ SOURCE CODE FILE: extension.py LINES: 1 SIZE: 3.16 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\extension.py ENCODING: utf-8 ```py import os import sys import torch from ._internally_replaced_utils import _get_extension_path _HAS_OPS = False def _has_ops(): return False try: # On Windows Python-3.8.x has `os.add_dll_directory` call, # which is called to configure dll search path. # To find cuda related dlls we need to make sure the # conda environment/bin path is configured Please take a look: # https://stackoverflow.com/questions/59330863/cant-import-dll-module-in-python # Please note: if some path can't be added using add_dll_directory we simply ignore this path if os.name == "nt" and sys.version_info < (3, 9): env_path = os.environ["PATH"] path_arr = env_path.split(";") for path in path_arr: if os.path.exists(path): try: os.add_dll_directory(path) # type: ignore[attr-defined] except Exception: pass lib_path = _get_extension_path("_C") torch.ops.load_library(lib_path) _HAS_OPS = True def _has_ops(): # noqa: F811 return True except (ImportError, OSError): pass def _assert_has_ops(): if not _has_ops(): raise RuntimeError( "Couldn't load custom C++ ops. This can happen if your PyTorch and " "torchvision versions are incompatible, or if you had errors while compiling " "torchvision from source. For further information on the compatible versions, check " "https://github.com/pytorch/vision#installation for the compatibility matrix. " "Please check your PyTorch version with torch.__version__ and your torchvision " "version with torchvision.__version__ and verify if they are compatible, and if not " "please reinstall torchvision so that it matches your PyTorch install." ) def _check_cuda_version(): """ Make sure that CUDA versions match between the pytorch install and torchvision install """ if not _HAS_OPS: return -1 from torch.version import cuda as torch_version_cuda _version = torch.ops.torchvision._cuda_version() if _version != -1 and torch_version_cuda is not None: tv_version = str(_version) if int(tv_version) < 10000: tv_major = int(tv_version[0]) tv_minor = int(tv_version[2]) else: tv_major = int(tv_version[0:2]) tv_minor = int(tv_version[3]) t_version = torch_version_cuda.split(".") t_major = int(t_version[0]) t_minor = int(t_version[1]) if t_major != tv_major: raise RuntimeError( "Detected that PyTorch and torchvision were compiled with different CUDA major versions. " f"PyTorch has CUDA Version={t_major}.{t_minor} and torchvision has " f"CUDA Version={tv_major}.{tv_minor}. " "Please reinstall the torchvision that matches your PyTorch install." ) return _version def _load_library(lib_name): lib_path = _get_extension_path(lib_name) torch.ops.load_library(lib_path) _check_cuda_version() ```
================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.62 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\io\__init__.py ENCODING: utf-8 ```py try: from ._load_gpu_decoder import _HAS_GPU_VIDEO_DECODER except ModuleNotFoundError: _HAS_GPU_VIDEO_DECODER = False from ._video_opt import ( _HAS_CPU_VIDEO_DECODER, _HAS_VIDEO_OPT, _probe_video_from_file, _probe_video_from_memory, _read_video_from_file, _read_video_from_memory, _read_video_timestamps_from_file, _read_video_timestamps_from_memory, Timebase, VideoMetaData, ) from .image import ( decode_avif, decode_gif, decode_heic, decode_image, decode_jpeg, decode_png, decode_webp, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) from .video import read_video, read_video_timestamps, write_video from .video_reader import VideoReader __all__ = [ "write_video", "read_video", "read_video_timestamps", "_read_video_from_file", "_read_video_timestamps_from_file", "_probe_video_from_file", "_read_video_from_memory", "_read_video_timestamps_from_memory", "_probe_video_from_memory", "_HAS_CPU_VIDEO_DECODER", "_HAS_VIDEO_OPT", "_HAS_GPU_VIDEO_DECODER", "_read_video_clip_from_memory", "_read_video_meta_data", "VideoMetaData", "Timebase", "ImageReadMode", "decode_image", "decode_jpeg", "decode_png", "decode_avif", "decode_heic", "decode_webp", "decode_gif", "encode_jpeg", "encode_png", "read_file", "read_image", "write_file", "write_jpeg", "write_png", "Video", "VideoReader", ] ```
=========================================================================================================================== SOURCE CODE FILE: _load_gpu_decoder.py LINES: 1 SIZE: 0.18 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\io\_load_gpu_decoder.py ENCODING: utf-8 ```py from ..extension import _load_library try: _load_library("gpu_decoder") _HAS_GPU_VIDEO_DECODER = True except (ImportError, OSError): _HAS_GPU_VIDEO_DECODER = False ```
==================================================================================================================================== SOURCE CODE FILE: _video_deprecation_warning.py LINES: 1 SIZE: 0.45 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\io\_video_deprecation_warning.py ENCODING: utf-8 ```py import warnings def _raise_video_deprecation_warning(): warnings.warn( "The video decoding and encoding capabilities of torchvision " "are deprecated from version 0.22 and will be removed in version 0.24. " "We recommend that you migrate to TorchCodec, where we'll consolidate " "the future decoding/encoding capabilities of PyTorch: " "https://github.com/pytorch/torchcodec", UserWarning, ) ```
==================================================================================================================== SOURCE CODE FILE: _video_opt.py LINES: 1 SIZE: 20.82 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\io\_video_opt.py ENCODING: utf-8 ```py import math import warnings from fractions import Fraction from typing import Dict, List, Optional, Tuple, Union import torch from ..extension import _load_library from ._video_deprecation_warning import _raise_video_deprecation_warning try: _load_library("video_reader") _HAS_CPU_VIDEO_DECODER = True except (ImportError, OSError): _HAS_CPU_VIDEO_DECODER = False _HAS_VIDEO_OPT = _HAS_CPU_VIDEO_DECODER # For BC default_timebase = Fraction(0, 1) # simple class for torch scripting # the complex Fraction class from fractions module is not scriptable class Timebase: __annotations__ = {"numerator": int, "denominator": int} __slots__ = ["numerator", "denominator"] def __init__( self, numerator: int, denominator: int, ) -> None: self.numerator = numerator self.denominator = denominator class VideoMetaData: __annotations__ = { "has_video": bool, "video_timebase": Timebase, "video_duration": float, "video_fps": float, "has_audio": bool, "audio_timebase": Timebase, "audio_duration": float, "audio_sample_rate": float, } __slots__ = [ "has_video", "video_timebase", "video_duration", "video_fps", "has_audio", "audio_timebase", "audio_duration", "audio_sample_rate", ] def __init__(self) -> None: self.has_video = False self.video_timebase = Timebase(0, 1) self.video_duration = 0.0 self.video_fps = 0.0 self.has_audio = False self.audio_timebase = Timebase(0, 1) self.audio_duration = 0.0 self.audio_sample_rate = 0.0 def _validate_pts(pts_range: Tuple[int, int]) -> None: if pts_range[0] > pts_range[1] > 0: raise ValueError( f"Start pts should not be smaller than end pts, got start pts: {pts_range[0]} and end pts: {pts_range[1]}" ) def _fill_info( vtimebase: torch.Tensor, vfps: torch.Tensor, vduration: torch.Tensor, atimebase: torch.Tensor, asample_rate: torch.Tensor, aduration: torch.Tensor, ) -> VideoMetaData: """ Build update VideoMetaData struct with info about the video """ meta = VideoMetaData() if vtimebase.numel() > 0: meta.video_timebase = Timebase(int(vtimebase[0].item()), int(vtimebase[1].item())) timebase = vtimebase[0].item() / float(vtimebase[1].item()) if vduration.numel() > 0: meta.has_video = True meta.video_duration = float(vduration.item()) * timebase if vfps.numel() > 0: meta.video_fps = float(vfps.item()) if atimebase.numel() > 0: meta.audio_timebase = Timebase(int(atimebase[0].item()), int(atimebase[1].item())) timebase = atimebase[0].item() / float(atimebase[1].item()) if aduration.numel() > 0: meta.has_audio = True meta.audio_duration = float(aduration.item()) * timebase if asample_rate.numel() > 0: meta.audio_sample_rate = float(asample_rate.item()) return meta def _align_audio_frames( aframes: torch.Tensor, aframe_pts: torch.Tensor, audio_pts_range: Tuple[int, int] ) -> torch.Tensor: start, end = aframe_pts[0], aframe_pts[-1] num_samples = aframes.size(0) step_per_aframe = float(end - start + 1) / float(num_samples) s_idx = 0 e_idx = num_samples if start < audio_pts_range[0]: s_idx = int((audio_pts_range[0] - start) / step_per_aframe) if audio_pts_range[1] != -1 and end > audio_pts_range[1]: e_idx = int((audio_pts_range[1] - end) / step_per_aframe) return aframes[s_idx:e_idx, :] def _read_video_from_file( filename: str, seek_frame_margin: float = 0.25, read_video_stream: bool = True, video_width: int = 0, video_height: int = 0, video_min_dimension: int = 0, video_max_dimension: int = 0, video_pts_range: Tuple[int, int] = (0, -1), video_timebase: Fraction = default_timebase, read_audio_stream: bool = True, audio_samples: int = 0, audio_channels: int = 0, audio_pts_range: Tuple[int, int] = (0, -1), audio_timebase: Fraction = default_timebase, ) -> Tuple[torch.Tensor, torch.Tensor, VideoMetaData]: """ Reads a video from a file, returning both the video frames and the audio frames Args: filename (str): path to the video file seek_frame_margin (double, optional): seeking frame in the stream is imprecise. Thus, when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0 video_width/video_height/video_min_dimension/video_max_dimension (int): together decide the size of decoded frames: - When video_width = 0, video_height = 0, video_min_dimension = 0, and video_max_dimension = 0, keep the original frame resolution - When video_width = 0, video_height = 0, video_min_dimension != 0, and video_max_dimension = 0, keep the aspect ratio and resize the frame so that shorter edge size is video_min_dimension - When video_width = 0, video_height = 0, video_min_dimension = 0, and video_max_dimension != 0, keep the aspect ratio and resize the frame so that longer edge size is video_max_dimension - When video_width = 0, video_height = 0, video_min_dimension != 0, and video_max_dimension != 0, resize the frame so that shorter edge size is video_min_dimension, and longer edge size is video_max_dimension. The aspect ratio may not be preserved - When video_width = 0, video_height != 0, video_min_dimension = 0, and video_max_dimension = 0, keep the aspect ratio and resize the frame so that frame video_height is $video_height - When video_width != 0, video_height == 0, video_min_dimension = 0, and video_max_dimension = 0, keep the aspect ratio and resize the frame so that frame video_width is $video_width - When video_width != 0, video_height != 0, video_min_dimension = 0, and video_max_dimension = 0, resize the frame so that frame video_width and video_height are set to $video_width and $video_height, respectively video_pts_range (list(int), optional): the start and end presentation timestamp of video stream video_timebase (Fraction, optional): a Fraction rational number which denotes timebase in video stream read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0 audio_samples (int, optional): audio sampling rate audio_channels (int optional): audio channels audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream audio_timebase (Fraction, optional): a Fraction rational number which denotes time base in audio stream Returns vframes (Tensor[T, H, W, C]): the `T` video frames aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and `K` is the number of audio_channels info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int) """ _raise_video_deprecation_warning() _validate_pts(video_pts_range) _validate_pts(audio_pts_range) result = torch.ops.video_reader.read_video_from_file( filename, seek_frame_margin, 0, # getPtsOnly read_video_stream, video_width, video_height, video_min_dimension, video_max_dimension, video_pts_range[0], video_pts_range[1], video_timebase.numerator, video_timebase.denominator, read_audio_stream, audio_samples, audio_channels, audio_pts_range[0], audio_pts_range[1], audio_timebase.numerator, audio_timebase.denominator, ) vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration) if aframes.numel() > 0: # when audio stream is found aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range) return vframes, aframes, info def _read_video_timestamps_from_file(filename: str) -> Tuple[List[int], List[int], VideoMetaData]: """ Decode all video- and audio frames in the video. Only pts (presentation timestamp) is returned. The actual frame pixel data is not copied. Thus, it is much faster than read_video(...) """ result = torch.ops.video_reader.read_video_from_file( filename, 0, # seek_frame_margin 1, # getPtsOnly 1, # read_video_stream 0, # video_width 0, # video_height 0, # video_min_dimension 0, # video_max_dimension 0, # video_start_pts -1, # video_end_pts 0, # video_timebase_num 1, # video_timebase_den 1, # read_audio_stream 0, # audio_samples 0, # audio_channels 0, # audio_start_pts -1, # audio_end_pts 0, # audio_timebase_num 1, # audio_timebase_den ) _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration) vframe_pts = vframe_pts.numpy().tolist() aframe_pts = aframe_pts.numpy().tolist() return vframe_pts, aframe_pts, info def _probe_video_from_file(filename: str) -> VideoMetaData: """ Probe a video file and return VideoMetaData with info about the video """ _raise_video_deprecation_warning() result = torch.ops.video_reader.probe_video_from_file(filename) vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration) return info def _read_video_from_memory( video_data: torch.Tensor, seek_frame_margin: float = 0.25, read_video_stream: int = 1, video_width: int = 0, video_height: int = 0, video_min_dimension: int = 0, video_max_dimension: int = 0, video_pts_range: Tuple[int, int] = (0, -1), video_timebase_numerator: int = 0, video_timebase_denominator: int = 1, read_audio_stream: int = 1, audio_samples: int = 0, audio_channels: int = 0, audio_pts_range: Tuple[int, int] = (0, -1), audio_timebase_numerator: int = 0, audio_timebase_denominator: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Reads a video from memory, returning both the video frames as the audio frames This function is torchscriptable. Args: video_data (data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes): compressed video content stored in either 1) torch.Tensor 2) python bytes seek_frame_margin (double, optional): seeking frame in the stream is imprecise. Thus, when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0 video_width/video_height/video_min_dimension/video_max_dimension (int): together decide the size of decoded frames: - When video_width = 0, video_height = 0, video_min_dimension = 0, and video_max_dimension = 0, keep the original frame resolution - When video_width = 0, video_height = 0, video_min_dimension != 0, and video_max_dimension = 0, keep the aspect ratio and resize the frame so that shorter edge size is video_min_dimension - When video_width = 0, video_height = 0, video_min_dimension = 0, and video_max_dimension != 0, keep the aspect ratio and resize the frame so that longer edge size is video_max_dimension - When video_width = 0, video_height = 0, video_min_dimension != 0, and video_max_dimension != 0, resize the frame so that shorter edge size is video_min_dimension, and longer edge size is video_max_dimension. The aspect ratio may not be preserved - When video_width = 0, video_height != 0, video_min_dimension = 0, and video_max_dimension = 0, keep the aspect ratio and resize the frame so that frame video_height is $video_height - When video_width != 0, video_height == 0, video_min_dimension = 0, and video_max_dimension = 0, keep the aspect ratio and resize the frame so that frame video_width is $video_width - When video_width != 0, video_height != 0, video_min_dimension = 0, and video_max_dimension = 0, resize the frame so that frame video_width and video_height are set to $video_width and $video_height, respectively video_pts_range (list(int), optional): the start and end presentation timestamp of video stream video_timebase_numerator / video_timebase_denominator (float, optional): a rational number which denotes timebase in video stream read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0 audio_samples (int, optional): audio sampling rate audio_channels (int optional): audio audio_channels audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream audio_timebase_numerator / audio_timebase_denominator (float, optional): a rational number which denotes time base in audio stream Returns: vframes (Tensor[T, H, W, C]): the `T` video frames aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and `K` is the number of channels """ _raise_video_deprecation_warning() _validate_pts(video_pts_range) _validate_pts(audio_pts_range) if not isinstance(video_data, torch.Tensor): with warnings.catch_warnings(): # Ignore the warning because we actually don't modify the buffer in this function warnings.filterwarnings("ignore", message="The given buffer is not writable") video_data = torch.frombuffer(video_data, dtype=torch.uint8) result = torch.ops.video_reader.read_video_from_memory( video_data, seek_frame_margin, 0, # getPtsOnly read_video_stream, video_width, video_height, video_min_dimension, video_max_dimension, video_pts_range[0], video_pts_range[1], video_timebase_numerator, video_timebase_denominator, read_audio_stream, audio_samples, audio_channels, audio_pts_range[0], audio_pts_range[1], audio_timebase_numerator, audio_timebase_denominator, ) vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result if aframes.numel() > 0: # when audio stream is found aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range) return vframes, aframes def _read_video_timestamps_from_memory( video_data: torch.Tensor, ) -> Tuple[List[int], List[int], VideoMetaData]: """ Decode all frames in the video. Only pts (presentation timestamp) is returned. The actual frame pixel data is not copied. Thus, read_video_timestamps(...) is much faster than read_video(...) """ if not isinstance(video_data, torch.Tensor): with warnings.catch_warnings(): # Ignore the warning because we actually don't modify the buffer in this function warnings.filterwarnings("ignore", message="The given buffer is not writable") video_data = torch.frombuffer(video_data, dtype=torch.uint8) result = torch.ops.video_reader.read_video_from_memory( video_data, 0, # seek_frame_margin 1, # getPtsOnly 1, # read_video_stream 0, # video_width 0, # video_height 0, # video_min_dimension 0, # video_max_dimension 0, # video_start_pts -1, # video_end_pts 0, # video_timebase_num 1, # video_timebase_den 1, # read_audio_stream 0, # audio_samples 0, # audio_channels 0, # audio_start_pts -1, # audio_end_pts 0, # audio_timebase_num 1, # audio_timebase_den ) _raise_video_deprecation_warning() _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration) vframe_pts = vframe_pts.numpy().tolist() aframe_pts = aframe_pts.numpy().tolist() return vframe_pts, aframe_pts, info def _probe_video_from_memory( video_data: torch.Tensor, ) -> VideoMetaData: """ Probe a video in memory and return VideoMetaData with info about the video This function is torchscriptable """ _raise_video_deprecation_warning() if not isinstance(video_data, torch.Tensor): with warnings.catch_warnings(): # Ignore the warning because we actually don't modify the buffer in this function warnings.filterwarnings("ignore", message="The given buffer is not writable") video_data = torch.frombuffer(video_data, dtype=torch.uint8) result = torch.ops.video_reader.probe_video_from_memory(video_data) vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration) return info def _read_video( filename: str, start_pts: Union[float, Fraction] = 0, end_pts: Optional[Union[float, Fraction]] = None, pts_unit: str = "pts", ) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, float]]: _raise_video_deprecation_warning() if end_pts is None: end_pts = float("inf") if pts_unit == "pts": warnings.warn( "The pts_unit 'pts' gives wrong results and will be removed in a " + "follow-up version. Please use pts_unit 'sec'." ) info = _probe_video_from_file(filename) has_video = info.has_video has_audio = info.has_audio def get_pts(time_base): start_offset = start_pts end_offset = end_pts if pts_unit == "sec": start_offset = int(math.floor(start_pts * (1 / time_base))) if end_offset != float("inf"): end_offset = int(math.ceil(end_pts * (1 / time_base))) if end_offset == float("inf"): end_offset = -1 return start_offset, end_offset video_pts_range = (0, -1) video_timebase = default_timebase if has_video: video_timebase = Fraction(info.video_timebase.numerator, info.video_timebase.denominator) video_pts_range = get_pts(video_timebase) audio_pts_range = (0, -1) audio_timebase = default_timebase if has_audio: audio_timebase = Fraction(info.audio_timebase.numerator, info.audio_timebase.denominator) audio_pts_range = get_pts(audio_timebase) vframes, aframes, info = _read_video_from_file( filename, read_video_stream=True, video_pts_range=video_pts_range, video_timebase=video_timebase, read_audio_stream=True, audio_pts_range=audio_pts_range, audio_timebase=audio_timebase, ) _info = {} if has_video: _info["video_fps"] = info.video_fps if has_audio: _info["audio_fps"] = info.audio_sample_rate return vframes, aframes, _info def _read_video_timestamps( filename: str, pts_unit: str = "pts" ) -> Tuple[Union[List[int], List[Fraction]], Optional[float]]: _raise_video_deprecation_warning() if pts_unit == "pts": warnings.warn( "The pts_unit 'pts' gives wrong results and will be removed in a " + "follow-up version. Please use pts_unit 'sec'." ) pts: Union[List[int], List[Fraction]] pts, _, info = _read_video_timestamps_from_file(filename) if pts_unit == "sec": video_time_base = Fraction(info.video_timebase.numerator, info.video_timebase.denominator) pts = [x * video_time_base for x in pts] video_fps = info.video_fps if info.has_video else None return pts, video_fps ```
=============================================================================================================== SOURCE CODE FILE: image.py LINES: 1 SIZE: 21.71 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\io\image.py ENCODING: utf-8 ```py from enum import Enum from typing import List, Union from warnings import warn import torch from ..extension import _load_library from ..utils import _log_api_usage_once try: _load_library("image") except (ImportError, OSError) as e: warn( f"Failed to load image Python extension: '{e}'" f"If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. " f"Otherwise, there might be something wrong with your environment. " f"Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?" ) class ImageReadMode(Enum): """Allow automatic conversion to RGB, RGBA, etc while decoding. .. note:: You don't need to use this struct, you can just pass strings to all ``mode`` parameters, e.g. ``mode="RGB"``. The different available modes are the following. - UNCHANGED: loads the image as-is - RGB: converts to RGB - RGBA: converts to RGB with transparency (also aliased as RGB_ALPHA) - GRAY: converts to grayscale - GRAY_ALPHA: converts to grayscale with transparency .. note:: Some decoders won't support all possible values, e.g. GRAY and GRAY_ALPHA are only supported for PNG and JPEG images. """ UNCHANGED = 0 GRAY = 1 GRAY_ALPHA = 2 RGB = 3 RGB_ALPHA = 4 RGBA = RGB_ALPHA # Alias for convenience def read_file(path: str) -> torch.Tensor: """ Return the bytes contents of a file as a uint8 1D Tensor. Args: path (str or ``pathlib.Path``): the path to the file to be read Returns: data (Tensor) """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(read_file) data = torch.ops.image.read_file(str(path)) return data def write_file(filename: str, data: torch.Tensor) -> None: """ Write the content of an uint8 1D tensor to a file. Args: filename (str or ``pathlib.Path``): the path to the file to be written data (Tensor): the contents to be written to the output file """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(write_file) torch.ops.image.write_file(str(filename), data) def decode_png( input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED, apply_exif_orientation: bool = False, ) -> torch.Tensor: """ Decodes a PNG image into a 3 dimensional RGB or grayscale Tensor. The values of the output tensor are in uint8 in [0, 255] for most cases. If the image is a 16-bit png, then the output tensor is uint16 in [0, 65535] (supported from torchvision ``0.21``). Since uint16 support is limited in pytorch, we recommend calling :func:`torchvision.transforms.v2.functional.to_dtype()` with ``scale=True`` after this function to convert the decoded image into a uint8 or float tensor. Args: input (Tensor[1]): a one dimensional uint8 tensor containing the raw bytes of the PNG image. mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB". Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode` for available modes. apply_exif_orientation (bool): apply EXIF orientation transformation to the output tensor. Default: False. Returns: output (Tensor[image_channels, image_height, image_width]) """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(decode_png) if isinstance(mode, str): mode = ImageReadMode[mode.upper()] output = torch.ops.image.decode_png(input, mode.value, apply_exif_orientation) return output def encode_png(input: torch.Tensor, compression_level: int = 6) -> torch.Tensor: """ Takes an input tensor in CHW layout and returns a buffer with the contents of its corresponding PNG file. Args: input (Tensor[channels, image_height, image_width]): int8 image tensor of ``c`` channels, where ``c`` must 3 or 1. compression_level (int): Compression factor for the resulting file, it must be a number between 0 and 9. Default: 6 Returns: Tensor[1]: A one dimensional int8 tensor that contains the raw bytes of the PNG file. """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(encode_png) output = torch.ops.image.encode_png(input, compression_level) return output def write_png(input: torch.Tensor, filename: str, compression_level: int = 6): """ Takes an input tensor in CHW layout (or HW in the case of grayscale images) and saves it in a PNG file. Args: input (Tensor[channels, image_height, image_width]): int8 image tensor of ``c`` channels, where ``c`` must be 1 or 3. filename (str or ``pathlib.Path``): Path to save the image. compression_level (int): Compression factor for the resulting file, it must be a number between 0 and 9. Default: 6 """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(write_png) output = encode_png(input, compression_level) write_file(filename, output) def decode_jpeg( input: Union[torch.Tensor, List[torch.Tensor]], mode: ImageReadMode = ImageReadMode.UNCHANGED, device: Union[str, torch.device] = "cpu", apply_exif_orientation: bool = False, ) -> Union[torch.Tensor, List[torch.Tensor]]: """Decode JPEG image(s) into 3D RGB or grayscale Tensor(s), on CPU or CUDA. The values of the output tensor are uint8 between 0 and 255. .. note:: When using a CUDA device, passing a list of tensors is more efficient than repeated individual calls to ``decode_jpeg``. When using CPU the performance is equivalent. The CUDA version of this function has explicitly been designed with thread-safety in mind. This function does not return partial results in case of an error. Args: input (Tensor[1] or list[Tensor[1]]): a (list of) one dimensional uint8 tensor(s) containing the raw bytes of the JPEG image. The tensor(s) must be on CPU, regardless of the ``device`` parameter. mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB". Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode` for available modes. device (str or torch.device): The device on which the decoded image will be stored. If a cuda device is specified, the image will be decoded with `nvjpeg <https://developer.nvidia.com/nvjpeg>`_. This is only supported for CUDA version >= 10.1 .. betastatus:: device parameter .. warning:: There is a memory leak in the nvjpeg library for CUDA versions < 11.6. Make sure to rely on CUDA 11.6 or above before using ``device="cuda"``. apply_exif_orientation (bool): apply EXIF orientation transformation to the output tensor. Default: False. Only implemented for JPEG format on CPU. Returns: output (Tensor[image_channels, image_height, image_width] or list[Tensor[image_channels, image_height, image_width]]): The values of the output tensor(s) are uint8 between 0 and 255. ``output.device`` will be set to the specified ``device`` """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(decode_jpeg) if isinstance(device, str): device = torch.device(device) if isinstance(mode, str): mode = ImageReadMode[mode.upper()] if isinstance(input, list): if len(input) == 0: raise ValueError("Input list must contain at least one element") if not all(isinstance(t, torch.Tensor) for t in input): raise ValueError("All elements of the input list must be tensors.") if not all(t.device.type == "cpu" for t in input): raise ValueError("Input list must contain tensors on CPU.") if device.type == "cuda": return torch.ops.image.decode_jpegs_cuda(input, mode.value, device) else: return [torch.ops.image.decode_jpeg(img, mode.value, apply_exif_orientation) for img in input] else: # input is tensor if input.device.type != "cpu": raise ValueError("Input tensor must be a CPU tensor") if device.type == "cuda": return torch.ops.image.decode_jpegs_cuda([input], mode.value, device)[0] else: return torch.ops.image.decode_jpeg(input, mode.value, apply_exif_orientation) def encode_jpeg( input: Union[torch.Tensor, List[torch.Tensor]], quality: int = 75 ) -> Union[torch.Tensor, List[torch.Tensor]]: """Encode RGB tensor(s) into raw encoded jpeg bytes, on CPU or CUDA. .. note:: Passing a list of CUDA tensors is more efficient than repeated individual calls to ``encode_jpeg``. For CPU tensors the performance is equivalent. Args: input (Tensor[channels, image_height, image_width] or List[Tensor[channels, image_height, image_width]]): (list of) uint8 image tensor(s) of ``c`` channels, where ``c`` must be 1 or 3 quality (int): Quality of the resulting JPEG file(s). Must be a number between 1 and 100. Default: 75 Returns: output (Tensor[1] or list[Tensor[1]]): A (list of) one dimensional uint8 tensor(s) that contain the raw bytes of the JPEG file. """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(encode_jpeg) if quality < 1 or quality > 100: raise ValueError("Image quality should be a positive number between 1 and 100") if isinstance(input, list): if not input: raise ValueError("encode_jpeg requires at least one input tensor when a list is passed") if input[0].device.type == "cuda": return torch.ops.image.encode_jpegs_cuda(input, quality) else: return [torch.ops.image.encode_jpeg(image, quality) for image in input] else: # single input tensor if input.device.type == "cuda": return torch.ops.image.encode_jpegs_cuda([input], quality)[0] else: return torch.ops.image.encode_jpeg(input, quality) def write_jpeg(input: torch.Tensor, filename: str, quality: int = 75): """ Takes an input tensor in CHW layout and saves it in a JPEG file. Args: input (Tensor[channels, image_height, image_width]): int8 image tensor of ``c`` channels, where ``c`` must be 1 or 3. filename (str or ``pathlib.Path``): Path to save the image. quality (int): Quality of the resulting JPEG file, it must be a number between 1 and 100. Default: 75 """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(write_jpeg) output = encode_jpeg(input, quality) assert isinstance(output, torch.Tensor) # Needed for torchscript write_file(filename, output) def decode_image( input: Union[torch.Tensor, str], mode: ImageReadMode = ImageReadMode.UNCHANGED, apply_exif_orientation: bool = False, ) -> torch.Tensor: """Decode an image into a uint8 tensor, from a path or from raw encoded bytes. Currently supported image formats are jpeg, png, gif and webp. The values of the output tensor are in uint8 in [0, 255] for most cases. If the image is a 16-bit png, then the output tensor is uint16 in [0, 65535] (supported from torchvision ``0.21``). Since uint16 support is limited in pytorch, we recommend calling :func:`torchvision.transforms.v2.functional.to_dtype()` with ``scale=True`` after this function to convert the decoded image into a uint8 or float tensor. .. note:: ``decode_image()`` doesn't work yet on AVIF or HEIC images. For these formats, directly call :func:`~torchvision.io.decode_avif` or :func:`~torchvision.io.decode_heic`. Args: input (Tensor or str or ``pathlib.Path``): The image to decode. If a tensor is passed, it must be one dimensional uint8 tensor containing the raw bytes of the image. Otherwise, this must be a path to the image file. mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB". Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode` for available modes. apply_exif_orientation (bool): apply EXIF orientation transformation to the output tensor. Only applies to JPEG and PNG images. Default: False. Returns: output (Tensor[image_channels, image_height, image_width]) """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(decode_image) if not isinstance(input, torch.Tensor): input = read_file(str(input)) if isinstance(mode, str): mode = ImageReadMode[mode.upper()] output = torch.ops.image.decode_image(input, mode.value, apply_exif_orientation) return output def read_image( path: str, mode: ImageReadMode = ImageReadMode.UNCHANGED, apply_exif_orientation: bool = False, ) -> torch.Tensor: """[OBSOLETE] Use :func:`~torchvision.io.decode_image` instead.""" if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(read_image) data = read_file(path) return decode_image(data, mode, apply_exif_orientation=apply_exif_orientation) def decode_gif(input: torch.Tensor) -> torch.Tensor: """ Decode a GIF image into a 3 or 4 dimensional RGB Tensor. The values of the output tensor are uint8 between 0 and 255. The output tensor has shape ``(C, H, W)`` if there is only one image in the GIF, and ``(N, C, H, W)`` if there are ``N`` images. Args: input (Tensor[1]): a one dimensional contiguous uint8 tensor containing the raw bytes of the GIF image. Returns: output (Tensor[image_channels, image_height, image_width] or Tensor[num_images, image_channels, image_height, image_width]) """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(decode_gif) return torch.ops.image.decode_gif(input) def decode_webp( input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED, ) -> torch.Tensor: """ Decode a WEBP image into a 3 dimensional RGB[A] Tensor. The values of the output tensor are uint8 between 0 and 255. Args: input (Tensor[1]): a one dimensional contiguous uint8 tensor containing the raw bytes of the WEBP image. mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB". Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode` for available modes. Returns: Decoded image (Tensor[image_channels, image_height, image_width]) """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(decode_webp) if isinstance(mode, str): mode = ImageReadMode[mode.upper()] return torch.ops.image.decode_webp(input, mode.value) # TODO_AVIF_HEIC: Better support for torchscript. Scripting decode_avif of # decode_heic currently fails, mainly because of the logic # _load_extra_decoders_once() (using global variables, try/except statements, # etc.). # The ops (torch.ops.extra_decoders_ns.decode_*) are otherwise torchscript-able, # and users who need torchscript can always just wrap those. # TODO_AVIF_HEIC: decode_image() should work for those. The key technical issue # we have here is that the format detection logic of decode_image() is # implemented in torchvision, and torchvision has zero knowledge of # torchvision-extra-decoders, so we cannot call the AVIF/HEIC C++ decoders # (those in torchvision-extra-decoders) from there. # A trivial check that could be done within torchvision would be to check the # file extension, if a path was passed. We could also just implement the # AVIF/HEIC detection logic in Python as a fallback, if the file detection # didn't find any format. In any case: properly determining whether a file is # HEIC is far from trivial, and relying on libmagic would probably be best _EXTRA_DECODERS_ALREADY_LOADED = False def _load_extra_decoders_once(): global _EXTRA_DECODERS_ALREADY_LOADED if _EXTRA_DECODERS_ALREADY_LOADED: return try: import torchvision_extra_decoders # torchvision-extra-decoders only supports linux for now. BUT, users on # e.g. MacOS can still install it: they will get the pure-python # 0.0.0.dev version: # https://pypi.org/project/torchvision-extra-decoders/0.0.0.dev0, which # is a dummy version that was created to reserve the namespace on PyPI. # We have to check that expose_extra_decoders() exists for those users, # so we can properly error on non-Linux archs. assert hasattr(torchvision_extra_decoders, "expose_extra_decoders") except (AssertionError, ImportError) as e: raise RuntimeError( "In order to enable the AVIF and HEIC decoding capabilities of " "torchvision, you need to `pip install torchvision-extra-decoders`. " "Just install the package, you don't need to update your code. " "This is only supported on Linux, and this feature is still in BETA stage. " "Please let us know of any issue: https://github.com/pytorch/vision/issues/new/choose. " "Note that `torchvision-extra-decoders` is released under the LGPL license. " ) from e # This will expose torch.ops.extra_decoders_ns.decode_avif and torch.ops.extra_decoders_ns.decode_heic torchvision_extra_decoders.expose_extra_decoders() _EXTRA_DECODERS_ALREADY_LOADED = True def decode_avif(input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED) -> torch.Tensor: """Decode an AVIF image into a 3 dimensional RGB[A] Tensor. .. warning:: In order to enable the AVIF decoding capabilities of torchvision, you first need to run ``pip install torchvision-extra-decoders``. Just install the package, you don't need to update your code. This is only supported on Linux, and this feature is still in BETA stage. Please let us know of any issue: https://github.com/pytorch/vision/issues/new/choose. Note that `torchvision-extra-decoders <https://github.com/pytorch-labs/torchvision-extra-decoders/>`_ is released under the LGPL license. The values of the output tensor are in uint8 in [0, 255] for most images. If the image has a bit-depth of more than 8, then the output tensor is uint16 in [0, 65535]. Since uint16 support is limited in pytorch, we recommend calling :func:`torchvision.transforms.v2.functional.to_dtype()` with ``scale=True`` after this function to convert the decoded image into a uint8 or float tensor. Args: input (Tensor[1]): a one dimensional contiguous uint8 tensor containing the raw bytes of the AVIF image. mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB". Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode` for available modes. Returns: Decoded image (Tensor[image_channels, image_height, image_width]) """ _load_extra_decoders_once() if input.dtype != torch.uint8: raise RuntimeError(f"Input tensor must have uint8 data type, got {input.dtype}") return torch.ops.extra_decoders_ns.decode_avif(input, mode.value) def decode_heic(input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED) -> torch.Tensor: """Decode an HEIC image into a 3 dimensional RGB[A] Tensor. .. warning:: In order to enable the AVIF decoding capabilities of torchvision, you first need to run ``pip install torchvision-extra-decoders``. Just install the package, you don't need to update your code. This is only supported on Linux, and this feature is still in BETA stage. Please let us know of any issue: https://github.com/pytorch/vision/issues/new/choose. Note that `torchvision-extra-decoders <https://github.com/pytorch-labs/torchvision-extra-decoders/>`_ is released under the LGPL license. The values of the output tensor are in uint8 in [0, 255] for most images. If the image has a bit-depth of more than 8, then the output tensor is uint16 in [0, 65535]. Since uint16 support is limited in pytorch, we recommend calling :func:`torchvision.transforms.v2.functional.to_dtype()` with ``scale=True`` after this function to convert the decoded image into a uint8 or float tensor. Args: input (Tensor[1]): a one dimensional contiguous uint8 tensor containing the raw bytes of the HEIC image. mode (str or ImageReadMode): The mode to convert the image to, e.g. "RGB". Default is "UNCHANGED". See :class:`~torchvision.io.ImageReadMode` for available modes. Returns: Decoded image (Tensor[image_channels, image_height, image_width]) """ _load_extra_decoders_once() if input.dtype != torch.uint8: raise RuntimeError(f"Input tensor must have uint8 data type, got {input.dtype}") return torch.ops.extra_decoders_ns.decode_heic(input, mode.value) ```
=============================================================================================================== SOURCE CODE FILE: video.py LINES: 1 SIZE: 18.38 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\io\video.py ENCODING: utf-8 ```py import gc import math import os import re import warnings from fractions import Fraction from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from ..utils import _log_api_usage_once from . import _video_opt from ._video_deprecation_warning import _raise_video_deprecation_warning try: import av av.logging.set_level(av.logging.ERROR) if not hasattr(av.video.frame.VideoFrame, "pict_type"): av = ImportError( """\ Your version of PyAV is too old for the necessary video operations in torchvision. If you are on Python 3.5, you will have to build from source (the conda-forge packages are not up-to-date). See https://github.com/mikeboers/PyAV#installation for instructions on how to install PyAV on your system. """ ) try: FFmpegError = av.FFmpegError # from av 14 https://github.com/PyAV-Org/PyAV/blob/main/CHANGELOG.rst except AttributeError: FFmpegError = av.AVError except ImportError: av = ImportError( """\ PyAV is not installed, and is necessary for the video operations in torchvision. See https://github.com/mikeboers/PyAV#installation for instructions on how to install PyAV on your system. """ ) def _check_av_available() -> None: if isinstance(av, Exception): raise av def _av_available() -> bool: return not isinstance(av, Exception) # PyAV has some reference cycles _CALLED_TIMES = 0 _GC_COLLECTION_INTERVAL = 10 def write_video( filename: str, video_array: torch.Tensor, fps: float, video_codec: str = "libx264", options: Optional[Dict[str, Any]] = None, audio_array: Optional[torch.Tensor] = None, audio_fps: Optional[float] = None, audio_codec: Optional[str] = None, audio_options: Optional[Dict[str, Any]] = None, ) -> None: """ [DEPRECATED] Writes a 4d tensor in [T, H, W, C] format in a video file. .. warning:: DEPRECATED: All the video decoding and encoding capabilities of torchvision are deprecated from version 0.22 and will be removed in version 0.24. We recommend that you migrate to `TorchCodec <https://github.com/pytorch/torchcodec>`__, where we'll consolidate the future decoding/encoding capabilities of PyTorch This function relies on PyAV (therefore, ultimately FFmpeg) to encode videos, you can get more fine-grained control by referring to the other options at your disposal within `the FFMpeg wiki <http://trac.ffmpeg.org/wiki#Encoding>`_. Args: filename (str): path where the video will be saved video_array (Tensor[T, H, W, C]): tensor containing the individual frames, as a uint8 tensor in [T, H, W, C] format fps (Number): video frames per second video_codec (str): the name of the video codec, i.e. "libx264", "h264", etc. options (Dict): dictionary containing options to be passed into the PyAV video stream. The list of options is codec-dependent and can all be found from `the FFMpeg wiki <http://trac.ffmpeg.org/wiki#Encoding>`_. audio_array (Tensor[C, N]): tensor containing the audio, where C is the number of channels and N is the number of samples audio_fps (Number): audio sample rate, typically 44100 or 48000 audio_codec (str): the name of the audio codec, i.e. "mp3", "aac", etc. audio_options (Dict): dictionary containing options to be passed into the PyAV audio stream. The list of options is codec-dependent and can all be found from `the FFMpeg wiki <http://trac.ffmpeg.org/wiki#Encoding>`_. Examples:: >>> # Creating libx264 video with CRF 17, for visually lossless footage: >>> >>> from torchvision.io import write_video >>> # 1000 frames of 100x100, 3-channel image. >>> vid = torch.randn(1000, 100, 100, 3, dtype = torch.uint8) >>> write_video("video.mp4", options = {"crf": "17"}) """ _raise_video_deprecation_warning() if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(write_video) _check_av_available() video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy(force=True) # PyAV does not support floating point numbers with decimal point # and will throw OverflowException in case this is not the case if isinstance(fps, float): fps = np.round(fps) with av.open(filename, mode="w") as container: stream = container.add_stream(video_codec, rate=fps) stream.width = video_array.shape[2] stream.height = video_array.shape[1] stream.pix_fmt = "yuv420p" if video_codec != "libx264rgb" else "rgb24" stream.options = options or {} if audio_array is not None: audio_format_dtypes = { "dbl": "<f8", "dblp": "<f8", "flt": "<f4", "fltp": "<f4", "s16": "<i2", "s16p": "<i2", "s32": "<i4", "s32p": "<i4", "u8": "u1", "u8p": "u1", } a_stream = container.add_stream(audio_codec, rate=audio_fps) a_stream.options = audio_options or {} num_channels = audio_array.shape[0] audio_layout = "stereo" if num_channels > 1 else "mono" audio_sample_fmt = container.streams.audio[0].format.name format_dtype = np.dtype(audio_format_dtypes[audio_sample_fmt]) audio_array = torch.as_tensor(audio_array).numpy(force=True).astype(format_dtype) frame = av.AudioFrame.from_ndarray(audio_array, format=audio_sample_fmt, layout=audio_layout) frame.sample_rate = audio_fps for packet in a_stream.encode(frame): container.mux(packet) for packet in a_stream.encode(): container.mux(packet) for img in video_array: frame = av.VideoFrame.from_ndarray(img, format="rgb24") try: frame.pict_type = "NONE" except TypeError: from av.video.frame import PictureType # noqa frame.pict_type = PictureType.NONE for packet in stream.encode(frame): container.mux(packet) # Flush stream for packet in stream.encode(): container.mux(packet) def _read_from_stream( container: "av.container.Container", start_offset: float, end_offset: float, pts_unit: str, stream: "av.stream.Stream", stream_name: Dict[str, Optional[Union[int, Tuple[int, ...], List[int]]]], ) -> List["av.frame.Frame"]: global _CALLED_TIMES, _GC_COLLECTION_INTERVAL _CALLED_TIMES += 1 if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1: gc.collect() if pts_unit == "sec": # TODO: we should change all of this from ground up to simply take # sec and convert to MS in C++ start_offset = int(math.floor(start_offset * (1 / stream.time_base))) if end_offset != float("inf"): end_offset = int(math.ceil(end_offset * (1 / stream.time_base))) else: warnings.warn("The pts_unit 'pts' gives wrong results. Please use pts_unit 'sec'.") frames = {} should_buffer = True max_buffer_size = 5 if stream.type == "video": # DivX-style packed B-frames can have out-of-order pts (2 frames in a single pkt) # so need to buffer some extra frames to sort everything # properly extradata = stream.codec_context.extradata # overly complicated way of finding if `divx_packed` is set, following # https://github.com/FFmpeg/FFmpeg/commit/d5a21172283572af587b3d939eba0091484d3263 if extradata and b"DivX" in extradata: # can't use regex directly because of some weird characters sometimes... pos = extradata.find(b"DivX") d = extradata[pos:] o = re.search(rb"DivX(\d+)Build(\d+)(\w)", d) if o is None: o = re.search(rb"DivX(\d+)b(\d+)(\w)", d) if o is not None: should_buffer = o.group(3) == b"p" seek_offset = start_offset # some files don't seek to the right location, so better be safe here seek_offset = max(seek_offset - 1, 0) if should_buffer: # FIXME this is kind of a hack, but we will jump to the previous keyframe # so this will be safe seek_offset = max(seek_offset - max_buffer_size, 0) try: # TODO check if stream needs to always be the video stream here or not container.seek(seek_offset, any_frame=False, backward=True, stream=stream) except FFmpegError: # TODO add some warnings in this case # print("Corrupted file?", container.name) return [] buffer_count = 0 try: for _idx, frame in enumerate(container.decode(**stream_name)): frames[frame.pts] = frame if frame.pts >= end_offset: if should_buffer and buffer_count < max_buffer_size: buffer_count += 1 continue break except FFmpegError: # TODO add a warning pass # ensure that the results are sorted wrt the pts result = [frames[i] for i in sorted(frames) if start_offset <= frames[i].pts <= end_offset] if len(frames) > 0 and start_offset > 0 and start_offset not in frames: # if there is no frame that exactly matches the pts of start_offset # add the last frame smaller than start_offset, to guarantee that # we will have all the necessary data. This is most useful for audio preceding_frames = [i for i in frames if i < start_offset] if len(preceding_frames) > 0: first_frame_pts = max(preceding_frames) result.insert(0, frames[first_frame_pts]) return result def _align_audio_frames( aframes: torch.Tensor, audio_frames: List["av.frame.Frame"], ref_start: int, ref_end: float ) -> torch.Tensor: start, end = audio_frames[0].pts, audio_frames[-1].pts total_aframes = aframes.shape[1] step_per_aframe = (end - start + 1) / total_aframes s_idx = 0 e_idx = total_aframes if start < ref_start: s_idx = int((ref_start - start) / step_per_aframe) if end > ref_end: e_idx = int((ref_end - end) / step_per_aframe) return aframes[:, s_idx:e_idx] def read_video( filename: str, start_pts: Union[float, Fraction] = 0, end_pts: Optional[Union[float, Fraction]] = None, pts_unit: str = "pts", output_format: str = "THWC", ) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]: """[DEPRECATED] Reads a video from a file, returning both the video frames and the audio frames .. warning:: DEPRECATED: All the video decoding and encoding capabilities of torchvision are deprecated from version 0.22 and will be removed in version 0.24. We recommend that you migrate to `TorchCodec <https://github.com/pytorch/torchcodec>`__, where we'll consolidate the future decoding/encoding capabilities of PyTorch Args: filename (str): path to the video file. If using the pyav backend, this can be whatever ``av.open`` accepts. start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional): The start presentation time of the video end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional): The end presentation time pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted, either 'pts' or 'sec'. Defaults to 'pts'. output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW". Returns: vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int) """ _raise_video_deprecation_warning() if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(read_video) output_format = output_format.upper() if output_format not in ("THWC", "TCHW"): raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.") from torchvision import get_video_backend if get_video_backend() != "pyav": if not os.path.exists(filename): raise RuntimeError(f"File not found: {filename}") vframes, aframes, info = _video_opt._read_video(filename, start_pts, end_pts, pts_unit) else: _check_av_available() if end_pts is None: end_pts = float("inf") if end_pts < start_pts: raise ValueError( f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}" ) info = {} video_frames = [] audio_frames = [] audio_timebase = _video_opt.default_timebase try: with av.open(filename, metadata_errors="ignore") as container: if container.streams.audio: audio_timebase = container.streams.audio[0].time_base if container.streams.video: video_frames = _read_from_stream( container, start_pts, end_pts, pts_unit, container.streams.video[0], {"video": 0}, ) video_fps = container.streams.video[0].average_rate # guard against potentially corrupted files if video_fps is not None: info["video_fps"] = float(video_fps) if container.streams.audio: audio_frames = _read_from_stream( container, start_pts, end_pts, pts_unit, container.streams.audio[0], {"audio": 0}, ) info["audio_fps"] = container.streams.audio[0].rate except FFmpegError: # TODO raise a warning? pass vframes_list = [frame.to_rgb().to_ndarray() for frame in video_frames] aframes_list = [frame.to_ndarray() for frame in audio_frames] if vframes_list: vframes = torch.as_tensor(np.stack(vframes_list)) else: vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8) if aframes_list: aframes = np.concatenate(aframes_list, 1) aframes = torch.as_tensor(aframes) if pts_unit == "sec": start_pts = int(math.floor(start_pts * (1 / audio_timebase))) if end_pts != float("inf"): end_pts = int(math.ceil(end_pts * (1 / audio_timebase))) aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts) else: aframes = torch.empty((1, 0), dtype=torch.float32) if output_format == "TCHW": # [T,H,W,C] --> [T,C,H,W] vframes = vframes.permute(0, 3, 1, 2) return vframes, aframes, info def _can_read_timestamps_from_packets(container: "av.container.Container") -> bool: extradata = container.streams[0].codec_context.extradata if extradata is None: return False if b"Lavc" in extradata: return True return False def _decode_video_timestamps(container: "av.container.Container") -> List[int]: if _can_read_timestamps_from_packets(container): # fast path return [x.pts for x in container.demux(video=0) if x.pts is not None] else: return [x.pts for x in container.decode(video=0) if x.pts is not None] def read_video_timestamps(filename: str, pts_unit: str = "pts") -> Tuple[List[int], Optional[float]]: """[DEPREACTED] List the video frames timestamps. .. warning:: DEPRECATED: All the video decoding and encoding capabilities of torchvision are deprecated from version 0.22 and will be removed in version 0.24. We recommend that you migrate to `TorchCodec <https://github.com/pytorch/torchcodec>`__, where we'll consolidate the future decoding/encoding capabilities of PyTorch Note that the function decodes the whole video frame-by-frame. Args: filename (str): path to the video file pts_unit (str, optional): unit in which timestamp values will be returned either 'pts' or 'sec'. Defaults to 'pts'. Returns: pts (List[int] if pts_unit = 'pts', List[Fraction] if pts_unit = 'sec'): presentation timestamps for each one of the frames in the video. video_fps (float, optional): the frame rate for the video """ _raise_video_deprecation_warning() if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(read_video_timestamps) from torchvision import get_video_backend if get_video_backend() != "pyav": return _video_opt._read_video_timestamps(filename, pts_unit) _check_av_available() video_fps = None pts = [] try: with av.open(filename, metadata_errors="ignore") as container: if container.streams.video: video_stream = container.streams.video[0] video_time_base = video_stream.time_base try: pts = _decode_video_timestamps(container) except FFmpegError: warnings.warn(f"Failed decoding frames for file {filename}") video_fps = float(video_stream.average_rate) except FFmpegError as e: msg = f"Failed to open container for {filename}; Caught error: {e}" warnings.warn(msg, RuntimeWarning) pts.sort() if pts_unit == "sec": pts = [x * video_time_base for x in pts] return pts, video_fps ```
====================================================================================================================== SOURCE CODE FILE: video_reader.py LINES: 1 SIZE: 11.86 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\io\video_reader.py ENCODING: utf-8 ```py import io import warnings from typing import Any, Dict, Iterator import torch from ..utils import _log_api_usage_once from ._video_deprecation_warning import _raise_video_deprecation_warning from ._video_opt import _HAS_CPU_VIDEO_DECODER if _HAS_CPU_VIDEO_DECODER: def _has_video_opt() -> bool: return True else: def _has_video_opt() -> bool: return False try: import av av.logging.set_level(av.logging.ERROR) if not hasattr(av.video.frame.VideoFrame, "pict_type"): av = ImportError( """\ Your version of PyAV is too old for the necessary video operations in torchvision. If you are on Python 3.5, you will have to build from source (the conda-forge packages are not up-to-date). See https://github.com/mikeboers/PyAV#installation for instructions on how to install PyAV on your system. """ ) except ImportError: av = ImportError( """\ PyAV is not installed, and is necessary for the video operations in torchvision. See https://github.com/mikeboers/PyAV#installation for instructions on how to install PyAV on your system. """ ) class VideoReader: """[DEPRECATED] Fine-grained video-reading API. Supports frame-by-frame reading of various streams from a single video container. Much like previous video_reader API it supports the following backends: video_reader, pyav, and cuda. Backends can be set via `torchvision.set_video_backend` function. .. warning:: DEPRECATED: All the video decoding and encoding capabilities of torchvision are deprecated from version 0.22 and will be removed in version 0.24. We recommend that you migrate to `TorchCodec <https://github.com/pytorch/torchcodec>`__, where we'll consolidate the future decoding/encoding capabilities of PyTorch .. betastatus:: VideoReader class Example: The following examples creates a :mod:`VideoReader` object, seeks into 2s point, and returns a single frame:: import torchvision video_path = "path_to_a_test_video" reader = torchvision.io.VideoReader(video_path, "video") reader.seek(2.0) frame = next(reader) :mod:`VideoReader` implements the iterable API, which makes it suitable to using it in conjunction with :mod:`itertools` for more advanced reading. As such, we can use a :mod:`VideoReader` instance inside for loops:: reader.seek(2) for frame in reader: frames.append(frame['data']) # additionally, `seek` implements a fluent API, so we can do for frame in reader.seek(2): frames.append(frame['data']) With :mod:`itertools`, we can read all frames between 2 and 5 seconds with the following code:: for frame in itertools.takewhile(lambda x: x['pts'] <= 5, reader.seek(2)): frames.append(frame['data']) and similarly, reading 10 frames after the 2s timestamp can be achieved as follows:: for frame in itertools.islice(reader.seek(2), 10): frames.append(frame['data']) .. note:: Each stream descriptor consists of two parts: stream type (e.g. 'video') and a unique stream id (which are determined by the video encoding). In this way, if the video container contains multiple streams of the same type, users can access the one they want. If only stream type is passed, the decoder auto-detects first stream of that type. Args: src (string, bytes object, or tensor): The media source. If string-type, it must be a file path supported by FFMPEG. If bytes, should be an in-memory representation of a file supported by FFMPEG. If Tensor, it is interpreted internally as byte buffer. It must be one-dimensional, of type ``torch.uint8``. stream (string, optional): descriptor of the required stream, followed by the stream id, in the format ``{stream_type}:{stream_id}``. Defaults to ``"video:0"``. Currently available options include ``['video', 'audio']`` num_threads (int, optional): number of threads used by the codec to decode video. Default value (0) enables multithreading with codec-dependent heuristic. The performance will depend on the version of FFMPEG codecs supported. """ def __init__( self, src: str, stream: str = "video", num_threads: int = 0, ) -> None: _raise_video_deprecation_warning() _log_api_usage_once(self) from .. import get_video_backend self.backend = get_video_backend() if isinstance(src, str): if not src: raise ValueError("src cannot be empty") elif isinstance(src, bytes): if self.backend in ["cuda"]: raise RuntimeError( "VideoReader cannot be initialized from bytes object when using cuda or pyav backend." ) elif self.backend == "pyav": src = io.BytesIO(src) else: with warnings.catch_warnings(): # Ignore the warning because we actually don't modify the buffer in this function warnings.filterwarnings("ignore", message="The given buffer is not writable") src = torch.frombuffer(src, dtype=torch.uint8) elif isinstance(src, torch.Tensor): if self.backend in ["cuda", "pyav"]: raise RuntimeError( "VideoReader cannot be initialized from Tensor object when using cuda or pyav backend." ) else: raise ValueError(f"src must be either string, Tensor or bytes object. Got {type(src)}") if self.backend == "cuda": device = torch.device("cuda") self._c = torch.classes.torchvision.GPUDecoder(src, device) elif self.backend == "video_reader": if isinstance(src, str): self._c = torch.classes.torchvision.Video(src, stream, num_threads) elif isinstance(src, torch.Tensor): self._c = torch.classes.torchvision.Video("", "", 0) self._c.init_from_memory(src, stream, num_threads) elif self.backend == "pyav": self.container = av.open(src, metadata_errors="ignore") # TODO: load metadata stream_type = stream.split(":")[0] stream_id = 0 if len(stream.split(":")) == 1 else int(stream.split(":")[1]) self.pyav_stream = {stream_type: stream_id} self._c = self.container.decode(**self.pyav_stream) # TODO: add extradata exception else: raise RuntimeError("Unknown video backend: {}".format(self.backend)) def __next__(self) -> Dict[str, Any]: """Decodes and returns the next frame of the current stream. Frames are encoded as a dict with mandatory data and pts fields, where data is a tensor, and pts is a presentation timestamp of the frame expressed in seconds as a float. Returns: (dict): a dictionary and containing decoded frame (``data``) and corresponding timestamp (``pts``) in seconds """ if self.backend == "cuda": frame = self._c.next() if frame.numel() == 0: raise StopIteration return {"data": frame, "pts": None} elif self.backend == "video_reader": frame, pts = self._c.next() else: try: frame = next(self._c) pts = float(frame.pts * frame.time_base) if "video" in self.pyav_stream: frame = torch.as_tensor(frame.to_rgb().to_ndarray()).permute(2, 0, 1) elif "audio" in self.pyav_stream: frame = torch.as_tensor(frame.to_ndarray()).permute(1, 0) else: frame = None except av.error.EOFError: raise StopIteration if frame.numel() == 0: raise StopIteration return {"data": frame, "pts": pts} def __iter__(self) -> Iterator[Dict[str, Any]]: return self def seek(self, time_s: float, keyframes_only: bool = False) -> "VideoReader": """Seek within current stream. Args: time_s (float): seek time in seconds keyframes_only (bool): allow to seek only to keyframes .. note:: Current implementation is the so-called precise seek. This means following seek, call to :mod:`next()` will return the frame with the exact timestamp if it exists or the first frame with timestamp larger than ``time_s``. """ if self.backend in ["cuda", "video_reader"]: self._c.seek(time_s, keyframes_only) else: # handle special case as pyav doesn't catch it if time_s < 0: time_s = 0 temp_str = self.container.streams.get(**self.pyav_stream)[0] offset = int(round(time_s / temp_str.time_base)) if not keyframes_only: warnings.warn("Accurate seek is not implemented for pyav backend") self.container.seek(offset, backward=True, any_frame=False, stream=temp_str) self._c = self.container.decode(**self.pyav_stream) return self def get_metadata(self) -> Dict[str, Any]: """Returns video metadata Returns: (dict): dictionary containing duration and frame rate for every stream """ if self.backend == "pyav": metadata = {} # type: Dict[str, Any] for stream in self.container.streams: if stream.type not in metadata: if stream.type == "video": rate_n = "fps" else: rate_n = "framerate" metadata[stream.type] = {rate_n: [], "duration": []} rate = getattr(stream, "average_rate", None) or stream.sample_rate metadata[stream.type]["duration"].append(float(stream.duration * stream.time_base)) metadata[stream.type][rate_n].append(float(rate)) return metadata return self._c.get_metadata() def set_current_stream(self, stream: str) -> bool: """Set current stream. Explicitly define the stream we are operating on. Args: stream (string): descriptor of the required stream. Defaults to ``"video:0"`` Currently available stream types include ``['video', 'audio']``. Each descriptor consists of two parts: stream type (e.g. 'video') and a unique stream id (which are determined by video encoding). In this way, if the video container contains multiple streams of the same type, users can access the one they want. If only stream type is passed, the decoder auto-detects first stream of that type and returns it. Returns: (bool): True on success, False otherwise """ if self.backend == "cuda": warnings.warn("GPU decoding only works with video stream.") if self.backend == "pyav": stream_type = stream.split(":")[0] stream_id = 0 if len(stream.split(":")) == 1 else int(stream.split(":")[1]) self.pyav_stream = {stream_type: stream_id} self._c = self.container.decode(**self.pyav_stream) return True return self._c.set_current_stream(stream) ```
====================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.87 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\__init__.py ENCODING: utf-8 ```py from .alexnet import * from .convnext import * from .densenet import * from .efficientnet import * from .googlenet import * from .inception import * from .mnasnet import * from .mobilenet import * from .regnet import * from .resnet import * from .shufflenetv2 import * from .squeezenet import * from .vgg import * from .vision_transformer import * from .swin_transformer import * from .maxvit import * from . import detection, optical_flow, quantization, segmentation, video # The Weights and WeightsEnum are developer-facing utils that we make public for # downstream libs like torchgeo https://github.com/pytorch/vision/issues/7094 # TODO: we could / should document them publicly, but it's not clear where, as # they're not intended for end users. from ._api import get_model, get_model_builder, get_model_weights, get_weight, list_models, Weights, WeightsEnum ```
================================================================================================================== SOURCE CODE FILE: _api.py LINES: 1 SIZE: 10.01 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\_api.py ENCODING: utf-8 ```py import fnmatch import importlib import inspect import sys from dataclasses import dataclass from enum import Enum from functools import partial from inspect import signature from types import ModuleType from typing import Any, Callable, Dict, get_args, Iterable, List, Mapping, Optional, Set, Type, TypeVar, Union from torch import nn from .._internally_replaced_utils import load_state_dict_from_url __all__ = ["WeightsEnum", "Weights", "get_model", "get_model_builder", "get_model_weights", "get_weight", "list_models"] @dataclass class Weights: """ This class is used to group important attributes associated with the pre-trained weights. Args: url (str): The location where we find the weights. transforms (Callable): A callable that constructs the preprocessing method (or validation preset transforms) needed to use the model. The reason we attach a constructor method rather than an already constructed object is because the specific object might have memory and thus we want to delay initialization until needed. meta (Dict[str, Any]): Stores meta-data related to the weights of the model and its configuration. These can be informative attributes (for example the number of parameters/flops, recipe link/methods used in training etc), configuration parameters (for example the `num_classes`) needed to construct the model or important meta-data (for example the `classes` of a classification model) needed to use the model. """ url: str transforms: Callable meta: Dict[str, Any] def __eq__(self, other: Any) -> bool: # We need this custom implementation for correct deep-copy and deserialization behavior. # TL;DR: After the definition of an enum, creating a new instance, i.e. by deep-copying or deserializing it, # involves an equality check against the defined members. Unfortunately, the `transforms` attribute is often # defined with `functools.partial` and `fn = partial(...); assert deepcopy(fn) != fn`. Without custom handling # for it, the check against the defined members would fail and effectively prevent the weights from being # deep-copied or deserialized. # See https://github.com/pytorch/vision/pull/7107 for details. if not isinstance(other, Weights): return NotImplemented if self.url != other.url: return False if self.meta != other.meta: return False if isinstance(self.transforms, partial) and isinstance(other.transforms, partial): return ( self.transforms.func == other.transforms.func and self.transforms.args == other.transforms.args and self.transforms.keywords == other.transforms.keywords ) else: return self.transforms == other.transforms class WeightsEnum(Enum): """ This class is the parent class of all model weights. Each model building method receives an optional `weights` parameter with its associated pre-trained weights. It inherits from `Enum` and its values should be of type `Weights`. Args: value (Weights): The data class entry with the weight information. """ @classmethod def verify(cls, obj: Any) -> Any: if obj is not None: if type(obj) is str: obj = cls[obj.replace(cls.__name__ + ".", "")] elif not isinstance(obj, cls): raise TypeError( f"Invalid Weight class provided; expected {cls.__name__} but received {obj.__class__.__name__}." ) return obj def get_state_dict(self, *args: Any, **kwargs: Any) -> Mapping[str, Any]: return load_state_dict_from_url(self.url, *args, **kwargs) def __repr__(self) -> str: return f"{self.__class__.__name__}.{self._name_}" @property def url(self): return self.value.url @property def transforms(self): return self.value.transforms @property def meta(self): return self.value.meta def get_weight(name: str) -> WeightsEnum: """ Gets the weights enum value by its full name. Example: "ResNet50_Weights.IMAGENET1K_V1" Args: name (str): The name of the weight enum entry. Returns: WeightsEnum: The requested weight enum. """ try: enum_name, value_name = name.split(".") except ValueError: raise ValueError(f"Invalid weight name provided: '{name}'.") base_module_name = ".".join(sys.modules[__name__].__name__.split(".")[:-1]) base_module = importlib.import_module(base_module_name) model_modules = [base_module] + [ x[1] for x in inspect.getmembers(base_module, inspect.ismodule) if x[1].__file__.endswith("__init__.py") # type: ignore[union-attr] ] weights_enum = None for m in model_modules: potential_class = m.__dict__.get(enum_name, None) if potential_class is not None and issubclass(potential_class, WeightsEnum): weights_enum = potential_class break if weights_enum is None: raise ValueError(f"The weight enum '{enum_name}' for the specific method couldn't be retrieved.") return weights_enum[value_name] def get_model_weights(name: Union[Callable, str]) -> Type[WeightsEnum]: """ Returns the weights enum class associated to the given model. Args: name (callable or str): The model builder function or the name under which it is registered. Returns: weights_enum (WeightsEnum): The weights enum class associated with the model. """ model = get_model_builder(name) if isinstance(name, str) else name return _get_enum_from_fn(model) def _get_enum_from_fn(fn: Callable) -> Type[WeightsEnum]: """ Internal method that gets the weight enum of a specific model builder method. Args: fn (Callable): The builder method used to create the model. Returns: WeightsEnum: The requested weight enum. """ sig = signature(fn) if "weights" not in sig.parameters: raise ValueError("The method is missing the 'weights' argument.") ann = sig.parameters["weights"].annotation weights_enum = None if isinstance(ann, type) and issubclass(ann, WeightsEnum): weights_enum = ann else: # handle cases like Union[Optional, T] for t in get_args(ann): # type: ignore[union-attr] if isinstance(t, type) and issubclass(t, WeightsEnum): weights_enum = t break if weights_enum is None: raise ValueError( "The WeightsEnum class for the specific method couldn't be retrieved. Make sure the typing info is correct." ) return weights_enum M = TypeVar("M", bound=nn.Module) BUILTIN_MODELS = {} def register_model(name: Optional[str] = None) -> Callable[[Callable[..., M]], Callable[..., M]]: def wrapper(fn: Callable[..., M]) -> Callable[..., M]: key = name if name is not None else fn.__name__ if key in BUILTIN_MODELS: raise ValueError(f"An entry is already registered under the name '{key}'.") BUILTIN_MODELS[key] = fn return fn return wrapper def list_models( module: Optional[ModuleType] = None, include: Union[Iterable[str], str, None] = None, exclude: Union[Iterable[str], str, None] = None, ) -> List[str]: """ Returns a list with the names of registered models. Args: module (ModuleType, optional): The module from which we want to extract the available models. include (str or Iterable[str], optional): Filter(s) for including the models from the set of all models. Filters are passed to `fnmatch <https://docs.python.org/3/library/fnmatch.html>`__ to match Unix shell-style wildcards. In case of many filters, the results is the union of individual filters. exclude (str or Iterable[str], optional): Filter(s) applied after include_filters to remove models. Filter are passed to `fnmatch <https://docs.python.org/3/library/fnmatch.html>`__ to match Unix shell-style wildcards. In case of many filters, the results is removal of all the models that match any individual filter. Returns: models (list): A list with the names of available models. """ all_models = { k for k, v in BUILTIN_MODELS.items() if module is None or v.__module__.rsplit(".", 1)[0] == module.__name__ } if include: models: Set[str] = set() if isinstance(include, str): include = [include] for include_filter in include: models = models | set(fnmatch.filter(all_models, include_filter)) else: models = all_models if exclude: if isinstance(exclude, str): exclude = [exclude] for exclude_filter in exclude: models = models - set(fnmatch.filter(all_models, exclude_filter)) return sorted(models) def get_model_builder(name: str) -> Callable[..., nn.Module]: """ Gets the model name and returns the model builder method. Args: name (str): The name under which the model is registered. Returns: fn (Callable): The model builder method. """ name = name.lower() try: fn = BUILTIN_MODELS[name] except KeyError: raise ValueError(f"Unknown model {name}") return fn def get_model(name: str, **config: Any) -> nn.Module: """ Gets the model name and configuration and returns an instantiated model. Args: name (str): The name under which the model is registered. **config (Any): parameters passed to the model builder method. Returns: model (nn.Module): The initialized model. """ fn = get_model_builder(name) return fn(**config) ```
=================================================================================================================== SOURCE CODE FILE: _meta.py LINES: 1 SIZE: 29.72 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\_meta.py ENCODING: utf-8 ```py """ This file is part of the private API. Please do not refer to any variables defined here directly as they will be removed on future versions without warning. """ # This will eventually be replaced with a call at torchvision.datasets.info("imagenet").categories _IMAGENET_CATEGORIES = [ "tench", "goldfish", "great white shark", "tiger shark", "hammerhead", "electric ray", "stingray", "cock", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", "indigo bunting", "robin", "bulbul", "jay", "magpie", "chickadee", "water ouzel", "kite", "bald eagle", "vulture", "great grey owl", "European fire salamander", "common newt", "eft", "spotted salamander", "axolotl", "bullfrog", "tree frog", "tailed frog", "loggerhead", "leatherback turtle", "mud turtle", "terrapin", "box turtle", "banded gecko", "common iguana", "American chameleon", "whiptail", "agama", "frilled lizard", "alligator lizard", "Gila monster", "green lizard", "African chameleon", "Komodo dragon", "African crocodile", "American alligator", "triceratops", "thunder snake", "ringneck snake", "hognose snake", "green snake", "king snake", "garter snake", "water snake", "vine snake", "night snake", "boa constrictor", "rock python", "Indian cobra", "green mamba", "sea snake", "horned viper", "diamondback", "sidewinder", "trilobite", "harvestman", "scorpion", "black and gold garden spider", "barn spider", "garden spider", "black widow", "tarantula", "wolf spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie chicken", "peacock", "quail", "partridge", "African grey", "macaw", "sulphur-crested cockatoo", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", "fiddler crab", "king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", "American egret", "bittern", "crane bird", "limpkin", "European gallinule", "American coot", "bustard", "ruddy turnstone", "red-backed sandpiper", "redshank", "dowitcher", "oystercatcher", "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", "Chihuahua", "Japanese spaniel", "Maltese dog", "Pekinese", "Shih-Tzu", "Blenheim spaniel", "papillon", "toy terrier", "Rhodesian ridgeback", "Afghan hound", "basset", "beagle", "bloodhound", "bluetick", "black-and-tan coonhound", "Walker hound", "English foxhound", "redbone", "borzoi", "Irish wolfhound", "Italian greyhound", "whippet", "Ibizan hound", "Norwegian elkhound", "otterhound", "Saluki", "Scottish deerhound", "Weimaraner", "Staffordshire bullterrier", "American Staffordshire terrier", "Bedlington terrier", "Border terrier", "Kerry blue terrier", "Irish terrier", "Norfolk terrier", "Norwich terrier", "Yorkshire terrier", "wire-haired fox terrier", "Lakeland terrier", "Sealyham terrier", "Airedale", "cairn", "Australian terrier", "Dandie Dinmont", "Boston bull", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "Scotch terrier", "Tibetan terrier", "silky terrier", "soft-coated wheaten terrier", "West Highland white terrier", "Lhasa", "flat-coated retriever", "curly-coated retriever", "golden retriever", "Labrador retriever", "Chesapeake Bay retriever", "German short-haired pointer", "vizsla", "English setter", "Irish setter", "Gordon setter", "Brittany spaniel", "clumber", "English springer", "Welsh springer spaniel", "cocker spaniel", "Sussex spaniel", "Irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "Old English sheepdog", "Shetland sheepdog", "collie", "Border collie", "Bouvier des Flandres", "Rottweiler", "German shepherd", "Doberman", "miniature pinscher", "Greater Swiss Mountain dog", "Bernese mountain dog", "Appenzeller", "EntleBucher", "boxer", "bull mastiff", "Tibetan mastiff", "French bulldog", "Great Dane", "Saint Bernard", "Eskimo dog", "malamute", "Siberian husky", "dalmatian", "affenpinscher", "basenji", "pug", "Leonberg", "Newfoundland", "Great Pyrenees", "Samoyed", "Pomeranian", "chow", "keeshond", "Brabancon griffon", "Pembroke", "Cardigan", "toy poodle", "miniature poodle", "standard poodle", "Mexican hairless", "timber wolf", "white wolf", "red wolf", "coyote", "dingo", "dhole", "African hunting dog", "hyena", "red fox", "kit fox", "Arctic fox", "grey fox", "tabby", "tiger cat", "Persian cat", "Siamese cat", "Egyptian cat", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", "cheetah", "brown bear", "American black bear", "ice bear", "sloth bear", "mongoose", "meerkat", "tiger beetle", "ladybug", "ground beetle", "long-horned beetle", "leaf beetle", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", "cricket", "walking stick", "cockroach", "mantis", "cicada", "leafhopper", "lacewing", "dragonfly", "damselfly", "admiral", "ringlet", "monarch", "cabbage butterfly", "sulphur butterfly", "lycaenid", "starfish", "sea urchin", "sea cucumber", "wood rabbit", "hare", "Angora", "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "sorrel", "zebra", "hog", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", "ram", "bighorn", "ibex", "hartebeest", "impala", "gazelle", "Arabian camel", "llama", "weasel", "mink", "polecat", "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas", "baboon", "macaque", "langur", "colobus", "proboscis monkey", "marmoset", "capuchin", "howler monkey", "titi", "spider monkey", "squirrel monkey", "Madagascar cat", "indri", "Indian elephant", "African elephant", "lesser panda", "giant panda", "barracouta", "eel", "coho", "rock beauty", "anemone fish", "sturgeon", "gar", "lionfish", "puffer", "abacus", "abaya", "academic gown", "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", "amphibian", "analog clock", "apiary", "apron", "ashcan", "assault rifle", "backpack", "bakery", "balance beam", "balloon", "ballpoint", "Band Aid", "banjo", "bannister", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", "barrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap", "bath towel", "bathtub", "beach wagon", "beacon", "beaker", "bearskin", "beer bottle", "beer glass", "bell cote", "bib", "bicycle-built-for-two", "bikini", "binder", "binoculars", "birdhouse", "boathouse", "bobsled", "bolo tie", "bonnet", "bookcase", "bookshop", "bottlecap", "bow", "bow tie", "brass", "brassiere", "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", "bullet train", "butcher shop", "cab", "caldron", "candle", "cannon", "canoe", "can opener", "cardigan", "car mirror", "carousel", "carpenter's kit", "carton", "car wheel", "cash machine", "cassette", "cassette player", "castle", "catamaran", "CD player", "cello", "cellular telephone", "chain", "chainlink fence", "chain mail", "chain saw", "chest", "chiffonier", "chime", "china cabinet", "Christmas stocking", "church", "cinema", "cleaver", "cliff dwelling", "cloak", "clog", "cocktail shaker", "coffee mug", "coffeepot", "coil", "combination lock", "computer keyboard", "confectionery", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", "cowboy hat", "cradle", "crane", "crash helmet", "crate", "crib", "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", "dial telephone", "diaper", "digital clock", "digital watch", "dining table", "dishrag", "dishwasher", "disk brake", "dock", "dogsled", "dome", "doormat", "drilling platform", "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa", "file", "fireboat", "fire engine", "fire screen", "flagpole", "flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "French horn", "frying pan", "fur coat", "garbage truck", "gasmask", "gas pump", "goblet", "go-kart", "golf ball", "golfcart", "gondola", "gong", "gown", "grand piano", "greenhouse", "grille", "grocery store", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower", "hand-held computer", "handkerchief", "hard disc", "harmonica", "harp", "harvester", "hatchet", "holster", "home theater", "honeycomb", "hook", "hoopskirt", "horizontal bar", "horse cart", "hourglass", "iPod", "iron", "jack-o'-lantern", "jean", "jeep", "jersey", "jigsaw puzzle", "jinrikisha", "joystick", "kimono", "knee pad", "knot", "lab coat", "ladle", "lampshade", "laptop", "lawn mower", "lens cap", "letter opener", "library", "lifeboat", "lighter", "limousine", "liner", "lipstick", "Loafer", "lotion", "loudspeaker", "loupe", "lumbermill", "magnetic compass", "mailbag", "mailbox", "maillot", "maillot tank suit", "manhole cover", "maraca", "marimba", "mask", "matchstick", "maypole", "maze", "measuring cup", "medicine chest", "megalith", "microphone", "microwave", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", "mitten", "mixing bowl", "mobile home", "Model T", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter", "mountain bike", "mountain tent", "mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook", "obelisk", "oboe", "ocarina", "odometer", "oil filter", "organ", "oscilloscope", "overskirt", "oxcart", "oxygen mask", "packet", "paddle", "paddlewheel", "padlock", "paintbrush", "pajama", "palace", "panpipe", "paper towel", "parachute", "parallel bars", "park bench", "parking meter", "passenger car", "patio", "pay-phone", "pedestal", "pencil box", "pencil sharpener", "perfume", "Petri dish", "photocopier", "pick", "pickelhaube", "picket fence", "pickup", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate", "pitcher", "plane", "planetarium", "plastic bag", "plate rack", "plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", "pool table", "pop bottle", "pot", "potter's wheel", "power drill", "prayer rug", "printer", "prison", "projectile", "projector", "puck", "punching bag", "purse", "quill", "quilt", "racer", "racket", "radiator", "radio", "radio telescope", "rain barrel", "recreational vehicle", "reel", "reflex camera", "refrigerator", "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "rubber eraser", "rugby ball", "rule", "running shoe", "safe", "safety pin", "saltshaker", "sandal", "sarong", "sax", "scabbard", "scale", "school bus", "schooner", "scoreboard", "screen", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe shop", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule", "sliding door", "slot", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", "solar dish", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web", "spindle", "sports car", "spotlight", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch", "stove", "strainer", "streetcar", "stretcher", "studio couch", "stupa", "submarine", "suit", "sundial", "sunglass", "sunglasses", "sunscreen", "suspension bridge", "swab", "sweatshirt", "swimming trunks", "swing", "switch", "syringe", "table lamp", "tank", "tape player", "teapot", "teddy", "television", "tennis ball", "thatch", "theater curtain", "thimble", "thresher", "throne", "tile roof", "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toyshop", "tractor", "trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", "triumphal arch", "trolleybus", "trombone", "tub", "turnstile", "typewriter keyboard", "umbrella", "unicycle", "upright", "vacuum", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin", "volleyball", "waffle iron", "wall clock", "wallet", "wardrobe", "warplane", "washbasin", "washer", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "Windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool", "worm fence", "wreck", "yawl", "yurt", "web site", "comic book", "crossword puzzle", "street sign", "traffic light", "book jacket", "menu", "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "ice lolly", "French loaf", "bagel", "pretzel", "cheeseburger", "hotdog", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith", "strawberry", "orange", "lemon", "fig", "pineapple", "banana", "jackfruit", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce", "dough", "meat loaf", "pizza", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff", "coral reef", "geyser", "lakeside", "promontory", "sandbar", "seashore", "valley", "volcano", "ballplayer", "groom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", "hip", "buckeye", "coral fungus", "agaric", "gyromitra", "stinkhorn", "earthstar", "hen-of-the-woods", "bolete", "ear", "toilet tissue", ] # To be replaced with torchvision.datasets.info("coco").categories _COCO_CATEGORIES = [ "__background__", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "N/A", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "N/A", "backpack", "umbrella", "N/A", "N/A", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "N/A", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "N/A", "dining table", "N/A", "N/A", "toilet", "N/A", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "N/A", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ] # To be replaced with torchvision.datasets.info("coco_kp") _COCO_PERSON_CATEGORIES = ["no person", "person"] _COCO_PERSON_KEYPOINT_NAMES = [ "nose", "left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder", "right_shoulder", "left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", "left_knee", "right_knee", "left_ankle", "right_ankle", ] # To be replaced with torchvision.datasets.info("voc").categories _VOC_CATEGORIES = [ "__background__", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor", ] # To be replaced with torchvision.datasets.info("kinetics400").categories _KINETICS400_CATEGORIES = [ "abseiling", "air drumming", "answering questions", "applauding", "applying cream", "archery", "arm wrestling", "arranging flowers", "assembling computer", "auctioning", "baby waking up", "baking cookies", "balloon blowing", "bandaging", "barbequing", "bartending", "beatboxing", "bee keeping", "belly dancing", "bench pressing", "bending back", "bending metal", "biking through snow", "blasting sand", "blowing glass", "blowing leaves", "blowing nose", "blowing out candles", "bobsledding", "bookbinding", "bouncing on trampoline", "bowling", "braiding hair", "breading or breadcrumbing", "breakdancing", "brush painting", "brushing hair", "brushing teeth", "building cabinet", "building shed", "bungee jumping", "busking", "canoeing or kayaking", "capoeira", "carrying baby", "cartwheeling", "carving pumpkin", "catching fish", "catching or throwing baseball", "catching or throwing frisbee", "catching or throwing softball", "celebrating", "changing oil", "changing wheel", "checking tires", "cheerleading", "chopping wood", "clapping", "clay pottery making", "clean and jerk", "cleaning floor", "cleaning gutters", "cleaning pool", "cleaning shoes", "cleaning toilet", "cleaning windows", "climbing a rope", "climbing ladder", "climbing tree", "contact juggling", "cooking chicken", "cooking egg", "cooking on campfire", "cooking sausages", "counting money", "country line dancing", "cracking neck", "crawling baby", "crossing river", "crying", "curling hair", "cutting nails", "cutting pineapple", "cutting watermelon", "dancing ballet", "dancing charleston", "dancing gangnam style", "dancing macarena", "deadlifting", "decorating the christmas tree", "digging", "dining", "disc golfing", "diving cliff", "dodgeball", "doing aerobics", "doing laundry", "doing nails", "drawing", "dribbling basketball", "drinking", "drinking beer", "drinking shots", "driving car", "driving tractor", "drop kicking", "drumming fingers", "dunking basketball", "dying hair", "eating burger", "eating cake", "eating carrots", "eating chips", "eating doughnuts", "eating hotdog", "eating ice cream", "eating spaghetti", "eating watermelon", "egg hunting", "exercising arm", "exercising with an exercise ball", "extinguishing fire", "faceplanting", "feeding birds", "feeding fish", "feeding goats", "filling eyebrows", "finger snapping", "fixing hair", "flipping pancake", "flying kite", "folding clothes", "folding napkins", "folding paper", "front raises", "frying vegetables", "garbage collecting", "gargling", "getting a haircut", "getting a tattoo", "giving or receiving award", "golf chipping", "golf driving", "golf putting", "grinding meat", "grooming dog", "grooming horse", "gymnastics tumbling", "hammer throw", "headbanging", "headbutting", "high jump", "high kick", "hitting baseball", "hockey stop", "holding snake", "hopscotch", "hoverboarding", "hugging", "hula hooping", "hurdling", "hurling (sport)", "ice climbing", "ice fishing", "ice skating", "ironing", "javelin throw", "jetskiing", "jogging", "juggling balls", "juggling fire", "juggling soccer ball", "jumping into pool", "jumpstyle dancing", "kicking field goal", "kicking soccer ball", "kissing", "kitesurfing", "knitting", "krumping", "laughing", "laying bricks", "long jump", "lunge", "making a cake", "making a sandwich", "making bed", "making jewelry", "making pizza", "making snowman", "making sushi", "making tea", "marching", "massaging back", "massaging feet", "massaging legs", "massaging person's head", "milking cow", "mopping floor", "motorcycling", "moving furniture", "mowing lawn", "news anchoring", "opening bottle", "opening present", "paragliding", "parasailing", "parkour", "passing American football (in game)", "passing American football (not in game)", "peeling apples", "peeling potatoes", "petting animal (not cat)", "petting cat", "picking fruit", "planting trees", "plastering", "playing accordion", "playing badminton", "playing bagpipes", "playing basketball", "playing bass guitar", "playing cards", "playing cello", "playing chess", "playing clarinet", "playing controller", "playing cricket", "playing cymbals", "playing didgeridoo", "playing drums", "playing flute", "playing guitar", "playing harmonica", "playing harp", "playing ice hockey", "playing keyboard", "playing kickball", "playing monopoly", "playing organ", "playing paintball", "playing piano", "playing poker", "playing recorder", "playing saxophone", "playing squash or racquetball", "playing tennis", "playing trombone", "playing trumpet", "playing ukulele", "playing violin", "playing volleyball", "playing xylophone", "pole vault", "presenting weather forecast", "pull ups", "pumping fist", "pumping gas", "punching bag", "punching person (boxing)", "push up", "pushing car", "pushing cart", "pushing wheelchair", "reading book", "reading newspaper", "recording music", "riding a bike", "riding camel", "riding elephant", "riding mechanical bull", "riding mountain bike", "riding mule", "riding or walking with horse", "riding scooter", "riding unicycle", "ripping paper", "robot dancing", "rock climbing", "rock scissors paper", "roller skating", "running on treadmill", "sailing", "salsa dancing", "sanding floor", "scrambling eggs", "scuba diving", "setting table", "shaking hands", "shaking head", "sharpening knives", "sharpening pencil", "shaving head", "shaving legs", "shearing sheep", "shining shoes", "shooting basketball", "shooting goal (soccer)", "shot put", "shoveling snow", "shredding paper", "shuffling cards", "side kick", "sign language interpreting", "singing", "situp", "skateboarding", "ski jumping", "skiing (not slalom or crosscountry)", "skiing crosscountry", "skiing slalom", "skipping rope", "skydiving", "slacklining", "slapping", "sled dog racing", "smoking", "smoking hookah", "snatch weight lifting", "sneezing", "sniffing", "snorkeling", "snowboarding", "snowkiting", "snowmobiling", "somersaulting", "spinning poi", "spray painting", "spraying", "springboard diving", "squat", "sticking tongue out", "stomping grapes", "stretching arm", "stretching leg", "strumming guitar", "surfing crowd", "surfing water", "sweeping floor", "swimming backstroke", "swimming breast stroke", "swimming butterfly stroke", "swing dancing", "swinging legs", "swinging on something", "sword fighting", "tai chi", "taking a shower", "tango dancing", "tap dancing", "tapping guitar", "tapping pen", "tasting beer", "tasting food", "testifying", "texting", "throwing axe", "throwing ball", "throwing discus", "tickling", "tobogganing", "tossing coin", "tossing salad", "training dog", "trapezing", "trimming or shaving beard", "trimming trees", "triple jump", "tying bow tie", "tying knot (not on a tie)", "tying tie", "unboxing", "unloading truck", "using computer", "using remote controller (not gaming)", "using segway", "vault", "waiting in line", "walking the dog", "washing dishes", "washing feet", "washing hair", "washing hands", "water skiing", "water sliding", "watering plants", "waxing back", "waxing chest", "waxing eyebrows", "waxing legs", "weaving basket", "welding", "whistling", "windsurfing", "wrapping present", "wrestling", "writing", "yawning", "yoga", "zumba", ] ```
==================================================================================================================== SOURCE CODE FILE: _utils.py LINES: 1 SIZE: 10.89 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\_utils.py ENCODING: utf-8 ```py import functools import inspect import warnings from collections import OrderedDict from typing import Any, Callable, Dict, Optional, Tuple, TypeVar, Union from torch import nn from .._utils import sequence_to_str from ._api import WeightsEnum class IntermediateLayerGetter(nn.ModuleDict): """ Module wrapper that returns intermediate layers from a model It has a strong assumption that the modules have been registered into the model in the same order as they are used. This means that one should **not** reuse the same nn.Module twice in the forward if you want this to work. Additionally, it is only able to query submodules that are directly assigned to the model. So if `model` is passed, `model.feature1` can be returned, but not `model.feature1.layer2`. Args: model (nn.Module): model on which we will extract the features return_layers (Dict[name, new_name]): a dict containing the names of the modules for which the activations will be returned as the key of the dict, and the value of the dict is the name of the returned activation (which the user can specify). Examples:: >>> m = torchvision.models.resnet18(weights=ResNet18_Weights.DEFAULT) >>> # extract layer1 and layer3, giving as names `feat1` and feat2` >>> new_m = torchvision.models._utils.IntermediateLayerGetter(m, >>> {'layer1': 'feat1', 'layer3': 'feat2'}) >>> out = new_m(torch.rand(1, 3, 224, 224)) >>> print([(k, v.shape) for k, v in out.items()]) >>> [('feat1', torch.Size([1, 64, 56, 56])), >>> ('feat2', torch.Size([1, 256, 14, 14]))] """ _version = 2 __annotations__ = { "return_layers": Dict[str, str], } def __init__(self, model: nn.Module, return_layers: Dict[str, str]) -> None: if not set(return_layers).issubset([name for name, _ in model.named_children()]): raise ValueError("return_layers are not present in model") orig_return_layers = return_layers return_layers = {str(k): str(v) for k, v in return_layers.items()} layers = OrderedDict() for name, module in model.named_children(): layers[name] = module if name in return_layers: del return_layers[name] if not return_layers: break super().__init__(layers) self.return_layers = orig_return_layers def forward(self, x): out = OrderedDict() for name, module in self.items(): x = module(x) if name in self.return_layers: out_name = self.return_layers[name] out[out_name] = x return out def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v D = TypeVar("D") def kwonly_to_pos_or_kw(fn: Callable[..., D]) -> Callable[..., D]: """Decorates a function that uses keyword only parameters to also allow them being passed as positionals. For example, consider the use case of changing the signature of ``old_fn`` into the one from ``new_fn``: .. code:: def old_fn(foo, bar, baz=None): ... def new_fn(foo, *, bar, baz=None): ... Calling ``old_fn("foo", "bar, "baz")`` was valid, but the same call is no longer valid with ``new_fn``. To keep BC and at the same time warn the user of the deprecation, this decorator can be used: .. code:: @kwonly_to_pos_or_kw def new_fn(foo, *, bar, baz=None): ... new_fn("foo", "bar, "baz") """ params = inspect.signature(fn).parameters try: keyword_only_start_idx = next( idx for idx, param in enumerate(params.values()) if param.kind == param.KEYWORD_ONLY ) except StopIteration: raise TypeError(f"Found no keyword-only parameter on function '{fn.__name__}'") from None keyword_only_params = tuple(inspect.signature(fn).parameters)[keyword_only_start_idx:] @functools.wraps(fn) def wrapper(*args: Any, **kwargs: Any) -> D: args, keyword_only_args = args[:keyword_only_start_idx], args[keyword_only_start_idx:] if keyword_only_args: keyword_only_kwargs = dict(zip(keyword_only_params, keyword_only_args)) warnings.warn( f"Using {sequence_to_str(tuple(keyword_only_kwargs.keys()), separate_last='and ')} as positional " f"parameter(s) is deprecated since 0.13 and may be removed in the future. Please use keyword parameter(s) " f"instead." ) kwargs.update(keyword_only_kwargs) return fn(*args, **kwargs) return wrapper W = TypeVar("W", bound=WeightsEnum) M = TypeVar("M", bound=nn.Module) V = TypeVar("V") def handle_legacy_interface(**weights: Tuple[str, Union[Optional[W], Callable[[Dict[str, Any]], Optional[W]]]]): """Decorates a model builder with the new interface to make it compatible with the old. In particular this handles two things: 1. Allows positional parameters again, but emits a deprecation warning in case they are used. See :func:`torchvision.prototype.utils._internal.kwonly_to_pos_or_kw` for details. 2. Handles the default value change from ``pretrained=False`` to ``weights=None`` and ``pretrained=True`` to ``weights=Weights`` and emits a deprecation warning with instructions for the new interface. Args: **weights (Tuple[str, Union[Optional[W], Callable[[Dict[str, Any]], Optional[W]]]]): Deprecated parameter name and default value for the legacy ``pretrained=True``. The default value can be a callable in which case it will be called with a dictionary of the keyword arguments. The only key that is guaranteed to be in the dictionary is the deprecated parameter name passed as first element in the tuple. All other parameters should be accessed with :meth:`~dict.get`. """ def outer_wrapper(builder: Callable[..., M]) -> Callable[..., M]: @kwonly_to_pos_or_kw @functools.wraps(builder) def inner_wrapper(*args: Any, **kwargs: Any) -> M: for weights_param, (pretrained_param, default) in weights.items(): # type: ignore[union-attr] # If neither the weights nor the pretrained parameter as passed, or the weights argument already use # the new style arguments, there is nothing to do. Note that we cannot use `None` as sentinel for the # weight argument, since it is a valid value. sentinel = object() weights_arg = kwargs.get(weights_param, sentinel) if ( (weights_param not in kwargs and pretrained_param not in kwargs) or isinstance(weights_arg, WeightsEnum) or (isinstance(weights_arg, str) and weights_arg != "legacy") or weights_arg is None ): continue # If the pretrained parameter was passed as positional argument, it is now mapped to # `kwargs[weights_param]`. This happens because the @kwonly_to_pos_or_kw decorator uses the current # signature to infer the names of positionally passed arguments and thus has no knowledge that there # used to be a pretrained parameter. pretrained_positional = weights_arg is not sentinel if pretrained_positional: # We put the pretrained argument under its legacy name in the keyword argument dictionary to have # unified access to the value if the default value is a callable. kwargs[pretrained_param] = pretrained_arg = kwargs.pop(weights_param) else: pretrained_arg = kwargs[pretrained_param] if pretrained_arg: default_weights_arg = default(kwargs) if callable(default) else default if not isinstance(default_weights_arg, WeightsEnum): raise ValueError(f"No weights available for model {builder.__name__}") else: default_weights_arg = None if not pretrained_positional: warnings.warn( f"The parameter '{pretrained_param}' is deprecated since 0.13 and may be removed in the future, " f"please use '{weights_param}' instead." ) msg = ( f"Arguments other than a weight enum or `None` for '{weights_param}' are deprecated since 0.13 and " f"may be removed in the future. " f"The current behavior is equivalent to passing `{weights_param}={default_weights_arg}`." ) if pretrained_arg: msg = ( f"{msg} You can also use `{weights_param}={type(default_weights_arg).__name__}.DEFAULT` " f"to get the most up-to-date weights." ) warnings.warn(msg) del kwargs[pretrained_param] kwargs[weights_param] = default_weights_arg return builder(*args, **kwargs) return inner_wrapper return outer_wrapper def _ovewrite_named_param(kwargs: Dict[str, Any], param: str, new_value: V) -> None: if param in kwargs: if kwargs[param] != new_value: raise ValueError(f"The parameter '{param}' expected value {new_value} but got {kwargs[param]} instead.") else: kwargs[param] = new_value def _ovewrite_value_param(param: str, actual: Optional[V], expected: V) -> V: if actual is not None: if actual != expected: raise ValueError(f"The parameter '{param}' expected value {expected} but got {actual} instead.") return expected class _ModelURLs(dict): def __getitem__(self, item): warnings.warn( "Accessing the model URLs via the internal dictionary of the module is deprecated since 0.13 and may " "be removed in the future. Please access them via the appropriate Weights Enum instead." ) return super().__getitem__(item) ```
===================================================================================================================== SOURCE CODE FILE: alexnet.py LINES: 1 SIZE: 4.50 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\alexnet.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 61100840, "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_metrics": { "ImageNet-1K": { "acc@1": 56.522, "acc@5": 79.066, } }, "_ops": 0.714, "_file_size": 233.087, "_docs": """ These weights reproduce closely the results of the paper using a simplified training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__. .. note:: AlexNet was originally introduced in the `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__ paper. Our implementation is based instead on the "One weird trick" paper above. Args: weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.AlexNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.AlexNet_Weights :members: """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
====================================================================================================================== SOURCE CODE FILE: convnext.py LINES: 1 SIZE: 15.37 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\convnext.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Callable, List, Optional, Sequence import torch from torch import nn, Tensor from torch.nn import functional as F from ..ops.misc import Conv2dNormActivation, Permute from ..ops.stochastic_depth import StochasticDepth from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "ConvNeXt", "ConvNeXt_Tiny_Weights", "ConvNeXt_Small_Weights", "ConvNeXt_Base_Weights", "ConvNeXt_Large_Weights", "convnext_tiny", "convnext_small", "convnext_base", "convnext_large", ] class LayerNorm2d(nn.LayerNorm): def forward(self, x: Tensor) -> Tensor: x = x.permute(0, 2, 3, 1) x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) x = x.permute(0, 3, 1, 2) return x class CNBlock(nn.Module): def __init__( self, dim, layer_scale: float, stochastic_depth_prob: float, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = partial(nn.LayerNorm, eps=1e-6) self.block = nn.Sequential( nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim, bias=True), Permute([0, 2, 3, 1]), norm_layer(dim), nn.Linear(in_features=dim, out_features=4 * dim, bias=True), nn.GELU(), nn.Linear(in_features=4 * dim, out_features=dim, bias=True), Permute([0, 3, 1, 2]), ) self.layer_scale = nn.Parameter(torch.ones(dim, 1, 1) * layer_scale) self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row") def forward(self, input: Tensor) -> Tensor: result = self.layer_scale * self.block(input) result = self.stochastic_depth(result) result += input return result class CNBlockConfig: # Stores information listed at Section 3 of the ConvNeXt paper def __init__( self, input_channels: int, out_channels: Optional[int], num_layers: int, ) -> None: self.input_channels = input_channels self.out_channels = out_channels self.num_layers = num_layers def __repr__(self) -> str: s = self.__class__.__name__ + "(" s += "input_channels={input_channels}" s += ", out_channels={out_channels}" s += ", num_layers={num_layers}" s += ")" return s.format(**self.__dict__) class ConvNeXt(nn.Module): def __init__( self, block_setting: List[CNBlockConfig], stochastic_depth_prob: float = 0.0, layer_scale: float = 1e-6, num_classes: int = 1000, block: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, **kwargs: Any, ) -> None: super().__init__() _log_api_usage_once(self) if not block_setting: raise ValueError("The block_setting should not be empty") elif not (isinstance(block_setting, Sequence) and all([isinstance(s, CNBlockConfig) for s in block_setting])): raise TypeError("The block_setting should be List[CNBlockConfig]") if block is None: block = CNBlock if norm_layer is None: norm_layer = partial(LayerNorm2d, eps=1e-6) layers: List[nn.Module] = [] # Stem firstconv_output_channels = block_setting[0].input_channels layers.append( Conv2dNormActivation( 3, firstconv_output_channels, kernel_size=4, stride=4, padding=0, norm_layer=norm_layer, activation_layer=None, bias=True, ) ) total_stage_blocks = sum(cnf.num_layers for cnf in block_setting) stage_block_id = 0 for cnf in block_setting: # Bottlenecks stage: List[nn.Module] = [] for _ in range(cnf.num_layers): # adjust stochastic depth probability based on the depth of the stage block sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0) stage.append(block(cnf.input_channels, layer_scale, sd_prob)) stage_block_id += 1 layers.append(nn.Sequential(*stage)) if cnf.out_channels is not None: # Downsampling layers.append( nn.Sequential( norm_layer(cnf.input_channels), nn.Conv2d(cnf.input_channels, cnf.out_channels, kernel_size=2, stride=2), ) ) self.features = nn.Sequential(*layers) self.avgpool = nn.AdaptiveAvgPool2d(1) lastblock = block_setting[-1] lastconv_output_channels = ( lastblock.out_channels if lastblock.out_channels is not None else lastblock.input_channels ) self.classifier = nn.Sequential( norm_layer(lastconv_output_channels), nn.Flatten(1), nn.Linear(lastconv_output_channels, num_classes) ) for m in self.modules(): if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.zeros_(m.bias) def _forward_impl(self, x: Tensor) -> Tensor: x = self.features(x) x = self.avgpool(x) x = self.classifier(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _convnext( block_setting: List[CNBlockConfig], stochastic_depth_prob: float, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> ConvNeXt: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = ConvNeXt(block_setting, stochastic_depth_prob=stochastic_depth_prob, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (32, 32), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#convnext", "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, } class ConvNeXt_Tiny_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/convnext_tiny-983f1562.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=236), meta={ **_COMMON_META, "num_params": 28589128, "_metrics": { "ImageNet-1K": { "acc@1": 82.520, "acc@5": 96.146, } }, "_ops": 4.456, "_file_size": 109.119, }, ) DEFAULT = IMAGENET1K_V1 class ConvNeXt_Small_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/convnext_small-0c510722.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=230), meta={ **_COMMON_META, "num_params": 50223688, "_metrics": { "ImageNet-1K": { "acc@1": 83.616, "acc@5": 96.650, } }, "_ops": 8.684, "_file_size": 191.703, }, ) DEFAULT = IMAGENET1K_V1 class ConvNeXt_Base_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/convnext_base-6075fbad.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 88591464, "_metrics": { "ImageNet-1K": { "acc@1": 84.062, "acc@5": 96.870, } }, "_ops": 15.355, "_file_size": 338.064, }, ) DEFAULT = IMAGENET1K_V1 class ConvNeXt_Large_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/convnext_large-ea097f82.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 197767336, "_metrics": { "ImageNet-1K": { "acc@1": 84.414, "acc@5": 96.976, } }, "_ops": 34.361, "_file_size": 754.537, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", ConvNeXt_Tiny_Weights.IMAGENET1K_V1)) def convnext_tiny(*, weights: Optional[ConvNeXt_Tiny_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt: """ConvNeXt Tiny model architecture from the `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper. Args: weights (:class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_ for more details about this class. .. autoclass:: torchvision.models.ConvNeXt_Tiny_Weights :members: """ weights = ConvNeXt_Tiny_Weights.verify(weights) block_setting = [ CNBlockConfig(96, 192, 3), CNBlockConfig(192, 384, 3), CNBlockConfig(384, 768, 9), CNBlockConfig(768, None, 3), ] stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.1) return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ConvNeXt_Small_Weights.IMAGENET1K_V1)) def convnext_small( *, weights: Optional[ConvNeXt_Small_Weights] = None, progress: bool = True, **kwargs: Any ) -> ConvNeXt: """ConvNeXt Small model architecture from the `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper. Args: weights (:class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Small_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_ for more details about this class. .. autoclass:: torchvision.models.ConvNeXt_Small_Weights :members: """ weights = ConvNeXt_Small_Weights.verify(weights) block_setting = [ CNBlockConfig(96, 192, 3), CNBlockConfig(192, 384, 3), CNBlockConfig(384, 768, 27), CNBlockConfig(768, None, 3), ] stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.4) return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ConvNeXt_Base_Weights.IMAGENET1K_V1)) def convnext_base(*, weights: Optional[ConvNeXt_Base_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt: """ConvNeXt Base model architecture from the `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper. Args: weights (:class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Base_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_ for more details about this class. .. autoclass:: torchvision.models.ConvNeXt_Base_Weights :members: """ weights = ConvNeXt_Base_Weights.verify(weights) block_setting = [ CNBlockConfig(128, 256, 3), CNBlockConfig(256, 512, 3), CNBlockConfig(512, 1024, 27), CNBlockConfig(1024, None, 3), ] stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5) return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ConvNeXt_Large_Weights.IMAGENET1K_V1)) def convnext_large( *, weights: Optional[ConvNeXt_Large_Weights] = None, progress: bool = True, **kwargs: Any ) -> ConvNeXt: """ConvNeXt Large model architecture from the `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper. Args: weights (:class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Large_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_ for more details about this class. .. autoclass:: torchvision.models.ConvNeXt_Large_Weights :members: """ weights = ConvNeXt_Large_Weights.verify(weights) block_setting = [ CNBlockConfig(192, 384, 3), CNBlockConfig(384, 768, 3), CNBlockConfig(768, 1536, 27), CNBlockConfig(1536, None, 3), ] stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5) return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs) ```
====================================================================================================================== SOURCE CODE FILE: densenet.py LINES: 1 SIZE: 16.87 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\densenet.py ENCODING: utf-8 ```py import re from collections import OrderedDict from functools import partial from typing import Any, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from torch import Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "DenseNet", "DenseNet121_Weights", "DenseNet161_Weights", "DenseNet169_Weights", "DenseNet201_Weights", "densenet121", "densenet161", "densenet169", "densenet201", ] class _DenseLayer(nn.Module): def __init__( self, num_input_features: int, growth_rate: int, bn_size: int, drop_rate: float, memory_efficient: bool = False ) -> None: super().__init__() self.norm1 = nn.BatchNorm2d(num_input_features) self.relu1 = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False) self.norm2 = nn.BatchNorm2d(bn_size * growth_rate) self.relu2 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False) self.drop_rate = float(drop_rate) self.memory_efficient = memory_efficient def bn_function(self, inputs: List[Tensor]) -> Tensor: concated_features = torch.cat(inputs, 1) bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features))) # noqa: T484 return bottleneck_output # todo: rewrite when torchscript supports any def any_requires_grad(self, input: List[Tensor]) -> bool: for tensor in input: if tensor.requires_grad: return True return False @torch.jit.unused # noqa: T484 def call_checkpoint_bottleneck(self, input: List[Tensor]) -> Tensor: def closure(*inputs): return self.bn_function(inputs) return cp.checkpoint(closure, *input, use_reentrant=False) @torch.jit._overload_method # noqa: F811 def forward(self, input: List[Tensor]) -> Tensor: # noqa: F811 pass @torch.jit._overload_method # noqa: F811 def forward(self, input: Tensor) -> Tensor: # noqa: F811 pass # torchscript does not yet support *args, so we overload method # allowing it to take either a List[Tensor] or single Tensor def forward(self, input: Tensor) -> Tensor: # noqa: F811 if isinstance(input, Tensor): prev_features = [input] else: prev_features = input if self.memory_efficient and self.any_requires_grad(prev_features): if torch.jit.is_scripting(): raise Exception("Memory Efficient not supported in JIT") bottleneck_output = self.call_checkpoint_bottleneck(prev_features) else: bottleneck_output = self.bn_function(prev_features) new_features = self.conv2(self.relu2(self.norm2(bottleneck_output))) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return new_features class _DenseBlock(nn.ModuleDict): _version = 2 def __init__( self, num_layers: int, num_input_features: int, bn_size: int, growth_rate: int, drop_rate: float, memory_efficient: bool = False, ) -> None: super().__init__() for i in range(num_layers): layer = _DenseLayer( num_input_features + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, drop_rate=drop_rate, memory_efficient=memory_efficient, ) self.add_module("denselayer%d" % (i + 1), layer) def forward(self, init_features: Tensor) -> Tensor: features = [init_features] for name, layer in self.items(): new_features = layer(features) features.append(new_features) return torch.cat(features, 1) class _Transition(nn.Sequential): def __init__(self, num_input_features: int, num_output_features: int) -> None: super().__init__() self.norm = nn.BatchNorm2d(num_input_features) self.relu = nn.ReLU(inplace=True) self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False) self.pool = nn.AvgPool2d(kernel_size=2, stride=2) class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_. Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block num_init_features (int) - the number of filters to learn in the first convolution layer bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_. """ def __init__( self, growth_rate: int = 32, block_config: Tuple[int, int, int, int] = (6, 12, 24, 16), num_init_features: int = 64, bn_size: int = 4, drop_rate: float = 0, num_classes: int = 1000, memory_efficient: bool = False, ) -> None: super().__init__() _log_api_usage_once(self) # First convolution self.features = nn.Sequential( OrderedDict( [ ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ("norm0", nn.BatchNorm2d(num_init_features)), ("relu0", nn.ReLU(inplace=True)), ("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ] ) ) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): block = _DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, memory_efficient=memory_efficient, ) self.features.add_module("denseblock%d" % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module("transition%d" % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module("norm5", nn.BatchNorm2d(num_features)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) def forward(self, x: Tensor) -> Tensor: features = self.features(x) out = F.relu(features, inplace=True) out = F.adaptive_avg_pool2d(out, (1, 1)) out = torch.flatten(out, 1) out = self.classifier(out) return out def _load_state_dict(model: nn.Module, weights: WeightsEnum, progress: bool) -> None: # '.'s are no longer allowed in module names, but previous _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$" ) state_dict = weights.get_state_dict(progress=progress, check_hash=True) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) def _densenet( growth_rate: int, block_config: Tuple[int, int, int, int], num_init_features: int, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> DenseNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = DenseNet(growth_rate, block_config, num_init_features, **kwargs) if weights is not None: _load_state_dict(model=model, weights=weights, progress=progress) return model _COMMON_META = { "min_size": (29, 29), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/pull/116", "_docs": """These weights are ported from LuaTorch.""", } class DenseNet121_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/densenet121-a639ec97.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 7978856, "_metrics": { "ImageNet-1K": { "acc@1": 74.434, "acc@5": 91.972, } }, "_ops": 2.834, "_file_size": 30.845, }, ) DEFAULT = IMAGENET1K_V1 class DenseNet161_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/densenet161-8d451a50.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 28681000, "_metrics": { "ImageNet-1K": { "acc@1": 77.138, "acc@5": 93.560, } }, "_ops": 7.728, "_file_size": 110.369, }, ) DEFAULT = IMAGENET1K_V1 class DenseNet169_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/densenet169-b2777c0a.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 14149480, "_metrics": { "ImageNet-1K": { "acc@1": 75.600, "acc@5": 92.806, } }, "_ops": 3.36, "_file_size": 54.708, }, ) DEFAULT = IMAGENET1K_V1 class DenseNet201_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/densenet201-c1103571.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 20013928, "_metrics": { "ImageNet-1K": { "acc@1": 76.896, "acc@5": 93.370, } }, "_ops": 4.291, "_file_size": 77.373, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", DenseNet121_Weights.IMAGENET1K_V1)) def densenet121(*, weights: Optional[DenseNet121_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: r"""Densenet-121 model from `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_. Args: weights (:class:`~torchvision.models.DenseNet121_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.DenseNet121_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.DenseNet121_Weights :members: """ weights = DenseNet121_Weights.verify(weights) return _densenet(32, (6, 12, 24, 16), 64, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", DenseNet161_Weights.IMAGENET1K_V1)) def densenet161(*, weights: Optional[DenseNet161_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: r"""Densenet-161 model from `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_. Args: weights (:class:`~torchvision.models.DenseNet161_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.DenseNet161_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.DenseNet161_Weights :members: """ weights = DenseNet161_Weights.verify(weights) return _densenet(48, (6, 12, 36, 24), 96, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", DenseNet169_Weights.IMAGENET1K_V1)) def densenet169(*, weights: Optional[DenseNet169_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: r"""Densenet-169 model from `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_. Args: weights (:class:`~torchvision.models.DenseNet169_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.DenseNet169_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.DenseNet169_Weights :members: """ weights = DenseNet169_Weights.verify(weights) return _densenet(32, (6, 12, 32, 32), 64, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", DenseNet201_Weights.IMAGENET1K_V1)) def densenet201(*, weights: Optional[DenseNet201_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: r"""Densenet-201 model from `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_. Args: weights (:class:`~torchvision.models.DenseNet201_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.DenseNet201_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.DenseNet201_Weights :members: """ weights = DenseNet201_Weights.verify(weights) return _densenet(32, (6, 12, 48, 32), 64, weights, progress, **kwargs) ```
================================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.17 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\__init__.py ENCODING: utf-8 ```py from .faster_rcnn import * from .fcos import * from .keypoint_rcnn import * from .mask_rcnn import * from .retinanet import * from .ssd import * from .ssdlite import * ```
============================================================================================================================== SOURCE CODE FILE: _utils.py LINES: 1 SIZE: 22.14 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\_utils.py ENCODING: utf-8 ```py import math from collections import OrderedDict from typing import Dict, List, Optional, Tuple import torch from torch import nn, Tensor from torch.nn import functional as F from torchvision.ops import complete_box_iou_loss, distance_box_iou_loss, FrozenBatchNorm2d, generalized_box_iou_loss class BalancedPositiveNegativeSampler: """ This class samples batches, ensuring that they contain a fixed proportion of positives """ def __init__(self, batch_size_per_image: int, positive_fraction: float) -> None: """ Args: batch_size_per_image (int): number of elements to be selected per image positive_fraction (float): percentage of positive elements per batch """ self.batch_size_per_image = batch_size_per_image self.positive_fraction = positive_fraction def __call__(self, matched_idxs: List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]: """ Args: matched_idxs: list of tensors containing -1, 0 or positive values. Each tensor corresponds to a specific image. -1 values are ignored, 0 are considered as negatives and > 0 as positives. Returns: pos_idx (list[tensor]) neg_idx (list[tensor]) Returns two lists of binary masks for each image. The first list contains the positive elements that were selected, and the second list the negative example. """ pos_idx = [] neg_idx = [] for matched_idxs_per_image in matched_idxs: positive = torch.where(matched_idxs_per_image >= 1)[0] negative = torch.where(matched_idxs_per_image == 0)[0] num_pos = int(self.batch_size_per_image * self.positive_fraction) # protect against not enough positive examples num_pos = min(positive.numel(), num_pos) num_neg = self.batch_size_per_image - num_pos # protect against not enough negative examples num_neg = min(negative.numel(), num_neg) # randomly select positive and negative examples perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] pos_idx_per_image = positive[perm1] neg_idx_per_image = negative[perm2] # create binary mask from indices pos_idx_per_image_mask = torch.zeros_like(matched_idxs_per_image, dtype=torch.uint8) neg_idx_per_image_mask = torch.zeros_like(matched_idxs_per_image, dtype=torch.uint8) pos_idx_per_image_mask[pos_idx_per_image] = 1 neg_idx_per_image_mask[neg_idx_per_image] = 1 pos_idx.append(pos_idx_per_image_mask) neg_idx.append(neg_idx_per_image_mask) return pos_idx, neg_idx @torch.jit._script_if_tracing def encode_boxes(reference_boxes: Tensor, proposals: Tensor, weights: Tensor) -> Tensor: """ Encode a set of proposals with respect to some reference boxes Args: reference_boxes (Tensor): reference boxes proposals (Tensor): boxes to be encoded weights (Tensor[4]): the weights for ``(x, y, w, h)`` """ # perform some unpacking to make it JIT-fusion friendly wx = weights[0] wy = weights[1] ww = weights[2] wh = weights[3] proposals_x1 = proposals[:, 0].unsqueeze(1) proposals_y1 = proposals[:, 1].unsqueeze(1) proposals_x2 = proposals[:, 2].unsqueeze(1) proposals_y2 = proposals[:, 3].unsqueeze(1) reference_boxes_x1 = reference_boxes[:, 0].unsqueeze(1) reference_boxes_y1 = reference_boxes[:, 1].unsqueeze(1) reference_boxes_x2 = reference_boxes[:, 2].unsqueeze(1) reference_boxes_y2 = reference_boxes[:, 3].unsqueeze(1) # implementation starts here ex_widths = proposals_x2 - proposals_x1 ex_heights = proposals_y2 - proposals_y1 ex_ctr_x = proposals_x1 + 0.5 * ex_widths ex_ctr_y = proposals_y1 + 0.5 * ex_heights gt_widths = reference_boxes_x2 - reference_boxes_x1 gt_heights = reference_boxes_y2 - reference_boxes_y1 gt_ctr_x = reference_boxes_x1 + 0.5 * gt_widths gt_ctr_y = reference_boxes_y1 + 0.5 * gt_heights targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = ww * torch.log(gt_widths / ex_widths) targets_dh = wh * torch.log(gt_heights / ex_heights) targets = torch.cat((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) return targets class BoxCoder: """ This class encodes and decodes a set of bounding boxes into the representation used for training the regressors. """ def __init__( self, weights: Tuple[float, float, float, float], bbox_xform_clip: float = math.log(1000.0 / 16) ) -> None: """ Args: weights (4-element tuple) bbox_xform_clip (float) """ self.weights = weights self.bbox_xform_clip = bbox_xform_clip def encode(self, reference_boxes: List[Tensor], proposals: List[Tensor]) -> List[Tensor]: boxes_per_image = [len(b) for b in reference_boxes] reference_boxes = torch.cat(reference_boxes, dim=0) proposals = torch.cat(proposals, dim=0) targets = self.encode_single(reference_boxes, proposals) return targets.split(boxes_per_image, 0) def encode_single(self, reference_boxes: Tensor, proposals: Tensor) -> Tensor: """ Encode a set of proposals with respect to some reference boxes Args: reference_boxes (Tensor): reference boxes proposals (Tensor): boxes to be encoded """ dtype = reference_boxes.dtype device = reference_boxes.device weights = torch.as_tensor(self.weights, dtype=dtype, device=device) targets = encode_boxes(reference_boxes, proposals, weights) return targets def decode(self, rel_codes: Tensor, boxes: List[Tensor]) -> Tensor: torch._assert( isinstance(boxes, (list, tuple)), "This function expects boxes of type list or tuple.", ) torch._assert( isinstance(rel_codes, torch.Tensor), "This function expects rel_codes of type torch.Tensor.", ) boxes_per_image = [b.size(0) for b in boxes] concat_boxes = torch.cat(boxes, dim=0) box_sum = 0 for val in boxes_per_image: box_sum += val if box_sum > 0: rel_codes = rel_codes.reshape(box_sum, -1) pred_boxes = self.decode_single(rel_codes, concat_boxes) if box_sum > 0: pred_boxes = pred_boxes.reshape(box_sum, -1, 4) return pred_boxes def decode_single(self, rel_codes: Tensor, boxes: Tensor) -> Tensor: """ From a set of original boxes and encoded relative box offsets, get the decoded boxes. Args: rel_codes (Tensor): encoded boxes boxes (Tensor): reference boxes. """ boxes = boxes.to(rel_codes.dtype) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = self.weights dx = rel_codes[:, 0::4] / wx dy = rel_codes[:, 1::4] / wy dw = rel_codes[:, 2::4] / ww dh = rel_codes[:, 3::4] / wh # Prevent sending too large values into torch.exp() dw = torch.clamp(dw, max=self.bbox_xform_clip) dh = torch.clamp(dh, max=self.bbox_xform_clip) pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] pred_w = torch.exp(dw) * widths[:, None] pred_h = torch.exp(dh) * heights[:, None] # Distance from center to box's corner. c_to_c_h = torch.tensor(0.5, dtype=pred_ctr_y.dtype, device=pred_h.device) * pred_h c_to_c_w = torch.tensor(0.5, dtype=pred_ctr_x.dtype, device=pred_w.device) * pred_w pred_boxes1 = pred_ctr_x - c_to_c_w pred_boxes2 = pred_ctr_y - c_to_c_h pred_boxes3 = pred_ctr_x + c_to_c_w pred_boxes4 = pred_ctr_y + c_to_c_h pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=2).flatten(1) return pred_boxes class BoxLinearCoder: """ The linear box-to-box transform defined in FCOS. The transformation is parameterized by the distance from the center of (square) src box to 4 edges of the target box. """ def __init__(self, normalize_by_size: bool = True) -> None: """ Args: normalize_by_size (bool): normalize deltas by the size of src (anchor) boxes. """ self.normalize_by_size = normalize_by_size def encode(self, reference_boxes: Tensor, proposals: Tensor) -> Tensor: """ Encode a set of proposals with respect to some reference boxes Args: reference_boxes (Tensor): reference boxes proposals (Tensor): boxes to be encoded Returns: Tensor: the encoded relative box offsets that can be used to decode the boxes. """ # get the center of reference_boxes reference_boxes_ctr_x = 0.5 * (reference_boxes[..., 0] + reference_boxes[..., 2]) reference_boxes_ctr_y = 0.5 * (reference_boxes[..., 1] + reference_boxes[..., 3]) # get box regression transformation deltas target_l = reference_boxes_ctr_x - proposals[..., 0] target_t = reference_boxes_ctr_y - proposals[..., 1] target_r = proposals[..., 2] - reference_boxes_ctr_x target_b = proposals[..., 3] - reference_boxes_ctr_y targets = torch.stack((target_l, target_t, target_r, target_b), dim=-1) if self.normalize_by_size: reference_boxes_w = reference_boxes[..., 2] - reference_boxes[..., 0] reference_boxes_h = reference_boxes[..., 3] - reference_boxes[..., 1] reference_boxes_size = torch.stack( (reference_boxes_w, reference_boxes_h, reference_boxes_w, reference_boxes_h), dim=-1 ) targets = targets / reference_boxes_size return targets def decode(self, rel_codes: Tensor, boxes: Tensor) -> Tensor: """ From a set of original boxes and encoded relative box offsets, get the decoded boxes. Args: rel_codes (Tensor): encoded boxes boxes (Tensor): reference boxes. Returns: Tensor: the predicted boxes with the encoded relative box offsets. .. note:: This method assumes that ``rel_codes`` and ``boxes`` have same size for 0th dimension. i.e. ``len(rel_codes) == len(boxes)``. """ boxes = boxes.to(dtype=rel_codes.dtype) ctr_x = 0.5 * (boxes[..., 0] + boxes[..., 2]) ctr_y = 0.5 * (boxes[..., 1] + boxes[..., 3]) if self.normalize_by_size: boxes_w = boxes[..., 2] - boxes[..., 0] boxes_h = boxes[..., 3] - boxes[..., 1] list_box_size = torch.stack((boxes_w, boxes_h, boxes_w, boxes_h), dim=-1) rel_codes = rel_codes * list_box_size pred_boxes1 = ctr_x - rel_codes[..., 0] pred_boxes2 = ctr_y - rel_codes[..., 1] pred_boxes3 = ctr_x + rel_codes[..., 2] pred_boxes4 = ctr_y + rel_codes[..., 3] pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=-1) return pred_boxes class Matcher: """ This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will have exactly zero or one matches; each ground-truth element may be assigned to zero or more predicted elements. Matching is based on the MxN match_quality_matrix, that characterizes how well each (ground-truth, predicted)-pair match. For example, if the elements are boxes, the matrix may contain box IoU overlap values. The matcher returns a tensor of size N containing the index of the ground-truth element m that matches to prediction n. If there is no match, a negative value is returned. """ BELOW_LOW_THRESHOLD = -1 BETWEEN_THRESHOLDS = -2 __annotations__ = { "BELOW_LOW_THRESHOLD": int, "BETWEEN_THRESHOLDS": int, } def __init__(self, high_threshold: float, low_threshold: float, allow_low_quality_matches: bool = False) -> None: """ Args: high_threshold (float): quality values greater than or equal to this value are candidate matches. low_threshold (float): a lower quality threshold used to stratify matches into three levels: 1) matches >= high_threshold 2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold) 3) BELOW_LOW_THRESHOLD matches in [0, low_threshold) allow_low_quality_matches (bool): if True, produce additional matches for predictions that have only low-quality match candidates. See set_low_quality_matches_ for more details. """ self.BELOW_LOW_THRESHOLD = -1 self.BETWEEN_THRESHOLDS = -2 torch._assert(low_threshold <= high_threshold, "low_threshold should be <= high_threshold") self.high_threshold = high_threshold self.low_threshold = low_threshold self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, match_quality_matrix: Tensor) -> Tensor: """ Args: match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted elements. Returns: matches (Tensor[int64]): an N tensor where N[i] is a matched gt in [0, M - 1] or a negative value indicating that prediction i could not be matched. """ if match_quality_matrix.numel() == 0: # empty targets or proposals not supported during training if match_quality_matrix.shape[0] == 0: raise ValueError("No ground-truth boxes available for one of the images during training") else: raise ValueError("No proposal boxes available for one of the images during training") # match_quality_matrix is M (gt) x N (predicted) # Max over gt elements (dim 0) to find best gt candidate for each prediction matched_vals, matches = match_quality_matrix.max(dim=0) if self.allow_low_quality_matches: all_matches = matches.clone() else: all_matches = None # type: ignore[assignment] # Assign candidate matches with low quality to negative (unassigned) values below_low_threshold = matched_vals < self.low_threshold between_thresholds = (matched_vals >= self.low_threshold) & (matched_vals < self.high_threshold) matches[below_low_threshold] = self.BELOW_LOW_THRESHOLD matches[between_thresholds] = self.BETWEEN_THRESHOLDS if self.allow_low_quality_matches: if all_matches is None: torch._assert(False, "all_matches should not be None") else: self.set_low_quality_matches_(matches, all_matches, match_quality_matrix) return matches def set_low_quality_matches_(self, matches: Tensor, all_matches: Tensor, match_quality_matrix: Tensor) -> None: """ Produce additional matches for predictions that have only low-quality matches. Specifically, for each ground-truth find the set of predictions that have maximum overlap with it (including ties); for each prediction in that set, if it is unmatched, then match it to the ground-truth with which it has the highest quality value. """ # For each gt, find the prediction with which it has the highest quality highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) # Find the highest quality match available, even if it is low, including ties gt_pred_pairs_of_highest_quality = torch.where(match_quality_matrix == highest_quality_foreach_gt[:, None]) # Example gt_pred_pairs_of_highest_quality: # (tensor([0, 1, 1, 2, 2, 3, 3, 4, 5, 5]), # tensor([39796, 32055, 32070, 39190, 40255, 40390, 41455, 45470, 45325, 46390])) # Each element in the first tensor is a gt index, and each element in second tensor is a prediction index # Note how gt items 1, 2, 3, and 5 each have two ties pred_inds_to_update = gt_pred_pairs_of_highest_quality[1] matches[pred_inds_to_update] = all_matches[pred_inds_to_update] class SSDMatcher(Matcher): def __init__(self, threshold: float) -> None: super().__init__(threshold, threshold, allow_low_quality_matches=False) def __call__(self, match_quality_matrix: Tensor) -> Tensor: matches = super().__call__(match_quality_matrix) # For each gt, find the prediction with which it has the highest quality _, highest_quality_pred_foreach_gt = match_quality_matrix.max(dim=1) matches[highest_quality_pred_foreach_gt] = torch.arange( highest_quality_pred_foreach_gt.size(0), dtype=torch.int64, device=highest_quality_pred_foreach_gt.device ) return matches def overwrite_eps(model: nn.Module, eps: float) -> None: """ This method overwrites the default eps values of all the FrozenBatchNorm2d layers of the model with the provided value. This is necessary to address the BC-breaking change introduced by the bug-fix at pytorch/vision#2933. The overwrite is applied only when the pretrained weights are loaded to maintain compatibility with previous versions. Args: model (nn.Module): The model on which we perform the overwrite. eps (float): The new value of eps. """ for module in model.modules(): if isinstance(module, FrozenBatchNorm2d): module.eps = eps def retrieve_out_channels(model: nn.Module, size: Tuple[int, int]) -> List[int]: """ This method retrieves the number of output channels of a specific model. Args: model (nn.Module): The model for which we estimate the out_channels. It should return a single Tensor or an OrderedDict[Tensor]. size (Tuple[int, int]): The size (wxh) of the input. Returns: out_channels (List[int]): A list of the output channels of the model. """ in_training = model.training model.eval() with torch.no_grad(): # Use dummy data to retrieve the feature map sizes to avoid hard-coding their values device = next(model.parameters()).device tmp_img = torch.zeros((1, 3, size[1], size[0]), device=device) features = model(tmp_img) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) out_channels = [x.size(1) for x in features.values()] if in_training: model.train() return out_channels @torch.jit.unused def _fake_cast_onnx(v: Tensor) -> int: return v # type: ignore[return-value] def _topk_min(input: Tensor, orig_kval: int, axis: int) -> int: """ ONNX spec requires the k-value to be less than or equal to the number of inputs along provided dim. Certain models use the number of elements along a particular axis instead of K if K exceeds the number of elements along that axis. Previously, python's min() function was used to determine whether to use the provided k-value or the specified dim axis value. However, in cases where the model is being exported in tracing mode, python min() is static causing the model to be traced incorrectly and eventually fail at the topk node. In order to avoid this situation, in tracing mode, torch.min() is used instead. Args: input (Tensor): The original input tensor. orig_kval (int): The provided k-value. axis(int): Axis along which we retrieve the input size. Returns: min_kval (int): Appropriately selected k-value. """ if not torch.jit.is_tracing(): return min(orig_kval, input.size(axis)) axis_dim_val = torch._shape_as_tensor(input)[axis].unsqueeze(0) min_kval = torch.min(torch.cat((torch.tensor([orig_kval], dtype=axis_dim_val.dtype), axis_dim_val), 0)) return _fake_cast_onnx(min_kval) def _box_loss( type: str, box_coder: BoxCoder, anchors_per_image: Tensor, matched_gt_boxes_per_image: Tensor, bbox_regression_per_image: Tensor, cnf: Optional[Dict[str, float]] = None, ) -> Tensor: torch._assert(type in ["l1", "smooth_l1", "ciou", "diou", "giou"], f"Unsupported loss: {type}") if type == "l1": target_regression = box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image) return F.l1_loss(bbox_regression_per_image, target_regression, reduction="sum") elif type == "smooth_l1": target_regression = box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image) beta = cnf["beta"] if cnf is not None and "beta" in cnf else 1.0 return F.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum", beta=beta) else: bbox_per_image = box_coder.decode_single(bbox_regression_per_image, anchors_per_image) eps = cnf["eps"] if cnf is not None and "eps" in cnf else 1e-7 if type == "ciou": return complete_box_iou_loss(bbox_per_image, matched_gt_boxes_per_image, reduction="sum", eps=eps) if type == "diou": return distance_box_iou_loss(bbox_per_image, matched_gt_boxes_per_image, reduction="sum", eps=eps) # otherwise giou return generalized_box_iou_loss(bbox_per_image, matched_gt_boxes_per_image, reduction="sum", eps=eps) ```
==================================================================================================================================== SOURCE CODE FILE: anchor_utils.py LINES: 1 SIZE: 11.84 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\anchor_utils.py ENCODING: utf-8 ```py import math from typing import List, Optional import torch from torch import nn, Tensor from .image_list import ImageList class AnchorGenerator(nn.Module): """ Module that generates anchors for a set of feature maps and image sizes. The module support computing anchors at multiple sizes and aspect ratios per feature map. This module assumes aspect ratio = height / width for each anchor. sizes and aspect_ratios should have the same number of elements, and it should correspond to the number of feature maps. sizes[i] and aspect_ratios[i] can have an arbitrary number of elements, and AnchorGenerator will output a set of sizes[i] * aspect_ratios[i] anchors per spatial location for feature map i. Args: sizes (Tuple[Tuple[int]]): aspect_ratios (Tuple[Tuple[float]]): """ __annotations__ = { "cell_anchors": List[torch.Tensor], } def __init__( self, sizes=((128, 256, 512),), aspect_ratios=((0.5, 1.0, 2.0),), ): super().__init__() if not isinstance(sizes[0], (list, tuple)): # TODO change this sizes = tuple((s,) for s in sizes) if not isinstance(aspect_ratios[0], (list, tuple)): aspect_ratios = (aspect_ratios,) * len(sizes) self.sizes = sizes self.aspect_ratios = aspect_ratios self.cell_anchors = [ self.generate_anchors(size, aspect_ratio) for size, aspect_ratio in zip(sizes, aspect_ratios) ] # TODO: https://github.com/pytorch/pytorch/issues/26792 # For every (aspect_ratios, scales) combination, output a zero-centered anchor with those values. # (scales, aspect_ratios) are usually an element of zip(self.scales, self.aspect_ratios) # This method assumes aspect ratio = height / width for an anchor. def generate_anchors( self, scales: List[int], aspect_ratios: List[float], dtype: torch.dtype = torch.float32, device: torch.device = torch.device("cpu"), ) -> Tensor: scales = torch.as_tensor(scales, dtype=dtype, device=device) aspect_ratios = torch.as_tensor(aspect_ratios, dtype=dtype, device=device) h_ratios = torch.sqrt(aspect_ratios) w_ratios = 1 / h_ratios ws = (w_ratios[:, None] * scales[None, :]).view(-1) hs = (h_ratios[:, None] * scales[None, :]).view(-1) base_anchors = torch.stack([-ws, -hs, ws, hs], dim=1) / 2 return base_anchors.round() def set_cell_anchors(self, dtype: torch.dtype, device: torch.device): self.cell_anchors = [cell_anchor.to(dtype=dtype, device=device) for cell_anchor in self.cell_anchors] def num_anchors_per_location(self) -> List[int]: return [len(s) * len(a) for s, a in zip(self.sizes, self.aspect_ratios)] # For every combination of (a, (g, s), i) in (self.cell_anchors, zip(grid_sizes, strides), 0:2), # output g[i] anchors that are s[i] distance apart in direction i, with the same dimensions as a. def grid_anchors(self, grid_sizes: List[List[int]], strides: List[List[Tensor]]) -> List[Tensor]: anchors = [] cell_anchors = self.cell_anchors torch._assert(cell_anchors is not None, "cell_anchors should not be None") torch._assert( len(grid_sizes) == len(strides) == len(cell_anchors), "Anchors should be Tuple[Tuple[int]] because each feature " "map could potentially have different sizes and aspect ratios. " "There needs to be a match between the number of " "feature maps passed and the number of sizes / aspect ratios specified.", ) for size, stride, base_anchors in zip(grid_sizes, strides, cell_anchors): grid_height, grid_width = size stride_height, stride_width = stride device = base_anchors.device # For output anchor, compute [x_center, y_center, x_center, y_center] shifts_x = torch.arange(0, grid_width, dtype=torch.int32, device=device) * stride_width shifts_y = torch.arange(0, grid_height, dtype=torch.int32, device=device) * stride_height shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x, indexing="ij") shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) # For every (base anchor, output anchor) pair, # offset each zero-centered base anchor by the center of the output anchor. anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) return anchors def forward(self, image_list: ImageList, feature_maps: List[Tensor]) -> List[Tensor]: grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] image_size = image_list.tensors.shape[-2:] dtype, device = feature_maps[0].dtype, feature_maps[0].device strides = [ [ torch.empty((), dtype=torch.int64, device=device).fill_(image_size[0] // g[0]), torch.empty((), dtype=torch.int64, device=device).fill_(image_size[1] // g[1]), ] for g in grid_sizes ] self.set_cell_anchors(dtype, device) anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides) anchors: List[List[torch.Tensor]] = [] for _ in range(len(image_list.image_sizes)): anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps] anchors.append(anchors_in_image) anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors] return anchors class DefaultBoxGenerator(nn.Module): """ This module generates the default boxes of SSD for a set of feature maps and image sizes. Args: aspect_ratios (List[List[int]]): A list with all the aspect ratios used in each feature map. min_ratio (float): The minimum scale :math:`\text{s}_{\text{min}}` of the default boxes used in the estimation of the scales of each feature map. It is used only if the ``scales`` parameter is not provided. max_ratio (float): The maximum scale :math:`\text{s}_{\text{max}}` of the default boxes used in the estimation of the scales of each feature map. It is used only if the ``scales`` parameter is not provided. scales (List[float]], optional): The scales of the default boxes. If not provided it will be estimated using the ``min_ratio`` and ``max_ratio`` parameters. steps (List[int]], optional): It's a hyper-parameter that affects the tiling of default boxes. If not provided it will be estimated from the data. clip (bool): Whether the standardized values of default boxes should be clipped between 0 and 1. The clipping is applied while the boxes are encoded in format ``(cx, cy, w, h)``. """ def __init__( self, aspect_ratios: List[List[int]], min_ratio: float = 0.15, max_ratio: float = 0.9, scales: Optional[List[float]] = None, steps: Optional[List[int]] = None, clip: bool = True, ): super().__init__() if steps is not None and len(aspect_ratios) != len(steps): raise ValueError("aspect_ratios and steps should have the same length") self.aspect_ratios = aspect_ratios self.steps = steps self.clip = clip num_outputs = len(aspect_ratios) # Estimation of default boxes scales if scales is None: if num_outputs > 1: range_ratio = max_ratio - min_ratio self.scales = [min_ratio + range_ratio * k / (num_outputs - 1.0) for k in range(num_outputs)] self.scales.append(1.0) else: self.scales = [min_ratio, max_ratio] else: self.scales = scales self._wh_pairs = self._generate_wh_pairs(num_outputs) def _generate_wh_pairs( self, num_outputs: int, dtype: torch.dtype = torch.float32, device: torch.device = torch.device("cpu") ) -> List[Tensor]: _wh_pairs: List[Tensor] = [] for k in range(num_outputs): # Adding the 2 default width-height pairs for aspect ratio 1 and scale s'k s_k = self.scales[k] s_prime_k = math.sqrt(self.scales[k] * self.scales[k + 1]) wh_pairs = [[s_k, s_k], [s_prime_k, s_prime_k]] # Adding 2 pairs for each aspect ratio of the feature map k for ar in self.aspect_ratios[k]: sq_ar = math.sqrt(ar) w = self.scales[k] * sq_ar h = self.scales[k] / sq_ar wh_pairs.extend([[w, h], [h, w]]) _wh_pairs.append(torch.as_tensor(wh_pairs, dtype=dtype, device=device)) return _wh_pairs def num_anchors_per_location(self) -> List[int]: # Estimate num of anchors based on aspect ratios: 2 default boxes + 2 * ratios of feaure map. return [2 + 2 * len(r) for r in self.aspect_ratios] # Default Boxes calculation based on page 6 of SSD paper def _grid_default_boxes( self, grid_sizes: List[List[int]], image_size: List[int], dtype: torch.dtype = torch.float32 ) -> Tensor: default_boxes = [] for k, f_k in enumerate(grid_sizes): # Now add the default boxes for each width-height pair if self.steps is not None: x_f_k = image_size[1] / self.steps[k] y_f_k = image_size[0] / self.steps[k] else: y_f_k, x_f_k = f_k shifts_x = ((torch.arange(0, f_k[1]) + 0.5) / x_f_k).to(dtype=dtype) shifts_y = ((torch.arange(0, f_k[0]) + 0.5) / y_f_k).to(dtype=dtype) shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x, indexing="ij") shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) shifts = torch.stack((shift_x, shift_y) * len(self._wh_pairs[k]), dim=-1).reshape(-1, 2) # Clipping the default boxes while the boxes are encoded in format (cx, cy, w, h) _wh_pair = self._wh_pairs[k].clamp(min=0, max=1) if self.clip else self._wh_pairs[k] wh_pairs = _wh_pair.repeat((f_k[0] * f_k[1]), 1) default_box = torch.cat((shifts, wh_pairs), dim=1) default_boxes.append(default_box) return torch.cat(default_boxes, dim=0) def __repr__(self) -> str: s = ( f"{self.__class__.__name__}(" f"aspect_ratios={self.aspect_ratios}" f", clip={self.clip}" f", scales={self.scales}" f", steps={self.steps}" ")" ) return s def forward(self, image_list: ImageList, feature_maps: List[Tensor]) -> List[Tensor]: grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] image_size = image_list.tensors.shape[-2:] dtype, device = feature_maps[0].dtype, feature_maps[0].device default_boxes = self._grid_default_boxes(grid_sizes, image_size, dtype=dtype) default_boxes = default_boxes.to(device) dboxes = [] x_y_size = torch.tensor([image_size[1], image_size[0]], device=default_boxes.device) for _ in image_list.image_sizes: dboxes_in_image = default_boxes dboxes_in_image = torch.cat( [ (dboxes_in_image[:, :2] - 0.5 * dboxes_in_image[:, 2:]) * x_y_size, (dboxes_in_image[:, :2] + 0.5 * dboxes_in_image[:, 2:]) * x_y_size, ], -1, ) dboxes.append(dboxes_in_image) return dboxes ```
====================================================================================================================================== SOURCE CODE FILE: backbone_utils.py LINES: 1 SIZE: 10.54 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\backbone_utils.py ENCODING: utf-8 ```py import warnings from typing import Callable, Dict, List, Optional, Union from torch import nn, Tensor from torchvision.ops import misc as misc_nn_ops from torchvision.ops.feature_pyramid_network import ExtraFPNBlock, FeaturePyramidNetwork, LastLevelMaxPool from .. import mobilenet, resnet from .._api import _get_enum_from_fn, WeightsEnum from .._utils import handle_legacy_interface, IntermediateLayerGetter class BackboneWithFPN(nn.Module): """ Adds a FPN on top of a model. Internally, it uses torchvision.models._utils.IntermediateLayerGetter to extract a submodel that returns the feature maps specified in return_layers. The same limitations of IntermediateLayerGetter apply here. Args: backbone (nn.Module) return_layers (Dict[name, new_name]): a dict containing the names of the modules for which the activations will be returned as the key of the dict, and the value of the dict is the name of the returned activation (which the user can specify). in_channels_list (List[int]): number of channels for each feature map that is returned, in the order they are present in the OrderedDict out_channels (int): number of channels in the FPN. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None Attributes: out_channels (int): the number of channels in the FPN """ def __init__( self, backbone: nn.Module, return_layers: Dict[str, str], in_channels_list: List[int], out_channels: int, extra_blocks: Optional[ExtraFPNBlock] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if extra_blocks is None: extra_blocks = LastLevelMaxPool() self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) self.fpn = FeaturePyramidNetwork( in_channels_list=in_channels_list, out_channels=out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer, ) self.out_channels = out_channels def forward(self, x: Tensor) -> Dict[str, Tensor]: x = self.body(x) x = self.fpn(x) return x @handle_legacy_interface( weights=( "pretrained", lambda kwargs: _get_enum_from_fn(resnet.__dict__[kwargs["backbone_name"]])["IMAGENET1K_V1"], ), ) def resnet_fpn_backbone( *, backbone_name: str, weights: Optional[WeightsEnum], norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d, trainable_layers: int = 3, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, ) -> BackboneWithFPN: """ Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone. Examples:: >>> import torch >>> from torchvision.models import ResNet50_Weights >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone >>> backbone = resnet_fpn_backbone(backbone_name='resnet50', weights=ResNet50_Weights.DEFAULT, trainable_layers=3) >>> # get some dummy image >>> x = torch.rand(1,3,64,64) >>> # compute the output >>> output = backbone(x) >>> print([(k, v.shape) for k, v in output.items()]) >>> # returns >>> [('0', torch.Size([1, 256, 16, 16])), >>> ('1', torch.Size([1, 256, 8, 8])), >>> ('2', torch.Size([1, 256, 4, 4])), >>> ('3', torch.Size([1, 256, 2, 2])), >>> ('pool', torch.Size([1, 256, 1, 1]))] Args: backbone_name (string): resnet architecture. Possible values are 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2' weights (WeightsEnum, optional): The pretrained weights for the model norm_layer (callable): it is recommended to use the default value. For details visit: (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267) trainable_layers (int): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``. By default, all layers are returned. extra_blocks (ExtraFPNBlock or None): if provided, extra operations will be performed. It is expected to take the fpn features, the original features and the names of the original features as input, and returns a new list of feature maps and their corresponding names. By default, a ``LastLevelMaxPool`` is used. """ backbone = resnet.__dict__[backbone_name](weights=weights, norm_layer=norm_layer) return _resnet_fpn_extractor(backbone, trainable_layers, returned_layers, extra_blocks) def _resnet_fpn_extractor( backbone: resnet.ResNet, trainable_layers: int, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> BackboneWithFPN: # select layers that won't be frozen if trainable_layers < 0 or trainable_layers > 5: raise ValueError(f"Trainable layers should be in the range [0,5], got {trainable_layers}") layers_to_train = ["layer4", "layer3", "layer2", "layer1", "conv1"][:trainable_layers] if trainable_layers == 5: layers_to_train.append("bn1") for name, parameter in backbone.named_parameters(): if all([not name.startswith(layer) for layer in layers_to_train]): parameter.requires_grad_(False) if extra_blocks is None: extra_blocks = LastLevelMaxPool() if returned_layers is None: returned_layers = [1, 2, 3, 4] if min(returned_layers) <= 0 or max(returned_layers) >= 5: raise ValueError(f"Each returned layer should be in the range [1,4]. Got {returned_layers}") return_layers = {f"layer{k}": str(v) for v, k in enumerate(returned_layers)} in_channels_stage2 = backbone.inplanes // 8 in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers] out_channels = 256 return BackboneWithFPN( backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer ) def _validate_trainable_layers( is_trained: bool, trainable_backbone_layers: Optional[int], max_value: int, default_value: int, ) -> int: # don't freeze any layers if pretrained model or backbone is not used if not is_trained: if trainable_backbone_layers is not None: warnings.warn( "Changing trainable_backbone_layers has no effect if " "neither pretrained nor pretrained_backbone have been set to True, " f"falling back to trainable_backbone_layers={max_value} so that all layers are trainable" ) trainable_backbone_layers = max_value # by default freeze first blocks if trainable_backbone_layers is None: trainable_backbone_layers = default_value if trainable_backbone_layers < 0 or trainable_backbone_layers > max_value: raise ValueError( f"Trainable backbone layers should be in the range [0,{max_value}], got {trainable_backbone_layers} " ) return trainable_backbone_layers @handle_legacy_interface( weights=( "pretrained", lambda kwargs: _get_enum_from_fn(mobilenet.__dict__[kwargs["backbone_name"]])["IMAGENET1K_V1"], ), ) def mobilenet_backbone( *, backbone_name: str, weights: Optional[WeightsEnum], fpn: bool, norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d, trainable_layers: int = 2, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, ) -> nn.Module: backbone = mobilenet.__dict__[backbone_name](weights=weights, norm_layer=norm_layer) return _mobilenet_extractor(backbone, fpn, trainable_layers, returned_layers, extra_blocks) def _mobilenet_extractor( backbone: Union[mobilenet.MobileNetV2, mobilenet.MobileNetV3], fpn: bool, trainable_layers: int, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> nn.Module: backbone = backbone.features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] num_stages = len(stage_indices) # find the index of the layer from which we won't freeze if trainable_layers < 0 or trainable_layers > num_stages: raise ValueError(f"Trainable layers should be in the range [0,{num_stages}], got {trainable_layers} ") freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers] for b in backbone[:freeze_before]: for parameter in b.parameters(): parameter.requires_grad_(False) out_channels = 256 if fpn: if extra_blocks is None: extra_blocks = LastLevelMaxPool() if returned_layers is None: returned_layers = [num_stages - 2, num_stages - 1] if min(returned_layers) < 0 or max(returned_layers) >= num_stages: raise ValueError(f"Each returned layer should be in the range [0,{num_stages - 1}], got {returned_layers} ") return_layers = {f"{stage_indices[k]}": str(v) for v, k in enumerate(returned_layers)} in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers] return BackboneWithFPN( backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer ) else: m = nn.Sequential( backbone, # depthwise linear combination of channels to reduce their size nn.Conv2d(backbone[-1].out_channels, out_channels, 1), ) m.out_channels = out_channels # type: ignore[assignment] return m ```
=================================================================================================================================== SOURCE CODE FILE: faster_rcnn.py LINES: 1 SIZE: 36.94 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\faster_rcnn.py ENCODING: utf-8 ```py from typing import Any, Callable, List, Optional, Tuple, Union import torch import torch.nn.functional as F from torch import nn from torchvision.ops import MultiScaleRoIAlign from ...ops import misc as misc_nn_ops from ...transforms._presets import ObjectDetection from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights from ..resnet import resnet50, ResNet50_Weights from ._utils import overwrite_eps from .anchor_utils import AnchorGenerator from .backbone_utils import _mobilenet_extractor, _resnet_fpn_extractor, _validate_trainable_layers from .generalized_rcnn import GeneralizedRCNN from .roi_heads import RoIHeads from .rpn import RegionProposalNetwork, RPNHead from .transform import GeneralizedRCNNTransform __all__ = [ "FasterRCNN", "FasterRCNN_ResNet50_FPN_Weights", "FasterRCNN_ResNet50_FPN_V2_Weights", "FasterRCNN_MobileNet_V3_Large_FPN_Weights", "FasterRCNN_MobileNet_V3_Large_320_FPN_Weights", "fasterrcnn_resnet50_fpn", "fasterrcnn_resnet50_fpn_v2", "fasterrcnn_mobilenet_v3_large_fpn", "fasterrcnn_mobilenet_v3_large_320_fpn", ] def _default_anchorgen(): anchor_sizes = ((32,), (64,), (128,), (256,), (512,)) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) return AnchorGenerator(anchor_sizes, aspect_ratios) class FasterRCNN(GeneralizedRCNN): """ Implements Faster R-CNN. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores or each prediction Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or and OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). If box_predictor is specified, num_classes should be None. min_size (int): Images are rescaled before feeding them to the backbone: we attempt to preserve the aspect ratio and scale the shorter edge to ``min_size``. If the resulting longer edge exceeds ``max_size``, then downscale so that the longer edge does not exceed ``max_size``. This may result in the shorter edge beeing lower than ``min_size``. max_size (int): See ``min_size``. image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training of the RPN. rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be considered as negative during training of the RPN. rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN for computing the loss rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training of the RPN rpn_score_thresh (float): only return proposals with an objectness score greater than rpn_score_thresh box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in the locations indicated by the bounding boxes box_head (nn.Module): module that takes the cropped feature maps as input box_predictor (nn.Module): module that takes the output of box_head and returns the classification logits and box regression deltas. box_score_thresh (float): during inference, only return proposals with a classification score greater than box_score_thresh box_nms_thresh (float): NMS threshold for the prediction head. Used during inference box_detections_per_img (int): maximum number of detections per image, for all classes. box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be considered as positive during training of the classification head box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be considered as negative during training of the classification head box_batch_size_per_image (int): number of proposals that are sampled during training of the classification head box_positive_fraction (float): proportion of positive proposals in a mini-batch during training of the classification head bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the bounding boxes Example:: >>> import torch >>> import torchvision >>> from torchvision.models.detection import FasterRCNN >>> from torchvision.models.detection.rpn import AnchorGenerator >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features >>> # FasterRCNN needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280, >>> # so we need to add it here >>> backbone.out_channels = 1280 >>> >>> # let's make the RPN generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),), >>> aspect_ratios=((0.5, 1.0, 2.0),)) >>> >>> # let's define what are the feature maps that we will >>> # use to perform the region of interest cropping, as well as >>> # the size of the crop after rescaling. >>> # if your backbone returns a Tensor, featmap_names is expected to >>> # be ['0']. More generally, the backbone should return an >>> # OrderedDict[Tensor], and in featmap_names you can choose which >>> # feature maps to use. >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], >>> output_size=7, >>> sampling_ratio=2) >>> >>> # put the pieces together inside a FasterRCNN model >>> model = FasterRCNN(backbone, >>> num_classes=2, >>> rpn_anchor_generator=anchor_generator, >>> box_roi_pool=roi_pooler) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """ def __init__( self, backbone, num_classes=None, # transform parameters min_size=800, max_size=1333, image_mean=None, image_std=None, # RPN parameters rpn_anchor_generator=None, rpn_head=None, rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000, rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000, rpn_nms_thresh=0.7, rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3, rpn_batch_size_per_image=256, rpn_positive_fraction=0.5, rpn_score_thresh=0.0, # Box parameters box_roi_pool=None, box_head=None, box_predictor=None, box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100, box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5, box_batch_size_per_image=512, box_positive_fraction=0.25, bbox_reg_weights=None, **kwargs, ): if not hasattr(backbone, "out_channels"): raise ValueError( "backbone should contain an attribute out_channels " "specifying the number of output channels (assumed to be the " "same for all the levels)" ) if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))): raise TypeError( f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}" ) if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))): raise TypeError( f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}" ) if num_classes is not None: if box_predictor is not None: raise ValueError("num_classes should be None when box_predictor is specified") else: if box_predictor is None: raise ValueError("num_classes should not be None when box_predictor is not specified") out_channels = backbone.out_channels if rpn_anchor_generator is None: rpn_anchor_generator = _default_anchorgen() if rpn_head is None: rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0]) rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test) rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test) rpn = RegionProposalNetwork( rpn_anchor_generator, rpn_head, rpn_fg_iou_thresh, rpn_bg_iou_thresh, rpn_batch_size_per_image, rpn_positive_fraction, rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh, score_thresh=rpn_score_thresh, ) if box_roi_pool is None: box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2) if box_head is None: resolution = box_roi_pool.output_size[0] representation_size = 1024 box_head = TwoMLPHead(out_channels * resolution**2, representation_size) if box_predictor is None: representation_size = 1024 box_predictor = FastRCNNPredictor(representation_size, num_classes) roi_heads = RoIHeads( # Box box_roi_pool, box_head, box_predictor, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, box_score_thresh, box_nms_thresh, box_detections_per_img, ) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs) super().__init__(backbone, rpn, roi_heads, transform) class TwoMLPHead(nn.Module): """ Standard heads for FPN-based models Args: in_channels (int): number of input channels representation_size (int): size of the intermediate representation """ def __init__(self, in_channels, representation_size): super().__init__() self.fc6 = nn.Linear(in_channels, representation_size) self.fc7 = nn.Linear(representation_size, representation_size) def forward(self, x): x = x.flatten(start_dim=1) x = F.relu(self.fc6(x)) x = F.relu(self.fc7(x)) return x class FastRCNNConvFCHead(nn.Sequential): def __init__( self, input_size: Tuple[int, int, int], conv_layers: List[int], fc_layers: List[int], norm_layer: Optional[Callable[..., nn.Module]] = None, ): """ Args: input_size (Tuple[int, int, int]): the input size in CHW format. conv_layers (list): feature dimensions of each Convolution layer fc_layers (list): feature dimensions of each FCN layer norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None """ in_channels, in_height, in_width = input_size blocks = [] previous_channels = in_channels for current_channels in conv_layers: blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer)) previous_channels = current_channels blocks.append(nn.Flatten()) previous_channels = previous_channels * in_height * in_width for current_channels in fc_layers: blocks.append(nn.Linear(previous_channels, current_channels)) blocks.append(nn.ReLU(inplace=True)) previous_channels = current_channels super().__init__(*blocks) for layer in self.modules(): if isinstance(layer, nn.Conv2d): nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu") if layer.bias is not None: nn.init.zeros_(layer.bias) class FastRCNNPredictor(nn.Module): """ Standard classification + bounding box regression layers for Fast R-CNN. Args: in_channels (int): number of input channels num_classes (int): number of output classes (including background) """ def __init__(self, in_channels, num_classes): super().__init__() self.cls_score = nn.Linear(in_channels, num_classes) self.bbox_pred = nn.Linear(in_channels, num_classes * 4) def forward(self, x): if x.dim() == 4: torch._assert( list(x.shape[2:]) == [1, 1], f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}", ) x = x.flatten(start_dim=1) scores = self.cls_score(x) bbox_deltas = self.bbox_pred(x) return scores, bbox_deltas _COMMON_META = { "categories": _COCO_CATEGORIES, "min_size": (1, 1), } class FasterRCNN_ResNet50_FPN_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 41755286, "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn", "_metrics": { "COCO-val2017": { "box_map": 37.0, } }, "_ops": 134.38, "_file_size": 159.743, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 class FasterRCNN_ResNet50_FPN_V2_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_v2_coco-dd69338a.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 43712278, "recipe": "https://github.com/pytorch/vision/pull/5763", "_metrics": { "COCO-val2017": { "box_map": 46.7, } }, "_ops": 280.371, "_file_size": 167.104, "_docs": """These weights were produced using an enhanced training recipe to boost the model accuracy.""", }, ) DEFAULT = COCO_V1 class FasterRCNN_MobileNet_V3_Large_FPN_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 19386354, "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn", "_metrics": { "COCO-val2017": { "box_map": 32.8, } }, "_ops": 4.494, "_file_size": 74.239, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 class FasterRCNN_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 19386354, "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn", "_metrics": { "COCO-val2017": { "box_map": 22.8, } }, "_ops": 0.719, "_file_size": 74.239, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 @register_model() @handle_legacy_interface( weights=("pretrained", FasterRCNN_ResNet50_FPN_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def fasterrcnn_resnet50_fpn( *, weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> FasterRCNN: """ Faster R-CNN model with a ResNet-50-FPN backbone from the `Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks <https://arxiv.org/abs/1506.01497>`__ paper. .. betastatus:: detection module The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses for both the RPN and the R-CNN. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each detection - scores (``Tensor[N]``): the scores of each detection For more details on the output, you may refer to :ref:`instance_seg_output`. Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size. Example:: >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT) >>> # For training >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4) >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4] >>> labels = torch.randint(1, 91, (4, 11)) >>> images = list(image for image in images) >>> targets = [] >>> for i in range(len(images)): >>> d = {} >>> d['boxes'] = boxes[i] >>> d['labels'] = labels[i] >>> targets.append(d) >>> output = model(images, targets) >>> # For inference >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) >>> >>> # optionally, if you want to export the model to ONNX: >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11) Args: weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights :members: """ weights = FasterRCNN_ResNet50_FPN_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) model = FasterRCNN(backbone, num_classes=num_classes, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if weights == FasterRCNN_ResNet50_FPN_Weights.COCO_V1: overwrite_eps(model, 0.0) return model @register_model() @handle_legacy_interface( weights=("pretrained", FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def fasterrcnn_resnet50_fpn_v2( *, weights: Optional[FasterRCNN_ResNet50_FPN_V2_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = None, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> FasterRCNN: """ Constructs an improved Faster R-CNN model with a ResNet-50-FPN backbone from `Benchmarking Detection Transfer Learning with Vision Transformers <https://arxiv.org/abs/2111.11429>`__ paper. .. betastatus:: detection module It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more details. Args: weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights :members: """ weights = FasterRCNN_ResNet50_FPN_V2_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) backbone = resnet50(weights=weights_backbone, progress=progress) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers, norm_layer=nn.BatchNorm2d) rpn_anchor_generator = _default_anchorgen() rpn_head = RPNHead(backbone.out_channels, rpn_anchor_generator.num_anchors_per_location()[0], conv_depth=2) box_head = FastRCNNConvFCHead( (backbone.out_channels, 7, 7), [256, 256, 256, 256], [1024], norm_layer=nn.BatchNorm2d ) model = FasterRCNN( backbone, num_classes=num_classes, rpn_anchor_generator=rpn_anchor_generator, rpn_head=rpn_head, box_head=box_head, **kwargs, ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model def _fasterrcnn_mobilenet_v3_large_fpn( *, weights: Optional[Union[FasterRCNN_MobileNet_V3_Large_FPN_Weights, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights]], progress: bool, num_classes: Optional[int], weights_backbone: Optional[MobileNet_V3_Large_Weights], trainable_backbone_layers: Optional[int], **kwargs: Any, ) -> FasterRCNN: if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer) backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers) anchor_sizes = ( ( 32, 64, 128, 256, 512, ), ) * 3 aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) model = FasterRCNN( backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model @register_model() @handle_legacy_interface( weights=("pretrained", FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1), weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1), ) def fasterrcnn_mobilenet_v3_large_320_fpn( *, weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> FasterRCNN: """ Low resolution Faster R-CNN model with a MobileNetV3-Large backbone tuned for mobile use cases. .. betastatus:: detection module It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more details. Example:: >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights :members: """ weights = FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.verify(weights) weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone) defaults = { "min_size": 320, "max_size": 640, "rpn_pre_nms_top_n_test": 150, "rpn_post_nms_top_n_test": 150, "rpn_score_thresh": 0.05, } kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn( weights=weights, progress=progress, num_classes=num_classes, weights_backbone=weights_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs, ) @register_model() @handle_legacy_interface( weights=("pretrained", FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1), weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1), ) def fasterrcnn_mobilenet_v3_large_fpn( *, weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> FasterRCNN: """ Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone. .. betastatus:: detection module It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more details. Example:: >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights :members: """ weights = FasterRCNN_MobileNet_V3_Large_FPN_Weights.verify(weights) weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone) defaults = { "rpn_score_thresh": 0.05, } kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn( weights=weights, progress=progress, num_classes=num_classes, weights_backbone=weights_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs, ) ```
============================================================================================================================ SOURCE CODE FILE: fcos.py LINES: 1 SIZE: 34.19 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\fcos.py ENCODING: utf-8 ```py import math import warnings from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn, Tensor from ...ops import boxes as box_ops, generalized_box_iou_loss, misc as misc_nn_ops, sigmoid_focal_loss from ...ops.feature_pyramid_network import LastLevelP6P7 from ...transforms._presets import ObjectDetection from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..resnet import resnet50, ResNet50_Weights from . import _utils as det_utils from .anchor_utils import AnchorGenerator from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers from .transform import GeneralizedRCNNTransform __all__ = [ "FCOS", "FCOS_ResNet50_FPN_Weights", "fcos_resnet50_fpn", ] class FCOSHead(nn.Module): """ A regression and classification head for use in FCOS. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_classes (int): number of classes to be predicted num_convs (Optional[int]): number of conv layer of head. Default: 4. """ __annotations__ = { "box_coder": det_utils.BoxLinearCoder, } def __init__(self, in_channels: int, num_anchors: int, num_classes: int, num_convs: Optional[int] = 4) -> None: super().__init__() self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True) self.classification_head = FCOSClassificationHead(in_channels, num_anchors, num_classes, num_convs) self.regression_head = FCOSRegressionHead(in_channels, num_anchors, num_convs) def compute_loss( self, targets: List[Dict[str, Tensor]], head_outputs: Dict[str, Tensor], anchors: List[Tensor], matched_idxs: List[Tensor], ) -> Dict[str, Tensor]: cls_logits = head_outputs["cls_logits"] # [N, HWA, C] bbox_regression = head_outputs["bbox_regression"] # [N, HWA, 4] bbox_ctrness = head_outputs["bbox_ctrness"] # [N, HWA, 1] all_gt_classes_targets = [] all_gt_boxes_targets = [] for targets_per_image, matched_idxs_per_image in zip(targets, matched_idxs): if len(targets_per_image["labels"]) == 0: gt_classes_targets = targets_per_image["labels"].new_zeros((len(matched_idxs_per_image),)) gt_boxes_targets = targets_per_image["boxes"].new_zeros((len(matched_idxs_per_image), 4)) else: gt_classes_targets = targets_per_image["labels"][matched_idxs_per_image.clip(min=0)] gt_boxes_targets = targets_per_image["boxes"][matched_idxs_per_image.clip(min=0)] gt_classes_targets[matched_idxs_per_image < 0] = -1 # background all_gt_classes_targets.append(gt_classes_targets) all_gt_boxes_targets.append(gt_boxes_targets) # List[Tensor] to Tensor conversion of `all_gt_boxes_target`, `all_gt_classes_targets` and `anchors` all_gt_boxes_targets, all_gt_classes_targets, anchors = ( torch.stack(all_gt_boxes_targets), torch.stack(all_gt_classes_targets), torch.stack(anchors), ) # compute foregroud foregroud_mask = all_gt_classes_targets >= 0 num_foreground = foregroud_mask.sum().item() # classification loss gt_classes_targets = torch.zeros_like(cls_logits) gt_classes_targets[foregroud_mask, all_gt_classes_targets[foregroud_mask]] = 1.0 loss_cls = sigmoid_focal_loss(cls_logits, gt_classes_targets, reduction="sum") # amp issue: pred_boxes need to convert float pred_boxes = self.box_coder.decode(bbox_regression, anchors) # regression loss: GIoU loss loss_bbox_reg = generalized_box_iou_loss( pred_boxes[foregroud_mask], all_gt_boxes_targets[foregroud_mask], reduction="sum", ) # ctrness loss bbox_reg_targets = self.box_coder.encode(anchors, all_gt_boxes_targets) if len(bbox_reg_targets) == 0: gt_ctrness_targets = bbox_reg_targets.new_zeros(bbox_reg_targets.size()[:-1]) else: left_right = bbox_reg_targets[:, :, [0, 2]] top_bottom = bbox_reg_targets[:, :, [1, 3]] gt_ctrness_targets = torch.sqrt( (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) ) pred_centerness = bbox_ctrness.squeeze(dim=2) loss_bbox_ctrness = nn.functional.binary_cross_entropy_with_logits( pred_centerness[foregroud_mask], gt_ctrness_targets[foregroud_mask], reduction="sum" ) return { "classification": loss_cls / max(1, num_foreground), "bbox_regression": loss_bbox_reg / max(1, num_foreground), "bbox_ctrness": loss_bbox_ctrness / max(1, num_foreground), } def forward(self, x: List[Tensor]) -> Dict[str, Tensor]: cls_logits = self.classification_head(x) bbox_regression, bbox_ctrness = self.regression_head(x) return { "cls_logits": cls_logits, "bbox_regression": bbox_regression, "bbox_ctrness": bbox_ctrness, } class FCOSClassificationHead(nn.Module): """ A classification head for use in FCOS. Args: in_channels (int): number of channels of the input feature. num_anchors (int): number of anchors to be predicted. num_classes (int): number of classes to be predicted. num_convs (Optional[int]): number of conv layer. Default: 4. prior_probability (Optional[float]): probability of prior. Default: 0.01. norm_layer: Module specifying the normalization layer to use. """ def __init__( self, in_channels: int, num_anchors: int, num_classes: int, num_convs: int = 4, prior_probability: float = 0.01, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() self.num_classes = num_classes self.num_anchors = num_anchors if norm_layer is None: norm_layer = partial(nn.GroupNorm, 32) conv = [] for _ in range(num_convs): conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)) conv.append(norm_layer(in_channels)) conv.append(nn.ReLU()) self.conv = nn.Sequential(*conv) for layer in self.conv.children(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, std=0.01) torch.nn.init.constant_(layer.bias, 0) self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1) torch.nn.init.normal_(self.cls_logits.weight, std=0.01) torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability)) def forward(self, x: List[Tensor]) -> Tensor: all_cls_logits = [] for features in x: cls_logits = self.conv(features) cls_logits = self.cls_logits(cls_logits) # Permute classification output from (N, A * K, H, W) to (N, HWA, K). N, _, H, W = cls_logits.shape cls_logits = cls_logits.view(N, -1, self.num_classes, H, W) cls_logits = cls_logits.permute(0, 3, 4, 1, 2) cls_logits = cls_logits.reshape(N, -1, self.num_classes) # Size=(N, HWA, 4) all_cls_logits.append(cls_logits) return torch.cat(all_cls_logits, dim=1) class FCOSRegressionHead(nn.Module): """ A regression head for use in FCOS, which combines regression branch and center-ness branch. This can obtain better performance. Reference: `FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_convs (Optional[int]): number of conv layer. Default: 4. norm_layer: Module specifying the normalization layer to use. """ def __init__( self, in_channels: int, num_anchors: int, num_convs: int = 4, norm_layer: Optional[Callable[..., nn.Module]] = None, ): super().__init__() if norm_layer is None: norm_layer = partial(nn.GroupNorm, 32) conv = [] for _ in range(num_convs): conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)) conv.append(norm_layer(in_channels)) conv.append(nn.ReLU()) self.conv = nn.Sequential(*conv) self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1) self.bbox_ctrness = nn.Conv2d(in_channels, num_anchors * 1, kernel_size=3, stride=1, padding=1) for layer in [self.bbox_reg, self.bbox_ctrness]: torch.nn.init.normal_(layer.weight, std=0.01) torch.nn.init.zeros_(layer.bias) for layer in self.conv.children(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, std=0.01) torch.nn.init.zeros_(layer.bias) def forward(self, x: List[Tensor]) -> Tuple[Tensor, Tensor]: all_bbox_regression = [] all_bbox_ctrness = [] for features in x: bbox_feature = self.conv(features) bbox_regression = nn.functional.relu(self.bbox_reg(bbox_feature)) bbox_ctrness = self.bbox_ctrness(bbox_feature) # permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4). N, _, H, W = bbox_regression.shape bbox_regression = bbox_regression.view(N, -1, 4, H, W) bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2) bbox_regression = bbox_regression.reshape(N, -1, 4) # Size=(N, HWA, 4) all_bbox_regression.append(bbox_regression) # permute bbox ctrness output from (N, 1 * A, H, W) to (N, HWA, 1). bbox_ctrness = bbox_ctrness.view(N, -1, 1, H, W) bbox_ctrness = bbox_ctrness.permute(0, 3, 4, 1, 2) bbox_ctrness = bbox_ctrness.reshape(N, -1, 1) all_bbox_ctrness.append(bbox_ctrness) return torch.cat(all_bbox_regression, dim=1), torch.cat(all_bbox_ctrness, dim=1) class FCOS(nn.Module): """ Implements FCOS. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification, regression and centerness losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores for each prediction Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or an OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). min_size (int): Images are rescaled before feeding them to the backbone: we attempt to preserve the aspect ratio and scale the shorter edge to ``min_size``. If the resulting longer edge exceeds ``max_size``, then downscale so that the longer edge does not exceed ``max_size``. This may result in the shorter edge beeing lower than ``min_size``. max_size (int): See ``min_size``. image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. For FCOS, only set one anchor for per position of each level, the width and height equal to the stride of feature map, and set aspect ratio = 1.0, so the center of anchor is equivalent to the point in FCOS paper. head (nn.Module): Module run on top of the feature pyramid. Defaults to a module containing a classification and regression module. center_sampling_radius (int): radius of the "center" of a groundtruth box, within which all anchor points are labeled positive. score_thresh (float): Score threshold used for postprocessing the detections. nms_thresh (float): NMS threshold used for postprocessing the detections. detections_per_img (int): Number of best detections to keep after NMS. topk_candidates (int): Number of best detections to keep before NMS. Example: >>> import torch >>> import torchvision >>> from torchvision.models.detection import FCOS >>> from torchvision.models.detection.anchor_utils import AnchorGenerator >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features >>> # FCOS needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280, >>> # so we need to add it here >>> backbone.out_channels = 1280 >>> >>> # let's make the network generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator( >>> sizes=((8,), (16,), (32,), (64,), (128,)), >>> aspect_ratios=((1.0,),) >>> ) >>> >>> # put the pieces together inside a FCOS model >>> model = FCOS( >>> backbone, >>> num_classes=80, >>> anchor_generator=anchor_generator, >>> ) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """ __annotations__ = { "box_coder": det_utils.BoxLinearCoder, } def __init__( self, backbone: nn.Module, num_classes: int, # transform parameters min_size: int = 800, max_size: int = 1333, image_mean: Optional[List[float]] = None, image_std: Optional[List[float]] = None, # Anchor parameters anchor_generator: Optional[AnchorGenerator] = None, head: Optional[nn.Module] = None, center_sampling_radius: float = 1.5, score_thresh: float = 0.2, nms_thresh: float = 0.6, detections_per_img: int = 100, topk_candidates: int = 1000, **kwargs, ): super().__init__() _log_api_usage_once(self) if not hasattr(backbone, "out_channels"): raise ValueError( "backbone should contain an attribute out_channels " "specifying the number of output channels (assumed to be the " "same for all the levels)" ) self.backbone = backbone if not isinstance(anchor_generator, (AnchorGenerator, type(None))): raise TypeError( f"anchor_generator should be of type AnchorGenerator or None, instead got {type(anchor_generator)}" ) if anchor_generator is None: anchor_sizes = ((8,), (16,), (32,), (64,), (128,)) # equal to strides of multi-level feature map aspect_ratios = ((1.0,),) * len(anchor_sizes) # set only one anchor anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) self.anchor_generator = anchor_generator if self.anchor_generator.num_anchors_per_location()[0] != 1: raise ValueError( f"anchor_generator.num_anchors_per_location()[0] should be 1 instead of {anchor_generator.num_anchors_per_location()[0]}" ) if head is None: head = FCOSHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes) self.head = head self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] self.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs) self.center_sampling_radius = center_sampling_radius self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.topk_candidates = topk_candidates # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs( self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]] ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: if self.training: return losses return detections def compute_loss( self, targets: List[Dict[str, Tensor]], head_outputs: Dict[str, Tensor], anchors: List[Tensor], num_anchors_per_level: List[int], ) -> Dict[str, Tensor]: matched_idxs = [] for anchors_per_image, targets_per_image in zip(anchors, targets): if targets_per_image["boxes"].numel() == 0: matched_idxs.append( torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device) ) continue gt_boxes = targets_per_image["boxes"] gt_centers = (gt_boxes[:, :2] + gt_boxes[:, 2:]) / 2 # Nx2 anchor_centers = (anchors_per_image[:, :2] + anchors_per_image[:, 2:]) / 2 # N anchor_sizes = anchors_per_image[:, 2] - anchors_per_image[:, 0] # center sampling: anchor point must be close enough to gt center. pairwise_match = (anchor_centers[:, None, :] - gt_centers[None, :, :]).abs_().max( dim=2 ).values < self.center_sampling_radius * anchor_sizes[:, None] # compute pairwise distance between N points and M boxes x, y = anchor_centers.unsqueeze(dim=2).unbind(dim=1) # (N, 1) x0, y0, x1, y1 = gt_boxes.unsqueeze(dim=0).unbind(dim=2) # (1, M) pairwise_dist = torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) # (N, M) # anchor point must be inside gt pairwise_match &= pairwise_dist.min(dim=2).values > 0 # each anchor is only responsible for certain scale range. lower_bound = anchor_sizes * 4 lower_bound[: num_anchors_per_level[0]] = 0 upper_bound = anchor_sizes * 8 upper_bound[-num_anchors_per_level[-1] :] = float("inf") pairwise_dist = pairwise_dist.max(dim=2).values pairwise_match &= (pairwise_dist > lower_bound[:, None]) & (pairwise_dist < upper_bound[:, None]) # match the GT box with minimum area, if there are multiple GT matches gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1]) # N pairwise_match = pairwise_match.to(torch.float32) * (1e8 - gt_areas[None, :]) min_values, matched_idx = pairwise_match.max(dim=1) # R, per-anchor match matched_idx[min_values < 1e-5] = -1 # unmatched anchors are assigned -1 matched_idxs.append(matched_idx) return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs) def postprocess_detections( self, head_outputs: Dict[str, List[Tensor]], anchors: List[List[Tensor]], image_shapes: List[Tuple[int, int]] ) -> List[Dict[str, Tensor]]: class_logits = head_outputs["cls_logits"] box_regression = head_outputs["bbox_regression"] box_ctrness = head_outputs["bbox_ctrness"] num_images = len(image_shapes) detections: List[Dict[str, Tensor]] = [] for index in range(num_images): box_regression_per_image = [br[index] for br in box_regression] logits_per_image = [cl[index] for cl in class_logits] box_ctrness_per_image = [bc[index] for bc in box_ctrness] anchors_per_image, image_shape = anchors[index], image_shapes[index] image_boxes = [] image_scores = [] image_labels = [] for box_regression_per_level, logits_per_level, box_ctrness_per_level, anchors_per_level in zip( box_regression_per_image, logits_per_image, box_ctrness_per_image, anchors_per_image ): num_classes = logits_per_level.shape[-1] # remove low scoring boxes scores_per_level = torch.sqrt( torch.sigmoid(logits_per_level) * torch.sigmoid(box_ctrness_per_level) ).flatten() keep_idxs = scores_per_level > self.score_thresh scores_per_level = scores_per_level[keep_idxs] topk_idxs = torch.where(keep_idxs)[0] # keep only topk scoring predictions num_topk = det_utils._topk_min(topk_idxs, self.topk_candidates, 0) scores_per_level, idxs = scores_per_level.topk(num_topk) topk_idxs = topk_idxs[idxs] anchor_idxs = torch.div(topk_idxs, num_classes, rounding_mode="floor") labels_per_level = topk_idxs % num_classes boxes_per_level = self.box_coder.decode( box_regression_per_level[anchor_idxs], anchors_per_level[anchor_idxs] ) boxes_per_level = box_ops.clip_boxes_to_image(boxes_per_level, image_shape) image_boxes.append(boxes_per_level) image_scores.append(scores_per_level) image_labels.append(labels_per_level) image_boxes = torch.cat(image_boxes, dim=0) image_scores = torch.cat(image_scores, dim=0) image_labels = torch.cat(image_labels, dim=0) # non-maximum suppression keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh) keep = keep[: self.detections_per_img] detections.append( { "boxes": image_boxes[keep], "scores": image_scores[keep], "labels": image_labels[keep], } ) return detections def forward( self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None, ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: """ Args: images (list[Tensor]): images to be processed targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for target in targets: boxes = target["boxes"] torch._assert(isinstance(boxes, torch.Tensor), "Expected target boxes to be of type Tensor.") torch._assert( len(boxes.shape) == 2 and boxes.shape[-1] == 4, f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.", ) original_image_sizes: List[Tuple[int, int]] = [] for img in images: val = img.shape[-2:] torch._assert( len(val) == 2, f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}", ) original_image_sizes.append((val[0], val[1])) # transform the input images, targets = self.transform(images, targets) # Check for degenerate boxes if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): # print the first degenerate box bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: List[float] = boxes[bb_idx].tolist() torch._assert( False, f"All bounding boxes should have positive height and width. Found invalid box {degen_bb} for target at index {target_idx}.", ) # get the features from the backbone features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) features = list(features.values()) # compute the fcos heads outputs using the features head_outputs = self.head(features) # create the set of anchors anchors = self.anchor_generator(images, features) # recover level sizes num_anchors_per_level = [x.size(2) * x.size(3) for x in features] losses = {} detections: List[Dict[str, Tensor]] = [] if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: # compute the losses losses = self.compute_loss(targets, head_outputs, anchors, num_anchors_per_level) else: # split outputs per level split_head_outputs: Dict[str, List[Tensor]] = {} for k in head_outputs: split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1)) split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors] # compute the detections detections = self.postprocess_detections(split_head_outputs, split_anchors, images.image_sizes) detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("FCOS always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections return self.eager_outputs(losses, detections) class FCOS_ResNet50_FPN_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/fcos_resnet50_fpn_coco-99b0c9b7.pth", transforms=ObjectDetection, meta={ "num_params": 32269600, "categories": _COCO_CATEGORIES, "min_size": (1, 1), "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#fcos-resnet-50-fpn", "_metrics": { "COCO-val2017": { "box_map": 39.2, } }, "_ops": 128.207, "_file_size": 123.608, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 @register_model() @handle_legacy_interface( weights=("pretrained", FCOS_ResNet50_FPN_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def fcos_resnet50_fpn( *, weights: Optional[FCOS_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> FCOS: """ Constructs a FCOS model with a ResNet-50-FPN backbone. .. betastatus:: detection module Reference: `FCOS: Fully Convolutional One-Stage Object Detection <https://arxiv.org/abs/1904.01355>`_. `FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_. The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each detection - scores (``Tensor[N]``): the scores of each detection For more details on the output, you may refer to :ref:`instance_seg_output`. Example: >>> model = torchvision.models.detection.fcos_resnet50_fpn(weights=FCOS_ResNet50_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. Default: None **kwargs: parameters passed to the ``torchvision.models.detection.FCOS`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/fcos.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.FCOS_ResNet50_FPN_Weights :members: """ weights = FCOS_ResNet50_FPN_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor( backbone, trainable_backbone_layers, returned_layers=[2, 3, 4], extra_blocks=LastLevelP6P7(256, 256) ) model = FCOS(backbone, num_classes, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
======================================================================================================================================== SOURCE CODE FILE: generalized_rcnn.py LINES: 1 SIZE: 4.75 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\generalized_rcnn.py ENCODING: utf-8 ```py """ Implements the Generalized R-CNN framework """ import warnings from collections import OrderedDict from typing import Dict, List, Optional, Tuple, Union import torch from torch import nn, Tensor from ...utils import _log_api_usage_once class GeneralizedRCNN(nn.Module): """ Main class for Generalized R-CNN. Args: backbone (nn.Module): rpn (nn.Module): roi_heads (nn.Module): takes the features + the proposals from the RPN and computes detections / masks from it. transform (nn.Module): performs the data transformation from the inputs to feed into the model """ def __init__(self, backbone: nn.Module, rpn: nn.Module, roi_heads: nn.Module, transform: nn.Module) -> None: super().__init__() _log_api_usage_once(self) self.transform = transform self.backbone = backbone self.rpn = rpn self.roi_heads = roi_heads # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs(self, losses, detections): # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Union[Dict[str, Tensor], List[Dict[str, Tensor]]] if self.training: return losses return detections def forward(self, images, targets=None): # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]] """ Args: images (list[Tensor]): images to be processed targets (list[Dict[str, Tensor]]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for target in targets: boxes = target["boxes"] if isinstance(boxes, torch.Tensor): torch._assert( len(boxes.shape) == 2 and boxes.shape[-1] == 4, f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.", ) else: torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.") original_image_sizes: List[Tuple[int, int]] = [] for img in images: val = img.shape[-2:] torch._assert( len(val) == 2, f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}", ) original_image_sizes.append((val[0], val[1])) images, targets = self.transform(images, targets) # Check for degenerate boxes # TODO: Move this to a function if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): # print the first degenerate box bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: List[float] = boxes[bb_idx].tolist() torch._assert( False, "All bounding boxes should have positive height and width." f" Found invalid box {degen_bb} for target at index {target_idx}.", ) features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) proposals, proposal_losses = self.rpn(images, features, targets) detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets) detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) # type: ignore[operator] losses = {} losses.update(detector_losses) losses.update(proposal_losses) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections else: return self.eager_outputs(losses, detections) ```
================================================================================================================================== SOURCE CODE FILE: image_list.py LINES: 1 SIZE: 0.79 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\image_list.py ENCODING: utf-8 ```py from typing import List, Tuple import torch from torch import Tensor class ImageList: """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image Args: tensors (tensor): Tensor containing images. image_sizes (list[tuple[int, int]]): List of Tuples each containing size of images. """ def __init__(self, tensors: Tensor, image_sizes: List[Tuple[int, int]]) -> None: self.tensors = tensors self.image_sizes = image_sizes def to(self, device: torch.device) -> "ImageList": cast_tensor = self.tensors.to(device) return ImageList(cast_tensor, self.image_sizes) ```
===================================================================================================================================== SOURCE CODE FILE: keypoint_rcnn.py LINES: 1 SIZE: 21.90 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\keypoint_rcnn.py ENCODING: utf-8 ```py from typing import Any, Optional import torch from torch import nn from torchvision.ops import MultiScaleRoIAlign from ...ops import misc as misc_nn_ops from ...transforms._presets import ObjectDetection from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..resnet import resnet50, ResNet50_Weights from ._utils import overwrite_eps from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers from .faster_rcnn import FasterRCNN __all__ = [ "KeypointRCNN", "KeypointRCNN_ResNet50_FPN_Weights", "keypointrcnn_resnet50_fpn", ] class KeypointRCNN(FasterRCNN): """ Implements Keypoint R-CNN. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box - keypoints (FloatTensor[N, K, 3]): the K keypoints location for each of the N instances, in the format [x, y, visibility], where visibility=0 means that the keypoint is not visible. The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN, and the keypoint loss. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores or each prediction - keypoints (FloatTensor[N, K, 3]): the locations of the predicted keypoints, in [x, y, v] format. Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or and OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). If box_predictor is specified, num_classes should be None. min_size (int): Images are rescaled before feeding them to the backbone: we attempt to preserve the aspect ratio and scale the shorter edge to ``min_size``. If the resulting longer edge exceeds ``max_size``, then downscale so that the longer edge does not exceed ``max_size``. This may result in the shorter edge beeing lower than ``min_size``. max_size (int): See ``min_size``. image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training of the RPN. rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be considered as negative during training of the RPN. rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN for computing the loss rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training of the RPN rpn_score_thresh (float): only return proposals with an objectness score greater than rpn_score_thresh box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in the locations indicated by the bounding boxes box_head (nn.Module): module that takes the cropped feature maps as input box_predictor (nn.Module): module that takes the output of box_head and returns the classification logits and box regression deltas. box_score_thresh (float): during inference, only return proposals with a classification score greater than box_score_thresh box_nms_thresh (float): NMS threshold for the prediction head. Used during inference box_detections_per_img (int): maximum number of detections per image, for all classes. box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be considered as positive during training of the classification head box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be considered as negative during training of the classification head box_batch_size_per_image (int): number of proposals that are sampled during training of the classification head box_positive_fraction (float): proportion of positive proposals in a mini-batch during training of the classification head bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the bounding boxes keypoint_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in the locations indicated by the bounding boxes, which will be used for the keypoint head. keypoint_head (nn.Module): module that takes the cropped feature maps as input keypoint_predictor (nn.Module): module that takes the output of the keypoint_head and returns the heatmap logits Example:: >>> import torch >>> import torchvision >>> from torchvision.models.detection import KeypointRCNN >>> from torchvision.models.detection.anchor_utils import AnchorGenerator >>> >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features >>> # KeypointRCNN needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280, >>> # so we need to add it here >>> backbone.out_channels = 1280 >>> >>> # let's make the RPN generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),), >>> aspect_ratios=((0.5, 1.0, 2.0),)) >>> >>> # let's define what are the feature maps that we will >>> # use to perform the region of interest cropping, as well as >>> # the size of the crop after rescaling. >>> # if your backbone returns a Tensor, featmap_names is expected to >>> # be ['0']. More generally, the backbone should return an >>> # OrderedDict[Tensor], and in featmap_names you can choose which >>> # feature maps to use. >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], >>> output_size=7, >>> sampling_ratio=2) >>> >>> keypoint_roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], >>> output_size=14, >>> sampling_ratio=2) >>> # put the pieces together inside a KeypointRCNN model >>> model = KeypointRCNN(backbone, >>> num_classes=2, >>> rpn_anchor_generator=anchor_generator, >>> box_roi_pool=roi_pooler, >>> keypoint_roi_pool=keypoint_roi_pooler) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """ def __init__( self, backbone, num_classes=None, # transform parameters min_size=None, max_size=1333, image_mean=None, image_std=None, # RPN parameters rpn_anchor_generator=None, rpn_head=None, rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000, rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000, rpn_nms_thresh=0.7, rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3, rpn_batch_size_per_image=256, rpn_positive_fraction=0.5, rpn_score_thresh=0.0, # Box parameters box_roi_pool=None, box_head=None, box_predictor=None, box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100, box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5, box_batch_size_per_image=512, box_positive_fraction=0.25, bbox_reg_weights=None, # keypoint parameters keypoint_roi_pool=None, keypoint_head=None, keypoint_predictor=None, num_keypoints=None, **kwargs, ): if not isinstance(keypoint_roi_pool, (MultiScaleRoIAlign, type(None))): raise TypeError( "keypoint_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(keypoint_roi_pool)}" ) if min_size is None: min_size = (640, 672, 704, 736, 768, 800) if num_keypoints is not None: if keypoint_predictor is not None: raise ValueError("num_keypoints should be None when keypoint_predictor is specified") else: num_keypoints = 17 out_channels = backbone.out_channels if keypoint_roi_pool is None: keypoint_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=14, sampling_ratio=2) if keypoint_head is None: keypoint_layers = tuple(512 for _ in range(8)) keypoint_head = KeypointRCNNHeads(out_channels, keypoint_layers) if keypoint_predictor is None: keypoint_dim_reduced = 512 # == keypoint_layers[-1] keypoint_predictor = KeypointRCNNPredictor(keypoint_dim_reduced, num_keypoints) super().__init__( backbone, num_classes, # transform parameters min_size, max_size, image_mean, image_std, # RPN-specific parameters rpn_anchor_generator, rpn_head, rpn_pre_nms_top_n_train, rpn_pre_nms_top_n_test, rpn_post_nms_top_n_train, rpn_post_nms_top_n_test, rpn_nms_thresh, rpn_fg_iou_thresh, rpn_bg_iou_thresh, rpn_batch_size_per_image, rpn_positive_fraction, rpn_score_thresh, # Box parameters box_roi_pool, box_head, box_predictor, box_score_thresh, box_nms_thresh, box_detections_per_img, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, **kwargs, ) self.roi_heads.keypoint_roi_pool = keypoint_roi_pool self.roi_heads.keypoint_head = keypoint_head self.roi_heads.keypoint_predictor = keypoint_predictor class KeypointRCNNHeads(nn.Sequential): def __init__(self, in_channels, layers): d = [] next_feature = in_channels for out_channels in layers: d.append(nn.Conv2d(next_feature, out_channels, 3, stride=1, padding=1)) d.append(nn.ReLU(inplace=True)) next_feature = out_channels super().__init__(*d) for m in self.children(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") nn.init.constant_(m.bias, 0) class KeypointRCNNPredictor(nn.Module): def __init__(self, in_channels, num_keypoints): super().__init__() input_features = in_channels deconv_kernel = 4 self.kps_score_lowres = nn.ConvTranspose2d( input_features, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1, ) nn.init.kaiming_normal_(self.kps_score_lowres.weight, mode="fan_out", nonlinearity="relu") nn.init.constant_(self.kps_score_lowres.bias, 0) self.up_scale = 2 self.out_channels = num_keypoints def forward(self, x): x = self.kps_score_lowres(x) return torch.nn.functional.interpolate( x, scale_factor=float(self.up_scale), mode="bilinear", align_corners=False, recompute_scale_factor=False ) _COMMON_META = { "categories": _COCO_PERSON_CATEGORIES, "keypoint_names": _COCO_PERSON_KEYPOINT_NAMES, "min_size": (1, 1), } class KeypointRCNN_ResNet50_FPN_Weights(WeightsEnum): COCO_LEGACY = Weights( url="https://download.pytorch.org/models/keypointrcnn_resnet50_fpn_coco-9f466800.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 59137258, "recipe": "https://github.com/pytorch/vision/issues/1606", "_metrics": { "COCO-val2017": { "box_map": 50.6, "kp_map": 61.1, } }, "_ops": 133.924, "_file_size": 226.054, "_docs": """ These weights were produced by following a similar training recipe as on the paper but use a checkpoint from an early epoch. """, }, ) COCO_V1 = Weights( url="https://download.pytorch.org/models/keypointrcnn_resnet50_fpn_coco-fc266e95.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 59137258, "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#keypoint-r-cnn", "_metrics": { "COCO-val2017": { "box_map": 54.6, "kp_map": 65.0, } }, "_ops": 137.42, "_file_size": 226.054, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 @register_model() @handle_legacy_interface( weights=( "pretrained", lambda kwargs: KeypointRCNN_ResNet50_FPN_Weights.COCO_LEGACY if kwargs["pretrained"] == "legacy" else KeypointRCNN_ResNet50_FPN_Weights.COCO_V1, ), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def keypointrcnn_resnet50_fpn( *, weights: Optional[KeypointRCNN_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, num_keypoints: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> KeypointRCNN: """ Constructs a Keypoint R-CNN model with a ResNet-50-FPN backbone. .. betastatus:: detection module Reference: `Mask R-CNN <https://arxiv.org/abs/1703.06870>`__. The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box - keypoints (``FloatTensor[N, K, 3]``): the ``K`` keypoints location for each of the ``N`` instances, in the format ``[x, y, visibility]``, where ``visibility=0`` means that the keypoint is not visible. The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses for both the RPN and the R-CNN, and the keypoint loss. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detected instances: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each instance - scores (``Tensor[N]``): the scores or each instance - keypoints (``FloatTensor[N, K, 3]``): the locations of the predicted keypoints, in ``[x, y, v]`` format. For more details on the output, you may refer to :ref:`instance_seg_output`. Keypoint R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size. Example:: >>> model = torchvision.models.detection.keypointrcnn_resnet50_fpn(weights=KeypointRCNN_ResNet50_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) >>> >>> # optionally, if you want to export the model to ONNX: >>> torch.onnx.export(model, x, "keypoint_rcnn.onnx", opset_version = 11) Args: weights (:class:`~torchvision.models.detection.KeypointRCNN_ResNet50_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.KeypointRCNN_ResNet50_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr num_classes (int, optional): number of output classes of the model (including the background) num_keypoints (int, optional): number of keypoints weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. .. autoclass:: torchvision.models.detection.KeypointRCNN_ResNet50_FPN_Weights :members: """ weights = KeypointRCNN_ResNet50_FPN_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) num_keypoints = _ovewrite_value_param("num_keypoints", num_keypoints, len(weights.meta["keypoint_names"])) else: if num_classes is None: num_classes = 2 if num_keypoints is None: num_keypoints = 17 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) model = KeypointRCNN(backbone, num_classes, num_keypoints=num_keypoints, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if weights == KeypointRCNN_ResNet50_FPN_Weights.COCO_V1: overwrite_eps(model, 0.0) return model ```
================================================================================================================================= SOURCE CODE FILE: mask_rcnn.py LINES: 1 SIZE: 26.66 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\mask_rcnn.py ENCODING: utf-8 ```py from collections import OrderedDict from typing import Any, Callable, Optional from torch import nn from torchvision.ops import MultiScaleRoIAlign from ...ops import misc as misc_nn_ops from ...transforms._presets import ObjectDetection from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..resnet import resnet50, ResNet50_Weights from ._utils import overwrite_eps from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers from .faster_rcnn import _default_anchorgen, FasterRCNN, FastRCNNConvFCHead, RPNHead __all__ = [ "MaskRCNN", "MaskRCNN_ResNet50_FPN_Weights", "MaskRCNN_ResNet50_FPN_V2_Weights", "maskrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn_v2", ] class MaskRCNN(FasterRCNN): """ Implements Mask R-CNN. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box - masks (UInt8Tensor[N, H, W]): the segmentation binary masks for each instance The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN, and the mask loss. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores or each prediction - masks (UInt8Tensor[N, 1, H, W]): the predicted masks for each instance, in 0-1 range. In order to obtain the final segmentation masks, the soft masks can be thresholded, generally with a value of 0.5 (mask >= 0.5) Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or and OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). If box_predictor is specified, num_classes should be None. min_size (int): Images are rescaled before feeding them to the backbone: we attempt to preserve the aspect ratio and scale the shorter edge to ``min_size``. If the resulting longer edge exceeds ``max_size``, then downscale so that the longer edge does not exceed ``max_size``. This may result in the shorter edge beeing lower than ``min_size``. max_size (int): See ``min_size``. image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training of the RPN. rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be considered as negative during training of the RPN. rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN for computing the loss rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training of the RPN rpn_score_thresh (float): only return proposals with an objectness score greater than rpn_score_thresh box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in the locations indicated by the bounding boxes box_head (nn.Module): module that takes the cropped feature maps as input box_predictor (nn.Module): module that takes the output of box_head and returns the classification logits and box regression deltas. box_score_thresh (float): during inference, only return proposals with a classification score greater than box_score_thresh box_nms_thresh (float): NMS threshold for the prediction head. Used during inference box_detections_per_img (int): maximum number of detections per image, for all classes. box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be considered as positive during training of the classification head box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be considered as negative during training of the classification head box_batch_size_per_image (int): number of proposals that are sampled during training of the classification head box_positive_fraction (float): proportion of positive proposals in a mini-batch during training of the classification head bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the bounding boxes mask_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in the locations indicated by the bounding boxes, which will be used for the mask head. mask_head (nn.Module): module that takes the cropped feature maps as input mask_predictor (nn.Module): module that takes the output of the mask_head and returns the segmentation mask logits Example:: >>> import torch >>> import torchvision >>> from torchvision.models.detection import MaskRCNN >>> from torchvision.models.detection.anchor_utils import AnchorGenerator >>> >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features >>> # MaskRCNN needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280 >>> # so we need to add it here, >>> backbone.out_channels = 1280 >>> >>> # let's make the RPN generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),), >>> aspect_ratios=((0.5, 1.0, 2.0),)) >>> >>> # let's define what are the feature maps that we will >>> # use to perform the region of interest cropping, as well as >>> # the size of the crop after rescaling. >>> # if your backbone returns a Tensor, featmap_names is expected to >>> # be ['0']. More generally, the backbone should return an >>> # OrderedDict[Tensor], and in featmap_names you can choose which >>> # feature maps to use. >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], >>> output_size=7, >>> sampling_ratio=2) >>> >>> mask_roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], >>> output_size=14, >>> sampling_ratio=2) >>> # put the pieces together inside a MaskRCNN model >>> model = MaskRCNN(backbone, >>> num_classes=2, >>> rpn_anchor_generator=anchor_generator, >>> box_roi_pool=roi_pooler, >>> mask_roi_pool=mask_roi_pooler) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """ def __init__( self, backbone, num_classes=None, # transform parameters min_size=800, max_size=1333, image_mean=None, image_std=None, # RPN parameters rpn_anchor_generator=None, rpn_head=None, rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000, rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000, rpn_nms_thresh=0.7, rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3, rpn_batch_size_per_image=256, rpn_positive_fraction=0.5, rpn_score_thresh=0.0, # Box parameters box_roi_pool=None, box_head=None, box_predictor=None, box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100, box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5, box_batch_size_per_image=512, box_positive_fraction=0.25, bbox_reg_weights=None, # Mask parameters mask_roi_pool=None, mask_head=None, mask_predictor=None, **kwargs, ): if not isinstance(mask_roi_pool, (MultiScaleRoIAlign, type(None))): raise TypeError( f"mask_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(mask_roi_pool)}" ) if num_classes is not None: if mask_predictor is not None: raise ValueError("num_classes should be None when mask_predictor is specified") out_channels = backbone.out_channels if mask_roi_pool is None: mask_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=14, sampling_ratio=2) if mask_head is None: mask_layers = (256, 256, 256, 256) mask_dilation = 1 mask_head = MaskRCNNHeads(out_channels, mask_layers, mask_dilation) if mask_predictor is None: mask_predictor_in_channels = 256 # == mask_layers[-1] mask_dim_reduced = 256 mask_predictor = MaskRCNNPredictor(mask_predictor_in_channels, mask_dim_reduced, num_classes) super().__init__( backbone, num_classes, # transform parameters min_size, max_size, image_mean, image_std, # RPN-specific parameters rpn_anchor_generator, rpn_head, rpn_pre_nms_top_n_train, rpn_pre_nms_top_n_test, rpn_post_nms_top_n_train, rpn_post_nms_top_n_test, rpn_nms_thresh, rpn_fg_iou_thresh, rpn_bg_iou_thresh, rpn_batch_size_per_image, rpn_positive_fraction, rpn_score_thresh, # Box parameters box_roi_pool, box_head, box_predictor, box_score_thresh, box_nms_thresh, box_detections_per_img, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, **kwargs, ) self.roi_heads.mask_roi_pool = mask_roi_pool self.roi_heads.mask_head = mask_head self.roi_heads.mask_predictor = mask_predictor class MaskRCNNHeads(nn.Sequential): _version = 2 def __init__(self, in_channels, layers, dilation, norm_layer: Optional[Callable[..., nn.Module]] = None): """ Args: in_channels (int): number of input channels layers (list): feature dimensions of each FCN layer dilation (int): dilation rate of kernel norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None """ blocks = [] next_feature = in_channels for layer_features in layers: blocks.append( misc_nn_ops.Conv2dNormActivation( next_feature, layer_features, kernel_size=3, stride=1, padding=dilation, dilation=dilation, norm_layer=norm_layer, ) ) next_feature = layer_features super().__init__(*blocks) for layer in self.modules(): if isinstance(layer, nn.Conv2d): nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu") if layer.bias is not None: nn.init.zeros_(layer.bias) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 2: num_blocks = len(self) for i in range(num_blocks): for type in ["weight", "bias"]: old_key = f"{prefix}mask_fcn{i+1}.{type}" new_key = f"{prefix}{i}.0.{type}" if old_key in state_dict: state_dict[new_key] = state_dict.pop(old_key) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) class MaskRCNNPredictor(nn.Sequential): def __init__(self, in_channels, dim_reduced, num_classes): super().__init__( OrderedDict( [ ("conv5_mask", nn.ConvTranspose2d(in_channels, dim_reduced, 2, 2, 0)), ("relu", nn.ReLU(inplace=True)), ("mask_fcn_logits", nn.Conv2d(dim_reduced, num_classes, 1, 1, 0)), ] ) ) for name, param in self.named_parameters(): if "weight" in name: nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") # elif "bias" in name: # nn.init.constant_(param, 0) _COMMON_META = { "categories": _COCO_CATEGORIES, "min_size": (1, 1), } class MaskRCNN_ResNet50_FPN_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 44401393, "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#mask-r-cnn", "_metrics": { "COCO-val2017": { "box_map": 37.9, "mask_map": 34.6, } }, "_ops": 134.38, "_file_size": 169.84, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 class MaskRCNN_ResNet50_FPN_V2_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/maskrcnn_resnet50_fpn_v2_coco-73cbd019.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 46359409, "recipe": "https://github.com/pytorch/vision/pull/5773", "_metrics": { "COCO-val2017": { "box_map": 47.4, "mask_map": 41.8, } }, "_ops": 333.577, "_file_size": 177.219, "_docs": """These weights were produced using an enhanced training recipe to boost the model accuracy.""", }, ) DEFAULT = COCO_V1 @register_model() @handle_legacy_interface( weights=("pretrained", MaskRCNN_ResNet50_FPN_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def maskrcnn_resnet50_fpn( *, weights: Optional[MaskRCNN_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> MaskRCNN: """Mask R-CNN model with a ResNet-50-FPN backbone from the `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_ paper. .. betastatus:: detection module The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box - masks (``UInt8Tensor[N, H, W]``): the segmentation binary masks for each instance The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses for both the RPN and the R-CNN, and the mask loss. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detected instances: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each instance - scores (``Tensor[N]``): the scores or each instance - masks (``UInt8Tensor[N, 1, H, W]``): the predicted masks for each instance, in ``0-1`` range. In order to obtain the final segmentation masks, the soft masks can be thresholded, generally with a value of 0.5 (``mask >= 0.5``) For more details on the output and on how to plot the masks, you may refer to :ref:`instance_seg_output`. Mask R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size. Example:: >>> model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights=MaskRCNN_ResNet50_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) >>> >>> # optionally, if you want to export the model to ONNX: >>> torch.onnx.export(model, x, "mask_rcnn.onnx", opset_version = 11) Args: weights (:class:`~torchvision.models.detection.MaskRCNN_ResNet50_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.MaskRCNN_ResNet50_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.mask_rcnn.MaskRCNN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/mask_rcnn.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.MaskRCNN_ResNet50_FPN_Weights :members: """ weights = MaskRCNN_ResNet50_FPN_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) model = MaskRCNN(backbone, num_classes=num_classes, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if weights == MaskRCNN_ResNet50_FPN_Weights.COCO_V1: overwrite_eps(model, 0.0) return model @register_model() @handle_legacy_interface( weights=("pretrained", MaskRCNN_ResNet50_FPN_V2_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def maskrcnn_resnet50_fpn_v2( *, weights: Optional[MaskRCNN_ResNet50_FPN_V2_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = None, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> MaskRCNN: """Improved Mask R-CNN model with a ResNet-50-FPN backbone from the `Benchmarking Detection Transfer Learning with Vision Transformers <https://arxiv.org/abs/2111.11429>`_ paper. .. betastatus:: detection module :func:`~torchvision.models.detection.maskrcnn_resnet50_fpn` for more details. Args: weights (:class:`~torchvision.models.detection.MaskRCNN_ResNet50_FPN_V2_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.MaskRCNN_ResNet50_FPN_V2_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.mask_rcnn.MaskRCNN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/mask_rcnn.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.MaskRCNN_ResNet50_FPN_V2_Weights :members: """ weights = MaskRCNN_ResNet50_FPN_V2_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) backbone = resnet50(weights=weights_backbone, progress=progress) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers, norm_layer=nn.BatchNorm2d) rpn_anchor_generator = _default_anchorgen() rpn_head = RPNHead(backbone.out_channels, rpn_anchor_generator.num_anchors_per_location()[0], conv_depth=2) box_head = FastRCNNConvFCHead( (backbone.out_channels, 7, 7), [256, 256, 256, 256], [1024], norm_layer=nn.BatchNorm2d ) mask_head = MaskRCNNHeads(backbone.out_channels, [256, 256, 256, 256], 1, norm_layer=nn.BatchNorm2d) model = MaskRCNN( backbone, num_classes=num_classes, rpn_anchor_generator=rpn_anchor_generator, rpn_head=rpn_head, box_head=box_head, mask_head=mask_head, **kwargs, ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
================================================================================================================================= SOURCE CODE FILE: retinanet.py LINES: 1 SIZE: 37.31 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\retinanet.py ENCODING: utf-8 ```py import math import warnings from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn, Tensor from ...ops import boxes as box_ops, misc as misc_nn_ops, sigmoid_focal_loss from ...ops.feature_pyramid_network import LastLevelP6P7 from ...transforms._presets import ObjectDetection from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..resnet import resnet50, ResNet50_Weights from . import _utils as det_utils from ._utils import _box_loss, overwrite_eps from .anchor_utils import AnchorGenerator from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers from .transform import GeneralizedRCNNTransform __all__ = [ "RetinaNet", "RetinaNet_ResNet50_FPN_Weights", "RetinaNet_ResNet50_FPN_V2_Weights", "retinanet_resnet50_fpn", "retinanet_resnet50_fpn_v2", ] def _sum(x: List[Tensor]) -> Tensor: res = x[0] for i in x[1:]: res = res + i return res def _v1_to_v2_weights(state_dict, prefix): for i in range(4): for type in ["weight", "bias"]: old_key = f"{prefix}conv.{2*i}.{type}" new_key = f"{prefix}conv.{i}.0.{type}" if old_key in state_dict: state_dict[new_key] = state_dict.pop(old_key) def _default_anchorgen(): anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512]) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) return anchor_generator class RetinaNetHead(nn.Module): """ A regression and classification head for use in RetinaNet. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_classes (int): number of classes to be predicted norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None """ def __init__(self, in_channels, num_anchors, num_classes, norm_layer: Optional[Callable[..., nn.Module]] = None): super().__init__() self.classification_head = RetinaNetClassificationHead( in_channels, num_anchors, num_classes, norm_layer=norm_layer ) self.regression_head = RetinaNetRegressionHead(in_channels, num_anchors, norm_layer=norm_layer) def compute_loss(self, targets, head_outputs, anchors, matched_idxs): # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Dict[str, Tensor] return { "classification": self.classification_head.compute_loss(targets, head_outputs, matched_idxs), "bbox_regression": self.regression_head.compute_loss(targets, head_outputs, anchors, matched_idxs), } def forward(self, x): # type: (List[Tensor]) -> Dict[str, Tensor] return {"cls_logits": self.classification_head(x), "bbox_regression": self.regression_head(x)} class RetinaNetClassificationHead(nn.Module): """ A classification head for use in RetinaNet. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_classes (int): number of classes to be predicted norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None """ _version = 2 def __init__( self, in_channels, num_anchors, num_classes, prior_probability=0.01, norm_layer: Optional[Callable[..., nn.Module]] = None, ): super().__init__() conv = [] for _ in range(4): conv.append(misc_nn_ops.Conv2dNormActivation(in_channels, in_channels, norm_layer=norm_layer)) self.conv = nn.Sequential(*conv) for layer in self.conv.modules(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, std=0.01) if layer.bias is not None: torch.nn.init.constant_(layer.bias, 0) self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1) torch.nn.init.normal_(self.cls_logits.weight, std=0.01) torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability)) self.num_classes = num_classes self.num_anchors = num_anchors # This is to fix using det_utils.Matcher.BETWEEN_THRESHOLDS in TorchScript. # TorchScript doesn't support class attributes. # https://github.com/pytorch/vision/pull/1697#issuecomment-630255584 self.BETWEEN_THRESHOLDS = det_utils.Matcher.BETWEEN_THRESHOLDS def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 2: _v1_to_v2_weights(state_dict, prefix) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) def compute_loss(self, targets, head_outputs, matched_idxs): # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor]) -> Tensor losses = [] cls_logits = head_outputs["cls_logits"] for targets_per_image, cls_logits_per_image, matched_idxs_per_image in zip(targets, cls_logits, matched_idxs): # determine only the foreground foreground_idxs_per_image = matched_idxs_per_image >= 0 num_foreground = foreground_idxs_per_image.sum() # create the target classification gt_classes_target = torch.zeros_like(cls_logits_per_image) gt_classes_target[ foreground_idxs_per_image, targets_per_image["labels"][matched_idxs_per_image[foreground_idxs_per_image]], ] = 1.0 # find indices for which anchors should be ignored valid_idxs_per_image = matched_idxs_per_image != self.BETWEEN_THRESHOLDS # compute the classification loss losses.append( sigmoid_focal_loss( cls_logits_per_image[valid_idxs_per_image], gt_classes_target[valid_idxs_per_image], reduction="sum", ) / max(1, num_foreground) ) return _sum(losses) / len(targets) def forward(self, x): # type: (List[Tensor]) -> Tensor all_cls_logits = [] for features in x: cls_logits = self.conv(features) cls_logits = self.cls_logits(cls_logits) # Permute classification output from (N, A * K, H, W) to (N, HWA, K). N, _, H, W = cls_logits.shape cls_logits = cls_logits.view(N, -1, self.num_classes, H, W) cls_logits = cls_logits.permute(0, 3, 4, 1, 2) cls_logits = cls_logits.reshape(N, -1, self.num_classes) # Size=(N, HWA, 4) all_cls_logits.append(cls_logits) return torch.cat(all_cls_logits, dim=1) class RetinaNetRegressionHead(nn.Module): """ A regression head for use in RetinaNet. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None """ _version = 2 __annotations__ = { "box_coder": det_utils.BoxCoder, } def __init__(self, in_channels, num_anchors, norm_layer: Optional[Callable[..., nn.Module]] = None): super().__init__() conv = [] for _ in range(4): conv.append(misc_nn_ops.Conv2dNormActivation(in_channels, in_channels, norm_layer=norm_layer)) self.conv = nn.Sequential(*conv) self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1) torch.nn.init.normal_(self.bbox_reg.weight, std=0.01) torch.nn.init.zeros_(self.bbox_reg.bias) for layer in self.conv.modules(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, std=0.01) if layer.bias is not None: torch.nn.init.zeros_(layer.bias) self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) self._loss_type = "l1" def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 2: _v1_to_v2_weights(state_dict, prefix) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) def compute_loss(self, targets, head_outputs, anchors, matched_idxs): # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Tensor losses = [] bbox_regression = head_outputs["bbox_regression"] for targets_per_image, bbox_regression_per_image, anchors_per_image, matched_idxs_per_image in zip( targets, bbox_regression, anchors, matched_idxs ): # determine only the foreground indices, ignore the rest foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0] num_foreground = foreground_idxs_per_image.numel() # select only the foreground boxes matched_gt_boxes_per_image = targets_per_image["boxes"][matched_idxs_per_image[foreground_idxs_per_image]] bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :] anchors_per_image = anchors_per_image[foreground_idxs_per_image, :] # compute the loss losses.append( _box_loss( self._loss_type, self.box_coder, anchors_per_image, matched_gt_boxes_per_image, bbox_regression_per_image, ) / max(1, num_foreground) ) return _sum(losses) / max(1, len(targets)) def forward(self, x): # type: (List[Tensor]) -> Tensor all_bbox_regression = [] for features in x: bbox_regression = self.conv(features) bbox_regression = self.bbox_reg(bbox_regression) # Permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4). N, _, H, W = bbox_regression.shape bbox_regression = bbox_regression.view(N, -1, 4, H, W) bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2) bbox_regression = bbox_regression.reshape(N, -1, 4) # Size=(N, HWA, 4) all_bbox_regression.append(bbox_regression) return torch.cat(all_bbox_regression, dim=1) class RetinaNet(nn.Module): """ Implements RetinaNet. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores for each prediction Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or an OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). min_size (int): Images are rescaled before feeding them to the backbone: we attempt to preserve the aspect ratio and scale the shorter edge to ``min_size``. If the resulting longer edge exceeds ``max_size``, then downscale so that the longer edge does not exceed ``max_size``. This may result in the shorter edge beeing lower than ``min_size``. max_size (int): See ``min_size``. image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. head (nn.Module): Module run on top of the feature pyramid. Defaults to a module containing a classification and regression module. score_thresh (float): Score threshold used for postprocessing the detections. nms_thresh (float): NMS threshold used for postprocessing the detections. detections_per_img (int): Number of best detections to keep after NMS. fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training. bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be considered as negative during training. topk_candidates (int): Number of best detections to keep before NMS. Example: >>> import torch >>> import torchvision >>> from torchvision.models.detection import RetinaNet >>> from torchvision.models.detection.anchor_utils import AnchorGenerator >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features >>> # RetinaNet needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280, >>> # so we need to add it here >>> backbone.out_channels = 1280 >>> >>> # let's make the network generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator( >>> sizes=((32, 64, 128, 256, 512),), >>> aspect_ratios=((0.5, 1.0, 2.0),) >>> ) >>> >>> # put the pieces together inside a RetinaNet model >>> model = RetinaNet(backbone, >>> num_classes=2, >>> anchor_generator=anchor_generator) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """ __annotations__ = { "box_coder": det_utils.BoxCoder, "proposal_matcher": det_utils.Matcher, } def __init__( self, backbone, num_classes, # transform parameters min_size=800, max_size=1333, image_mean=None, image_std=None, # Anchor parameters anchor_generator=None, head=None, proposal_matcher=None, score_thresh=0.05, nms_thresh=0.5, detections_per_img=300, fg_iou_thresh=0.5, bg_iou_thresh=0.4, topk_candidates=1000, **kwargs, ): super().__init__() _log_api_usage_once(self) if not hasattr(backbone, "out_channels"): raise ValueError( "backbone should contain an attribute out_channels " "specifying the number of output channels (assumed to be the " "same for all the levels)" ) self.backbone = backbone if not isinstance(anchor_generator, (AnchorGenerator, type(None))): raise TypeError( f"anchor_generator should be of type AnchorGenerator or None instead of {type(anchor_generator)}" ) if anchor_generator is None: anchor_generator = _default_anchorgen() self.anchor_generator = anchor_generator if head is None: head = RetinaNetHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes) self.head = head if proposal_matcher is None: proposal_matcher = det_utils.Matcher( fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=True, ) self.proposal_matcher = proposal_matcher self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] self.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs) self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.topk_candidates = topk_candidates # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs(self, losses, detections): # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]] if self.training: return losses return detections def compute_loss(self, targets, head_outputs, anchors): # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor]) -> Dict[str, Tensor] matched_idxs = [] for anchors_per_image, targets_per_image in zip(anchors, targets): if targets_per_image["boxes"].numel() == 0: matched_idxs.append( torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device) ) continue match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image) matched_idxs.append(self.proposal_matcher(match_quality_matrix)) return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs) def postprocess_detections(self, head_outputs, anchors, image_shapes): # type: (Dict[str, List[Tensor]], List[List[Tensor]], List[Tuple[int, int]]) -> List[Dict[str, Tensor]] class_logits = head_outputs["cls_logits"] box_regression = head_outputs["bbox_regression"] num_images = len(image_shapes) detections: List[Dict[str, Tensor]] = [] for index in range(num_images): box_regression_per_image = [br[index] for br in box_regression] logits_per_image = [cl[index] for cl in class_logits] anchors_per_image, image_shape = anchors[index], image_shapes[index] image_boxes = [] image_scores = [] image_labels = [] for box_regression_per_level, logits_per_level, anchors_per_level in zip( box_regression_per_image, logits_per_image, anchors_per_image ): num_classes = logits_per_level.shape[-1] # remove low scoring boxes scores_per_level = torch.sigmoid(logits_per_level).flatten() keep_idxs = scores_per_level > self.score_thresh scores_per_level = scores_per_level[keep_idxs] topk_idxs = torch.where(keep_idxs)[0] # keep only topk scoring predictions num_topk = det_utils._topk_min(topk_idxs, self.topk_candidates, 0) scores_per_level, idxs = scores_per_level.topk(num_topk) topk_idxs = topk_idxs[idxs] anchor_idxs = torch.div(topk_idxs, num_classes, rounding_mode="floor") labels_per_level = topk_idxs % num_classes boxes_per_level = self.box_coder.decode_single( box_regression_per_level[anchor_idxs], anchors_per_level[anchor_idxs] ) boxes_per_level = box_ops.clip_boxes_to_image(boxes_per_level, image_shape) image_boxes.append(boxes_per_level) image_scores.append(scores_per_level) image_labels.append(labels_per_level) image_boxes = torch.cat(image_boxes, dim=0) image_scores = torch.cat(image_scores, dim=0) image_labels = torch.cat(image_labels, dim=0) # non-maximum suppression keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh) keep = keep[: self.detections_per_img] detections.append( { "boxes": image_boxes[keep], "scores": image_scores[keep], "labels": image_labels[keep], } ) return detections def forward(self, images, targets=None): # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]] """ Args: images (list[Tensor]): images to be processed targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for target in targets: boxes = target["boxes"] torch._assert(isinstance(boxes, torch.Tensor), "Expected target boxes to be of type Tensor.") torch._assert( len(boxes.shape) == 2 and boxes.shape[-1] == 4, "Expected target boxes to be a tensor of shape [N, 4].", ) # get the original image sizes original_image_sizes: List[Tuple[int, int]] = [] for img in images: val = img.shape[-2:] torch._assert( len(val) == 2, f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}", ) original_image_sizes.append((val[0], val[1])) # transform the input images, targets = self.transform(images, targets) # Check for degenerate boxes # TODO: Move this to a function if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): # print the first degenerate box bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: List[float] = boxes[bb_idx].tolist() torch._assert( False, "All bounding boxes should have positive height and width." f" Found invalid box {degen_bb} for target at index {target_idx}.", ) # get the features from the backbone features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) # TODO: Do we want a list or a dict? features = list(features.values()) # compute the retinanet heads outputs using the features head_outputs = self.head(features) # create the set of anchors anchors = self.anchor_generator(images, features) losses = {} detections: List[Dict[str, Tensor]] = [] if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: # compute the losses losses = self.compute_loss(targets, head_outputs, anchors) else: # recover level sizes num_anchors_per_level = [x.size(2) * x.size(3) for x in features] HW = 0 for v in num_anchors_per_level: HW += v HWA = head_outputs["cls_logits"].size(1) A = HWA // HW num_anchors_per_level = [hw * A for hw in num_anchors_per_level] # split outputs per level split_head_outputs: Dict[str, List[Tensor]] = {} for k in head_outputs: split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1)) split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors] # compute the detections detections = self.postprocess_detections(split_head_outputs, split_anchors, images.image_sizes) detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("RetinaNet always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections return self.eager_outputs(losses, detections) _COMMON_META = { "categories": _COCO_CATEGORIES, "min_size": (1, 1), } class RetinaNet_ResNet50_FPN_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 34014999, "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#retinanet", "_metrics": { "COCO-val2017": { "box_map": 36.4, } }, "_ops": 151.54, "_file_size": 130.267, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 class RetinaNet_ResNet50_FPN_V2_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/retinanet_resnet50_fpn_v2_coco-5905b1c5.pth", transforms=ObjectDetection, meta={ **_COMMON_META, "num_params": 38198935, "recipe": "https://github.com/pytorch/vision/pull/5756", "_metrics": { "COCO-val2017": { "box_map": 41.5, } }, "_ops": 152.238, "_file_size": 146.037, "_docs": """These weights were produced using an enhanced training recipe to boost the model accuracy.""", }, ) DEFAULT = COCO_V1 @register_model() @handle_legacy_interface( weights=("pretrained", RetinaNet_ResNet50_FPN_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def retinanet_resnet50_fpn( *, weights: Optional[RetinaNet_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> RetinaNet: """ Constructs a RetinaNet model with a ResNet-50-FPN backbone. .. betastatus:: detection module Reference: `Focal Loss for Dense Object Detection <https://arxiv.org/abs/1708.02002>`_. The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each detection - scores (``Tensor[N]``): the scores of each detection For more details on the output, you may refer to :ref:`instance_seg_output`. Example:: >>> model = torchvision.models.detection.retinanet_resnet50_fpn(weights=RetinaNet_ResNet50_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.RetinaNet_ResNet50_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.RetinaNet_ResNet50_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.RetinaNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/retinanet.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.RetinaNet_ResNet50_FPN_Weights :members: """ weights = RetinaNet_ResNet50_FPN_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer) # skip P2 because it generates too many anchors (according to their paper) backbone = _resnet_fpn_extractor( backbone, trainable_backbone_layers, returned_layers=[2, 3, 4], extra_blocks=LastLevelP6P7(256, 256) ) model = RetinaNet(backbone, num_classes, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if weights == RetinaNet_ResNet50_FPN_Weights.COCO_V1: overwrite_eps(model, 0.0) return model @register_model() @handle_legacy_interface( weights=("pretrained", RetinaNet_ResNet50_FPN_V2_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def retinanet_resnet50_fpn_v2( *, weights: Optional[RetinaNet_ResNet50_FPN_V2_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = None, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> RetinaNet: """ Constructs an improved RetinaNet model with a ResNet-50-FPN backbone. .. betastatus:: detection module Reference: `Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection <https://arxiv.org/abs/1912.02424>`_. :func:`~torchvision.models.detection.retinanet_resnet50_fpn` for more details. Args: weights (:class:`~torchvision.models.detection.RetinaNet_ResNet50_FPN_V2_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.RetinaNet_ResNet50_FPN_V2_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. **kwargs: parameters passed to the ``torchvision.models.detection.RetinaNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/retinanet.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.RetinaNet_ResNet50_FPN_V2_Weights :members: """ weights = RetinaNet_ResNet50_FPN_V2_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) backbone = resnet50(weights=weights_backbone, progress=progress) backbone = _resnet_fpn_extractor( backbone, trainable_backbone_layers, returned_layers=[2, 3, 4], extra_blocks=LastLevelP6P7(2048, 256) ) anchor_generator = _default_anchorgen() head = RetinaNetHead( backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes, norm_layer=partial(nn.GroupNorm, 32), ) head.regression_head._loss_type = "giou" model = RetinaNet(backbone, num_classes, anchor_generator=anchor_generator, head=head, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
================================================================================================================================= SOURCE CODE FILE: roi_heads.py LINES: 1 SIZE: 33.88 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\roi_heads.py ENCODING: utf-8 ```py from typing import Dict, List, Optional, Tuple import torch import torch.nn.functional as F import torchvision from torch import nn, Tensor from torchvision.ops import boxes as box_ops, roi_align from . import _utils as det_utils def fastrcnn_loss(class_logits, box_regression, labels, regression_targets): # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor] """ Computes the loss for Faster R-CNN. Args: class_logits (Tensor) box_regression (Tensor) labels (list[BoxList]) regression_targets (Tensor) Returns: classification_loss (Tensor) box_loss (Tensor) """ labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) classification_loss = F.cross_entropy(class_logits, labels) # get indices that correspond to the regression targets for # the corresponding ground truth labels, to be used with # advanced indexing sampled_pos_inds_subset = torch.where(labels > 0)[0] labels_pos = labels[sampled_pos_inds_subset] N, num_classes = class_logits.shape box_regression = box_regression.reshape(N, box_regression.size(-1) // 4, 4) box_loss = F.smooth_l1_loss( box_regression[sampled_pos_inds_subset, labels_pos], regression_targets[sampled_pos_inds_subset], beta=1 / 9, reduction="sum", ) box_loss = box_loss / labels.numel() return classification_loss, box_loss def maskrcnn_inference(x, labels): # type: (Tensor, List[Tensor]) -> List[Tensor] """ From the results of the CNN, post process the masks by taking the mask corresponding to the class with max probability (which are of fixed size and directly output by the CNN) and return the masks in the mask field of the BoxList. Args: x (Tensor): the mask logits labels (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks corresponding to the predicted classes num_masks = x.shape[0] boxes_per_image = [label.shape[0] for label in labels] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] mask_prob = mask_prob.split(boxes_per_image, dim=0) return mask_prob def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M): # type: (Tensor, Tensor, Tensor, int) -> Tensor """ Given segmentation masks and the bounding boxes corresponding to the location of the masks in the image, this function crops and resizes the masks in the position defined by the boxes. This prepares the masks for them to be fed to the loss computation as the targets. """ matched_idxs = matched_idxs.to(boxes) rois = torch.cat([matched_idxs[:, None], boxes], dim=1) gt_masks = gt_masks[:, None].to(rois) return roi_align(gt_masks, rois, (M, M), 1.0)[:, 0] def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor """ Args: proposals (list[BoxList]) mask_logits (Tensor) targets (list[BoxList]) Return: mask_loss (Tensor): scalar tensor containing the loss """ discretization_size = mask_logits.shape[-1] labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)] mask_targets = [ project_masks_on_boxes(m, p, i, discretization_size) for m, p, i in zip(gt_masks, proposals, mask_matched_idxs) ] labels = torch.cat(labels, dim=0) mask_targets = torch.cat(mask_targets, dim=0) # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it separately if mask_targets.numel() == 0: return mask_logits.sum() * 0 mask_loss = F.binary_cross_entropy_with_logits( mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets ) return mask_loss def keypoints_to_heatmap(keypoints, rois, heatmap_size): # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor] offset_x = rois[:, 0] offset_y = rois[:, 1] scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) offset_x = offset_x[:, None] offset_y = offset_y[:, None] scale_x = scale_x[:, None] scale_y = scale_y[:, None] x = keypoints[..., 0] y = keypoints[..., 1] x_boundary_inds = x == rois[:, 2][:, None] y_boundary_inds = y == rois[:, 3][:, None] x = (x - offset_x) * scale_x x = x.floor().long() y = (y - offset_y) * scale_y y = y.floor().long() x[x_boundary_inds] = heatmap_size - 1 y[y_boundary_inds] = heatmap_size - 1 valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) vis = keypoints[..., 2] > 0 valid = (valid_loc & vis).long() lin_ind = y * heatmap_size + x heatmaps = lin_ind * valid return heatmaps, valid def _onnx_heatmaps_to_keypoints( maps, maps_i, roi_map_width, roi_map_height, widths_i, heights_i, offset_x_i, offset_y_i ): num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64) width_correction = widths_i / roi_map_width height_correction = heights_i / roi_map_height roi_map = F.interpolate( maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode="bicubic", align_corners=False )[:, 0] w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64) pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1) x_int = pos % w y_int = (pos - x_int) // w x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * width_correction.to( dtype=torch.float32 ) y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * height_correction.to( dtype=torch.float32 ) xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32) xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32) xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32) xy_preds_i = torch.stack( [ xy_preds_i_0.to(dtype=torch.float32), xy_preds_i_1.to(dtype=torch.float32), xy_preds_i_2.to(dtype=torch.float32), ], 0, ) # TODO: simplify when indexing without rank will be supported by ONNX base = num_keypoints * num_keypoints + num_keypoints + 1 ind = torch.arange(num_keypoints) ind = ind.to(dtype=torch.int64) * base end_scores_i = ( roi_map.index_select(1, y_int.to(dtype=torch.int64)) .index_select(2, x_int.to(dtype=torch.int64)) .view(-1) .index_select(0, ind.to(dtype=torch.int64)) ) return xy_preds_i, end_scores_i @torch.jit._script_if_tracing def _onnx_heatmaps_to_keypoints_loop( maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, num_keypoints ): xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device) end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device) for i in range(int(rois.size(0))): xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints( maps, maps[i], widths_ceil[i], heights_ceil[i], widths[i], heights[i], offset_x[i], offset_y[i] ) xy_preds = torch.cat((xy_preds.to(dtype=torch.float32), xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0) end_scores = torch.cat( (end_scores.to(dtype=torch.float32), end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0 ) return xy_preds, end_scores def heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = widths.clamp(min=1) heights = heights.clamp(min=1) widths_ceil = widths.ceil() heights_ceil = heights.ceil() num_keypoints = maps.shape[1] if torchvision._is_tracing(): xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop( maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, torch.scalar_tensor(num_keypoints, dtype=torch.int64), ) return xy_preds.permute(0, 2, 1), end_scores xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device) end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device) for i in range(len(rois)): roi_map_width = int(widths_ceil[i].item()) roi_map_height = int(heights_ceil[i].item()) width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = F.interpolate( maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False )[:, 0] # roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1) x_int = pos % w y_int = torch.div(pos - x_int, w, rounding_mode="floor") # assert (roi_map_probs[k, y_int, x_int] == # roi_map_probs[k, :, :].max()) x = (x_int.float() + 0.5) * width_correction y = (y_int.float() + 0.5) * height_correction xy_preds[i, 0, :] = x + offset_x[i] xy_preds[i, 1, :] = y + offset_y[i] xy_preds[i, 2, :] = 1 end_scores[i, :] = roi_map[torch.arange(num_keypoints, device=roi_map.device), y_int, x_int] return xy_preds.permute(0, 2, 1), end_scores def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor N, K, H, W = keypoint_logits.shape if H != W: raise ValueError( f"keypoint_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}" ) discretization_size = H heatmaps = [] valid = [] for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs): kp = gt_kp_in_image[midx] heatmaps_per_image, valid_per_image = keypoints_to_heatmap(kp, proposals_per_image, discretization_size) heatmaps.append(heatmaps_per_image.view(-1)) valid.append(valid_per_image.view(-1)) keypoint_targets = torch.cat(heatmaps, dim=0) valid = torch.cat(valid, dim=0).to(dtype=torch.uint8) valid = torch.where(valid)[0] # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it sepaartely if keypoint_targets.numel() == 0 or len(valid) == 0: return keypoint_logits.sum() * 0 keypoint_logits = keypoint_logits.view(N * K, H * W) keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid]) return keypoint_loss def keypointrcnn_inference(x, boxes): # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]] kp_probs = [] kp_scores = [] boxes_per_image = [box.size(0) for box in boxes] x2 = x.split(boxes_per_image, dim=0) for xx, bb in zip(x2, boxes): kp_prob, scores = heatmaps_to_keypoints(xx, bb) kp_probs.append(kp_prob) kp_scores.append(scores) return kp_probs, kp_scores def _onnx_expand_boxes(boxes, scale): # type: (Tensor, float) -> Tensor w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5 h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5 x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5 y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5 w_half = w_half.to(dtype=torch.float32) * scale h_half = h_half.to(dtype=torch.float32) * scale boxes_exp0 = x_c - w_half boxes_exp1 = y_c - h_half boxes_exp2 = x_c + w_half boxes_exp3 = y_c + h_half boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1) return boxes_exp # the next two functions should be merged inside Masker # but are kept here for the moment while we need them # temporarily for paste_mask_in_image def expand_boxes(boxes, scale): # type: (Tensor, float) -> Tensor if torchvision._is_tracing(): return _onnx_expand_boxes(boxes, scale) w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5 h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5 x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5 y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5 w_half *= scale h_half *= scale boxes_exp = torch.zeros_like(boxes) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp @torch.jit.unused def expand_masks_tracing_scale(M, padding): # type: (int, int) -> float return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32) def expand_masks(mask, padding): # type: (Tensor, int) -> Tuple[Tensor, float] M = mask.shape[-1] if torch._C._get_tracing_state(): # could not import is_tracing(), not sure why scale = expand_masks_tracing_scale(M, padding) else: scale = float(M + 2 * padding) / M padded_mask = F.pad(mask, (padding,) * 4) return padded_mask, scale def paste_mask_in_image(mask, box, im_h, im_w): # type: (Tensor, Tensor, int, int) -> Tensor TO_REMOVE = 1 w = int(box[2] - box[0] + TO_REMOVE) h = int(box[3] - box[1] + TO_REMOVE) w = max(w, 1) h = max(h, 1) # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, -1, -1)) # Resize mask mask = F.interpolate(mask, size=(h, w), mode="bilinear", align_corners=False) mask = mask[0][0] im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device) x_0 = max(box[0], 0) x_1 = min(box[2] + 1, im_w) y_0 = max(box[1], 0) y_1 = min(box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])] return im_mask def _onnx_paste_mask_in_image(mask, box, im_h, im_w): one = torch.ones(1, dtype=torch.int64) zero = torch.zeros(1, dtype=torch.int64) w = box[2] - box[0] + one h = box[3] - box[1] + one w = torch.max(torch.cat((w, one))) h = torch.max(torch.cat((h, one))) # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, mask.size(0), mask.size(1))) # Resize mask mask = F.interpolate(mask, size=(int(h), int(w)), mode="bilinear", align_corners=False) mask = mask[0][0] x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero))) x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0)))) y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero))) y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0)))) unpaded_im_mask = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])] # TODO : replace below with a dynamic padding when support is added in ONNX # pad y zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1)) zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1)) concat_0 = torch.cat((zeros_y0, unpaded_im_mask.to(dtype=torch.float32), zeros_y1), 0)[0:im_h, :] # pad x zeros_x0 = torch.zeros(concat_0.size(0), x_0) zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1) im_mask = torch.cat((zeros_x0, concat_0, zeros_x1), 1)[:, :im_w] return im_mask @torch.jit._script_if_tracing def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w): res_append = torch.zeros(0, im_h, im_w) for i in range(masks.size(0)): mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w) mask_res = mask_res.unsqueeze(0) res_append = torch.cat((res_append, mask_res)) return res_append def paste_masks_in_image(masks, boxes, img_shape, padding=1): # type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor masks, scale = expand_masks(masks, padding=padding) boxes = expand_boxes(boxes, scale).to(dtype=torch.int64) im_h, im_w = img_shape if torchvision._is_tracing(): return _onnx_paste_masks_in_image_loop( masks, boxes, torch.scalar_tensor(im_h, dtype=torch.int64), torch.scalar_tensor(im_w, dtype=torch.int64) )[:, None] res = [paste_mask_in_image(m[0], b, im_h, im_w) for m, b in zip(masks, boxes)] if len(res) > 0: ret = torch.stack(res, dim=0)[:, None] else: ret = masks.new_empty((0, 1, im_h, im_w)) return ret class RoIHeads(nn.Module): __annotations__ = { "box_coder": det_utils.BoxCoder, "proposal_matcher": det_utils.Matcher, "fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler, } def __init__( self, box_roi_pool, box_head, box_predictor, # Faster R-CNN training fg_iou_thresh, bg_iou_thresh, batch_size_per_image, positive_fraction, bbox_reg_weights, # Faster R-CNN inference score_thresh, nms_thresh, detections_per_img, # Mask mask_roi_pool=None, mask_head=None, mask_predictor=None, keypoint_roi_pool=None, keypoint_head=None, keypoint_predictor=None, ): super().__init__() self.box_similarity = box_ops.box_iou # assign ground-truth boxes for each proposal self.proposal_matcher = det_utils.Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False) self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction) if bbox_reg_weights is None: bbox_reg_weights = (10.0, 10.0, 5.0, 5.0) self.box_coder = det_utils.BoxCoder(bbox_reg_weights) self.box_roi_pool = box_roi_pool self.box_head = box_head self.box_predictor = box_predictor self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.mask_roi_pool = mask_roi_pool self.mask_head = mask_head self.mask_predictor = mask_predictor self.keypoint_roi_pool = keypoint_roi_pool self.keypoint_head = keypoint_head self.keypoint_predictor = keypoint_predictor def has_mask(self): if self.mask_roi_pool is None: return False if self.mask_head is None: return False if self.mask_predictor is None: return False return True def has_keypoint(self): if self.keypoint_roi_pool is None: return False if self.keypoint_head is None: return False if self.keypoint_predictor is None: return False return True def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels): # type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]] matched_idxs = [] labels = [] for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels): if gt_boxes_in_image.numel() == 0: # Background image device = proposals_in_image.device clamped_matched_idxs_in_image = torch.zeros( (proposals_in_image.shape[0],), dtype=torch.int64, device=device ) labels_in_image = torch.zeros((proposals_in_image.shape[0],), dtype=torch.int64, device=device) else: # set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image) matched_idxs_in_image = self.proposal_matcher(match_quality_matrix) clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0) labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image] labels_in_image = labels_in_image.to(dtype=torch.int64) # Label background (below the low threshold) bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD labels_in_image[bg_inds] = 0 # Label ignore proposals (between low and high thresholds) ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS labels_in_image[ignore_inds] = -1 # -1 is ignored by sampler matched_idxs.append(clamped_matched_idxs_in_image) labels.append(labels_in_image) return matched_idxs, labels def subsample(self, labels): # type: (List[Tensor]) -> List[Tensor] sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) sampled_inds = [] for img_idx, (pos_inds_img, neg_inds_img) in enumerate(zip(sampled_pos_inds, sampled_neg_inds)): img_sampled_inds = torch.where(pos_inds_img | neg_inds_img)[0] sampled_inds.append(img_sampled_inds) return sampled_inds def add_gt_proposals(self, proposals, gt_boxes): # type: (List[Tensor], List[Tensor]) -> List[Tensor] proposals = [torch.cat((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)] return proposals def check_targets(self, targets): # type: (Optional[List[Dict[str, Tensor]]]) -> None if targets is None: raise ValueError("targets should not be None") if not all(["boxes" in t for t in targets]): raise ValueError("Every element of targets should have a boxes key") if not all(["labels" in t for t in targets]): raise ValueError("Every element of targets should have a labels key") if self.has_mask(): if not all(["masks" in t for t in targets]): raise ValueError("Every element of targets should have a masks key") def select_training_samples( self, proposals, # type: List[Tensor] targets, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]] self.check_targets(targets) if targets is None: raise ValueError("targets should not be None") dtype = proposals[0].dtype device = proposals[0].device gt_boxes = [t["boxes"].to(dtype) for t in targets] gt_labels = [t["labels"] for t in targets] # append ground-truth bboxes to propos proposals = self.add_gt_proposals(proposals, gt_boxes) # get matching gt indices for each proposal matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels) # sample a fixed proportion of positive-negative proposals sampled_inds = self.subsample(labels) matched_gt_boxes = [] num_images = len(proposals) for img_id in range(num_images): img_sampled_inds = sampled_inds[img_id] proposals[img_id] = proposals[img_id][img_sampled_inds] labels[img_id] = labels[img_id][img_sampled_inds] matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds] gt_boxes_in_image = gt_boxes[img_id] if gt_boxes_in_image.numel() == 0: gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device) matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]]) regression_targets = self.box_coder.encode(matched_gt_boxes, proposals) return proposals, matched_idxs, labels, regression_targets def postprocess_detections( self, class_logits, # type: Tensor box_regression, # type: Tensor proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]] device = class_logits.device num_classes = class_logits.shape[-1] boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals] pred_boxes = self.box_coder.decode(box_regression, proposals) pred_scores = F.softmax(class_logits, -1) pred_boxes_list = pred_boxes.split(boxes_per_image, 0) pred_scores_list = pred_scores.split(boxes_per_image, 0) all_boxes = [] all_scores = [] all_labels = [] for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes): boxes = box_ops.clip_boxes_to_image(boxes, image_shape) # create labels for each prediction labels = torch.arange(num_classes, device=device) labels = labels.view(1, -1).expand_as(scores) # remove predictions with the background label boxes = boxes[:, 1:] scores = scores[:, 1:] labels = labels[:, 1:] # batch everything, by making every class prediction be a separate instance boxes = boxes.reshape(-1, 4) scores = scores.reshape(-1) labels = labels.reshape(-1) # remove low scoring boxes inds = torch.where(scores > self.score_thresh)[0] boxes, scores, labels = boxes[inds], scores[inds], labels[inds] # remove empty boxes keep = box_ops.remove_small_boxes(boxes, min_size=1e-2) boxes, scores, labels = boxes[keep], scores[keep], labels[keep] # non-maximum suppression, independently done per class keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh) # keep only topk scoring predictions keep = keep[: self.detections_per_img] boxes, scores, labels = boxes[keep], scores[keep], labels[keep] all_boxes.append(boxes) all_scores.append(scores) all_labels.append(labels) return all_boxes, all_scores, all_labels def forward( self, features, # type: Dict[str, Tensor] proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] targets=None, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]] """ Args: features (List[Tensor]) proposals (List[Tensor[N, 4]]) image_shapes (List[Tuple[H, W]]) targets (List[Dict]) """ if targets is not None: for t in targets: # TODO: https://github.com/pytorch/pytorch/issues/26731 floating_point_types = (torch.float, torch.double, torch.half) if not t["boxes"].dtype in floating_point_types: raise TypeError(f"target boxes must of float type, instead got {t['boxes'].dtype}") if not t["labels"].dtype == torch.int64: raise TypeError(f"target labels must of int64 type, instead got {t['labels'].dtype}") if self.has_keypoint(): if not t["keypoints"].dtype == torch.float32: raise TypeError(f"target keypoints must of float type, instead got {t['keypoints'].dtype}") if self.training: proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets) else: labels = None regression_targets = None matched_idxs = None box_features = self.box_roi_pool(features, proposals, image_shapes) box_features = self.box_head(box_features) class_logits, box_regression = self.box_predictor(box_features) result: List[Dict[str, torch.Tensor]] = [] losses = {} if self.training: if labels is None: raise ValueError("labels cannot be None") if regression_targets is None: raise ValueError("regression_targets cannot be None") loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets) losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg} else: boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes) num_images = len(boxes) for i in range(num_images): result.append( { "boxes": boxes[i], "labels": labels[i], "scores": scores[i], } ) if self.has_mask(): mask_proposals = [p["boxes"] for p in result] if self.training: if matched_idxs is None: raise ValueError("if in training, matched_idxs should not be None") # during training, only focus on positive boxes num_images = len(proposals) mask_proposals = [] pos_matched_idxs = [] for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] mask_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None if self.mask_roi_pool is not None: mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes) mask_features = self.mask_head(mask_features) mask_logits = self.mask_predictor(mask_features) else: raise Exception("Expected mask_roi_pool to be not None") loss_mask = {} if self.training: if targets is None or pos_matched_idxs is None or mask_logits is None: raise ValueError("targets, pos_matched_idxs, mask_logits cannot be None when training") gt_masks = [t["masks"] for t in targets] gt_labels = [t["labels"] for t in targets] rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs) loss_mask = {"loss_mask": rcnn_loss_mask} else: labels = [r["labels"] for r in result] masks_probs = maskrcnn_inference(mask_logits, labels) for mask_prob, r in zip(masks_probs, result): r["masks"] = mask_prob losses.update(loss_mask) # keep none checks in if conditional so torchscript will conditionally # compile each branch if ( self.keypoint_roi_pool is not None and self.keypoint_head is not None and self.keypoint_predictor is not None ): keypoint_proposals = [p["boxes"] for p in result] if self.training: # during training, only focus on positive boxes num_images = len(proposals) keypoint_proposals = [] pos_matched_idxs = [] if matched_idxs is None: raise ValueError("if in trainning, matched_idxs should not be None") for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] keypoint_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes) keypoint_features = self.keypoint_head(keypoint_features) keypoint_logits = self.keypoint_predictor(keypoint_features) loss_keypoint = {} if self.training: if targets is None or pos_matched_idxs is None: raise ValueError("both targets and pos_matched_idxs should not be None when in training mode") gt_keypoints = [t["keypoints"] for t in targets] rcnn_loss_keypoint = keypointrcnn_loss( keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs ) loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint} else: if keypoint_logits is None or keypoint_proposals is None: raise ValueError( "both keypoint_logits and keypoint_proposals should not be None when not in training mode" ) keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals) for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result): r["keypoints"] = keypoint_prob r["keypoints_scores"] = kps losses.update(loss_keypoint) return result, losses ```
=========================================================================================================================== SOURCE CODE FILE: rpn.py LINES: 1 SIZE: 15.85 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\rpn.py ENCODING: utf-8 ```py from typing import Dict, List, Optional, Tuple import torch from torch import nn, Tensor from torch.nn import functional as F from torchvision.ops import boxes as box_ops, Conv2dNormActivation from . import _utils as det_utils # Import AnchorGenerator to keep compatibility. from .anchor_utils import AnchorGenerator # noqa: 401 from .image_list import ImageList class RPNHead(nn.Module): """ Adds a simple RPN Head with classification and regression heads Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted conv_depth (int, optional): number of convolutions """ _version = 2 def __init__(self, in_channels: int, num_anchors: int, conv_depth=1) -> None: super().__init__() convs = [] for _ in range(conv_depth): convs.append(Conv2dNormActivation(in_channels, in_channels, kernel_size=3, norm_layer=None)) self.conv = nn.Sequential(*convs) self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) self.bbox_pred = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1, stride=1) for layer in self.modules(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, std=0.01) # type: ignore[arg-type] if layer.bias is not None: torch.nn.init.constant_(layer.bias, 0) # type: ignore[arg-type] def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 2: for type in ["weight", "bias"]: old_key = f"{prefix}conv.{type}" new_key = f"{prefix}conv.0.0.{type}" if old_key in state_dict: state_dict[new_key] = state_dict.pop(old_key) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) def forward(self, x: List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]: logits = [] bbox_reg = [] for feature in x: t = self.conv(feature) logits.append(self.cls_logits(t)) bbox_reg.append(self.bbox_pred(t)) return logits, bbox_reg def permute_and_flatten(layer: Tensor, N: int, A: int, C: int, H: int, W: int) -> Tensor: layer = layer.view(N, -1, C, H, W) layer = layer.permute(0, 3, 4, 1, 2) layer = layer.reshape(N, -1, C) return layer def concat_box_prediction_layers(box_cls: List[Tensor], box_regression: List[Tensor]) -> Tuple[Tensor, Tensor]: box_cls_flattened = [] box_regression_flattened = [] # for each feature level, permute the outputs to make them be in the # same format as the labels. Note that the labels are computed for # all feature levels concatenated, so we keep the same representation # for the objectness and the box_regression for box_cls_per_level, box_regression_per_level in zip(box_cls, box_regression): N, AxC, H, W = box_cls_per_level.shape Ax4 = box_regression_per_level.shape[1] A = Ax4 // 4 C = AxC // A box_cls_per_level = permute_and_flatten(box_cls_per_level, N, A, C, H, W) box_cls_flattened.append(box_cls_per_level) box_regression_per_level = permute_and_flatten(box_regression_per_level, N, A, 4, H, W) box_regression_flattened.append(box_regression_per_level) # concatenate on the first dimension (representing the feature levels), to # take into account the way the labels were generated (with all feature maps # being concatenated as well) box_cls = torch.cat(box_cls_flattened, dim=1).flatten(0, -2) box_regression = torch.cat(box_regression_flattened, dim=1).reshape(-1, 4) return box_cls, box_regression class RegionProposalNetwork(torch.nn.Module): """ Implements Region Proposal Network (RPN). Args: anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. head (nn.Module): module that computes the objectness and regression deltas fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training of the RPN. bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be considered as negative during training of the RPN. batch_size_per_image (int): number of anchors that are sampled during training of the RPN for computing the loss positive_fraction (float): proportion of positive anchors in a mini-batch during training of the RPN pre_nms_top_n (Dict[str, int]): number of proposals to keep before applying NMS. It should contain two fields: training and testing, to allow for different values depending on training or evaluation post_nms_top_n (Dict[str, int]): number of proposals to keep after applying NMS. It should contain two fields: training and testing, to allow for different values depending on training or evaluation nms_thresh (float): NMS threshold used for postprocessing the RPN proposals score_thresh (float): only return proposals with an objectness score greater than score_thresh """ __annotations__ = { "box_coder": det_utils.BoxCoder, "proposal_matcher": det_utils.Matcher, "fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler, } def __init__( self, anchor_generator: AnchorGenerator, head: nn.Module, # Faster-RCNN Training fg_iou_thresh: float, bg_iou_thresh: float, batch_size_per_image: int, positive_fraction: float, # Faster-RCNN Inference pre_nms_top_n: Dict[str, int], post_nms_top_n: Dict[str, int], nms_thresh: float, score_thresh: float = 0.0, ) -> None: super().__init__() self.anchor_generator = anchor_generator self.head = head self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) # used during training self.box_similarity = box_ops.box_iou self.proposal_matcher = det_utils.Matcher( fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=True, ) self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction) # used during testing self._pre_nms_top_n = pre_nms_top_n self._post_nms_top_n = post_nms_top_n self.nms_thresh = nms_thresh self.score_thresh = score_thresh self.min_size = 1e-3 def pre_nms_top_n(self) -> int: if self.training: return self._pre_nms_top_n["training"] return self._pre_nms_top_n["testing"] def post_nms_top_n(self) -> int: if self.training: return self._post_nms_top_n["training"] return self._post_nms_top_n["testing"] def assign_targets_to_anchors( self, anchors: List[Tensor], targets: List[Dict[str, Tensor]] ) -> Tuple[List[Tensor], List[Tensor]]: labels = [] matched_gt_boxes = [] for anchors_per_image, targets_per_image in zip(anchors, targets): gt_boxes = targets_per_image["boxes"] if gt_boxes.numel() == 0: # Background image (negative example) device = anchors_per_image.device matched_gt_boxes_per_image = torch.zeros(anchors_per_image.shape, dtype=torch.float32, device=device) labels_per_image = torch.zeros((anchors_per_image.shape[0],), dtype=torch.float32, device=device) else: match_quality_matrix = self.box_similarity(gt_boxes, anchors_per_image) matched_idxs = self.proposal_matcher(match_quality_matrix) # get the targets corresponding GT for each proposal # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds matched_gt_boxes_per_image = gt_boxes[matched_idxs.clamp(min=0)] labels_per_image = matched_idxs >= 0 labels_per_image = labels_per_image.to(dtype=torch.float32) # Background (negative examples) bg_indices = matched_idxs == self.proposal_matcher.BELOW_LOW_THRESHOLD labels_per_image[bg_indices] = 0.0 # discard indices that are between thresholds inds_to_discard = matched_idxs == self.proposal_matcher.BETWEEN_THRESHOLDS labels_per_image[inds_to_discard] = -1.0 labels.append(labels_per_image) matched_gt_boxes.append(matched_gt_boxes_per_image) return labels, matched_gt_boxes def _get_top_n_idx(self, objectness: Tensor, num_anchors_per_level: List[int]) -> Tensor: r = [] offset = 0 for ob in objectness.split(num_anchors_per_level, 1): num_anchors = ob.shape[1] pre_nms_top_n = det_utils._topk_min(ob, self.pre_nms_top_n(), 1) _, top_n_idx = ob.topk(pre_nms_top_n, dim=1) r.append(top_n_idx + offset) offset += num_anchors return torch.cat(r, dim=1) def filter_proposals( self, proposals: Tensor, objectness: Tensor, image_shapes: List[Tuple[int, int]], num_anchors_per_level: List[int], ) -> Tuple[List[Tensor], List[Tensor]]: num_images = proposals.shape[0] device = proposals.device # do not backprop through objectness objectness = objectness.detach() objectness = objectness.reshape(num_images, -1) levels = [ torch.full((n,), idx, dtype=torch.int64, device=device) for idx, n in enumerate(num_anchors_per_level) ] levels = torch.cat(levels, 0) levels = levels.reshape(1, -1).expand_as(objectness) # select top_n boxes independently per level before applying nms top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level) image_range = torch.arange(num_images, device=device) batch_idx = image_range[:, None] objectness = objectness[batch_idx, top_n_idx] levels = levels[batch_idx, top_n_idx] proposals = proposals[batch_idx, top_n_idx] objectness_prob = torch.sigmoid(objectness) final_boxes = [] final_scores = [] for boxes, scores, lvl, img_shape in zip(proposals, objectness_prob, levels, image_shapes): boxes = box_ops.clip_boxes_to_image(boxes, img_shape) # remove small boxes keep = box_ops.remove_small_boxes(boxes, self.min_size) boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep] # remove low scoring boxes # use >= for Backwards compatibility keep = torch.where(scores >= self.score_thresh)[0] boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep] # non-maximum suppression, independently done per level keep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh) # keep only topk scoring predictions keep = keep[: self.post_nms_top_n()] boxes, scores = boxes[keep], scores[keep] final_boxes.append(boxes) final_scores.append(scores) return final_boxes, final_scores def compute_loss( self, objectness: Tensor, pred_bbox_deltas: Tensor, labels: List[Tensor], regression_targets: List[Tensor] ) -> Tuple[Tensor, Tensor]: """ Args: objectness (Tensor) pred_bbox_deltas (Tensor) labels (List[Tensor]) regression_targets (List[Tensor]) Returns: objectness_loss (Tensor) box_loss (Tensor) """ sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) sampled_pos_inds = torch.where(torch.cat(sampled_pos_inds, dim=0))[0] sampled_neg_inds = torch.where(torch.cat(sampled_neg_inds, dim=0))[0] sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0) objectness = objectness.flatten() labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) box_loss = F.smooth_l1_loss( pred_bbox_deltas[sampled_pos_inds], regression_targets[sampled_pos_inds], beta=1 / 9, reduction="sum", ) / (sampled_inds.numel()) objectness_loss = F.binary_cross_entropy_with_logits(objectness[sampled_inds], labels[sampled_inds]) return objectness_loss, box_loss def forward( self, images: ImageList, features: Dict[str, Tensor], targets: Optional[List[Dict[str, Tensor]]] = None, ) -> Tuple[List[Tensor], Dict[str, Tensor]]: """ Args: images (ImageList): images for which we want to compute the predictions features (Dict[str, Tensor]): features computed from the images that are used for computing the predictions. Each tensor in the list correspond to different feature levels targets (List[Dict[str, Tensor]]): ground-truth boxes present in the image (optional). If provided, each element in the dict should contain a field `boxes`, with the locations of the ground-truth boxes. Returns: boxes (List[Tensor]): the predicted boxes from the RPN, one Tensor per image. losses (Dict[str, Tensor]): the losses for the model during training. During testing, it is an empty dict. """ # RPN uses all feature maps that are available features = list(features.values()) objectness, pred_bbox_deltas = self.head(features) anchors = self.anchor_generator(images, features) num_images = len(anchors) num_anchors_per_level_shape_tensors = [o[0].shape for o in objectness] num_anchors_per_level = [s[0] * s[1] * s[2] for s in num_anchors_per_level_shape_tensors] objectness, pred_bbox_deltas = concat_box_prediction_layers(objectness, pred_bbox_deltas) # apply pred_bbox_deltas to anchors to obtain the decoded proposals # note that we detach the deltas because Faster R-CNN do not backprop through # the proposals proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors) proposals = proposals.view(num_images, -1, 4) boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level) losses = {} if self.training: if targets is None: raise ValueError("targets should not be None") labels, matched_gt_boxes = self.assign_targets_to_anchors(anchors, targets) regression_targets = self.box_coder.encode(matched_gt_boxes, anchors) loss_objectness, loss_rpn_box_reg = self.compute_loss( objectness, pred_bbox_deltas, labels, regression_targets ) losses = { "loss_objectness": loss_objectness, "loss_rpn_box_reg": loss_rpn_box_reg, } return boxes, losses ```
=========================================================================================================================== SOURCE CODE FILE: ssd.py LINES: 1 SIZE: 28.97 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\ssd.py ENCODING: utf-8 ```py import warnings from collections import OrderedDict from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from ...ops import boxes as box_ops from ...transforms._presets import ObjectDetection from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..vgg import VGG, vgg16, VGG16_Weights from . import _utils as det_utils from .anchor_utils import DefaultBoxGenerator from .backbone_utils import _validate_trainable_layers from .transform import GeneralizedRCNNTransform __all__ = [ "SSD300_VGG16_Weights", "ssd300_vgg16", ] class SSD300_VGG16_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth", transforms=ObjectDetection, meta={ "num_params": 35641826, "categories": _COCO_CATEGORIES, "min_size": (1, 1), "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16", "_metrics": { "COCO-val2017": { "box_map": 25.1, } }, "_ops": 34.858, "_file_size": 135.988, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 def _xavier_init(conv: nn.Module): for layer in conv.modules(): if isinstance(layer, nn.Conv2d): torch.nn.init.xavier_uniform_(layer.weight) if layer.bias is not None: torch.nn.init.constant_(layer.bias, 0.0) class SSDHead(nn.Module): def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int): super().__init__() self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes) self.regression_head = SSDRegressionHead(in_channels, num_anchors) def forward(self, x: List[Tensor]) -> Dict[str, Tensor]: return { "bbox_regression": self.regression_head(x), "cls_logits": self.classification_head(x), } class SSDScoringHead(nn.Module): def __init__(self, module_list: nn.ModuleList, num_columns: int): super().__init__() self.module_list = module_list self.num_columns = num_columns def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor: """ This is equivalent to self.module_list[idx](x), but torchscript doesn't support this yet """ num_blocks = len(self.module_list) if idx < 0: idx += num_blocks out = x for i, module in enumerate(self.module_list): if i == idx: out = module(x) return out def forward(self, x: List[Tensor]) -> Tensor: all_results = [] for i, features in enumerate(x): results = self._get_result_from_module_list(features, i) # Permute output from (N, A * K, H, W) to (N, HWA, K). N, _, H, W = results.shape results = results.view(N, -1, self.num_columns, H, W) results = results.permute(0, 3, 4, 1, 2) results = results.reshape(N, -1, self.num_columns) # Size=(N, HWA, K) all_results.append(results) return torch.cat(all_results, dim=1) class SSDClassificationHead(SSDScoringHead): def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int): cls_logits = nn.ModuleList() for channels, anchors in zip(in_channels, num_anchors): cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1)) _xavier_init(cls_logits) super().__init__(cls_logits, num_classes) class SSDRegressionHead(SSDScoringHead): def __init__(self, in_channels: List[int], num_anchors: List[int]): bbox_reg = nn.ModuleList() for channels, anchors in zip(in_channels, num_anchors): bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1)) _xavier_init(bbox_reg) super().__init__(bbox_reg, 4) class SSD(nn.Module): """ Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes, but they will be resized to a fixed size before passing it to the backbone. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each detection - scores (Tensor[N]): the scores for each detection Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute with the list of the output channels of each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor]. anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a set of feature maps. size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them to the backbone. num_classes (int): number of output classes of the model (including the background). image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing a classification and regression module. score_thresh (float): Score threshold used for postprocessing the detections. nms_thresh (float): NMS threshold used for postprocessing the detections. detections_per_img (int): Number of best detections to keep after NMS. iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training. topk_candidates (int): Number of best detections to keep before NMS. positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive proposals used during the training of the classification head. It is used to estimate the negative to positive ratio. """ __annotations__ = { "box_coder": det_utils.BoxCoder, "proposal_matcher": det_utils.Matcher, } def __init__( self, backbone: nn.Module, anchor_generator: DefaultBoxGenerator, size: Tuple[int, int], num_classes: int, image_mean: Optional[List[float]] = None, image_std: Optional[List[float]] = None, head: Optional[nn.Module] = None, score_thresh: float = 0.01, nms_thresh: float = 0.45, detections_per_img: int = 200, iou_thresh: float = 0.5, topk_candidates: int = 400, positive_fraction: float = 0.25, **kwargs: Any, ): super().__init__() _log_api_usage_once(self) self.backbone = backbone self.anchor_generator = anchor_generator self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0)) if head is None: if hasattr(backbone, "out_channels"): out_channels = backbone.out_channels else: out_channels = det_utils.retrieve_out_channels(backbone, size) if len(out_channels) != len(anchor_generator.aspect_ratios): raise ValueError( f"The length of the output channels from the backbone ({len(out_channels)}) do not match the length of the anchor generator aspect ratios ({len(anchor_generator.aspect_ratios)})" ) num_anchors = self.anchor_generator.num_anchors_per_location() head = SSDHead(out_channels, num_anchors, num_classes) self.head = head self.proposal_matcher = det_utils.SSDMatcher(iou_thresh) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] self.transform = GeneralizedRCNNTransform( min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size, **kwargs ) self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.topk_candidates = topk_candidates self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs( self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]] ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: if self.training: return losses return detections def compute_loss( self, targets: List[Dict[str, Tensor]], head_outputs: Dict[str, Tensor], anchors: List[Tensor], matched_idxs: List[Tensor], ) -> Dict[str, Tensor]: bbox_regression = head_outputs["bbox_regression"] cls_logits = head_outputs["cls_logits"] # Match original targets with default boxes num_foreground = 0 bbox_loss = [] cls_targets = [] for ( targets_per_image, bbox_regression_per_image, cls_logits_per_image, anchors_per_image, matched_idxs_per_image, ) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs): # produce the matching between boxes and targets foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0] foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image] num_foreground += foreground_matched_idxs_per_image.numel() # Calculate regression loss matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image] bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :] anchors_per_image = anchors_per_image[foreground_idxs_per_image, :] target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image) bbox_loss.append( torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum") ) # Estimate ground truth for class targets gt_classes_target = torch.zeros( (cls_logits_per_image.size(0),), dtype=targets_per_image["labels"].dtype, device=targets_per_image["labels"].device, ) gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][ foreground_matched_idxs_per_image ] cls_targets.append(gt_classes_target) bbox_loss = torch.stack(bbox_loss) cls_targets = torch.stack(cls_targets) # Calculate classification loss num_classes = cls_logits.size(-1) cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view( cls_targets.size() ) # Hard Negative Sampling foreground_idxs = cls_targets > 0 num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True) # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio negative_loss = cls_loss.clone() negative_loss[foreground_idxs] = -float("inf") # use -inf to detect positive values that creeped in the sample values, idx = negative_loss.sort(1, descending=True) # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values)) background_idxs = idx.sort(1)[1] < num_negative N = max(1, num_foreground) return { "bbox_regression": bbox_loss.sum() / N, "classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N, } def forward( self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for target in targets: boxes = target["boxes"] if isinstance(boxes, torch.Tensor): torch._assert( len(boxes.shape) == 2 and boxes.shape[-1] == 4, f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.", ) else: torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.") # get the original image sizes original_image_sizes: List[Tuple[int, int]] = [] for img in images: val = img.shape[-2:] torch._assert( len(val) == 2, f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}", ) original_image_sizes.append((val[0], val[1])) # transform the input images, targets = self.transform(images, targets) # Check for degenerate boxes if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: List[float] = boxes[bb_idx].tolist() torch._assert( False, "All bounding boxes should have positive height and width." f" Found invalid box {degen_bb} for target at index {target_idx}.", ) # get the features from the backbone features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) features = list(features.values()) # compute the ssd heads outputs using the features head_outputs = self.head(features) # create the set of anchors anchors = self.anchor_generator(images, features) losses = {} detections: List[Dict[str, Tensor]] = [] if self.training: matched_idxs = [] if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for anchors_per_image, targets_per_image in zip(anchors, targets): if targets_per_image["boxes"].numel() == 0: matched_idxs.append( torch.full( (anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device ) ) continue match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image) matched_idxs.append(self.proposal_matcher(match_quality_matrix)) losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs) else: detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes) detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections return self.eager_outputs(losses, detections) def postprocess_detections( self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]] ) -> List[Dict[str, Tensor]]: bbox_regression = head_outputs["bbox_regression"] pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1) num_classes = pred_scores.size(-1) device = pred_scores.device detections: List[Dict[str, Tensor]] = [] for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes): boxes = self.box_coder.decode_single(boxes, anchors) boxes = box_ops.clip_boxes_to_image(boxes, image_shape) image_boxes = [] image_scores = [] image_labels = [] for label in range(1, num_classes): score = scores[:, label] keep_idxs = score > self.score_thresh score = score[keep_idxs] box = boxes[keep_idxs] # keep only topk scoring predictions num_topk = det_utils._topk_min(score, self.topk_candidates, 0) score, idxs = score.topk(num_topk) box = box[idxs] image_boxes.append(box) image_scores.append(score) image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device)) image_boxes = torch.cat(image_boxes, dim=0) image_scores = torch.cat(image_scores, dim=0) image_labels = torch.cat(image_labels, dim=0) # non-maximum suppression keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh) keep = keep[: self.detections_per_img] detections.append( { "boxes": image_boxes[keep], "scores": image_scores[keep], "labels": image_labels[keep], } ) return detections class SSDFeatureExtractorVGG(nn.Module): def __init__(self, backbone: nn.Module, highres: bool): super().__init__() _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d)) # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper backbone[maxpool3_pos].ceil_mode = True # parameters used for L2 regularization + rescaling self.scale_weight = nn.Parameter(torch.ones(512) * 20) # Multiple Feature maps - page 4, Fig 2 of SSD paper self.features = nn.Sequential(*backbone[:maxpool4_pos]) # until conv4_3 # SSD300 case - page 4, Fig 2 of SSD paper extra = nn.ModuleList( [ nn.Sequential( nn.Conv2d(1024, 256, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2), # conv8_2 nn.ReLU(inplace=True), ), nn.Sequential( nn.Conv2d(512, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), # conv9_2 nn.ReLU(inplace=True), ), nn.Sequential( nn.Conv2d(256, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3), # conv10_2 nn.ReLU(inplace=True), ), nn.Sequential( nn.Conv2d(256, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3), # conv11_2 nn.ReLU(inplace=True), ), ] ) if highres: # Additional layers for the SSD512 case. See page 11, footernote 5. extra.append( nn.Sequential( nn.Conv2d(256, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=4), # conv12_2 nn.ReLU(inplace=True), ) ) _xavier_init(extra) fc = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False), # add modified maxpool5 nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6), # FC6 with atrous nn.ReLU(inplace=True), nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1), # FC7 nn.ReLU(inplace=True), ) _xavier_init(fc) extra.insert( 0, nn.Sequential( *backbone[maxpool4_pos:-1], # until conv5_3, skip maxpool5 fc, ), ) self.extra = extra def forward(self, x: Tensor) -> Dict[str, Tensor]: # L2 regularization + Rescaling of 1st block's feature map x = self.features(x) rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x) output = [rescaled] # Calculating Feature maps for the rest blocks for block in self.extra: x = block(x) output.append(x) return OrderedDict([(str(i), v) for i, v in enumerate(output)]) def _vgg_extractor(backbone: VGG, highres: bool, trainable_layers: int): backbone = backbone.features # Gather the indices of maxpools. These are the locations of output blocks. stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1] num_stages = len(stage_indices) # find the index of the layer from which we won't freeze torch._assert( 0 <= trainable_layers <= num_stages, f"trainable_layers should be in the range [0, {num_stages}]. Instead got {trainable_layers}", ) freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers] for b in backbone[:freeze_before]: for parameter in b.parameters(): parameter.requires_grad_(False) return SSDFeatureExtractorVGG(backbone, highres) @register_model() @handle_legacy_interface( weights=("pretrained", SSD300_VGG16_Weights.COCO_V1), weights_backbone=("pretrained_backbone", VGG16_Weights.IMAGENET1K_FEATURES), ) def ssd300_vgg16( *, weights: Optional[SSD300_VGG16_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[VGG16_Weights] = VGG16_Weights.IMAGENET1K_FEATURES, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> SSD: """The SSD300 model is based on the `SSD: Single Shot MultiBox Detector <https://arxiv.org/abs/1512.02325>`_ paper. .. betastatus:: detection module The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes, but they will be resized to a fixed size before passing it to the backbone. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each detection - scores (Tensor[N]): the scores for each detection Example: >>> model = torchvision.models.detection.ssd300_vgg16(weights=SSD300_VGG16_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.SSD300_VGG16_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.SSD300_VGG16_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr Default is True. num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights for the backbone trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 4. **kwargs: parameters passed to the ``torchvision.models.detection.SSD`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssd.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.SSD300_VGG16_Weights :members: """ weights = SSD300_VGG16_Weights.verify(weights) weights_backbone = VGG16_Weights.verify(weights_backbone) if "size" in kwargs: warnings.warn("The size of the model is already fixed; ignoring the parameter.") if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 trainable_backbone_layers = _validate_trainable_layers( weights is not None or weights_backbone is not None, trainable_backbone_layers, 5, 4 ) # Use custom backbones more appropriate for SSD backbone = vgg16(weights=weights_backbone, progress=progress) backbone = _vgg_extractor(backbone, False, trainable_backbone_layers) anchor_generator = DefaultBoxGenerator( [[2], [2, 3], [2, 3], [2, 3], [2], [2]], scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05], steps=[8, 16, 32, 64, 100, 300], ) defaults = { # Rescale the input in a way compatible to the backbone "image_mean": [0.48235, 0.45882, 0.40784], "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0], # undo the 0-1 scaling of toTensor } kwargs: Any = {**defaults, **kwargs} model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
=============================================================================================================================== SOURCE CODE FILE: ssdlite.py LINES: 1 SIZE: 13.23 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\ssdlite.py ENCODING: utf-8 ```py import warnings from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, List, Optional, Union import torch from torch import nn, Tensor from ...ops.misc import Conv2dNormActivation from ...transforms._presets import ObjectDetection from ...utils import _log_api_usage_once from .. import mobilenet from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights from . import _utils as det_utils from .anchor_utils import DefaultBoxGenerator from .backbone_utils import _validate_trainable_layers from .ssd import SSD, SSDScoringHead __all__ = [ "SSDLite320_MobileNet_V3_Large_Weights", "ssdlite320_mobilenet_v3_large", ] # Building blocks of SSDlite as described in section 6.2 of MobileNetV2 paper def _prediction_block( in_channels: int, out_channels: int, kernel_size: int, norm_layer: Callable[..., nn.Module] ) -> nn.Sequential: return nn.Sequential( # 3x3 depthwise with stride 1 and padding 1 Conv2dNormActivation( in_channels, in_channels, kernel_size=kernel_size, groups=in_channels, norm_layer=norm_layer, activation_layer=nn.ReLU6, ), # 1x1 projetion to output channels nn.Conv2d(in_channels, out_channels, 1), ) def _extra_block(in_channels: int, out_channels: int, norm_layer: Callable[..., nn.Module]) -> nn.Sequential: activation = nn.ReLU6 intermediate_channels = out_channels // 2 return nn.Sequential( # 1x1 projection to half output channels Conv2dNormActivation( in_channels, intermediate_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=activation ), # 3x3 depthwise with stride 2 and padding 1 Conv2dNormActivation( intermediate_channels, intermediate_channels, kernel_size=3, stride=2, groups=intermediate_channels, norm_layer=norm_layer, activation_layer=activation, ), # 1x1 projetion to output channels Conv2dNormActivation( intermediate_channels, out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=activation ), ) def _normal_init(conv: nn.Module): for layer in conv.modules(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, mean=0.0, std=0.03) if layer.bias is not None: torch.nn.init.constant_(layer.bias, 0.0) class SSDLiteHead(nn.Module): def __init__( self, in_channels: List[int], num_anchors: List[int], num_classes: int, norm_layer: Callable[..., nn.Module] ): super().__init__() self.classification_head = SSDLiteClassificationHead(in_channels, num_anchors, num_classes, norm_layer) self.regression_head = SSDLiteRegressionHead(in_channels, num_anchors, norm_layer) def forward(self, x: List[Tensor]) -> Dict[str, Tensor]: return { "bbox_regression": self.regression_head(x), "cls_logits": self.classification_head(x), } class SSDLiteClassificationHead(SSDScoringHead): def __init__( self, in_channels: List[int], num_anchors: List[int], num_classes: int, norm_layer: Callable[..., nn.Module] ): cls_logits = nn.ModuleList() for channels, anchors in zip(in_channels, num_anchors): cls_logits.append(_prediction_block(channels, num_classes * anchors, 3, norm_layer)) _normal_init(cls_logits) super().__init__(cls_logits, num_classes) class SSDLiteRegressionHead(SSDScoringHead): def __init__(self, in_channels: List[int], num_anchors: List[int], norm_layer: Callable[..., nn.Module]): bbox_reg = nn.ModuleList() for channels, anchors in zip(in_channels, num_anchors): bbox_reg.append(_prediction_block(channels, 4 * anchors, 3, norm_layer)) _normal_init(bbox_reg) super().__init__(bbox_reg, 4) class SSDLiteFeatureExtractorMobileNet(nn.Module): def __init__( self, backbone: nn.Module, c4_pos: int, norm_layer: Callable[..., nn.Module], width_mult: float = 1.0, min_depth: int = 16, ): super().__init__() _log_api_usage_once(self) if backbone[c4_pos].use_res_connect: raise ValueError("backbone[c4_pos].use_res_connect should be False") self.features = nn.Sequential( # As described in section 6.3 of MobileNetV3 paper nn.Sequential(*backbone[:c4_pos], backbone[c4_pos].block[0]), # from start until C4 expansion layer nn.Sequential(backbone[c4_pos].block[1:], *backbone[c4_pos + 1 :]), # from C4 depthwise until end ) get_depth = lambda d: max(min_depth, int(d * width_mult)) # noqa: E731 extra = nn.ModuleList( [ _extra_block(backbone[-1].out_channels, get_depth(512), norm_layer), _extra_block(get_depth(512), get_depth(256), norm_layer), _extra_block(get_depth(256), get_depth(256), norm_layer), _extra_block(get_depth(256), get_depth(128), norm_layer), ] ) _normal_init(extra) self.extra = extra def forward(self, x: Tensor) -> Dict[str, Tensor]: # Get feature maps from backbone and extra. Can't be refactored due to JIT limitations. output = [] for block in self.features: x = block(x) output.append(x) for block in self.extra: x = block(x) output.append(x) return OrderedDict([(str(i), v) for i, v in enumerate(output)]) def _mobilenet_extractor( backbone: Union[mobilenet.MobileNetV2, mobilenet.MobileNetV3], trainable_layers: int, norm_layer: Callable[..., nn.Module], ): backbone = backbone.features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] num_stages = len(stage_indices) # find the index of the layer from which we won't freeze if not 0 <= trainable_layers <= num_stages: raise ValueError("trainable_layers should be in the range [0, {num_stages}], instead got {trainable_layers}") freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers] for b in backbone[:freeze_before]: for parameter in b.parameters(): parameter.requires_grad_(False) return SSDLiteFeatureExtractorMobileNet(backbone, stage_indices[-2], norm_layer) class SSDLite320_MobileNet_V3_Large_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/ssdlite320_mobilenet_v3_large_coco-a79551df.pth", transforms=ObjectDetection, meta={ "num_params": 3440060, "categories": _COCO_CATEGORIES, "min_size": (1, 1), "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssdlite320-mobilenetv3-large", "_metrics": { "COCO-val2017": { "box_map": 21.3, } }, "_ops": 0.583, "_file_size": 13.418, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 @register_model() @handle_legacy_interface( weights=("pretrained", SSDLite320_MobileNet_V3_Large_Weights.COCO_V1), weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1), ) def ssdlite320_mobilenet_v3_large( *, weights: Optional[SSDLite320_MobileNet_V3_Large_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, **kwargs: Any, ) -> SSD: """SSDlite model architecture with input size 320x320 and a MobileNetV3 Large backbone, as described at `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__ and `MobileNetV2: Inverted Residuals and Linear Bottlenecks <https://arxiv.org/abs/1801.04381>`__. .. betastatus:: detection module See :func:`~torchvision.models.detection.ssd300_vgg16` for more details. Example: >>> model = torchvision.models.detection.ssdlite320_mobilenet_v3_large(weights=SSDLite320_MobileNet_V3_Large_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 320, 320), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.SSDLite320_MobileNet_V3_Large_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.SSDLite320_MobileNet_V3_Large_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background). weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 6. norm_layer (callable, optional): Module specifying the normalization layer to use. **kwargs: parameters passed to the ``torchvision.models.detection.ssd.SSD`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssdlite.py>`_ for more details about this class. .. autoclass:: torchvision.models.detection.SSDLite320_MobileNet_V3_Large_Weights :members: """ weights = SSDLite320_MobileNet_V3_Large_Weights.verify(weights) weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone) if "size" in kwargs: warnings.warn("The size of the model is already fixed; ignoring the parameter.") if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 trainable_backbone_layers = _validate_trainable_layers( weights is not None or weights_backbone is not None, trainable_backbone_layers, 6, 6 ) # Enable reduced tail if no pretrained backbone is selected. See Table 6 of MobileNetV3 paper. reduce_tail = weights_backbone is None if norm_layer is None: norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.03) backbone = mobilenet_v3_large( weights=weights_backbone, progress=progress, norm_layer=norm_layer, reduced_tail=reduce_tail, **kwargs ) if weights_backbone is None: # Change the default initialization scheme if not pretrained _normal_init(backbone) backbone = _mobilenet_extractor( backbone, trainable_backbone_layers, norm_layer, ) size = (320, 320) anchor_generator = DefaultBoxGenerator([[2, 3] for _ in range(6)], min_ratio=0.2, max_ratio=0.95) out_channels = det_utils.retrieve_out_channels(backbone, size) num_anchors = anchor_generator.num_anchors_per_location() if len(out_channels) != len(anchor_generator.aspect_ratios): raise ValueError( f"The length of the output channels from the backbone {len(out_channels)} do not match the length of the anchor generator aspect ratios {len(anchor_generator.aspect_ratios)}" ) defaults = { "score_thresh": 0.001, "nms_thresh": 0.55, "detections_per_img": 300, "topk_candidates": 300, # Rescale the input in a way compatible to the backbone: # The following mean/std rescale the data from [0, 1] to [-1, 1] "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } kwargs: Any = {**defaults, **kwargs} model = SSD( backbone, anchor_generator, size, num_classes, head=SSDLiteHead(out_channels, num_anchors, num_classes, norm_layer), **kwargs, ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
================================================================================================================================= SOURCE CODE FILE: transform.py LINES: 3 SIZE: 12.21 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\detection\transform.py ENCODING: utf-8 ```py import math from typing import Any, Dict, List, Optional, Tuple import torch import torchvision from torch import nn, Tensor from .image_list import ImageList from .roi_heads import paste_masks_in_image @torch.jit.unused def _get_shape_onnx(image: Tensor) -> Tensor: from torch.onnx import operators return operators.shape_as_tensor(image)[-2:] @torch.jit.unused def _fake_cast_onnx(v: Tensor) -> float: # ONNX requires a tensor but here we fake its type for JIT. return v def _resize_image_and_masks( image: Tensor, self_min_size: int, self_max_size: int, target: Optional[Dict[str, Tensor]] = None, fixed_size: Optional[Tuple[int, int]] = None, ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: if torchvision._is_tracing(): im_shape = _get_shape_onnx(image) elif torch.jit.is_scripting(): im_shape = torch.tensor(image.shape[-2:]) else: im_shape = image.shape[-2:] size: Optional[List[int]] = None scale_factor: Optional[float] = None recompute_scale_factor: Optional[bool] = None if fixed_size is not None: size = [fixed_size[1], fixed_size[0]] else: if torch.jit.is_scripting() or torchvision._is_tracing(): min_size = torch.min(im_shape).to(dtype=torch.float32) max_size = torch.max(im_shape).to(dtype=torch.float32) self_min_size_f = float(self_min_size) self_max_size_f = float(self_max_size) scale = torch.min(self_min_size_f / min_size, self_max_size_f / max_size) if torchvision._is_tracing(): scale_factor = _fake_cast_onnx(scale) else: scale_factor = scale.item() else: # Do it the normal way min_size = min(im_shape) max_size = max(im_shape) scale_factor = min(self_min_size / min_size, self_max_size / max_size) recompute_scale_factor = True image = torch.nn.functional.interpolate( image[None], size=size, scale_factor=scale_factor, mode="bilinear", recompute_scale_factor=recompute_scale_factor, align_corners=False, )[0] if target is None: return image, target if "masks" in target: mask = target["masks"] mask = torch.nn.functional.interpolate( mask[:, None].float(), size=size, scale_factor=scale_factor, recompute_scale_factor=recompute_scale_factor )[:, 0].byte() target["masks"] = mask return image, target class GeneralizedRCNNTransform(nn.Module): """ Performs input / target transformation before feeding the data to a GeneralizedRCNN model. The transformations it performs are: - input normalization (mean subtraction and std division) - input / target resizing to match min_size / max_size It returns a ImageList for the inputs, and a List[Dict[Tensor]] for the targets """ def __init__( self, min_size: int, max_size: int, image_mean: List[float], image_std: List[float], size_divisible: int = 32, fixed_size: Optional[Tuple[int, int]] = None, **kwargs: Any, ): super().__init__() if not isinstance(min_size, (list, tuple)): min_size = (min_size,) self.min_size = min_size self.max_size = max_size self.image_mean = image_mean self.image_std = image_std self.size_divisible = size_divisible self.fixed_size = fixed_size self._skip_resize = kwargs.pop("_skip_resize", False) def forward( self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None ) -> Tuple[ImageList, Optional[List[Dict[str, Tensor]]]]: images = [img for img in images] if targets is not None: # make a copy of targets to avoid modifying it in-place # once torchscript supports dict comprehension # this can be simplified as follows # targets = [{k: v for k,v in t.items()} for t in targets] targets_copy: List[Dict[str, Tensor]] = [] for t in targets: data: Dict[str, Tensor] = {} for k, v in t.items(): data[k] = v targets_copy.append(data) targets = targets_copy for i in range(len(images)): image = images[i] target_index = targets[i] if targets is not None else None if image.dim() != 3: raise ValueError(f"images is expected to be a list of 3d tensors of shape [C, H, W], got {image.shape}") image = self.normalize(image) image, target_index = self.resize(image, target_index) images[i] = image if targets is not None and target_index is not None: targets[i] = target_index image_sizes = [img.shape[-2:] for img in images] images = self.batch_images(images, size_divisible=self.size_divisible) image_sizes_list: List[Tuple[int, int]] = [] for image_size in image_sizes: torch._assert( len(image_size) == 2, f"Input tensors expected to have in the last two elements H and W, instead got {image_size}", ) image_sizes_list.append((image_size[0], image_size[1])) image_list = ImageList(images, image_sizes_list) return image_list, targets def normalize(self, image: Tensor) -> Tensor: if not image.is_floating_point(): raise TypeError( f"Expected input images to be of floating type (in range [0, 1]), " f"but found type {image.dtype} instead" ) dtype, device = image.dtype, image.device mean = torch.as_tensor(self.image_mean, dtype=dtype, device=device) std = torch.as_tensor(self.image_std, dtype=dtype, device=device) return (image - mean[:, None, None]) / std[:, None, None] def torch_choice(self, k: List[int]) -> int: """ Implements `random.choice` via torch ops, so it can be compiled with TorchScript and we use PyTorch's RNG (not native RNG) """ index = int(torch.empty(1).uniform_(0.0, float(len(k))).item()) return k[index] def resize( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None, ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: h, w = image.shape[-2:] if self.training: if self._skip_resize: return image, target size = self.torch_choice(self.min_size) else: size = self.min_size[-1] image, target = _resize_image_and_masks(image, size, self.max_size, target, self.fixed_size) if target is None: return image, target bbox = target["boxes"] bbox = resize_boxes(bbox, (h, w), image.shape[-2:]) target["boxes"] = bbox if "keypoints" in target: keypoints = target["keypoints"] keypoints = resize_keypoints(keypoints, (h, w), image.shape[-2:]) target["keypoints"] = keypoints return image, target # _onnx_batch_images() is an implementation of # batch_images() that is supported by ONNX tracing. @torch.jit.unused def _onnx_batch_images(self, images: List[Tensor], size_divisible: int = 32) -> Tensor: max_size = [] for i in range(images[0].dim()): max_size_i = torch.max(torch.stack([img.shape[i] for img in images]).to(torch.float32)).to(torch.int64) max_size.append(max_size_i) stride = size_divisible max_size[1] = (torch.ceil((max_size[1].to(torch.float32)) / stride) * stride).to(torch.int64) max_size[2] = (torch.ceil((max_size[2].to(torch.float32)) / stride) * stride).to(torch.int64) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # which is not yet supported in onnx padded_imgs = [] for img in images: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) return torch.stack(padded_imgs) def max_by_axis(self, the_list: List[List[int]]) -> List[int]: maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes def batch_images(self, images: List[Tensor], size_divisible: int = 32) -> Tensor: if torchvision._is_tracing(): # batch_images() does not export well to ONNX # call _onnx_batch_images() instead return self._onnx_batch_images(images, size_divisible) max_size = self.max_by_axis([list(img.shape) for img in images]) stride = float(size_divisible) max_size = list(max_size) max_size[1] = int(math.ceil(float(max_size[1]) / stride) * stride) max_size[2] = int(math.ceil(float(max_size[2]) / stride) * stride) batch_shape = [len(images)] + max_size batched_imgs = images[0].new_full(batch_shape, 0) for i in range(batched_imgs.shape[0]): img = images[i] batched_imgs[i, : img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) return batched_imgs def postprocess( self, result: List[Dict[str, Tensor]], image_shapes: List[Tuple[int, int]], original_image_sizes: List[Tuple[int, int]], ) -> List[Dict[str, Tensor]]: if self.training: return result for i, (pred, im_s, o_im_s) in enumerate(zip(result, image_shapes, original_image_sizes)): boxes = pred["boxes"] boxes = resize_boxes(boxes, im_s, o_im_s) result[i]["boxes"] = boxes if "masks" in pred: masks = pred["masks"] masks = paste_masks_in_image(masks, boxes, o_im_s) result[i]["masks"] = masks if "keypoints" in pred: keypoints = pred["keypoints"] keypoints = resize_keypoints(keypoints, im_s, o_im_s) result[i]["keypoints"] = keypoints return result def __repr__(self) -> str: format_string = f"{self.__class__.__name__}(" _indent = "\n " format_string += f"{_indent}Normalize(mean={self.image_mean}, std={self.image_std})" format_string += f"{_indent}Resize(min_size={self.min_size}, max_size={self.max_size}, mode='bilinear')" format_string += "\n)" return format_string def resize_keypoints(keypoints: Tensor, original_size: List[int], new_size: List[int]) -> Tensor: ratios = [ torch.tensor(s, dtype=torch.float32, device=keypoints.device) / torch.tensor(s_orig, dtype=torch.float32, device=keypoints.device) for s, s_orig in zip(new_size, original_size) ] ratio_h, ratio_w = ratios resized_data = keypoints.clone() if torch._C._get_tracing_state(): resized_data_0 = resized_data[:, :, 0] * ratio_w resized_data_1 = resized_data[:, :, 1] * ratio_h resized_data = torch.stack((resized_data_0, resized_data_1, resized_data[:, :, 2]), dim=2) else: resized_data[..., 0] *= ratio_w resized_data[..., 1] *= ratio_h return resized_data def resize_boxes(boxes: Tensor, original_size: List[int], new_size: List[int]) -> Tensor: ratios = [ torch.tensor(s, dtype=torch.float32, device=boxes.device) / torch.tensor(s_orig, dtype=torch.float32, device=boxes.device) for s, s_orig in zip(new_size, original_size) ] ratio_height, ratio_width = ratios xmin, ymin, xmax, ymax = boxes.unbind(1) xmin = xmin * ratio_width xmax = xmax * ratio_width ymin = ymin * ratio_height ymax = ymax * ratio_height return torch.stack((xmin, ymin, xmax, ymax), dim=1) ```
========================================================================================================================== SOURCE CODE FILE: efficientnet.py LINES: 1 SIZE: 43.18 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\efficientnet.py ENCODING: utf-8 ```py import copy import math from dataclasses import dataclass from functools import partial from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import torch from torch import nn, Tensor from torchvision.ops import StochasticDepth from ..ops.misc import Conv2dNormActivation, SqueezeExcitation from ..transforms._presets import ImageClassification, InterpolationMode from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface __all__ = [ "EfficientNet", "EfficientNet_B0_Weights", "EfficientNet_B1_Weights", "EfficientNet_B2_Weights", "EfficientNet_B3_Weights", "EfficientNet_B4_Weights", "EfficientNet_B5_Weights", "EfficientNet_B6_Weights", "EfficientNet_B7_Weights", "EfficientNet_V2_S_Weights", "EfficientNet_V2_M_Weights", "EfficientNet_V2_L_Weights", "efficientnet_b0", "efficientnet_b1", "efficientnet_b2", "efficientnet_b3", "efficientnet_b4", "efficientnet_b5", "efficientnet_b6", "efficientnet_b7", "efficientnet_v2_s", "efficientnet_v2_m", "efficientnet_v2_l", ] @dataclass class _MBConvConfig: expand_ratio: float kernel: int stride: int input_channels: int out_channels: int num_layers: int block: Callable[..., nn.Module] @staticmethod def adjust_channels(channels: int, width_mult: float, min_value: Optional[int] = None) -> int: return _make_divisible(channels * width_mult, 8, min_value) class MBConvConfig(_MBConvConfig): # Stores information listed at Table 1 of the EfficientNet paper & Table 4 of the EfficientNetV2 paper def __init__( self, expand_ratio: float, kernel: int, stride: int, input_channels: int, out_channels: int, num_layers: int, width_mult: float = 1.0, depth_mult: float = 1.0, block: Optional[Callable[..., nn.Module]] = None, ) -> None: input_channels = self.adjust_channels(input_channels, width_mult) out_channels = self.adjust_channels(out_channels, width_mult) num_layers = self.adjust_depth(num_layers, depth_mult) if block is None: block = MBConv super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block) @staticmethod def adjust_depth(num_layers: int, depth_mult: float): return int(math.ceil(num_layers * depth_mult)) class FusedMBConvConfig(_MBConvConfig): # Stores information listed at Table 4 of the EfficientNetV2 paper def __init__( self, expand_ratio: float, kernel: int, stride: int, input_channels: int, out_channels: int, num_layers: int, block: Optional[Callable[..., nn.Module]] = None, ) -> None: if block is None: block = FusedMBConv super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block) class MBConv(nn.Module): def __init__( self, cnf: MBConvConfig, stochastic_depth_prob: float, norm_layer: Callable[..., nn.Module], se_layer: Callable[..., nn.Module] = SqueezeExcitation, ) -> None: super().__init__() if not (1 <= cnf.stride <= 2): raise ValueError("illegal stride value") self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels layers: List[nn.Module] = [] activation_layer = nn.SiLU # expand expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio) if expanded_channels != cnf.input_channels: layers.append( Conv2dNormActivation( cnf.input_channels, expanded_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=activation_layer, ) ) # depthwise layers.append( Conv2dNormActivation( expanded_channels, expanded_channels, kernel_size=cnf.kernel, stride=cnf.stride, groups=expanded_channels, norm_layer=norm_layer, activation_layer=activation_layer, ) ) # squeeze and excitation squeeze_channels = max(1, cnf.input_channels // 4) layers.append(se_layer(expanded_channels, squeeze_channels, activation=partial(nn.SiLU, inplace=True))) # project layers.append( Conv2dNormActivation( expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None ) ) self.block = nn.Sequential(*layers) self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row") self.out_channels = cnf.out_channels def forward(self, input: Tensor) -> Tensor: result = self.block(input) if self.use_res_connect: result = self.stochastic_depth(result) result += input return result class FusedMBConv(nn.Module): def __init__( self, cnf: FusedMBConvConfig, stochastic_depth_prob: float, norm_layer: Callable[..., nn.Module], ) -> None: super().__init__() if not (1 <= cnf.stride <= 2): raise ValueError("illegal stride value") self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels layers: List[nn.Module] = [] activation_layer = nn.SiLU expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio) if expanded_channels != cnf.input_channels: # fused expand layers.append( Conv2dNormActivation( cnf.input_channels, expanded_channels, kernel_size=cnf.kernel, stride=cnf.stride, norm_layer=norm_layer, activation_layer=activation_layer, ) ) # project layers.append( Conv2dNormActivation( expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None ) ) else: layers.append( Conv2dNormActivation( cnf.input_channels, cnf.out_channels, kernel_size=cnf.kernel, stride=cnf.stride, norm_layer=norm_layer, activation_layer=activation_layer, ) ) self.block = nn.Sequential(*layers) self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row") self.out_channels = cnf.out_channels def forward(self, input: Tensor) -> Tensor: result = self.block(input) if self.use_res_connect: result = self.stochastic_depth(result) result += input return result class EfficientNet(nn.Module): def __init__( self, inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]], dropout: float, stochastic_depth_prob: float = 0.2, num_classes: int = 1000, norm_layer: Optional[Callable[..., nn.Module]] = None, last_channel: Optional[int] = None, ) -> None: """ EfficientNet V1 and V2 main class Args: inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure dropout (float): The droupout probability stochastic_depth_prob (float): The stochastic depth probability num_classes (int): Number of classes norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use last_channel (int): The number of channels on the penultimate layer """ super().__init__() _log_api_usage_once(self) if not inverted_residual_setting: raise ValueError("The inverted_residual_setting should not be empty") elif not ( isinstance(inverted_residual_setting, Sequence) and all([isinstance(s, _MBConvConfig) for s in inverted_residual_setting]) ): raise TypeError("The inverted_residual_setting should be List[MBConvConfig]") if norm_layer is None: norm_layer = nn.BatchNorm2d layers: List[nn.Module] = [] # building first layer firstconv_output_channels = inverted_residual_setting[0].input_channels layers.append( Conv2dNormActivation( 3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.SiLU ) ) # building inverted residual blocks total_stage_blocks = sum(cnf.num_layers for cnf in inverted_residual_setting) stage_block_id = 0 for cnf in inverted_residual_setting: stage: List[nn.Module] = [] for _ in range(cnf.num_layers): # copy to avoid modifications. shallow copy is enough block_cnf = copy.copy(cnf) # overwrite info if not the first conv in the stage if stage: block_cnf.input_channels = block_cnf.out_channels block_cnf.stride = 1 # adjust stochastic depth probability based on the depth of the stage block sd_prob = stochastic_depth_prob * float(stage_block_id) / total_stage_blocks stage.append(block_cnf.block(block_cnf, sd_prob, norm_layer)) stage_block_id += 1 layers.append(nn.Sequential(*stage)) # building last several layers lastconv_input_channels = inverted_residual_setting[-1].out_channels lastconv_output_channels = last_channel if last_channel is not None else 4 * lastconv_input_channels layers.append( Conv2dNormActivation( lastconv_input_channels, lastconv_output_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.SiLU, ) ) self.features = nn.Sequential(*layers) self.avgpool = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Sequential( nn.Dropout(p=dropout, inplace=True), nn.Linear(lastconv_output_channels, num_classes), ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out") if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): init_range = 1.0 / math.sqrt(m.out_features) nn.init.uniform_(m.weight, -init_range, init_range) nn.init.zeros_(m.bias) def _forward_impl(self, x: Tensor) -> Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _efficientnet( inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]], dropout: float, last_channel: Optional[int], weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> EfficientNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = EfficientNet(inverted_residual_setting, dropout, last_channel=last_channel, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model def _efficientnet_conf( arch: str, **kwargs: Any, ) -> Tuple[Sequence[Union[MBConvConfig, FusedMBConvConfig]], Optional[int]]: inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]] if arch.startswith("efficientnet_b"): bneck_conf = partial(MBConvConfig, width_mult=kwargs.pop("width_mult"), depth_mult=kwargs.pop("depth_mult")) inverted_residual_setting = [ bneck_conf(1, 3, 1, 32, 16, 1), bneck_conf(6, 3, 2, 16, 24, 2), bneck_conf(6, 5, 2, 24, 40, 2), bneck_conf(6, 3, 2, 40, 80, 3), bneck_conf(6, 5, 1, 80, 112, 3), bneck_conf(6, 5, 2, 112, 192, 4), bneck_conf(6, 3, 1, 192, 320, 1), ] last_channel = None elif arch.startswith("efficientnet_v2_s"): inverted_residual_setting = [ FusedMBConvConfig(1, 3, 1, 24, 24, 2), FusedMBConvConfig(4, 3, 2, 24, 48, 4), FusedMBConvConfig(4, 3, 2, 48, 64, 4), MBConvConfig(4, 3, 2, 64, 128, 6), MBConvConfig(6, 3, 1, 128, 160, 9), MBConvConfig(6, 3, 2, 160, 256, 15), ] last_channel = 1280 elif arch.startswith("efficientnet_v2_m"): inverted_residual_setting = [ FusedMBConvConfig(1, 3, 1, 24, 24, 3), FusedMBConvConfig(4, 3, 2, 24, 48, 5), FusedMBConvConfig(4, 3, 2, 48, 80, 5), MBConvConfig(4, 3, 2, 80, 160, 7), MBConvConfig(6, 3, 1, 160, 176, 14), MBConvConfig(6, 3, 2, 176, 304, 18), MBConvConfig(6, 3, 1, 304, 512, 5), ] last_channel = 1280 elif arch.startswith("efficientnet_v2_l"): inverted_residual_setting = [ FusedMBConvConfig(1, 3, 1, 32, 32, 4), FusedMBConvConfig(4, 3, 2, 32, 64, 7), FusedMBConvConfig(4, 3, 2, 64, 96, 7), MBConvConfig(4, 3, 2, 96, 192, 10), MBConvConfig(6, 3, 1, 192, 224, 19), MBConvConfig(6, 3, 2, 224, 384, 25), MBConvConfig(6, 3, 1, 384, 640, 7), ] last_channel = 1280 else: raise ValueError(f"Unsupported model type {arch}") return inverted_residual_setting, last_channel _COMMON_META: Dict[str, Any] = { "categories": _IMAGENET_CATEGORIES, } _COMMON_META_V1 = { **_COMMON_META, "min_size": (1, 1), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v1", } _COMMON_META_V2 = { **_COMMON_META, "min_size": (33, 33), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v2", } class EfficientNet_B0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/rwightman/pytorch-image-models/ url="https://download.pytorch.org/models/efficientnet_b0_rwightman-7f5810bc.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=256, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 5288548, "_metrics": { "ImageNet-1K": { "acc@1": 77.692, "acc@5": 93.532, } }, "_ops": 0.386, "_file_size": 20.451, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_B1_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/rwightman/pytorch-image-models/ url="https://download.pytorch.org/models/efficientnet_b1_rwightman-bac287d4.pth", transforms=partial( ImageClassification, crop_size=240, resize_size=256, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 7794184, "_metrics": { "ImageNet-1K": { "acc@1": 78.642, "acc@5": 94.186, } }, "_ops": 0.687, "_file_size": 30.134, "_docs": """These weights are ported from the original paper.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/efficientnet_b1-c27df63c.pth", transforms=partial( ImageClassification, crop_size=240, resize_size=255, interpolation=InterpolationMode.BILINEAR ), meta={ **_COMMON_META_V1, "num_params": 7794184, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-lr-wd-crop-tuning", "_metrics": { "ImageNet-1K": { "acc@1": 79.838, "acc@5": 94.934, } }, "_ops": 0.687, "_file_size": 30.136, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class EfficientNet_B2_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/rwightman/pytorch-image-models/ url="https://download.pytorch.org/models/efficientnet_b2_rwightman-c35c1473.pth", transforms=partial( ImageClassification, crop_size=288, resize_size=288, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 9109994, "_metrics": { "ImageNet-1K": { "acc@1": 80.608, "acc@5": 95.310, } }, "_ops": 1.088, "_file_size": 35.174, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_B3_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/rwightman/pytorch-image-models/ url="https://download.pytorch.org/models/efficientnet_b3_rwightman-b3899882.pth", transforms=partial( ImageClassification, crop_size=300, resize_size=320, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 12233232, "_metrics": { "ImageNet-1K": { "acc@1": 82.008, "acc@5": 96.054, } }, "_ops": 1.827, "_file_size": 47.184, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_B4_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/rwightman/pytorch-image-models/ url="https://download.pytorch.org/models/efficientnet_b4_rwightman-23ab8bcd.pth", transforms=partial( ImageClassification, crop_size=380, resize_size=384, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 19341616, "_metrics": { "ImageNet-1K": { "acc@1": 83.384, "acc@5": 96.594, } }, "_ops": 4.394, "_file_size": 74.489, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_B5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/ url="https://download.pytorch.org/models/efficientnet_b5_lukemelas-1a07897c.pth", transforms=partial( ImageClassification, crop_size=456, resize_size=456, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 30389784, "_metrics": { "ImageNet-1K": { "acc@1": 83.444, "acc@5": 96.628, } }, "_ops": 10.266, "_file_size": 116.864, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_B6_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/ url="https://download.pytorch.org/models/efficientnet_b6_lukemelas-24a108a5.pth", transforms=partial( ImageClassification, crop_size=528, resize_size=528, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 43040704, "_metrics": { "ImageNet-1K": { "acc@1": 84.008, "acc@5": 96.916, } }, "_ops": 19.068, "_file_size": 165.362, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_B7_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/ url="https://download.pytorch.org/models/efficientnet_b7_lukemelas-c5b4e57e.pth", transforms=partial( ImageClassification, crop_size=600, resize_size=600, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META_V1, "num_params": 66347960, "_metrics": { "ImageNet-1K": { "acc@1": 84.122, "acc@5": 96.908, } }, "_ops": 37.746, "_file_size": 254.675, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_V2_S_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/efficientnet_v2_s-dd5fe13b.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BILINEAR, ), meta={ **_COMMON_META_V2, "num_params": 21458488, "_metrics": { "ImageNet-1K": { "acc@1": 84.228, "acc@5": 96.878, } }, "_ops": 8.366, "_file_size": 82.704, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_V2_M_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth", transforms=partial( ImageClassification, crop_size=480, resize_size=480, interpolation=InterpolationMode.BILINEAR, ), meta={ **_COMMON_META_V2, "num_params": 54139356, "_metrics": { "ImageNet-1K": { "acc@1": 85.112, "acc@5": 97.156, } }, "_ops": 24.582, "_file_size": 208.01, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 class EfficientNet_V2_L_Weights(WeightsEnum): # Weights ported from https://github.com/google/automl/tree/master/efficientnetv2 IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/efficientnet_v2_l-59c71312.pth", transforms=partial( ImageClassification, crop_size=480, resize_size=480, interpolation=InterpolationMode.BICUBIC, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), meta={ **_COMMON_META_V2, "num_params": 118515272, "_metrics": { "ImageNet-1K": { "acc@1": 85.808, "acc@5": 97.788, } }, "_ops": 56.08, "_file_size": 454.573, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B0_Weights.IMAGENET1K_V1)) def efficientnet_b0( *, weights: Optional[EfficientNet_B0_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B0 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B0_Weights :members: """ weights = EfficientNet_B0_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b0", width_mult=1.0, depth_mult=1.0) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.2), last_channel, weights, progress, **kwargs ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B1_Weights.IMAGENET1K_V1)) def efficientnet_b1( *, weights: Optional[EfficientNet_B1_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B1 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B1_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B1_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B1_Weights :members: """ weights = EfficientNet_B1_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b1", width_mult=1.0, depth_mult=1.1) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.2), last_channel, weights, progress, **kwargs ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B2_Weights.IMAGENET1K_V1)) def efficientnet_b2( *, weights: Optional[EfficientNet_B2_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B2 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B2_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B2_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B2_Weights :members: """ weights = EfficientNet_B2_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b2", width_mult=1.1, depth_mult=1.2) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.3), last_channel, weights, progress, **kwargs ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B3_Weights.IMAGENET1K_V1)) def efficientnet_b3( *, weights: Optional[EfficientNet_B3_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B3 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B3_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B3_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B3_Weights :members: """ weights = EfficientNet_B3_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b3", width_mult=1.2, depth_mult=1.4) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.3), last_channel, weights, progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B4_Weights.IMAGENET1K_V1)) def efficientnet_b4( *, weights: Optional[EfficientNet_B4_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B4 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B4_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B4_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B4_Weights :members: """ weights = EfficientNet_B4_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b4", width_mult=1.4, depth_mult=1.8) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.4), last_channel, weights, progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B5_Weights.IMAGENET1K_V1)) def efficientnet_b5( *, weights: Optional[EfficientNet_B5_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B5 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B5_Weights :members: """ weights = EfficientNet_B5_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b5", width_mult=1.6, depth_mult=2.2) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.4), last_channel, weights, progress, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01), **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B6_Weights.IMAGENET1K_V1)) def efficientnet_b6( *, weights: Optional[EfficientNet_B6_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B6 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B6_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B6_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B6_Weights :members: """ weights = EfficientNet_B6_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b6", width_mult=1.8, depth_mult=2.6) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.5), last_channel, weights, progress, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01), **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_B7_Weights.IMAGENET1K_V1)) def efficientnet_b7( *, weights: Optional[EfficientNet_B7_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """EfficientNet B7 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper. Args: weights (:class:`~torchvision.models.EfficientNet_B7_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_B7_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_B7_Weights :members: """ weights = EfficientNet_B7_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b7", width_mult=2.0, depth_mult=3.1) return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.5), last_channel, weights, progress, norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01), **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_V2_S_Weights.IMAGENET1K_V1)) def efficientnet_v2_s( *, weights: Optional[EfficientNet_V2_S_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """ Constructs an EfficientNetV2-S architecture from `EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_. Args: weights (:class:`~torchvision.models.EfficientNet_V2_S_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_V2_S_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_V2_S_Weights :members: """ weights = EfficientNet_V2_S_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_s") return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.2), last_channel, weights, progress, norm_layer=partial(nn.BatchNorm2d, eps=1e-03), **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_V2_M_Weights.IMAGENET1K_V1)) def efficientnet_v2_m( *, weights: Optional[EfficientNet_V2_M_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """ Constructs an EfficientNetV2-M architecture from `EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_. Args: weights (:class:`~torchvision.models.EfficientNet_V2_M_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_V2_M_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_V2_M_Weights :members: """ weights = EfficientNet_V2_M_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_m") return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.3), last_channel, weights, progress, norm_layer=partial(nn.BatchNorm2d, eps=1e-03), **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", EfficientNet_V2_L_Weights.IMAGENET1K_V1)) def efficientnet_v2_l( *, weights: Optional[EfficientNet_V2_L_Weights] = None, progress: bool = True, **kwargs: Any ) -> EfficientNet: """ Constructs an EfficientNetV2-L architecture from `EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_. Args: weights (:class:`~torchvision.models.EfficientNet_V2_L_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.EfficientNet_V2_L_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.EfficientNet_V2_L_Weights :members: """ weights = EfficientNet_V2_L_Weights.verify(weights) inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_l") return _efficientnet( inverted_residual_setting, kwargs.pop("dropout", 0.4), last_channel, weights, progress, norm_layer=partial(nn.BatchNorm2d, eps=1e-03), **kwargs, ) ```
================================================================================================================================ SOURCE CODE FILE: feature_extraction.py LINES: 1 SIZE: 27.87 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\feature_extraction.py ENCODING: utf-8 ```py import copy import inspect import math import re import warnings from collections import OrderedDict from copy import deepcopy from itertools import chain from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch import torchvision from torch import fx, nn from torch.fx.graph_module import _CodeOnlyModule, _copy_attr, _USER_PRESERVED_ATTRIBUTES_KEY __all__ = ["create_feature_extractor", "get_graph_node_names"] class LeafModuleAwareTracer(fx.Tracer): """ An fx.Tracer that allows the user to specify a set of leaf modules, i.e. modules that are not to be traced through. The resulting graph ends up having single nodes referencing calls to the leaf modules' forward methods. """ def __init__(self, *args, **kwargs): self.leaf_modules = {} if "leaf_modules" in kwargs: leaf_modules = kwargs.pop("leaf_modules") self.leaf_modules = leaf_modules super().__init__(*args, **kwargs) def is_leaf_module(self, m: nn.Module, module_qualname: str) -> bool: if isinstance(m, tuple(self.leaf_modules)): return True return super().is_leaf_module(m, module_qualname) class NodePathTracer(LeafModuleAwareTracer): """ NodePathTracer is an FX tracer that, for each operation, also records the name of the Node from which the operation originated. A node name here is a `.` separated path walking the hierarchy from top level module down to leaf operation or leaf module. The name of the top level module is not included as part of the node name. For example, if we trace a module whose forward method applies a ReLU module, the name for that node will simply be 'relu'. Some notes on the specifics: - Nodes are recorded to `self.node_to_qualname` which is a dictionary mapping a given Node object to its node name. - Nodes are recorded in the order which they are executed during tracing. - When a duplicate node name is encountered, a suffix of the form _{int} is added. The counter starts from 1. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Track the qualified name of the Node being traced self.current_module_qualname = "" # A map from FX Node to the qualified name\# # NOTE: This is loosely like the "qualified name" mentioned in the # torch.fx docs https://pytorch.org/docs/stable/fx.html but adapted # for the purposes of the torchvision feature extractor self.node_to_qualname = OrderedDict() def call_module(self, m: torch.nn.Module, forward: Callable, args, kwargs): """ Override of `fx.Tracer.call_module` This override: 1) Stores away the qualified name of the caller for restoration later 2) Adds the qualified name of the caller to `current_module_qualname` for retrieval by `create_proxy` 3) Once a leaf module is reached, calls `create_proxy` 4) Restores the caller's qualified name into current_module_qualname """ old_qualname = self.current_module_qualname try: module_qualname = self.path_of_module(m) self.current_module_qualname = module_qualname if not self.is_leaf_module(m, module_qualname): out = forward(*args, **kwargs) return out return self.create_proxy("call_module", module_qualname, args, kwargs) finally: self.current_module_qualname = old_qualname def create_proxy( self, kind: str, target: fx.node.Target, args, kwargs, name=None, type_expr=None, *_ ) -> fx.proxy.Proxy: """ Override of `Tracer.create_proxy`. This override intercepts the recording of every operation and stores away the current traced module's qualified name in `node_to_qualname` """ proxy = super().create_proxy(kind, target, args, kwargs, name, type_expr) self.node_to_qualname[proxy.node] = self._get_node_qualname(self.current_module_qualname, proxy.node) return proxy def _get_node_qualname(self, module_qualname: str, node: fx.node.Node) -> str: node_qualname = module_qualname if node.op != "call_module": # In this case module_qualname from torch.fx doesn't go all the # way to the leaf function/op, so we need to append it if len(node_qualname) > 0: # Only append '.' if we are deeper than the top level module node_qualname += "." node_qualname += str(node) # Now we need to add an _{index} postfix on any repeated node names # For modules we do this from scratch # But for anything else, torch.fx already has a globally scoped # _{index} postfix. But we want it locally (relative to direct parent) # scoped. So first we need to undo the torch.fx postfix if re.match(r".+_[0-9]+$", node_qualname) is not None: node_qualname = node_qualname.rsplit("_", 1)[0] # ... and now we add on our own postfix for existing_qualname in reversed(self.node_to_qualname.values()): # Check to see if existing_qualname is of the form # {node_qualname} or {node_qualname}_{int} if re.match(rf"{node_qualname}(_[0-9]+)?$", existing_qualname) is not None: postfix = existing_qualname.replace(node_qualname, "") if len(postfix): # existing_qualname is of the form {node_qualname}_{int} next_index = int(postfix[1:]) + 1 else: # existing_qualname is of the form {node_qualname} next_index = 1 node_qualname += f"_{next_index}" break return node_qualname def _is_subseq(x, y): """Check if y is a subsequence of x https://stackoverflow.com/a/24017747/4391249 """ iter_x = iter(x) return all(any(x_item == y_item for x_item in iter_x) for y_item in y) def _warn_graph_differences(train_tracer: NodePathTracer, eval_tracer: NodePathTracer): """ Utility function for warning the user if there are differences between the train graph nodes and the eval graph nodes. """ train_nodes = list(train_tracer.node_to_qualname.values()) eval_nodes = list(eval_tracer.node_to_qualname.values()) if len(train_nodes) == len(eval_nodes) and all(t == e for t, e in zip(train_nodes, eval_nodes)): return suggestion_msg = ( "When choosing nodes for feature extraction, you may need to specify " "output nodes for train and eval mode separately." ) if _is_subseq(train_nodes, eval_nodes): msg = ( "NOTE: The nodes obtained by tracing the model in eval mode " "are a subsequence of those obtained in train mode. " ) elif _is_subseq(eval_nodes, train_nodes): msg = ( "NOTE: The nodes obtained by tracing the model in train mode " "are a subsequence of those obtained in eval mode. " ) else: msg = "The nodes obtained by tracing the model in train mode are different to those obtained in eval mode. " warnings.warn(msg + suggestion_msg) def _get_leaf_modules_for_ops() -> List[type]: members = inspect.getmembers(torchvision.ops) result = [] for _, obj in members: if inspect.isclass(obj) and issubclass(obj, torch.nn.Module): result.append(obj) return result def _set_default_tracer_kwargs(original_tr_kwargs: Optional[Dict[str, Any]]) -> Dict[str, Any]: default_autowrap_modules = (math, torchvision.ops) default_leaf_modules = _get_leaf_modules_for_ops() result_tracer_kwargs = {} if original_tr_kwargs is None else original_tr_kwargs result_tracer_kwargs["autowrap_modules"] = ( tuple(set(result_tracer_kwargs["autowrap_modules"] + default_autowrap_modules)) if "autowrap_modules" in result_tracer_kwargs else default_autowrap_modules ) result_tracer_kwargs["leaf_modules"] = ( list(set(result_tracer_kwargs["leaf_modules"] + default_leaf_modules)) if "leaf_modules" in result_tracer_kwargs else default_leaf_modules ) return result_tracer_kwargs def get_graph_node_names( model: nn.Module, tracer_kwargs: Optional[Dict[str, Any]] = None, suppress_diff_warning: bool = False, concrete_args: Optional[Dict[str, Any]] = None, ) -> Tuple[List[str], List[str]]: """ Dev utility to return node names in order of execution. See note on node names under :func:`create_feature_extractor`. Useful for seeing which node names are available for feature extraction. There are two reasons that node names can't easily be read directly from the code for a model: 1. Not all submodules are traced through. Modules from ``torch.nn`` all fall within this category. 2. Nodes representing the repeated application of the same operation or leaf module get a ``_{counter}`` postfix. The model is traced twice: once in train mode, and once in eval mode. Both sets of node names are returned. For more details on the node naming conventions used here, please see the :ref:`relevant subheading <about-node-names>` in the `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_. Args: model (nn.Module): model for which we'd like to print node names tracer_kwargs (dict, optional): a dictionary of keyword arguments for ``NodePathTracer`` (they are eventually passed onto `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_). By default, it will be set to wrap and make leaf nodes all torchvision ops: {"autowrap_modules": (math, torchvision.ops,),"leaf_modules": _get_leaf_modules_for_ops(),} WARNING: In case the user provides tracer_kwargs, above default arguments will be appended to the user provided dictionary. suppress_diff_warning (bool, optional): whether to suppress a warning when there are discrepancies between the train and eval version of the graph. Defaults to False. concrete_args (Optional[Dict[str, any]]): Concrete arguments that should not be treated as Proxies. According to the `Pytorch docs <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer.trace>`_, this parameter's API may not be guaranteed. Returns: tuple(list, list): a list of node names from tracing the model in train mode, and another from tracing the model in eval mode. Examples:: >>> model = torchvision.models.resnet18() >>> train_nodes, eval_nodes = get_graph_node_names(model) """ tracer_kwargs = _set_default_tracer_kwargs(tracer_kwargs) is_training = model.training train_tracer = NodePathTracer(**tracer_kwargs) train_tracer.trace(model.train(), concrete_args=concrete_args) eval_tracer = NodePathTracer(**tracer_kwargs) eval_tracer.trace(model.eval(), concrete_args=concrete_args) train_nodes = list(train_tracer.node_to_qualname.values()) eval_nodes = list(eval_tracer.node_to_qualname.values()) if not suppress_diff_warning: _warn_graph_differences(train_tracer, eval_tracer) # Restore training state model.train(is_training) return train_nodes, eval_nodes class DualGraphModule(fx.GraphModule): """ A derivative of `fx.GraphModule`. Differs in the following ways: - Requires a train and eval version of the underlying graph - Copies submodules according to the nodes of both train and eval graphs. - Calling train(mode) switches between train graph and eval graph. """ def __init__( self, root: torch.nn.Module, train_graph: fx.Graph, eval_graph: fx.Graph, class_name: str = "GraphModule" ): """ Args: root (nn.Module): module from which the copied module hierarchy is built train_graph (fx.Graph): the graph that should be used in train mode eval_graph (fx.Graph): the graph that should be used in eval mode """ super(fx.GraphModule, self).__init__() self.__class__.__name__ = class_name self.train_graph = train_graph self.eval_graph = eval_graph # Copy all get_attr and call_module ops (indicated by BOTH train and # eval graphs) for node in chain(iter(train_graph.nodes), iter(eval_graph.nodes)): if node.op in ["get_attr", "call_module"]: if not isinstance(node.target, str): raise TypeError(f"node.target should be of type str instead of {type(node.target)}") _copy_attr(root, self, node.target) # train mode by default self.train() self.graph = train_graph # (borrowed from fx.GraphModule): # Store the Tracer class responsible for creating a Graph separately as part of the # GraphModule state, except when the Tracer is defined in a local namespace. # Locally defined Tracers are not pickleable. This is needed because torch.package will # serialize a GraphModule without retaining the Graph, and needs to use the correct Tracer # to re-create the Graph during deserialization. if self.eval_graph._tracer_cls != self.train_graph._tracer_cls: raise TypeError( f"Train mode and eval mode should use the same tracer class. Instead got {self.eval_graph._tracer_cls} for eval vs {self.train_graph._tracer_cls} for train" ) self._tracer_cls = None if self.graph._tracer_cls and "<locals>" not in self.graph._tracer_cls.__qualname__: self._tracer_cls = self.graph._tracer_cls def train(self, mode=True): """ Swap out the graph depending on the selected training mode. NOTE this should be safe when calling model.eval() because that just calls this with mode == False. """ # NOTE: Only set self.graph if the current graph is not the desired # one. This saves us from recompiling the graph where not necessary. if mode and not self.training: self.graph = self.train_graph elif not mode and self.training: self.graph = self.eval_graph return super().train(mode=mode) def _deepcopy_init(self): # See __deepcopy__ below return DualGraphModule.__init__ def __deepcopy__(self, memo): # Same as the base class' __deepcopy__ from pytorch, with minor # modification to account for train_graph and eval_graph # https://github.com/pytorch/pytorch/blob/f684dbd0026f98f8fa291cab74dbc4d61ba30580/torch/fx/graph_module.py#L875 # # This is using a bunch of private stuff from torch, so if that breaks, # we'll likely have to remove this, along with the associated # non-regression test. res = type(self).__new__(type(self)) memo[id(self)] = res fake_mod = _CodeOnlyModule(copy.deepcopy(self.__dict__, memo)) self._deepcopy_init()(res, fake_mod, fake_mod.__dict__["train_graph"], fake_mod.__dict__["eval_graph"]) extra_preserved_attrs = [ "_state_dict_hooks", "_load_state_dict_pre_hooks", "_load_state_dict_post_hooks", "_replace_hook", "_create_node_hooks", "_erase_node_hooks", ] for attr in extra_preserved_attrs: if attr in self.__dict__: setattr(res, attr, copy.deepcopy(self.__dict__[attr], memo)) res.meta = copy.deepcopy(getattr(self, "meta", {}), memo) if _USER_PRESERVED_ATTRIBUTES_KEY in res.meta: for attr_name, attr in res.meta[_USER_PRESERVED_ATTRIBUTES_KEY].items(): setattr(res, attr_name, attr) return res def create_feature_extractor( model: nn.Module, return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, train_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, eval_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, tracer_kwargs: Optional[Dict[str, Any]] = None, suppress_diff_warning: bool = False, concrete_args: Optional[Dict[str, Any]] = None, ) -> fx.GraphModule: """ Creates a new graph module that returns intermediate nodes from a given model as dictionary with user specified keys as strings, and the requested outputs as values. This is achieved by re-writing the computation graph of the model via FX to return the desired nodes as outputs. All unused nodes are removed, together with their corresponding parameters. Desired output nodes must be specified as a ``.`` separated path walking the module hierarchy from top level module down to leaf operation or leaf module. For more details on the node naming conventions used here, please see the :ref:`relevant subheading <about-node-names>` in the `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_. Not all models will be FX traceable, although with some massaging they can be made to cooperate. Here's a (not exhaustive) list of tips: - If you don't need to trace through a particular, problematic sub-module, turn it into a "leaf module" by passing a list of ``leaf_modules`` as one of the ``tracer_kwargs`` (see example below). It will not be traced through, but rather, the resulting graph will hold a reference to that module's forward method. - Likewise, you may turn functions into leaf functions by passing a list of ``autowrap_functions`` as one of the ``tracer_kwargs`` (see example below). - Some inbuilt Python functions can be problematic. For instance, ``int`` will raise an error during tracing. You may wrap them in your own function and then pass that in ``autowrap_functions`` as one of the ``tracer_kwargs``. For further information on FX see the `torch.fx documentation <https://pytorch.org/docs/stable/fx.html>`_. Args: model (nn.Module): model on which we will extract the features return_nodes (list or dict, optional): either a ``List`` or a ``Dict`` containing the names (or partial names - see note above) of the nodes for which the activations will be returned. If it is a ``Dict``, the keys are the node names, and the values are the user-specified keys for the graph module's returned dictionary. If it is a ``List``, it is treated as a ``Dict`` mapping node specification strings directly to output names. In the case that ``train_return_nodes`` and ``eval_return_nodes`` are specified, this should not be specified. train_return_nodes (list or dict, optional): similar to ``return_nodes``. This can be used if the return nodes for train mode are different than those from eval mode. If this is specified, ``eval_return_nodes`` must also be specified, and ``return_nodes`` should not be specified. eval_return_nodes (list or dict, optional): similar to ``return_nodes``. This can be used if the return nodes for train mode are different than those from eval mode. If this is specified, ``train_return_nodes`` must also be specified, and `return_nodes` should not be specified. tracer_kwargs (dict, optional): a dictionary of keyword arguments for ``NodePathTracer`` (which passes them onto it's parent class `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_). By default, it will be set to wrap and make leaf nodes all torchvision ops: {"autowrap_modules": (math, torchvision.ops,),"leaf_modules": _get_leaf_modules_for_ops(),} WARNING: In case the user provides tracer_kwargs, above default arguments will be appended to the user provided dictionary. suppress_diff_warning (bool, optional): whether to suppress a warning when there are discrepancies between the train and eval version of the graph. Defaults to False. concrete_args (Optional[Dict[str, any]]): Concrete arguments that should not be treated as Proxies. According to the `Pytorch docs <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer.trace>`_, this parameter's API may not be guaranteed. Examples:: >>> # Feature extraction with resnet >>> model = torchvision.models.resnet18() >>> # extract layer1 and layer3, giving as names `feat1` and feat2` >>> model = create_feature_extractor( >>> model, {'layer1': 'feat1', 'layer3': 'feat2'}) >>> out = model(torch.rand(1, 3, 224, 224)) >>> print([(k, v.shape) for k, v in out.items()]) >>> [('feat1', torch.Size([1, 64, 56, 56])), >>> ('feat2', torch.Size([1, 256, 14, 14]))] >>> # Specifying leaf modules and leaf functions >>> def leaf_function(x): >>> # This would raise a TypeError if traced through >>> return int(x) >>> >>> class LeafModule(torch.nn.Module): >>> def forward(self, x): >>> # This would raise a TypeError if traced through >>> int(x.shape[0]) >>> return torch.nn.functional.relu(x + 4) >>> >>> class MyModule(torch.nn.Module): >>> def __init__(self): >>> super().__init__() >>> self.conv = torch.nn.Conv2d(3, 1, 3) >>> self.leaf_module = LeafModule() >>> >>> def forward(self, x): >>> leaf_function(x.shape[0]) >>> x = self.conv(x) >>> return self.leaf_module(x) >>> >>> model = create_feature_extractor( >>> MyModule(), return_nodes=['leaf_module'], >>> tracer_kwargs={'leaf_modules': [LeafModule], >>> 'autowrap_functions': [leaf_function]}) """ tracer_kwargs = _set_default_tracer_kwargs(tracer_kwargs) is_training = model.training if all(arg is None for arg in [return_nodes, train_return_nodes, eval_return_nodes]): raise ValueError( "Either `return_nodes` or `train_return_nodes` and `eval_return_nodes` together, should be specified" ) if (train_return_nodes is None) ^ (eval_return_nodes is None): raise ValueError( "If any of `train_return_nodes` and `eval_return_nodes` are specified, then both should be specified" ) if not ((return_nodes is None) ^ (train_return_nodes is None)): raise ValueError("If `train_return_nodes` and `eval_return_nodes` are specified, then both should be specified") # Put *_return_nodes into Dict[str, str] format def to_strdict(n) -> Dict[str, str]: if isinstance(n, list): return {str(i): str(i) for i in n} return {str(k): str(v) for k, v in n.items()} if train_return_nodes is None: return_nodes = to_strdict(return_nodes) train_return_nodes = deepcopy(return_nodes) eval_return_nodes = deepcopy(return_nodes) else: train_return_nodes = to_strdict(train_return_nodes) eval_return_nodes = to_strdict(eval_return_nodes) # Repeat the tracing and graph rewriting for train and eval mode tracers = {} graphs = {} mode_return_nodes: Dict[str, Dict[str, str]] = {"train": train_return_nodes, "eval": eval_return_nodes} for mode in ["train", "eval"]: if mode == "train": model.train() elif mode == "eval": model.eval() # Instantiate our NodePathTracer and use that to trace the model tracer = NodePathTracer(**tracer_kwargs) graph = tracer.trace(model, concrete_args=concrete_args) name = model.__class__.__name__ if isinstance(model, nn.Module) else model.__name__ graph_module = fx.GraphModule(tracer.root, graph, name) available_nodes = list(tracer.node_to_qualname.values()) # FIXME We don't know if we should expect this to happen if len(set(available_nodes)) != len(available_nodes): raise ValueError( "There are duplicate nodes! Please raise an issue https://github.com/pytorch/vision/issues" ) # Check that all outputs in return_nodes are present in the model for query in mode_return_nodes[mode].keys(): # To check if a query is available we need to check that at least # one of the available names starts with it up to a . if not any([re.match(rf"^{query}(\.|$)", n) is not None for n in available_nodes]): raise ValueError( f"node: '{query}' is not present in model. Hint: use " "`get_graph_node_names` to make sure the " "`return_nodes` you specified are present. It may even " "be that you need to specify `train_return_nodes` and " "`eval_return_nodes` separately." ) # Remove existing output nodes (train mode) orig_output_nodes = [] for n in reversed(graph_module.graph.nodes): if n.op == "output": orig_output_nodes.append(n) if not orig_output_nodes: raise ValueError("No output nodes found in graph_module.graph.nodes") for n in orig_output_nodes: graph_module.graph.erase_node(n) # Find nodes corresponding to return_nodes and make them into output_nodes nodes = [n for n in graph_module.graph.nodes] output_nodes = OrderedDict() for n in reversed(nodes): module_qualname = tracer.node_to_qualname.get(n) if module_qualname is None: # NOTE - Know cases where this happens: # - Node representing creation of a tensor constant - probably # not interesting as a return node # - When packing outputs into a named tuple like in InceptionV3 continue for query in mode_return_nodes[mode]: depth = query.count(".") if ".".join(module_qualname.split(".")[: depth + 1]) == query: output_nodes[mode_return_nodes[mode][query]] = n mode_return_nodes[mode].pop(query) break output_nodes = OrderedDict(reversed(list(output_nodes.items()))) # And add them in the end of the graph with graph_module.graph.inserting_after(nodes[-1]): graph_module.graph.output(output_nodes) # Remove unused modules / parameters graph_module.graph.eliminate_dead_code() graph_module.recompile() # Keep track of the tracer and graph, so we can choose the main one tracers[mode] = tracer graphs[mode] = graph # Warn user if there are any discrepancies between the graphs of the # train and eval modes if not suppress_diff_warning: _warn_graph_differences(tracers["train"], tracers["eval"]) # Build the final graph module graph_module = DualGraphModule(model, graphs["train"], graphs["eval"], class_name=name) # Restore original training mode model.train(is_training) graph_module.train(is_training) return graph_module ```
======================================================================================================================= SOURCE CODE FILE: googlenet.py LINES: 1 SIZE: 12.84 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\googlenet.py ENCODING: utf-8 ```py import warnings from collections import namedtuple from functools import partial from typing import Any, Callable, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["GoogLeNet", "GoogLeNetOutputs", "_GoogLeNetOutputs", "GoogLeNet_Weights", "googlenet"] GoogLeNetOutputs = namedtuple("GoogLeNetOutputs", ["logits", "aux_logits2", "aux_logits1"]) GoogLeNetOutputs.__annotations__ = {"logits": Tensor, "aux_logits2": Optional[Tensor], "aux_logits1": Optional[Tensor]} # Script annotations failed with _GoogleNetOutputs = namedtuple ... # _GoogLeNetOutputs set here for backwards compat _GoogLeNetOutputs = GoogLeNetOutputs class GoogLeNet(nn.Module): __constants__ = ["aux_logits", "transform_input"] def __init__( self, num_classes: int = 1000, aux_logits: bool = True, transform_input: bool = False, init_weights: Optional[bool] = None, blocks: Optional[List[Callable[..., nn.Module]]] = None, dropout: float = 0.2, dropout_aux: float = 0.7, ) -> None: super().__init__() _log_api_usage_once(self) if blocks is None: blocks = [BasicConv2d, Inception, InceptionAux] if init_weights is None: warnings.warn( "The default weight initialization of GoogleNet will be changed in future releases of " "torchvision. If you wish to keep the old behavior (which leads to long initialization times" " due to scipy/scipy#11299), please set init_weights=True.", FutureWarning, ) init_weights = True if len(blocks) != 3: raise ValueError(f"blocks length should be 3 instead of {len(blocks)}") conv_block = blocks[0] inception_block = blocks[1] inception_aux_block = blocks[2] self.aux_logits = aux_logits self.transform_input = transform_input self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3) self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.conv2 = conv_block(64, 64, kernel_size=1) self.conv3 = conv_block(64, 192, kernel_size=3, padding=1) self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32) self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64) self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64) self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64) self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64) self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64) self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128) self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128) self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128) if aux_logits: self.aux1 = inception_aux_block(512, num_classes, dropout=dropout_aux) self.aux2 = inception_aux_block(528, num_classes, dropout=dropout_aux) else: self.aux1 = None # type: ignore[assignment] self.aux2 = None # type: ignore[assignment] self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=dropout) self.fc = nn.Linear(1024, num_classes) if init_weights: for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=0.01, a=-2, b=2) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _transform_input(self, x: Tensor) -> Tensor: if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) return x def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: # N x 3 x 224 x 224 x = self.conv1(x) # N x 64 x 112 x 112 x = self.maxpool1(x) # N x 64 x 56 x 56 x = self.conv2(x) # N x 64 x 56 x 56 x = self.conv3(x) # N x 192 x 56 x 56 x = self.maxpool2(x) # N x 192 x 28 x 28 x = self.inception3a(x) # N x 256 x 28 x 28 x = self.inception3b(x) # N x 480 x 28 x 28 x = self.maxpool3(x) # N x 480 x 14 x 14 x = self.inception4a(x) # N x 512 x 14 x 14 aux1: Optional[Tensor] = None if self.aux1 is not None: if self.training: aux1 = self.aux1(x) x = self.inception4b(x) # N x 512 x 14 x 14 x = self.inception4c(x) # N x 512 x 14 x 14 x = self.inception4d(x) # N x 528 x 14 x 14 aux2: Optional[Tensor] = None if self.aux2 is not None: if self.training: aux2 = self.aux2(x) x = self.inception4e(x) # N x 832 x 14 x 14 x = self.maxpool4(x) # N x 832 x 7 x 7 x = self.inception5a(x) # N x 832 x 7 x 7 x = self.inception5b(x) # N x 1024 x 7 x 7 x = self.avgpool(x) # N x 1024 x 1 x 1 x = torch.flatten(x, 1) # N x 1024 x = self.dropout(x) x = self.fc(x) # N x 1000 (num_classes) return x, aux2, aux1 @torch.jit.unused def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs: if self.training and self.aux_logits: return _GoogLeNetOutputs(x, aux2, aux1) else: return x # type: ignore[return-value] def forward(self, x: Tensor) -> GoogLeNetOutputs: x = self._transform_input(x) x, aux2, aux1 = self._forward(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple") return GoogLeNetOutputs(x, aux2, aux1) else: return self.eager_outputs(x, aux2, aux1) class Inception(nn.Module): def __init__( self, in_channels: int, ch1x1: int, ch3x3red: int, ch3x3: int, ch5x5red: int, ch5x5: int, pool_proj: int, conv_block: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential( conv_block(in_channels, ch3x3red, kernel_size=1), conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1) ) self.branch3 = nn.Sequential( conv_block(in_channels, ch5x5red, kernel_size=1), # Here, kernel_size=3 instead of kernel_size=5 is a known bug. # Please see https://github.com/pytorch/vision/issues/906 for details. conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1), ) self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True), conv_block(in_channels, pool_proj, kernel_size=1), ) def _forward(self, x: Tensor) -> List[Tensor]: branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionAux(nn.Module): def __init__( self, in_channels: int, num_classes: int, conv_block: Optional[Callable[..., nn.Module]] = None, dropout: float = 0.7, ) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.conv = conv_block(in_channels, 128, kernel_size=1) self.fc1 = nn.Linear(2048, 1024) self.fc2 = nn.Linear(1024, num_classes) self.dropout = nn.Dropout(p=dropout) def forward(self, x: Tensor) -> Tensor: # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14 x = F.adaptive_avg_pool2d(x, (4, 4)) # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4 x = self.conv(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) # N x 2048 x = F.relu(self.fc1(x), inplace=True) # N x 1024 x = self.dropout(x) # N x 1024 x = self.fc2(x) # N x 1000 (num_classes) return x class BasicConv2d(nn.Module): def __init__(self, in_channels: int, out_channels: int, **kwargs: Any) -> None: super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True) class GoogLeNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/googlenet-1378be20.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 6624904, "min_size": (15, 15), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#googlenet", "_metrics": { "ImageNet-1K": { "acc@1": 69.778, "acc@5": 89.530, } }, "_ops": 1.498, "_file_size": 49.731, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", GoogLeNet_Weights.IMAGENET1K_V1)) def googlenet(*, weights: Optional[GoogLeNet_Weights] = None, progress: bool = True, **kwargs: Any) -> GoogLeNet: """GoogLeNet (Inception v1) model architecture from `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`_. Args: weights (:class:`~torchvision.models.GoogLeNet_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.GoogLeNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.GoogLeNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.GoogLeNet_Weights :members: """ weights = GoogLeNet_Weights.verify(weights) original_aux_logits = kwargs.get("aux_logits", False) if weights is not None: if "transform_input" not in kwargs: _ovewrite_named_param(kwargs, "transform_input", True) _ovewrite_named_param(kwargs, "aux_logits", True) _ovewrite_named_param(kwargs, "init_weights", False) _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = GoogLeNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if not original_aux_logits: model.aux_logits = False model.aux1 = None # type: ignore[assignment] model.aux2 = None # type: ignore[assignment] else: warnings.warn( "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them" ) return model ```
======================================================================================================================= SOURCE CODE FILE: inception.py LINES: 1 SIZE: 18.88 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\inception.py ENCODING: utf-8 ```py import warnings from collections import namedtuple from functools import partial from typing import Any, Callable, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["Inception3", "InceptionOutputs", "_InceptionOutputs", "Inception_V3_Weights", "inception_v3"] InceptionOutputs = namedtuple("InceptionOutputs", ["logits", "aux_logits"]) InceptionOutputs.__annotations__ = {"logits": Tensor, "aux_logits": Optional[Tensor]} # Script annotations failed with _GoogleNetOutputs = namedtuple ... # _InceptionOutputs set here for backwards compat _InceptionOutputs = InceptionOutputs class Inception3(nn.Module): def __init__( self, num_classes: int = 1000, aux_logits: bool = True, transform_input: bool = False, inception_blocks: Optional[List[Callable[..., nn.Module]]] = None, init_weights: Optional[bool] = None, dropout: float = 0.5, ) -> None: super().__init__() _log_api_usage_once(self) if inception_blocks is None: inception_blocks = [BasicConv2d, InceptionA, InceptionB, InceptionC, InceptionD, InceptionE, InceptionAux] if init_weights is None: warnings.warn( "The default weight initialization of inception_v3 will be changed in future releases of " "torchvision. If you wish to keep the old behavior (which leads to long initialization times" " due to scipy/scipy#11299), please set init_weights=True.", FutureWarning, ) init_weights = True if len(inception_blocks) != 7: raise ValueError(f"length of inception_blocks should be 7 instead of {len(inception_blocks)}") conv_block = inception_blocks[0] inception_a = inception_blocks[1] inception_b = inception_blocks[2] inception_c = inception_blocks[3] inception_d = inception_blocks[4] inception_e = inception_blocks[5] inception_aux = inception_blocks[6] self.aux_logits = aux_logits self.transform_input = transform_input self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2) self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2) self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2) self.Mixed_5b = inception_a(192, pool_features=32) self.Mixed_5c = inception_a(256, pool_features=64) self.Mixed_5d = inception_a(288, pool_features=64) self.Mixed_6a = inception_b(288) self.Mixed_6b = inception_c(768, channels_7x7=128) self.Mixed_6c = inception_c(768, channels_7x7=160) self.Mixed_6d = inception_c(768, channels_7x7=160) self.Mixed_6e = inception_c(768, channels_7x7=192) self.AuxLogits: Optional[nn.Module] = None if aux_logits: self.AuxLogits = inception_aux(768, num_classes) self.Mixed_7a = inception_d(768) self.Mixed_7b = inception_e(1280) self.Mixed_7c = inception_e(2048) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=dropout) self.fc = nn.Linear(2048, num_classes) if init_weights: for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): stddev = float(m.stddev) if hasattr(m, "stddev") else 0.1 # type: ignore torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=stddev, a=-2, b=2) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _transform_input(self, x: Tensor) -> Tensor: if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) return x def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor]]: # N x 3 x 299 x 299 x = self.Conv2d_1a_3x3(x) # N x 32 x 149 x 149 x = self.Conv2d_2a_3x3(x) # N x 32 x 147 x 147 x = self.Conv2d_2b_3x3(x) # N x 64 x 147 x 147 x = self.maxpool1(x) # N x 64 x 73 x 73 x = self.Conv2d_3b_1x1(x) # N x 80 x 73 x 73 x = self.Conv2d_4a_3x3(x) # N x 192 x 71 x 71 x = self.maxpool2(x) # N x 192 x 35 x 35 x = self.Mixed_5b(x) # N x 256 x 35 x 35 x = self.Mixed_5c(x) # N x 288 x 35 x 35 x = self.Mixed_5d(x) # N x 288 x 35 x 35 x = self.Mixed_6a(x) # N x 768 x 17 x 17 x = self.Mixed_6b(x) # N x 768 x 17 x 17 x = self.Mixed_6c(x) # N x 768 x 17 x 17 x = self.Mixed_6d(x) # N x 768 x 17 x 17 x = self.Mixed_6e(x) # N x 768 x 17 x 17 aux: Optional[Tensor] = None if self.AuxLogits is not None: if self.training: aux = self.AuxLogits(x) # N x 768 x 17 x 17 x = self.Mixed_7a(x) # N x 1280 x 8 x 8 x = self.Mixed_7b(x) # N x 2048 x 8 x 8 x = self.Mixed_7c(x) # N x 2048 x 8 x 8 # Adaptive average pooling x = self.avgpool(x) # N x 2048 x 1 x 1 x = self.dropout(x) # N x 2048 x 1 x 1 x = torch.flatten(x, 1) # N x 2048 x = self.fc(x) # N x 1000 (num_classes) return x, aux @torch.jit.unused def eager_outputs(self, x: Tensor, aux: Optional[Tensor]) -> InceptionOutputs: if self.training and self.aux_logits: return InceptionOutputs(x, aux) else: return x # type: ignore[return-value] def forward(self, x: Tensor) -> InceptionOutputs: x = self._transform_input(x) x, aux = self._forward(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted Inception3 always returns Inception3 Tuple") return InceptionOutputs(x, aux) else: return self.eager_outputs(x, aux) class InceptionA(nn.Module): def __init__( self, in_channels: int, pool_features: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 64, kernel_size=1) self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1) self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2) self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1) self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1) def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionB(nn.Module): def __init__(self, in_channels: int, conv_block: Optional[Callable[..., nn.Module]] = None) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2) self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2) def _forward(self, x: Tensor) -> List[Tensor]: branch3x3 = self.branch3x3(x) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionC(nn.Module): def __init__( self, in_channels: int, channels_7x7: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 192, kernel_size=1) c7 = channels_7x7 self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1) self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1) self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch_pool = conv_block(in_channels, 192, kernel_size=1) def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionD(nn.Module): def __init__(self, in_channels: int, conv_block: Optional[Callable[..., nn.Module]] = None) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1) self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2) self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1) self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2) def _forward(self, x: Tensor) -> List[Tensor]: branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3) branch7x7x3 = self.branch7x7x3_1(x) branch7x7x3 = self.branch7x7x3_2(branch7x7x3) branch7x7x3 = self.branch7x7x3_3(branch7x7x3) branch7x7x3 = self.branch7x7x3_4(branch7x7x3) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch7x7x3, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionE(nn.Module): def __init__(self, in_channels: int, conv_block: Optional[Callable[..., nn.Module]] = None) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.branch1x1 = conv_block(in_channels, 320, kernel_size=1) self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1) self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1) self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch_pool = conv_block(in_channels, 192, kernel_size=1) def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionAux(nn.Module): def __init__( self, in_channels: int, num_classes: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() if conv_block is None: conv_block = BasicConv2d self.conv0 = conv_block(in_channels, 128, kernel_size=1) self.conv1 = conv_block(128, 768, kernel_size=5) self.conv1.stddev = 0.01 # type: ignore[assignment] self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001 # type: ignore[assignment] def forward(self, x: Tensor) -> Tensor: # N x 768 x 17 x 17 x = F.avg_pool2d(x, kernel_size=5, stride=3) # N x 768 x 5 x 5 x = self.conv0(x) # N x 128 x 5 x 5 x = self.conv1(x) # N x 768 x 1 x 1 # Adaptive average pooling x = F.adaptive_avg_pool2d(x, (1, 1)) # N x 768 x 1 x 1 x = torch.flatten(x, 1) # N x 768 x = self.fc(x) # N x 1000 return x class BasicConv2d(nn.Module): def __init__(self, in_channels: int, out_channels: int, **kwargs: Any) -> None: super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True) class Inception_V3_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/inception_v3_google-0cc3c7bd.pth", transforms=partial(ImageClassification, crop_size=299, resize_size=342), meta={ "num_params": 27161264, "min_size": (75, 75), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#inception-v3", "_metrics": { "ImageNet-1K": { "acc@1": 77.294, "acc@5": 93.450, } }, "_ops": 5.713, "_file_size": 103.903, "_docs": """These weights are ported from the original paper.""", }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", Inception_V3_Weights.IMAGENET1K_V1)) def inception_v3(*, weights: Optional[Inception_V3_Weights] = None, progress: bool = True, **kwargs: Any) -> Inception3: """ Inception v3 model architecture from `Rethinking the Inception Architecture for Computer Vision <http://arxiv.org/abs/1512.00567>`_. .. note:: **Important**: In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly. Args: weights (:class:`~torchvision.models.Inception_V3_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.Inception_V3_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.Inception3`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py>`_ for more details about this class. .. autoclass:: torchvision.models.Inception_V3_Weights :members: """ weights = Inception_V3_Weights.verify(weights) original_aux_logits = kwargs.get("aux_logits", True) if weights is not None: if "transform_input" not in kwargs: _ovewrite_named_param(kwargs, "transform_input", True) _ovewrite_named_param(kwargs, "aux_logits", True) _ovewrite_named_param(kwargs, "init_weights", False) _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = Inception3(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if not original_aux_logits: model.aux_logits = False model.AuxLogits = None return model ```
==================================================================================================================== SOURCE CODE FILE: maxvit.py LINES: 2 SIZE: 32.16 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\maxvit.py ENCODING: utf-8 ```py import math from collections import OrderedDict from functools import partial from typing import Any, Callable, List, Optional, Sequence, Tuple import numpy as np import torch import torch.nn.functional as F from torch import nn, Tensor from torchvision.models._api import register_model, Weights, WeightsEnum from torchvision.models._meta import _IMAGENET_CATEGORIES from torchvision.models._utils import _ovewrite_named_param, handle_legacy_interface from torchvision.ops.misc import Conv2dNormActivation, SqueezeExcitation from torchvision.ops.stochastic_depth import StochasticDepth from torchvision.transforms._presets import ImageClassification, InterpolationMode from torchvision.utils import _log_api_usage_once __all__ = [ "MaxVit", "MaxVit_T_Weights", "maxvit_t", ] def _get_conv_output_shape(input_size: Tuple[int, int], kernel_size: int, stride: int, padding: int) -> Tuple[int, int]: return ( (input_size[0] - kernel_size + 2 * padding) // stride + 1, (input_size[1] - kernel_size + 2 * padding) // stride + 1, ) def _make_block_input_shapes(input_size: Tuple[int, int], n_blocks: int) -> List[Tuple[int, int]]: """Util function to check that the input size is correct for a MaxVit configuration.""" shapes = [] block_input_shape = _get_conv_output_shape(input_size, 3, 2, 1) for _ in range(n_blocks): block_input_shape = _get_conv_output_shape(block_input_shape, 3, 2, 1) shapes.append(block_input_shape) return shapes def _get_relative_position_index(height: int, width: int) -> torch.Tensor: coords = torch.stack(torch.meshgrid([torch.arange(height), torch.arange(width)], indexing="ij")) coords_flat = torch.flatten(coords, 1) relative_coords = coords_flat[:, :, None] - coords_flat[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += height - 1 relative_coords[:, :, 1] += width - 1 relative_coords[:, :, 0] *= 2 * width - 1 return relative_coords.sum(-1) class MBConv(nn.Module): """MBConv: Mobile Inverted Residual Bottleneck. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. expansion_ratio (float): Expansion ratio in the bottleneck. squeeze_ratio (float): Squeeze ratio in the SE Layer. stride (int): Stride of the depthwise convolution. activation_layer (Callable[..., nn.Module]): Activation function. norm_layer (Callable[..., nn.Module]): Normalization function. p_stochastic_dropout (float): Probability of stochastic depth. """ def __init__( self, in_channels: int, out_channels: int, expansion_ratio: float, squeeze_ratio: float, stride: int, activation_layer: Callable[..., nn.Module], norm_layer: Callable[..., nn.Module], p_stochastic_dropout: float = 0.0, ) -> None: super().__init__() proj: Sequence[nn.Module] self.proj: nn.Module should_proj = stride != 1 or in_channels != out_channels if should_proj: proj = [nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=True)] if stride == 2: proj = [nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)] + proj # type: ignore self.proj = nn.Sequential(*proj) else: self.proj = nn.Identity() # type: ignore mid_channels = int(out_channels * expansion_ratio) sqz_channels = int(out_channels * squeeze_ratio) if p_stochastic_dropout: self.stochastic_depth = StochasticDepth(p_stochastic_dropout, mode="row") # type: ignore else: self.stochastic_depth = nn.Identity() # type: ignore _layers = OrderedDict() _layers["pre_norm"] = norm_layer(in_channels) _layers["conv_a"] = Conv2dNormActivation( in_channels, mid_channels, kernel_size=1, stride=1, padding=0, activation_layer=activation_layer, norm_layer=norm_layer, inplace=None, ) _layers["conv_b"] = Conv2dNormActivation( mid_channels, mid_channels, kernel_size=3, stride=stride, padding=1, activation_layer=activation_layer, norm_layer=norm_layer, groups=mid_channels, inplace=None, ) _layers["squeeze_excitation"] = SqueezeExcitation(mid_channels, sqz_channels, activation=nn.SiLU) _layers["conv_c"] = nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, bias=True) self.layers = nn.Sequential(_layers) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input tensor with expected layout of [B, C, H, W]. Returns: Tensor: Output tensor with expected layout of [B, C, H / stride, W / stride]. """ res = self.proj(x) x = self.stochastic_depth(self.layers(x)) return res + x class RelativePositionalMultiHeadAttention(nn.Module): """Relative Positional Multi-Head Attention. Args: feat_dim (int): Number of input features. head_dim (int): Number of features per head. max_seq_len (int): Maximum sequence length. """ def __init__( self, feat_dim: int, head_dim: int, max_seq_len: int, ) -> None: super().__init__() if feat_dim % head_dim != 0: raise ValueError(f"feat_dim: {feat_dim} must be divisible by head_dim: {head_dim}") self.n_heads = feat_dim // head_dim self.head_dim = head_dim self.size = int(math.sqrt(max_seq_len)) self.max_seq_len = max_seq_len self.to_qkv = nn.Linear(feat_dim, self.n_heads * self.head_dim * 3) self.scale_factor = feat_dim**-0.5 self.merge = nn.Linear(self.head_dim * self.n_heads, feat_dim) self.relative_position_bias_table = nn.parameter.Parameter( torch.empty(((2 * self.size - 1) * (2 * self.size - 1), self.n_heads), dtype=torch.float32), ) self.register_buffer("relative_position_index", _get_relative_position_index(self.size, self.size)) # initialize with truncated normal the bias torch.nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02) def get_relative_positional_bias(self) -> torch.Tensor: bias_index = self.relative_position_index.view(-1) # type: ignore relative_bias = self.relative_position_bias_table[bias_index].view(self.max_seq_len, self.max_seq_len, -1) # type: ignore relative_bias = relative_bias.permute(2, 0, 1).contiguous() return relative_bias.unsqueeze(0) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input tensor with expected layout of [B, G, P, D]. Returns: Tensor: Output tensor with expected layout of [B, G, P, D]. """ B, G, P, D = x.shape H, DH = self.n_heads, self.head_dim qkv = self.to_qkv(x) q, k, v = torch.chunk(qkv, 3, dim=-1) q = q.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4) k = k.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4) v = v.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4) k = k * self.scale_factor dot_prod = torch.einsum("B G H I D, B G H J D -> B G H I J", q, k) pos_bias = self.get_relative_positional_bias() dot_prod = F.softmax(dot_prod + pos_bias, dim=-1) out = torch.einsum("B G H I J, B G H J D -> B G H I D", dot_prod, v) out = out.permute(0, 1, 3, 2, 4).reshape(B, G, P, D) out = self.merge(out) return out class SwapAxes(nn.Module): """Permute the axes of a tensor.""" def __init__(self, a: int, b: int) -> None: super().__init__() self.a = a self.b = b def forward(self, x: torch.Tensor) -> torch.Tensor: res = torch.swapaxes(x, self.a, self.b) return res class WindowPartition(nn.Module): """ Partition the input tensor into non-overlapping windows. """ def __init__(self) -> None: super().__init__() def forward(self, x: Tensor, p: int) -> Tensor: """ Args: x (Tensor): Input tensor with expected layout of [B, C, H, W]. p (int): Number of partitions. Returns: Tensor: Output tensor with expected layout of [B, H/P, W/P, P*P, C]. """ B, C, H, W = x.shape P = p # chunk up H and W dimensions x = x.reshape(B, C, H // P, P, W // P, P) x = x.permute(0, 2, 4, 3, 5, 1) # colapse P * P dimension x = x.reshape(B, (H // P) * (W // P), P * P, C) return x class WindowDepartition(nn.Module): """ Departition the input tensor of non-overlapping windows into a feature volume of layout [B, C, H, W]. """ def __init__(self) -> None: super().__init__() def forward(self, x: Tensor, p: int, h_partitions: int, w_partitions: int) -> Tensor: """ Args: x (Tensor): Input tensor with expected layout of [B, (H/P * W/P), P*P, C]. p (int): Number of partitions. h_partitions (int): Number of vertical partitions. w_partitions (int): Number of horizontal partitions. Returns: Tensor: Output tensor with expected layout of [B, C, H, W]. """ B, G, PP, C = x.shape P = p HP, WP = h_partitions, w_partitions # split P * P dimension into 2 P tile dimensionsa x = x.reshape(B, HP, WP, P, P, C) # permute into B, C, HP, P, WP, P x = x.permute(0, 5, 1, 3, 2, 4) # reshape into B, C, H, W x = x.reshape(B, C, HP * P, WP * P) return x class PartitionAttentionLayer(nn.Module): """ Layer for partitioning the input tensor into non-overlapping windows and applying attention to each window. Args: in_channels (int): Number of input channels. head_dim (int): Dimension of each attention head. partition_size (int): Size of the partitions. partition_type (str): Type of partitioning to use. Can be either "grid" or "window". grid_size (Tuple[int, int]): Size of the grid to partition the input tensor into. mlp_ratio (int): Ratio of the feature size expansion in the MLP layer. activation_layer (Callable[..., nn.Module]): Activation function to use. norm_layer (Callable[..., nn.Module]): Normalization function to use. attention_dropout (float): Dropout probability for the attention layer. mlp_dropout (float): Dropout probability for the MLP layer. p_stochastic_dropout (float): Probability of dropping out a partition. """ def __init__( self, in_channels: int, head_dim: int, # partitioning parameters partition_size: int, partition_type: str, # grid size needs to be known at initialization time # because we need to know hamy relative offsets there are in the grid grid_size: Tuple[int, int], mlp_ratio: int, activation_layer: Callable[..., nn.Module], norm_layer: Callable[..., nn.Module], attention_dropout: float, mlp_dropout: float, p_stochastic_dropout: float, ) -> None: super().__init__() self.n_heads = in_channels // head_dim self.head_dim = head_dim self.n_partitions = grid_size[0] // partition_size self.partition_type = partition_type self.grid_size = grid_size if partition_type not in ["grid", "window"]: raise ValueError("partition_type must be either 'grid' or 'window'") if partition_type == "window": self.p, self.g = partition_size, self.n_partitions else: self.p, self.g = self.n_partitions, partition_size self.partition_op = WindowPartition() self.departition_op = WindowDepartition() self.partition_swap = SwapAxes(-2, -3) if partition_type == "grid" else nn.Identity() self.departition_swap = SwapAxes(-2, -3) if partition_type == "grid" else nn.Identity() self.attn_layer = nn.Sequential( norm_layer(in_channels), # it's always going to be partition_size ** 2 because # of the axis swap in the case of grid partitioning RelativePositionalMultiHeadAttention(in_channels, head_dim, partition_size**2), nn.Dropout(attention_dropout), ) # pre-normalization similar to transformer layers self.mlp_layer = nn.Sequential( nn.LayerNorm(in_channels), nn.Linear(in_channels, in_channels * mlp_ratio), activation_layer(), nn.Linear(in_channels * mlp_ratio, in_channels), nn.Dropout(mlp_dropout), ) # layer scale factors self.stochastic_dropout = StochasticDepth(p_stochastic_dropout, mode="row") def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input tensor with expected layout of [B, C, H, W]. Returns: Tensor: Output tensor with expected layout of [B, C, H, W]. """ # Undefined behavior if H or W are not divisible by p # https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L766 gh, gw = self.grid_size[0] // self.p, self.grid_size[1] // self.p torch._assert( self.grid_size[0] % self.p == 0 and self.grid_size[1] % self.p == 0, "Grid size must be divisible by partition size. Got grid size of {} and partition size of {}".format( self.grid_size, self.p ), ) x = self.partition_op(x, self.p) x = self.partition_swap(x) x = x + self.stochastic_dropout(self.attn_layer(x)) x = x + self.stochastic_dropout(self.mlp_layer(x)) x = self.departition_swap(x) x = self.departition_op(x, self.p, gh, gw) return x class MaxVitLayer(nn.Module): """ MaxVit layer consisting of a MBConv layer followed by a PartitionAttentionLayer with `window` and a PartitionAttentionLayer with `grid`. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. expansion_ratio (float): Expansion ratio in the bottleneck. squeeze_ratio (float): Squeeze ratio in the SE Layer. stride (int): Stride of the depthwise convolution. activation_layer (Callable[..., nn.Module]): Activation function. norm_layer (Callable[..., nn.Module]): Normalization function. head_dim (int): Dimension of the attention heads. mlp_ratio (int): Ratio of the MLP layer. mlp_dropout (float): Dropout probability for the MLP layer. attention_dropout (float): Dropout probability for the attention layer. p_stochastic_dropout (float): Probability of stochastic depth. partition_size (int): Size of the partitions. grid_size (Tuple[int, int]): Size of the input feature grid. """ def __init__( self, # conv parameters in_channels: int, out_channels: int, squeeze_ratio: float, expansion_ratio: float, stride: int, # conv + transformer parameters norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], # transformer parameters head_dim: int, mlp_ratio: int, mlp_dropout: float, attention_dropout: float, p_stochastic_dropout: float, # partitioning parameters partition_size: int, grid_size: Tuple[int, int], ) -> None: super().__init__() layers: OrderedDict = OrderedDict() # convolutional layer layers["MBconv"] = MBConv( in_channels=in_channels, out_channels=out_channels, expansion_ratio=expansion_ratio, squeeze_ratio=squeeze_ratio, stride=stride, activation_layer=activation_layer, norm_layer=norm_layer, p_stochastic_dropout=p_stochastic_dropout, ) # attention layers, block -> grid layers["window_attention"] = PartitionAttentionLayer( in_channels=out_channels, head_dim=head_dim, partition_size=partition_size, partition_type="window", grid_size=grid_size, mlp_ratio=mlp_ratio, activation_layer=activation_layer, norm_layer=nn.LayerNorm, attention_dropout=attention_dropout, mlp_dropout=mlp_dropout, p_stochastic_dropout=p_stochastic_dropout, ) layers["grid_attention"] = PartitionAttentionLayer( in_channels=out_channels, head_dim=head_dim, partition_size=partition_size, partition_type="grid", grid_size=grid_size, mlp_ratio=mlp_ratio, activation_layer=activation_layer, norm_layer=nn.LayerNorm, attention_dropout=attention_dropout, mlp_dropout=mlp_dropout, p_stochastic_dropout=p_stochastic_dropout, ) self.layers = nn.Sequential(layers) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input tensor of shape (B, C, H, W). Returns: Tensor: Output tensor of shape (B, C, H, W). """ x = self.layers(x) return x class MaxVitBlock(nn.Module): """ A MaxVit block consisting of `n_layers` MaxVit layers. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. expansion_ratio (float): Expansion ratio in the bottleneck. squeeze_ratio (float): Squeeze ratio in the SE Layer. activation_layer (Callable[..., nn.Module]): Activation function. norm_layer (Callable[..., nn.Module]): Normalization function. head_dim (int): Dimension of the attention heads. mlp_ratio (int): Ratio of the MLP layer. mlp_dropout (float): Dropout probability for the MLP layer. attention_dropout (float): Dropout probability for the attention layer. p_stochastic_dropout (float): Probability of stochastic depth. partition_size (int): Size of the partitions. input_grid_size (Tuple[int, int]): Size of the input feature grid. n_layers (int): Number of layers in the block. p_stochastic (List[float]): List of probabilities for stochastic depth for each layer. """ def __init__( self, # conv parameters in_channels: int, out_channels: int, squeeze_ratio: float, expansion_ratio: float, # conv + transformer parameters norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], # transformer parameters head_dim: int, mlp_ratio: int, mlp_dropout: float, attention_dropout: float, # partitioning parameters partition_size: int, input_grid_size: Tuple[int, int], # number of layers n_layers: int, p_stochastic: List[float], ) -> None: super().__init__() if not len(p_stochastic) == n_layers: raise ValueError(f"p_stochastic must have length n_layers={n_layers}, got p_stochastic={p_stochastic}.") self.layers = nn.ModuleList() # account for the first stride of the first layer self.grid_size = _get_conv_output_shape(input_grid_size, kernel_size=3, stride=2, padding=1) for idx, p in enumerate(p_stochastic): stride = 2 if idx == 0 else 1 self.layers += [ MaxVitLayer( in_channels=in_channels if idx == 0 else out_channels, out_channels=out_channels, squeeze_ratio=squeeze_ratio, expansion_ratio=expansion_ratio, stride=stride, norm_layer=norm_layer, activation_layer=activation_layer, head_dim=head_dim, mlp_ratio=mlp_ratio, mlp_dropout=mlp_dropout, attention_dropout=attention_dropout, partition_size=partition_size, grid_size=self.grid_size, p_stochastic_dropout=p, ), ] def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input tensor of shape (B, C, H, W). Returns: Tensor: Output tensor of shape (B, C, H, W). """ for layer in self.layers: x = layer(x) return x class MaxVit(nn.Module): """ Implements MaxVit Transformer from the `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_ paper. Args: input_size (Tuple[int, int]): Size of the input image. stem_channels (int): Number of channels in the stem. partition_size (int): Size of the partitions. block_channels (List[int]): Number of channels in each block. block_layers (List[int]): Number of layers in each block. stochastic_depth_prob (float): Probability of stochastic depth. Expands to a list of probabilities for each layer that scales linearly to the specified value. squeeze_ratio (float): Squeeze ratio in the SE Layer. Default: 0.25. expansion_ratio (float): Expansion ratio in the MBConv bottleneck. Default: 4. norm_layer (Callable[..., nn.Module]): Normalization function. Default: None (setting to None will produce a `BatchNorm2d(eps=1e-3, momentum=0.01)`). activation_layer (Callable[..., nn.Module]): Activation function Default: nn.GELU. head_dim (int): Dimension of the attention heads. mlp_ratio (int): Expansion ratio of the MLP layer. Default: 4. mlp_dropout (float): Dropout probability for the MLP layer. Default: 0.0. attention_dropout (float): Dropout probability for the attention layer. Default: 0.0. num_classes (int): Number of classes. Default: 1000. """ def __init__( self, # input size parameters input_size: Tuple[int, int], # stem and task parameters stem_channels: int, # partitioning parameters partition_size: int, # block parameters block_channels: List[int], block_layers: List[int], # attention head dimensions head_dim: int, stochastic_depth_prob: float, # conv + transformer parameters # norm_layer is applied only to the conv layers # activation_layer is applied both to conv and transformer layers norm_layer: Optional[Callable[..., nn.Module]] = None, activation_layer: Callable[..., nn.Module] = nn.GELU, # conv parameters squeeze_ratio: float = 0.25, expansion_ratio: float = 4, # transformer parameters mlp_ratio: int = 4, mlp_dropout: float = 0.0, attention_dropout: float = 0.0, # task parameters num_classes: int = 1000, ) -> None: super().__init__() _log_api_usage_once(self) input_channels = 3 # https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L1029-L1030 # for the exact parameters used in batchnorm if norm_layer is None: norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.01) # Make sure input size will be divisible by the partition size in all blocks # Undefined behavior if H or W are not divisible by p # https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L766 block_input_sizes = _make_block_input_shapes(input_size, len(block_channels)) for idx, block_input_size in enumerate(block_input_sizes): if block_input_size[0] % partition_size != 0 or block_input_size[1] % partition_size != 0: raise ValueError( f"Input size {block_input_size} of block {idx} is not divisible by partition size {partition_size}. " f"Consider changing the partition size or the input size.\n" f"Current configuration yields the following block input sizes: {block_input_sizes}." ) # stem self.stem = nn.Sequential( Conv2dNormActivation( input_channels, stem_channels, 3, stride=2, norm_layer=norm_layer, activation_layer=activation_layer, bias=False, inplace=None, ), Conv2dNormActivation( stem_channels, stem_channels, 3, stride=1, norm_layer=None, activation_layer=None, bias=True ), ) # account for stem stride input_size = _get_conv_output_shape(input_size, kernel_size=3, stride=2, padding=1) self.partition_size = partition_size # blocks self.blocks = nn.ModuleList() in_channels = [stem_channels] + block_channels[:-1] out_channels = block_channels # precompute the stochastich depth probabilities from 0 to stochastic_depth_prob # since we have N blocks with L layers, we will have N * L probabilities uniformly distributed # over the range [0, stochastic_depth_prob] p_stochastic = np.linspace(0, stochastic_depth_prob, sum(block_layers)).tolist() p_idx = 0 for in_channel, out_channel, num_layers in zip(in_channels, out_channels, block_layers): self.blocks.append( MaxVitBlock( in_channels=in_channel, out_channels=out_channel, squeeze_ratio=squeeze_ratio, expansion_ratio=expansion_ratio, norm_layer=norm_layer, activation_layer=activation_layer, head_dim=head_dim, mlp_ratio=mlp_ratio, mlp_dropout=mlp_dropout, attention_dropout=attention_dropout, partition_size=partition_size, input_grid_size=input_size, n_layers=num_layers, p_stochastic=p_stochastic[p_idx : p_idx + num_layers], ), ) input_size = self.blocks[-1].grid_size # type: ignore[assignment] p_idx += num_layers # see https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L1137-L1158 # for why there is Linear -> Tanh -> Linear self.classifier = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.LayerNorm(block_channels[-1]), nn.Linear(block_channels[-1], block_channels[-1]), nn.Tanh(), nn.Linear(block_channels[-1], num_classes, bias=False), ) self._init_weights() def forward(self, x: Tensor) -> Tensor: x = self.stem(x) for block in self.blocks: x = block(x) x = self.classifier(x) return x def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.02) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=0.02) if m.bias is not None: nn.init.zeros_(m.bias) def _maxvit( # stem parameters stem_channels: int, # block parameters block_channels: List[int], block_layers: List[int], stochastic_depth_prob: float, # partitioning parameters partition_size: int, # transformer parameters head_dim: int, # Weights API weights: Optional[WeightsEnum] = None, progress: bool = False, # kwargs, **kwargs: Any, ) -> MaxVit: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) assert weights.meta["min_size"][0] == weights.meta["min_size"][1] _ovewrite_named_param(kwargs, "input_size", weights.meta["min_size"]) input_size = kwargs.pop("input_size", (224, 224)) model = MaxVit( stem_channels=stem_channels, block_channels=block_channels, block_layers=block_layers, stochastic_depth_prob=stochastic_depth_prob, head_dim=head_dim, partition_size=partition_size, input_size=input_size, **kwargs, ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model class MaxVit_T_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # URL empty until official release url="https://download.pytorch.org/models/maxvit_t-bc5ab103.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC ), meta={ "categories": _IMAGENET_CATEGORIES, "num_params": 30919624, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#maxvit", "_metrics": { "ImageNet-1K": { "acc@1": 83.700, "acc@5": 96.722, } }, "_ops": 5.558, "_file_size": 118.769, "_docs": """These weights reproduce closely the results of the paper using a similar training recipe. They were trained with a BatchNorm2D momentum of 0.99 instead of the more correct 0.01.""", }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", MaxVit_T_Weights.IMAGENET1K_V1)) def maxvit_t(*, weights: Optional[MaxVit_T_Weights] = None, progress: bool = True, **kwargs: Any) -> MaxVit: """ Constructs a maxvit_t architecture from `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_. Args: weights (:class:`~torchvision.models.MaxVit_T_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MaxVit_T_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.maxvit.MaxVit`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/maxvit.py>`_ for more details about this class. .. autoclass:: torchvision.models.MaxVit_T_Weights :members: """ weights = MaxVit_T_Weights.verify(weights) return _maxvit( stem_channels=64, block_channels=[64, 128, 256, 512], block_layers=[2, 2, 5, 2], head_dim=32, stochastic_depth_prob=0.2, partition_size=7, weights=weights, progress=progress, **kwargs, ) ```
===================================================================================================================== SOURCE CODE FILE: mnasnet.py LINES: 1 SIZE: 17.59 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\mnasnet.py ENCODING: utf-8 ```py import warnings from functools import partial from typing import Any, Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "MNASNet", "MNASNet0_5_Weights", "MNASNet0_75_Weights", "MNASNet1_0_Weights", "MNASNet1_3_Weights", "mnasnet0_5", "mnasnet0_75", "mnasnet1_0", "mnasnet1_3", ] # Paper suggests 0.9997 momentum, for TensorFlow. Equivalent PyTorch momentum is # 1.0 - tensorflow. _BN_MOMENTUM = 1 - 0.9997 class _InvertedResidual(nn.Module): def __init__( self, in_ch: int, out_ch: int, kernel_size: int, stride: int, expansion_factor: int, bn_momentum: float = 0.1 ) -> None: super().__init__() if stride not in [1, 2]: raise ValueError(f"stride should be 1 or 2 instead of {stride}") if kernel_size not in [3, 5]: raise ValueError(f"kernel_size should be 3 or 5 instead of {kernel_size}") mid_ch = in_ch * expansion_factor self.apply_residual = in_ch == out_ch and stride == 1 self.layers = nn.Sequential( # Pointwise nn.Conv2d(in_ch, mid_ch, 1, bias=False), nn.BatchNorm2d(mid_ch, momentum=bn_momentum), nn.ReLU(inplace=True), # Depthwise nn.Conv2d(mid_ch, mid_ch, kernel_size, padding=kernel_size // 2, stride=stride, groups=mid_ch, bias=False), nn.BatchNorm2d(mid_ch, momentum=bn_momentum), nn.ReLU(inplace=True), # Linear pointwise. Note that there's no activation. nn.Conv2d(mid_ch, out_ch, 1, bias=False), nn.BatchNorm2d(out_ch, momentum=bn_momentum), ) def forward(self, input: Tensor) -> Tensor: if self.apply_residual: return self.layers(input) + input else: return self.layers(input) def _stack( in_ch: int, out_ch: int, kernel_size: int, stride: int, exp_factor: int, repeats: int, bn_momentum: float ) -> nn.Sequential: """Creates a stack of inverted residuals.""" if repeats < 1: raise ValueError(f"repeats should be >= 1, instead got {repeats}") # First one has no skip, because feature map size changes. first = _InvertedResidual(in_ch, out_ch, kernel_size, stride, exp_factor, bn_momentum=bn_momentum) remaining = [] for _ in range(1, repeats): remaining.append(_InvertedResidual(out_ch, out_ch, kernel_size, 1, exp_factor, bn_momentum=bn_momentum)) return nn.Sequential(first, *remaining) def _round_to_multiple_of(val: float, divisor: int, round_up_bias: float = 0.9) -> int: """Asymmetric rounding to make `val` divisible by `divisor`. With default bias, will round up, unless the number is no more than 10% greater than the smaller divisible value, i.e. (83, 8) -> 80, but (84, 8) -> 88.""" if not 0.0 < round_up_bias < 1.0: raise ValueError(f"round_up_bias should be greater than 0.0 and smaller than 1.0 instead of {round_up_bias}") new_val = max(divisor, int(val + divisor / 2) // divisor * divisor) return new_val if new_val >= round_up_bias * val else new_val + divisor def _get_depths(alpha: float) -> List[int]: """Scales tensor depths as in reference MobileNet code, prefers rounding up rather than down.""" depths = [32, 16, 24, 40, 80, 96, 192, 320] return [_round_to_multiple_of(depth * alpha, 8) for depth in depths] class MNASNet(torch.nn.Module): """MNASNet, as described in https://arxiv.org/abs/1807.11626. This implements the B1 variant of the model. >>> model = MNASNet(1.0, num_classes=1000) >>> x = torch.rand(1, 3, 224, 224) >>> y = model(x) >>> y.dim() 2 >>> y.nelement() 1000 """ # Version 2 adds depth scaling in the initial stages of the network. _version = 2 def __init__(self, alpha: float, num_classes: int = 1000, dropout: float = 0.2) -> None: super().__init__() _log_api_usage_once(self) if alpha <= 0.0: raise ValueError(f"alpha should be greater than 0.0 instead of {alpha}") self.alpha = alpha self.num_classes = num_classes depths = _get_depths(alpha) layers = [ # First layer: regular conv. nn.Conv2d(3, depths[0], 3, padding=1, stride=2, bias=False), nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM), nn.ReLU(inplace=True), # Depthwise separable, no skip. nn.Conv2d(depths[0], depths[0], 3, padding=1, stride=1, groups=depths[0], bias=False), nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM), nn.ReLU(inplace=True), nn.Conv2d(depths[0], depths[1], 1, padding=0, stride=1, bias=False), nn.BatchNorm2d(depths[1], momentum=_BN_MOMENTUM), # MNASNet blocks: stacks of inverted residuals. _stack(depths[1], depths[2], 3, 2, 3, 3, _BN_MOMENTUM), _stack(depths[2], depths[3], 5, 2, 3, 3, _BN_MOMENTUM), _stack(depths[3], depths[4], 5, 2, 6, 3, _BN_MOMENTUM), _stack(depths[4], depths[5], 3, 1, 6, 2, _BN_MOMENTUM), _stack(depths[5], depths[6], 5, 2, 6, 4, _BN_MOMENTUM), _stack(depths[6], depths[7], 3, 1, 6, 1, _BN_MOMENTUM), # Final mapping to classifier input. nn.Conv2d(depths[7], 1280, 1, padding=0, stride=1, bias=False), nn.BatchNorm2d(1280, momentum=_BN_MOMENTUM), nn.ReLU(inplace=True), ] self.layers = nn.Sequential(*layers) self.classifier = nn.Sequential(nn.Dropout(p=dropout, inplace=True), nn.Linear(1280, num_classes)) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.kaiming_uniform_(m.weight, mode="fan_out", nonlinearity="sigmoid") nn.init.zeros_(m.bias) def forward(self, x: Tensor) -> Tensor: x = self.layers(x) # Equivalent to global avgpool and removing H and W dimensions. x = x.mean([2, 3]) return self.classifier(x) def _load_from_state_dict( self, state_dict: Dict, prefix: str, local_metadata: Dict, strict: bool, missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str], ) -> None: version = local_metadata.get("version", None) if version not in [1, 2]: raise ValueError(f"version shluld be set to 1 or 2 instead of {version}") if version == 1 and not self.alpha == 1.0: # In the initial version of the model (v1), stem was fixed-size. # All other layer configurations were the same. This will patch # the model so that it's identical to v1. Model with alpha 1.0 is # unaffected. depths = _get_depths(self.alpha) v1_stem = [ nn.Conv2d(3, 32, 3, padding=1, stride=2, bias=False), nn.BatchNorm2d(32, momentum=_BN_MOMENTUM), nn.ReLU(inplace=True), nn.Conv2d(32, 32, 3, padding=1, stride=1, groups=32, bias=False), nn.BatchNorm2d(32, momentum=_BN_MOMENTUM), nn.ReLU(inplace=True), nn.Conv2d(32, 16, 1, padding=0, stride=1, bias=False), nn.BatchNorm2d(16, momentum=_BN_MOMENTUM), _stack(16, depths[2], 3, 2, 3, 3, _BN_MOMENTUM), ] for idx, layer in enumerate(v1_stem): self.layers[idx] = layer # The model is now identical to v1, and must be saved as such. self._version = 1 warnings.warn( "A new version of MNASNet model has been implemented. " "Your checkpoint was saved using the previous version. " "This checkpoint will load and work as before, but " "you may want to upgrade by training a newer model or " "transfer learning from an updated ImageNet checkpoint.", UserWarning, ) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/1e100/mnasnet_trainer", } class MNASNet0_5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/mnasnet0.5_top1_67.823-3ffadce67e.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 2218512, "_metrics": { "ImageNet-1K": { "acc@1": 67.734, "acc@5": 87.490, } }, "_ops": 0.104, "_file_size": 8.591, "_docs": """These weights reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class MNASNet0_75_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/mnasnet0_75-7090bc5f.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/6019", "num_params": 3170208, "_metrics": { "ImageNet-1K": { "acc@1": 71.180, "acc@5": 90.496, } }, "_ops": 0.215, "_file_size": 12.303, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 class MNASNet1_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/mnasnet1.0_top1_73.512-f206786ef8.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 4383312, "_metrics": { "ImageNet-1K": { "acc@1": 73.456, "acc@5": 91.510, } }, "_ops": 0.314, "_file_size": 16.915, "_docs": """These weights reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class MNASNet1_3_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/mnasnet1_3-a4c69d6f.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/6019", "num_params": 6282256, "_metrics": { "ImageNet-1K": { "acc@1": 76.506, "acc@5": 93.522, } }, "_ops": 0.526, "_file_size": 24.246, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 def _mnasnet(alpha: float, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any) -> MNASNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = MNASNet(alpha, **kwargs) if weights: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model @register_model() @handle_legacy_interface(weights=("pretrained", MNASNet0_5_Weights.IMAGENET1K_V1)) def mnasnet0_5(*, weights: Optional[MNASNet0_5_Weights] = None, progress: bool = True, **kwargs: Any) -> MNASNet: """MNASNet with depth multiplier of 0.5 from `MnasNet: Platform-Aware Neural Architecture Search for Mobile <https://arxiv.org/abs/1807.11626>`_ paper. Args: weights (:class:`~torchvision.models.MNASNet0_5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MNASNet0_5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.mnasnet.MNASNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/mnasnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.MNASNet0_5_Weights :members: """ weights = MNASNet0_5_Weights.verify(weights) return _mnasnet(0.5, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", MNASNet0_75_Weights.IMAGENET1K_V1)) def mnasnet0_75(*, weights: Optional[MNASNet0_75_Weights] = None, progress: bool = True, **kwargs: Any) -> MNASNet: """MNASNet with depth multiplier of 0.75 from `MnasNet: Platform-Aware Neural Architecture Search for Mobile <https://arxiv.org/abs/1807.11626>`_ paper. Args: weights (:class:`~torchvision.models.MNASNet0_75_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MNASNet0_75_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.mnasnet.MNASNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/mnasnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.MNASNet0_75_Weights :members: """ weights = MNASNet0_75_Weights.verify(weights) return _mnasnet(0.75, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", MNASNet1_0_Weights.IMAGENET1K_V1)) def mnasnet1_0(*, weights: Optional[MNASNet1_0_Weights] = None, progress: bool = True, **kwargs: Any) -> MNASNet: """MNASNet with depth multiplier of 1.0 from `MnasNet: Platform-Aware Neural Architecture Search for Mobile <https://arxiv.org/abs/1807.11626>`_ paper. Args: weights (:class:`~torchvision.models.MNASNet1_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MNASNet1_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.mnasnet.MNASNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/mnasnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.MNASNet1_0_Weights :members: """ weights = MNASNet1_0_Weights.verify(weights) return _mnasnet(1.0, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", MNASNet1_3_Weights.IMAGENET1K_V1)) def mnasnet1_3(*, weights: Optional[MNASNet1_3_Weights] = None, progress: bool = True, **kwargs: Any) -> MNASNet: """MNASNet with depth multiplier of 1.3 from `MnasNet: Platform-Aware Neural Architecture Search for Mobile <https://arxiv.org/abs/1807.11626>`_ paper. Args: weights (:class:`~torchvision.models.MNASNet1_3_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MNASNet1_3_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.mnasnet.MNASNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/mnasnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.MNASNet1_3_Weights :members: """ weights = MNASNet1_3_Weights.verify(weights) return _mnasnet(1.3, weights, progress, **kwargs) ```
======================================================================================================================= SOURCE CODE FILE: mobilenet.py LINES: 1 SIZE: 0.21 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\mobilenet.py ENCODING: utf-8 ```py from .mobilenetv2 import * # noqa: F401, F403 from .mobilenetv3 import * # noqa: F401, F403 from .mobilenetv2 import __all__ as mv2_all from .mobilenetv3 import __all__ as mv3_all __all__ = mv2_all + mv3_all ```
========================================================================================================================= SOURCE CODE FILE: mobilenetv2.py LINES: 1 SIZE: 9.74 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\mobilenetv2.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Callable, List, Optional import torch from torch import nn, Tensor from ..ops.misc import Conv2dNormActivation from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface __all__ = ["MobileNetV2", "MobileNet_V2_Weights", "mobilenet_v2"] # necessary for backwards compatibility class InvertedResidual(nn.Module): def __init__( self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() self.stride = stride if stride not in [1, 2]: raise ValueError(f"stride should be 1 or 2 instead of {stride}") if norm_layer is None: norm_layer = nn.BatchNorm2d hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers: List[nn.Module] = [] if expand_ratio != 1: # pw layers.append( Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6) ) layers.extend( [ # dw Conv2dNormActivation( hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer, activation_layer=nn.ReLU6, ), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), norm_layer(oup), ] ) self.conv = nn.Sequential(*layers) self.out_channels = oup self._is_cn = stride > 1 def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__( self, num_classes: int = 1000, width_mult: float = 1.0, inverted_residual_setting: Optional[List[List[int]]] = None, round_nearest: int = 8, block: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, dropout: float = 0.2, ) -> None: """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet norm_layer: Module specifying the normalization layer to use dropout (float): The droupout probability """ super().__init__() _log_api_usage_once(self) if block is None: block = InvertedResidual if norm_layer is None: norm_layer = nn.BatchNorm2d input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError( f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}" ) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features: List[nn.Module] = [ Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6) ] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer)) input_channel = output_channel # building last several layers features.append( Conv2dNormActivation( input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6 ) ) # make it nn.Sequential self.features = nn.Sequential(*features) # building classifier self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(self.last_channel, num_classes), ) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out") if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def _forward_impl(self, x: Tensor) -> Tensor: # This exists since TorchScript doesn't support inheritance, so the superclass method # (this one) needs to have a name other than `forward` that can be accessed in a subclass x = self.features(x) # Cannot use "squeeze" as batch-size can be 1 x = nn.functional.adaptive_avg_pool2d(x, (1, 1)) x = torch.flatten(x, 1) x = self.classifier(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) _COMMON_META = { "num_params": 3504872, "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, } class MobileNet_V2_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/mobilenet_v2-b0353104.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2", "_metrics": { "ImageNet-1K": { "acc@1": 71.878, "acc@5": 90.286, } }, "_ops": 0.301, "_file_size": 13.555, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning", "_metrics": { "ImageNet-1K": { "acc@1": 72.154, "acc@5": 90.822, } }, "_ops": 0.301, "_file_size": 13.598, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 @register_model() @handle_legacy_interface(weights=("pretrained", MobileNet_V2_Weights.IMAGENET1K_V1)) def mobilenet_v2( *, weights: Optional[MobileNet_V2_Weights] = None, progress: bool = True, **kwargs: Any ) -> MobileNetV2: """MobileNetV2 architecture from the `MobileNetV2: Inverted Residuals and Linear Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper. Args: weights (:class:`~torchvision.models.MobileNet_V2_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MobileNet_V2_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.mobilenetv2.MobileNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.MobileNet_V2_Weights :members: """ weights = MobileNet_V2_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = MobileNetV2(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
========================================================================================================================= SOURCE CODE FILE: mobilenetv3.py LINES: 1 SIZE: 16.31 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\mobilenetv3.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Callable, List, Optional, Sequence import torch from torch import nn, Tensor from ..ops.misc import Conv2dNormActivation, SqueezeExcitation as SElayer from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface __all__ = [ "MobileNetV3", "MobileNet_V3_Large_Weights", "MobileNet_V3_Small_Weights", "mobilenet_v3_large", "mobilenet_v3_small", ] class InvertedResidualConfig: # Stores information listed at Tables 1 and 2 of the MobileNetV3 paper def __init__( self, input_channels: int, kernel: int, expanded_channels: int, out_channels: int, use_se: bool, activation: str, stride: int, dilation: int, width_mult: float, ): self.input_channels = self.adjust_channels(input_channels, width_mult) self.kernel = kernel self.expanded_channels = self.adjust_channels(expanded_channels, width_mult) self.out_channels = self.adjust_channels(out_channels, width_mult) self.use_se = use_se self.use_hs = activation == "HS" self.stride = stride self.dilation = dilation @staticmethod def adjust_channels(channels: int, width_mult: float): return _make_divisible(channels * width_mult, 8) class InvertedResidual(nn.Module): # Implemented as described at section 5 of MobileNetV3 paper def __init__( self, cnf: InvertedResidualConfig, norm_layer: Callable[..., nn.Module], se_layer: Callable[..., nn.Module] = partial(SElayer, scale_activation=nn.Hardsigmoid), ): super().__init__() if not (1 <= cnf.stride <= 2): raise ValueError("illegal stride value") self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels layers: List[nn.Module] = [] activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU # expand if cnf.expanded_channels != cnf.input_channels: layers.append( Conv2dNormActivation( cnf.input_channels, cnf.expanded_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=activation_layer, ) ) # depthwise stride = 1 if cnf.dilation > 1 else cnf.stride layers.append( Conv2dNormActivation( cnf.expanded_channels, cnf.expanded_channels, kernel_size=cnf.kernel, stride=stride, dilation=cnf.dilation, groups=cnf.expanded_channels, norm_layer=norm_layer, activation_layer=activation_layer, ) ) if cnf.use_se: squeeze_channels = _make_divisible(cnf.expanded_channels // 4, 8) layers.append(se_layer(cnf.expanded_channels, squeeze_channels)) # project layers.append( Conv2dNormActivation( cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None ) ) self.block = nn.Sequential(*layers) self.out_channels = cnf.out_channels self._is_cn = cnf.stride > 1 def forward(self, input: Tensor) -> Tensor: result = self.block(input) if self.use_res_connect: result += input return result class MobileNetV3(nn.Module): def __init__( self, inverted_residual_setting: List[InvertedResidualConfig], last_channel: int, num_classes: int = 1000, block: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, dropout: float = 0.2, **kwargs: Any, ) -> None: """ MobileNet V3 main class Args: inverted_residual_setting (List[InvertedResidualConfig]): Network structure last_channel (int): The number of channels on the penultimate layer num_classes (int): Number of classes block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use dropout (float): The droupout probability """ super().__init__() _log_api_usage_once(self) if not inverted_residual_setting: raise ValueError("The inverted_residual_setting should not be empty") elif not ( isinstance(inverted_residual_setting, Sequence) and all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting]) ): raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]") if block is None: block = InvertedResidual if norm_layer is None: norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01) layers: List[nn.Module] = [] # building first layer firstconv_output_channels = inverted_residual_setting[0].input_channels layers.append( Conv2dNormActivation( 3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.Hardswish, ) ) # building inverted residual blocks for cnf in inverted_residual_setting: layers.append(block(cnf, norm_layer)) # building last several layers lastconv_input_channels = inverted_residual_setting[-1].out_channels lastconv_output_channels = 6 * lastconv_input_channels layers.append( Conv2dNormActivation( lastconv_input_channels, lastconv_output_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.Hardswish, ) ) self.features = nn.Sequential(*layers) self.avgpool = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Sequential( nn.Linear(lastconv_output_channels, last_channel), nn.Hardswish(inplace=True), nn.Dropout(p=dropout, inplace=True), nn.Linear(last_channel, num_classes), ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out") if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def _forward_impl(self, x: Tensor) -> Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _mobilenet_v3_conf( arch: str, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False, **kwargs: Any ): reduce_divider = 2 if reduced_tail else 1 dilation = 2 if dilated else 1 bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult) adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult) if arch == "mobilenet_v3_large": inverted_residual_setting = [ bneck_conf(16, 3, 16, 16, False, "RE", 1, 1), bneck_conf(16, 3, 64, 24, False, "RE", 2, 1), # C1 bneck_conf(24, 3, 72, 24, False, "RE", 1, 1), bneck_conf(24, 5, 72, 40, True, "RE", 2, 1), # C2 bneck_conf(40, 5, 120, 40, True, "RE", 1, 1), bneck_conf(40, 5, 120, 40, True, "RE", 1, 1), bneck_conf(40, 3, 240, 80, False, "HS", 2, 1), # C3 bneck_conf(80, 3, 200, 80, False, "HS", 1, 1), bneck_conf(80, 3, 184, 80, False, "HS", 1, 1), bneck_conf(80, 3, 184, 80, False, "HS", 1, 1), bneck_conf(80, 3, 480, 112, True, "HS", 1, 1), bneck_conf(112, 3, 672, 112, True, "HS", 1, 1), bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation), # C4 bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation), bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation), ] last_channel = adjust_channels(1280 // reduce_divider) # C5 elif arch == "mobilenet_v3_small": inverted_residual_setting = [ bneck_conf(16, 3, 16, 16, True, "RE", 2, 1), # C1 bneck_conf(16, 3, 72, 24, False, "RE", 2, 1), # C2 bneck_conf(24, 3, 88, 24, False, "RE", 1, 1), bneck_conf(24, 5, 96, 40, True, "HS", 2, 1), # C3 bneck_conf(40, 5, 240, 40, True, "HS", 1, 1), bneck_conf(40, 5, 240, 40, True, "HS", 1, 1), bneck_conf(40, 5, 120, 48, True, "HS", 1, 1), bneck_conf(48, 5, 144, 48, True, "HS", 1, 1), bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation), # C4 bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation), bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation), ] last_channel = adjust_channels(1024 // reduce_divider) # C5 else: raise ValueError(f"Unsupported model type {arch}") return inverted_residual_setting, last_channel def _mobilenet_v3( inverted_residual_setting: List[InvertedResidualConfig], last_channel: int, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> MobileNetV3: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, } class MobileNet_V3_Large_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 5483032, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small", "_metrics": { "ImageNet-1K": { "acc@1": 74.042, "acc@5": 91.340, } }, "_ops": 0.217, "_file_size": 21.114, "_docs": """These weights were trained from scratch by using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/mobilenet_v3_large-5c1a4163.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 5483032, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning", "_metrics": { "ImageNet-1K": { "acc@1": 75.274, "acc@5": 92.566, } }, "_ops": 0.217, "_file_size": 21.107, "_docs": """ These weights improve marginally upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class MobileNet_V3_Small_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 2542856, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small", "_metrics": { "ImageNet-1K": { "acc@1": 67.668, "acc@5": 87.402, } }, "_ops": 0.057, "_file_size": 9.829, "_docs": """ These weights improve upon the results of the original paper by using a simple training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", MobileNet_V3_Large_Weights.IMAGENET1K_V1)) def mobilenet_v3_large( *, weights: Optional[MobileNet_V3_Large_Weights] = None, progress: bool = True, **kwargs: Any ) -> MobileNetV3: """ Constructs a large MobileNetV3 architecture from `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__. Args: weights (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MobileNet_V3_Large_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_ for more details about this class. .. autoclass:: torchvision.models.MobileNet_V3_Large_Weights :members: """ weights = MobileNet_V3_Large_Weights.verify(weights) inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs) return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", MobileNet_V3_Small_Weights.IMAGENET1K_V1)) def mobilenet_v3_small( *, weights: Optional[MobileNet_V3_Small_Weights] = None, progress: bool = True, **kwargs: Any ) -> MobileNetV3: """ Constructs a small MobileNetV3 architecture from `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__. Args: weights (:class:`~torchvision.models.MobileNet_V3_Small_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.MobileNet_V3_Small_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_ for more details about this class. .. autoclass:: torchvision.models.MobileNet_V3_Small_Weights :members: """ weights = MobileNet_V3_Small_Weights.verify(weights) inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_small", **kwargs) return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs) ```
=================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.02 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\optical_flow\__init__.py ENCODING: utf-8 ```py from .raft import * ```
================================================================================================================================= SOURCE CODE FILE: _utils.py LINES: 1 SIZE: 2.08 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\optical_flow\_utils.py ENCODING: utf-8 ```py from typing import Optional import torch import torch.nn.functional as F from torch import Tensor def grid_sample(img: Tensor, absolute_grid: Tensor, mode: str = "bilinear", align_corners: Optional[bool] = None): """Same as torch's grid_sample, with absolute pixel coordinates instead of normalized coordinates.""" h, w = img.shape[-2:] xgrid, ygrid = absolute_grid.split([1, 1], dim=-1) xgrid = 2 * xgrid / (w - 1) - 1 # Adding condition if h > 1 to enable this function be reused in raft-stereo if h > 1: ygrid = 2 * ygrid / (h - 1) - 1 normalized_grid = torch.cat([xgrid, ygrid], dim=-1) return F.grid_sample(img, normalized_grid, mode=mode, align_corners=align_corners) def make_coords_grid(batch_size: int, h: int, w: int, device: str = "cpu"): device = torch.device(device) coords = torch.meshgrid(torch.arange(h, device=device), torch.arange(w, device=device), indexing="ij") coords = torch.stack(coords[::-1], dim=0).float() return coords[None].repeat(batch_size, 1, 1, 1) def upsample_flow(flow, up_mask: Optional[Tensor] = None, factor: int = 8): """Upsample flow by the input factor (default 8). If up_mask is None we just interpolate. If up_mask is specified, we upsample using a convex combination of its weights. See paper page 8 and appendix B. Note that in appendix B the picture assumes a downsample factor of 4 instead of 8. """ batch_size, num_channels, h, w = flow.shape new_h, new_w = h * factor, w * factor if up_mask is None: return factor * F.interpolate(flow, size=(new_h, new_w), mode="bilinear", align_corners=True) up_mask = up_mask.view(batch_size, 1, 9, factor, factor, h, w) up_mask = torch.softmax(up_mask, dim=2) # "convex" == weights sum to 1 upsampled_flow = F.unfold(factor * flow, kernel_size=3, padding=1).view(batch_size, num_channels, 9, 1, 1, h, w) upsampled_flow = torch.sum(up_mask * upsampled_flow, dim=2) return upsampled_flow.permute(0, 1, 4, 2, 5, 3).reshape(batch_size, num_channels, new_h, new_w) ```
=============================================================================================================================== SOURCE CODE FILE: raft.py LINES: 1 SIZE: 39.98 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\optical_flow\raft.py ENCODING: utf-8 ```py from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.nn.modules.batchnorm import BatchNorm2d from torch.nn.modules.instancenorm import InstanceNorm2d from torchvision.ops import Conv2dNormActivation from ...transforms._presets import OpticalFlow from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._utils import handle_legacy_interface from ._utils import grid_sample, make_coords_grid, upsample_flow __all__ = ( "RAFT", "raft_large", "raft_small", "Raft_Large_Weights", "Raft_Small_Weights", ) class ResidualBlock(nn.Module): """Slightly modified Residual block with extra relu and biases.""" def __init__(self, in_channels, out_channels, *, norm_layer, stride=1, always_project: bool = False): super().__init__() # Note regarding bias=True: # Usually we can pass bias=False in conv layers followed by a norm layer. # But in the RAFT training reference, the BatchNorm2d layers are only activated for the first dataset, # and frozen for the rest of the training process (i.e. set as eval()). The bias term is thus still useful # for the rest of the datasets. Technically, we could remove the bias for other norm layers like Instance norm # because these aren't frozen, but we don't bother (also, we wouldn't be able to load the original weights). self.convnormrelu1 = Conv2dNormActivation( in_channels, out_channels, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True ) self.convnormrelu2 = Conv2dNormActivation( out_channels, out_channels, norm_layer=norm_layer, kernel_size=3, bias=True ) # make mypy happy self.downsample: nn.Module if stride == 1 and not always_project: self.downsample = nn.Identity() else: self.downsample = Conv2dNormActivation( in_channels, out_channels, norm_layer=norm_layer, kernel_size=1, stride=stride, bias=True, activation_layer=None, ) self.relu = nn.ReLU(inplace=True) def forward(self, x): y = x y = self.convnormrelu1(y) y = self.convnormrelu2(y) x = self.downsample(x) return self.relu(x + y) class BottleneckBlock(nn.Module): """Slightly modified BottleNeck block (extra relu and biases)""" def __init__(self, in_channels, out_channels, *, norm_layer, stride=1): super().__init__() # See note in ResidualBlock for the reason behind bias=True self.convnormrelu1 = Conv2dNormActivation( in_channels, out_channels // 4, norm_layer=norm_layer, kernel_size=1, bias=True ) self.convnormrelu2 = Conv2dNormActivation( out_channels // 4, out_channels // 4, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True ) self.convnormrelu3 = Conv2dNormActivation( out_channels // 4, out_channels, norm_layer=norm_layer, kernel_size=1, bias=True ) self.relu = nn.ReLU(inplace=True) if stride == 1: self.downsample = nn.Identity() else: self.downsample = Conv2dNormActivation( in_channels, out_channels, norm_layer=norm_layer, kernel_size=1, stride=stride, bias=True, activation_layer=None, ) def forward(self, x): y = x y = self.convnormrelu1(y) y = self.convnormrelu2(y) y = self.convnormrelu3(y) x = self.downsample(x) return self.relu(x + y) class FeatureEncoder(nn.Module): """The feature encoder, used both as the actual feature encoder, and as the context encoder. It must downsample its input by 8. """ def __init__( self, *, block=ResidualBlock, layers=(64, 64, 96, 128, 256), strides=(2, 1, 2, 2), norm_layer=nn.BatchNorm2d ): super().__init__() if len(layers) != 5: raise ValueError(f"The expected number of layers is 5, instead got {len(layers)}") # See note in ResidualBlock for the reason behind bias=True self.convnormrelu = Conv2dNormActivation( 3, layers[0], norm_layer=norm_layer, kernel_size=7, stride=strides[0], bias=True ) self.layer1 = self._make_2_blocks(block, layers[0], layers[1], norm_layer=norm_layer, first_stride=strides[1]) self.layer2 = self._make_2_blocks(block, layers[1], layers[2], norm_layer=norm_layer, first_stride=strides[2]) self.layer3 = self._make_2_blocks(block, layers[2], layers[3], norm_layer=norm_layer, first_stride=strides[3]) self.conv = nn.Conv2d(layers[3], layers[4], kernel_size=1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) num_downsamples = len(list(filter(lambda s: s == 2, strides))) self.output_dim = layers[-1] self.downsample_factor = 2**num_downsamples def _make_2_blocks(self, block, in_channels, out_channels, norm_layer, first_stride): block1 = block(in_channels, out_channels, norm_layer=norm_layer, stride=first_stride) block2 = block(out_channels, out_channels, norm_layer=norm_layer, stride=1) return nn.Sequential(block1, block2) def forward(self, x): x = self.convnormrelu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.conv(x) return x class MotionEncoder(nn.Module): """The motion encoder, part of the update block. Takes the current predicted flow and the correlation features as input and returns an encoded version of these. """ def __init__(self, *, in_channels_corr, corr_layers=(256, 192), flow_layers=(128, 64), out_channels=128): super().__init__() if len(flow_layers) != 2: raise ValueError(f"The expected number of flow_layers is 2, instead got {len(flow_layers)}") if len(corr_layers) not in (1, 2): raise ValueError(f"The number of corr_layers should be 1 or 2, instead got {len(corr_layers)}") self.convcorr1 = Conv2dNormActivation(in_channels_corr, corr_layers[0], norm_layer=None, kernel_size=1) if len(corr_layers) == 2: self.convcorr2 = Conv2dNormActivation(corr_layers[0], corr_layers[1], norm_layer=None, kernel_size=3) else: self.convcorr2 = nn.Identity() self.convflow1 = Conv2dNormActivation(2, flow_layers[0], norm_layer=None, kernel_size=7) self.convflow2 = Conv2dNormActivation(flow_layers[0], flow_layers[1], norm_layer=None, kernel_size=3) # out_channels - 2 because we cat the flow (2 channels) at the end self.conv = Conv2dNormActivation( corr_layers[-1] + flow_layers[-1], out_channels - 2, norm_layer=None, kernel_size=3 ) self.out_channels = out_channels def forward(self, flow, corr_features): corr = self.convcorr1(corr_features) corr = self.convcorr2(corr) flow_orig = flow flow = self.convflow1(flow) flow = self.convflow2(flow) corr_flow = torch.cat([corr, flow], dim=1) corr_flow = self.conv(corr_flow) return torch.cat([corr_flow, flow_orig], dim=1) class ConvGRU(nn.Module): """Convolutional Gru unit.""" def __init__(self, *, input_size, hidden_size, kernel_size, padding): super().__init__() self.convz = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding) self.convr = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding) self.convq = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding) def forward(self, h, x): hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz(hx)) r = torch.sigmoid(self.convr(hx)) q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1))) h = (1 - z) * h + z * q return h def _pass_through_h(h, _): # Declared here for torchscript return h class RecurrentBlock(nn.Module): """Recurrent block, part of the update block. Takes the current hidden state and the concatenation of (motion encoder output, context) as input. Returns an updated hidden state. """ def __init__(self, *, input_size, hidden_size, kernel_size=((1, 5), (5, 1)), padding=((0, 2), (2, 0))): super().__init__() if len(kernel_size) != len(padding): raise ValueError( f"kernel_size should have the same length as padding, instead got len(kernel_size) = {len(kernel_size)} and len(padding) = {len(padding)}" ) if len(kernel_size) not in (1, 2): raise ValueError(f"kernel_size should either 1 or 2, instead got {len(kernel_size)}") self.convgru1 = ConvGRU( input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[0], padding=padding[0] ) if len(kernel_size) == 2: self.convgru2 = ConvGRU( input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[1], padding=padding[1] ) else: self.convgru2 = _pass_through_h self.hidden_size = hidden_size def forward(self, h, x): h = self.convgru1(h, x) h = self.convgru2(h, x) return h class FlowHead(nn.Module): """Flow head, part of the update block. Takes the hidden state of the recurrent unit as input, and outputs the predicted "delta flow". """ def __init__(self, *, in_channels, hidden_size): super().__init__() self.conv1 = nn.Conv2d(in_channels, hidden_size, 3, padding=1) self.conv2 = nn.Conv2d(hidden_size, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class UpdateBlock(nn.Module): """The update block which contains the motion encoder, the recurrent block, and the flow head. It must expose a ``hidden_state_size`` attribute which is the hidden state size of its recurrent block. """ def __init__(self, *, motion_encoder, recurrent_block, flow_head): super().__init__() self.motion_encoder = motion_encoder self.recurrent_block = recurrent_block self.flow_head = flow_head self.hidden_state_size = recurrent_block.hidden_size def forward(self, hidden_state, context, corr_features, flow): motion_features = self.motion_encoder(flow, corr_features) x = torch.cat([context, motion_features], dim=1) hidden_state = self.recurrent_block(hidden_state, x) delta_flow = self.flow_head(hidden_state) return hidden_state, delta_flow class MaskPredictor(nn.Module): """Mask predictor to be used when upsampling the predicted flow. It takes the hidden state of the recurrent unit as input and outputs the mask. This is not used in the raft-small model. """ def __init__(self, *, in_channels, hidden_size, multiplier=0.25): super().__init__() self.convrelu = Conv2dNormActivation(in_channels, hidden_size, norm_layer=None, kernel_size=3) # 8 * 8 * 9 because the predicted flow is downsampled by 8, from the downsampling of the initial FeatureEncoder, # and we interpolate with all 9 surrounding neighbors. See paper and appendix B. self.conv = nn.Conv2d(hidden_size, 8 * 8 * 9, 1, padding=0) # In the original code, they use a factor of 0.25 to "downweight the gradients" of that branch. # See e.g. https://github.com/princeton-vl/RAFT/issues/119#issuecomment-953950419 # or https://github.com/princeton-vl/RAFT/issues/24. # It doesn't seem to affect epe significantly and can likely be set to 1. self.multiplier = multiplier def forward(self, x): x = self.convrelu(x) x = self.conv(x) return self.multiplier * x class CorrBlock(nn.Module): """The correlation block. Creates a correlation pyramid with ``num_levels`` levels from the outputs of the feature encoder, and then indexes from this pyramid to create correlation features. The "indexing" of a given centroid pixel x' is done by concatenating its surrounding neighbors that are within a ``radius``, according to the infinity norm (see paper section 3.2). Note: typo in the paper, it should be infinity norm, not 1-norm. """ def __init__(self, *, num_levels: int = 4, radius: int = 4): super().__init__() self.num_levels = num_levels self.radius = radius self.corr_pyramid: List[Tensor] = [torch.tensor(0)] # useless, but torchscript is otherwise confused :') # The neighborhood of a centroid pixel x' is {x' + delta, ||delta||_inf <= radius} # so it's a square surrounding x', and its sides have a length of 2 * radius + 1 # The paper claims that it's ||.||_1 instead of ||.||_inf but it's a typo: # https://github.com/princeton-vl/RAFT/issues/122 self.out_channels = num_levels * (2 * radius + 1) ** 2 def build_pyramid(self, fmap1, fmap2): """Build the correlation pyramid from two feature maps. The correlation volume is first computed as the dot product of each pair (pixel_in_fmap1, pixel_in_fmap2) The last 2 dimensions of the correlation volume are then pooled num_levels times at different resolutions to build the correlation pyramid. """ if fmap1.shape != fmap2.shape: raise ValueError( f"Input feature maps should have the same shape, instead got {fmap1.shape} (fmap1.shape) != {fmap2.shape} (fmap2.shape)" ) # Explaining min_fmap_size below: the fmaps are down-sampled (num_levels - 1) times by a factor of 2. # The last corr_volume most have at least 2 values (hence the 2* factor), otherwise grid_sample() would # produce nans in its output. min_fmap_size = 2 * (2 ** (self.num_levels - 1)) if any(fmap_size < min_fmap_size for fmap_size in fmap1.shape[-2:]): raise ValueError( "Feature maps are too small to be down-sampled by the correlation pyramid. " f"H and W of feature maps should be at least {min_fmap_size}; got: {fmap1.shape[-2:]}. " "Remember that input images to the model are downsampled by 8, so that means their " f"dimensions should be at least 8 * {min_fmap_size} = {8 * min_fmap_size}." ) corr_volume = self._compute_corr_volume(fmap1, fmap2) batch_size, h, w, num_channels, _, _ = corr_volume.shape # _, _ = h, w corr_volume = corr_volume.reshape(batch_size * h * w, num_channels, h, w) self.corr_pyramid = [corr_volume] for _ in range(self.num_levels - 1): corr_volume = F.avg_pool2d(corr_volume, kernel_size=2, stride=2) self.corr_pyramid.append(corr_volume) def index_pyramid(self, centroids_coords): """Return correlation features by indexing from the pyramid.""" neighborhood_side_len = 2 * self.radius + 1 # see note in __init__ about out_channels di = torch.linspace(-self.radius, self.radius, neighborhood_side_len) dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len) delta = torch.stack(torch.meshgrid(di, dj, indexing="ij"), dim=-1).to(centroids_coords.device) delta = delta.view(1, neighborhood_side_len, neighborhood_side_len, 2) batch_size, _, h, w = centroids_coords.shape # _ = 2 centroids_coords = centroids_coords.permute(0, 2, 3, 1).reshape(batch_size * h * w, 1, 1, 2) indexed_pyramid = [] for corr_volume in self.corr_pyramid: sampling_coords = centroids_coords + delta # end shape is (batch_size * h * w, side_len, side_len, 2) indexed_corr_volume = grid_sample(corr_volume, sampling_coords, align_corners=True, mode="bilinear").view( batch_size, h, w, -1 ) indexed_pyramid.append(indexed_corr_volume) centroids_coords = centroids_coords / 2 corr_features = torch.cat(indexed_pyramid, dim=-1).permute(0, 3, 1, 2).contiguous() expected_output_shape = (batch_size, self.out_channels, h, w) if corr_features.shape != expected_output_shape: raise ValueError( f"Output shape of index pyramid is incorrect. Should be {expected_output_shape}, got {corr_features.shape}" ) return corr_features def _compute_corr_volume(self, fmap1, fmap2): batch_size, num_channels, h, w = fmap1.shape fmap1 = fmap1.view(batch_size, num_channels, h * w) fmap2 = fmap2.view(batch_size, num_channels, h * w) corr = torch.matmul(fmap1.transpose(1, 2), fmap2) corr = corr.view(batch_size, h, w, 1, h, w) return corr / torch.sqrt(torch.tensor(num_channels)) class RAFT(nn.Module): def __init__(self, *, feature_encoder, context_encoder, corr_block, update_block, mask_predictor=None): """RAFT model from `RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`_. args: feature_encoder (nn.Module): The feature encoder. It must downsample the input by 8. Its input is the concatenation of ``image1`` and ``image2``. context_encoder (nn.Module): The context encoder. It must downsample the input by 8. Its input is ``image1``. As in the original implementation, its output will be split into 2 parts: - one part will be used as the actual "context", passed to the recurrent unit of the ``update_block`` - one part will be used to initialize the hidden state of the recurrent unit of the ``update_block`` These 2 parts are split according to the ``hidden_state_size`` of the ``update_block``, so the output of the ``context_encoder`` must be strictly greater than ``hidden_state_size``. corr_block (nn.Module): The correlation block, which creates a correlation pyramid from the output of the ``feature_encoder``, and then indexes from this pyramid to create correlation features. It must expose 2 methods: - a ``build_pyramid`` method that takes ``feature_map_1`` and ``feature_map_2`` as input (these are the output of the ``feature_encoder``). - a ``index_pyramid`` method that takes the coordinates of the centroid pixels as input, and returns the correlation features. See paper section 3.2. It must expose an ``out_channels`` attribute. update_block (nn.Module): The update block, which contains the motion encoder, the recurrent unit, and the flow head. It takes as input the hidden state of its recurrent unit, the context, the correlation features, and the current predicted flow. It outputs an updated hidden state, and the ``delta_flow`` prediction (see paper appendix A). It must expose a ``hidden_state_size`` attribute. mask_predictor (nn.Module, optional): Predicts the mask that will be used to upsample the predicted flow. The output channel must be 8 * 8 * 9 - see paper section 3.3, and Appendix B. If ``None`` (default), the flow is upsampled using interpolation. """ super().__init__() _log_api_usage_once(self) self.feature_encoder = feature_encoder self.context_encoder = context_encoder self.corr_block = corr_block self.update_block = update_block self.mask_predictor = mask_predictor if not hasattr(self.update_block, "hidden_state_size"): raise ValueError("The update_block parameter should expose a 'hidden_state_size' attribute.") def forward(self, image1, image2, num_flow_updates: int = 12): batch_size, _, h, w = image1.shape if (h, w) != image2.shape[-2:]: raise ValueError(f"input images should have the same shape, instead got ({h}, {w}) != {image2.shape[-2:]}") if not ((h % 8 == 0) and (w % 8 == 0)): raise ValueError(f"input image H and W should be divisible by 8, instead got {h} (h) and {w} (w)") fmaps = self.feature_encoder(torch.cat([image1, image2], dim=0)) fmap1, fmap2 = torch.chunk(fmaps, chunks=2, dim=0) if fmap1.shape[-2:] != (h // 8, w // 8): raise ValueError("The feature encoder should downsample H and W by 8") self.corr_block.build_pyramid(fmap1, fmap2) context_out = self.context_encoder(image1) if context_out.shape[-2:] != (h // 8, w // 8): raise ValueError("The context encoder should downsample H and W by 8") # As in the original paper, the actual output of the context encoder is split in 2 parts: # - one part is used to initialize the hidden state of the recurent units of the update block # - the rest is the "actual" context. hidden_state_size = self.update_block.hidden_state_size out_channels_context = context_out.shape[1] - hidden_state_size if out_channels_context <= 0: raise ValueError( f"The context encoder outputs {context_out.shape[1]} channels, but it should have at strictly more than hidden_state={hidden_state_size} channels" ) hidden_state, context = torch.split(context_out, [hidden_state_size, out_channels_context], dim=1) hidden_state = torch.tanh(hidden_state) context = F.relu(context) coords0 = make_coords_grid(batch_size, h // 8, w // 8).to(fmap1.device) coords1 = make_coords_grid(batch_size, h // 8, w // 8).to(fmap1.device) flow_predictions = [] for _ in range(num_flow_updates): coords1 = coords1.detach() # Don't backpropagate gradients through this branch, see paper corr_features = self.corr_block.index_pyramid(centroids_coords=coords1) flow = coords1 - coords0 hidden_state, delta_flow = self.update_block(hidden_state, context, corr_features, flow) coords1 = coords1 + delta_flow up_mask = None if self.mask_predictor is None else self.mask_predictor(hidden_state) upsampled_flow = upsample_flow(flow=(coords1 - coords0), up_mask=up_mask) flow_predictions.append(upsampled_flow) return flow_predictions _COMMON_META = { "min_size": (128, 128), } class Raft_Large_Weights(WeightsEnum): """The metrics reported here are as follows. ``epe`` is the "end-point-error" and indicates how far (in pixels) the predicted flow is from its true value. This is averaged over all pixels of all images. ``per_image_epe`` is similar, but the average is different: the epe is first computed on each image independently, and then averaged over all images. This corresponds to "Fl-epe" (sometimes written "F1-epe") in the original paper, and it's only used on Kitti. ``fl-all`` is also a Kitti-specific metric, defined by the author of the dataset and used for the Kitti leaderboard. It corresponds to the average of pixels whose epe is either <3px, or <5% of flow's 2-norm. """ C_T_V1 = Weights( # Weights ported from https://github.com/princeton-vl/RAFT url="https://download.pytorch.org/models/raft_large_C_T_V1-22a6c225.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 5257536, "recipe": "https://github.com/princeton-vl/RAFT", "_metrics": { "Sintel-Train-Cleanpass": {"epe": 1.4411}, "Sintel-Train-Finalpass": {"epe": 2.7894}, "Kitti-Train": {"per_image_epe": 5.0172, "fl_all": 17.4506}, }, "_ops": 211.007, "_file_size": 20.129, "_docs": """These weights were ported from the original paper. They are trained on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D`.""", }, ) C_T_V2 = Weights( url="https://download.pytorch.org/models/raft_large_C_T_V2-1bb1363a.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 5257536, "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow", "_metrics": { "Sintel-Train-Cleanpass": {"epe": 1.3822}, "Sintel-Train-Finalpass": {"epe": 2.7161}, "Kitti-Train": {"per_image_epe": 4.5118, "fl_all": 16.0679}, }, "_ops": 211.007, "_file_size": 20.129, "_docs": """These weights were trained from scratch on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D`.""", }, ) C_T_SKHT_V1 = Weights( # Weights ported from https://github.com/princeton-vl/RAFT url="https://download.pytorch.org/models/raft_large_C_T_SKHT_V1-0b8c9e55.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 5257536, "recipe": "https://github.com/princeton-vl/RAFT", "_metrics": { "Sintel-Test-Cleanpass": {"epe": 1.94}, "Sintel-Test-Finalpass": {"epe": 3.18}, }, "_ops": 211.007, "_file_size": 20.129, "_docs": """ These weights were ported from the original paper. They are trained on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D` and fine-tuned on Sintel. The Sintel fine-tuning step is a combination of :class:`~torchvision.datasets.Sintel`, :class:`~torchvision.datasets.KittiFlow`, :class:`~torchvision.datasets.HD1K`, and :class:`~torchvision.datasets.FlyingThings3D` (clean pass). """, }, ) C_T_SKHT_V2 = Weights( url="https://download.pytorch.org/models/raft_large_C_T_SKHT_V2-ff5fadd5.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 5257536, "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow", "_metrics": { "Sintel-Test-Cleanpass": {"epe": 1.819}, "Sintel-Test-Finalpass": {"epe": 3.067}, }, "_ops": 211.007, "_file_size": 20.129, "_docs": """ These weights were trained from scratch. They are pre-trained on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D` and then fine-tuned on Sintel. The Sintel fine-tuning step is a combination of :class:`~torchvision.datasets.Sintel`, :class:`~torchvision.datasets.KittiFlow`, :class:`~torchvision.datasets.HD1K`, and :class:`~torchvision.datasets.FlyingThings3D` (clean pass). """, }, ) C_T_SKHT_K_V1 = Weights( # Weights ported from https://github.com/princeton-vl/RAFT url="https://download.pytorch.org/models/raft_large_C_T_SKHT_K_V1-4a6a5039.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 5257536, "recipe": "https://github.com/princeton-vl/RAFT", "_metrics": { "Kitti-Test": {"fl_all": 5.10}, }, "_ops": 211.007, "_file_size": 20.129, "_docs": """ These weights were ported from the original paper. They are pre-trained on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D`, fine-tuned on Sintel, and then fine-tuned on :class:`~torchvision.datasets.KittiFlow`. The Sintel fine-tuning step was described above. """, }, ) C_T_SKHT_K_V2 = Weights( url="https://download.pytorch.org/models/raft_large_C_T_SKHT_K_V2-b5c70766.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 5257536, "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow", "_metrics": { "Kitti-Test": {"fl_all": 5.19}, }, "_ops": 211.007, "_file_size": 20.129, "_docs": """ These weights were trained from scratch. They are pre-trained on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D`, fine-tuned on Sintel, and then fine-tuned on :class:`~torchvision.datasets.KittiFlow`. The Sintel fine-tuning step was described above. """, }, ) DEFAULT = C_T_SKHT_V2 class Raft_Small_Weights(WeightsEnum): """The metrics reported here are as follows. ``epe`` is the "end-point-error" and indicates how far (in pixels) the predicted flow is from its true value. This is averaged over all pixels of all images. ``per_image_epe`` is similar, but the average is different: the epe is first computed on each image independently, and then averaged over all images. This corresponds to "Fl-epe" (sometimes written "F1-epe") in the original paper, and it's only used on Kitti. ``fl-all`` is also a Kitti-specific metric, defined by the author of the dataset and used for the Kitti leaderboard. It corresponds to the average of pixels whose epe is either <3px, or <5% of flow's 2-norm. """ C_T_V1 = Weights( # Weights ported from https://github.com/princeton-vl/RAFT url="https://download.pytorch.org/models/raft_small_C_T_V1-ad48884c.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 990162, "recipe": "https://github.com/princeton-vl/RAFT", "_metrics": { "Sintel-Train-Cleanpass": {"epe": 2.1231}, "Sintel-Train-Finalpass": {"epe": 3.2790}, "Kitti-Train": {"per_image_epe": 7.6557, "fl_all": 25.2801}, }, "_ops": 47.655, "_file_size": 3.821, "_docs": """These weights were ported from the original paper. They are trained on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D`.""", }, ) C_T_V2 = Weights( url="https://download.pytorch.org/models/raft_small_C_T_V2-01064c6d.pth", transforms=OpticalFlow, meta={ **_COMMON_META, "num_params": 990162, "recipe": "https://github.com/pytorch/vision/tree/main/references/optical_flow", "_metrics": { "Sintel-Train-Cleanpass": {"epe": 1.9901}, "Sintel-Train-Finalpass": {"epe": 3.2831}, "Kitti-Train": {"per_image_epe": 7.5978, "fl_all": 25.2369}, }, "_ops": 47.655, "_file_size": 3.821, "_docs": """These weights were trained from scratch on :class:`~torchvision.datasets.FlyingChairs` + :class:`~torchvision.datasets.FlyingThings3D`.""", }, ) DEFAULT = C_T_V2 def _raft( *, weights=None, progress=False, # Feature encoder feature_encoder_layers, feature_encoder_block, feature_encoder_norm_layer, # Context encoder context_encoder_layers, context_encoder_block, context_encoder_norm_layer, # Correlation block corr_block_num_levels, corr_block_radius, # Motion encoder motion_encoder_corr_layers, motion_encoder_flow_layers, motion_encoder_out_channels, # Recurrent block recurrent_block_hidden_state_size, recurrent_block_kernel_size, recurrent_block_padding, # Flow Head flow_head_hidden_size, # Mask predictor use_mask_predictor, **kwargs, ): feature_encoder = kwargs.pop("feature_encoder", None) or FeatureEncoder( block=feature_encoder_block, layers=feature_encoder_layers, norm_layer=feature_encoder_norm_layer ) context_encoder = kwargs.pop("context_encoder", None) or FeatureEncoder( block=context_encoder_block, layers=context_encoder_layers, norm_layer=context_encoder_norm_layer ) corr_block = kwargs.pop("corr_block", None) or CorrBlock(num_levels=corr_block_num_levels, radius=corr_block_radius) update_block = kwargs.pop("update_block", None) if update_block is None: motion_encoder = MotionEncoder( in_channels_corr=corr_block.out_channels, corr_layers=motion_encoder_corr_layers, flow_layers=motion_encoder_flow_layers, out_channels=motion_encoder_out_channels, ) # See comments in forward pass of RAFT class about why we split the output of the context encoder out_channels_context = context_encoder_layers[-1] - recurrent_block_hidden_state_size recurrent_block = RecurrentBlock( input_size=motion_encoder.out_channels + out_channels_context, hidden_size=recurrent_block_hidden_state_size, kernel_size=recurrent_block_kernel_size, padding=recurrent_block_padding, ) flow_head = FlowHead(in_channels=recurrent_block_hidden_state_size, hidden_size=flow_head_hidden_size) update_block = UpdateBlock(motion_encoder=motion_encoder, recurrent_block=recurrent_block, flow_head=flow_head) mask_predictor = kwargs.pop("mask_predictor", None) if mask_predictor is None and use_mask_predictor: mask_predictor = MaskPredictor( in_channels=recurrent_block_hidden_state_size, hidden_size=256, multiplier=0.25, # See comment in MaskPredictor about this ) model = RAFT( feature_encoder=feature_encoder, context_encoder=context_encoder, corr_block=corr_block, update_block=update_block, mask_predictor=mask_predictor, **kwargs, # not really needed, all params should be consumed by now ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model @register_model() @handle_legacy_interface(weights=("pretrained", Raft_Large_Weights.C_T_SKHT_V2)) def raft_large(*, weights: Optional[Raft_Large_Weights] = None, progress=True, **kwargs) -> RAFT: """RAFT model from `RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`_. Please see the example below for a tutorial on how to use this model. Args: weights(:class:`~torchvision.models.optical_flow.Raft_Large_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.optical_flow.Raft_Large_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.optical_flow.RAFT`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py>`_ for more details about this class. .. autoclass:: torchvision.models.optical_flow.Raft_Large_Weights :members: """ weights = Raft_Large_Weights.verify(weights) return _raft( weights=weights, progress=progress, # Feature encoder feature_encoder_layers=(64, 64, 96, 128, 256), feature_encoder_block=ResidualBlock, feature_encoder_norm_layer=InstanceNorm2d, # Context encoder context_encoder_layers=(64, 64, 96, 128, 256), context_encoder_block=ResidualBlock, context_encoder_norm_layer=BatchNorm2d, # Correlation block corr_block_num_levels=4, corr_block_radius=4, # Motion encoder motion_encoder_corr_layers=(256, 192), motion_encoder_flow_layers=(128, 64), motion_encoder_out_channels=128, # Recurrent block recurrent_block_hidden_state_size=128, recurrent_block_kernel_size=((1, 5), (5, 1)), recurrent_block_padding=((0, 2), (2, 0)), # Flow head flow_head_hidden_size=256, # Mask predictor use_mask_predictor=True, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Raft_Small_Weights.C_T_V2)) def raft_small(*, weights: Optional[Raft_Small_Weights] = None, progress=True, **kwargs) -> RAFT: """RAFT "small" model from `RAFT: Recurrent All Pairs Field Transforms for Optical Flow <https://arxiv.org/abs/2003.12039>`__. Please see the example below for a tutorial on how to use this model. Args: weights(:class:`~torchvision.models.optical_flow.Raft_Small_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.optical_flow.Raft_Small_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.optical_flow.RAFT`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py>`_ for more details about this class. .. autoclass:: torchvision.models.optical_flow.Raft_Small_Weights :members: """ weights = Raft_Small_Weights.verify(weights) return _raft( weights=weights, progress=progress, # Feature encoder feature_encoder_layers=(32, 32, 64, 96, 128), feature_encoder_block=BottleneckBlock, feature_encoder_norm_layer=InstanceNorm2d, # Context encoder context_encoder_layers=(32, 32, 64, 96, 160), context_encoder_block=BottleneckBlock, context_encoder_norm_layer=None, # Correlation block corr_block_num_levels=4, corr_block_radius=3, # Motion encoder motion_encoder_corr_layers=(96,), motion_encoder_flow_layers=(64, 32), motion_encoder_out_channels=82, # Recurrent block recurrent_block_hidden_state_size=96, recurrent_block_kernel_size=(3,), recurrent_block_padding=(1,), # Flow head flow_head_hidden_size=128, # Mask predictor use_mask_predictor=False, **kwargs, ) ```
=================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.13 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\__init__.py ENCODING: utf-8 ```py from .googlenet import * from .inception import * from .mobilenet import * from .resnet import * from .shufflenetv2 import * ```
==================================================================================================================================== SOURCE CODE FILE: googlenet.py LINES: 1 SIZE: 8.10 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\googlenet.py ENCODING: utf-8 ```py import warnings from functools import partial from typing import Any, Optional, Union import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from ..googlenet import BasicConv2d, GoogLeNet, GoogLeNet_Weights, GoogLeNetOutputs, Inception, InceptionAux from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableGoogLeNet", "GoogLeNet_QuantizedWeights", "googlenet", ] class QuantizableBasicConv2d(BasicConv2d): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True) class QuantizableInception(Inception): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.cat = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.cat.cat(outputs, 1) class QuantizableInceptionAux(InceptionAux): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14 x = F.adaptive_avg_pool2d(x, (4, 4)) # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4 x = self.conv(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) # N x 2048 x = self.relu(self.fc1(x)) # N x 1024 x = self.dropout(x) # N x 1024 x = self.fc2(x) # N x 1000 (num_classes) return x class QuantizableGoogLeNet(GoogLeNet): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__( # type: ignore[misc] *args, blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], **kwargs ) self.quant = torch.ao.quantization.QuantStub() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x: Tensor) -> GoogLeNetOutputs: x = self._transform_input(x) x = self.quant(x) x, aux1, aux2 = self._forward(x) x = self.dequant(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple") return GoogLeNetOutputs(x, aux2, aux1) else: return self.eager_outputs(x, aux2, aux1) def fuse_model(self, is_qat: Optional[bool] = None) -> None: r"""Fuse conv/bn/relu modules in googlenet model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for m in self.modules(): if type(m) is QuantizableBasicConv2d: m.fuse_model(is_qat) class GoogLeNet_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/googlenet_fbgemm-c81f6644.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 6624904, "min_size": (15, 15), "categories": _IMAGENET_CATEGORIES, "backend": "fbgemm", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "unquantized": GoogLeNet_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 69.826, "acc@5": 89.404, } }, "_ops": 1.498, "_file_size": 12.618, "_docs": """ These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized weights listed below. """, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 @register_model(name="quantized_googlenet") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else GoogLeNet_Weights.IMAGENET1K_V1, ) ) def googlenet( *, weights: Optional[Union[GoogLeNet_QuantizedWeights, GoogLeNet_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableGoogLeNet: """GoogLeNet (Inception v1) model architecture from `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`__. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` or :class:`~torchvision.models.GoogLeNet_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableGoogLeNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/googlenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.GoogLeNet_QuantizedWeights :members: .. autoclass:: torchvision.models.GoogLeNet_Weights :members: :noindex: """ weights = (GoogLeNet_QuantizedWeights if quantize else GoogLeNet_Weights).verify(weights) original_aux_logits = kwargs.get("aux_logits", False) if weights is not None: if "transform_input" not in kwargs: _ovewrite_named_param(kwargs, "transform_input", True) _ovewrite_named_param(kwargs, "aux_logits", True) _ovewrite_named_param(kwargs, "init_weights", False) _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "fbgemm") model = QuantizableGoogLeNet(**kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if not original_aux_logits: model.aux_logits = False model.aux1 = None # type: ignore[assignment] model.aux2 = None # type: ignore[assignment] else: warnings.warn( "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them" ) return model ```
==================================================================================================================================== SOURCE CODE FILE: inception.py LINES: 1 SIZE: 10.83 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\inception.py ENCODING: utf-8 ```py import warnings from functools import partial from typing import Any, List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torchvision.models import inception as inception_module from torchvision.models.inception import Inception_V3_Weights, InceptionOutputs from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableInception3", "Inception_V3_QuantizedWeights", "inception_v3", ] class QuantizableBasicConv2d(inception_module.BasicConv2d): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True) class QuantizableInceptionA(inception_module.InceptionA): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionB(inception_module.InceptionB): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionC(inception_module.InceptionC): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionD(inception_module.InceptionD): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionE(inception_module.InceptionE): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop1 = nn.quantized.FloatFunctional() self.myop2 = nn.quantized.FloatFunctional() self.myop3 = nn.quantized.FloatFunctional() def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3)] branch3x3 = self.myop1.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = self.myop2.cat(branch3x3dbl, 1) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop3.cat(outputs, 1) class QuantizableInceptionAux(inception_module.InceptionAux): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] class QuantizableInception3(inception_module.Inception3): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__( # type: ignore[misc] *args, inception_blocks=[ QuantizableBasicConv2d, QuantizableInceptionA, QuantizableInceptionB, QuantizableInceptionC, QuantizableInceptionD, QuantizableInceptionE, QuantizableInceptionAux, ], **kwargs, ) self.quant = torch.ao.quantization.QuantStub() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x: Tensor) -> InceptionOutputs: x = self._transform_input(x) x = self.quant(x) x, aux = self._forward(x) x = self.dequant(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted QuantizableInception3 always returns QuantizableInception3 Tuple") return InceptionOutputs(x, aux) else: return self.eager_outputs(x, aux) def fuse_model(self, is_qat: Optional[bool] = None) -> None: r"""Fuse conv/bn/relu modules in inception model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for m in self.modules(): if type(m) is QuantizableBasicConv2d: m.fuse_model(is_qat) class Inception_V3_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/inception_v3_google_fbgemm-a2837893.pth", transforms=partial(ImageClassification, crop_size=299, resize_size=342), meta={ "num_params": 27161264, "min_size": (75, 75), "categories": _IMAGENET_CATEGORIES, "backend": "fbgemm", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "unquantized": Inception_V3_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 77.176, "acc@5": 93.354, } }, "_ops": 5.713, "_file_size": 23.146, "_docs": """ These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized weights listed below. """, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 @register_model(name="quantized_inception_v3") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: Inception_V3_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else Inception_V3_Weights.IMAGENET1K_V1, ) ) def inception_v3( *, weights: Optional[Union[Inception_V3_QuantizedWeights, Inception_V3_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableInception3: r"""Inception v3 model architecture from `Rethinking the Inception Architecture for Computer Vision <http://arxiv.org/abs/1512.00567>`__. .. note:: **Important**: In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.Inception_V3_QuantizedWeights` or :class:`~torchvision.models.Inception_V3_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.Inception_V3_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableInception3`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/inception.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.Inception_V3_QuantizedWeights :members: .. autoclass:: torchvision.models.Inception_V3_Weights :members: :noindex: """ weights = (Inception_V3_QuantizedWeights if quantize else Inception_V3_Weights).verify(weights) original_aux_logits = kwargs.get("aux_logits", False) if weights is not None: if "transform_input" not in kwargs: _ovewrite_named_param(kwargs, "transform_input", True) _ovewrite_named_param(kwargs, "aux_logits", True) _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "fbgemm") model = QuantizableInception3(**kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: if quantize and not original_aux_logits: model.aux_logits = False model.AuxLogits = None model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if not quantize and not original_aux_logits: model.aux_logits = False model.AuxLogits = None return model ```
==================================================================================================================================== SOURCE CODE FILE: mobilenet.py LINES: 1 SIZE: 0.21 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\mobilenet.py ENCODING: utf-8 ```py from .mobilenetv2 import * # noqa: F401, F403 from .mobilenetv3 import * # noqa: F401, F403 from .mobilenetv2 import __all__ as mv2_all from .mobilenetv3 import __all__ as mv3_all __all__ = mv2_all + mv3_all ```
====================================================================================================================================== SOURCE CODE FILE: mobilenetv2.py LINES: 1 SIZE: 5.90 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\mobilenetv2.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Optional, Union from torch import nn, Tensor from torch.ao.quantization import DeQuantStub, QuantStub from torchvision.models.mobilenetv2 import InvertedResidual, MobileNet_V2_Weights, MobileNetV2 from ...ops.misc import Conv2dNormActivation from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableMobileNetV2", "MobileNet_V2_QuantizedWeights", "mobilenet_v2", ] class QuantizableInvertedResidual(InvertedResidual): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.skip_add = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return self.skip_add.add(x, self.conv(x)) else: return self.conv(x) def fuse_model(self, is_qat: Optional[bool] = None) -> None: for idx in range(len(self.conv)): if type(self.conv[idx]) is nn.Conv2d: _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True) class QuantizableMobileNetV2(MobileNetV2): def __init__(self, *args: Any, **kwargs: Any) -> None: """ MobileNet V2 main class Args: Inherits args from floating point MobileNetV2 """ super().__init__(*args, **kwargs) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: for m in self.modules(): if type(m) is Conv2dNormActivation: _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True) if type(m) is QuantizableInvertedResidual: m.fuse_model(is_qat) class MobileNet_V2_QuantizedWeights(WeightsEnum): IMAGENET1K_QNNPACK_V1 = Weights( url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 3504872, "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "backend": "qnnpack", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2", "unquantized": MobileNet_V2_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 71.658, "acc@5": 90.150, } }, "_ops": 0.301, "_file_size": 3.423, "_docs": """ These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized weights listed below. """, }, ) DEFAULT = IMAGENET1K_QNNPACK_V1 @register_model(name="quantized_mobilenet_v2") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1 if kwargs.get("quantize", False) else MobileNet_V2_Weights.IMAGENET1K_V1, ) ) def mobilenet_v2( *, weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableMobileNetV2: """ Constructs a MobileNetV2 architecture from `MobileNetV2: Inverted Residuals and Linear Bottlenecks <https://arxiv.org/abs/1801.04381>`_. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, returns a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights :members: .. autoclass:: torchvision.models.MobileNet_V2_Weights :members: :noindex: """ weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "qnnpack") model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
====================================================================================================================================== SOURCE CODE FILE: mobilenetv3.py LINES: 1 SIZE: 9.25 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\mobilenetv3.py ENCODING: utf-8 ```py from functools import partial from typing import Any, List, Optional, Union import torch from torch import nn, Tensor from torch.ao.quantization import DeQuantStub, QuantStub from ...ops.misc import Conv2dNormActivation, SqueezeExcitation from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from ..mobilenetv3 import ( _mobilenet_v3_conf, InvertedResidual, InvertedResidualConfig, MobileNet_V3_Large_Weights, MobileNetV3, ) from .utils import _fuse_modules, _replace_relu __all__ = [ "QuantizableMobileNetV3", "MobileNet_V3_Large_QuantizedWeights", "mobilenet_v3_large", ] class QuantizableSqueezeExcitation(SqueezeExcitation): _version = 2 def __init__(self, *args: Any, **kwargs: Any) -> None: kwargs["scale_activation"] = nn.Hardsigmoid super().__init__(*args, **kwargs) self.skip_mul = nn.quantized.FloatFunctional() def forward(self, input: Tensor) -> Tensor: return self.skip_mul.mul(self._scale(input), input) def fuse_model(self, is_qat: Optional[bool] = None) -> None: _fuse_modules(self, ["fc1", "activation"], is_qat, inplace=True) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if hasattr(self, "qconfig") and (version is None or version < 2): default_state_dict = { "scale_activation.activation_post_process.scale": torch.tensor([1.0]), "scale_activation.activation_post_process.activation_post_process.scale": torch.tensor([1.0]), "scale_activation.activation_post_process.zero_point": torch.tensor([0], dtype=torch.int32), "scale_activation.activation_post_process.activation_post_process.zero_point": torch.tensor( [0], dtype=torch.int32 ), "scale_activation.activation_post_process.fake_quant_enabled": torch.tensor([1]), "scale_activation.activation_post_process.observer_enabled": torch.tensor([1]), } for k, v in default_state_dict.items(): full_key = prefix + k if full_key not in state_dict: state_dict[full_key] = v super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) class QuantizableInvertedResidual(InvertedResidual): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, se_layer=QuantizableSqueezeExcitation, **kwargs) # type: ignore[misc] self.skip_add = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return self.skip_add.add(x, self.block(x)) else: return self.block(x) class QuantizableMobileNetV3(MobileNetV3): def __init__(self, *args: Any, **kwargs: Any) -> None: """ MobileNet V3 main class Args: Inherits args from floating point MobileNetV3 """ super().__init__(*args, **kwargs) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: for m in self.modules(): if type(m) is Conv2dNormActivation: modules_to_fuse = ["0", "1"] if len(m) == 3 and type(m[2]) is nn.ReLU: modules_to_fuse.append("2") _fuse_modules(m, modules_to_fuse, is_qat, inplace=True) elif type(m) is QuantizableSqueezeExcitation: m.fuse_model(is_qat) def _mobilenet_v3_model( inverted_residual_setting: List[InvertedResidualConfig], last_channel: int, weights: Optional[WeightsEnum], progress: bool, quantize: bool, **kwargs: Any, ) -> QuantizableMobileNetV3: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "qnnpack") model = QuantizableMobileNetV3(inverted_residual_setting, last_channel, block=QuantizableInvertedResidual, **kwargs) _replace_relu(model) if quantize: # Instead of quantizing the model and then loading the quantized weights we take a different approach. # We prepare the QAT model, load the QAT weights from training and then convert it. # This is done to avoid extremely low accuracies observed on the specific model. This is rather a workaround # for an unresolved bug on the eager quantization API detailed at: https://github.com/pytorch/vision/issues/5890 model.fuse_model(is_qat=True) model.qconfig = torch.ao.quantization.get_default_qat_qconfig(backend) torch.ao.quantization.prepare_qat(model, inplace=True) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if quantize: torch.ao.quantization.convert(model, inplace=True) model.eval() return model class MobileNet_V3_Large_QuantizedWeights(WeightsEnum): IMAGENET1K_QNNPACK_V1 = Weights( url="https://download.pytorch.org/models/quantized/mobilenet_v3_large_qnnpack-5bcacf28.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 5483032, "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "backend": "qnnpack", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3", "unquantized": MobileNet_V3_Large_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 73.004, "acc@5": 90.858, } }, "_ops": 0.217, "_file_size": 21.554, "_docs": """ These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized weights listed below. """, }, ) DEFAULT = IMAGENET1K_QNNPACK_V1 @register_model(name="quantized_mobilenet_v3_large") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1 if kwargs.get("quantize", False) else MobileNet_V3_Large_Weights.IMAGENET1K_V1, ) ) def mobilenet_v3_large( *, weights: Optional[Union[MobileNet_V3_Large_QuantizedWeights, MobileNet_V3_Large_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableMobileNetV3: """ MobileNetV3 (Large) model from `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv3.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights :members: .. autoclass:: torchvision.models.MobileNet_V3_Large_Weights :members: :noindex: """ weights = (MobileNet_V3_Large_QuantizedWeights if quantize else MobileNet_V3_Large_Weights).verify(weights) inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs) return _mobilenet_v3_model(inverted_residual_setting, last_channel, weights, progress, quantize, **kwargs) ```
================================================================================================================================= SOURCE CODE FILE: resnet.py LINES: 1 SIZE: 17.99 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\resnet.py ENCODING: utf-8 ```py from functools import partial from typing import Any, List, Optional, Type, Union import torch import torch.nn as nn from torch import Tensor from torchvision.models.resnet import ( BasicBlock, Bottleneck, ResNet, ResNet18_Weights, ResNet50_Weights, ResNeXt101_32X8D_Weights, ResNeXt101_64X4D_Weights, ) from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableResNet", "ResNet18_QuantizedWeights", "ResNet50_QuantizedWeights", "ResNeXt101_32X8D_QuantizedWeights", "ResNeXt101_64X4D_QuantizedWeights", "resnet18", "resnet50", "resnext101_32x8d", "resnext101_64x4d", ] class QuantizableBasicBlock(BasicBlock): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.add_relu = torch.nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out = self.add_relu.add_relu(out, identity) return out def fuse_model(self, is_qat: Optional[bool] = None) -> None: _fuse_modules(self, [["conv1", "bn1", "relu"], ["conv2", "bn2"]], is_qat, inplace=True) if self.downsample: _fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True) class QuantizableBottleneck(Bottleneck): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.skip_add_relu = nn.quantized.FloatFunctional() self.relu1 = nn.ReLU(inplace=False) self.relu2 = nn.ReLU(inplace=False) def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out = self.skip_add_relu.add_relu(out, identity) return out def fuse_model(self, is_qat: Optional[bool] = None) -> None: _fuse_modules( self, [["conv1", "bn1", "relu1"], ["conv2", "bn2", "relu2"], ["conv3", "bn3"]], is_qat, inplace=True ) if self.downsample: _fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True) class QuantizableResNet(ResNet): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.quant = torch.ao.quantization.QuantStub() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) # Ensure scriptability # super(QuantizableResNet,self).forward(x) # is not scriptable x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: r"""Fuse conv/bn/relu modules in resnet models Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ _fuse_modules(self, ["conv1", "bn1", "relu"], is_qat, inplace=True) for m in self.modules(): if type(m) is QuantizableBottleneck or type(m) is QuantizableBasicBlock: m.fuse_model(is_qat) def _resnet( block: Type[Union[QuantizableBasicBlock, QuantizableBottleneck]], layers: List[int], weights: Optional[WeightsEnum], progress: bool, quantize: bool, **kwargs: Any, ) -> QuantizableResNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "fbgemm") model = QuantizableResNet(block, layers, **kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "backend": "fbgemm", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "_docs": """ These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized weights listed below. """, } class ResNet18_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/resnet18_fbgemm_16fa66dd.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 11689512, "unquantized": ResNet18_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 69.494, "acc@5": 88.882, } }, "_ops": 1.814, "_file_size": 11.238, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 class ResNet50_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 25557032, "unquantized": ResNet50_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 75.920, "acc@5": 92.814, } }, "_ops": 4.089, "_file_size": 24.759, }, ) IMAGENET1K_FBGEMM_V2 = Weights( url="https://download.pytorch.org/models/quantized/resnet50_fbgemm-23753f79.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 25557032, "unquantized": ResNet50_Weights.IMAGENET1K_V2, "_metrics": { "ImageNet-1K": { "acc@1": 80.282, "acc@5": 94.976, } }, "_ops": 4.089, "_file_size": 24.953, }, ) DEFAULT = IMAGENET1K_FBGEMM_V2 class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm_09835ccf.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 88791336, "unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 78.986, "acc@5": 94.480, } }, "_ops": 16.414, "_file_size": 86.034, }, ) IMAGENET1K_FBGEMM_V2 = Weights( url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm-ee16d00c.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 88791336, "unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V2, "_metrics": { "ImageNet-1K": { "acc@1": 82.574, "acc@5": 96.132, } }, "_ops": 16.414, "_file_size": 86.645, }, ) DEFAULT = IMAGENET1K_FBGEMM_V2 class ResNeXt101_64X4D_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/resnext101_64x4d_fbgemm-605a1cb3.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 83455272, "recipe": "https://github.com/pytorch/vision/pull/5935", "unquantized": ResNeXt101_64X4D_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 82.898, "acc@5": 96.326, } }, "_ops": 15.46, "_file_size": 81.556, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 @register_model(name="quantized_resnet18") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ResNet18_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ResNet18_Weights.IMAGENET1K_V1, ) ) def resnet18( *, weights: Optional[Union[ResNet18_QuantizedWeights, ResNet18_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableResNet: """ResNet-18 model from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_ .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` or :class:`~torchvision.models.ResNet18_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ResNet18_QuantizedWeights :members: .. autoclass:: torchvision.models.ResNet18_Weights :members: :noindex: """ weights = (ResNet18_QuantizedWeights if quantize else ResNet18_Weights).verify(weights) return _resnet(QuantizableBasicBlock, [2, 2, 2, 2], weights, progress, quantize, **kwargs) @register_model(name="quantized_resnet50") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ResNet50_Weights.IMAGENET1K_V1, ) ) def resnet50( *, weights: Optional[Union[ResNet50_QuantizedWeights, ResNet50_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableResNet: """ResNet-50 model from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_ .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` or :class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ResNet50_QuantizedWeights :members: .. autoclass:: torchvision.models.ResNet50_Weights :members: :noindex: """ weights = (ResNet50_QuantizedWeights if quantize else ResNet50_Weights).verify(weights) return _resnet(QuantizableBottleneck, [3, 4, 6, 3], weights, progress, quantize, **kwargs) @register_model(name="quantized_resnext101_32x8d") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ResNeXt101_32X8D_Weights.IMAGENET1K_V1, ) ) def resnext101_32x8d( *, weights: Optional[Union[ResNeXt101_32X8D_QuantizedWeights, ResNeXt101_32X8D_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableResNet: """ResNeXt-101 32x8d model from `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_ .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ResNet101_32X8D_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights :members: .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights :members: :noindex: """ weights = (ResNeXt101_32X8D_QuantizedWeights if quantize else ResNeXt101_32X8D_Weights).verify(weights) _ovewrite_named_param(kwargs, "groups", 32) _ovewrite_named_param(kwargs, "width_per_group", 8) return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs) @register_model(name="quantized_resnext101_64x4d") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ResNeXt101_64X4D_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ResNeXt101_64X4D_Weights.IMAGENET1K_V1, ) ) def resnext101_64x4d( *, weights: Optional[Union[ResNeXt101_64X4D_QuantizedWeights, ResNeXt101_64X4D_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableResNet: """ResNeXt-101 64x4d model from `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_ .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ResNet101_64X4D_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights :members: .. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights :members: :noindex: """ weights = (ResNeXt101_64X4D_QuantizedWeights if quantize else ResNeXt101_64X4D_Weights).verify(weights) _ovewrite_named_param(kwargs, "groups", 64) _ovewrite_named_param(kwargs, "width_per_group", 4) return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs) ```
======================================================================================================================================= SOURCE CODE FILE: shufflenetv2.py LINES: 1 SIZE: 16.91 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\shufflenetv2.py ENCODING: utf-8 ```py from functools import partial from typing import Any, List, Optional, Union import torch import torch.nn as nn from torch import Tensor from torchvision.models import shufflenetv2 from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from ..shufflenetv2 import ( ShuffleNet_V2_X0_5_Weights, ShuffleNet_V2_X1_0_Weights, ShuffleNet_V2_X1_5_Weights, ShuffleNet_V2_X2_0_Weights, ) from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableShuffleNetV2", "ShuffleNet_V2_X0_5_QuantizedWeights", "ShuffleNet_V2_X1_0_QuantizedWeights", "ShuffleNet_V2_X1_5_QuantizedWeights", "ShuffleNet_V2_X2_0_QuantizedWeights", "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "shufflenet_v2_x1_5", "shufflenet_v2_x2_0", ] class QuantizableInvertedResidual(shufflenetv2.InvertedResidual): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.cat = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = self.cat.cat([x1, self.branch2(x2)], dim=1) else: out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1) out = shufflenetv2.channel_shuffle(out, 2) return out class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs) # type: ignore[misc] self.quant = torch.ao.quantization.QuantStub() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: r"""Fuse conv/bn/relu modules in shufflenetv2 model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. .. note:: Note that this operation does not change numerics and the model after modification is in floating point """ for name, m in self._modules.items(): if name in ["conv1", "conv5"] and m is not None: _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True) for m in self.modules(): if type(m) is QuantizableInvertedResidual: if len(m.branch1._modules.items()) > 0: _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True) _fuse_modules( m.branch2, [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]], is_qat, inplace=True, ) def _shufflenetv2( stages_repeats: List[int], stages_out_channels: List[int], *, weights: Optional[WeightsEnum], progress: bool, quantize: bool, **kwargs: Any, ) -> QuantizableShuffleNetV2: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "fbgemm") model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "backend": "fbgemm", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "_docs": """ These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized weights listed below. """, } class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 1366792, "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 57.972, "acc@5": 79.780, } }, "_ops": 0.04, "_file_size": 1.501, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-1e62bb32.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 2278604, "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 68.360, "acc@5": 87.582, } }, "_ops": 0.145, "_file_size": 2.334, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 3503624, "unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 72.052, "acc@5": 90.700, } }, "_ops": 0.296, "_file_size": 3.672, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 7393996, "unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 75.354, "acc@5": 92.488, } }, "_ops": 0.583, "_file_size": 7.467, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 @register_model(name="quantized_shufflenet_v2_x0_5") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1, ) ) def shufflenet_v2_x0_5( *, weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 0.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights :members: .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights :members: :noindex: """ weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights) return _shufflenetv2( [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs ) @register_model(name="quantized_shufflenet_v2_x1_0") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1, ) ) def shufflenet_v2_x1_0( *, weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 1.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights :members: .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights :members: :noindex: """ weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights) return _shufflenetv2( [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs ) @register_model(name="quantized_shufflenet_v2_x1_5") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ShuffleNet_V2_X1_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1, ) ) def shufflenet_v2_x1_5( *, weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 1.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights :members: .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights :members: :noindex: """ weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights) return _shufflenetv2( [4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs ) @register_model(name="quantized_shufflenet_v2_x2_0") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: ShuffleNet_V2_X2_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1, ) ) def shufflenet_v2_x2_0( *, weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 2.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights :members: .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights :members: :noindex: """ weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights) return _shufflenetv2( [4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs ) ```
================================================================================================================================ SOURCE CODE FILE: utils.py LINES: 1 SIZE: 2.06 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\quantization\utils.py ENCODING: utf-8 ```py from typing import Any, List, Optional, Union import torch from torch import nn def _replace_relu(module: nn.Module) -> None: reassign = {} for name, mod in module.named_children(): _replace_relu(mod) # Checking for explicit type instead of instance # as we only want to replace modules of the exact type # not inherited classes if type(mod) is nn.ReLU or type(mod) is nn.ReLU6: reassign[name] = nn.ReLU(inplace=False) for key, value in reassign.items(): module._modules[key] = value def quantize_model(model: nn.Module, backend: str) -> None: _dummy_input_data = torch.rand(1, 3, 299, 299) if backend not in torch.backends.quantized.supported_engines: raise RuntimeError("Quantized backend not supported ") torch.backends.quantized.engine = backend model.eval() # Make sure that weight qconfig matches that of the serialized models if backend == "fbgemm": model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment] activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_per_channel_weight_observer, ) elif backend == "qnnpack": model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment] activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_weight_observer ) # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 model.fuse_model() # type: ignore[operator] torch.ao.quantization.prepare(model, inplace=True) model(_dummy_input_data) torch.ao.quantization.convert(model, inplace=True) def _fuse_modules( model: nn.Module, modules_to_fuse: Union[List[str], List[List[str]]], is_qat: Optional[bool], **kwargs: Any ): if is_qat is None: is_qat = model.training method = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules return method(model, modules_to_fuse, **kwargs) ```
==================================================================================================================== SOURCE CODE FILE: regnet.py LINES: 1 SIZE: 63.60 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\regnet.py ENCODING: utf-8 ```py import math from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn, Tensor from ..ops.misc import Conv2dNormActivation, SqueezeExcitation from ..transforms._presets import ImageClassification, InterpolationMode from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface __all__ = [ "RegNet", "RegNet_Y_400MF_Weights", "RegNet_Y_800MF_Weights", "RegNet_Y_1_6GF_Weights", "RegNet_Y_3_2GF_Weights", "RegNet_Y_8GF_Weights", "RegNet_Y_16GF_Weights", "RegNet_Y_32GF_Weights", "RegNet_Y_128GF_Weights", "RegNet_X_400MF_Weights", "RegNet_X_800MF_Weights", "RegNet_X_1_6GF_Weights", "RegNet_X_3_2GF_Weights", "RegNet_X_8GF_Weights", "RegNet_X_16GF_Weights", "RegNet_X_32GF_Weights", "regnet_y_400mf", "regnet_y_800mf", "regnet_y_1_6gf", "regnet_y_3_2gf", "regnet_y_8gf", "regnet_y_16gf", "regnet_y_32gf", "regnet_y_128gf", "regnet_x_400mf", "regnet_x_800mf", "regnet_x_1_6gf", "regnet_x_3_2gf", "regnet_x_8gf", "regnet_x_16gf", "regnet_x_32gf", ] class SimpleStemIN(Conv2dNormActivation): """Simple stem for ImageNet: 3x3, BN, ReLU.""" def __init__( self, width_in: int, width_out: int, norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], ) -> None: super().__init__( width_in, width_out, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=activation_layer ) class BottleneckTransform(nn.Sequential): """Bottleneck transformation: 1x1, 3x3 [+SE], 1x1.""" def __init__( self, width_in: int, width_out: int, stride: int, norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], group_width: int, bottleneck_multiplier: float, se_ratio: Optional[float], ) -> None: layers: OrderedDict[str, nn.Module] = OrderedDict() w_b = int(round(width_out * bottleneck_multiplier)) g = w_b // group_width layers["a"] = Conv2dNormActivation( width_in, w_b, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=activation_layer ) layers["b"] = Conv2dNormActivation( w_b, w_b, kernel_size=3, stride=stride, groups=g, norm_layer=norm_layer, activation_layer=activation_layer ) if se_ratio: # The SE reduction ratio is defined with respect to the # beginning of the block width_se_out = int(round(se_ratio * width_in)) layers["se"] = SqueezeExcitation( input_channels=w_b, squeeze_channels=width_se_out, activation=activation_layer, ) layers["c"] = Conv2dNormActivation( w_b, width_out, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=None ) super().__init__(layers) class ResBottleneckBlock(nn.Module): """Residual bottleneck block: x + F(x), F = bottleneck transform.""" def __init__( self, width_in: int, width_out: int, stride: int, norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], group_width: int = 1, bottleneck_multiplier: float = 1.0, se_ratio: Optional[float] = None, ) -> None: super().__init__() # Use skip connection with projection if shape changes self.proj = None should_proj = (width_in != width_out) or (stride != 1) if should_proj: self.proj = Conv2dNormActivation( width_in, width_out, kernel_size=1, stride=stride, norm_layer=norm_layer, activation_layer=None ) self.f = BottleneckTransform( width_in, width_out, stride, norm_layer, activation_layer, group_width, bottleneck_multiplier, se_ratio, ) self.activation = activation_layer(inplace=True) def forward(self, x: Tensor) -> Tensor: if self.proj is not None: x = self.proj(x) + self.f(x) else: x = x + self.f(x) return self.activation(x) class AnyStage(nn.Sequential): """AnyNet stage (sequence of blocks w/ the same output shape).""" def __init__( self, width_in: int, width_out: int, stride: int, depth: int, block_constructor: Callable[..., nn.Module], norm_layer: Callable[..., nn.Module], activation_layer: Callable[..., nn.Module], group_width: int, bottleneck_multiplier: float, se_ratio: Optional[float] = None, stage_index: int = 0, ) -> None: super().__init__() for i in range(depth): block = block_constructor( width_in if i == 0 else width_out, width_out, stride if i == 0 else 1, norm_layer, activation_layer, group_width, bottleneck_multiplier, se_ratio, ) self.add_module(f"block{stage_index}-{i}", block) class BlockParams: def __init__( self, depths: List[int], widths: List[int], group_widths: List[int], bottleneck_multipliers: List[float], strides: List[int], se_ratio: Optional[float] = None, ) -> None: self.depths = depths self.widths = widths self.group_widths = group_widths self.bottleneck_multipliers = bottleneck_multipliers self.strides = strides self.se_ratio = se_ratio @classmethod def from_init_params( cls, depth: int, w_0: int, w_a: float, w_m: float, group_width: int, bottleneck_multiplier: float = 1.0, se_ratio: Optional[float] = None, **kwargs: Any, ) -> "BlockParams": """ Programmatically compute all the per-block settings, given the RegNet parameters. The first step is to compute the quantized linear block parameters, in log space. Key parameters are: - `w_a` is the width progression slope - `w_0` is the initial width - `w_m` is the width stepping in the log space In other terms `log(block_width) = log(w_0) + w_m * block_capacity`, with `bock_capacity` ramping up following the w_0 and w_a params. This block width is finally quantized to multiples of 8. The second step is to compute the parameters per stage, taking into account the skip connection and the final 1x1 convolutions. We use the fact that the output width is constant within a stage. """ QUANT = 8 STRIDE = 2 if w_a < 0 or w_0 <= 0 or w_m <= 1 or w_0 % 8 != 0: raise ValueError("Invalid RegNet settings") # Compute the block widths. Each stage has one unique block width widths_cont = torch.arange(depth) * w_a + w_0 block_capacity = torch.round(torch.log(widths_cont / w_0) / math.log(w_m)) block_widths = (torch.round(torch.divide(w_0 * torch.pow(w_m, block_capacity), QUANT)) * QUANT).int().tolist() num_stages = len(set(block_widths)) # Convert to per stage parameters split_helper = zip( block_widths + [0], [0] + block_widths, block_widths + [0], [0] + block_widths, ) splits = [w != wp or r != rp for w, wp, r, rp in split_helper] stage_widths = [w for w, t in zip(block_widths, splits[:-1]) if t] stage_depths = torch.diff(torch.tensor([d for d, t in enumerate(splits) if t])).int().tolist() strides = [STRIDE] * num_stages bottleneck_multipliers = [bottleneck_multiplier] * num_stages group_widths = [group_width] * num_stages # Adjust the compatibility of stage widths and group widths stage_widths, group_widths = cls._adjust_widths_groups_compatibilty( stage_widths, bottleneck_multipliers, group_widths ) return cls( depths=stage_depths, widths=stage_widths, group_widths=group_widths, bottleneck_multipliers=bottleneck_multipliers, strides=strides, se_ratio=se_ratio, ) def _get_expanded_params(self): return zip(self.widths, self.strides, self.depths, self.group_widths, self.bottleneck_multipliers) @staticmethod def _adjust_widths_groups_compatibilty( stage_widths: List[int], bottleneck_ratios: List[float], group_widths: List[int] ) -> Tuple[List[int], List[int]]: """ Adjusts the compatibility of widths and groups, depending on the bottleneck ratio. """ # Compute all widths for the current settings widths = [int(w * b) for w, b in zip(stage_widths, bottleneck_ratios)] group_widths_min = [min(g, w_bot) for g, w_bot in zip(group_widths, widths)] # Compute the adjusted widths so that stage and group widths fit ws_bot = [_make_divisible(w_bot, g) for w_bot, g in zip(widths, group_widths_min)] stage_widths = [int(w_bot / b) for w_bot, b in zip(ws_bot, bottleneck_ratios)] return stage_widths, group_widths_min class RegNet(nn.Module): def __init__( self, block_params: BlockParams, num_classes: int = 1000, stem_width: int = 32, stem_type: Optional[Callable[..., nn.Module]] = None, block_type: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, activation: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() _log_api_usage_once(self) if stem_type is None: stem_type = SimpleStemIN if norm_layer is None: norm_layer = nn.BatchNorm2d if block_type is None: block_type = ResBottleneckBlock if activation is None: activation = nn.ReLU # Ad hoc stem self.stem = stem_type( 3, # width_in stem_width, norm_layer, activation, ) current_width = stem_width blocks = [] for i, ( width_out, stride, depth, group_width, bottleneck_multiplier, ) in enumerate(block_params._get_expanded_params()): blocks.append( ( f"block{i+1}", AnyStage( current_width, width_out, stride, depth, block_type, norm_layer, activation, group_width, bottleneck_multiplier, block_params.se_ratio, stage_index=i + 1, ), ) ) current_width = width_out self.trunk_output = nn.Sequential(OrderedDict(blocks)) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(in_features=current_width, out_features=num_classes) # Performs ResNet-style weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): # Note that there is no bias due to BN fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels nn.init.normal_(m.weight, mean=0.0, std=math.sqrt(2.0 / fan_out)) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0.0, std=0.01) nn.init.zeros_(m.bias) def forward(self, x: Tensor) -> Tensor: x = self.stem(x) x = self.trunk_output(x) x = self.avgpool(x) x = x.flatten(start_dim=1) x = self.fc(x) return x def _regnet( block_params: BlockParams, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> RegNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) norm_layer = kwargs.pop("norm_layer", partial(nn.BatchNorm2d, eps=1e-05, momentum=0.1)) model = RegNet(block_params, norm_layer=norm_layer, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META: Dict[str, Any] = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, } _COMMON_SWAG_META = { **_COMMON_META, "recipe": "https://github.com/facebookresearch/SWAG", "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE", } class RegNet_Y_400MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_400mf-c65dace8.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 4344144, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 74.046, "acc@5": 91.716, } }, "_ops": 0.402, "_file_size": 16.806, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_400mf-e6988f5f.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 4344144, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 75.804, "acc@5": 92.742, } }, "_ops": 0.402, "_file_size": 16.806, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_800MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_800mf-1b27b58c.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 6432512, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 76.420, "acc@5": 93.136, } }, "_ops": 0.834, "_file_size": 24.774, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_800mf-58fc7688.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 6432512, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 78.828, "acc@5": 94.502, } }, "_ops": 0.834, "_file_size": 24.774, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_1_6GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_1_6gf-b11a554e.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 11202430, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 77.950, "acc@5": 93.966, } }, "_ops": 1.612, "_file_size": 43.152, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_1_6gf-0d7bc02a.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 11202430, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 80.876, "acc@5": 95.444, } }, "_ops": 1.612, "_file_size": 43.152, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_3_2GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_3_2gf-b5a9779c.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 19436338, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 78.948, "acc@5": 94.576, } }, "_ops": 3.176, "_file_size": 74.567, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_3_2gf-9180c971.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 19436338, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.982, "acc@5": 95.972, } }, "_ops": 3.176, "_file_size": 74.567, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_8GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_8gf-d0d0e4a8.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 39381472, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.032, "acc@5": 95.048, } }, "_ops": 8.473, "_file_size": 150.701, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_8gf-dc2b1b54.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 39381472, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.828, "acc@5": 96.330, } }, "_ops": 8.473, "_file_size": 150.701, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_16GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf-9e6ed7dd.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 83590140, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.424, "acc@5": 95.240, } }, "_ops": 15.912, "_file_size": 319.49, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf-3e4a00f9.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 83590140, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.886, "acc@5": 96.328, } }, "_ops": 15.912, "_file_size": 319.49, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf_swag-43afe44d.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "num_params": 83590140, "_metrics": { "ImageNet-1K": { "acc@1": 86.012, "acc@5": 98.054, } }, "_ops": 46.735, "_file_size": 319.49, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_16gf_lc_swag-f3ec0043.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 83590140, "_metrics": { "ImageNet-1K": { "acc@1": 83.976, "acc@5": 97.244, } }, "_ops": 15.912, "_file_size": 319.49, "_docs": """ These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_32GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf-4dee3f7a.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 145046770, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.878, "acc@5": 95.340, } }, "_ops": 32.28, "_file_size": 554.076, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf-8db6d4b5.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 145046770, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 83.368, "acc@5": 96.498, } }, "_ops": 32.28, "_file_size": 554.076, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf_swag-04fdfa75.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "num_params": 145046770, "_metrics": { "ImageNet-1K": { "acc@1": 86.838, "acc@5": 98.362, } }, "_ops": 94.826, "_file_size": 554.076, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_32gf_lc_swag-e1583746.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 145046770, "_metrics": { "ImageNet-1K": { "acc@1": 84.622, "acc@5": 97.480, } }, "_ops": 32.28, "_file_size": 554.076, "_docs": """ These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_Y_128GF_Weights(WeightsEnum): IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_128gf_swag-c8ce3e52.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "num_params": 644812894, "_metrics": { "ImageNet-1K": { "acc@1": 88.228, "acc@5": 98.682, } }, "_ops": 374.57, "_file_size": 2461.564, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/regnet_y_128gf_lc_swag-cbe8ce12.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 644812894, "_metrics": { "ImageNet-1K": { "acc@1": 86.068, "acc@5": 97.844, } }, "_ops": 127.518, "_file_size": 2461.564, "_docs": """ These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_SWAG_E2E_V1 class RegNet_X_400MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_400mf-adf1edd5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 5495976, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 72.834, "acc@5": 90.950, } }, "_ops": 0.414, "_file_size": 21.258, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_400mf-62229a5f.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 5495976, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 74.864, "acc@5": 92.322, } }, "_ops": 0.414, "_file_size": 21.257, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_800MF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_800mf-ad17e45c.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 7259656, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 75.212, "acc@5": 92.348, } }, "_ops": 0.8, "_file_size": 27.945, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_800mf-94a99ebd.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 7259656, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 77.522, "acc@5": 93.826, } }, "_ops": 0.8, "_file_size": 27.945, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_1_6GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_1_6gf-e3633e7f.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 9190136, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models", "_metrics": { "ImageNet-1K": { "acc@1": 77.040, "acc@5": 93.440, } }, "_ops": 1.603, "_file_size": 35.339, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_1_6gf-a12f2b72.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 9190136, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 79.668, "acc@5": 94.922, } }, "_ops": 1.603, "_file_size": 35.339, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_3_2GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_3_2gf-f342aeae.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 15296552, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 78.364, "acc@5": 93.992, } }, "_ops": 3.177, "_file_size": 58.756, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_3_2gf-7071aa85.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 15296552, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.196, "acc@5": 95.430, } }, "_ops": 3.177, "_file_size": 58.756, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_8GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_8gf-03ceed89.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 39572648, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 79.344, "acc@5": 94.686, } }, "_ops": 7.995, "_file_size": 151.456, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_8gf-2b70d774.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 39572648, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.682, "acc@5": 95.678, } }, "_ops": 7.995, "_file_size": 151.456, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_16GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_16gf-2007eb11.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 54278536, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.058, "acc@5": 94.944, } }, "_ops": 15.941, "_file_size": 207.627, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_16gf-ba3796d7.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 54278536, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.716, "acc@5": 96.196, } }, "_ops": 15.941, "_file_size": 207.627, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class RegNet_X_32GF_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/regnet_x_32gf-9d47f8d0.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 107811560, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models", "_metrics": { "ImageNet-1K": { "acc@1": 80.622, "acc@5": 95.248, } }, "_ops": 31.736, "_file_size": 412.039, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/regnet_x_32gf-6eb8fdc6.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 107811560, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 83.014, "acc@5": 96.288, } }, "_ops": 31.736, "_file_size": 412.039, "_docs": """ These weights improve upon the results of the original paper by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_400MF_Weights.IMAGENET1K_V1)) def regnet_y_400mf(*, weights: Optional[RegNet_Y_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_400MF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_400MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_400MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_400MF_Weights :members: """ weights = RegNet_Y_400MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=16, w_0=48, w_a=27.89, w_m=2.09, group_width=8, se_ratio=0.25, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_800MF_Weights.IMAGENET1K_V1)) def regnet_y_800mf(*, weights: Optional[RegNet_Y_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_800MF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_800MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_800MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_800MF_Weights :members: """ weights = RegNet_Y_800MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=14, w_0=56, w_a=38.84, w_m=2.4, group_width=16, se_ratio=0.25, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_1_6GF_Weights.IMAGENET1K_V1)) def regnet_y_1_6gf(*, weights: Optional[RegNet_Y_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_1.6GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_1_6GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_1_6GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_1_6GF_Weights :members: """ weights = RegNet_Y_1_6GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=27, w_0=48, w_a=20.71, w_m=2.65, group_width=24, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_3_2GF_Weights.IMAGENET1K_V1)) def regnet_y_3_2gf(*, weights: Optional[RegNet_Y_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_3.2GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_3_2GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_3_2GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_3_2GF_Weights :members: """ weights = RegNet_Y_3_2GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=21, w_0=80, w_a=42.63, w_m=2.66, group_width=24, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_8GF_Weights.IMAGENET1K_V1)) def regnet_y_8gf(*, weights: Optional[RegNet_Y_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_8GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_8GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_8GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_8GF_Weights :members: """ weights = RegNet_Y_8GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=17, w_0=192, w_a=76.82, w_m=2.19, group_width=56, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_16GF_Weights.IMAGENET1K_V1)) def regnet_y_16gf(*, weights: Optional[RegNet_Y_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_16GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_16GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_16GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_16GF_Weights :members: """ weights = RegNet_Y_16GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=18, w_0=200, w_a=106.23, w_m=2.48, group_width=112, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_Y_32GF_Weights.IMAGENET1K_V1)) def regnet_y_32gf(*, weights: Optional[RegNet_Y_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_32GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_32GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_32GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_32GF_Weights :members: """ weights = RegNet_Y_32GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=20, w_0=232, w_a=115.89, w_m=2.53, group_width=232, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", None)) def regnet_y_128gf(*, weights: Optional[RegNet_Y_128GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetY_128GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_Y_128GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_Y_128GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_Y_128GF_Weights :members: """ weights = RegNet_Y_128GF_Weights.verify(weights) params = BlockParams.from_init_params( depth=27, w_0=456, w_a=160.83, w_m=2.52, group_width=264, se_ratio=0.25, **kwargs ) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_400MF_Weights.IMAGENET1K_V1)) def regnet_x_400mf(*, weights: Optional[RegNet_X_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_400MF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_X_400MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_400MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_400MF_Weights :members: """ weights = RegNet_X_400MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=22, w_0=24, w_a=24.48, w_m=2.54, group_width=16, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_800MF_Weights.IMAGENET1K_V1)) def regnet_x_800mf(*, weights: Optional[RegNet_X_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_800MF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_X_800MF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_800MF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_800MF_Weights :members: """ weights = RegNet_X_800MF_Weights.verify(weights) params = BlockParams.from_init_params(depth=16, w_0=56, w_a=35.73, w_m=2.28, group_width=16, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_1_6GF_Weights.IMAGENET1K_V1)) def regnet_x_1_6gf(*, weights: Optional[RegNet_X_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_1.6GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_X_1_6GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_1_6GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_1_6GF_Weights :members: """ weights = RegNet_X_1_6GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=18, w_0=80, w_a=34.01, w_m=2.25, group_width=24, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_3_2GF_Weights.IMAGENET1K_V1)) def regnet_x_3_2gf(*, weights: Optional[RegNet_X_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_3.2GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_X_3_2GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_3_2GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_3_2GF_Weights :members: """ weights = RegNet_X_3_2GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=25, w_0=88, w_a=26.31, w_m=2.25, group_width=48, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_8GF_Weights.IMAGENET1K_V1)) def regnet_x_8gf(*, weights: Optional[RegNet_X_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_8GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_X_8GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_8GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_8GF_Weights :members: """ weights = RegNet_X_8GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=23, w_0=80, w_a=49.56, w_m=2.88, group_width=120, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_16GF_Weights.IMAGENET1K_V1)) def regnet_x_16gf(*, weights: Optional[RegNet_X_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_16GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_X_16GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_16GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_16GF_Weights :members: """ weights = RegNet_X_16GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=22, w_0=216, w_a=55.59, w_m=2.1, group_width=128, **kwargs) return _regnet(params, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", RegNet_X_32GF_Weights.IMAGENET1K_V1)) def regnet_x_32gf(*, weights: Optional[RegNet_X_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet: """ Constructs a RegNetX_32GF architecture from `Designing Network Design Spaces <https://arxiv.org/abs/2003.13678>`_. Args: weights (:class:`~torchvision.models.RegNet_X_32GF_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.RegNet_X_32GF_Weights` below for more details and possible values. By default, no pretrained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to either ``torchvision.models.regnet.RegNet`` or ``torchvision.models.regnet.BlockParams`` class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py>`_ for more detail about the classes. .. autoclass:: torchvision.models.RegNet_X_32GF_Weights :members: """ weights = RegNet_X_32GF_Weights.verify(weights) params = BlockParams.from_init_params(depth=23, w_0=320, w_a=69.86, w_m=2.0, group_width=168, **kwargs) return _regnet(params, weights, progress, **kwargs) ```
==================================================================================================================== SOURCE CODE FILE: resnet.py LINES: 1 SIZE: 38.98 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\resnet.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Callable, List, Optional, Type, Union import torch import torch.nn as nn from torch import Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "ResNet", "ResNet18_Weights", "ResNet34_Weights", "ResNet50_Weights", "ResNet101_Weights", "ResNet152_Weights", "ResNeXt50_32X4D_Weights", "ResNeXt101_32X8D_Weights", "ResNeXt101_64X4D_Weights", "Wide_ResNet50_2_Weights", "Wide_ResNet101_2_Weights", "resnet18", "resnet34", "resnet50", "resnet101", "resnet152", "resnext50_32x4d", "resnext101_32x8d", "resnext101_64x4d", "wide_resnet50_2", "wide_resnet101_2", ] def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion: int = 4 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() _log_api_usage_once(self) if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " f"or a 3-element tuple, got {replace_stride_with_dilation}" ) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck) and m.bn3.weight is not None: nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock) and m.bn2.weight is not None: nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer( self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False, ) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, ) ) return nn.Sequential(*layers) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _resnet( block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> ResNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = ResNet(block, layers, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, } class ResNet18_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnet18-f37072fd.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 11689512, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "_metrics": { "ImageNet-1K": { "acc@1": 69.758, "acc@5": 89.078, } }, "_ops": 1.814, "_file_size": 44.661, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 class ResNet34_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnet34-b627a593.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 21797672, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "_metrics": { "ImageNet-1K": { "acc@1": 73.314, "acc@5": 91.420, } }, "_ops": 3.664, "_file_size": 83.275, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 class ResNet50_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnet50-0676ba61.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 25557032, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "_metrics": { "ImageNet-1K": { "acc@1": 76.130, "acc@5": 92.862, } }, "_ops": 4.089, "_file_size": 97.781, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 25557032, "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621", "_metrics": { "ImageNet-1K": { "acc@1": 80.858, "acc@5": 95.434, } }, "_ops": 4.089, "_file_size": 97.79, "_docs": """ These weights improve upon the results of the original paper by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class ResNet101_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnet101-63fe2227.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 44549160, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "_metrics": { "ImageNet-1K": { "acc@1": 77.374, "acc@5": 93.546, } }, "_ops": 7.801, "_file_size": 170.511, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/resnet101-cd907fc2.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 44549160, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.886, "acc@5": 95.780, } }, "_ops": 7.801, "_file_size": 170.53, "_docs": """ These weights improve upon the results of the original paper by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class ResNet152_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnet152-394f9c45.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 60192808, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "_metrics": { "ImageNet-1K": { "acc@1": 78.312, "acc@5": 94.046, } }, "_ops": 11.514, "_file_size": 230.434, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/resnet152-f82ba261.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 60192808, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.284, "acc@5": 96.002, } }, "_ops": 11.514, "_file_size": 230.474, "_docs": """ These weights improve upon the results of the original paper by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class ResNeXt50_32X4D_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 25028904, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", "_metrics": { "ImageNet-1K": { "acc@1": 77.618, "acc@5": 93.698, } }, "_ops": 4.23, "_file_size": 95.789, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 25028904, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 81.198, "acc@5": 95.340, } }, "_ops": 4.23, "_file_size": 95.833, "_docs": """ These weights improve upon the results of the original paper by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class ResNeXt101_32X8D_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 88791336, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", "_metrics": { "ImageNet-1K": { "acc@1": 79.312, "acc@5": 94.526, } }, "_ops": 16.414, "_file_size": 339.586, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 88791336, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 82.834, "acc@5": 96.228, } }, "_ops": 16.414, "_file_size": 339.673, "_docs": """ These weights improve upon the results of the original paper by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class ResNeXt101_64X4D_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 83455272, "recipe": "https://github.com/pytorch/vision/pull/5935", "_metrics": { "ImageNet-1K": { "acc@1": 83.246, "acc@5": 96.454, } }, "_ops": 15.46, "_file_size": 319.318, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 class Wide_ResNet50_2_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 68883240, "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", "_metrics": { "ImageNet-1K": { "acc@1": 78.468, "acc@5": 94.086, } }, "_ops": 11.398, "_file_size": 131.82, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 68883240, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "_metrics": { "ImageNet-1K": { "acc@1": 81.602, "acc@5": 95.758, } }, "_ops": 11.398, "_file_size": 263.124, "_docs": """ These weights improve upon the results of the original paper by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 class Wide_ResNet101_2_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 126886696, "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", "_metrics": { "ImageNet-1K": { "acc@1": 78.848, "acc@5": 94.284, } }, "_ops": 22.753, "_file_size": 242.896, "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", }, ) IMAGENET1K_V2 = Weights( url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "num_params": 126886696, "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "_metrics": { "ImageNet-1K": { "acc@1": 82.510, "acc@5": 96.020, } }, "_ops": 22.753, "_file_size": 484.747, "_docs": """ These weights improve upon the results of the original paper by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V2 @register_model() @handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1)) def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__. Args: weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNet18_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNet18_Weights :members: """ weights = ResNet18_Weights.verify(weights) return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1)) def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__. Args: weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNet34_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNet34_Weights :members: """ weights = ResNet34_Weights.verify(weights) return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1)) def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__. .. note:: The bottleneck of TorchVision places the stride for downsampling to the second 3x3 convolution while the original paper places it to the first 1x1 convolution. This variant improves the accuracy and is known as `ResNet V1.5 <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_. Args: weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNet50_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNet50_Weights :members: """ weights = ResNet50_Weights.verify(weights) return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1)) def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__. .. note:: The bottleneck of TorchVision places the stride for downsampling to the second 3x3 convolution while the original paper places it to the first 1x1 convolution. This variant improves the accuracy and is known as `ResNet V1.5 <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_. Args: weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNet101_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNet101_Weights :members: """ weights = ResNet101_Weights.verify(weights) return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1)) def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__. .. note:: The bottleneck of TorchVision places the stride for downsampling to the second 3x3 convolution while the original paper places it to the first 1x1 convolution. This variant improves the accuracy and is known as `ResNet V1.5 <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_. Args: weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNet152_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNet152_Weights :members: """ weights = ResNet152_Weights.verify(weights) return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1)) def resnext50_32x4d( *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any ) -> ResNet: """ResNeXt-50 32x4d model from `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_. Args: weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNext50_32X4D_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights :members: """ weights = ResNeXt50_32X4D_Weights.verify(weights) _ovewrite_named_param(kwargs, "groups", 32) _ovewrite_named_param(kwargs, "width_per_group", 4) return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1)) def resnext101_32x8d( *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any ) -> ResNet: """ResNeXt-101 32x8d model from `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_. Args: weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights :members: """ weights = ResNeXt101_32X8D_Weights.verify(weights) _ovewrite_named_param(kwargs, "groups", 32) _ovewrite_named_param(kwargs, "width_per_group", 8) return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ResNeXt101_64X4D_Weights.IMAGENET1K_V1)) def resnext101_64x4d( *, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any ) -> ResNet: """ResNeXt-101 64x4d model from `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_. Args: weights (:class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNeXt101_64X4D_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights :members: """ weights = ResNeXt101_64X4D_Weights.verify(weights) _ovewrite_named_param(kwargs, "groups", 64) _ovewrite_named_param(kwargs, "width_per_group", 4) return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1)) def wide_resnet50_2( *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any ) -> ResNet: """Wide ResNet-50-2 model from `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Wide_ResNet50_2_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.Wide_ResNet50_2_Weights :members: """ weights = Wide_ResNet50_2_Weights.verify(weights) _ovewrite_named_param(kwargs, "width_per_group", 64 * 2) return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1)) def wide_resnet101_2( *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any ) -> ResNet: """Wide ResNet-101-2 model from `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-101 has 2048-512-2048 channels, and in Wide ResNet-101-2 has 2048-1024-2048. Args: weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Wide_ResNet101_2_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.Wide_ResNet101_2_Weights :members: """ weights = Wide_ResNet101_2_Weights.verify(weights) _ovewrite_named_param(kwargs, "width_per_group", 64 * 2) return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) ```
=================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.07 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\segmentation\__init__.py ENCODING: utf-8 ```py from .deeplabv3 import * from .fcn import * from .lraspp import * ```
================================================================================================================================= SOURCE CODE FILE: _utils.py LINES: 1 SIZE: 1.21 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\segmentation\_utils.py ENCODING: utf-8 ```py from collections import OrderedDict from typing import Dict, Optional from torch import nn, Tensor from torch.nn import functional as F from ...utils import _log_api_usage_once class _SimpleSegmentationModel(nn.Module): __constants__ = ["aux_classifier"] def __init__(self, backbone: nn.Module, classifier: nn.Module, aux_classifier: Optional[nn.Module] = None) -> None: super().__init__() _log_api_usage_once(self) self.backbone = backbone self.classifier = classifier self.aux_classifier = aux_classifier def forward(self, x: Tensor) -> Dict[str, Tensor]: input_shape = x.shape[-2:] # contract: features is a dict of tensors features = self.backbone(x) result = OrderedDict() x = features["out"] x = self.classifier(x) x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) result["out"] = x if self.aux_classifier is not None: x = features["aux"] x = self.aux_classifier(x) x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) result["aux"] = x return result ```
==================================================================================================================================== SOURCE CODE FILE: deeplabv3.py LINES: 1 SIZE: 15.04 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\segmentation\deeplabv3.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Optional, Sequence import torch from torch import nn from torch.nn import functional as F from ...transforms._presets import SemanticSegmentation from .._api import register_model, Weights, WeightsEnum from .._meta import _VOC_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3 from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights from ._utils import _SimpleSegmentationModel from .fcn import FCNHead __all__ = [ "DeepLabV3", "DeepLabV3_ResNet50_Weights", "DeepLabV3_ResNet101_Weights", "DeepLabV3_MobileNet_V3_Large_Weights", "deeplabv3_mobilenet_v3_large", "deeplabv3_resnet50", "deeplabv3_resnet101", ] class DeepLabV3(_SimpleSegmentationModel): """ Implements DeepLabV3 model from `"Rethinking Atrous Convolution for Semantic Image Segmentation" <https://arxiv.org/abs/1706.05587>`_. Args: backbone (nn.Module): the network used to compute the features for the model. The backbone should return an OrderedDict[Tensor], with the key being "out" for the last feature map used, and "aux" if an auxiliary classifier is used. classifier (nn.Module): module that takes the "out" element returned from the backbone and returns a dense prediction. aux_classifier (nn.Module, optional): auxiliary classifier used during training """ pass class DeepLabHead(nn.Sequential): def __init__(self, in_channels: int, num_classes: int, atrous_rates: Sequence[int] = (12, 24, 36)) -> None: super().__init__( ASPP(in_channels, atrous_rates), nn.Conv2d(256, 256, 3, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, num_classes, 1), ) class ASPPConv(nn.Sequential): def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None: modules = [ nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(), ] super().__init__(*modules) class ASPPPooling(nn.Sequential): def __init__(self, in_channels: int, out_channels: int) -> None: super().__init__( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(), ) def forward(self, x: torch.Tensor) -> torch.Tensor: size = x.shape[-2:] for mod in self: x = mod(x) return F.interpolate(x, size=size, mode="bilinear", align_corners=False) class ASPP(nn.Module): def __init__(self, in_channels: int, atrous_rates: Sequence[int], out_channels: int = 256) -> None: super().__init__() modules = [] modules.append( nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU()) ) rates = tuple(atrous_rates) for rate in rates: modules.append(ASPPConv(in_channels, out_channels, rate)) modules.append(ASPPPooling(in_channels, out_channels)) self.convs = nn.ModuleList(modules) self.project = nn.Sequential( nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(), nn.Dropout(0.5), ) def forward(self, x: torch.Tensor) -> torch.Tensor: _res = [] for conv in self.convs: _res.append(conv(x)) res = torch.cat(_res, dim=1) return self.project(res) def _deeplabv3_resnet( backbone: ResNet, num_classes: int, aux: Optional[bool], ) -> DeepLabV3: return_layers = {"layer4": "out"} if aux: return_layers["layer3"] = "aux" backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) aux_classifier = FCNHead(1024, num_classes) if aux else None classifier = DeepLabHead(2048, num_classes) return DeepLabV3(backbone, classifier, aux_classifier) _COMMON_META = { "categories": _VOC_CATEGORIES, "min_size": (1, 1), "_docs": """ These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC dataset. """, } class DeepLabV3_ResNet50_Weights(WeightsEnum): COCO_WITH_VOC_LABELS_V1 = Weights( url="https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth", transforms=partial(SemanticSegmentation, resize_size=520), meta={ **_COMMON_META, "num_params": 42004074, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50", "_metrics": { "COCO-val2017-VOC-labels": { "miou": 66.4, "pixel_acc": 92.4, } }, "_ops": 178.722, "_file_size": 160.515, }, ) DEFAULT = COCO_WITH_VOC_LABELS_V1 class DeepLabV3_ResNet101_Weights(WeightsEnum): COCO_WITH_VOC_LABELS_V1 = Weights( url="https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth", transforms=partial(SemanticSegmentation, resize_size=520), meta={ **_COMMON_META, "num_params": 60996202, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101", "_metrics": { "COCO-val2017-VOC-labels": { "miou": 67.4, "pixel_acc": 92.4, } }, "_ops": 258.743, "_file_size": 233.217, }, ) DEFAULT = COCO_WITH_VOC_LABELS_V1 class DeepLabV3_MobileNet_V3_Large_Weights(WeightsEnum): COCO_WITH_VOC_LABELS_V1 = Weights( url="https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth", transforms=partial(SemanticSegmentation, resize_size=520), meta={ **_COMMON_META, "num_params": 11029328, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_large", "_metrics": { "COCO-val2017-VOC-labels": { "miou": 60.3, "pixel_acc": 91.2, } }, "_ops": 10.452, "_file_size": 42.301, }, ) DEFAULT = COCO_WITH_VOC_LABELS_V1 def _deeplabv3_mobilenetv3( backbone: MobileNetV3, num_classes: int, aux: Optional[bool], ) -> DeepLabV3: backbone = backbone.features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] out_pos = stage_indices[-1] # use C5 which has output_stride = 16 out_inplanes = backbone[out_pos].out_channels aux_pos = stage_indices[-4] # use C2 here which has output_stride = 8 aux_inplanes = backbone[aux_pos].out_channels return_layers = {str(out_pos): "out"} if aux: return_layers[str(aux_pos)] = "aux" backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) aux_classifier = FCNHead(aux_inplanes, num_classes) if aux else None classifier = DeepLabHead(out_inplanes, num_classes) return DeepLabV3(backbone, classifier, aux_classifier) @register_model() @handle_legacy_interface( weights=("pretrained", DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def deeplabv3_resnet50( *, weights: Optional[DeepLabV3_ResNet50_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, aux_loss: Optional[bool] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, **kwargs: Any, ) -> DeepLabV3: """Constructs a DeepLabV3 model with a ResNet-50 backbone. .. betastatus:: segmentation module Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__. Args: weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) aux_loss (bool, optional): If True, it uses an auxiliary loss weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone **kwargs: unused .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet50_Weights :members: """ weights = DeepLabV3_ResNet50_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) elif num_classes is None: num_classes = 21 backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) model = _deeplabv3_resnet(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model @register_model() @handle_legacy_interface( weights=("pretrained", DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1), weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1), ) def deeplabv3_resnet101( *, weights: Optional[DeepLabV3_ResNet101_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, aux_loss: Optional[bool] = None, weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1, **kwargs: Any, ) -> DeepLabV3: """Constructs a DeepLabV3 model with a ResNet-101 backbone. .. betastatus:: segmentation module Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__. Args: weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) aux_loss (bool, optional): If True, it uses an auxiliary loss weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights for the backbone **kwargs: unused .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet101_Weights :members: """ weights = DeepLabV3_ResNet101_Weights.verify(weights) weights_backbone = ResNet101_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) elif num_classes is None: num_classes = 21 backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) model = _deeplabv3_resnet(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model @register_model() @handle_legacy_interface( weights=("pretrained", DeepLabV3_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1), weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1), ) def deeplabv3_mobilenet_v3_large( *, weights: Optional[DeepLabV3_MobileNet_V3_Large_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, aux_loss: Optional[bool] = None, weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1, **kwargs: Any, ) -> DeepLabV3: """Constructs a DeepLabV3 model with a MobileNetV3-Large backbone. Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__. Args: weights (:class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background) aux_loss (bool, optional): If True, it uses an auxiliary loss weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights for the backbone **kwargs: unused .. autoclass:: torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights :members: """ weights = DeepLabV3_MobileNet_V3_Large_Weights.verify(weights) weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) elif num_classes is None: num_classes = 21 backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True) model = _deeplabv3_mobilenetv3(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
============================================================================================================================== SOURCE CODE FILE: fcn.py LINES: 1 SIZE: 8.99 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\segmentation\fcn.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Optional from torch import nn from ...transforms._presets import SemanticSegmentation from .._api import register_model, Weights, WeightsEnum from .._meta import _VOC_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights from ._utils import _SimpleSegmentationModel __all__ = ["FCN", "FCN_ResNet50_Weights", "FCN_ResNet101_Weights", "fcn_resnet50", "fcn_resnet101"] class FCN(_SimpleSegmentationModel): """ Implements FCN model from `"Fully Convolutional Networks for Semantic Segmentation" <https://arxiv.org/abs/1411.4038>`_. Args: backbone (nn.Module): the network used to compute the features for the model. The backbone should return an OrderedDict[Tensor], with the key being "out" for the last feature map used, and "aux" if an auxiliary classifier is used. classifier (nn.Module): module that takes the "out" element returned from the backbone and returns a dense prediction. aux_classifier (nn.Module, optional): auxiliary classifier used during training """ pass class FCNHead(nn.Sequential): def __init__(self, in_channels: int, channels: int) -> None: inter_channels = in_channels // 4 layers = [ nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(), nn.Dropout(0.1), nn.Conv2d(inter_channels, channels, 1), ] super().__init__(*layers) _COMMON_META = { "categories": _VOC_CATEGORIES, "min_size": (1, 1), "_docs": """ These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC dataset. """, } class FCN_ResNet50_Weights(WeightsEnum): COCO_WITH_VOC_LABELS_V1 = Weights( url="https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth", transforms=partial(SemanticSegmentation, resize_size=520), meta={ **_COMMON_META, "num_params": 35322218, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet50", "_metrics": { "COCO-val2017-VOC-labels": { "miou": 60.5, "pixel_acc": 91.4, } }, "_ops": 152.717, "_file_size": 135.009, }, ) DEFAULT = COCO_WITH_VOC_LABELS_V1 class FCN_ResNet101_Weights(WeightsEnum): COCO_WITH_VOC_LABELS_V1 = Weights( url="https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth", transforms=partial(SemanticSegmentation, resize_size=520), meta={ **_COMMON_META, "num_params": 54314346, "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101", "_metrics": { "COCO-val2017-VOC-labels": { "miou": 63.7, "pixel_acc": 91.9, } }, "_ops": 232.738, "_file_size": 207.711, }, ) DEFAULT = COCO_WITH_VOC_LABELS_V1 def _fcn_resnet( backbone: ResNet, num_classes: int, aux: Optional[bool], ) -> FCN: return_layers = {"layer4": "out"} if aux: return_layers["layer3"] = "aux" backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) aux_classifier = FCNHead(1024, num_classes) if aux else None classifier = FCNHead(2048, num_classes) return FCN(backbone, classifier, aux_classifier) @register_model() @handle_legacy_interface( weights=("pretrained", FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def fcn_resnet50( *, weights: Optional[FCN_ResNet50_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, aux_loss: Optional[bool] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, **kwargs: Any, ) -> FCN: """Fully-Convolutional Network model with a ResNet-50 backbone from the `Fully Convolutional Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper. .. betastatus:: segmentation module Args: weights (:class:`~torchvision.models.segmentation.FCN_ResNet50_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.segmentation.FCN_ResNet50_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background). aux_loss (bool, optional): If True, it uses an auxiliary loss. weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_ for more details about this class. .. autoclass:: torchvision.models.segmentation.FCN_ResNet50_Weights :members: """ weights = FCN_ResNet50_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) elif num_classes is None: num_classes = 21 backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) model = _fcn_resnet(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model @register_model() @handle_legacy_interface( weights=("pretrained", FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1), weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1), ) def fcn_resnet101( *, weights: Optional[FCN_ResNet101_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, aux_loss: Optional[bool] = None, weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1, **kwargs: Any, ) -> FCN: """Fully-Convolutional Network model with a ResNet-101 backbone from the `Fully Convolutional Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper. .. betastatus:: segmentation module Args: weights (:class:`~torchvision.models.segmentation.FCN_ResNet101_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.segmentation.FCN_ResNet101_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background). aux_loss (bool, optional): If True, it uses an auxiliary loss. weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights for the backbone. **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_ for more details about this class. .. autoclass:: torchvision.models.segmentation.FCN_ResNet101_Weights :members: """ weights = FCN_ResNet101_Weights.verify(weights) weights_backbone = ResNet101_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) elif num_classes is None: num_classes = 21 backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) model = _fcn_resnet(backbone, num_classes, aux_loss) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
================================================================================================================================= SOURCE CODE FILE: lraspp.py LINES: 1 SIZE: 7.64 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\segmentation\lraspp.py ENCODING: utf-8 ```py from collections import OrderedDict from functools import partial from typing import Any, Dict, Optional from torch import nn, Tensor from torch.nn import functional as F from ...transforms._presets import SemanticSegmentation from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _VOC_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3 __all__ = ["LRASPP", "LRASPP_MobileNet_V3_Large_Weights", "lraspp_mobilenet_v3_large"] class LRASPP(nn.Module): """ Implements a Lite R-ASPP Network for semantic segmentation from `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. Args: backbone (nn.Module): the network used to compute the features for the model. The backbone should return an OrderedDict[Tensor], with the key being "high" for the high level feature map and "low" for the low level feature map. low_channels (int): the number of channels of the low level features. high_channels (int): the number of channels of the high level features. num_classes (int, optional): number of output classes of the model (including the background). inter_channels (int, optional): the number of channels for intermediate computations. """ def __init__( self, backbone: nn.Module, low_channels: int, high_channels: int, num_classes: int, inter_channels: int = 128 ) -> None: super().__init__() _log_api_usage_once(self) self.backbone = backbone self.classifier = LRASPPHead(low_channels, high_channels, num_classes, inter_channels) def forward(self, input: Tensor) -> Dict[str, Tensor]: features = self.backbone(input) out = self.classifier(features) out = F.interpolate(out, size=input.shape[-2:], mode="bilinear", align_corners=False) result = OrderedDict() result["out"] = out return result class LRASPPHead(nn.Module): def __init__(self, low_channels: int, high_channels: int, num_classes: int, inter_channels: int) -> None: super().__init__() self.cbr = nn.Sequential( nn.Conv2d(high_channels, inter_channels, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), ) self.scale = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(high_channels, inter_channels, 1, bias=False), nn.Sigmoid(), ) self.low_classifier = nn.Conv2d(low_channels, num_classes, 1) self.high_classifier = nn.Conv2d(inter_channels, num_classes, 1) def forward(self, input: Dict[str, Tensor]) -> Tensor: low = input["low"] high = input["high"] x = self.cbr(high) s = self.scale(high) x = x * s x = F.interpolate(x, size=low.shape[-2:], mode="bilinear", align_corners=False) return self.low_classifier(low) + self.high_classifier(x) def _lraspp_mobilenetv3(backbone: MobileNetV3, num_classes: int) -> LRASPP: backbone = backbone.features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] low_pos = stage_indices[-4] # use C2 here which has output_stride = 8 high_pos = stage_indices[-1] # use C5 which has output_stride = 16 low_channels = backbone[low_pos].out_channels high_channels = backbone[high_pos].out_channels backbone = IntermediateLayerGetter(backbone, return_layers={str(low_pos): "low", str(high_pos): "high"}) return LRASPP(backbone, low_channels, high_channels, num_classes) class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum): COCO_WITH_VOC_LABELS_V1 = Weights( url="https://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pth", transforms=partial(SemanticSegmentation, resize_size=520), meta={ "num_params": 3221538, "categories": _VOC_CATEGORIES, "min_size": (1, 1), "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large", "_metrics": { "COCO-val2017-VOC-labels": { "miou": 57.9, "pixel_acc": 91.2, } }, "_ops": 2.086, "_file_size": 12.49, "_docs": """ These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC dataset. """, }, ) DEFAULT = COCO_WITH_VOC_LABELS_V1 @register_model() @handle_legacy_interface( weights=("pretrained", LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1), weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1), ) def lraspp_mobilenet_v3_large( *, weights: Optional[LRASPP_MobileNet_V3_Large_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1, **kwargs: Any, ) -> LRASPP: """Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper. .. betastatus:: segmentation module Args: weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. num_classes (int, optional): number of output classes of the model (including the background). aux_loss (bool, optional): If True, it uses an auxiliary loss. weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights for the backbone. **kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_ for more details about this class. .. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights :members: """ if kwargs.pop("aux_loss", False): raise NotImplementedError("This model does not use auxiliary loss") weights = LRASPP_MobileNet_V3_Large_Weights.verify(weights) weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 21 backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True) model = _lraspp_mobilenetv3(backbone, num_classes) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
========================================================================================================================== SOURCE CODE FILE: shufflenetv2.py LINES: 1 SIZE: 15.48 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\shufflenetv2.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Callable, List, Optional import torch import torch.nn as nn from torch import Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "ShuffleNetV2", "ShuffleNet_V2_X0_5_Weights", "ShuffleNet_V2_X1_0_Weights", "ShuffleNet_V2_X1_5_Weights", "ShuffleNet_V2_X2_0_Weights", "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "shufflenet_v2_x1_5", "shufflenet_v2_x2_0", ] def channel_shuffle(x: Tensor, groups: int) -> Tensor: batchsize, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, num_channels, height, width) return x class InvertedResidual(nn.Module): def __init__(self, inp: int, oup: int, stride: int) -> None: super().__init__() if not (1 <= stride <= 3): raise ValueError("illegal stride value") self.stride = stride branch_features = oup // 2 if (self.stride == 1) and (inp != branch_features << 1): raise ValueError( f"Invalid combination of stride {stride}, inp {inp} and oup {oup} values. If stride == 1 then inp should be equal to oup // 2 << 1." ) if self.stride > 1: self.branch1 = nn.Sequential( self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(inp), nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d( inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) @staticmethod def depthwise_conv( i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False ) -> nn.Conv2d: return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out class ShuffleNetV2(nn.Module): def __init__( self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual, ) -> None: super().__init__() _log_api_usage_once(self) if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = [f"stage{i}" for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # globalpool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _shufflenetv2( weights: Optional[WeightsEnum], progress: bool, *args: Any, **kwargs: Any, ) -> ShuffleNetV2: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = ShuffleNetV2(*args, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/ericsun99/Shufflenet-v2-Pytorch", } class ShuffleNet_V2_X0_5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch url="https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 1366792, "_metrics": { "ImageNet-1K": { "acc@1": 60.552, "acc@5": 81.746, } }, "_ops": 0.04, "_file_size": 5.282, "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X1_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch url="https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 2278604, "_metrics": { "ImageNet-1K": { "acc@1": 69.362, "acc@5": 88.316, } }, "_ops": 0.145, "_file_size": 8.791, "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X1_5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 3503624, "_metrics": { "ImageNet-1K": { "acc@1": 72.996, "acc@5": 91.086, } }, "_ops": 0.296, "_file_size": 13.557, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X2_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 7393996, "_metrics": { "ImageNet-1K": { "acc@1": 76.230, "acc@5": 93.006, } }, "_ops": 0.583, "_file_size": 28.433, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1)) def shufflenet_v2_x0_5( *, weights: Optional[ShuffleNet_V2_X0_5_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 0.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights :members: """ weights = ShuffleNet_V2_X0_5_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1)) def shufflenet_v2_x1_0( *, weights: Optional[ShuffleNet_V2_X1_0_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 1.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights :members: """ weights = ShuffleNet_V2_X1_0_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1)) def shufflenet_v2_x1_5( *, weights: Optional[ShuffleNet_V2_X1_5_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 1.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights :members: """ weights = ShuffleNet_V2_X1_5_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1)) def shufflenet_v2_x2_0( *, weights: Optional[ShuffleNet_V2_X2_0_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 2.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights :members: """ weights = ShuffleNet_V2_X2_0_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs) ```
======================================================================================================================== SOURCE CODE FILE: squeezenet.py LINES: 1 SIZE: 8.78 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\squeezenet.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Optional import torch import torch.nn as nn import torch.nn.init as init from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["SqueezeNet", "SqueezeNet1_0_Weights", "SqueezeNet1_1_Weights", "squeezenet1_0", "squeezenet1_1"] class Fire(nn.Module): def __init__(self, inplanes: int, squeeze_planes: int, expand1x1_planes: int, expand3x3_planes: int) -> None: super().__init__() self.inplanes = inplanes self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1) self.squeeze_activation = nn.ReLU(inplace=True) self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1) self.expand1x1_activation = nn.ReLU(inplace=True) self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1) self.expand3x3_activation = nn.ReLU(inplace=True) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.squeeze_activation(self.squeeze(x)) return torch.cat( [self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], 1 ) class SqueezeNet(nn.Module): def __init__(self, version: str = "1_0", num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.num_classes = num_classes if version == "1_0": self.features = nn.Sequential( nn.Conv2d(3, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(512, 64, 256, 256), ) elif version == "1_1": self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(128, 32, 128, 128), Fire(256, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), Fire(512, 64, 256, 256), ) else: # FIXME: Is this needed? SqueezeNet should only be called from the # FIXME: squeezenet1_x() functions # FIXME: This checking is not done for the other models raise ValueError(f"Unsupported SqueezeNet version {version}: 1_0 or 1_1 expected") # Final convolution is initialized differently from the rest final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1) self.classifier = nn.Sequential( nn.Dropout(p=dropout), final_conv, nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1)) ) for m in self.modules(): if isinstance(m, nn.Conv2d): if m is final_conv: init.normal_(m.weight, mean=0.0, std=0.01) else: init.kaiming_uniform_(m.weight) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.classifier(x) return torch.flatten(x, 1) def _squeezenet( version: str, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> SqueezeNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = SqueezeNet(version, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/pull/49#issuecomment-277560717", "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", } class SqueezeNet1_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "min_size": (21, 21), "num_params": 1248424, "_metrics": { "ImageNet-1K": { "acc@1": 58.092, "acc@5": 80.420, } }, "_ops": 0.819, "_file_size": 4.778, }, ) DEFAULT = IMAGENET1K_V1 class SqueezeNet1_1_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/squeezenet1_1-b8a52dc0.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "min_size": (17, 17), "num_params": 1235496, "_metrics": { "ImageNet-1K": { "acc@1": 58.178, "acc@5": 80.624, } }, "_ops": 0.349, "_file_size": 4.729, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", SqueezeNet1_0_Weights.IMAGENET1K_V1)) def squeezenet1_0( *, weights: Optional[SqueezeNet1_0_Weights] = None, progress: bool = True, **kwargs: Any ) -> SqueezeNet: """SqueezeNet model architecture from the `SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size <https://arxiv.org/abs/1602.07360>`_ paper. Args: weights (:class:`~torchvision.models.SqueezeNet1_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.SqueezeNet1_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.SqueezeNet1_0_Weights :members: """ weights = SqueezeNet1_0_Weights.verify(weights) return _squeezenet("1_0", weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", SqueezeNet1_1_Weights.IMAGENET1K_V1)) def squeezenet1_1( *, weights: Optional[SqueezeNet1_1_Weights] = None, progress: bool = True, **kwargs: Any ) -> SqueezeNet: """SqueezeNet 1.1 model from the `official SqueezeNet repo <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy. Args: weights (:class:`~torchvision.models.SqueezeNet1_1_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.SqueezeNet1_1_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_ for more details about this class. .. autoclass:: torchvision.models.SqueezeNet1_1_Weights :members: """ weights = SqueezeNet1_1_Weights.verify(weights) return _squeezenet("1_1", weights, progress, **kwargs) ```
============================================================================================================================== SOURCE CODE FILE: swin_transformer.py LINES: 1 SIZE: 39.42 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\swin_transformer.py ENCODING: utf-8 ```py import math from functools import partial from typing import Any, Callable, List, Optional import torch import torch.nn.functional as F from torch import nn, Tensor from ..ops.misc import MLP, Permute from ..ops.stochastic_depth import StochasticDepth from ..transforms._presets import ImageClassification, InterpolationMode from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "SwinTransformer", "Swin_T_Weights", "Swin_S_Weights", "Swin_B_Weights", "Swin_V2_T_Weights", "Swin_V2_S_Weights", "Swin_V2_B_Weights", "swin_t", "swin_s", "swin_b", "swin_v2_t", "swin_v2_s", "swin_v2_b", ] def _patch_merging_pad(x: torch.Tensor) -> torch.Tensor: H, W, _ = x.shape[-3:] x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[..., 0::2, 0::2, :] # ... H/2 W/2 C x1 = x[..., 1::2, 0::2, :] # ... H/2 W/2 C x2 = x[..., 0::2, 1::2, :] # ... H/2 W/2 C x3 = x[..., 1::2, 1::2, :] # ... H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # ... H/2 W/2 4*C return x torch.fx.wrap("_patch_merging_pad") def _get_relative_position_bias( relative_position_bias_table: torch.Tensor, relative_position_index: torch.Tensor, window_size: List[int] ) -> torch.Tensor: N = window_size[0] * window_size[1] relative_position_bias = relative_position_bias_table[relative_position_index] # type: ignore[index] relative_position_bias = relative_position_bias.view(N, N, -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0) return relative_position_bias torch.fx.wrap("_get_relative_position_bias") class PatchMerging(nn.Module): """Patch Merging Layer. Args: dim (int): Number of input channels. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. """ def __init__(self, dim: int, norm_layer: Callable[..., nn.Module] = nn.LayerNorm): super().__init__() _log_api_usage_once(self) self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x: Tensor): """ Args: x (Tensor): input tensor with expected layout of [..., H, W, C] Returns: Tensor with layout of [..., H/2, W/2, 2*C] """ x = _patch_merging_pad(x) x = self.norm(x) x = self.reduction(x) # ... H/2 W/2 2*C return x class PatchMergingV2(nn.Module): """Patch Merging Layer for Swin Transformer V2. Args: dim (int): Number of input channels. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. """ def __init__(self, dim: int, norm_layer: Callable[..., nn.Module] = nn.LayerNorm): super().__init__() _log_api_usage_once(self) self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(2 * dim) # difference def forward(self, x: Tensor): """ Args: x (Tensor): input tensor with expected layout of [..., H, W, C] Returns: Tensor with layout of [..., H/2, W/2, 2*C] """ x = _patch_merging_pad(x) x = self.reduction(x) # ... H/2 W/2 2*C x = self.norm(x) return x def shifted_window_attention( input: Tensor, qkv_weight: Tensor, proj_weight: Tensor, relative_position_bias: Tensor, window_size: List[int], num_heads: int, shift_size: List[int], attention_dropout: float = 0.0, dropout: float = 0.0, qkv_bias: Optional[Tensor] = None, proj_bias: Optional[Tensor] = None, logit_scale: Optional[torch.Tensor] = None, training: bool = True, ) -> Tensor: """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: input (Tensor[N, H, W, C]): The input tensor or 4-dimensions. qkv_weight (Tensor[in_dim, out_dim]): The weight tensor of query, key, value. proj_weight (Tensor[out_dim, out_dim]): The weight tensor of projection. relative_position_bias (Tensor): The learned relative position bias added to attention. window_size (List[int]): Window size. num_heads (int): Number of attention heads. shift_size (List[int]): Shift size for shifted window attention. attention_dropout (float): Dropout ratio of attention weight. Default: 0.0. dropout (float): Dropout ratio of output. Default: 0.0. qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None. proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None. logit_scale (Tensor[out_dim], optional): Logit scale of cosine attention for Swin Transformer V2. Default: None. training (bool, optional): Training flag used by the dropout parameters. Default: True. Returns: Tensor[N, H, W, C]: The output tensor after shifted window attention. """ B, H, W, C = input.shape # pad feature maps to multiples of window size pad_r = (window_size[1] - W % window_size[1]) % window_size[1] pad_b = (window_size[0] - H % window_size[0]) % window_size[0] x = F.pad(input, (0, 0, 0, pad_r, 0, pad_b)) _, pad_H, pad_W, _ = x.shape shift_size = shift_size.copy() # If window size is larger than feature size, there is no need to shift window if window_size[0] >= pad_H: shift_size[0] = 0 if window_size[1] >= pad_W: shift_size[1] = 0 # cyclic shift if sum(shift_size) > 0: x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) # partition windows num_windows = (pad_H // window_size[0]) * (pad_W // window_size[1]) x = x.view(B, pad_H // window_size[0], window_size[0], pad_W // window_size[1], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).reshape(B * num_windows, window_size[0] * window_size[1], C) # B*nW, Ws*Ws, C # multi-head attention if logit_scale is not None and qkv_bias is not None: qkv_bias = qkv_bias.clone() length = qkv_bias.numel() // 3 qkv_bias[length : 2 * length].zero_() qkv = F.linear(x, qkv_weight, qkv_bias) qkv = qkv.reshape(x.size(0), x.size(1), 3, num_heads, C // num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] if logit_scale is not None: # cosine attention attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) logit_scale = torch.clamp(logit_scale, max=math.log(100.0)).exp() attn = attn * logit_scale else: q = q * (C // num_heads) ** -0.5 attn = q.matmul(k.transpose(-2, -1)) # add relative position bias attn = attn + relative_position_bias if sum(shift_size) > 0: # generate attention mask attn_mask = x.new_zeros((pad_H, pad_W)) h_slices = ((0, -window_size[0]), (-window_size[0], -shift_size[0]), (-shift_size[0], None)) w_slices = ((0, -window_size[1]), (-window_size[1], -shift_size[1]), (-shift_size[1], None)) count = 0 for h in h_slices: for w in w_slices: attn_mask[h[0] : h[1], w[0] : w[1]] = count count += 1 attn_mask = attn_mask.view(pad_H // window_size[0], window_size[0], pad_W // window_size[1], window_size[1]) attn_mask = attn_mask.permute(0, 2, 1, 3).reshape(num_windows, window_size[0] * window_size[1]) attn_mask = attn_mask.unsqueeze(1) - attn_mask.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) attn = attn.view(x.size(0) // num_windows, num_windows, num_heads, x.size(1), x.size(1)) attn = attn + attn_mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, num_heads, x.size(1), x.size(1)) attn = F.softmax(attn, dim=-1) attn = F.dropout(attn, p=attention_dropout, training=training) x = attn.matmul(v).transpose(1, 2).reshape(x.size(0), x.size(1), C) x = F.linear(x, proj_weight, proj_bias) x = F.dropout(x, p=dropout, training=training) # reverse windows x = x.view(B, pad_H // window_size[0], pad_W // window_size[1], window_size[0], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, pad_H, pad_W, C) # reverse cyclic shift if sum(shift_size) > 0: x = torch.roll(x, shifts=(shift_size[0], shift_size[1]), dims=(1, 2)) # unpad features x = x[:, :H, :W, :].contiguous() return x torch.fx.wrap("shifted_window_attention") class ShiftedWindowAttention(nn.Module): """ See :func:`shifted_window_attention`. """ def __init__( self, dim: int, window_size: List[int], shift_size: List[int], num_heads: int, qkv_bias: bool = True, proj_bias: bool = True, attention_dropout: float = 0.0, dropout: float = 0.0, ): super().__init__() if len(window_size) != 2 or len(shift_size) != 2: raise ValueError("window_size and shift_size must be of length 2") self.window_size = window_size self.shift_size = shift_size self.num_heads = num_heads self.attention_dropout = attention_dropout self.dropout = dropout self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.define_relative_position_bias_table() self.define_relative_position_index() def define_relative_position_bias_table(self): # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), self.num_heads) ) # 2*Wh-1 * 2*Ww-1, nH nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02) def define_relative_position_index(self): # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1).flatten() # Wh*Ww*Wh*Ww self.register_buffer("relative_position_index", relative_position_index) def get_relative_position_bias(self) -> torch.Tensor: return _get_relative_position_bias( self.relative_position_bias_table, self.relative_position_index, self.window_size # type: ignore[arg-type] ) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Tensor with layout of [B, H, W, C] Returns: Tensor with same layout as input, i.e. [B, H, W, C] """ relative_position_bias = self.get_relative_position_bias() return shifted_window_attention( x, self.qkv.weight, self.proj.weight, relative_position_bias, self.window_size, self.num_heads, shift_size=self.shift_size, attention_dropout=self.attention_dropout, dropout=self.dropout, qkv_bias=self.qkv.bias, proj_bias=self.proj.bias, training=self.training, ) class ShiftedWindowAttentionV2(ShiftedWindowAttention): """ See :func:`shifted_window_attention_v2`. """ def __init__( self, dim: int, window_size: List[int], shift_size: List[int], num_heads: int, qkv_bias: bool = True, proj_bias: bool = True, attention_dropout: float = 0.0, dropout: float = 0.0, ): super().__init__( dim, window_size, shift_size, num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attention_dropout=attention_dropout, dropout=dropout, ) self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) # mlp to generate continuous relative position bias self.cpb_mlp = nn.Sequential( nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False) ) if qkv_bias: length = self.qkv.bias.numel() // 3 self.qkv.bias[length : 2 * length].data.zero_() def define_relative_position_bias_table(self): # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) relative_coords_table = torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w], indexing="ij")) relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = ( torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / 3.0 ) self.register_buffer("relative_coords_table", relative_coords_table) def get_relative_position_bias(self) -> torch.Tensor: relative_position_bias = _get_relative_position_bias( self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads), self.relative_position_index, # type: ignore[arg-type] self.window_size, ) relative_position_bias = 16 * torch.sigmoid(relative_position_bias) return relative_position_bias def forward(self, x: Tensor): """ Args: x (Tensor): Tensor with layout of [B, H, W, C] Returns: Tensor with same layout as input, i.e. [B, H, W, C] """ relative_position_bias = self.get_relative_position_bias() return shifted_window_attention( x, self.qkv.weight, self.proj.weight, relative_position_bias, self.window_size, self.num_heads, shift_size=self.shift_size, attention_dropout=self.attention_dropout, dropout=self.dropout, qkv_bias=self.qkv.bias, proj_bias=self.proj.bias, logit_scale=self.logit_scale, training=self.training, ) class SwinTransformerBlock(nn.Module): """ Swin Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (List[int]): Window size. shift_size (List[int]): Shift size for shifted window attention. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. dropout (float): Dropout rate. Default: 0.0. attention_dropout (float): Attention dropout rate. Default: 0.0. stochastic_depth_prob: (float): Stochastic depth rate. Default: 0.0. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. attn_layer (nn.Module): Attention layer. Default: ShiftedWindowAttention """ def __init__( self, dim: int, num_heads: int, window_size: List[int], shift_size: List[int], mlp_ratio: float = 4.0, dropout: float = 0.0, attention_dropout: float = 0.0, stochastic_depth_prob: float = 0.0, norm_layer: Callable[..., nn.Module] = nn.LayerNorm, attn_layer: Callable[..., nn.Module] = ShiftedWindowAttention, ): super().__init__() _log_api_usage_once(self) self.norm1 = norm_layer(dim) self.attn = attn_layer( dim, window_size, shift_size, num_heads, attention_dropout=attention_dropout, dropout=dropout, ) self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row") self.norm2 = norm_layer(dim) self.mlp = MLP(dim, [int(dim * mlp_ratio), dim], activation_layer=nn.GELU, inplace=None, dropout=dropout) for m in self.mlp.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.normal_(m.bias, std=1e-6) def forward(self, x: Tensor): x = x + self.stochastic_depth(self.attn(self.norm1(x))) x = x + self.stochastic_depth(self.mlp(self.norm2(x))) return x class SwinTransformerBlockV2(SwinTransformerBlock): """ Swin Transformer V2 Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (List[int]): Window size. shift_size (List[int]): Shift size for shifted window attention. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. dropout (float): Dropout rate. Default: 0.0. attention_dropout (float): Attention dropout rate. Default: 0.0. stochastic_depth_prob: (float): Stochastic depth rate. Default: 0.0. norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. attn_layer (nn.Module): Attention layer. Default: ShiftedWindowAttentionV2. """ def __init__( self, dim: int, num_heads: int, window_size: List[int], shift_size: List[int], mlp_ratio: float = 4.0, dropout: float = 0.0, attention_dropout: float = 0.0, stochastic_depth_prob: float = 0.0, norm_layer: Callable[..., nn.Module] = nn.LayerNorm, attn_layer: Callable[..., nn.Module] = ShiftedWindowAttentionV2, ): super().__init__( dim, num_heads, window_size, shift_size, mlp_ratio=mlp_ratio, dropout=dropout, attention_dropout=attention_dropout, stochastic_depth_prob=stochastic_depth_prob, norm_layer=norm_layer, attn_layer=attn_layer, ) def forward(self, x: Tensor): # Here is the difference, we apply norm after the attention in V2. # In V1 we applied norm before the attention. x = x + self.stochastic_depth(self.norm1(self.attn(x))) x = x + self.stochastic_depth(self.norm2(self.mlp(x))) return x class SwinTransformer(nn.Module): """ Implements Swin Transformer from the `"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" <https://arxiv.org/abs/2103.14030>`_ paper. Args: patch_size (List[int]): Patch size. embed_dim (int): Patch embedding dimension. depths (List(int)): Depth of each Swin Transformer layer. num_heads (List(int)): Number of attention heads in different layers. window_size (List[int]): Window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. dropout (float): Dropout rate. Default: 0.0. attention_dropout (float): Attention dropout rate. Default: 0.0. stochastic_depth_prob (float): Stochastic depth rate. Default: 0.1. num_classes (int): Number of classes for classification head. Default: 1000. block (nn.Module, optional): SwinTransformer Block. Default: None. norm_layer (nn.Module, optional): Normalization layer. Default: None. downsample_layer (nn.Module): Downsample layer (patch merging). Default: PatchMerging. """ def __init__( self, patch_size: List[int], embed_dim: int, depths: List[int], num_heads: List[int], window_size: List[int], mlp_ratio: float = 4.0, dropout: float = 0.0, attention_dropout: float = 0.0, stochastic_depth_prob: float = 0.1, num_classes: int = 1000, norm_layer: Optional[Callable[..., nn.Module]] = None, block: Optional[Callable[..., nn.Module]] = None, downsample_layer: Callable[..., nn.Module] = PatchMerging, ): super().__init__() _log_api_usage_once(self) self.num_classes = num_classes if block is None: block = SwinTransformerBlock if norm_layer is None: norm_layer = partial(nn.LayerNorm, eps=1e-5) layers: List[nn.Module] = [] # split image into non-overlapping patches layers.append( nn.Sequential( nn.Conv2d( 3, embed_dim, kernel_size=(patch_size[0], patch_size[1]), stride=(patch_size[0], patch_size[1]) ), Permute([0, 2, 3, 1]), norm_layer(embed_dim), ) ) total_stage_blocks = sum(depths) stage_block_id = 0 # build SwinTransformer blocks for i_stage in range(len(depths)): stage: List[nn.Module] = [] dim = embed_dim * 2**i_stage for i_layer in range(depths[i_stage]): # adjust stochastic depth probability based on the depth of the stage block sd_prob = stochastic_depth_prob * float(stage_block_id) / (total_stage_blocks - 1) stage.append( block( dim, num_heads[i_stage], window_size=window_size, shift_size=[0 if i_layer % 2 == 0 else w // 2 for w in window_size], mlp_ratio=mlp_ratio, dropout=dropout, attention_dropout=attention_dropout, stochastic_depth_prob=sd_prob, norm_layer=norm_layer, ) ) stage_block_id += 1 layers.append(nn.Sequential(*stage)) # add patch merging layer if i_stage < (len(depths) - 1): layers.append(downsample_layer(dim, norm_layer)) self.features = nn.Sequential(*layers) num_features = embed_dim * 2 ** (len(depths) - 1) self.norm = norm_layer(num_features) self.permute = Permute([0, 3, 1, 2]) # B H W C -> B C H W self.avgpool = nn.AdaptiveAvgPool2d(1) self.flatten = nn.Flatten(1) self.head = nn.Linear(num_features, num_classes) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.zeros_(m.bias) def forward(self, x): x = self.features(x) x = self.norm(x) x = self.permute(x) x = self.avgpool(x) x = self.flatten(x) x = self.head(x) return x def _swin_transformer( patch_size: List[int], embed_dim: int, depths: List[int], num_heads: List[int], window_size: List[int], stochastic_depth_prob: float, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> SwinTransformer: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = SwinTransformer( patch_size=patch_size, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, stochastic_depth_prob=stochastic_depth_prob, **kwargs, ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "categories": _IMAGENET_CATEGORIES, } class Swin_T_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/swin_t-704ceda3.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=232, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META, "num_params": 28288354, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer", "_metrics": { "ImageNet-1K": { "acc@1": 81.474, "acc@5": 95.776, } }, "_ops": 4.491, "_file_size": 108.19, "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 class Swin_S_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/swin_s-5e29d889.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=246, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META, "num_params": 49606258, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer", "_metrics": { "ImageNet-1K": { "acc@1": 83.196, "acc@5": 96.360, } }, "_ops": 8.741, "_file_size": 189.786, "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 class Swin_B_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/swin_b-68c6b09e.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=238, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META, "num_params": 87768224, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer", "_metrics": { "ImageNet-1K": { "acc@1": 83.582, "acc@5": 96.640, } }, "_ops": 15.431, "_file_size": 335.364, "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 class Swin_V2_T_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/swin_v2_t-b137f0e2.pth", transforms=partial( ImageClassification, crop_size=256, resize_size=260, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META, "num_params": 28351570, "min_size": (256, 256), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer-v2", "_metrics": { "ImageNet-1K": { "acc@1": 82.072, "acc@5": 96.132, } }, "_ops": 5.94, "_file_size": 108.626, "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 class Swin_V2_S_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/swin_v2_s-637d8ceb.pth", transforms=partial( ImageClassification, crop_size=256, resize_size=260, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META, "num_params": 49737442, "min_size": (256, 256), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer-v2", "_metrics": { "ImageNet-1K": { "acc@1": 83.712, "acc@5": 96.816, } }, "_ops": 11.546, "_file_size": 190.675, "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 class Swin_V2_B_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/swin_v2_b-781e5279.pth", transforms=partial( ImageClassification, crop_size=256, resize_size=272, interpolation=InterpolationMode.BICUBIC ), meta={ **_COMMON_META, "num_params": 87930848, "min_size": (256, 256), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer-v2", "_metrics": { "ImageNet-1K": { "acc@1": 84.112, "acc@5": 96.864, } }, "_ops": 20.325, "_file_size": 336.372, "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""", }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", Swin_T_Weights.IMAGENET1K_V1)) def swin_t(*, weights: Optional[Swin_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: """ Constructs a swin_tiny architecture from `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>`_. Args: weights (:class:`~torchvision.models.Swin_T_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Swin_T_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.Swin_T_Weights :members: """ weights = Swin_T_Weights.verify(weights) return _swin_transformer( patch_size=[4, 4], embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=[7, 7], stochastic_depth_prob=0.2, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Swin_S_Weights.IMAGENET1K_V1)) def swin_s(*, weights: Optional[Swin_S_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: """ Constructs a swin_small architecture from `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>`_. Args: weights (:class:`~torchvision.models.Swin_S_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Swin_S_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.Swin_S_Weights :members: """ weights = Swin_S_Weights.verify(weights) return _swin_transformer( patch_size=[4, 4], embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=[7, 7], stochastic_depth_prob=0.3, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Swin_B_Weights.IMAGENET1K_V1)) def swin_b(*, weights: Optional[Swin_B_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: """ Constructs a swin_base architecture from `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>`_. Args: weights (:class:`~torchvision.models.Swin_B_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Swin_B_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.Swin_B_Weights :members: """ weights = Swin_B_Weights.verify(weights) return _swin_transformer( patch_size=[4, 4], embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=[7, 7], stochastic_depth_prob=0.5, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Swin_V2_T_Weights.IMAGENET1K_V1)) def swin_v2_t(*, weights: Optional[Swin_V2_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: """ Constructs a swin_v2_tiny architecture from `Swin Transformer V2: Scaling Up Capacity and Resolution <https://arxiv.org/abs/2111.09883>`_. Args: weights (:class:`~torchvision.models.Swin_V2_T_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Swin_V2_T_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.Swin_V2_T_Weights :members: """ weights = Swin_V2_T_Weights.verify(weights) return _swin_transformer( patch_size=[4, 4], embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=[8, 8], stochastic_depth_prob=0.2, weights=weights, progress=progress, block=SwinTransformerBlockV2, downsample_layer=PatchMergingV2, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Swin_V2_S_Weights.IMAGENET1K_V1)) def swin_v2_s(*, weights: Optional[Swin_V2_S_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: """ Constructs a swin_v2_small architecture from `Swin Transformer V2: Scaling Up Capacity and Resolution <https://arxiv.org/abs/2111.09883>`_. Args: weights (:class:`~torchvision.models.Swin_V2_S_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Swin_V2_S_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.Swin_V2_S_Weights :members: """ weights = Swin_V2_S_Weights.verify(weights) return _swin_transformer( patch_size=[4, 4], embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=[8, 8], stochastic_depth_prob=0.3, weights=weights, progress=progress, block=SwinTransformerBlockV2, downsample_layer=PatchMergingV2, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Swin_V2_B_Weights.IMAGENET1K_V1)) def swin_v2_b(*, weights: Optional[Swin_V2_B_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: """ Constructs a swin_v2_base architecture from `Swin Transformer V2: Scaling Up Capacity and Resolution <https://arxiv.org/abs/2111.09883>`_. Args: weights (:class:`~torchvision.models.Swin_V2_B_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.Swin_V2_B_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.Swin_V2_B_Weights :members: """ weights = Swin_V2_B_Weights.verify(weights) return _swin_transformer( patch_size=[4, 4], embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=[8, 8], stochastic_depth_prob=0.5, weights=weights, progress=progress, block=SwinTransformerBlockV2, downsample_layer=PatchMergingV2, **kwargs, ) ```
================================================================================================================= SOURCE CODE FILE: vgg.py LINES: 1 SIZE: 19.27 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\vgg.py ENCODING: utf-8 ```py from functools import partial from typing import Any, cast, Dict, List, Optional, Union import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "VGG", "VGG11_Weights", "VGG11_BN_Weights", "VGG13_Weights", "VGG13_BN_Weights", "VGG16_Weights", "VGG16_BN_Weights", "VGG19_Weights", "VGG19_BN_Weights", "vgg11", "vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn", "vgg19", "vgg19_bn", ] class VGG(nn.Module): def __init__( self, features: nn.Module, num_classes: int = 1000, init_weights: bool = True, dropout: float = 0.5 ) -> None: super().__init__() _log_api_usage_once(self) self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(p=dropout), nn.Linear(4096, num_classes), ) if init_weights: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] in_channels = 3 for v in cfg: if v == "M": layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = { "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], "D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M"], "E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512, "M"], } def _vgg(cfg: str, batch_norm: bool, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any) -> VGG: if weights is not None: kwargs["init_weights"] = False if weights.meta["categories"] is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (32, 32), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_docs": """These weights were trained from scratch by using a simplified training recipe.""", } class VGG11_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg11-8a719046.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 132863336, "_metrics": { "ImageNet-1K": { "acc@1": 69.020, "acc@5": 88.628, } }, "_ops": 7.609, "_file_size": 506.84, }, ) DEFAULT = IMAGENET1K_V1 class VGG11_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg11_bn-6002323d.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 132868840, "_metrics": { "ImageNet-1K": { "acc@1": 70.370, "acc@5": 89.810, } }, "_ops": 7.609, "_file_size": 506.881, }, ) DEFAULT = IMAGENET1K_V1 class VGG13_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg13-19584684.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 133047848, "_metrics": { "ImageNet-1K": { "acc@1": 69.928, "acc@5": 89.246, } }, "_ops": 11.308, "_file_size": 507.545, }, ) DEFAULT = IMAGENET1K_V1 class VGG13_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 133053736, "_metrics": { "ImageNet-1K": { "acc@1": 71.586, "acc@5": 90.374, } }, "_ops": 11.308, "_file_size": 507.59, }, ) DEFAULT = IMAGENET1K_V1 class VGG16_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg16-397923af.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 138357544, "_metrics": { "ImageNet-1K": { "acc@1": 71.592, "acc@5": 90.382, } }, "_ops": 15.47, "_file_size": 527.796, }, ) IMAGENET1K_FEATURES = Weights( # Weights ported from https://github.com/amdegroot/ssd.pytorch/ url="https://download.pytorch.org/models/vgg16_features-amdegroot-88682ab5.pth", transforms=partial( ImageClassification, crop_size=224, mean=(0.48235, 0.45882, 0.40784), std=(1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0), ), meta={ **_COMMON_META, "num_params": 138357544, "categories": None, "recipe": "https://github.com/amdegroot/ssd.pytorch#training-ssd", "_metrics": { "ImageNet-1K": { "acc@1": float("nan"), "acc@5": float("nan"), } }, "_ops": 15.47, "_file_size": 527.802, "_docs": """ These weights can't be used for classification because they are missing values in the `classifier` module. Only the `features` module has valid values and can be used for feature extraction. The weights were trained using the original input standardization method as described in the paper. """, }, ) DEFAULT = IMAGENET1K_V1 class VGG16_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 138365992, "_metrics": { "ImageNet-1K": { "acc@1": 73.360, "acc@5": 91.516, } }, "_ops": 15.47, "_file_size": 527.866, }, ) DEFAULT = IMAGENET1K_V1 class VGG19_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 143667240, "_metrics": { "ImageNet-1K": { "acc@1": 72.376, "acc@5": 90.876, } }, "_ops": 19.632, "_file_size": 548.051, }, ) DEFAULT = IMAGENET1K_V1 class VGG19_BN_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 143678248, "_metrics": { "ImageNet-1K": { "acc@1": 74.218, "acc@5": 91.842, } }, "_ops": 19.632, "_file_size": 548.143, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", VGG11_Weights.IMAGENET1K_V1)) def vgg11(*, weights: Optional[VGG11_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-11 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG11_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG11_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG11_Weights :members: """ weights = VGG11_Weights.verify(weights) return _vgg("A", False, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", VGG11_BN_Weights.IMAGENET1K_V1)) def vgg11_bn(*, weights: Optional[VGG11_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-11-BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG11_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG11_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG11_BN_Weights :members: """ weights = VGG11_BN_Weights.verify(weights) return _vgg("A", True, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", VGG13_Weights.IMAGENET1K_V1)) def vgg13(*, weights: Optional[VGG13_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-13 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG13_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG13_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG13_Weights :members: """ weights = VGG13_Weights.verify(weights) return _vgg("B", False, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", VGG13_BN_Weights.IMAGENET1K_V1)) def vgg13_bn(*, weights: Optional[VGG13_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-13-BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG13_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG13_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG13_BN_Weights :members: """ weights = VGG13_BN_Weights.verify(weights) return _vgg("B", True, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", VGG16_Weights.IMAGENET1K_V1)) def vgg16(*, weights: Optional[VGG16_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-16 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG16_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG16_Weights :members: """ weights = VGG16_Weights.verify(weights) return _vgg("D", False, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", VGG16_BN_Weights.IMAGENET1K_V1)) def vgg16_bn(*, weights: Optional[VGG16_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-16-BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG16_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG16_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG16_BN_Weights :members: """ weights = VGG16_BN_Weights.verify(weights) return _vgg("D", True, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", VGG19_Weights.IMAGENET1K_V1)) def vgg19(*, weights: Optional[VGG19_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-19 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG19_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG19_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG19_Weights :members: """ weights = VGG19_Weights.verify(weights) return _vgg("E", False, weights, progress, **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", VGG19_BN_Weights.IMAGENET1K_V1)) def vgg19_bn(*, weights: Optional[VGG19_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG: """VGG-19_BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__. Args: weights (:class:`~torchvision.models.VGG19_BN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.VGG19_BN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vgg.VGG`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_ for more details about this class. .. autoclass:: torchvision.models.VGG19_BN_Weights :members: """ weights = VGG19_BN_Weights.verify(weights) return _vgg("E", True, weights, progress, **kwargs) ```
============================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.09 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\video\__init__.py ENCODING: utf-8 ```py from .mvit import * from .resnet import * from .s3d import * from .swin_transformer import * ```
======================================================================================================================== SOURCE CODE FILE: mvit.py LINES: 1 SIZE: 33.10 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\video\mvit.py ENCODING: utf-8 ```py import math from dataclasses import dataclass from functools import partial from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple import torch import torch.fx import torch.nn as nn from ...ops import MLP, StochasticDepth from ...transforms._presets import VideoClassification from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _KINETICS400_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "MViT", "MViT_V1_B_Weights", "mvit_v1_b", "MViT_V2_S_Weights", "mvit_v2_s", ] @dataclass class MSBlockConfig: num_heads: int input_channels: int output_channels: int kernel_q: List[int] kernel_kv: List[int] stride_q: List[int] stride_kv: List[int] def _prod(s: Sequence[int]) -> int: product = 1 for v in s: product *= v return product def _unsqueeze(x: torch.Tensor, target_dim: int, expand_dim: int) -> Tuple[torch.Tensor, int]: tensor_dim = x.dim() if tensor_dim == target_dim - 1: x = x.unsqueeze(expand_dim) elif tensor_dim != target_dim: raise ValueError(f"Unsupported input dimension {x.shape}") return x, tensor_dim def _squeeze(x: torch.Tensor, target_dim: int, expand_dim: int, tensor_dim: int) -> torch.Tensor: if tensor_dim == target_dim - 1: x = x.squeeze(expand_dim) return x torch.fx.wrap("_unsqueeze") torch.fx.wrap("_squeeze") class Pool(nn.Module): def __init__( self, pool: nn.Module, norm: Optional[nn.Module], activation: Optional[nn.Module] = None, norm_before_pool: bool = False, ) -> None: super().__init__() self.pool = pool layers = [] if norm is not None: layers.append(norm) if activation is not None: layers.append(activation) self.norm_act = nn.Sequential(*layers) if layers else None self.norm_before_pool = norm_before_pool def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]: x, tensor_dim = _unsqueeze(x, 4, 1) # Separate the class token and reshape the input class_token, x = torch.tensor_split(x, indices=(1,), dim=2) x = x.transpose(2, 3) B, N, C = x.shape[:3] x = x.reshape((B * N, C) + thw).contiguous() # normalizing prior pooling is useful when we use BN which can be absorbed to speed up inference if self.norm_before_pool and self.norm_act is not None: x = self.norm_act(x) # apply the pool on the input and add back the token x = self.pool(x) T, H, W = x.shape[2:] x = x.reshape(B, N, C, -1).transpose(2, 3) x = torch.cat((class_token, x), dim=2) if not self.norm_before_pool and self.norm_act is not None: x = self.norm_act(x) x = _squeeze(x, 4, 1, tensor_dim) return x, (T, H, W) def _interpolate(embedding: torch.Tensor, d: int) -> torch.Tensor: if embedding.shape[0] == d: return embedding return ( nn.functional.interpolate( embedding.permute(1, 0).unsqueeze(0), size=d, mode="linear", ) .squeeze(0) .permute(1, 0) ) def _add_rel_pos( attn: torch.Tensor, q: torch.Tensor, q_thw: Tuple[int, int, int], k_thw: Tuple[int, int, int], rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, rel_pos_t: torch.Tensor, ) -> torch.Tensor: # Modified code from: https://github.com/facebookresearch/SlowFast/commit/1aebd71a2efad823d52b827a3deaf15a56cf4932 q_t, q_h, q_w = q_thw k_t, k_h, k_w = k_thw dh = int(2 * max(q_h, k_h) - 1) dw = int(2 * max(q_w, k_w) - 1) dt = int(2 * max(q_t, k_t) - 1) # Scale up rel pos if shapes for q and k are different. q_h_ratio = max(k_h / q_h, 1.0) k_h_ratio = max(q_h / k_h, 1.0) dist_h = torch.arange(q_h)[:, None] * q_h_ratio - (torch.arange(k_h)[None, :] + (1.0 - k_h)) * k_h_ratio q_w_ratio = max(k_w / q_w, 1.0) k_w_ratio = max(q_w / k_w, 1.0) dist_w = torch.arange(q_w)[:, None] * q_w_ratio - (torch.arange(k_w)[None, :] + (1.0 - k_w)) * k_w_ratio q_t_ratio = max(k_t / q_t, 1.0) k_t_ratio = max(q_t / k_t, 1.0) dist_t = torch.arange(q_t)[:, None] * q_t_ratio - (torch.arange(k_t)[None, :] + (1.0 - k_t)) * k_t_ratio # Interpolate rel pos if needed. rel_pos_h = _interpolate(rel_pos_h, dh) rel_pos_w = _interpolate(rel_pos_w, dw) rel_pos_t = _interpolate(rel_pos_t, dt) Rh = rel_pos_h[dist_h.long()] Rw = rel_pos_w[dist_w.long()] Rt = rel_pos_t[dist_t.long()] B, n_head, _, dim = q.shape r_q = q[:, :, 1:].reshape(B, n_head, q_t, q_h, q_w, dim) rel_h_q = torch.einsum("bythwc,hkc->bythwk", r_q, Rh) # [B, H, q_t, qh, qw, k_h] rel_w_q = torch.einsum("bythwc,wkc->bythwk", r_q, Rw) # [B, H, q_t, qh, qw, k_w] # [B, H, q_t, q_h, q_w, dim] -> [q_t, B, H, q_h, q_w, dim] -> [q_t, B*H*q_h*q_w, dim] r_q = r_q.permute(2, 0, 1, 3, 4, 5).reshape(q_t, B * n_head * q_h * q_w, dim) # [q_t, B*H*q_h*q_w, dim] * [q_t, dim, k_t] = [q_t, B*H*q_h*q_w, k_t] -> [B*H*q_h*q_w, q_t, k_t] rel_q_t = torch.matmul(r_q, Rt.transpose(1, 2)).transpose(0, 1) # [B*H*q_h*q_w, q_t, k_t] -> [B, H, q_t, q_h, q_w, k_t] rel_q_t = rel_q_t.view(B, n_head, q_h, q_w, q_t, k_t).permute(0, 1, 4, 2, 3, 5) # Combine rel pos. rel_pos = ( rel_h_q[:, :, :, :, :, None, :, None] + rel_w_q[:, :, :, :, :, None, None, :] + rel_q_t[:, :, :, :, :, :, None, None] ).reshape(B, n_head, q_t * q_h * q_w, k_t * k_h * k_w) # Add it to attention attn[:, :, 1:, 1:] += rel_pos return attn def _add_shortcut(x: torch.Tensor, shortcut: torch.Tensor, residual_with_cls_embed: bool): if residual_with_cls_embed: x.add_(shortcut) else: x[:, :, 1:, :] += shortcut[:, :, 1:, :] return x torch.fx.wrap("_add_rel_pos") torch.fx.wrap("_add_shortcut") class MultiscaleAttention(nn.Module): def __init__( self, input_size: List[int], embed_dim: int, output_dim: int, num_heads: int, kernel_q: List[int], kernel_kv: List[int], stride_q: List[int], stride_kv: List[int], residual_pool: bool, residual_with_cls_embed: bool, rel_pos_embed: bool, dropout: float = 0.0, norm_layer: Callable[..., nn.Module] = nn.LayerNorm, ) -> None: super().__init__() self.embed_dim = embed_dim self.output_dim = output_dim self.num_heads = num_heads self.head_dim = output_dim // num_heads self.scaler = 1.0 / math.sqrt(self.head_dim) self.residual_pool = residual_pool self.residual_with_cls_embed = residual_with_cls_embed self.qkv = nn.Linear(embed_dim, 3 * output_dim) layers: List[nn.Module] = [nn.Linear(output_dim, output_dim)] if dropout > 0.0: layers.append(nn.Dropout(dropout, inplace=True)) self.project = nn.Sequential(*layers) self.pool_q: Optional[nn.Module] = None if _prod(kernel_q) > 1 or _prod(stride_q) > 1: padding_q = [int(q // 2) for q in kernel_q] self.pool_q = Pool( nn.Conv3d( self.head_dim, self.head_dim, kernel_q, # type: ignore[arg-type] stride=stride_q, # type: ignore[arg-type] padding=padding_q, # type: ignore[arg-type] groups=self.head_dim, bias=False, ), norm_layer(self.head_dim), ) self.pool_k: Optional[nn.Module] = None self.pool_v: Optional[nn.Module] = None if _prod(kernel_kv) > 1 or _prod(stride_kv) > 1: padding_kv = [int(kv // 2) for kv in kernel_kv] self.pool_k = Pool( nn.Conv3d( self.head_dim, self.head_dim, kernel_kv, # type: ignore[arg-type] stride=stride_kv, # type: ignore[arg-type] padding=padding_kv, # type: ignore[arg-type] groups=self.head_dim, bias=False, ), norm_layer(self.head_dim), ) self.pool_v = Pool( nn.Conv3d( self.head_dim, self.head_dim, kernel_kv, # type: ignore[arg-type] stride=stride_kv, # type: ignore[arg-type] padding=padding_kv, # type: ignore[arg-type] groups=self.head_dim, bias=False, ), norm_layer(self.head_dim), ) self.rel_pos_h: Optional[nn.Parameter] = None self.rel_pos_w: Optional[nn.Parameter] = None self.rel_pos_t: Optional[nn.Parameter] = None if rel_pos_embed: size = max(input_size[1:]) q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size spatial_dim = 2 * max(q_size, kv_size) - 1 temporal_dim = 2 * input_size[0] - 1 self.rel_pos_h = nn.Parameter(torch.zeros(spatial_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(spatial_dim, self.head_dim)) self.rel_pos_t = nn.Parameter(torch.zeros(temporal_dim, self.head_dim)) nn.init.trunc_normal_(self.rel_pos_h, std=0.02) nn.init.trunc_normal_(self.rel_pos_w, std=0.02) nn.init.trunc_normal_(self.rel_pos_t, std=0.02) def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]: B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(dim=2) if self.pool_k is not None: k, k_thw = self.pool_k(k, thw) else: k_thw = thw if self.pool_v is not None: v = self.pool_v(v, thw)[0] if self.pool_q is not None: q, thw = self.pool_q(q, thw) attn = torch.matmul(self.scaler * q, k.transpose(2, 3)) if self.rel_pos_h is not None and self.rel_pos_w is not None and self.rel_pos_t is not None: attn = _add_rel_pos( attn, q, thw, k_thw, self.rel_pos_h, self.rel_pos_w, self.rel_pos_t, ) attn = attn.softmax(dim=-1) x = torch.matmul(attn, v) if self.residual_pool: _add_shortcut(x, q, self.residual_with_cls_embed) x = x.transpose(1, 2).reshape(B, -1, self.output_dim) x = self.project(x) return x, thw class MultiscaleBlock(nn.Module): def __init__( self, input_size: List[int], cnf: MSBlockConfig, residual_pool: bool, residual_with_cls_embed: bool, rel_pos_embed: bool, proj_after_attn: bool, dropout: float = 0.0, stochastic_depth_prob: float = 0.0, norm_layer: Callable[..., nn.Module] = nn.LayerNorm, ) -> None: super().__init__() self.proj_after_attn = proj_after_attn self.pool_skip: Optional[nn.Module] = None if _prod(cnf.stride_q) > 1: kernel_skip = [s + 1 if s > 1 else s for s in cnf.stride_q] padding_skip = [int(k // 2) for k in kernel_skip] self.pool_skip = Pool( nn.MaxPool3d(kernel_skip, stride=cnf.stride_q, padding=padding_skip), None # type: ignore[arg-type] ) attn_dim = cnf.output_channels if proj_after_attn else cnf.input_channels self.norm1 = norm_layer(cnf.input_channels) self.norm2 = norm_layer(attn_dim) self.needs_transposal = isinstance(self.norm1, nn.BatchNorm1d) self.attn = MultiscaleAttention( input_size, cnf.input_channels, attn_dim, cnf.num_heads, kernel_q=cnf.kernel_q, kernel_kv=cnf.kernel_kv, stride_q=cnf.stride_q, stride_kv=cnf.stride_kv, rel_pos_embed=rel_pos_embed, residual_pool=residual_pool, residual_with_cls_embed=residual_with_cls_embed, dropout=dropout, norm_layer=norm_layer, ) self.mlp = MLP( attn_dim, [4 * attn_dim, cnf.output_channels], activation_layer=nn.GELU, dropout=dropout, inplace=None, ) self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row") self.project: Optional[nn.Module] = None if cnf.input_channels != cnf.output_channels: self.project = nn.Linear(cnf.input_channels, cnf.output_channels) def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]: x_norm1 = self.norm1(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm1(x) x_attn, thw_new = self.attn(x_norm1, thw) x = x if self.project is None or not self.proj_after_attn else self.project(x_norm1) x_skip = x if self.pool_skip is None else self.pool_skip(x, thw)[0] x = x_skip + self.stochastic_depth(x_attn) x_norm2 = self.norm2(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm2(x) x_proj = x if self.project is None or self.proj_after_attn else self.project(x_norm2) return x_proj + self.stochastic_depth(self.mlp(x_norm2)), thw_new class PositionalEncoding(nn.Module): def __init__(self, embed_size: int, spatial_size: Tuple[int, int], temporal_size: int, rel_pos_embed: bool) -> None: super().__init__() self.spatial_size = spatial_size self.temporal_size = temporal_size self.class_token = nn.Parameter(torch.zeros(embed_size)) self.spatial_pos: Optional[nn.Parameter] = None self.temporal_pos: Optional[nn.Parameter] = None self.class_pos: Optional[nn.Parameter] = None if not rel_pos_embed: self.spatial_pos = nn.Parameter(torch.zeros(self.spatial_size[0] * self.spatial_size[1], embed_size)) self.temporal_pos = nn.Parameter(torch.zeros(self.temporal_size, embed_size)) self.class_pos = nn.Parameter(torch.zeros(embed_size)) def forward(self, x: torch.Tensor) -> torch.Tensor: class_token = self.class_token.expand(x.size(0), -1).unsqueeze(1) x = torch.cat((class_token, x), dim=1) if self.spatial_pos is not None and self.temporal_pos is not None and self.class_pos is not None: hw_size, embed_size = self.spatial_pos.shape pos_embedding = torch.repeat_interleave(self.temporal_pos, hw_size, dim=0) pos_embedding.add_(self.spatial_pos.unsqueeze(0).expand(self.temporal_size, -1, -1).reshape(-1, embed_size)) pos_embedding = torch.cat((self.class_pos.unsqueeze(0), pos_embedding), dim=0).unsqueeze(0) x.add_(pos_embedding) return x class MViT(nn.Module): def __init__( self, spatial_size: Tuple[int, int], temporal_size: int, block_setting: Sequence[MSBlockConfig], residual_pool: bool, residual_with_cls_embed: bool, rel_pos_embed: bool, proj_after_attn: bool, dropout: float = 0.5, attention_dropout: float = 0.0, stochastic_depth_prob: float = 0.0, num_classes: int = 400, block: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, patch_embed_kernel: Tuple[int, int, int] = (3, 7, 7), patch_embed_stride: Tuple[int, int, int] = (2, 4, 4), patch_embed_padding: Tuple[int, int, int] = (1, 3, 3), ) -> None: """ MViT main class. Args: spatial_size (tuple of ints): The spacial size of the input as ``(H, W)``. temporal_size (int): The temporal size ``T`` of the input. block_setting (sequence of MSBlockConfig): The Network structure. residual_pool (bool): If True, use MViTv2 pooling residual connection. residual_with_cls_embed (bool): If True, the addition on the residual connection will include the class embedding. rel_pos_embed (bool): If True, use MViTv2's relative positional embeddings. proj_after_attn (bool): If True, apply the projection after the attention. dropout (float): Dropout rate. Default: 0.0. attention_dropout (float): Attention dropout rate. Default: 0.0. stochastic_depth_prob: (float): Stochastic depth rate. Default: 0.0. num_classes (int): The number of classes. block (callable, optional): Module specifying the layer which consists of the attention and mlp. norm_layer (callable, optional): Module specifying the normalization layer to use. patch_embed_kernel (tuple of ints): The kernel of the convolution that patchifies the input. patch_embed_stride (tuple of ints): The stride of the convolution that patchifies the input. patch_embed_padding (tuple of ints): The padding of the convolution that patchifies the input. """ super().__init__() # This implementation employs a different parameterization scheme than the one used at PyTorch Video: # https://github.com/facebookresearch/pytorchvideo/blob/718d0a4/pytorchvideo/models/vision_transformers.py # We remove any experimental configuration that didn't make it to the final variants of the models. To represent # the configuration of the architecture we use the simplified form suggested at Table 1 of the paper. _log_api_usage_once(self) total_stage_blocks = len(block_setting) if total_stage_blocks == 0: raise ValueError("The configuration parameter can't be empty.") if block is None: block = MultiscaleBlock if norm_layer is None: norm_layer = partial(nn.LayerNorm, eps=1e-6) # Patch Embedding module self.conv_proj = nn.Conv3d( in_channels=3, out_channels=block_setting[0].input_channels, kernel_size=patch_embed_kernel, stride=patch_embed_stride, padding=patch_embed_padding, ) input_size = [size // stride for size, stride in zip((temporal_size,) + spatial_size, self.conv_proj.stride)] # Spatio-Temporal Class Positional Encoding self.pos_encoding = PositionalEncoding( embed_size=block_setting[0].input_channels, spatial_size=(input_size[1], input_size[2]), temporal_size=input_size[0], rel_pos_embed=rel_pos_embed, ) # Encoder module self.blocks = nn.ModuleList() for stage_block_id, cnf in enumerate(block_setting): # adjust stochastic depth probability based on the depth of the stage block sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0) self.blocks.append( block( input_size=input_size, cnf=cnf, residual_pool=residual_pool, residual_with_cls_embed=residual_with_cls_embed, rel_pos_embed=rel_pos_embed, proj_after_attn=proj_after_attn, dropout=attention_dropout, stochastic_depth_prob=sd_prob, norm_layer=norm_layer, ) ) if len(cnf.stride_q) > 0: input_size = [size // stride for size, stride in zip(input_size, cnf.stride_q)] self.norm = norm_layer(block_setting[-1].output_channels) # Classifier module self.head = nn.Sequential( nn.Dropout(dropout, inplace=True), nn.Linear(block_setting[-1].output_channels, num_classes), ) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0.0) elif isinstance(m, nn.LayerNorm): if m.weight is not None: nn.init.constant_(m.weight, 1.0) if m.bias is not None: nn.init.constant_(m.bias, 0.0) elif isinstance(m, PositionalEncoding): for weights in m.parameters(): nn.init.trunc_normal_(weights, std=0.02) def forward(self, x: torch.Tensor) -> torch.Tensor: # Convert if necessary (B, C, H, W) -> (B, C, 1, H, W) x = _unsqueeze(x, 5, 2)[0] # patchify and reshape: (B, C, T, H, W) -> (B, embed_channels[0], T', H', W') -> (B, THW', embed_channels[0]) x = self.conv_proj(x) x = x.flatten(2).transpose(1, 2) # add positional encoding x = self.pos_encoding(x) # pass patches through the encoder thw = (self.pos_encoding.temporal_size,) + self.pos_encoding.spatial_size for block in self.blocks: x, thw = block(x, thw) x = self.norm(x) # classifier "token" as used by standard language architectures x = x[:, 0] x = self.head(x) return x def _mvit( block_setting: List[MSBlockConfig], stochastic_depth_prob: float, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> MViT: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) assert weights.meta["min_size"][0] == weights.meta["min_size"][1] _ovewrite_named_param(kwargs, "spatial_size", weights.meta["min_size"]) _ovewrite_named_param(kwargs, "temporal_size", weights.meta["min_temporal_size"]) spatial_size = kwargs.pop("spatial_size", (224, 224)) temporal_size = kwargs.pop("temporal_size", 16) model = MViT( spatial_size=spatial_size, temporal_size=temporal_size, block_setting=block_setting, residual_pool=kwargs.pop("residual_pool", False), residual_with_cls_embed=kwargs.pop("residual_with_cls_embed", True), rel_pos_embed=kwargs.pop("rel_pos_embed", False), proj_after_attn=kwargs.pop("proj_after_attn", False), stochastic_depth_prob=stochastic_depth_prob, **kwargs, ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model class MViT_V1_B_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/mvit_v1_b-dbeb1030.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256,), mean=(0.45, 0.45, 0.45), std=(0.225, 0.225, 0.225), ), meta={ "min_size": (224, 224), "min_temporal_size": 16, "categories": _KINETICS400_CATEGORIES, "recipe": "https://github.com/facebookresearch/pytorchvideo/blob/main/docs/source/model_zoo.md", "_docs": ( "The weights were ported from the paper. The accuracies are estimated on video-level " "with parameters `frame_rate=7.5`, `clips_per_video=5`, and `clip_len=16`" ), "num_params": 36610672, "_metrics": { "Kinetics-400": { "acc@1": 78.477, "acc@5": 93.582, } }, "_ops": 70.599, "_file_size": 139.764, }, ) DEFAULT = KINETICS400_V1 class MViT_V2_S_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/mvit_v2_s-ae3be167.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256,), mean=(0.45, 0.45, 0.45), std=(0.225, 0.225, 0.225), ), meta={ "min_size": (224, 224), "min_temporal_size": 16, "categories": _KINETICS400_CATEGORIES, "recipe": "https://github.com/facebookresearch/SlowFast/blob/main/MODEL_ZOO.md", "_docs": ( "The weights were ported from the paper. The accuracies are estimated on video-level " "with parameters `frame_rate=7.5`, `clips_per_video=5`, and `clip_len=16`" ), "num_params": 34537744, "_metrics": { "Kinetics-400": { "acc@1": 80.757, "acc@5": 94.665, } }, "_ops": 64.224, "_file_size": 131.884, }, ) DEFAULT = KINETICS400_V1 @register_model() @handle_legacy_interface(weights=("pretrained", MViT_V1_B_Weights.KINETICS400_V1)) def mvit_v1_b(*, weights: Optional[MViT_V1_B_Weights] = None, progress: bool = True, **kwargs: Any) -> MViT: """ Constructs a base MViTV1 architecture from `Multiscale Vision Transformers <https://arxiv.org/abs/2104.11227>`__. .. betastatus:: video module Args: weights (:class:`~torchvision.models.video.MViT_V1_B_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.MViT_V1_B_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.MViT`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/mvit.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.MViT_V1_B_Weights :members: """ weights = MViT_V1_B_Weights.verify(weights) config: Dict[str, List] = { "num_heads": [1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8], "input_channels": [96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768], "output_channels": [192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768, 768], "kernel_q": [[], [3, 3, 3], [], [3, 3, 3], [], [], [], [], [], [], [], [], [], [], [3, 3, 3], []], "kernel_kv": [ [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], ], "stride_q": [[], [1, 2, 2], [], [1, 2, 2], [], [], [], [], [], [], [], [], [], [], [1, 2, 2], []], "stride_kv": [ [1, 8, 8], [1, 4, 4], [1, 4, 4], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 1, 1], [1, 1, 1], ], } block_setting = [] for i in range(len(config["num_heads"])): block_setting.append( MSBlockConfig( num_heads=config["num_heads"][i], input_channels=config["input_channels"][i], output_channels=config["output_channels"][i], kernel_q=config["kernel_q"][i], kernel_kv=config["kernel_kv"][i], stride_q=config["stride_q"][i], stride_kv=config["stride_kv"][i], ) ) return _mvit( spatial_size=(224, 224), temporal_size=16, block_setting=block_setting, residual_pool=False, residual_with_cls_embed=False, stochastic_depth_prob=kwargs.pop("stochastic_depth_prob", 0.2), weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", MViT_V2_S_Weights.KINETICS400_V1)) def mvit_v2_s(*, weights: Optional[MViT_V2_S_Weights] = None, progress: bool = True, **kwargs: Any) -> MViT: """Constructs a small MViTV2 architecture from `Multiscale Vision Transformers <https://arxiv.org/abs/2104.11227>`__ and `MViTv2: Improved Multiscale Vision Transformers for Classification and Detection <https://arxiv.org/abs/2112.01526>`__. .. betastatus:: video module Args: weights (:class:`~torchvision.models.video.MViT_V2_S_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.MViT_V2_S_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.MViT`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/mvit.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.MViT_V2_S_Weights :members: """ weights = MViT_V2_S_Weights.verify(weights) config: Dict[str, List] = { "num_heads": [1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8], "input_channels": [96, 96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768], "output_channels": [96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768], "kernel_q": [ [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], ], "kernel_kv": [ [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], ], "stride_q": [ [1, 1, 1], [1, 2, 2], [1, 1, 1], [1, 2, 2], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 2, 2], [1, 1, 1], ], "stride_kv": [ [1, 8, 8], [1, 4, 4], [1, 4, 4], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 1, 1], [1, 1, 1], ], } block_setting = [] for i in range(len(config["num_heads"])): block_setting.append( MSBlockConfig( num_heads=config["num_heads"][i], input_channels=config["input_channels"][i], output_channels=config["output_channels"][i], kernel_q=config["kernel_q"][i], kernel_kv=config["kernel_kv"][i], stride_q=config["stride_q"][i], stride_kv=config["stride_kv"][i], ) ) return _mvit( spatial_size=(224, 224), temporal_size=16, block_setting=block_setting, residual_pool=True, residual_with_cls_embed=False, rel_pos_embed=True, proj_after_attn=True, stochastic_depth_prob=kwargs.pop("stochastic_depth_prob", 0.2), weights=weights, progress=progress, **kwargs, ) ```
========================================================================================================================== SOURCE CODE FILE: resnet.py LINES: 1 SIZE: 16.87 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\video\resnet.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Callable, List, Optional, Sequence, Tuple, Type, Union import torch.nn as nn from torch import Tensor from ...transforms._presets import VideoClassification from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _KINETICS400_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "VideoResNet", "R3D_18_Weights", "MC3_18_Weights", "R2Plus1D_18_Weights", "r3d_18", "mc3_18", "r2plus1d_18", ] class Conv3DSimple(nn.Conv3d): def __init__( self, in_planes: int, out_planes: int, midplanes: Optional[int] = None, stride: int = 1, padding: int = 1 ) -> None: super().__init__( in_channels=in_planes, out_channels=out_planes, kernel_size=(3, 3, 3), stride=stride, padding=padding, bias=False, ) @staticmethod def get_downsample_stride(stride: int) -> Tuple[int, int, int]: return stride, stride, stride class Conv2Plus1D(nn.Sequential): def __init__(self, in_planes: int, out_planes: int, midplanes: int, stride: int = 1, padding: int = 1) -> None: super().__init__( nn.Conv3d( in_planes, midplanes, kernel_size=(1, 3, 3), stride=(1, stride, stride), padding=(0, padding, padding), bias=False, ), nn.BatchNorm3d(midplanes), nn.ReLU(inplace=True), nn.Conv3d( midplanes, out_planes, kernel_size=(3, 1, 1), stride=(stride, 1, 1), padding=(padding, 0, 0), bias=False ), ) @staticmethod def get_downsample_stride(stride: int) -> Tuple[int, int, int]: return stride, stride, stride class Conv3DNoTemporal(nn.Conv3d): def __init__( self, in_planes: int, out_planes: int, midplanes: Optional[int] = None, stride: int = 1, padding: int = 1 ) -> None: super().__init__( in_channels=in_planes, out_channels=out_planes, kernel_size=(1, 3, 3), stride=(1, stride, stride), padding=(0, padding, padding), bias=False, ) @staticmethod def get_downsample_stride(stride: int) -> Tuple[int, int, int]: return 1, stride, stride class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes: int, planes: int, conv_builder: Callable[..., nn.Module], stride: int = 1, downsample: Optional[nn.Module] = None, ) -> None: midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes) super().__init__() self.conv1 = nn.Sequential( conv_builder(inplanes, planes, midplanes, stride), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential(conv_builder(planes, planes, midplanes), nn.BatchNorm3d(planes)) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: residual = x out = self.conv1(x) out = self.conv2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes: int, planes: int, conv_builder: Callable[..., nn.Module], stride: int = 1, downsample: Optional[nn.Module] = None, ) -> None: super().__init__() midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes) # 1x1x1 self.conv1 = nn.Sequential( nn.Conv3d(inplanes, planes, kernel_size=1, bias=False), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) ) # Second kernel self.conv2 = nn.Sequential( conv_builder(planes, planes, midplanes, stride), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) ) # 1x1x1 self.conv3 = nn.Sequential( nn.Conv3d(planes, planes * self.expansion, kernel_size=1, bias=False), nn.BatchNorm3d(planes * self.expansion), ) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: residual = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class BasicStem(nn.Sequential): """The default conv-batchnorm-relu stem""" def __init__(self) -> None: super().__init__( nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3), bias=False), nn.BatchNorm3d(64), nn.ReLU(inplace=True), ) class R2Plus1dStem(nn.Sequential): """R(2+1)D stem is different than the default one as it uses separated 3D convolution""" def __init__(self) -> None: super().__init__( nn.Conv3d(3, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False), nn.BatchNorm3d(45), nn.ReLU(inplace=True), nn.Conv3d(45, 64, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0), bias=False), nn.BatchNorm3d(64), nn.ReLU(inplace=True), ) class VideoResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]], layers: List[int], stem: Callable[..., nn.Module], num_classes: int = 400, zero_init_residual: bool = False, ) -> None: """Generic resnet video generator. Args: block (Type[Union[BasicBlock, Bottleneck]]): resnet building block conv_makers (List[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]]): generator function for each layer layers (List[int]): number of blocks per layer stem (Callable[..., nn.Module]): module specifying the ResNet stem. num_classes (int, optional): Dimension of the final FC layer. Defaults to 400. zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False. """ super().__init__() _log_api_usage_once(self) self.inplanes = 64 self.stem = stem() self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1) self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2) self.layer3 = self._make_layer(block, conv_makers[2], 256, layers[2], stride=2) self.layer4 = self._make_layer(block, conv_makers[3], 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) # init weights for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm3d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) # type: ignore[union-attr, arg-type] def forward(self, x: Tensor) -> Tensor: x = self.stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) # Flatten the layer to fc x = x.flatten(1) x = self.fc(x) return x def _make_layer( self, block: Type[Union[BasicBlock, Bottleneck]], conv_builder: Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]], planes: int, blocks: int, stride: int = 1, ) -> nn.Sequential: downsample = None if stride != 1 or self.inplanes != planes * block.expansion: ds_stride = conv_builder.get_downsample_stride(stride) downsample = nn.Sequential( nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=ds_stride, bias=False), nn.BatchNorm3d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, conv_builder, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, conv_builder)) return nn.Sequential(*layers) def _video_resnet( block: Type[Union[BasicBlock, Bottleneck]], conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]], layers: List[int], stem: Callable[..., nn.Module], weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> VideoResNet: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = VideoResNet(block, conv_makers, layers, stem, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _KINETICS400_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification", "_docs": ( "The weights reproduce closely the accuracy of the paper. The accuracies are estimated on video-level " "with parameters `frame_rate=15`, `clips_per_video=5`, and `clip_len=16`." ), } class R3D_18_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/r3d_18-b3b3357e.pth", transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)), meta={ **_COMMON_META, "num_params": 33371472, "_metrics": { "Kinetics-400": { "acc@1": 63.200, "acc@5": 83.479, } }, "_ops": 40.697, "_file_size": 127.359, }, ) DEFAULT = KINETICS400_V1 class MC3_18_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/mc3_18-a90a0ba3.pth", transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)), meta={ **_COMMON_META, "num_params": 11695440, "_metrics": { "Kinetics-400": { "acc@1": 63.960, "acc@5": 84.130, } }, "_ops": 43.343, "_file_size": 44.672, }, ) DEFAULT = KINETICS400_V1 class R2Plus1D_18_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/r2plus1d_18-91a641e6.pth", transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)), meta={ **_COMMON_META, "num_params": 31505325, "_metrics": { "Kinetics-400": { "acc@1": 67.463, "acc@5": 86.175, } }, "_ops": 40.519, "_file_size": 120.318, }, ) DEFAULT = KINETICS400_V1 @register_model() @handle_legacy_interface(weights=("pretrained", R3D_18_Weights.KINETICS400_V1)) def r3d_18(*, weights: Optional[R3D_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet: """Construct 18 layer Resnet3D model. .. betastatus:: video module Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__. Args: weights (:class:`~torchvision.models.video.R3D_18_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.R3D_18_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.R3D_18_Weights :members: """ weights = R3D_18_Weights.verify(weights) return _video_resnet( BasicBlock, [Conv3DSimple] * 4, [2, 2, 2, 2], BasicStem, weights, progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", MC3_18_Weights.KINETICS400_V1)) def mc3_18(*, weights: Optional[MC3_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet: """Construct 18 layer Mixed Convolution network as in .. betastatus:: video module Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__. Args: weights (:class:`~torchvision.models.video.MC3_18_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.MC3_18_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.MC3_18_Weights :members: """ weights = MC3_18_Weights.verify(weights) return _video_resnet( BasicBlock, [Conv3DSimple] + [Conv3DNoTemporal] * 3, # type: ignore[list-item] [2, 2, 2, 2], BasicStem, weights, progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", R2Plus1D_18_Weights.KINETICS400_V1)) def r2plus1d_18(*, weights: Optional[R2Plus1D_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet: """Construct 18 layer deep R(2+1)D network as in .. betastatus:: video module Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__. Args: weights (:class:`~torchvision.models.video.R2Plus1D_18_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.R2Plus1D_18_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.R2Plus1D_18_Weights :members: """ weights = R2Plus1D_18_Weights.verify(weights) return _video_resnet( BasicBlock, [Conv2Plus1D] * 4, [2, 2, 2, 2], R2Plus1dStem, weights, progress, **kwargs, ) # The dictionary below is internal implementation detail and will be removed in v0.15 from .._utils import _ModelURLs model_urls = _ModelURLs( { "r3d_18": R3D_18_Weights.KINETICS400_V1.url, "mc3_18": MC3_18_Weights.KINETICS400_V1.url, "r2plus1d_18": R2Plus1D_18_Weights.KINETICS400_V1.url, } ) ```
======================================================================================================================= SOURCE CODE FILE: s3d.py LINES: 1 SIZE: 7.85 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\video\s3d.py ENCODING: utf-8 ```py from functools import partial from typing import Any, Callable, Optional import torch from torch import nn from torchvision.ops.misc import Conv3dNormActivation from ...transforms._presets import VideoClassification from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _KINETICS400_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "S3D", "S3D_Weights", "s3d", ] class TemporalSeparableConv(nn.Sequential): def __init__( self, in_planes: int, out_planes: int, kernel_size: int, stride: int, padding: int, norm_layer: Callable[..., nn.Module], ): super().__init__( Conv3dNormActivation( in_planes, out_planes, kernel_size=(1, kernel_size, kernel_size), stride=(1, stride, stride), padding=(0, padding, padding), bias=False, norm_layer=norm_layer, ), Conv3dNormActivation( out_planes, out_planes, kernel_size=(kernel_size, 1, 1), stride=(stride, 1, 1), padding=(padding, 0, 0), bias=False, norm_layer=norm_layer, ), ) class SepInceptionBlock3D(nn.Module): def __init__( self, in_planes: int, b0_out: int, b1_mid: int, b1_out: int, b2_mid: int, b2_out: int, b3_out: int, norm_layer: Callable[..., nn.Module], ): super().__init__() self.branch0 = Conv3dNormActivation(in_planes, b0_out, kernel_size=1, stride=1, norm_layer=norm_layer) self.branch1 = nn.Sequential( Conv3dNormActivation(in_planes, b1_mid, kernel_size=1, stride=1, norm_layer=norm_layer), TemporalSeparableConv(b1_mid, b1_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer), ) self.branch2 = nn.Sequential( Conv3dNormActivation(in_planes, b2_mid, kernel_size=1, stride=1, norm_layer=norm_layer), TemporalSeparableConv(b2_mid, b2_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer), ) self.branch3 = nn.Sequential( nn.MaxPool3d(kernel_size=(3, 3, 3), stride=1, padding=1), Conv3dNormActivation(in_planes, b3_out, kernel_size=1, stride=1, norm_layer=norm_layer), ) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) x3 = self.branch3(x) out = torch.cat((x0, x1, x2, x3), 1) return out class S3D(nn.Module): """S3D main class. Args: num_class (int): number of classes for the classification task. dropout (float): dropout probability. norm_layer (Optional[Callable]): Module specifying the normalization layer to use. Inputs: x (Tensor): batch of videos with dimensions (batch, channel, time, height, width) """ def __init__( self, num_classes: int = 400, dropout: float = 0.2, norm_layer: Optional[Callable[..., torch.nn.Module]] = None, ) -> None: super().__init__() _log_api_usage_once(self) if norm_layer is None: norm_layer = partial(nn.BatchNorm3d, eps=0.001, momentum=0.001) self.features = nn.Sequential( TemporalSeparableConv(3, 64, 7, 2, 3, norm_layer), nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), Conv3dNormActivation( 64, 64, kernel_size=1, stride=1, norm_layer=norm_layer, ), TemporalSeparableConv(64, 192, 3, 1, 1, norm_layer), nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), SepInceptionBlock3D(192, 64, 96, 128, 16, 32, 32, norm_layer), SepInceptionBlock3D(256, 128, 128, 192, 32, 96, 64, norm_layer), nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)), SepInceptionBlock3D(480, 192, 96, 208, 16, 48, 64, norm_layer), SepInceptionBlock3D(512, 160, 112, 224, 24, 64, 64, norm_layer), SepInceptionBlock3D(512, 128, 128, 256, 24, 64, 64, norm_layer), SepInceptionBlock3D(512, 112, 144, 288, 32, 64, 64, norm_layer), SepInceptionBlock3D(528, 256, 160, 320, 32, 128, 128, norm_layer), nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0)), SepInceptionBlock3D(832, 256, 160, 320, 32, 128, 128, norm_layer), SepInceptionBlock3D(832, 384, 192, 384, 48, 128, 128, norm_layer), ) self.avgpool = nn.AvgPool3d(kernel_size=(2, 7, 7), stride=1) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Conv3d(1024, num_classes, kernel_size=1, stride=1, bias=True), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = self.classifier(x) x = torch.mean(x, dim=(2, 3, 4)) return x class S3D_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/s3d-d76dad2f.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256, 256), ), meta={ "min_size": (224, 224), "min_temporal_size": 14, "categories": _KINETICS400_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification#s3d", "_docs": ( "The weights aim to approximate the accuracy of the paper. The accuracies are estimated on clip-level " "with parameters `frame_rate=15`, `clips_per_video=1`, and `clip_len=128`." ), "num_params": 8320048, "_metrics": { "Kinetics-400": { "acc@1": 68.368, "acc@5": 88.050, } }, "_ops": 17.979, "_file_size": 31.972, }, ) DEFAULT = KINETICS400_V1 @register_model() @handle_legacy_interface(weights=("pretrained", S3D_Weights.KINETICS400_V1)) def s3d(*, weights: Optional[S3D_Weights] = None, progress: bool = True, **kwargs: Any) -> S3D: """Construct Separable 3D CNN model. Reference: `Rethinking Spatiotemporal Feature Learning <https://arxiv.org/abs/1712.04851>`__. .. betastatus:: video module Args: weights (:class:`~torchvision.models.video.S3D_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.S3D_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.S3D`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/s3d.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.S3D_Weights :members: """ weights = S3D_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = S3D(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model ```
==================================================================================================================================== SOURCE CODE FILE: swin_transformer.py LINES: 1 SIZE: 27.76 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\video\swin_transformer.py ENCODING: utf-8 ```py # Modified from 2d Swin Transformers in torchvision: # https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py from functools import partial from typing import Any, Callable, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from ...transforms._presets import VideoClassification from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _KINETICS400_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from ..swin_transformer import PatchMerging, SwinTransformerBlock __all__ = [ "SwinTransformer3d", "Swin3D_T_Weights", "Swin3D_S_Weights", "Swin3D_B_Weights", "swin3d_t", "swin3d_s", "swin3d_b", ] def _get_window_and_shift_size( shift_size: List[int], size_dhw: List[int], window_size: List[int] ) -> Tuple[List[int], List[int]]: for i in range(3): if size_dhw[i] <= window_size[i]: # In this case, window_size will adapt to the input size, and no need to shift window_size[i] = size_dhw[i] shift_size[i] = 0 return window_size, shift_size torch.fx.wrap("_get_window_and_shift_size") def _get_relative_position_bias( relative_position_bias_table: torch.Tensor, relative_position_index: torch.Tensor, window_size: List[int] ) -> Tensor: window_vol = window_size[0] * window_size[1] * window_size[2] # In 3d case we flatten the relative_position_bias relative_position_bias = relative_position_bias_table[ relative_position_index[:window_vol, :window_vol].flatten() # type: ignore[index] ] relative_position_bias = relative_position_bias.view(window_vol, window_vol, -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0) return relative_position_bias torch.fx.wrap("_get_relative_position_bias") def _compute_pad_size_3d(size_dhw: Tuple[int, int, int], patch_size: Tuple[int, int, int]) -> Tuple[int, int, int]: pad_size = [(patch_size[i] - size_dhw[i] % patch_size[i]) % patch_size[i] for i in range(3)] return pad_size[0], pad_size[1], pad_size[2] torch.fx.wrap("_compute_pad_size_3d") def _compute_attention_mask_3d( x: Tensor, size_dhw: Tuple[int, int, int], window_size: Tuple[int, int, int], shift_size: Tuple[int, int, int], ) -> Tensor: # generate attention mask attn_mask = x.new_zeros(*size_dhw) num_windows = (size_dhw[0] // window_size[0]) * (size_dhw[1] // window_size[1]) * (size_dhw[2] // window_size[2]) slices = [ ( (0, -window_size[i]), (-window_size[i], -shift_size[i]), (-shift_size[i], None), ) for i in range(3) ] count = 0 for d in slices[0]: for h in slices[1]: for w in slices[2]: attn_mask[d[0] : d[1], h[0] : h[1], w[0] : w[1]] = count count += 1 # Partition window on attn_mask attn_mask = attn_mask.view( size_dhw[0] // window_size[0], window_size[0], size_dhw[1] // window_size[1], window_size[1], size_dhw[2] // window_size[2], window_size[2], ) attn_mask = attn_mask.permute(0, 2, 4, 1, 3, 5).reshape( num_windows, window_size[0] * window_size[1] * window_size[2] ) attn_mask = attn_mask.unsqueeze(1) - attn_mask.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask torch.fx.wrap("_compute_attention_mask_3d") def shifted_window_attention_3d( input: Tensor, qkv_weight: Tensor, proj_weight: Tensor, relative_position_bias: Tensor, window_size: List[int], num_heads: int, shift_size: List[int], attention_dropout: float = 0.0, dropout: float = 0.0, qkv_bias: Optional[Tensor] = None, proj_bias: Optional[Tensor] = None, training: bool = True, ) -> Tensor: """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: input (Tensor[B, T, H, W, C]): The input tensor, 5-dimensions. qkv_weight (Tensor[in_dim, out_dim]): The weight tensor of query, key, value. proj_weight (Tensor[out_dim, out_dim]): The weight tensor of projection. relative_position_bias (Tensor): The learned relative position bias added to attention. window_size (List[int]): 3-dimensions window size, T, H, W . num_heads (int): Number of attention heads. shift_size (List[int]): Shift size for shifted window attention (T, H, W). attention_dropout (float): Dropout ratio of attention weight. Default: 0.0. dropout (float): Dropout ratio of output. Default: 0.0. qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None. proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None. training (bool, optional): Training flag used by the dropout parameters. Default: True. Returns: Tensor[B, T, H, W, C]: The output tensor after shifted window attention. """ b, t, h, w, c = input.shape # pad feature maps to multiples of window size pad_size = _compute_pad_size_3d((t, h, w), (window_size[0], window_size[1], window_size[2])) x = F.pad(input, (0, 0, 0, pad_size[2], 0, pad_size[1], 0, pad_size[0])) _, tp, hp, wp, _ = x.shape padded_size = (tp, hp, wp) # cyclic shift if sum(shift_size) > 0: x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) # partition windows num_windows = ( (padded_size[0] // window_size[0]) * (padded_size[1] // window_size[1]) * (padded_size[2] // window_size[2]) ) x = x.view( b, padded_size[0] // window_size[0], window_size[0], padded_size[1] // window_size[1], window_size[1], padded_size[2] // window_size[2], window_size[2], c, ) x = x.permute(0, 1, 3, 5, 2, 4, 6, 7).reshape( b * num_windows, window_size[0] * window_size[1] * window_size[2], c ) # B*nW, Wd*Wh*Ww, C # multi-head attention qkv = F.linear(x, qkv_weight, qkv_bias) qkv = qkv.reshape(x.size(0), x.size(1), 3, num_heads, c // num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * (c // num_heads) ** -0.5 attn = q.matmul(k.transpose(-2, -1)) # add relative position bias attn = attn + relative_position_bias if sum(shift_size) > 0: # generate attention mask to handle shifted windows with varying size attn_mask = _compute_attention_mask_3d( x, (padded_size[0], padded_size[1], padded_size[2]), (window_size[0], window_size[1], window_size[2]), (shift_size[0], shift_size[1], shift_size[2]), ) attn = attn.view(x.size(0) // num_windows, num_windows, num_heads, x.size(1), x.size(1)) attn = attn + attn_mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, num_heads, x.size(1), x.size(1)) attn = F.softmax(attn, dim=-1) attn = F.dropout(attn, p=attention_dropout, training=training) x = attn.matmul(v).transpose(1, 2).reshape(x.size(0), x.size(1), c) x = F.linear(x, proj_weight, proj_bias) x = F.dropout(x, p=dropout, training=training) # reverse windows x = x.view( b, padded_size[0] // window_size[0], padded_size[1] // window_size[1], padded_size[2] // window_size[2], window_size[0], window_size[1], window_size[2], c, ) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).reshape(b, tp, hp, wp, c) # reverse cyclic shift if sum(shift_size) > 0: x = torch.roll(x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) # unpad features x = x[:, :t, :h, :w, :].contiguous() return x torch.fx.wrap("shifted_window_attention_3d") class ShiftedWindowAttention3d(nn.Module): """ See :func:`shifted_window_attention_3d`. """ def __init__( self, dim: int, window_size: List[int], shift_size: List[int], num_heads: int, qkv_bias: bool = True, proj_bias: bool = True, attention_dropout: float = 0.0, dropout: float = 0.0, ) -> None: super().__init__() if len(window_size) != 3 or len(shift_size) != 3: raise ValueError("window_size and shift_size must be of length 2") self.window_size = window_size # Wd, Wh, Ww self.shift_size = shift_size self.num_heads = num_heads self.attention_dropout = attention_dropout self.dropout = dropout self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.define_relative_position_bias_table() self.define_relative_position_index() def define_relative_position_bias_table(self) -> None: # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros( (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1), self.num_heads, ) ) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02) def define_relative_position_index(self) -> None: # get pair-wise relative position index for each token inside the window coords_dhw = [torch.arange(self.window_size[i]) for i in range(3)] coords = torch.stack( torch.meshgrid(coords_dhw[0], coords_dhw[1], coords_dhw[2], indexing="ij") ) # 3, Wd, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 2] += self.window_size[2] - 1 relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1 # We don't flatten the relative_position_index here in 3d case. relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww self.register_buffer("relative_position_index", relative_position_index) def get_relative_position_bias(self, window_size: List[int]) -> torch.Tensor: return _get_relative_position_bias(self.relative_position_bias_table, self.relative_position_index, window_size) # type: ignore def forward(self, x: Tensor) -> Tensor: _, t, h, w, _ = x.shape size_dhw = [t, h, w] window_size, shift_size = self.window_size.copy(), self.shift_size.copy() # Handle case where window_size is larger than the input tensor window_size, shift_size = _get_window_and_shift_size(shift_size, size_dhw, window_size) relative_position_bias = self.get_relative_position_bias(window_size) return shifted_window_attention_3d( x, self.qkv.weight, self.proj.weight, relative_position_bias, window_size, self.num_heads, shift_size=shift_size, attention_dropout=self.attention_dropout, dropout=self.dropout, qkv_bias=self.qkv.bias, proj_bias=self.proj.bias, training=self.training, ) # Modified from: # https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/mmaction/models/backbones/swin_transformer.py class PatchEmbed3d(nn.Module): """Video to Patch Embedding. Args: patch_size (List[int]): Patch token size. in_channels (int): Number of input channels. Default: 3 embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, patch_size: List[int], in_channels: int = 3, embed_dim: int = 96, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() _log_api_usage_once(self) self.tuple_patch_size = (patch_size[0], patch_size[1], patch_size[2]) self.proj = nn.Conv3d( in_channels, embed_dim, kernel_size=self.tuple_patch_size, stride=self.tuple_patch_size, ) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = nn.Identity() def forward(self, x: Tensor) -> Tensor: """Forward function.""" # padding _, _, t, h, w = x.size() pad_size = _compute_pad_size_3d((t, h, w), self.tuple_patch_size) x = F.pad(x, (0, pad_size[2], 0, pad_size[1], 0, pad_size[0])) x = self.proj(x) # B C T Wh Ww x = x.permute(0, 2, 3, 4, 1) # B T Wh Ww C if self.norm is not None: x = self.norm(x) return x class SwinTransformer3d(nn.Module): """ Implements 3D Swin Transformer from the `"Video Swin Transformer" <https://arxiv.org/abs/2106.13230>`_ paper. Args: patch_size (List[int]): Patch size. embed_dim (int): Patch embedding dimension. depths (List(int)): Depth of each Swin Transformer layer. num_heads (List(int)): Number of attention heads in different layers. window_size (List[int]): Window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. dropout (float): Dropout rate. Default: 0.0. attention_dropout (float): Attention dropout rate. Default: 0.0. stochastic_depth_prob (float): Stochastic depth rate. Default: 0.1. num_classes (int): Number of classes for classification head. Default: 400. norm_layer (nn.Module, optional): Normalization layer. Default: None. block (nn.Module, optional): SwinTransformer Block. Default: None. downsample_layer (nn.Module): Downsample layer (patch merging). Default: PatchMerging. patch_embed (nn.Module, optional): Patch Embedding layer. Default: None. """ def __init__( self, patch_size: List[int], embed_dim: int, depths: List[int], num_heads: List[int], window_size: List[int], mlp_ratio: float = 4.0, dropout: float = 0.0, attention_dropout: float = 0.0, stochastic_depth_prob: float = 0.1, num_classes: int = 400, norm_layer: Optional[Callable[..., nn.Module]] = None, block: Optional[Callable[..., nn.Module]] = None, downsample_layer: Callable[..., nn.Module] = PatchMerging, patch_embed: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() _log_api_usage_once(self) self.num_classes = num_classes if block is None: block = partial(SwinTransformerBlock, attn_layer=ShiftedWindowAttention3d) if norm_layer is None: norm_layer = partial(nn.LayerNorm, eps=1e-5) if patch_embed is None: patch_embed = PatchEmbed3d # split image into non-overlapping patches self.patch_embed = patch_embed(patch_size=patch_size, embed_dim=embed_dim, norm_layer=norm_layer) self.pos_drop = nn.Dropout(p=dropout) layers: List[nn.Module] = [] total_stage_blocks = sum(depths) stage_block_id = 0 # build SwinTransformer blocks for i_stage in range(len(depths)): stage: List[nn.Module] = [] dim = embed_dim * 2**i_stage for i_layer in range(depths[i_stage]): # adjust stochastic depth probability based on the depth of the stage block sd_prob = stochastic_depth_prob * float(stage_block_id) / (total_stage_blocks - 1) stage.append( block( dim, num_heads[i_stage], window_size=window_size, shift_size=[0 if i_layer % 2 == 0 else w // 2 for w in window_size], mlp_ratio=mlp_ratio, dropout=dropout, attention_dropout=attention_dropout, stochastic_depth_prob=sd_prob, norm_layer=norm_layer, attn_layer=ShiftedWindowAttention3d, ) ) stage_block_id += 1 layers.append(nn.Sequential(*stage)) # add patch merging layer if i_stage < (len(depths) - 1): layers.append(downsample_layer(dim, norm_layer)) self.features = nn.Sequential(*layers) self.num_features = embed_dim * 2 ** (len(depths) - 1) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool3d(1) self.head = nn.Linear(self.num_features, num_classes) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.zeros_(m.bias) def forward(self, x: Tensor) -> Tensor: # x: B C T H W x = self.patch_embed(x) # B _T _H _W C x = self.pos_drop(x) x = self.features(x) # B _T _H _W C x = self.norm(x) x = x.permute(0, 4, 1, 2, 3) # B, C, _T, _H, _W x = self.avgpool(x) x = torch.flatten(x, 1) x = self.head(x) return x def _swin_transformer3d( patch_size: List[int], embed_dim: int, depths: List[int], num_heads: List[int], window_size: List[int], stochastic_depth_prob: float, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> SwinTransformer3d: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = SwinTransformer3d( patch_size=patch_size, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, stochastic_depth_prob=stochastic_depth_prob, **kwargs, ) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "categories": _KINETICS400_CATEGORIES, "min_size": (1, 1), "min_temporal_size": 1, } class Swin3D_T_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/swin3d_t-7615ae03.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256,), mean=(0.4850, 0.4560, 0.4060), std=(0.2290, 0.2240, 0.2250), ), meta={ **_COMMON_META, "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400", "_docs": ( "The weights were ported from the paper. The accuracies are estimated on video-level " "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`" ), "num_params": 28158070, "_metrics": { "Kinetics-400": { "acc@1": 77.715, "acc@5": 93.519, } }, "_ops": 43.882, "_file_size": 121.543, }, ) DEFAULT = KINETICS400_V1 class Swin3D_S_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/swin3d_s-da41c237.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256,), mean=(0.4850, 0.4560, 0.4060), std=(0.2290, 0.2240, 0.2250), ), meta={ **_COMMON_META, "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400", "_docs": ( "The weights were ported from the paper. The accuracies are estimated on video-level " "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`" ), "num_params": 49816678, "_metrics": { "Kinetics-400": { "acc@1": 79.521, "acc@5": 94.158, } }, "_ops": 82.841, "_file_size": 218.288, }, ) DEFAULT = KINETICS400_V1 class Swin3D_B_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/swin3d_b_1k-24f7c7c6.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256,), mean=(0.4850, 0.4560, 0.4060), std=(0.2290, 0.2240, 0.2250), ), meta={ **_COMMON_META, "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400", "_docs": ( "The weights were ported from the paper. The accuracies are estimated on video-level " "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`" ), "num_params": 88048984, "_metrics": { "Kinetics-400": { "acc@1": 79.427, "acc@5": 94.386, } }, "_ops": 140.667, "_file_size": 364.134, }, ) KINETICS400_IMAGENET22K_V1 = Weights( url="https://download.pytorch.org/models/swin3d_b_22k-7c6ae6fa.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256,), mean=(0.4850, 0.4560, 0.4060), std=(0.2290, 0.2240, 0.2250), ), meta={ **_COMMON_META, "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400", "_docs": ( "The weights were ported from the paper. The accuracies are estimated on video-level " "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`" ), "num_params": 88048984, "_metrics": { "Kinetics-400": { "acc@1": 81.643, "acc@5": 95.574, } }, "_ops": 140.667, "_file_size": 364.134, }, ) DEFAULT = KINETICS400_V1 @register_model() @handle_legacy_interface(weights=("pretrained", Swin3D_T_Weights.KINETICS400_V1)) def swin3d_t(*, weights: Optional[Swin3D_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d: """ Constructs a swin_tiny architecture from `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_. Args: weights (:class:`~torchvision.models.video.Swin3D_T_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.Swin3D_T_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.Swin3D_T_Weights :members: """ weights = Swin3D_T_Weights.verify(weights) return _swin_transformer3d( patch_size=[2, 4, 4], embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=[8, 7, 7], stochastic_depth_prob=0.1, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Swin3D_S_Weights.KINETICS400_V1)) def swin3d_s(*, weights: Optional[Swin3D_S_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d: """ Constructs a swin_small architecture from `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_. Args: weights (:class:`~torchvision.models.video.Swin3D_S_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.Swin3D_S_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.Swin3D_S_Weights :members: """ weights = Swin3D_S_Weights.verify(weights) return _swin_transformer3d( patch_size=[2, 4, 4], embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=[8, 7, 7], stochastic_depth_prob=0.1, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", Swin3D_B_Weights.KINETICS400_V1)) def swin3d_b(*, weights: Optional[Swin3D_B_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d: """ Constructs a swin_base architecture from `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_. Args: weights (:class:`~torchvision.models.video.Swin3D_B_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.Swin3D_B_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.Swin3D_B_Weights :members: """ weights = Swin3D_B_Weights.verify(weights) return _swin_transformer3d( patch_size=[2, 4, 4], embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=[8, 7, 7], stochastic_depth_prob=0.1, weights=weights, progress=progress, **kwargs, ) ```
================================================================================================================================ SOURCE CODE FILE: vision_transformer.py LINES: 1 SIZE: 32.23 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\models\vision_transformer.py ENCODING: utf-8 ```py import math from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, List, NamedTuple, Optional import torch import torch.nn as nn from ..ops.misc import Conv2dNormActivation, MLP from ..transforms._presets import ImageClassification, InterpolationMode from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "VisionTransformer", "ViT_B_16_Weights", "ViT_B_32_Weights", "ViT_L_16_Weights", "ViT_L_32_Weights", "ViT_H_14_Weights", "vit_b_16", "vit_b_32", "vit_l_16", "vit_l_32", "vit_h_14", ] class ConvStemConfig(NamedTuple): out_channels: int kernel_size: int stride: int norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d activation_layer: Callable[..., nn.Module] = nn.ReLU class MLPBlock(MLP): """Transformer MLP block.""" _version = 2 def __init__(self, in_dim: int, mlp_dim: int, dropout: float): super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.normal_(m.bias, std=1e-6) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 2: # Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053 for i in range(2): for type in ["weight", "bias"]: old_key = f"{prefix}linear_{i+1}.{type}" new_key = f"{prefix}{3*i}.{type}" if old_key in state_dict: state_dict[new_key] = state_dict.pop(old_key) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) class EncoderBlock(nn.Module): """Transformer encoder block.""" def __init__( self, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float, attention_dropout: float, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), ): super().__init__() self.num_heads = num_heads # Attention block self.ln_1 = norm_layer(hidden_dim) self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True) self.dropout = nn.Dropout(dropout) # MLP block self.ln_2 = norm_layer(hidden_dim) self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout) def forward(self, input: torch.Tensor): torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") x = self.ln_1(input) x, _ = self.self_attention(x, x, x, need_weights=False) x = self.dropout(x) x = x + input y = self.ln_2(x) y = self.mlp(y) return x + y class Encoder(nn.Module): """Transformer Model Encoder for sequence to sequence translation.""" def __init__( self, seq_length: int, num_layers: int, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float, attention_dropout: float, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), ): super().__init__() # Note that batch_size is on the first dim because # we have batch_first=True in nn.MultiAttention() by default self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT self.dropout = nn.Dropout(dropout) layers: OrderedDict[str, nn.Module] = OrderedDict() for i in range(num_layers): layers[f"encoder_layer_{i}"] = EncoderBlock( num_heads, hidden_dim, mlp_dim, dropout, attention_dropout, norm_layer, ) self.layers = nn.Sequential(layers) self.ln = norm_layer(hidden_dim) def forward(self, input: torch.Tensor): torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") input = input + self.pos_embedding return self.ln(self.layers(self.dropout(input))) class VisionTransformer(nn.Module): """Vision Transformer as per https://arxiv.org/abs/2010.11929.""" def __init__( self, image_size: int, patch_size: int, num_layers: int, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float = 0.0, attention_dropout: float = 0.0, num_classes: int = 1000, representation_size: Optional[int] = None, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), conv_stem_configs: Optional[List[ConvStemConfig]] = None, ): super().__init__() _log_api_usage_once(self) torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!") self.image_size = image_size self.patch_size = patch_size self.hidden_dim = hidden_dim self.mlp_dim = mlp_dim self.attention_dropout = attention_dropout self.dropout = dropout self.num_classes = num_classes self.representation_size = representation_size self.norm_layer = norm_layer if conv_stem_configs is not None: # As per https://arxiv.org/abs/2106.14881 seq_proj = nn.Sequential() prev_channels = 3 for i, conv_stem_layer_config in enumerate(conv_stem_configs): seq_proj.add_module( f"conv_bn_relu_{i}", Conv2dNormActivation( in_channels=prev_channels, out_channels=conv_stem_layer_config.out_channels, kernel_size=conv_stem_layer_config.kernel_size, stride=conv_stem_layer_config.stride, norm_layer=conv_stem_layer_config.norm_layer, activation_layer=conv_stem_layer_config.activation_layer, ), ) prev_channels = conv_stem_layer_config.out_channels seq_proj.add_module( "conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1) ) self.conv_proj: nn.Module = seq_proj else: self.conv_proj = nn.Conv2d( in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size ) seq_length = (image_size // patch_size) ** 2 # Add a class token self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim)) seq_length += 1 self.encoder = Encoder( seq_length, num_layers, num_heads, hidden_dim, mlp_dim, dropout, attention_dropout, norm_layer, ) self.seq_length = seq_length heads_layers: OrderedDict[str, nn.Module] = OrderedDict() if representation_size is None: heads_layers["head"] = nn.Linear(hidden_dim, num_classes) else: heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size) heads_layers["act"] = nn.Tanh() heads_layers["head"] = nn.Linear(representation_size, num_classes) self.heads = nn.Sequential(heads_layers) if isinstance(self.conv_proj, nn.Conv2d): # Init the patchify stem fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1] nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in)) if self.conv_proj.bias is not None: nn.init.zeros_(self.conv_proj.bias) elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d): # Init the last 1x1 conv of the conv stem nn.init.normal_( self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels) ) if self.conv_proj.conv_last.bias is not None: nn.init.zeros_(self.conv_proj.conv_last.bias) if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear): fan_in = self.heads.pre_logits.in_features nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in)) nn.init.zeros_(self.heads.pre_logits.bias) if isinstance(self.heads.head, nn.Linear): nn.init.zeros_(self.heads.head.weight) nn.init.zeros_(self.heads.head.bias) def _process_input(self, x: torch.Tensor) -> torch.Tensor: n, c, h, w = x.shape p = self.patch_size torch._assert(h == self.image_size, f"Wrong image height! Expected {self.image_size} but got {h}!") torch._assert(w == self.image_size, f"Wrong image width! Expected {self.image_size} but got {w}!") n_h = h // p n_w = w // p # (n, c, h, w) -> (n, hidden_dim, n_h, n_w) x = self.conv_proj(x) # (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w)) x = x.reshape(n, self.hidden_dim, n_h * n_w) # (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim) # The self attention layer expects inputs in the format (N, S, E) # where S is the source sequence length, N is the batch size, E is the # embedding dimension x = x.permute(0, 2, 1) return x def forward(self, x: torch.Tensor): # Reshape and permute the input tensor x = self._process_input(x) n = x.shape[0] # Expand the class token to the full batch batch_class_token = self.class_token.expand(n, -1, -1) x = torch.cat([batch_class_token, x], dim=1) x = self.encoder(x) # Classifier "token" as used by standard language architectures x = x[:, 0] x = self.heads(x) return x def _vision_transformer( patch_size: int, num_layers: int, num_heads: int, hidden_dim: int, mlp_dim: int, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any, ) -> VisionTransformer: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) assert weights.meta["min_size"][0] == weights.meta["min_size"][1] _ovewrite_named_param(kwargs, "image_size", weights.meta["min_size"][0]) image_size = kwargs.pop("image_size", 224) model = VisionTransformer( image_size=image_size, patch_size=patch_size, num_layers=num_layers, num_heads=num_heads, hidden_dim=hidden_dim, mlp_dim=mlp_dim, **kwargs, ) if weights: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META: Dict[str, Any] = { "categories": _IMAGENET_CATEGORIES, } _COMMON_SWAG_META = { **_COMMON_META, "recipe": "https://github.com/facebookresearch/SWAG", "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE", } class ViT_B_16_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vit_b_16-c867db91.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 86567656, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_16", "_metrics": { "ImageNet-1K": { "acc@1": 81.072, "acc@5": 95.318, } }, "_ops": 17.564, "_file_size": 330.285, "_docs": """ These weights were trained from scratch by using a modified version of `DeIT <https://arxiv.org/abs/2012.12877>`_'s training recipe. """, }, ) IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/vit_b_16_swag-9ac1b537.pth", transforms=partial( ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC, ), meta={ **_COMMON_SWAG_META, "num_params": 86859496, "min_size": (384, 384), "_metrics": { "ImageNet-1K": { "acc@1": 85.304, "acc@5": 97.650, } }, "_ops": 55.484, "_file_size": 331.398, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/vit_b_16_lc_swag-4e70ced5.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC, ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 86567656, "min_size": (224, 224), "_metrics": { "ImageNet-1K": { "acc@1": 81.886, "acc@5": 96.180, } }, "_ops": 17.564, "_file_size": 330.285, "_docs": """ These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_V1 class ViT_B_32_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vit_b_32-d86f8d99.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 88224232, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_32", "_metrics": { "ImageNet-1K": { "acc@1": 75.912, "acc@5": 92.466, } }, "_ops": 4.409, "_file_size": 336.604, "_docs": """ These weights were trained from scratch by using a modified version of `DeIT <https://arxiv.org/abs/2012.12877>`_'s training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 class ViT_L_16_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vit_l_16-852ce7e3.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=242), meta={ **_COMMON_META, "num_params": 304326632, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_16", "_metrics": { "ImageNet-1K": { "acc@1": 79.662, "acc@5": 94.638, } }, "_ops": 61.555, "_file_size": 1161.023, "_docs": """ These weights were trained from scratch by using a modified version of TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/vit_l_16_swag-4f3808c9.pth", transforms=partial( ImageClassification, crop_size=512, resize_size=512, interpolation=InterpolationMode.BICUBIC, ), meta={ **_COMMON_SWAG_META, "num_params": 305174504, "min_size": (512, 512), "_metrics": { "ImageNet-1K": { "acc@1": 88.064, "acc@5": 98.512, } }, "_ops": 361.986, "_file_size": 1164.258, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/vit_l_16_lc_swag-4d563306.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC, ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 304326632, "min_size": (224, 224), "_metrics": { "ImageNet-1K": { "acc@1": 85.146, "acc@5": 97.422, } }, "_ops": 61.555, "_file_size": 1161.023, "_docs": """ These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_V1 class ViT_L_32_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/vit_l_32-c7638314.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 306535400, "min_size": (224, 224), "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_32", "_metrics": { "ImageNet-1K": { "acc@1": 76.972, "acc@5": 93.07, } }, "_ops": 15.378, "_file_size": 1169.449, "_docs": """ These weights were trained from scratch by using a modified version of `DeIT <https://arxiv.org/abs/2012.12877>`_'s training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 class ViT_H_14_Weights(WeightsEnum): IMAGENET1K_SWAG_E2E_V1 = Weights( url="https://download.pytorch.org/models/vit_h_14_swag-80465313.pth", transforms=partial( ImageClassification, crop_size=518, resize_size=518, interpolation=InterpolationMode.BICUBIC, ), meta={ **_COMMON_SWAG_META, "num_params": 633470440, "min_size": (518, 518), "_metrics": { "ImageNet-1K": { "acc@1": 88.552, "acc@5": 98.694, } }, "_ops": 1016.717, "_file_size": 2416.643, "_docs": """ These weights are learnt via transfer learning by end-to-end fine-tuning the original `SWAG <https://arxiv.org/abs/2201.08371>`_ weights on ImageNet-1K data. """, }, ) IMAGENET1K_SWAG_LINEAR_V1 = Weights( url="https://download.pytorch.org/models/vit_h_14_lc_swag-c1eb923e.pth", transforms=partial( ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC, ), meta={ **_COMMON_SWAG_META, "recipe": "https://github.com/pytorch/vision/pull/5793", "num_params": 632045800, "min_size": (224, 224), "_metrics": { "ImageNet-1K": { "acc@1": 85.708, "acc@5": 97.730, } }, "_ops": 167.295, "_file_size": 2411.209, "_docs": """ These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk weights and a linear classifier learnt on top of them trained on ImageNet-1K data. """, }, ) DEFAULT = IMAGENET1K_SWAG_E2E_V1 @register_model() @handle_legacy_interface(weights=("pretrained", ViT_B_16_Weights.IMAGENET1K_V1)) def vit_b_16(*, weights: Optional[ViT_B_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer: """ Constructs a vit_b_16 architecture from `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_. Args: weights (:class:`~torchvision.models.ViT_B_16_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ViT_B_16_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.ViT_B_16_Weights :members: """ weights = ViT_B_16_Weights.verify(weights) return _vision_transformer( patch_size=16, num_layers=12, num_heads=12, hidden_dim=768, mlp_dim=3072, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", ViT_B_32_Weights.IMAGENET1K_V1)) def vit_b_32(*, weights: Optional[ViT_B_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer: """ Constructs a vit_b_32 architecture from `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_. Args: weights (:class:`~torchvision.models.ViT_B_32_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ViT_B_32_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.ViT_B_32_Weights :members: """ weights = ViT_B_32_Weights.verify(weights) return _vision_transformer( patch_size=32, num_layers=12, num_heads=12, hidden_dim=768, mlp_dim=3072, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", ViT_L_16_Weights.IMAGENET1K_V1)) def vit_l_16(*, weights: Optional[ViT_L_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer: """ Constructs a vit_l_16 architecture from `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_. Args: weights (:class:`~torchvision.models.ViT_L_16_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ViT_L_16_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.ViT_L_16_Weights :members: """ weights = ViT_L_16_Weights.verify(weights) return _vision_transformer( patch_size=16, num_layers=24, num_heads=16, hidden_dim=1024, mlp_dim=4096, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", ViT_L_32_Weights.IMAGENET1K_V1)) def vit_l_32(*, weights: Optional[ViT_L_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer: """ Constructs a vit_l_32 architecture from `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_. Args: weights (:class:`~torchvision.models.ViT_L_32_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ViT_L_32_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.ViT_L_32_Weights :members: """ weights = ViT_L_32_Weights.verify(weights) return _vision_transformer( patch_size=32, num_layers=24, num_heads=16, hidden_dim=1024, mlp_dim=4096, weights=weights, progress=progress, **kwargs, ) @register_model() @handle_legacy_interface(weights=("pretrained", None)) def vit_h_14(*, weights: Optional[ViT_H_14_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer: """ Constructs a vit_h_14 architecture from `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_. Args: weights (:class:`~torchvision.models.ViT_H_14_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ViT_H_14_Weights` below for more details and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_ for more details about this class. .. autoclass:: torchvision.models.ViT_H_14_Weights :members: """ weights = ViT_H_14_Weights.verify(weights) return _vision_transformer( patch_size=14, num_layers=32, num_heads=16, hidden_dim=1280, mlp_dim=5120, weights=weights, progress=progress, **kwargs, ) def interpolate_embeddings( image_size: int, patch_size: int, model_state: "OrderedDict[str, torch.Tensor]", interpolation_mode: str = "bicubic", reset_heads: bool = False, ) -> "OrderedDict[str, torch.Tensor]": """This function helps interpolate positional embeddings during checkpoint loading, especially when you want to apply a pre-trained model on images with different resolution. Args: image_size (int): Image size of the new model. patch_size (int): Patch size of the new model. model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model. interpolation_mode (str): The algorithm used for upsampling. Default: bicubic. reset_heads (bool): If true, not copying the state of heads. Default: False. Returns: OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model. """ # Shape of pos_embedding is (1, seq_length, hidden_dim) pos_embedding = model_state["encoder.pos_embedding"] n, seq_length, hidden_dim = pos_embedding.shape if n != 1: raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}") new_seq_length = (image_size // patch_size) ** 2 + 1 # Need to interpolate the weights for the position embedding. # We do this by reshaping the positions embeddings to a 2d grid, performing # an interpolation in the (h, w) space and then reshaping back to a 1d grid. if new_seq_length != seq_length: # The class token embedding shouldn't be interpolated, so we split it up. seq_length -= 1 new_seq_length -= 1 pos_embedding_token = pos_embedding[:, :1, :] pos_embedding_img = pos_embedding[:, 1:, :] # (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length) pos_embedding_img = pos_embedding_img.permute(0, 2, 1) seq_length_1d = int(math.sqrt(seq_length)) if seq_length_1d * seq_length_1d != seq_length: raise ValueError( f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}" ) # (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d) pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d) new_seq_length_1d = image_size // patch_size # Perform interpolation. # (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) new_pos_embedding_img = nn.functional.interpolate( pos_embedding_img, size=new_seq_length_1d, mode=interpolation_mode, align_corners=True, ) # (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length) new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length) # (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim) new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1) new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1) model_state["encoder.pos_embedding"] = new_pos_embedding if reset_heads: model_state_copy: "OrderedDict[str, torch.Tensor]" = OrderedDict() for k, v in model_state.items(): if not k.startswith("heads"): model_state_copy[k] = v model_state = model_state_copy return model_state ```
=================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.95 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\ops\__init__.py ENCODING: utf-8 ```py from ._register_onnx_ops import _register_custom_op from .boxes import ( batched_nms, box_area, box_convert, box_iou, clip_boxes_to_image, complete_box_iou, distance_box_iou, generalized_box_iou, masks_to_boxes, nms, remove_small_boxes, ) from .ciou_loss import complete_box_iou_loss from .deform_conv import deform_conv2d, DeformConv2d from .diou_loss import distance_box_iou_loss from .drop_block import drop_block2d, drop_block3d, DropBlock2d, DropBlock3d from .feature_pyramid_network import FeaturePyramidNetwork from .focal_loss import sigmoid_focal_loss from .giou_loss import generalized_box_iou_loss from .misc import Conv2dNormActivation, Conv3dNormActivation, FrozenBatchNorm2d, MLP, Permute, SqueezeExcitation from .poolers import MultiScaleRoIAlign from .ps_roi_align import ps_roi_align, PSRoIAlign from .ps_roi_pool import ps_roi_pool, PSRoIPool from .roi_align import roi_align, RoIAlign from .roi_pool import roi_pool, RoIPool from .stochastic_depth import stochastic_depth, StochasticDepth _register_custom_op() __all__ = [ "masks_to_boxes", "deform_conv2d", "DeformConv2d", "nms", "batched_nms", "remove_small_boxes", "clip_boxes_to_image", "box_convert", "box_area", "box_iou", "generalized_box_iou", "distance_box_iou", "complete_box_iou", "roi_align", "RoIAlign", "roi_pool", "RoIPool", "ps_roi_align", "PSRoIAlign", "ps_roi_pool", "PSRoIPool", "MultiScaleRoIAlign", "FeaturePyramidNetwork", "sigmoid_focal_loss", "stochastic_depth", "StochasticDepth", "FrozenBatchNorm2d", "Conv2dNormActivation", "Conv3dNormActivation", "SqueezeExcitation", "MLP", "Permute", "generalized_box_iou_loss", "distance_box_iou_loss", "complete_box_iou_loss", "drop_block2d", "DropBlock2d", "drop_block3d", "DropBlock3d", ] ```
======================================================================================================================= SOURCE CODE FILE: _box_convert.py LINES: 1 SIZE: 2.43 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\ops\_box_convert.py ENCODING: utf-8 ```py import torch from torch import Tensor def _box_cxcywh_to_xyxy(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (cx, cy, w, h) format to (x1, y1, x2, y2) format. (cx, cy) refers to center of bounding box (w, h) are width and height of bounding box Args: boxes (Tensor[N, 4]): boxes in (cx, cy, w, h) format which will be converted. Returns: boxes (Tensor(N, 4)): boxes in (x1, y1, x2, y2) format. """ # We need to change all 4 of them so some temporary variable is needed. cx, cy, w, h = boxes.unbind(-1) x1 = cx - 0.5 * w y1 = cy - 0.5 * h x2 = cx + 0.5 * w y2 = cy + 0.5 * h boxes = torch.stack((x1, y1, x2, y2), dim=-1) return boxes def _box_xyxy_to_cxcywh(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (x1, y1, x2, y2) format to (cx, cy, w, h) format. (x1, y1) refer to top left of bounding box (x2, y2) refer to bottom right of bounding box Args: boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format which will be converted. Returns: boxes (Tensor(N, 4)): boxes in (cx, cy, w, h) format. """ x1, y1, x2, y2 = boxes.unbind(-1) cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 boxes = torch.stack((cx, cy, w, h), dim=-1) return boxes def _box_xywh_to_xyxy(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (x, y, w, h) format to (x1, y1, x2, y2) format. (x, y) refers to top left of bounding box. (w, h) refers to width and height of box. Args: boxes (Tensor[N, 4]): boxes in (x, y, w, h) which will be converted. Returns: boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format. """ x, y, w, h = boxes.unbind(-1) boxes = torch.stack([x, y, x + w, y + h], dim=-1) return boxes def _box_xyxy_to_xywh(boxes: Tensor) -> Tensor: """ Converts bounding boxes from (x1, y1, x2, y2) format to (x, y, w, h) format. (x1, y1) refer to top left of bounding box (x2, y2) refer to bottom right of bounding box Args: boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) which will be converted. Returns: boxes (Tensor[N, 4]): boxes in (x, y, w, h) format. """ x1, y1, x2, y2 = boxes.unbind(-1) w = x2 - x1 # x2 - x1 h = y2 - y1 # y2 - y1 boxes = torch.stack((x1, y1, w, h), dim=-1) return boxes ```
============================================================================================================================= SOURCE CODE FILE: _register_onnx_ops.py LINES: 1 SIZE: 4.19 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\ops\_register_onnx_ops.py ENCODING: utf-8 ```py import sys import warnings import torch from torch.onnx import symbolic_opset11 as opset11 from torch.onnx.symbolic_helper import parse_args _ONNX_OPSET_VERSION_11 = 11 _ONNX_OPSET_VERSION_16 = 16 BASE_ONNX_OPSET_VERSION = _ONNX_OPSET_VERSION_11 @parse_args("v", "v", "f") def symbolic_multi_label_nms(g, boxes, scores, iou_threshold): boxes = opset11.unsqueeze(g, boxes, 0) scores = opset11.unsqueeze(g, opset11.unsqueeze(g, scores, 0), 0) max_output_per_class = g.op("Constant", value_t=torch.tensor([sys.maxsize], dtype=torch.long)) iou_threshold = g.op("Constant", value_t=torch.tensor([iou_threshold], dtype=torch.float)) # Cast boxes and scores to float32 in case they are float64 inputs nms_out = g.op( "NonMaxSuppression", g.op("Cast", boxes, to_i=torch.onnx.TensorProtoDataType.FLOAT), g.op("Cast", scores, to_i=torch.onnx.TensorProtoDataType.FLOAT), max_output_per_class, iou_threshold, ) return opset11.squeeze( g, opset11.select(g, nms_out, 1, g.op("Constant", value_t=torch.tensor([2], dtype=torch.long))), 1 ) def _process_batch_indices_for_roi_align(g, rois): indices = opset11.squeeze( g, opset11.select(g, rois, 1, g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))), 1 ) return g.op("Cast", indices, to_i=torch.onnx.TensorProtoDataType.INT64) def _process_rois_for_roi_align(g, rois): return opset11.select(g, rois, 1, g.op("Constant", value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long))) def _process_sampling_ratio_for_roi_align(g, sampling_ratio: int): if sampling_ratio < 0: warnings.warn( "ONNX export for RoIAlign with a non-zero sampling_ratio is not supported. " "The model will be exported with a sampling_ratio of 0." ) sampling_ratio = 0 return sampling_ratio @parse_args("v", "v", "f", "i", "i", "i", "i") def roi_align_opset11(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _process_batch_indices_for_roi_align(g, rois) rois = _process_rois_for_roi_align(g, rois) if aligned: warnings.warn( "ROIAlign with aligned=True is only supported in opset >= 16. " "Please export with opset 16 or higher, or use aligned=False." ) sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio) return g.op( "RoiAlign", input, rois, batch_indices, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio, ) @parse_args("v", "v", "f", "i", "i", "i", "i") def roi_align_opset16(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _process_batch_indices_for_roi_align(g, rois) rois = _process_rois_for_roi_align(g, rois) coordinate_transformation_mode = "half_pixel" if aligned else "output_half_pixel" sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio) return g.op( "RoiAlign", input, rois, batch_indices, coordinate_transformation_mode_s=coordinate_transformation_mode, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio, ) @parse_args("v", "v", "f", "i", "i") def roi_pool(g, input, rois, spatial_scale, pooled_height, pooled_width): roi_pool = g.op( "MaxRoiPool", input, rois, pooled_shape_i=(pooled_height, pooled_width), spatial_scale_f=spatial_scale ) return roi_pool, None def _register_custom_op(): torch.onnx.register_custom_op_symbolic("torchvision::nms", symbolic_multi_label_nms, _ONNX_OPSET_VERSION_11) torch.onnx.register_custom_op_symbolic("torchvision::roi_align", roi_align_opset11, _ONNX_OPSET_VERSION_11) torch.onnx.register_custom_op_symbolic("torchvision::roi_align", roi_align_opset16, _ONNX_OPSET_VERSION_16) torch.onnx.register_custom_op_symbolic("torchvision::roi_pool", roi_pool, _ONNX_OPSET_VERSION_11) ```
================================================================================================================= SOURCE CODE FILE: _utils.py LINES: 1 SIZE: 3.65 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\ops\_utils.py ENCODING: utf-8 ```py from typing import List, Optional, Tuple, Union import torch from torch import nn, Tensor def _cat(tensors: List[Tensor], dim: int = 0) -> Tensor: """ Efficient version of torch.cat that avoids a copy if there is only a single element in a list """ # TODO add back the assert # assert isinstance(tensors, (list, tuple)) if len(tensors) == 1: return tensors[0] return torch.cat(tensors, dim) def convert_boxes_to_roi_format(boxes: List[Tensor]) -> Tensor: concat_boxes = _cat([b for b in boxes], dim=0) temp = [] for i, b in enumerate(boxes): temp.append(torch.full_like(b[:, :1], i)) ids = _cat(temp, dim=0) rois = torch.cat([ids, concat_boxes], dim=1) return rois def check_roi_boxes_shape(boxes: Union[Tensor, List[Tensor]]): if isinstance(boxes, (list, tuple)): for _tensor in boxes: torch._assert( _tensor.size(1) == 4, "The shape of the tensor in the boxes list is not correct as List[Tensor[L, 4]]" ) elif isinstance(boxes, torch.Tensor): torch._assert(boxes.size(1) == 5, "The boxes tensor shape is not correct as Tensor[K, 5]") else: torch._assert(False, "boxes is expected to be a Tensor[L, 5] or a List[Tensor[K, 4]]") return def split_normalization_params( model: nn.Module, norm_classes: Optional[List[type]] = None ) -> Tuple[List[Tensor], List[Tensor]]: # Adapted from https://github.com/facebookresearch/ClassyVision/blob/659d7f78/classy_vision/generic/util.py#L501 if not norm_classes: norm_classes = [ nn.modules.batchnorm._BatchNorm, nn.LayerNorm, nn.GroupNorm, nn.modules.instancenorm._InstanceNorm, nn.LocalResponseNorm, ] for t in norm_classes: if not issubclass(t, nn.Module): raise ValueError(f"Class {t} is not a subclass of nn.Module.") classes = tuple(norm_classes) norm_params = [] other_params = [] for module in model.modules(): if next(module.children(), None): other_params.extend(p for p in module.parameters(recurse=False) if p.requires_grad) elif isinstance(module, classes): norm_params.extend(p for p in module.parameters() if p.requires_grad) else: other_params.extend(p for p in module.parameters() if p.requires_grad) return norm_params, other_params def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() def _upcast_non_float(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.dtype not in (torch.float32, torch.float64): return t.float() return t def _loss_inter_union( boxes1: torch.Tensor, boxes2: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsctk = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsctk[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsctk return intsctk, unionk ```
================================================================================================================ SOURCE CODE FILE: boxes.py LINES: 1 SIZE: 16.70 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\ops\boxes.py ENCODING: utf-8 ```py from typing import Tuple import torch import torchvision from torch import Tensor from torchvision.extension import _assert_has_ops from ..utils import _log_api_usage_once from ._box_convert import _box_cxcywh_to_xyxy, _box_xywh_to_xyxy, _box_xyxy_to_cxcywh, _box_xyxy_to_xywh from ._utils import _upcast def nms(boxes: Tensor, scores: Tensor, iou_threshold: float) -> Tensor: """ Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU). NMS iteratively removes lower scoring boxes which have an IoU greater than ``iou_threshold`` with another (higher scoring) box. If multiple boxes have the exact same score and satisfy the IoU criterion with respect to a reference box, the selected box is not guaranteed to be the same between CPU and GPU. This is similar to the behavior of argsort in PyTorch when repeated values are present. Args: boxes (Tensor[N, 4])): boxes to perform NMS on. They are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. scores (Tensor[N]): scores for each one of the boxes iou_threshold (float): discards all overlapping boxes with IoU > iou_threshold Returns: Tensor: int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(nms) _assert_has_ops() return torch.ops.torchvision.nms(boxes, scores, iou_threshold) def batched_nms( boxes: Tensor, scores: Tensor, idxs: Tensor, iou_threshold: float, ) -> Tensor: """ Performs non-maximum suppression in a batched fashion. Each index value correspond to a category, and NMS will not be applied between elements of different categories. Args: boxes (Tensor[N, 4]): boxes where NMS will be performed. They are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. scores (Tensor[N]): scores for each one of the boxes idxs (Tensor[N]): indices of the categories for each one of the boxes. iou_threshold (float): discards all overlapping boxes with IoU > iou_threshold Returns: Tensor: int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(batched_nms) # Benchmarks that drove the following thresholds are at # https://github.com/pytorch/vision/issues/1311#issuecomment-781329339 # and https://github.com/pytorch/vision/pull/8925 if boxes.numel() > (4000 if boxes.device.type == "cpu" else 100_000) and not torchvision._is_tracing(): return _batched_nms_vanilla(boxes, scores, idxs, iou_threshold) else: return _batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold) @torch.jit._script_if_tracing def _batched_nms_coordinate_trick( boxes: Tensor, scores: Tensor, idxs: Tensor, iou_threshold: float, ) -> Tensor: # strategy: in order to perform NMS independently per class, # we add an offset to all the boxes. The offset is dependent # only on the class idx, and is large enough so that boxes # from different classes do not overlap if boxes.numel() == 0: return torch.empty((0,), dtype=torch.int64, device=boxes.device) max_coordinate = boxes.max() offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes)) boxes_for_nms = boxes + offsets[:, None] keep = nms(boxes_for_nms, scores, iou_threshold) return keep @torch.jit._script_if_tracing def _batched_nms_vanilla( boxes: Tensor, scores: Tensor, idxs: Tensor, iou_threshold: float, ) -> Tensor: # Based on Detectron2 implementation, just manually call nms() on each class independently keep_mask = torch.zeros_like(scores, dtype=torch.bool) for class_id in torch.unique(idxs): curr_indices = torch.where(idxs == class_id)[0] curr_keep_indices = nms(boxes[curr_indices], scores[curr_indices], iou_threshold) keep_mask[curr_indices[curr_keep_indices]] = True keep_indices = torch.where(keep_mask)[0] return keep_indices[scores[keep_indices].sort(descending=True)[1]] def remove_small_boxes(boxes: Tensor, min_size: float) -> Tensor: """ Remove every box from ``boxes`` which contains at least one side length that is smaller than ``min_size``. .. note:: For sanitizing a :class:`~torchvision.tv_tensors.BoundingBoxes` object, consider using the transform :func:`~torchvision.transforms.v2.SanitizeBoundingBoxes` instead. Args: boxes (Tensor[N, 4]): boxes in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. min_size (float): minimum size Returns: Tensor[K]: indices of the boxes that have both sides larger than ``min_size`` """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(remove_small_boxes) ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1] keep = (ws >= min_size) & (hs >= min_size) keep = torch.where(keep)[0] return keep def clip_boxes_to_image(boxes: Tensor, size: Tuple[int, int]) -> Tensor: """ Clip boxes so that they lie inside an image of size ``size``. .. note:: For clipping a :class:`~torchvision.tv_tensors.BoundingBoxes` object, consider using the transform :func:`~torchvision.transforms.v2.ClampBoundingBoxes` instead. Args: boxes (Tensor[N, 4]): boxes in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. size (Tuple[height, width]): size of the image Returns: Tensor[N, 4]: clipped boxes """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(clip_boxes_to_image) dim = boxes.dim() boxes_x = boxes[..., 0::2] boxes_y = boxes[..., 1::2] height, width = size if torchvision._is_tracing(): boxes_x = torch.max(boxes_x, torch.tensor(0, dtype=boxes.dtype, device=boxes.device)) boxes_x = torch.min(boxes_x, torch.tensor(width, dtype=boxes.dtype, device=boxes.device)) boxes_y = torch.max(boxes_y, torch.tensor(0, dtype=boxes.dtype, device=boxes.device)) boxes_y = torch.min(boxes_y, torch.tensor(height, dtype=boxes.dtype, device=boxes.device)) else: boxes_x = boxes_x.clamp(min=0, max=width) boxes_y = boxes_y.clamp(min=0, max=height) clipped_boxes = torch.stack((boxes_x, boxes_y), dim=dim) return clipped_boxes.reshape(boxes.shape) def box_convert(boxes: Tensor, in_fmt: str, out_fmt: str) -> Tensor: """ Converts :class:`torch.Tensor` boxes from a given ``in_fmt`` to ``out_fmt``. .. note:: For converting a :class:`torch.Tensor` or a :class:`~torchvision.tv_tensors.BoundingBoxes` object between different formats, consider using :func:`~torchvision.transforms.v2.functional.convert_bounding_box_format` instead. Or see the corresponding transform :func:`~torchvision.transforms.v2.ConvertBoundingBoxFormat`. Supported ``in_fmt`` and ``out_fmt`` strings are: ``'xyxy'``: boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right. This is the format that torchvision utilities expect. ``'xywh'``: boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height. ``'cxcywh'``: boxes are represented via centre, width and height, cx, cy being center of box, w, h being width and height. Args: boxes (Tensor[N, 4]): boxes which will be converted. in_fmt (str): Input format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh']. out_fmt (str): Output format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh'] Returns: Tensor[N, 4]: Boxes into converted format. """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(box_convert) allowed_fmts = ("xyxy", "xywh", "cxcywh") if in_fmt not in allowed_fmts or out_fmt not in allowed_fmts: raise ValueError("Unsupported Bounding Box Conversions for given in_fmt and out_fmt") if in_fmt == out_fmt: return boxes.clone() if in_fmt != "xyxy" and out_fmt != "xyxy": # convert to xyxy and change in_fmt xyxy if in_fmt == "xywh": boxes = _box_xywh_to_xyxy(boxes) elif in_fmt == "cxcywh": boxes = _box_cxcywh_to_xyxy(boxes) in_fmt = "xyxy" if in_fmt == "xyxy": if out_fmt == "xywh": boxes = _box_xyxy_to_xywh(boxes) elif out_fmt == "cxcywh": boxes = _box_xyxy_to_cxcywh(boxes) elif out_fmt == "xyxy": if in_fmt == "xywh": boxes = _box_xywh_to_xyxy(boxes) elif in_fmt == "cxcywh": boxes = _box_cxcywh_to_xyxy(boxes) return boxes def box_area(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by their (x1, y1, x2, y2) coordinates. Args: boxes (Tensor[N, 4]): boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. Returns: Tensor[N]: the area for each box """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(box_area) boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py # with slight modifications def _box_inter_union(boxes1: Tensor, boxes2: Tensor) -> Tuple[Tensor, Tensor]: area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = _upcast(rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter return inter, union def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor: """ Return intersection-over-union (Jaccard index) between two sets of boxes. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. Args: boxes1 (Tensor[N, 4]): first set of boxes boxes2 (Tensor[M, 4]): second set of boxes Returns: Tensor[N, M]: the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(box_iou) inter, union = _box_inter_union(boxes1, boxes2) iou = inter / union return iou # Implementation adapted from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py def generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor: """ Return generalized intersection-over-union (Jaccard index) between two sets of boxes. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. Args: boxes1 (Tensor[N, 4]): first set of boxes boxes2 (Tensor[M, 4]): second set of boxes Returns: Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values for every element in boxes1 and boxes2 """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(generalized_box_iou) inter, union = _box_inter_union(boxes1, boxes2) iou = inter / union lti = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rbi = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) whi = _upcast(rbi - lti).clamp(min=0) # [N,M,2] areai = whi[:, :, 0] * whi[:, :, 1] return iou - (areai - union) / areai def complete_box_iou(boxes1: Tensor, boxes2: Tensor, eps: float = 1e-7) -> Tensor: """ Return complete intersection-over-union (Jaccard index) between two sets of boxes. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. Args: boxes1 (Tensor[N, 4]): first set of boxes boxes2 (Tensor[M, 4]): second set of boxes eps (float, optional): small number to prevent division by zero. Default: 1e-7 Returns: Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values for every element in boxes1 and boxes2 """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(complete_box_iou) boxes1 = _upcast(boxes1) boxes2 = _upcast(boxes2) diou, iou = _box_diou_iou(boxes1, boxes2, eps) w_pred = boxes1[:, None, 2] - boxes1[:, None, 0] h_pred = boxes1[:, None, 3] - boxes1[:, None, 1] w_gt = boxes2[:, 2] - boxes2[:, 0] h_gt = boxes2[:, 3] - boxes2[:, 1] v = (4 / (torch.pi**2)) * torch.pow(torch.atan(w_pred / h_pred) - torch.atan(w_gt / h_gt), 2) with torch.no_grad(): alpha = v / (1 - iou + v + eps) return diou - alpha * v def distance_box_iou(boxes1: Tensor, boxes2: Tensor, eps: float = 1e-7) -> Tensor: """ Return distance intersection-over-union (Jaccard index) between two sets of boxes. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``. Args: boxes1 (Tensor[N, 4]): first set of boxes boxes2 (Tensor[M, 4]): second set of boxes eps (float, optional): small number to prevent division by zero. Default: 1e-7 Returns: Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values for every element in boxes1 and boxes2 """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(distance_box_iou) boxes1 = _upcast(boxes1) boxes2 = _upcast(boxes2) diou, _ = _box_diou_iou(boxes1, boxes2, eps=eps) return diou def _box_diou_iou(boxes1: Tensor, boxes2: Tensor, eps: float = 1e-7) -> Tuple[Tensor, Tensor]: iou = box_iou(boxes1, boxes2) lti = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rbi = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) whi = _upcast(rbi - lti).clamp(min=0) # [N,M,2] diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps # centers of boxes x_p = (boxes1[:, 0] + boxes1[:, 2]) / 2 y_p = (boxes1[:, 1] + boxes1[:, 3]) / 2 x_g = (boxes2[:, 0] + boxes2[:, 2]) / 2 y_g = (boxes2[:, 1] + boxes2[:, 3]) / 2 # The distance between boxes' centers squared. centers_distance_squared = (_upcast((x_p[:, None] - x_g[None, :])) ** 2) + ( _upcast((y_p[:, None] - y_g[None, :])) ** 2 ) # The distance IoU is the IoU penalized by a normalized # distance between boxes' centers squared. return iou - (centers_distance_squared / diagonal_distance_squared), iou def masks_to_boxes(masks: torch.Tensor) -> torch.Tensor: """ Compute the bounding boxes around the provided masks. Returns a [N, 4] tensor containing bounding boxes. The boxes are in ``(x1, y1, x2, y2)`` format with ``0 <= x1 <= x2`` and ``0 <= y1 <= y2``. .. warning:: In most cases the output will guarantee ``x1 < x2`` and ``y1 < y2``. But if the input is degenerate, e.g. if a mask is a single row or a single column, then the output may have x1 = x2 or y1 = y2. Args: masks (Tensor[N, H, W]): masks to transform where N is the number of masks and (H, W) are the spatial dimensions. Returns: Tensor[N, 4]: bounding boxes """ if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(masks_to_boxes) if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device, dtype=torch.float) n = masks.shape[0] bounding_boxes = torch.zeros((n, 4), device=masks.device, dtype=torch.float) for index, mask in enumerate(masks): y, x = torch.where(mask != 0) bounding_boxes[index, 0] = torch.min(x) bounding_boxes[index, 1] = torch.min(y) bounding_boxes[index, 2] = torch.max(x) bounding_boxes[index, 3] = torch.max(y) return bounding_boxes ```
==================================================================================================================== SOURCE CODE FILE: ciou_loss.py LINES: 2 SIZE: 2.77 KB PATH: scripts\freecad_env\Lib\site-packages\torchvision\ops\ciou_loss.py ENCODING: utf-8 ```py import torch from ..utils import _log_api_usage_once from ._utils import _upcast_non_float from .diou_loss import _diou_iou_loss def complete_box_iou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Gradient-friendly IoU loss with an additional penalty that is non-zero when the boxes do not overlap. This loss function considers important geometrical factors such as overlap area, normalized central point distance and aspect ratio. This loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``, and The two boxes should have the same dimensions. Args: boxes1 : (Tensor[N, 4] or Tensor[4]) first set of boxes boxes2 : (Tensor[N, 4] or Tensor[4]) second set of boxes reduction : (string, optional) Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: No reduction will be applied to the output. ``'mean'``: The output will be averaged. ``'sum'``: The output will be summed. Default: ``'none'`` eps : (float): small number to prevent division by zero. Default: 1e-7 Returns: Tensor: Loss tensor with the reduction option applied. Reference: Zhaohui Zheng et al.: Complete Intersection over Union Loss: https://arxiv.org/abs/1911.08287 """ # Original Implementation from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/losses.py if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(complete_box_iou_loss) boxes1 = _upcast_non_float(boxes1) boxes2 = _upcast_non_float(boxes2) diou_loss, iou = _diou_iou_loss(boxes1, boxes2) x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # width and height of boxes w_pred = x2 - x1 h_pred = y2 - y1 w_gt = x2g - x1g h_gt = y2g - y1g v = (4 / (torch.pi**2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) with torch.no_grad(): alpha = v / (1 - iou + v + eps) loss = diou_loss + alpha * v # Check reduction option and return loss accordingly if reduction == "none": pass elif reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() else: raise ValueError( f"Invalid Value for arg 'reduction': '{reduction} \n Supported reduction modes: 'none', 'mean', 'sum'" ) return loss ```